
August 2021 AN5054 Rev 9 1/130

1

AN5054
Application note

Secure programming using STM32CubeProgrammer

Introduction

This document specifies the steps and tools required to prepare SFI (secure internal
firmware install), SFIx (secure external firmware install), SMI (secure module install) or SSP
(secure secret provisioning) images. It then describes how to program these into STM32
MCU devices that support SFI/SFIx on-chip internal memory, external Flash memory or, for
the SSP install procedure, STM32 MPU devices. It is based on the
STM32CubeProgrammer tool set (STM32CubeProg). These tools are compatible with all
STM32 devices.

The main objective of the SFI/SFIx and SMI processes is the secure installation of OEM and
software-partner’s firmware, which prevents firmware cloning.

The STM32MP1 Series supports protection mechanisms allowing protection of critical
operations (such as cryptography algorithms) and critical data (such as secret keys) against
unexpected access.

This application note also gives an overview of the STM32 SSP solution with its associated
tool ecosystem, and explains how to use it to protect OEM secrets during the CM product
manufacturing stage.

Refer also to:

• AN4992 [1], which provides an overview of the secure firmware install (SFI) solution, and
how this provides a practical level of protection of the IP chain - from firmware
development up to programming the device on-chip Flash memory.

• AN5510 [3], which provides an overview of secure secret provisioning (SSP).

www.st.com

http://www.st.com

Contents

2/130 AN5054 Rev 9

Contents

1 General information . 10

1.1 Licensing information . 10

1.2 Acronyms and abbreviations . 10

2 How to generate an execute-only/position
independent library for SMI preparation . 11

2.1 Requirements .11

2.2 Toolchains allowing SMI generation .11

2.3 Execute-only/position independent library scenario example
under EWARM . 12

2.3.1 Relocatable library preparation steps . 12

2.3.2 Relocatable SMI module preparation steps . 16

2.3.3 Application execution scenario . 17

3 Encrypted firmware (SFI) and module (SMI)
preparation using the STPC tool . 19

3.1 System requirements . 19

3.2 SFI generation process . 19

3.3 SFIx generation process . 28

Area E. .28

Area K. .28

3.4 SMI generation process . 32

3.5 SSP generation process . 35

3.6 STM32 Trusted Package Creator tool in the command line interface . . . 37

3.6.1 Steps for SFI generation (CLI) . 38

3.6.2 Steps for SMI generation (CLI) . 40

3.6.3 Steps for SSP generation (CLI) . 42

3.7 Using the STM32 Trusted Package Creator tool graphical user interface 44

3.7.1 SFI generation using STPC in GUI mode . 44

SFI GUI tab fields .45

3.7.2 SFIx generation using STPC in GUI mode . 48

SFIx GUI tab fields .49

3.7.3 SMI generation using STPC in GUI mode . 51

SMI GUI tab fields .52

AN5054 Rev 9 3/130

Contents

6

3.7.4 SSP generation using STPC in GUI mode . 54

SSP GUI tab fields .54

3.7.5 Settings . 56

3.7.6 Log generation . 57

3.7.7 SFI and SMI file checking function . 58

4 Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer . 59

4.1 Chip certificate authenticity check and license mechanism 59

4.1.1 Device authentication . 59

4.1.2 License mechanism . 59

License mechanism general scheme .59

License distribution. .60

HSM programming by OEM for license distribution .60

4.2 Secure programming using a bootloader interface 61

4.2.1 Secure firmware installation using a bootloader interface flow 61

4.2.2 Secure Module installation using a bootloader interface flow 63

4.2.3 STM32CubeProgrammer for SFI using a bootloader interface 63

4.2.4 STM32CubeProgrammer for SMI via a bootloader interface 64

4.2.5 STM32CubeProgrammer for SSP via a bootloader interface 65

4.2.6 STM32CubeProgrammer get certificate via a bootloader interface 67

4.3 Secure programming using JTAG/SWD interface 67

4.3.1 SFI/SFIx programming using JTAG/SWD flow 67

4.3.2 SMI programming through JTAG/SWD flow . 69

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 71

Example “getcertificate” command using JTAG .71

Example “smi” command using SWD. .71

4.4 Secure programming using Bootloader interface (UART/I2C/SPI/USB) . 72

SFI example .72

SFIx example .72

5 Example of SFI programming scenario . 73

5.1 Scenario overview . 73

5.2 Hardware and software environment . 73

5.3 Step-by-step execution . 73

5.3.1 Build OEM application . 73

5.3.2 Perform the SFI generation (GUI mode) . 73

Contents

4/130 AN5054 Rev 9

5.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 75

5.3.4 Performing HSM programming for license generation using STPC
(CLI mode) . 77

Example of HSM version 1 provisioning. .77

Example of HSM version 2 provisioning. .78

Example of HSM get information .78

5.3.5 Programming input conditions . 79

5.3.6 Perform the SFI install using STM32CubeProgrammer 80

Using JTAG/SWD. .80

6 Example of SFI programming scenario for STM32WL 83

6.1 Scenario overview . 83

6.2 Hardware and software environment . 83

6.3 Step-by-step execution . 83

6.3.1 Build OEM application . 83

6.3.2 Perform the SFI generation (GUI mode) . 83

6.3.3 Programming input conditions . 85

6.3.4 Perform the SFI install using STM32CubeProgrammer 86

7 Example of SFI programming scenario for STM32U5 88

7.1 Scenario overview . 88

7.2 Hardware and software environment . 88

7.3 Step-by-step execution . 88

7.3.1 Build OEM application . 88

7.3.2 Perform the SFI generation (GUI mode) . 88

7.3.3 Programming input conditions . 89

7.3.4 Perform the SFI install using STM32CubeProgrammer 90

Using JTAG/SWD. .90

8 Example of SMI programming scenario . 93

8.1 Scenario overview . 93

8.2 Hardware and software environment . 93

8.3 Step-by-step execution . 93

8.3.1 Build 3rd party Library . 93

8.3.2 Perform the SMI generation . 94

8.3.3 Programming input conditions . 95

AN5054 Rev 9 5/130

Contents

6

8.3.4 Perform the SMI install . 95

Using JTAG/SWD. .95

8.3.5 How to test for SMI install success . 97

9 Example of SFIx programming scenario for STM32H7 99

9.1 Scenario overview . 99

9.2 Hardware and software environment . 99

9.3 Step-by-step execution . 99

9.3.1 Build OEM application . 99

9.3.2 Perform the SFIx generation (GUI mode) . 99

9.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 101

9.3.4 Performing HSM programming for license generation using STPC
(CLI mode) . 102

9.3.5 Programming input conditions . 102

9.3.6 Perform the SFIx install using STM32CubeProgrammer 102

Using JTAG/SWD. .102

10 Example of SFIx programming scenario for STM32L5 107

10.1 Scenario overview . 107

10.2 Hardware and software environment . 107

10.3 Step-by-step execution . 107

10.3.1 Build OEM application . 107

10.3.2 Perform the SFIx generation (GUI mode) . 108

Use case 1 generation of SFIx without key area: .108

Use case 2 generation of SFIx with key area: .110

10.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 111

10.3.4 Performing HSM programming for license generation using STPC
(CLI mode) . 111

10.3.5 Programming input conditions . 111

10.3.6 Perform the SFIx install using STM32CubeProgrammer 111

11 Example of combined SFI-SMI programming scenario 115

11.1 Scenario overview .115

11.2 Hardware and software environment .115

11.3 Step-by-step execution .115

11.3.1 Using JTAG/SWD . 117

Contents

6/130 AN5054 Rev 9

11.3.2 How to test the combined SFI install success 119

12 Example of SSP programming scenario for STM32MP1 121

12.1 Scenario overview . 121

12.2 Hardware and software environment . 121

12.3 Step-by-step execution . 121

12.3.1 Building a secret file . 121

12.3.2 Performing the SSP generation (GUI mode) . 122

12.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 123

12.3.4 SSP programming conditions . 124

12.3.5 Perform the SSP install using STM32CubeProgrammer 124

13 Reference documents . 126

14 Revision history . 127

AN5054 Rev 9 7/130

List of tables

7

List of tables

Table 1. List of abbreviations . 10
Table 2. SSP preparation inputs . 36
Table 3. Document references . 126
Table 4. Document revision history . 127

List of figures

8/130 AN5054 Rev 9

List of figures

Figure 1. IAR example project overview . 12
Figure 2. Update compiler extra options . 13
Figure 3. Linker extra options . 14
Figure 4. Setting post-build option . 15
Figure 5. Postbuild batch file . 16
Figure 6. How to exclude the “lib.o” file from build . 17
Figure 7. app.icf file . 18
Figure 8. SFI preparation mechanism . 19
Figure 9. SFI image process generation . 20
Figure 10. RAM size and CT address inputs used for SFI multi install . 21
Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area . 22
Figure 12. Error message when firmware files with address overlaps used . 23
Figure 13. Error message when SMI address overlaps with a firmware area address 24
Figure 14. Error message when a SFI area address is not located in Flash memory 25
Figure 15. SFI format layout . 26
Figure 16. SFI image layout in case of split . 27
Figure 17. RAM size and CT address inputs used for SFIx multi install . 29
Figure 18. SFIx format layout. 30
Figure 19. SFIx image layout in case of split . 31
Figure 20. SMI preparation mechanism . 32
Figure 21. SMI image generation process . 33
Figure 22. SMI format layout . 34
Figure 23. SSP preparation mechanism . 35
Figure 24. Encryption file scheme . 36
Figure 25. STM32 Trusted Package Creator tool - available commands . 37
Figure 26. Option bytes file example . 39
Figure 27. SFI generation example using an Elf file . 40
Figure 28. SMI generation example . 41
Figure 29. SSP generation success. 43
Figure 30. SFI generation Tab . 44
Figure 31. Firmware parsing example . 45
Figure 32. SFI successful generation in GUI mode example . 47
Figure 33. SFIx generation Tab . 48
Figure 34. Firmware parsing example . 49
Figure 35. SFIx successful generation in GUI mode example . 50
Figure 36. SMI generation Tab . 51
Figure 37. SMI successful generation in GUI mode example . 53
Figure 38. SSP generation tab. 54
Figure 39. SSP output information. 55
Figure 40. Settings icon and Settings dialog box . 56
Figure 41. Log example . 57
Figure 42. Check SFI file example. 58
Figure 43. HSM programming GUI in the STPC tool . 61
Figure 44. Secure programming via STM32CubeProgrammer overview on STM32H7 devices 62
Figure 45. Secure programming via STM32CubeProgrammer overview on STM32L4 devices 62
Figure 46. SSP install success . 66
Figure 47. Example of getcertificate command execution using UART interface 67

AN5054 Rev 9 9/130

List of figures

9

Figure 48. SFI programming by JTAG/SWD flow overview (monolithic SFI image example) 68
Figure 49. SMI programming by JTAG flow overview . 70
Figure 50. Example of getcertificate command using JTAG . 71
Figure 51. STPC GUI during SFI generation . 74
Figure 52. Example of HSM programming using STPC GUI . 76
Figure 53. Example product ID . 77
Figure 54. HSM information in STM32 Trusted Package Creator CLI mode. 78
Figure 55. SFI install success using SWD connection (1) . 81
Figure 56. SFI install success using SWD connection (2) . 82
Figure 57. STPC GUI showing the STPC GUI during the SFI generation . 84
Figure 58. Example -dsecurity command-line output. 85
Figure 59. Example -setdefaultob command-line output . 86
Figure 60. SFI install via SWD execution command-line output . 87
Figure 61. STPC GUI during the SFI generation . 89
Figure 62. SFI install via SWD execution (1) . 91
Figure 63. SFI install via SWD execution - (2) . 92
Figure 64. STPC GUI during SMI generation . 94
Figure 65. SMI install success via debug interface . 96
Figure 66. OB display command showing that a PCROP zone was activated after SMI. 97
Figure 67. Successful SFIx generation . 100
Figure 68. Example of HSM programming using STPC GUI . 101
Figure 69. SFIx install success using SWD connection (1) . 103
Figure 70. SFIx install success using SWD connection (2) . 104
Figure 71. SFIx install success using SWD connection (3) . 105
Figure 72. SFIx install success using SWD connection (4) . 106
Figure 73. Successful SFIx generation use case 1 . 109
Figure 74. Successful SFIx generation use case 2 . 110
Figure 75. SFIx install success using SWD connection (1) . 112
Figure 76. SFIx install success using SWD connection (2) . 112
Figure 77. SFIx install success using SWD connection (3) . 113
Figure 78. SFIx install success using SWD connection (4) . 114
Figure 79. SFIx install success using SWD connection (5) . 114
Figure 80. GUI of STPC during combined SFI-SMI generation . 116
Figure 81. Combined SFI-SMI programming success using debug connection 118
Figure 82. Option bytes after combined SFI-SMI install success. 120
Figure 83. STM32 Trusted Package Creator SSP GUI tab . 122
Figure 84. Example of HSMv2 programming using STPC GUI . 123
Figure 85. STM32MP1 SSP install success . 125

General information

10/130 AN5054 Rev 9

1 General information

1.1 Licensing information

STM32CubeProgrammer supports STM32 32-bit devices based on Arm®(a) Cortex®-M
processors.

1.2 Acronyms and abbreviations

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of abbreviations

Abbreviations Definition

AES Advanced encryption standard

CLI Command line interface

CM Contract manufacturer

GCM Galois counter mode (one of the modes of AES)

GUI Graphical user interface

HSM Hardware security model

HW Hardware

MAC Message authentication code

MCU Microcontroller unit

OEM Original equipment manufacturer

PCROP Proprietary code read-out protection

PI Position independent

ROP Read-out protection

RSS Root security service (secure)

RSSe Root security service extension

SFI Secure firmware install

STPC STM32 Trusted Package Creator

SMI Secure modules install

STM32 ST family of 32-bit ARM based microcontrollers

SW Software

XO Execute only

AN5054 Rev 9 11/130

How to generate an execute-only/position independent library for SMI preparation

129

2 How to generate an execute-only/position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an execute-
only (XO) and position independent (PI) library using a partner toolchain

These kinds of libraries serve in encrypted SMI-module generation.

2.1 Requirements

SMI modules run in execute-only (XO) areas, also called PCROP areas, and must be
relocatable to be linkable with final OEM application. Nevertheless, today, 3rd party
toolchains for STM32 devices (such as MDK-ARM™ for ARM, EWARM for IAR™ and GCC
based IDEs) do not allow both features to be activated at the same time. So, starting from
particular versions of 3rd party toolchains, the two features below are possible for SMI
support:

• Position independent support (code + rw data + ro data)

• No literal pool generation - needed for the PCROP feature.

2.2 Toolchains allowing SMI generation

Three toolchains allow SMI generation:

• EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.

– “--ropi_cb” + “rwpi” are needed for position independent support

– option “no_literal_pool” is needed for the PCROP feature.

• MDK-ARM

The customized version allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “-fropi-cb”, “-frwpi”, “-
mexecute-only”.

– “fropi-cb” is needed for ro data independent position

– “frwpi” is needed for rw data independent position

– option “-mexecute-only” is needed for PCROP feature.

All library symbols being used in the final application must be added to the final project
in a “.txt” file format.

• GCC

The customized version of GCC based toolchains allows execute-only (XO) and
position independent (PI) library generation for SMI support through the following
options: “-masset”.

Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for the EWARM toolchain.

How to generate an execute-only/position independent library for SMI preparation

12/130 AN5054 Rev 9

2.3 Execute-only/position independent library scenario example
under EWARM

In order to generate an execute-only (XO) and position independent (PI) library a
customized version of the IAR toolchain must be used: version 7.42.0.

2.3.1 Relocatable library preparation steps

1. Open the project available in the “Example” folder: double click on
“Example/AdvEx.eww”.

The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

AN5054 Rev 9 13/130

How to generate an execute-only/position independent library for SMI preparation

129

The following steps update the old “lib.o” linked to the example application by making it
support both PI and XO features:

2. Within Lib-Debug options -> C/C++ Compiler. Go to tab “Extra Options” and add the
following line:
“--ropi_cb”

This action is illustrated in Figure 2.

Figure 2. Update compiler extra options

How to generate an execute-only/position independent library for SMI preparation

14/130 AN5054 Rev 9

3. Within Lib-Debug options -> Linker. Go to the “Extra Options” tab and add the following
lines:

--no_literal_pool

--ropi_cb

--loadable

--no_entry

This action is illustrated in Figure 3.

– “ropi_cb” is needed for Position Independent support

– the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

AN5054 Rev 9 15/130

How to generate an execute-only/position independent library for SMI preparation

129

4. Within Lib-Debug options -> Build actions. In post build command line execute the
batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line:
"$PROJ_DIR$\postbuild.bat" "$TOOLKIT_DIR$" "$TARGET_PATH$"
"$PROJ_DIR$\lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

How to generate an execute-only/position independent library for SMI preparation

16/130 AN5054 Rev 9

The “postbuild.bat” file is used to perform some key actions:

• --wrap: adds veneers to library functions to initialize registers used for ropi code

• “iexe2obj.exe”: transforms the elf into a linkable object file.

See Figure 5.

Figure 5. Postbuild batch file

5. Rebuild the project “Lib”

2.3.2 Relocatable SMI module preparation steps

From the object file created, “lib.o”, generate the SMI relocatble module using the STM32
Trusted Package Creator tool “libr.smi” and its corresponding data clear part (libr_clear.o:
corresponding to the input “lib.o” without the protected section code).

To execute this step, follow the steps explained for SMI generation under section
“Section 3.6.2: Steps for SMI generation (CLI)”.

AN5054 Rev 9 17/130

How to generate an execute-only/position independent library for SMI preparation

129

2.3.3 Application execution scenario

1. Flash the already generated SMI relocatable module to address 0x08080000 using
STM32Cube Programmer v0.4.0 or newer (see Section Figure 63.: SFI install via SWD
execution - (2) to perform this action).

2. Link the data clear part, “libr_clear.o”, generated from STM32 Trusted Package Creator
tool to the final IAR example application instead of the old previously used “lib.o”.

3. Exclude “lib.o” from the build (Figure 6).

Figure 6. How to exclude the “lib.o” file from build

4. Rebuild the application.

5. Do these modifications in an example application ICF file:

a) Define region for PCROP block:

define symbol __ICFEDIT_region_PCROP_start__ = 0x08080000;

define symbol __ICFEDIT_region_PCROP_end__ = 0x0809FFFF;

define region PCROP_region = mem:[from __ICFEDIT_region_PCROP_start__
to __ICFEDIT_region_PCROP_end__];

b) Define PCROP region as 'noload' (since it is already installed using
STM32CubeProgrammer so no need to load it again)

‘SMI’: place noload in PCROP_region { ro code section __code__Lib};

How to generate an execute-only/position independent library for SMI preparation

18/130 AN5054 Rev 9

These modifications are illustrated within the “app.icf” file, which is shown in Figure 7.

Figure 7. app.icf file

6. To check that example application executed successfully on the STM32H7 device:

a) Check that address 0x08080000 was protected with PCROP.

b) The expected “printf” packets appears in the terminal output.

AN5054 Rev 9 19/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

3 Encrypted firmware (SFI) and module (SMI)
preparation using the STPC tool

The STM32 Trusted Package Creator (STPC) tool allows the generation of SFI and SMI
images for STM32H7 devices. It is available in both CLI and GUI modes free of charge from
www.st.com.

3.1 System requirements

Using the STM32 Trusted Package Creator tool for SFI/SFIx, SMI and SSP image
generation requires a PC running on either Windows® 7/10, or Ubuntu® 14 in 64-bit
versions and macOS®.

3.2 SFI generation process

The SFI format is an encryption format for internal firmware created by STMicroelectronics
that transforms internal firmware (in ELF, Hex, Bin or Srec formats) into encrypted and
authenticated firmware in SFI format using AES-GCM algorithm with a 128-bit key. The SFI
preparation process used in the STM32 Trusted Package Creator tool is described in
Figure 8.

Figure 8. SFI preparation mechanism

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

20/130 AN5054 Rev 9

The SFI generation steps as currently implemented in the tool are described in Figure 9.

Figure 9. SFI image process generation

Before performing AES-GCM to encrypt an area, we calculate the Initialization Vector (IV)
as:

IV = nonce + Area Index

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the unencrypted
descriptive header generated by the tool) are called areas.

AN5054 Rev 9 21/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

These areas can be of different types:

• ‘F’ for a firmware area (a regular segment in the input firmware)

• ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds
to input from an SMI module)

• ‘C’ for a configuration area (used for option-byte configuration)

• ‘P’ for a “pause” area

• ‘R’ for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an SFI image
is split into several parts, which is the case when the global size of the SFI image exceeds
the allowed RAM size predefined by the user during the SFI image creation.

The STM32 Trusted Package Creator overview below (Figure 10) shows the RAM size input
for SFI image generation, and also the ‘Continuation token address’ input, which is used by
SFI multi install to store states in Flash memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI multi install

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

22/130 AN5054 Rev 9

Figure 11 (below) shows the specifics of these new areas compared to a regular SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area

A top-level image header is generated then authenticated, for this the tool performs AES-
GCM with authentication only (without encryption), using the SFI image header as an AAD,
and the nonce as IV.

An authentication tag is generated as output.

Note: To prepare an SFI image from multiple firmware files, make sure that there is no overlap
between their segments, otherwise an error message appears (Figure 12: Error message
when firmware files with address overlaps used).

AN5054 Rev 9 23/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Figure 12. Error message when firmware files with address overlaps used

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

24/130 AN5054 Rev 9

For combined SFI-SMI images, there is also an overlap check between firmware and
module areas. If the check fails, an error message appears (Figure 13).

Figure 13. Error message when SMI address overlaps with a firmware area address

AN5054 Rev 9 25/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Also, all SFI areas must be located in Flash memory, otherwise the generation fails and the
following error message appears (Figure 14).

Figure 14. Error message when a SFI area address is not located in Flash memory

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

26/130 AN5054 Rev 9

The final output from this generation process is a single file, which is the encrypted and
authenticated firmware in “.sfi” format. The SFI format layout is described in Figure 15.

Figure 15. SFI format layout

AN5054 Rev 9 27/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFI image
layout, as in the example below Figure 16.

Figure 16. SFI image layout in case of split

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

28/130 AN5054 Rev 9

3.3 SFIx generation process

In addition to the SFI preparation process mentioned in the previous section, two extra
areas are added in the SFI image for the SFIx preparation process:

• ‘E’ for an external firmware area

• ‘K’ for a key area (used for random keys generation)

The key ‘K’ area is optional and it can be stored in the area ‘F’.

Area E

The area ‘E’ is for external Flash memory. It includes the following information at the
beginning of an encrypted payload:

• OTFD region_number (uint32_t):

– 0 3: OTFD1 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335, and STM32L5)

– 4 7: OTFD2 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335)

• OTFD region_mode (uint32_t) bit [1:0]:

– 00: instruction only AES-CTR)

– 01: data only (AES-CTR)

– 10: instruction + data (AES-CTR)

– 11: instruction only (EnhancedCipher)

• OTFD key_address in internal Flash memory (uint32_t).

After this first part, area ‘E’ includes the firmware payload (as for area ‘F’). The destination
address of area ‘E’ is in external Flash memory (0x9 / 0x7).

Area K

The area ‘K’ triggers generation of random keys. It contains N couples; each one defines a
key area as follows:

• the size of the key area (uint32_t)

• the start address of the key area (uint32_t): address in internal Flash memory.

Example of an area ‘K’:

0x00000002 0x00000080 0x08010000 0x00000020 0x08010100

There are two key areas:

• the first key area starts at 0x08010000 with size = 0x80 (8 x 128-bits keys)

• the second key area starts at 0x08010100 with size 0x20 (256-bits key).

The STM32 Trusted Package Creator overview below (Figure 17: RAM size and CT
address inputs used for SFIx multi install) shows the RAM size input for SFIx image
generation, and also the ‘Continuation token address’ input, which is used by SFIx multi
install to store states in external/internal Flash memory during SFIx programming.

The ‘Continuation token address’ is mandatory due to the image generation which adds
areas P and R whatever be the configuration.

AN5054 Rev 9 29/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Figure 17. RAM size and CT address inputs used for SFIx multi install

Note: To prepare an SFIx image from multiple firmware files, make sure that there is no overlap
between their segments (Intern and extern), otherwise an error message appears as same
as in the SFI use case.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

30/130 AN5054 Rev 9

The final output from this generation process is a single file, which is the encrypted and
authenticated internal/external firmwares in “.sfix” format. The SFIx format layout is
described in Figure 18.

Figure 18. SFIx format layout

AN5054 Rev 9 31/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

When the SFIx image is split during generation, areas ‘P’ and ‘R’ appear in the SFIx image
layout, as in the example below Figure 19.

Figure 19. SFIx image layout in case of split

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

32/130 AN5054 Rev 9

3.4 SMI generation process

SMI is a format created by STMicroelectronics that aims to protect partners’ software (SW:
software modules and libraries).

The SMI preparation process is described below (Figure 20).

Figure 20. SMI preparation mechanism

AN5054 Rev 9 33/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

The SMI generation steps as currently implemented in the tool are described in the diagram
below (Figure 21).

Figure 21. SMI image generation process

The AES-GCM encryption is performed using the following inputs:

• 128-bit AES encryption key

• The input nonce as Initialization Vector (IV)

• The security version as Additional Authenticated Data (AAD).

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

34/130 AN5054 Rev 9

Before SMI image creation, PCROP checks are performed on the SMI image validity:

• A PCROP section must be aligned on a Flash word (256 bits), otherwise a warning is
shown.

• The section’s size must be at least 2 Flash words (512 bits), otherwise a warning is
shown.

• The section must end on a Flash word boundary (a 256-bit word), otherwise a warning
is shown.

• If the start address of the section immediately following the PCROP section overlaps
the last Flash word of the PCROP section (after performing the PCROP alignment
constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:

• The SMI image (Figure 22 represents the SMI format layout).

• The library data part.

Figure 22. SMI format layout

AN5054 Rev 9 35/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

3.5 SSP generation process

SSP is an encryption format that transforms customer secret files into encrypted and
authenticated firmware using an AES-GCM algorithm with a 128-bit key. The SSP
preparation process used in the STM32 Trusted Package Creator tool is shown in
Figure 23.

Figure 23. SSP preparation mechanism

An SSP image must be created prior to SSP processing. The encrypted output file follows a
specific layout that guarantees a secure transaction during transport and decryption based
on the following inputs:

• Secret file: This 148-byte secret file must fit into the OTP area reserved for the
customer. There is no tool or template to create this file.

• RMA password: This password is chosen by the OEM. It is part of the secret file and is
placed as the first 4-byte word. To make RMA password creation easier and avoid
issues, the STM32 Trusted Package Creator tool add sit directly at the beginning of the
148-byte secret file.

• Encryption key: AES encryption key (128 bits).

• Encryption nonce: AES nonce (128 bits).

• OEM FW key: This is the major part of the secure boot sequence. Based on ECDSA
verification, the key is used to validate the signature of the loaded binary.

The first layout part (SSP magic, Protocol version, ECDSA public key, secret size) is used
as additional authenticated data (AAD) to generate the payload tag. This is checked by the
ROM code during decryption.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

36/130 AN5054 Rev 9

This encrypted file is automatically generated by the STM32 Trusted Package Creator tool.

Figure 24. Encryption file scheme

Table 2. SSP preparation inputs

Input Size (bytes) Content

SSP magic 4 ‘SSPP’: magic identifier for SSP Payload

SSP Protocol Version 4
Can be used to indicate how to parse the payload, if
payload format changes in future

OEM ECDSA public key 64 OEM ECDSA public key

OEM secret size 4 Size of OEM secrets, in bytes

Payload tag 16
Cryptographic signature of all fields above, to ensure
their integrity.

Encrypted OEM secrets 152 Encrypted OEM secrets. 152 is given by previous field.

AN5054 Rev 9 37/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

3.6 STM32 Trusted Package Creator tool in the command line
interface

This section describes how to use the STM32 Trusted Package Creator tool from the
command line interface in order to generate SFI/SFIx and SMI images. The available
commands are listed in Figure 25.

Figure 25. STM32 Trusted Package Creator tool - available commands

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

38/130 AN5054 Rev 9

3.6.1 Steps for SFI generation (CLI)

In order to generate an SFI/SFIx image in CLI mode, the user must use the “-sfi, --sfi”
command followed by the appropriate inputs.Inputs for “sfi” command are:

-fir, --firmware

Description: adds an input firmware file (supported formats are Bin, Hex,
Srec and ELF). This option can be used more than once in order to add multiple firmware
files.

Syntax: -fir <Firmware_file> [<Address>]

 <Firmware_file> :Firmware file.

[<Address>] :Used only for binary firmware.

-firx, --firmwx

Description: Add an input for external firmware file. Supported formats are
Bin, Hex, Srec and ELF. This option can be used more than once in order to
add multiple firmware files.

Syntax: -firx <Firmware_file> [<Address>] [<Region_Number>]

[<Region_Mode>] [<key_address>]

<Firmware_file> : Supported external firmware files are ELF HEX
 SREC BIN.

[<Address>] :Only in case of BIN input file (in any base).

<Region_Number> : Only in case of BIN input file (in any base):
 [0:3]: OTFD1 (STM32H7A3/7B3, STM32H7B0 or

STM32L5), [4:7]:
 OTFD2 (STM32H7A3/7B3 and STM32H7B0 case).

<Region_Mode> : Only in case of BIN input file (in any base), only two
 bits [0:1] where

 00: instruction only (AES-CTR)
 01: data only (AES-CTR)
 10: instruction + data (AES-CTR)
 11: instruction only (EnhancedCipher)

<key_address> : Only in case of BIN input file (in any base), random
key values in internal Flash memory.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

< Key _file> : A 16 bytes binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

<Nonce _file> A 12-byte binary file.

AN5054 Rev 9 39/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

-v, --ver

Description: sets the image version.

Syntax: -v <Image_version>

<Image_version> : A value between 0 and 255 in any base.

-ob, --obfile

Description: provides an option bytes configuration file.
The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.
Only csv (comma separated value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

Note: The number of rows in the CSV file is product dependent (refer to the example available for
each product). For instance there are 9 rows for all STM32H7 products, with the last row
"reserved", except for dual-core devices. It is important to neither change the order of, nor
delete, rows.

Example: for STM32H7xx devices, 9 option bytes registers must be configured, which
corresponds to a total of 9 lines in the csv file (Figure 26).

Syntax: -ob <CSV_file>

<CSV_file >: A csv file with 9 values.

Figure 26. Option bytes file example

-m, --module

Description: adds an input SMI file.
This option can be used more than once in order to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>

<SMI_file >: SMI file.[<Address>]: Address is provided only for relocatable SMI.

-rs, --ramsize

Description: define the available ram size (in case of SFI multi-install)

Syntax: -rs <Size>

< Size >: RAM available size in bytes

Note: The maximum RAM size of each device is mentioned in the descriptor. For example the
maximum RAM size of the STM32WL is 20 Kbytes.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

40/130 AN5054 Rev 9

-ct, --token

Description: continuation token address (in case of SFI multi-install)

Syntax: -ct <Address>

< Address >: continuation token Flash address

-o, --outfile

Description: sets the output SFI file to be created.

Syntax: -o <out_file>

<out_file > : the SFI file to be generated (must have the “.sfi”
extension).

Example of SFI generation command using an ELF file:

STM32TrustPackageCreator_CLI.exe -sfi -fir tests.axf -k
test_firmware_key.bin -n nonce.bin -ob ob.csv -v 23 -o out.sfi

The result of previous command is shown in Figure 27.

Figure 27. SFI generation example using an Elf file

3.6.2 Steps for SMI generation (CLI)

In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi”
command followed by the appropriate inputs.

Inputs for the “smi” command are:

-elf, --elfile

Description: sets the input ELF file (only ELF format is supported).

Syntax: - elf <ELF_file>

<ELF_file> : ELF file. An ELF file can have any of the extensions: “.elf”, “.axf”,
“.o”, “.so”,“.out”.

-s, --sec

Description: sets the name of the section to be encrypted.

Syntax: -s <section_name>

<section_name> : Section name.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

AN5054 Rev 9 41/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Syntax: -n <Nonce_file>

<Nonce_file> : A 12-byte binary file.

-sv, --sver

Description: sets the security version file

The security version file is used to make the SMI image under preparation compatible with a
given RSS version, since it contains a corresponding identifying code (almost the HASH of
the RSS).

Syntax: -sv <SV_file>

<SV_file> : A 16-byte file.

-o, --outfile

Description: Sets the SMI file to be created as output

Syntax: -o <out_file>

<out_file > : SMI file to be generated, must have the .smi extension.

-c, --clear

Description: Sets the clear ELF file to be created as output corresponding to the data part
of the input file

Syntax: -c <ELF_file>

<ELF_file > : Clear ELF file to be generated.

Example SMI generation command:
STM32TrustPackageCreator_CLI.exe –smi -elf FIR_module.axf -
s “ER_PCROP” -k test_firmware_key.bin -n nonce.bin -sv
svFile -o test.smi -c clear.smi

Figure 28. SMI generation example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

42/130 AN5054 Rev 9

3.6.3 Steps for SSP generation (CLI)

In order to generate an SSP image in CLI mode, the user must use the “-ssp, --ssp”
command followed by the appropriate inputs.

Inputs for the “ssp” command are:

-ru, --rma_unlock

Description: RMA unlock password

Syntax: -ru <RMA_Unlock>

<RMA_Unlock> : Hexadecimal value 0x0000 to 0x7FFF

-rr, --rma_relock

Description: RMA relock password

Syntax: -rr <relock_value>

<relock_value> : Hexadecimal value 0x0000 to 0x7FFF

-b, --blob

Description: Binary to encrypt

Syntax: -b <Blob>

<Blob> : Secrets file of size 148 bytes

-pk, --pubk

Description: OEM public key file

Syntax: -pk <PubK.pem>

<PubK> : pem file of size 178 bytes

-k, --key

Description: AES-GCM encryption key

Syntax: -k <Key_File>

 <Key_File> : Bin file, its size must be 16 bytes

-n, --nonce

Description: AES-GCM nonce

Syntax: -n <Nonce_File>

<Nonce_File> : Bin file, its size must be 16 bytes

-o, --out

Description: Generate SSP file

Syntax: -out <Output_File.ssp>

 <Output_File> : SSP file to be created with (extension .ssp)

If all input fields are validated, an SSP file is generated in the directory path already
mentioned in the “-o” option.

AN5054 Rev 9 43/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Example SSP generation command:

STM32TrustedPackageCreator_CLI –ssp –ru 0x312 –rr 0xECA

–b “C:\SSP\secrets\secrets.bin”

–pk “C:\SSP\OEMPublicKey.pem” –k “C:\SSP\key.bin”

–n “C:\SSP\nonce.bin” –o “C:\out.ssp”

Once the operation is done, a green message is displayed to indicate that the generation
was finished successfully. Otherwise, an error occurred.

Figure 29. SSP generation success

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

44/130 AN5054 Rev 9

3.7 Using the STM32 Trusted Package Creator tool graphical
user interface

The STPC is also available in graphical mode, this section describes its use. The STM32
Trusted Package Creator tool GUI presents two tabs, one for SFI generation, one for SFIx
generation and one for SMI generation.

3.7.1 SFI generation using STPC in GUI mode

Figure 30 shows the graphical user interface tab corresponding to SFI generation.

Figure 30. SFI generation Tab

To generate an SFI image successfully from the supported input firmwares formats, the user
must fill in the interface fields with valid values.

AN5054 Rev 9 45/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

SFI GUI tab fields

• Firmware files:

The user needs to add the input firmware files with the “Add” button.

If the file is valid, it is appended to the “input firmware files“ list, otherwise an error
message box appears notifying the user that either the file could not be opened, or the
file is not valid.

Clicking on “input firmware file“ causes information related information to appear in the
“Firmware information” section (Figure 31).

Figure 31. Firmware parsing example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

46/130 AN5054 Rev 9

• Encryption key and nonce file:

The encryption key and nonce file are selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for nonce).

• Option bytes file:

The option bytes file are selected the same way as the encryption key and nonce. Only
csv files are supported.

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

• SMI files:

SMI files are added the same way as the firmware files. Selecting a file causes related
information to appear in the “Firmware information” section.

• Image version:

Choose the image version value of the SFI under generation within this interval:
[0..255].

• Output file:

Sets the folder path in which the SFI image is to be created. This is done by entering
the folder path (absolute or relative) or by using the “Select folder” button.

Note: By using the “Select folder” button, the name “out.sfi” is automatically suggested. This can
be kept or changed.

• ‘Generate SFI’ button:

Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFI file by a single click on it.

If everything goes well, a message box indicating successful generation appears
(Figure 32: SFI successful generation in GUI mode example) and information about the
generated SFI file is displayed in the SFI information section.

AN5054 Rev 9 47/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Figure 32. SFI successful generation in GUI mode example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

48/130 AN5054 Rev 9

3.7.2 SFIx generation using STPC in GUI mode

Figure 33 shows the graphical user interface tab corresponding to SFIx generation.

Figure 33. SFIx generation Tab

To generate an SFIx image successfully from the supported input firmware formats, the user
must fill in the interface fields with valid values.

AN5054 Rev 9 49/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

SFIx GUI tab fields

Firmware files: The user needs to add the input firmware files with the “Add” button. If the
file is valid, it is appended to the “input firmware files “list, otherwise an error message box
appears notifying the user that either the file could not be opened, or the file is not valid.
Clicking on “input firmware file“ causes information related information to appear in the
“Firmware information” section (Figure 34).

Figure 34. Firmware parsing example

As is the case for the SFI use case, once all fields are filled in properly, the “Generate SFIx”
button becomes enabled. The user can generate the SFIx file by a single click on it. If
everything goes well, a message box indicating successful generation appears (Figure 35:
SFIx successful generation in GUI mode example) and information about the generated
SFIx file is displayed in the SFIx information section.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

50/130 AN5054 Rev 9

Figure 35. SFIx successful generation in GUI mode example

AN5054 Rev 9 51/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

3.7.3 SMI generation using STPC in GUI mode

Figure 36 shows the graphical user interface tab corresponding to SMI generation.

Figure 36. SMI generation Tab

To generate an SMI image successfully from an Elf file, the user must fill in the interface
fields with valid values.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

52/130 AN5054 Rev 9

SMI GUI tab fields

• Elf file:

In this case the input file can only be an elf file.

If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears notifying the user that either the file could not be opened or
the file is not valid.

• Encryption key and nonce file:

As for SFI, the encryption key and nonce file are selected in the same way as the Elf
file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for nonce
file).

• Security version file:

The security version file is used for the same purpose as explained in the CLI section.

The security version file size must be 16 bytes.

• Section:

This is a section list that can be used to select the name of the section to be encrypted.

• Output files:

Sets the folder path into which the SMI image and its clear part are to be created. This
is done by entering the folder path (absolute or relative) or by using the “Select folder”
button.

Note: For both output fields, when using the “Select folder” button, a name is suggested
automatically. This can be kept or changed.

• ‘Generate SMI’ button:

When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.

A message box informing the user that generation was successful must appear
(Figure 37: SMI successful generation in GUI mode example), with additional
information about the generated SMI file displayed in the ‘SMI information’ section. In
the case of invalid input data, an error message box appears instead.

AN5054 Rev 9 53/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

Figure 37. SMI successful generation in GUI mode example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

54/130 AN5054 Rev 9

3.7.4 SSP generation using STPC in GUI mode

Figure 38 shows the SSP generation graphical user interface tab.

Figure 38. SSP generation tab

To generate an SSP image successfully from the supported firmware input formats, the user
must fill in the interface fields with valid values.

SSP GUI tab fields

RMA Lock: Unlock password, hexadecimal value from 0x0000 to 0x7FFF

RMA Relock: Relock password, hexadecimal value from 0x0000 to 0x7FFF

Secrets file: Binary file of size 148 bytes to be encrypted. Can be selected by entering file
path (absolute or relative), or by selection with the Open button.

Encryption key and nonce files: The encryption key and nonce file can be selected by
entering their paths (absolute or relative), or by selection with the Open button. Notice that
sizes must be respected (16 bytes for the key and 12 bytes for nonce).

OEM public key file: 178-byte .pem file.

Output SSP file: Select the output directory by entering the SSP file name to be created
with a .ssp extension.

AN5054 Rev 9 55/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

When all fields are properly filled in, the user can start the generation by clicking on the
Generate SSP button (the button becomes active).

Figure 39. SSP output information

When the generation is complete, SSP information is available in the SSP overview section.

• File name: SSP output file name.

• Type: SSP format.

• Size: indicates the generated file size including all data fields.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

56/130 AN5054 Rev 9

3.7.5 Settings

The STPC allows generation to be performed respecting some user-defined settings. The
settings dialog are displayed by clicking the settings icon (see Figure 40) in the tool bar or in
the menu bar by choosing: Options -> settings.

Figure 40. Settings icon and Settings dialog box

Settings can be performed on:

• Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments in order to merge them and reduce the number of segments. The user might
choose to perform padding either with 0xFF (default value) or 0x00.

• Settings file:

When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and fields contents.

• Log file:

When checked, a log file is generated in the selected path.

AN5054 Rev 9 57/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

129

3.7.6 Log generation

A log can be visualized by clicking the “log” icon in the tool bar or menu bar: Options-> log.

Figure 41 shows a log example:

Figure 41. Log example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

58/130 AN5054 Rev 9

3.7.7 SFI and SMI file checking function

This function checks the validity and information parsing of an SFI or SMI file.

It is accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 42 shows a check SFI example:

Figure 42. Check SFI file example

AN5054 Rev 9 59/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4 Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART, USB,
SPI, CAN, I2C, JTAG and SWD interfaces. So far, programming via JTAG/SWD is only
supported with an ST-LINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of SFI and
SMI images using UART, USB, SPI, JTAG/SWD interfaces, and SFIx using only JTAG/SWD
interfaces.The tool is currently available only in CLI mode, it is available free of charge from
www.st.com.

4.1 Chip certificate authenticity check and license mechanism

The SFI solution was implemented to provide a practical level of IP protection chain from the
firmware development up to Flashing the device, and to attain this objective, security assets
are used, specifically device authentication and license mechanisms.

4.1.1 Device authentication

The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate this
public key in an asymmetric transfer: the certificate is the public key signed by a Certificate
Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attacker who could substitute the public
key with their own key.

4.1.2 License mechanism

One important secure Flashing feature is the ability of the firmware provider to control the
number of chips that can be programmed. This is where the concept of licenses comes in to
play. The license is an encrypted version of the firmware key, unique to each device and
session. It is computed by a derivation function from the device’s own key and a random
number chosen from each session (the nonce).

Using this license mechanism, the OEM is able to control the number of devices to be
programmed, since each license is specific to a unique chip, identified by its public key.

License mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a firmware key
and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip identifier to
the provider server, HSM or any provider license generator tool, which returns a license for
the identified chip. The license contains the encrypted firmware key, and only this chip can
decrypt it.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

60/130 AN5054 Rev 9

License distribution

There are many possible ways for the firmware provider to generate and distribute licenses:

• Server based: an Internet server can be set up, and when a customer needs to Flash
the firmware on to a chip, they connect to the server which generates a license for this
chip.

• HSM based: Hardware security modules can be built, one of which is installed on the
programming house production line.

• Licenses can be generated in advance (but the firmware provider must know which
chips to generate licenses for).

There is no STMicroelectronics secret involved in license generation, so each firmware
provider is free to choose their preferred method.

ST offers an SFI solution based on smartcard HSMs as a license distribution tool, which can
be used in programming houses.

HSM programming by OEM for license distribution

Before an OEM delivers an HSM to a programming house for deployment as a license
generation tool for programming of relevant STM32 devices, some customization of the
HSM must be done first.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated API is available for HSM personalization and
provisioning.

This data is as follows:

• The counter: the counter is set to a maximum value that corresponds to the maximum
number of licenses that could be delivered by the HSM. It aims to prevent over-
programming.

It is decremented with each license delivered by the HSM.

No more licenses are delivered by the HSM once the counter is equal to zero.

The maximum counter value must not exceed a maximum predefined value, which
depends on the HSM used.

• The firmware key: the key size is 32 bytes. It is composed of two fields: the
initialization vector field (IV) and the key field, which are used for AES128-GCM
firmware encryption.

Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).

Both fields must remain secret; that’s why there are encrypted before being sent to the
chip.

The key and IV remains the same for all licenses for a given piece of firmware.
However, they must be different for different firmware or different versions of the same
firmware.

• The firmware identifier: allows the correct HSM to be identified for a given firmware.

• The personalization data: this is specific to each MCU and delivered inside TPC
directory. More info about personalization data in Section 5.3.4: Performing HSM
programming for license generation using STPC (CLI mode).

AN5054 Rev 9 61/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM to
guarantee his data confidentiality and privacy.

ST provides the tools needed to support SFI/SFIx via HSM. In fact, HSM programming is
supported by the STM32 Trusted Package Creator tool. Figure 43 shows the GUI for HSM
programming in STPC tool.

Figure 43. HSM programming GUI in the STPC tool

During SFI install, STM32CubeProgrammer communicates with the device to get the chip
certificate, upload it into the HSM to request the license. Once the license is generated by
the HSM, it gives it back to the STM32 device.

4.2 Secure programming using a bootloader interface

4.2.1 Secure firmware installation using a bootloader interface flow

The production equipment on the OEM-CM production line needs to be equipped with a
Flashing tool (FT) supporting the programming of SFI images. The Flashing tool to be used
on OEM-CM production line is STM32CubeProgrammer, which is given the data blob
prepared by the STPC, containing the image header and the encrypted image data blob.

Note: The SFI install is performed successfully only if a valid license is given to the Flashing tool.

STM32CubeProgrammer supports secure firmware install for such devices as well as all
STM32H7, STM32L4, STM32L5, STM32WL, STM32U5 and STM32MP devices available
so far.

For more details on SFI over these STM32 devices refer to AN4992 [1]. This document is
available on www.st.com.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

62/130 AN5054 Rev 9

The general flow of the secure firmware installation using a bootloader interface on a chip
for H7 and L4 secure devices is shown respectively in Figure 44 and Figure 45 below.

Figure 44. Secure programming via STM32CubeProgrammer overview on STM32H7
devices

Figure 45. Secure programming via STM32CubeProgrammer overview on STM32L4
devices

AN5054 Rev 9 63/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4.2.2 Secure Module installation using a bootloader interface flow

As explained in Section 3.4: SMI generation process, outputs are generated for this
particular use case:

• The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections
except the code section extracted by the STPC to prepare the SMI module.

• The encrypted SMI module, which contains the protected code.

The first part is programmed into the chip using any means (JTAG Flasher, UART
bootloader and so on, as for any regular ELF/AXF file.

The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer which places them in RAM.

The SMI has to be invoked via the secure bootloader.

Note: The SMI install is performed successfully only if the adequate license is given to the
Flashing tool.

4.2.3 STM32CubeProgrammer for SFI using a bootloader interface

For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only mode so-
far available) by launching the following command:

-sfi, --sfi

Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile_path>

[<protocol=Ptype>] : Protocol type to be used : static/live
 Only static protocol is supported so far

 Default value static

<file_path> : Path of sfi file to be programmed

[hsm=0|1] : Set user option for HSM use value in
 {0 (do not use HSM), 1 (use HSM)}
 Default value : hsm = 0

<lic_path|slot=slotID> : Path to the SFI license file (if hsm = 0)
 or reader slot ID if HSM is used (hsm = 1)

[<licMod_path>|slot=slotID] : List of the integrated SMI license files paths

If hsm = 1, the user must provide the Slot ID parameter.

If hsm = 0, the user must provide the license path file that can be generated separately
using the following command line, provided an HSM card is available:

-hsmgetlicense

During th SFI process, the generated license can be used multiple times with the same
MCU, without the need of an HSM card.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

64/130 AN5054 Rev 9

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi "C:\SFI\data.sfi"
hsm=1 "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated Flash
memory address.

4.2.4 STM32CubeProgrammer for SMI via a bootloader interface

For SMI programming, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-smi, --smi

Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

<protocol=Ptype> : Protocol type to be used : static/live
 Only static protocol is supported so far
 Default value static

<file_path> : Path of smi file to be programmed

[hsm=0|1] : Set user option for HSM use
 value in {0 (do not use HSM), 1 (use HSM)}
 Default value: hsm=0

[<address>] : Destination address of the smi module
 needed only for relocatable SMI

<lic_path|slot=slotID> : Path to the SMI license file (if hsm=0) or reader
 slot ID if HSM is used (hsm=1)

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi "C:\SFI\data.sfi"
hsm=0 "C:\SFI\license.bin"

This command allows programming of the SMI specified file “data.smi” into a dedicated
PCROPed area.

AN5054 Rev 9 65/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4.2.5 STM32CubeProgrammer for SSP via a bootloader interface

In this part the STM32CubeProgrammer tool is used in CLI mode (the only mode available
so far for secure programming) to program the SSP image already created with STM32
Trusted Package Creator. STM32CubeProgrammer supports communication with ST HSMs
(hardware secure modules based on Smart Card) to generate a license for the connected
STM32 MPU device during SSP install.

The SSP flow can be performed using both USB or UART interfaces (not the STLINK
interface).

STM32CubeProgrammer exports a simple SSP command with some options to perform the
SSP programming flow.

-ssp, --ssp

Description: Program an SSP file

Syntax: -ssp <ssp_file_path> <ssp-fw-path> <hsm=0|1> <license_path|slot=slotID>

 <ssp_file_path> : SSP file path to be programmed, bin or ssp extensions

 <ssp-fw-path> : SSP signed firmware path

 <hsm=0|1> : Set user option for HSM use (do not use HSM / use HSM)

Default value : hsm=0

<license_path|slot=slotID> :Path to the license file (if hsm=0)

Reader slot ID if HSM is used (if hsm=1)

Example using USB DFU bootloader interface:

STM32_Programmer_CLI.exe -c port=usb1 –ssp “out.ssp” “tf-a-ssp-
stm32mp157f-dk2-trusted.stm32” hsm=1 slot=1

Note: All SSP traces are shown on the output console.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

66/130 AN5054 Rev 9

Figure 46. SSP install success

If there is any faulty input, the SSP process is aborted and an error message is displayed to
indicate the root cause of the issue.

AN5054 Rev 9 67/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4.2.6 STM32CubeProgrammer get certificate via a bootloader interface

To get the chip certificate, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-gc, --getcertificate

Syntax: –gc <file_path>

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 -gc "C:\Demo_certificate.bin"

This command allows the chip Certificate to be read and uploaded into the specified file:
"C:\Demo_certificate.bin"

The execution results are shown in Figure 47.

Figure 47. Example of getcertificate command execution using UART interface

4.3 Secure programming using JTAG/SWD interface

4.3.1 SFI/SFIx programming using JTAG/SWD flow

It is also possible to program the SFI/SFIx image using the JTAG interface. Here the read
out protection mechanism (RDP level 1) cannot be used during SFI/SFIx as user Flash
memory is not accessible after firmware chunks are written to RAM through the JTAG
interface.

The whole process happens in RDP level 0. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFI via debug interface is currently supported for STM32H753xI, STM32H7A3/7B3 and
STM32H7B0, STM32H723/333 and STM32H725/335, and STM32L5 devices.

SFIx via debug interface is currently supported for STM32H7A3/7B3 and STM32H7B0,
STM32H723/733, STM32L5 and STM32U5 devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the maximum
area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits into the
allowed RAM size.

An SFI/SFIx multi install is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

68/130 AN5054 Rev 9

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area. In the case of STM32L5 and STM32U5 devices, STM32CubeProgrammer
sets the RDP Level on 0.5.

The SFI flow for programming through JTAG is described in Figure 48.

Figure 48. SFI programming by JTAG/SWD flow overview
(monolithic SFI image example)

AN5054 Rev 9 69/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4.3.2 SMI programming through JTAG/SWD flow

For SMI programming through JTAG/SWD the process flow is similar to that using the
UART bootloader.

This means that the whole SMI image and its corresponding license must be transferred to
RAM before starting. Then, there are two options to access SMI services through JTAG:

• write a small program in RAM that calls the public API (API details are available under
non-disclosure agreement)

• use the secure API directly.

The essential steps of the SMI programming by JTAG flow are described in Figure 49: SMI
programming by JTAG flow overview.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

70/130 AN5054 Rev 9

Figure 49. SMI programming by JTAG flow overview

AN5054 Rev 9 71/130

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

129

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD

The only modification in the STM32CubeProgrammer secure command syntax is the
connection type which must be set to “jtag” or “swd”, otherwise all secure programming
syntax for supported commands is identical.

Note: Using a debug connection “HOTPLUG” mode must be used with the connect command.

Example “getcertificate” command using JTAG

STM32_Programmer.exe –c port=jtag mode=HOTPLUG -gc

testJTAG_Certif.bin

The result of this example is shown in Figure 50.

Figure 50. Example of getcertificate command using JTAG

Example “smi” command using SWD

-c port=swd mode=HOTPLUG -smi protocol=static
"RefSMI_MDK/FIR_module.smi" "RefSMI_MDK/licenseSMI.bin" -vb 3 -log

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

72/130 AN5054 Rev 9

4.4 Secure programming using Bootloader interface
(UART/I2C/SPI/USB)

It is also possible to program the SFI/SFIx image using the Bootloader interface
(UART/I2C/SPI/USB). FDCAN is not supported by STM32CubeProgrammer since it not
managed by ST-Link v3.

The whole process happens in RDP level 0.5. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFI via the Bootloader interface (UART/I2C/SPI/USB) is currently supported for STM32L5
devices. It needs to load an external loader using the -elbl command in the SRAM.

For STM32L5 devices, 1 Mbyte of SRAM is available, with 512 Kbytes in main SRAM. This
means that the maximum image size supported is 1 Mbyte, and the maximum area size is
512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits into the
allowed SRAM size.

An SFI/SFIx multi install is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

SFI example

STM32_Programmer_CLI.exe -c port=usb1 -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc_signed_RSSe_sfi_bl.bin

SFIx example

STM32_Programmer_CLI.exe -c port=usb1 -elbl
MX25LM51245G_STM32L552E-EVAL-SFIX-BL.stldr -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc_signed_RSSe_sfi_bl.bin

AN5054 Rev 9 73/130

Example of SFI programming scenario

129

5 Example of SFI programming scenario

5.1 Scenario overview

The actual user application to be installed on the STM32H753xI (or STM32L5) device
makes “printf” packets appear in serial terminals. The application was encrypted using
the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.

5.2 Hardware and software environment

For successful SFI programming, some and SW prerequisites apply:

• STM32H743I-EVAL board

• STM32H753xI with bootloader and RSS programmed

• RS232 cable for SFI programming via UART

• Micro-USB for debug connection

• PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions

• STM32TrustPackageCreator v0.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com.

5.3 Step-by-step execution

5.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

5.3.2 Perform the SFI generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit AES
encryption key and a 96-bit nonce are also provided to the tool. They are available in the
“SFI_ImagePreparation” directory.

An “.sfi” image is then generated (out.sfi).

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Figure 51: STPC GUI during SFI generation shows the STPC GUI during the SFI
generation.

Example of SFI programming scenario

74/130 AN5054 Rev 9

Figure 51. STPC GUI during SFI generation

AN5054 Rev 9 75/130

Example of SFI programming scenario

129

5.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 52 shows an example for HSM programming by OEM to be used for SFI install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 2, and is also valid for version 1 when the ’Version’ field is
set accordingly. The HSM version can be identified before performing the programming
operation by clicking the Refresh button to make the version number appear in the ‘Version’
field.

The STM32 Trusted Package Creator tool provides all personalization package files ready
to be used on SFI/SFIx and SSP flows. To get all the supported packages, go to the
PersoPackages directory residing in the tool’s install path.

Each file name starts with a number, which is the product ID of the device. You must select
the correct one.

To obtain the appropriate personalization data, you first need to obtain the product ID:

• Use the STM32CubeProgrammer tool to launch a Get Certificate command to
generate a certificate file containing some chip security information, bearing in mind
that this command is only recognized only for devices that support the security feature:

STM32_Programmer_CLI –c port=swd –gc "certificate.bin"

A file named “certificate.bin” is created in the same path of the
STM32CubeProgrammer executable file.

• Open the certificate file with a text editor tool, then read the 8 characters from the
header which represents the product ID.

For example:

– When using STM32H7 device, you would find: 45002001.

– When using STM32L4 device, you would find: 46201002.

Once you have the product ID, you can differentiate the personalization package to be used
on the HSM provisioning step respecting the following naming convention:

ProdcutID_FlowType_LicenseVersion_SecurityVersion.enc.bin

For example: 47201003_SFI._01000000_00000000.enc.bin

Based on this name we can retrieve the associated information:

• Product ID = 47201003 for STM32L5 devices (0x472 as device ID).

• Type = SFI

• License version = 01 (Big Endian)

• Security version = 0

Example of SFI programming scenario

76/130 AN5054 Rev 9

Figure 52. Example of HSM programming using STPC GUI

Note: When using HSM version1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise an error message is displayed.

AN5054 Rev 9 77/130

Example of SFI programming scenario

129

5.3.4 Performing HSM programming for license generation using STPC
(CLI mode)

STM32 Trusted Package Creator provides CLI commands to program HSM cards. In order
to configure the HSM before programming, the user must provide the mandatory inputs by
using the specific options.

Example of HSM version 1 provisioning

STM32TrustedPackageCreator_CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" –n
"C:\TrustedFiles\nonce.bin" -id HSMv1_SLOT_1-mc2000

• -i: select the slot ID

• -k: set the encryption key file path

• -n: set the nonce file path

• -id: set the firmware identifier

• -mc: set the maximum number of licenses.

HSMv2 allows users to personalize their own HSM to achieve, for example, compatibility
with the desired STM32 device. This solution covers the limitation of HSMv1 (static
behavior), so it is possible to support new devices that are not available on HSMv1.

To perform this operation the user first needs to know the product ID of the device. This
information is provided in the STM32 device certificate, which can be obtained with the
following command:

STM32_Programmer.exe -c port=COM1 –gc "C:\SFI\Certificate.bin"

After getting the binary file of the device certificate, is necessary to open this file using a
HEX editor application. Once these steps are done the user can read the product ID.

Figure 53. Example product ID

The product ID of the STM32WL used is: 49701005

In the second step the user provisions their own HSMv2 by programming it using STPC.
The personalization data file .bin can be found under "..\bin\PersoPackages".

Example of SFI programming scenario

78/130 AN5054 Rev 9

Example of HSM version 2 provisioning

A new option [-pd] must be inserted to include the personalization data:

STM32TrustedPackageCreator_CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" –n
"C:\TrustedFiles\nonce.bin" -id HSMv2_SLOT_2 -mc 2000 -pd
"C:\TrustedFiles\enc_ST_Perso_L5.bin"

• -pd: Set the personalization data file path.

To obtain the appropriate personalization data file and for further information, refer to
Section 5.3.4: Performing HSM programming for license generation using STPC (CLI
mode).

Note: A green message display indicates that the programming operation succeeded, otherwise a
red error message is displayed.

If the HSM is already programmed and there is a new attempt to reprogram it, an error
message being displayed to indicate that the operation failed and the HSM is locked.

HSM v1 supports a list of limited number of STM32 devices such as STM32L4, STM32H7,
STM32L5, and STM32WL.

Example of HSM get information

If the HSM is already programmed or is virgin yet and whatever the version, a get
information command can be used to show state details of the current HSM by using the
command below:

STM32TrustedPackageCreator_CLI -hsm –i 1 –info

Figure 54. HSM information in STM32 Trusted Package Creator CLI mode

AN5054 Rev 9 79/130

Example of SFI programming scenario

129

5.3.5 Programming input conditions

Before performing an SFI install make sure that:

• Flash memory is erased.

• No PCROPed zone is active, otherwise destroy it.

• The chip must support security (a security bit must be present in the option bytes).

• When using a UART interface the User security bit in option bytes must be enabled
before launching the SFI command. For this, the following STM32CubeProgrammer
command is launched:

– Launch the following command (UART bootloader used => Boot0 pin set to VDD):
-c port=COM9 -ob SECURITY=1

• When using a UART interface the Boot0 pin must be set to VSS:

– After enabling security (boot0 pin set to VDD), a power off/power on is needed
when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

• When performing an SFI install using UART bootloader then, no debug interface must
be connected to any USB host. If a debug interface is still connected, disconnect it then
perform a power off/power on before launching the SFI install to avoid any debug
intrusion problem.

• Boot0 pin set to VDD When using a debug interface.

• A valid license generated for the currently-used chip must be at your disposal, or a
license generation tool to generate the license during SFI install (HSM).

• For STM32L5 products, TZEN must be set at 0 (TZEN=0).

Example of SFI programming scenario

80/130 AN5054 Rev 9

5.3.6 Perform the SFI install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFI image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFI install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id>

Note: In the case of an STM32L5 device the SFI install uses the RSSe and its binary file is located
in the STM32CubeProgrammer bin/RSSe folder.

The STM32CubeProgrammer command is as follows:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse <RSSe_path>

AN5054 Rev 9 81/130

Example of SFI programming scenario

129

Figure 55 shows the SFI install via SWD execution and the HSM as license generation tool
in the field.

Figure 55. SFI install success using SWD connection (1)

Example of SFI programming scenario

82/130 AN5054 Rev 9

Figure 56. SFI install success using SWD connection (2)

AN5054 Rev 9 83/130

Example of SFI programming scenario for STM32WL

129

6 Example of SFI programming scenario for STM32WL

6.1 Scenario overview

The user application is developed by the OEM and encrypted by STPC. The OEM provides
the following elements to the programming house:

• the encrypted firmware of STM32WL

• HSMv1 or previsioned HSMv2

• STM32CubeProgrammer.

With these inputs the untrusted manufacturer is able to securely program the encrypted
firmware.

6.2 Hardware and software environment

For successful SFI programming, the following hardware and software prerequisites apply:

• STM32WL5x board with Bootloader and RSS programmed

• RS232 cable for SFI programming via UART

• Micro-USB for debug connection

• PC running on either Windows or Ubuntu 14 (in both 32-bit and 64-bit versions) or
macOS

• STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer v2.6.0 (or greater) package available from www.st.com

• HSMv1 or HSMv2.

6.3 Step-by-step execution

6.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

6.3.2 Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of the user
OEM firmware (already provided in AXF format) using the STM32 Trusted Package Creator
tool.

This is done by adding the following files in the STPC tool:

• OEM firmware

• a .csv file containing option bytes configuration

• a 128-bit AES encryption key

• a 96-bit nonce

Example of SFI programming scenario for STM32WL

84/130 AN5054 Rev 9

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

A programmed HSM card should be insert in the PC, and an “out.sfi” image is then
generated.

Figure 57. STPC GUI showing the STPC GUI during the SFI generation

Note: To perform HSM programming for license generation using STPC (GUI mode and CLI
mode) refer to the following sections:

Section 5.3.3: Performing HSM programming for license generation using STPC (GUI
mode)

Section 5.3.4: Performing HSM programming for license generation using STPC (CLI mode)

AN5054 Rev 9 85/130

Example of SFI programming scenario for STM32WL

129

6.3.3 Programming input conditions

Before performing an SFI install on STM32WL devices make sure that:

• Flash memory is erased

• No PCROPed zone is active, otherwise remove it

• The chip supports security (a security bit must be present in the option bytes)

• The security should be disabled, if activated

• The option bytes of the device are set to default values. This step is done by the two
commands given below.

-desurity: this option allows the user to disable security. After executing this command, a
power OFF / power ON should be done.

Example:

STM32_Programmer_CLI.exe -c port=swd mode=hotplug -dsecurity

Figure 58 hows the resulting output on the command line.

Figure 58. Example -dsecurity command-line output

Example of SFI programming scenario for STM32WL

86/130 AN5054 Rev 9

-setdefaultob: this command allows user to configure option bytes to their default values.
After executing this command, a power OFF/power ON should be done.

Example:

STM32_Programmer_CLI.exe -c port=swd mode=hotplug -setdefaultob

Figure 59 shows the resulting output on the command line.

Figure 59. Example -setdefaultob command-line output

6.3.4 Perform the SFI install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFI image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFI install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe_path >"

Note: The RSSe and its binary file is located in the STM32CubeProgrammer bin/RSSe/WL folder.

Figure 60 shows the SFI install via SWD execution.

AN5054 Rev 9 87/130

Example of SFI programming scenario for STM32WL

129

Figure 60. SFI install via SWD execution command-line output

Example of SFI programming scenario for STM32U5

88/130 AN5054 Rev 9

7 Example of SFI programming scenario for STM32U5

7.1 Scenario overview

The actual user application to be installed on the STM32U5 device makes “printf”
packets appear in serial terminals. The application was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.

7.2 Hardware and software environment

For successful SFI programming, some HW and SW prerequisites apply:

• STM32U5 board with bootloader and RSS programmed

• RS232 cable for SFI programming via UART

• Micro-USB for debug connection

• PC running either on Windows, Ubuntu 14 (64-bit version) or macOS.

• STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer v2.8.0 (or greater) package available from www.st.com

• HSMv2.

7.3 Step-by-step execution

7.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

7.3.2 Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of the user
OEM firmware (already provided in AXF format) using the STM32 Trusted Package Creator
tool. This step is done by adding the following files in the STPC tool:

• an OEM firmware

• a.csv file containing option byte configuration

• a128-bit AES encryption key

• a96-bit nonce

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

In addition, a programmed HSM card should be insert in the PC. An “out.sfi” image is then
generated.

AN5054 Rev 9 89/130

Example of SFI programming scenario for STM32U5

129

Figure 61 shows STPC GUI during SFI generation.

Figure 61. STPC GUI during the SFI generation

Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),
refer to Section 5.3.3: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.4: Performing HSM programming for license generation using
STPC (CLI mode).

7.3.3 Programming input conditions

Before performing an SFI install on STM32U5 devices, make sure that:

• The Flash memory is erased.

• No WRP zone is active, otherwise destroy it.

• The chip supports security (a security bit must be present in the option bytes).

• If the security is activated, disable it.

Example of SFI programming scenario for STM32U5

90/130 AN5054 Rev 9

7.3.4 Perform the SFI install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so far
available for secure programming) to program the SFI image “out.sfi” already created in
previous section.

STM32CubeProgrammer supports communication with ST HSMs (hardware secure
modules based on smartcards) to generate a license for the connected STM32 device
during the SFI install process.

Using JTAG/SWD

First make sure that all the input conditions are respected, then open a cmd terminal, go to
<STM32CubeProgrammer_package_path>/bin and launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe_path >"

Note: The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/U5 folder.

Figure 62 and Figure 63 show the STM32CubeProgrammer command used for the SFI
install process via SWD execution.

AN5054 Rev 9 91/130

Example of SFI programming scenario for STM32U5

129

Figure 62. SFI install via SWD execution (1)

Example of SFI programming scenario for STM32U5

92/130 AN5054 Rev 9

Figure 63. SFI install via SWD execution - (2)

AN5054 Rev 9 93/130

Example of SMI programming scenario

129

8 Example of SMI programming scenario

8.1 Scenario overview

In this scenario, the 3rd party’s library to be installed on the STM32H753xI device makes
“printf” packets appear in the serial terminal if the library code execution called by the
application does not crash.

The library code was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SMI
module.

8.2 Hardware and software environment

The same environment as explained in Section 4.1.1: Device authentication.

8.3 Step-by-step execution

8.3.1 Build 3rd party Library

ST or 3rd party developers can use any IDE to build the library to be encrypted and installed
into the STM32H7 device.

In this scenario the SMI module based on the built library is not relocatable. The destination
address is hardcoded in SMI module to the following value: 0x08080000.

Example of SMI programming scenario

94/130 AN5054 Rev 9

8.3.2 Perform the SMI generation

For encryption with the STM32 Trusted Package Creator tool, the 3rd party module is
provided in ELF format. A 128-bit AES encryption key, a 96-bit nonce and a security version
file are also provided to the tool. They are available in the “SMI_ImagePreparation”
directory. After choosing the name of the section to be encrypted, a “.smi” image is then
generated (FIR_module.smi).

The clear data part of the library without the encrypted section is also created in ELF format
(FIR_module_clear.axf).

Figure 64 shows the STPC GUI during SMI generation.

Figure 64. STPC GUI during SMI generation

AN5054 Rev 9 95/130

Example of SMI programming scenario

129

8.3.3 Programming input conditions

Before performing the SMI install make sure that:

• The SMI module destination address is not already PCROPed, otherwise destroy this
PCROPed area.

• The Boot0 pin set to VDD.

• The chip supports security (existing security bit in option bytes).

• When performing SMI install using UART bootloader, no debug interface is connected
to any USB host. If a debug interface is still connected, disconnect it then perform a
power off/power on before launching the SMI install to avoid any debug intrusion
problem.

• The proper license generated for the currently-used chip must be at your disposal (or
an HSM or secure server to generate it during SMI programming).

8.3.4 Perform the SMI install

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local_path>/FIR_module.smi"
"<local_path>/<licenseSMI.bin>"

This command allows the SMI specified file “FIR_module.smi” to be programmed into a
dedicated PCROPed area at address (0x08080000).

Figure 65: SMI install success via debug interface shows the SMI install via SWD execution.

Example of SMI programming scenario

96/130 AN5054 Rev 9

Figure 65. SMI install success via debug interface

AN5054 Rev 9 97/130

Example of SMI programming scenario

129

8.3.5 How to test for SMI install success

1. Flash the clear data part “FIR_module_clear.hex” (available under the “Tests” directory)
into address 0x08084000 using STM32Cubeprogrammer or any other Flashing tool.

2. Flash the test application “tests.hex” (which is based on the SMI module), available
under the “Tests” directory at start user Flash address “0x08000000” using
STM32Cubeprogrammer or any other Flashing tool.

The option bytes configuration becomes as below (Figure 66).

Figure 66. OB display command showing that a PCROP zone was activated after SMI

Example of SMI programming scenario

98/130 AN5054 Rev 9

3. If a UART connection is available on the board used, open the “Hercule.exe” serial
terminal available under the “Tests” directory, open the connection. On reset the
dedicated “printf” packets appears.

AN5054 Rev 9 99/130

Example of SFIx programming scenario for STM32H7

129

9 Example of SFIx programming scenario for STM32H7

9.1 Scenario overview

There are three steps during this scenario:

• Generate SFIx image using the STPC.

• Provisioning HSM card via STPC.

• Use STM32CubeProgrammer to perform the SFIx process.

Once this scenario is successfully installed on the STM32H7B3I-EVAL, follow the steps
below:

• Write internal firmware data in the internal Flash memory starting at the address
0x08000000.

• Write external firmware data in the external Flash memory starting at the address
0x90000000.

• Verify that the option bytes were correctly programmed (depends on area C).

9.2 Hardware and software environment

For successful SFIx programming, some HW and SW prerequisites apply:

• STM32H7B3I-EVAL board containing external Flash memory.

• Micro-USB for debug connection.

• PC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra.

• STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer V2.3.0 (or greater) package available from www.st.com

• HSMv1.1 card.

9.3 Step-by-step execution

9.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

Note: In this use case there are different user codes. Each one is specific to a Flash memory type
(internal/external).

9.3.2 Perform the SFIx generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

Example of SFIx programming scenario for STM32H7

100/130 AN5054 Rev 9

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “.sfix” image is then generated (out.sfix).

Figure 67. Successful SFIx generation

AN5054 Rev 9 101/130

Example of SFIx programming scenario for STM32H7

129

9.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 68: Example of HSM programming using STPC GUI shows an example for HSM
programming by OEM to be used for SFIx install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 1. The HSM version can be identified before performing
the programming operation by clicking the “Refresh” button to make the version number
appear in the Version field.

Figure 68. Example of HSM programming using STPC GUI

Example of SFIx programming scenario for STM32H7

102/130 AN5054 Rev 9

Note: When using HSM version 1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise an error message is displayed.

9.3.4 Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 5.3.4: Performing HSM programming for license generation using STPC
(CLI mode).

9.3.5 Programming input conditions

Before performing an SFIx install make sure that:

• Use JTAG/SWD interface.

• No PCROPed zone is active, otherwise disable it.

• The chip must support security (a security bit must be present in the option bytes).

• The SFIx image must be encrypted by the same key/nonce used in the HSM
provisioning.

9.3.6 Perform the SFIx install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with ST HSMs (hardware secure
modules based on smart card) to generate a license for the connected STM32 device during
SFIx install.

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

Using JTAG/SWD

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfix" hsm=1 slot=<slot_id> -el <ExternalLoader_Path>

Figure 69: SFIx install success using SWD connection (1) through Figure 72: SFIx install
success using SWD connection (4) shows the SFIx install via SWD execution and the HSM
as license generation tool in the field.

AN5054 Rev 9 103/130

Example of SFIx programming scenario for STM32H7

129

Figure 69. SFIx install success using SWD connection (1)

Example of SFIx programming scenario for STM32H7

104/130 AN5054 Rev 9

Figure 70. SFIx install success using SWD connection (2)

AN5054 Rev 9 105/130

Example of SFIx programming scenario for STM32H7

129

Figure 71. SFIx install success using SWD connection (3)

Example of SFIx programming scenario for STM32H7

106/130 AN5054 Rev 9

Figure 72. SFIx install success using SWD connection (4)

AN5054 Rev 9 107/130

Example of SFIx programming scenario for STM32L5

129

10 Example of SFIx programming scenario for STM32L5

10.1 Scenario overview

There are three steps during this scenario:

• Generate SFIx image using the STPC

• HSM card provisioning via STPC

• Use STM32CubePrg to perform the SFIx process.

Successful installation of this scenario on the STM32L5 provides the following results:

• The internal Flash memory is readable from base addresses 0x08000000 and
0x08040000. It contains the internal firmware.

• The external Flash is programmed so as to be readable with external Flash loader. You
can then read the external Flash encrypted by the OTFDEC keys. The pattern of values
must be present in the binary files of external firmware.

• If the application works correctly, LED4 blinks.

10.2 Hardware and software environment

For successful SFIx programming, some hardware and software prerequisites apply:

• an STM32L5-based evaluation board containing external Flash memory

• a Micro-USB for debug connection

• a PC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra

• an STM32TrustPackageCreator v1.2.0 (or greater) package available from
www.st.com

• an STM32CubeProgrammer V2.3.0 (or greater) package available from www.st.com

• an HSMv1.1 card.

10.3 Step-by-step execution

10.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware. Note that in this
use case there are different user codes, each being specific for a Flash memory type
(internal/external).

Example of SFIx programming scenario for STM32L5

108/130 AN5054 Rev 9

10.3.2 Perform the SFIx generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “.sfix” image is then generated (out.sfix).

Use case 1 generation of SFIx without key area:

Internal firmware files:

1. Add a non-secure binary with start address equal to 0x08040000.

2. Add an internal binary file at 0x0C000000 (application to be executed after
downloading SFIx to verify full process success by blinking an LED).

3. Add an OTFDEC key binary at 0x0C020000 (to be used as the key in OTFD ENC-
DEC).

External FW files: add an external binary at 0x90000000 with these parameters:

• Region number = 0

• Region mode = 0x2

• Key address = 0x0C020000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.

Nonce file: use the same nonce as HSM.

Option bytes file: use .csv contains option-byte configuration.

RAM size: 0x19000 to split the input areas avoiding memory overflow.

AN5054 Rev 9 109/130

Example of SFIx programming scenario for STM32L5

129

Figure 73. Successful SFIx generation use case 1

Example of SFIx programming scenario for STM32L5

110/130 AN5054 Rev 9

Use case 2 generation of SFIx with key area:

This is essentially the same process as test case1. The main difference is:

• Add a “.kcsv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key
area field, instead of using an OTFDEC key binary file.

• The key address for external FW files is the first address of the Area ‘K’ key file, which
is 0x0C020000.

Figure 74. Successful SFIx generation use case 2

After the generation of the SFIx image in this use case the output file should contain 12
internal segments (F area), and 166 external segments (E area).

AN5054 Rev 9 111/130

Example of SFIx programming scenario for STM32L5

129

10.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

Refer to Section 9.3.3: Performing HSM programming for license generation using STPC
(GUI mode).

10.3.4 Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 9.3.4: Performing HSM programming for license generation using STPC
(CLI mode).

10.3.5 Programming input conditions

Before performing an SFIx install make sure that:

• A JTAG/SWD interface is used

• The chip supports security (a security bit must be present in the option bytes)

• The SFIx image is encrypted by the same key/nonce as is used in the HSM
provisioning.

• The option bytes are:

– DBank=1

– nSWBOOT0=1

– nBOOT0=1

– RDP=AA

10.3.6 Perform the SFIx install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFIx install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfix" hsm=1 slot=<slot_id> -rsse <RSSe_Path> -el
<ExternalLoader_Path>

Note: The RSSe binary file is located in STM32CubeProgrammer install path in the bin/RSSe
folder.

Figure 75: SFIx install success using SWD connection (1) through Figure 79: SFIx install
success using SWD connection (5) show the SFIx install via SWD execution and the HSM
as license generation tool in the field.

Example of SFIx programming scenario for STM32L5

112/130 AN5054 Rev 9

Figure 75. SFIx install success using SWD connection (1)

Figure 76. SFIx install success using SWD connection (2)

AN5054 Rev 9 113/130

Example of SFIx programming scenario for STM32L5

129

Figure 77. SFIx install success using SWD connection (3)

Example of SFIx programming scenario for STM32L5

114/130 AN5054 Rev 9

Figure 78. SFIx install success using SWD connection (4)

Figure 79. SFIx install success using SWD connection (5)

AN5054 Rev 9 115/130

Example of combined SFI-SMI programming scenario

129

11 Example of combined SFI-SMI programming scenario

11.1 Scenario overview

The user application to be installed on the STM32H753xI device makes “printf” packets
appear in the serial terminal.

In this case the OEM application is built based on a third party’s library as explained in IAR
example (Section 2.3: Execute-only/position independent library scenario example under
EWARM).

The application is encrypted using the STPC, the SMI module corresponding to 3rd party’s
library code is uploaded as input during combined SFI generation and represented as an
area of type ‘M’ within firmware application areas.

The SFI OEM application firmware could then be uploaded (on an OEM server for example)
with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI application
concerned and the integrated SMI module(s).

11.2 Hardware and software environment

The same environment as explained in Section 5.2: Hardware and software environment.

11.3 Step-by-step execution

1. Build the OEM application.

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicoelectronics or 3rd parties for example.

In this example we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.

For encryption with the STM32 Trusted Package Creator tool, OEM firmware and the
clear data part are both provided in Hex format (corresponding to the SMI module to be
integrated within the SFI image). A CSV file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Example of combined SFI-SMI programming scenario

116/130 AN5054 Rev 9

Figure 80 shows the STPC GUI during combined SFI generation.

Figure 80. GUI of STPC during combined SFI-SMI generation

3. Programming input conditions are the same as for the SFI programming scenario
(Section 5.3.4: Performing HSM programming for license generation using STPC (CLI
mode)).

4. Perform the SFI install using the SWD/JTAG or a bootloader interface (here the SWD
interface is used).

AN5054 Rev 9 117/130

Example of combined SFI-SMI programming scenario

129

11.3.1 Using JTAG/SWD

Once all input conditions are respected, go to the “stm32_programmer_package_v0.4.1/bin”
directory and launch the following command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi" "<local_path>/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
“<STM32CubeProgrammer_package_path>/bin” directory and launch the following
command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi"
"<local_path>/<licenseSFI.bin>"

Figure 81: Combined SFI-SMI programming success using debug connection shows the
combined SFI-SMI install trace success.

Example of combined SFI-SMI programming scenario

118/130 AN5054 Rev 9

Figure 81. Combined SFI-SMI programming success using debug connection

AN5054 Rev 9 119/130

Example of combined SFI-SMI programming scenario

129

11.3.2 How to test the combined SFI install success

The option bytes configuration must be modified as shown in Figure 82: Option bytes after
combined SFI-SMI install success.

• 3rd party library module is programed into a PCROP area

• The SFI image is protected using RDP level1.

If a UART connection is available on the board used, open the “Hercule.exe” serial terminal
available under the “Tests” directory, open the connection and on reset the dedicated
“printf” packets appears.

Example of combined SFI-SMI programming scenario

120/130 AN5054 Rev 9

Figure 82. Option bytes after combined SFI-SMI install success

AN5054 Rev 9 121/130

Example of SSP programming scenario for STM32MP1

129

12 Example of SSP programming scenario for
STM32MP1

12.1 Scenario overview

On each SSP install step, STM32 ecosystem tools are used to manage the secure
programming and SSP flow.

Three main steps are done using SSP tools:

• Encrypted secret file generation with STM32 Trusted Package Creator

• HSM provisioning with STM32 Trusted Package Creator

• SSP procedure with STM32CubeProgrammer.

12.2 Hardware and software environment

The following prerequisites are needed for successful SSP programming:

• an STM32MP1-DK2 board

• a Micro-USB for DFU connection

• a PC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra

• STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer V2.5.0 (or greater) package available from www.st.com

• an HSMv2 card.

12.3 Step-by-step execution

12.3.1 Building a secret file

A secret file must be created prior to SSP processing. This secret file must fit into the OTP
area reserved for the customer. OTP memory is organized as 32-bit words.

On an STM32MP1 microprocessor:

• One OTP word is reserved for RMA password (unlock/relock): OTP 56.

• 37 free words are reserved for customer use. The secret size can be up to 148 bytes:
OTP 59 to 95.

There is no tool or template to create this file. A 148-byte binary file must be used as the
reference to construct the secret file.

Example of SSP programming scenario for STM32MP1

122/130 AN5054 Rev 9

12.3.2 Performing the SSP generation (GUI mode)

For encryption with the STM32 Trusted Package Creator tool, the secret file is provided in
BIN format in addition to the RMA password values.

An OEM public key, a 128-bit AES encryption key and a 96-bit nonce are also provided to
the tool.

 An “.ssp” image is then generated (out.ssp).

Figure 83. STM32 Trusted Package Creator SSP GUI tab

AN5054 Rev 9 123/130

Example of SSP programming scenario for STM32MP1

129

12.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house, to be used for
license generation during the SSP install process. In this example, HSMs are used as
license generation tools in the field.

See Section 4.1.2: License mechanism for HSM use and programming details.

This example uses HSM version 2. The HSM version can be identified before performing
the programming operation by clicking the Refresh button to make the version number
appear in the Version field.

Note: HSM version 2 must be used for STM32 MPU devices.

Figure 84. Example of HSMv2 programming using STPC GUI

Example of SSP programming scenario for STM32MP1

124/130 AN5054 Rev 9

The STM32 Trusted Package Creator tool provides all personalization package files, ready
to be used on SSP flow. To obtain all the supported packages, go to the “PersoPackages”
directory residing in the tool’s install path. Each file name starts with a number, which is the
product ID of the device. The correct one must be selected.

12.3.4 SSP programming conditions

Before performing an SSP flow make sure that:

• a DFU or UART interface is used

• the chip supports security

• the SSP image is encrypted by the same key/nonce as used in the HSM provisioning
step.

12.3.5 Perform the SSP install using STM32CubeProgrammer

In this step the STM32CubeProgrammer tool is used in CLI mode (the only mode available
so far for secure programming) to program the SSP image already created with STM32
Trusted Package Creator. STM32CubeProgrammer supports communication with ST HSMs
(hardware secure modules based on a Smart Card) to generate a license for the connected
STM32 MPU device during SSP install.

Example using USB DFU bootloader interface:

STM32_Programmer_CLI.exe -c port=usb1 –ssp “out.ssp” “tf-a-ssp-
stm32mp157f-dk2-trusted.stm32” hsm=1 slot=1

AN5054 Rev 9 125/130

Example of SSP programming scenario for STM32MP1

129

All SSP traces are shown on the output console (Figure 85).

Figure 85. STM32MP1 SSP install success

Reference documents

126/130 AN5054 Rev 9

13 Reference documents

Table 3. Document references

Reference Document title

[1]
AN4992, STM32H7 secure firmware/module install overview.
STMicroelectronics.

[2]
UM2428, Hardware secure modules (HSM) for secure firmware install (SFI).
STMicroelectronics.

[3] AN5510, Overview of secure secret provisioning (SSP)

AN5054 Rev 9 127/130

Revision history

129

14 Revision history

Table 4. Document revision history

Date Revision Changes

03-Aug-2018 1 Initial release.

18-Apr-2019 2
Updated publication scope from ‘ST restricted’ to
‘Public’.

16-Oct-2019 3

Updated:

– Section 4.1.2: License mechanism

– Section 5.3.3: Performing HSM programming for
license generation using STPC (GUI mode)

– Figure 43: HSM programming GUI in the STPC tool
(title caption)

– Figure 52: Example of HSM programming using
STPC GUI

03-Feb-2020 4

Replaced occurrences of STM32L451CE with
STM32L462CE in Section 4.2.1: Secure firmware
installation using a bootloader interface flow.

Updated document to cover secure programming with
SFIx.

26-Feb-2020 5

Updated:

– Section 4.3.1: SFI/SFIx programming using
JTAG/SWD flow

– Section 5.3.3: Performing HSM programming for
license generation using STPC (GUI mode)

– Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode)

– Figure 69: SFIx install success using SWD connection
(1)

– Figure 72: SFIx install success using SWD connection
(4).

27-Jul-2020 6

Updated:

– Introduction

– Section 3.1: System requirements

Added:

– Section 3.5: SSP generation process

– Section 3.6.3: Steps for SSP generation (CLI)

– Section 3.7.4: SSP generation using STPC in GUI
mode

– Section 4.2.5: STM32CubeProgrammer for SSP via a
bootloader interface

– Section 12: Example of SSP programming scenario
for STM32MP1.

Revision history

128/130 AN5054 Rev 9

19-Nov-2020 7

Updated:

– Introduction on cover page

– License mechanism general scheme

– HSM programming by OEM for license distribution

– Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode).

Added:

– Section 4.4: Secure programming using Bootloader
interface (UART/I2C/SPI/USB)

– Section 6: Example of SFI programming scenario for
STM32WL.

29-Jun-2021 8

Updated:

– In the whole document, replaced STM32H7A/B by
STM32H7A3/7B3 and STM32H7B0, STM32H72/3 by
STM32H723/333 and STM32H725/335, STM32H7B
board by STM32H7B3I-EVAL

– Replaced BL by bootloader.

– Section 3.2: SFI generation process: removed
references to RSS.

– Section 4.1.2: License mechanism: removed Figure
HSM programming toolchain.

– Section 4.2: Secure programming using a bootloader
interface, Section 4.2.2: Secure Module installation
using a bootloader interface flow, Section 4.2.3:
STM32CubeProgrammer for SFI using a bootloader
interface

– Section 4.3.1: SFI/SFIx programming using
JTAG/SWD flow and Section 4.3.2: SMI programming
through JTAG/SWD flow.

– Section 4.4: Secure programming using Bootloader
interface (UART/I2C/SPI/USB)

– Example of SFI programming scenario/Section 5.2:
Hardware and software environment and Example of
SFI programming scenario for STM32WL/Section 6.2:
Hardware and software environment: removed
bootloader and RSS versions

– Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode): removed
STM32L4 from the list of devices that support SFI via
debug interface.

Added:

– Support for STM32U5 Series.

– Section 7: Example of SFI programming scenario for
STM32U5.

Table 4. Document revision history

Date Revision Changes

AN5054 Rev 9 129/130

Revision history

129

02-Aug-2021 9

Added note about CSV file in Section 3.6.1: Steps for
SFI generation (CLI) and Figure 26: Option bytes file
example.

Corrected binary file names in Section 4.4: Secure
programming using Bootloader interface
(UART/I2C/SPI/USB).

Section 3.6.1: Steps for SFI generation (CLI)

Added note about option byte file example in:

– Section 3.7.1: SFI generation using STPC in GUI
mode

– Section 5.3.2: Perform the SFI generation (GUI mode)

– Section 6.3.2: Perform the SFI generation (GUI mode)

– Section 7.3.2: Perform the SFI generation (GUI mode)

– Section 9.3.2: Perform the SFIx generation (GUI
mode)

– Section 10.3.2: Perform the SFIx generation (GUI
mode)

– Section 11.3: Step-by-step execution.

Updated Corrected board name in Section 4.2:
Secure programming using a bootloader interface.

Corrected board name in Section 7.2: Hardware and
software environment.

Table 4. Document revision history

Date Revision Changes

130/130 AN5054 Rev 9

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only/position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI multi install
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in Flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SFIx generation process
	Figure 17. RAM size and CT address inputs used for SFIx multi install
	Figure 18. SFIx format layout
	Figure 19. SFIx image layout in case of split

	3.4 SMI generation process
	Figure 20. SMI preparation mechanism
	Figure 21. SMI image generation process
	Figure 22. SMI format layout

	3.5 SSP generation process
	Figure 23. SSP preparation mechanism
	Table 2. SSP preparation inputs
	Figure 24. Encryption file scheme

	3.6 STM32 Trusted Package Creator tool in the command line interface
	Figure 25. STM32 Trusted Package Creator tool - available commands
	3.6.1 Steps for SFI generation (CLI)
	Figure 26. Option bytes file example
	Figure 27. SFI generation example using an Elf file

	3.6.2 Steps for SMI generation (CLI)
	Figure 28. SMI generation example

	3.6.3 Steps for SSP generation (CLI)
	Figure 29. SSP generation success

	3.7 Using the STM32 Trusted Package Creator tool graphical user interface
	3.7.1 SFI generation using STPC in GUI mode
	Figure 30. SFI generation Tab
	Figure 31. Firmware parsing example
	Figure 32. SFI successful generation in GUI mode example

	3.7.2 SFIx generation using STPC in GUI mode
	Figure 33. SFIx generation Tab
	Figure 34. Firmware parsing example
	Figure 35. SFIx successful generation in GUI mode example

	3.7.3 SMI generation using STPC in GUI mode
	Figure 36. SMI generation Tab
	Figure 37. SMI successful generation in GUI mode example

	3.7.4 SSP generation using STPC in GUI mode
	Figure 38. SSP generation tab
	Figure 39. SSP output information

	3.7.5 Settings
	Figure 40. Settings icon and Settings dialog box

	3.7.6 Log generation
	Figure 41. Log example

	3.7.7 SFI and SMI file checking function
	Figure 42. Check SFI file example

	4 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	Figure 43. HSM programming GUI in the STPC tool

	4.2 Secure programming using a bootloader interface
	4.2.1 Secure firmware installation using a bootloader interface flow
	Figure 44. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 45. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure Module installation using a bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using a bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via a bootloader interface
	4.2.5 STM32CubeProgrammer for SSP via a bootloader interface
	Figure 46. SSP install success

	4.2.6 STM32CubeProgrammer get certificate via a bootloader interface
	Figure 47. Example of getcertificate command execution using UART interface

	4.3 Secure programming using JTAG/SWD interface
	4.3.1 SFI/SFIx programming using JTAG/SWD flow
	Figure 48. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 49. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Figure 50. Example of getcertificate command using JTAG

	4.4 Secure programming using Bootloader interface (UART/I2C/SPI/USB)

	5 Example of SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Perform the SFI generation (GUI mode)
	Figure 51. STPC GUI during SFI generation

	5.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 52. Example of HSM programming using STPC GUI

	5.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	Figure 53. Example product ID
	Figure 54. HSM information in STM32 Trusted Package Creator CLI mode

	5.3.5 Programming input conditions
	5.3.6 Perform the SFI install using STM32CubeProgrammer
	Figure 55. SFI install success using SWD connection (1)
	Figure 56. SFI install success using SWD connection (2)

	6 Example of SFI programming scenario for STM32WL
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build OEM application
	6.3.2 Perform the SFI generation (GUI mode)
	Figure 57. STPC GUI showing the STPC GUI during the SFI generation

	6.3.3 Programming input conditions
	Figure 58. Example -dsecurity command-line output
	Figure 59. Example -setdefaultob command-line output

	6.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 60. SFI install via SWD execution command-line output

	7 Example of SFI programming scenario for STM32U5
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	7.3.1 Build OEM application
	7.3.2 Perform the SFI generation (GUI mode)
	Figure 61. STPC GUI during the SFI generation

	7.3.3 Programming input conditions
	7.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 62. SFI install via SWD execution (1)
	Figure 63. SFI install via SWD execution - (2)

	8 Example of SMI programming scenario
	8.1 Scenario overview
	8.2 Hardware and software environment
	8.3 Step-by-step execution
	8.3.1 Build 3rd party Library
	8.3.2 Perform the SMI generation
	Figure 64. STPC GUI during SMI generation

	8.3.3 Programming input conditions
	8.3.4 Perform the SMI install
	Figure 65. SMI install success via debug interface

	8.3.5 How to test for SMI install success
	Figure 66. OB display command showing that a PCROP zone was activated after SMI

	9 Example of SFIx programming scenario for STM32H7
	9.1 Scenario overview
	9.2 Hardware and software environment
	9.3 Step-by-step execution
	9.3.1 Build OEM application
	9.3.2 Perform the SFIx generation (GUI mode)
	Figure 67. Successful SFIx generation

	9.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 68. Example of HSM programming using STPC GUI

	9.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	9.3.5 Programming input conditions
	9.3.6 Perform the SFIx install using STM32CubeProgrammer
	Figure 69. SFIx install success using SWD connection (1)
	Figure 70. SFIx install success using SWD connection (2)
	Figure 71. SFIx install success using SWD connection (3)
	Figure 72. SFIx install success using SWD connection (4)

	10 Example of SFIx programming scenario for STM32L5
	10.1 Scenario overview
	10.2 Hardware and software environment
	10.3 Step-by-step execution
	10.3.1 Build OEM application
	10.3.2 Perform the SFIx generation (GUI mode)
	Figure 73. Successful SFIx generation use case 1
	Figure 74. Successful SFIx generation use case 2

	10.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	10.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	10.3.5 Programming input conditions
	10.3.6 Perform the SFIx install using STM32CubeProgrammer
	Figure 75. SFIx install success using SWD connection (1)
	Figure 76. SFIx install success using SWD connection (2)
	Figure 77. SFIx install success using SWD connection (3)
	Figure 78. SFIx install success using SWD connection (4)
	Figure 79. SFIx install success using SWD connection (5)

	11 Example of combined SFI-SMI programming scenario
	11.1 Scenario overview
	11.2 Hardware and software environment
	11.3 Step-by-step execution
	Figure 80. GUI of STPC during combined SFI-SMI generation
	11.3.1 Using JTAG/SWD
	Figure 81. Combined SFI-SMI programming success using debug connection

	11.3.2 How to test the combined SFI install success
	Figure 82. Option bytes after combined SFI-SMI install success

	12 Example of SSP programming scenario for STM32MP1
	12.1 Scenario overview
	12.2 Hardware and software environment
	12.3 Step-by-step execution
	12.3.1 Building a secret file
	12.3.2 Performing the SSP generation (GUI mode)
	Figure 83. STM32 Trusted Package Creator SSP GUI tab

	12.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 84. Example of HSMv2 programming using STPC GUI

	12.3.4 SSP programming conditions
	12.3.5 Perform the SSP install using STM32CubeProgrammer
	Figure 85. STM32MP1 SSP install success

	13 Reference documents
	Table 3. Document references

	14 Revision history
	Table 4. Document revision history

