‘— AN5054
’l life.augmented

Application note
Secure programming using STM32CubeProgrammer

Introduction

This document specifies the steps and tools required to prepare SFI (secure internal
firmware install), SFIx (secure external firmware install), SMI (secure module install) or SSP
(secure secret provisioning) images. It then describes how to program these into STM32
MCU devices that support SFI/SFIx on-chip internal memory, external Flash memory or, for
the SSP install procedure, STM32 MPU devices. It is based on the
STM32CubeProgrammer tool set (STM32CubeProg). These tools are compatible with all
STM32 devices.

The main objective of the SFI/SFIx and SMI processes is the secure installation of OEM and
software-partner’s firmware, which prevents firmware cloning.

The STM32MP1 Series supports protection mechanisms allowing protection of critical
operations (such as cryptography algorithms) and critical data (such as secret keys) against
unexpected access.

This application note also gives an overview of the STM32 SSP solution with its associated
tool ecosystem, and explains how to use it to protect OEM secrets during the CM product
manufacturing stage.

Refer also to:

e AN4992 [1], which provides an overview of the secure firmware install (SFI) solution, and
how this provides a practical level of protection of the IP chain - from firmware
development up to programming the device on-chip Flash memory.

e ANS5510 [3], which provides an overview of secure secret provisioning (SSP).

N~
sTM32" N
CubeProgrammer

August 2021 AN5054 Rev 9 1/130

www.st.com

http://www.st.com

Contents

Contents

1 General information i i 10
1.1 Licensing information 10
1.2 Acronyms and abbreviations o 10

2 How to generate an execute-only/position

2/130

independent library for SMl preparation 1
2.1 Requirements 11
22 Toolchains allowing SMl generation 11
2.3 Execute-only/position independent library scenario example
under EWARM e 12
2.3.1 Relocatable library preparationsteps 12
23.2 Relocatable SMI module preparationsteps 16
233 Application execution scenario, 17

Encrypted firmware (SFI) and module (SMl)

preparation using the STPCtool 19
3.1 Systemrequirements 19
3.2 SFlgeneration processt 19
3.3 SFIx generation process i .. 28
Area E. .. 28

Area K. 28

3.4 SMI generation proCesst 32
3.5 SSP generation process 35
3.6 STM32 Trusted Package Creator tool in the command line interface ... 37
3.6.1 Steps for SFl generation (CLI) 38

3.6.2 Steps for SMl generation (CLI) 40

3.6.3 Steps for SSP generation (CLI) 42

3.7 Using the STM32 Trusted Package Creator tool graphical user interface 44
3.7.1 SFl generation using STPCinGUImode 44
SFIGUItab fieldso 45

3.7.2 SFIx generation using STPCinGUImode 48
SFIxGUItabfields 49

3.7.3 SMI generation using STPCinGUImode 51
SMIGUItab fields 52

AN5054 Rev 9 ‘Yl

Contents

3

3.7.4 SSP generation using STPCinGUImode 54

SSP GUItabfields 54
3.7.5 Settings 56
3.7.6 Loggeneration 57
3.7.7 SFl and SMI file checking function 58

Encrypted firmware (SFI/SFIx)/ module (SMI)

programming with STM32CubeProgrammer 59
4.1 Chip certificate authenticity check and license mechanism 59
411 Device authentication 59

41.2 License mechanism i 59

License mechanismgeneralscheme. 59

License distribution. 60

HSM programming by OEM for license distribution 60

4.2 Secure programming using a bootloader interface 61
421 Secure firmware installation using a bootloader interface flow 61

422 Secure Module installation using a bootloader interface flow 63

423 STM32CubeProgrammer for SFI using a bootloader interface 63

424 STM32CubeProgrammer for SMI via a bootloader interface 64

425 STM32CubeProgrammer for SSP via a bootloader interface 65

4.2.6 STM32CubeProgrammer get certificate via a bootloader interface 67

4.3 Secure programming using JTAG/SWD interface 67
4.3.1 SFI/SFIx programming using JTAG/SWD flow 67

43.2 SMI programming through JTAG/SWD flow 69

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 71
Example “getcertificate” command using JJTAG 71

Example “smi” command using SWD. 71

4.4 Secure programming using Bootloader interface (UART/I2C/SPI/USB) . 72
SFlexample e 72

SFEIX example 72

Example of SFl programmingscenario......................... 73
5.1 SCeNArio OVEIVIEWo e 73
5.2 Hardware and software environment 73
53 Step-by-stepexecution........ 73
5.3.1 Build OEM application 73

5.3.2 Perform the SFI generation (GUImode) 73
AN5054 Rev 9 3/130

Contents

4/130

5.3.3 Performing HSM programming for license generation using STPC

(GUIMoOdE) ..o 75

534 Performing HSM programming for license generation using STPC
(CLIMOdE) . ..ot e 77
Example of HSM version 1 provisioning. 77
Example of HSM version 2 provisioning. 78
Example of HSM getinformation, 78
5.3.5 Programming input conditions o L. 79
5.3.6 Perform the SFl install using STM32CubeProgrammer 80
Using JTAG/SWDot e e 80
Example of SFI programming scenario for STM32WL 83
6.1 SCeNario OVEIVIEWt 83
6.2 Hardware and software environment 83
6.3 Step-by-stepexecution 83
6.3.1 Build OEM application 83
6.3.2 Perform the SFI generation (GUImode) 83
6.3.3 Programming input conditions 85
6.3.4 Perform the SFl install using STM32CubeProgrammer 86
Example of SFI programming scenario for STM32U5 88
7.1 SCeNArio OVEIVIEWt 88
7.2 Hardware and software environment 88
7.3 Step-by-stepexecution 88
7.3.1 Build OEM application 88
7.3.2 Perform the SFl generation (GUImode) 88
7.3.3 Programming input conditions L. 89
7.3.4 Perform the SFl install using STM32CubeProgrammer 90
Using JTAG/SWDot e 90
Example of SMI programming scenariou.. 93
8.1 SCeNArio OVEIVIEWt 93
8.2 Hardware and software environment 93
8.3 Step-by-stepexecution........ 93
8.3.1 Build 3rd party Library 93
8.3.2 Perform the SMlgeneration 94
8.3.3 Programming input conditions o ... 95

AN5054 Rev 9 ‘Yl

Contents

10

1

3

8.34 Performthe SMlinstall 95
Using JTAG/SWDot e e 95
8.3.5 How to test for SMl install success 97
Example of SFIx programming scenario for STM32H7 99
9.1 SCeNAario OVEIVIEW e 99
9.2 Hardware and software environment 99
9.3 Step-by-stepexecution 99
9.31 Build OEM application 99
9.3.2 Perform the SFIx generation (GUImode) 99

9.3.3 Performing HSM programming for license generation using STPC
(GUIMOdE) ... 101

9.34 Performing HSM programming for license generation using STPC
(CLIMoOde) . ..o 102
9.3.5 Programming input conditions L. 102
9.3.6 Perform the SFix install using STM32CubeProgrammer 102
Using JTAG/SWDo e 102
Example of SFIx programming scenario for STM32L5 107
10.1 SCENArioO OVEIVIEWottt e e e e 107
10.2 Hardware and software environment 107
10.3 Step-by-stepexecution...... 107
10.3.1 Build OEM application i 107
10.3.2 Perform the SFiIx generation (GUImode) 108
Use case 1 generation of SFIx withoutkeyarea:........................ 108
Use case 2 generation of SFIx withkeyarea: 110

10.3.3 Performing HSM programming for license generation using STPC
(GUIMoOdE) ... 111

10.3.4 Performing HSM programming for license generation using STPC
(CLIMOdE) . . oot e 111
10.3.5 Programming input conditions 111
10.3.6 Perform the SFix install using STM32CubeProgrammer 111
Example of combined SFI-SMI programming scenario 115
11.1 SCeNario OVEIVIEWttt e e 115
11.2 Hardware and software environment 115
11.3 Step-by-stepexecution 115
11.3.1 UsingJTAG/ISWD e 117
AN5054 Rev 9 5/130

Contents

12

13

14

6/130

11.3.2 How to test the combined SFlinstall success 119
Example of SSP programming scenario for STM32MP1 121
12,1 Scenario OVEIVIEW i e e e e 121
12.2 Hardware and software environment 121
12.3 Step-by-stepexecution........ 121

12.3.1 Buildingasecretfile 121

12.3.2 Performing the SSP generation (GUImode) 122

12.3.3 Performing HSM programming for license generation using STPC

(GUIMOdE) . ..o 123

12.3.4 SSP programming conditions 124

12.3.5 Perform the SSP install using STM32CubeProgrammer 124
Referencedocuments i nnnnnn 126
Revision history i i i i i 127

3

AN5054 Rev 9

List of tables

List of tables

Table 1. List of abbreviations e 10
Table 2. SSP preparation iNpuUtS. 36
Table 3. Documentreferences 126
Table 4. Document revision history 127

3

AN5054 Rev 9 7/130

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

8/130

IAR example project overview 12
Update compiler extraoptions 13
Linker extra oplions 14
Setting post-build option 15
Postbuild batch file 16
How to exclude the “lib.o” file frombuild, 17
app.acffile . .. e 18
SFl preparation mechanism 19
SFlimage process generation i 20
RAM size and CT address inputs used for SFImultiinstall 21
'P'and ‘R’ area specifics versus aregular SFlarea 22
Error message when firmware files with address overlapsused 23
Error message when SMI address overlaps with a firmware areaaddress 24
Error message when a SFI area address is not located in Flashmemory 25
SFlformatlayout 26
SFlimage layoutincase of split 27
RAM size and CT address inputs used for SFIx multiinstall 29
SFIx formatlayout. e 30
SFIximage layoutincaseof split. 31
SMI preparation mechanism 32
SMIimage generation ProCESSttt 33
SMIformat layout 34
SSP preparation mechanism e 35
Encryption file scheme e 36
STM32 Trusted Package Creator tool - available commands 37
Option bytes file example 39
SFl generation example usingan Elffile 40
SMIl generation example 41
SSP generation SUCCESS.o i ittt 43
SFlgeneration Tab 44
Firmware parsing example 45
SFI successful generation in GUI mode example 47
SFIxgeneration Tab 48
Firmware parsing example e 49
SFIx successful generationin GUImode example. 50
SMigeneration Tab 51
SMI successful generationin GUImodeexample 53
SSP generationtab. e 54
SSP outputinformation. 55
Settings icon and Settings dialogbox 56
Log eXample e 57
Check SFlfile example. 58
HSM programming GUl inthe STPCtool 61
Secure programming via STM32CubeProgrammer overview on STM32H7 devices 62
Secure programming via STM32CubeProgrammer overview on STM32L4 devices 62
SSPinstall SUCCESSo e 66
Example of getcertificate command execution using UART interface 67

AN5054 Rev 9 ‘Yl

List of figures

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.

3

SFI programming by JTAG/SWD flow overview (monolithic SFI image example) 68
SMI programming by JTAG flow overview 70
Example of getcertificate command using JTAG L. 71
STPC GUIl during SFlgeneration e 74
Example of HSM programming using STPC GUI. o ... 76
Example product ID e 77
HSM information in STM32 Trusted Package Creator CLImode. 78
SFl install success using SWD connection (1) e 81
SFl install success using SWD connection (2), 82
STPC GUI showing the STPC GUI during the SFl generation. 84
Example -dsecurity command-line output. L 85
Example -setdefaultob command-lineoutput L 86
SFl install via SWD execution command-lineoutput 87
STPC GUIl during the SFlgeneration. i 89
SFlinstall via SWD execution (1)o e e 91
SFlinstall via SWD execution - (2).ot e 92
STPC GUIl during SMIgeneration e 94
SMl install success viadebuginterface 96
OB display command showing that a PCROP zone was activated after SMI. 97
Successful SFIx generation e 100
Example of HSM programming using STPC GUI., 101
SFIx install success using SWD connection (1) 103
SFIx install success using SWD connection (2) 104
SFIx install success using SWD connection (3) 105
SFIx install success using SWD connection (4) i 106
Successful SFIx generationuse case 1 109
Successful SFIx generationuse case 2 110
SFIx install success using SWD connection (1) 112
SFIx install success using SWD connection (2), 112
SFIx install success using SWD connection (3) 113
SFIx install success using SWD connection (4) i 114
SFIx install success using SWD connection (5) 114
GUI of STPC during combined SFI-SMI generation. 116
Combined SFI-SMI programming success using debug connection 118
Option bytes after combined SFI-SMl install success. 120
STM32 Trusted Package Creator SSP GUltab 122
Example of HSMv2 programming using STPC GUI 123
STM32MP1 SSP install SUCCESSo 125

ANS5054 Rev 9 9/130

General information

1.1

1.2

10/130

General information

Licensing information

STM32CubeProgrammer supports STM32 32-bit devices based on Arm®@ Cortex®-M

processors.

Acronyms and abbreviations

arm

Table 1. List of abbreviations

Abbreviations Definition
AES Advanced encryption standard
CLI Command line interface
CM Contract manufacturer
GCM Galois counter mode (one of the modes of AES)
GUI Graphical user interface
HSM Hardware security model
HW Hardware
MAC Message authentication code
MCU Microcontroller unit
OEM Original equipment manufacturer
PCROP Proprietary code read-out protection
Pl Position independent
ROP Read-out protection
RSS Root security service (secure)
RSSe Root security service extension
SFI Secure firmware install
STPC STM32 Trusted Package Creator
SMI Secure modules install
STM32 ST family of 32-bit ARM based microcontrollers
SW Software
X0 Execute only

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5054 Rev 9

3

How to generate an execute-only/position independent library for SMI preparation

2.1

2.2

3

How to generate an execute-only/position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an execute-
only (XO) and position independent (PI) library using a partner toolchain

These kinds of libraries serve in encrypted SMI-module generation.

Requirements

SMI modules run in execute-only (XO) areas, also called PCROP areas, and must be
relocatable to be linkable with final OEM application. Nevertheless, today, 3rd party
toolchains for STM32 devices (such as MDK-ARM™ for ARM, EWARM for IAR™ and GCC
based IDEs) do not allow both features to be activated at the same time. So, starting from
particular versions of 3rd party toolchains, the two features below are possible for SMI
support:

e Position independent support (code + rw data + ro data)
e No literal pool generation - needed for the PCROP feature.

Toolchains allowing SMI generation

Three toolchains allow SMI generation:
e EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.

— “—ropi_cb” + “rwpi” are needed for position independent support
— option “no_literal_pool” is needed for the PCROP feature.
e MDK-ARM

The customized version allows execute-only (XO) and position independent (P1) library
generation for SMI support through the following options: “-fropi-cb”, “frwpi”, “-
mexecute-only”.

— “fropi-cb” is needed for ro data independent position
— “frwpi” is needed for rw data independent position
— option “-mexecute-only” is needed for PCROP feature.

All library symbols being used in the final application must be added to the final project
in a “.txt” file format.

e GCC
The customized version of GCC based toolchains allows execute-only (XO) and
position independent (PI) library generation for SMI support through the following
options: “-masset”.

Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for the EWARM toolchain.

AN5054 Rev 9 11/130

How to generate an execute-only/position independent library for SMI preparation

2.3 Execute-only/position independent library scenario example
under EWARM

In order to generate an execute-only (XO) and position independent (PI) library a
customized version of the IAR toolchain must be used: version 7.42.0.

231 Relocatable library preparation steps

1. Open the project available in the “Example” folder: double click on
“Example/AdvEx.eww”.

The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

File Edit View Project Simulator Tools Window Help
DwHD S| % BR|o o AV PP B BEURSIL D
Workspace ®
[app-Debug v]
Files i oy
2 B AdvEx

= (P app - Debug v
L

F— B memony_proxy.c
F— [posthuild bat
L Qtastc

3

12/130 AN5054 Rev 9

How to generate an execute-only/position independent library for SMI preparation

The following steps update the old “/ib.o” linked to the example application by making it
support both Pl and XO features:

2. Within Lib-Debug options -> C/C++ Compiler. Go to tab “Extra Options” and add the
following line:
“--ropi_cb”

This action is illustrated in Figure 2.

Figure 2. Update compiler extra options

Workspace * app.icf postbuild.bat
app - Debug h flecho off
Files Lo ﬁ Th:i.s iz a simple.script that ecr
using the tocols in (%1).
B [AdvEx
I—L——_Iﬂapp—DEbug v EEM Make sure the old files are del
|) app.c N if exist %2.tmp |
| | D lib.o J del %2.tmp
!—L—_I OUUt » if exist %3 (
EfwLib - Debug del %3
libh.c]
b N
memDr.y_pery.c Options for nede "Lib" I_EE
— [posthuild bat by
test.c
=1 (7 Output !
[Lib.out Categony: i
General Options [Muilti-file Campilation
Static Analysis Diszard Unused Publics Le
Runtime Checking (h
| Diagnostics | MISRALC:2004 | MISRAC:1398 | Edra Options D -
Assembler
QOutput Converter
Custom Build
Build Actions Use command line options
Linker)) _
Debuager Command line options: (one per ling)
Simulator —ropi_ch -
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I-Het/TTAGet
JHink/J-Trace
T1 stellaris
Macraigor
PE micro
ROI i
STAINK
Third-Party Driver
TIXD5
QK.] ’ Caticel
|

3

AN5054 Rev 9 13/130

How to generate an execute-only/position independent library for SMI preparation

3. Within Lib-Debug options -> Linker. Go to the “Extra Options” tab and add the following
lines:

--no_literal_pool

--ropi_cb

--loadable

--no_entry

This action is illustrated in Figure 3.

— “ropi_cb” is needed for Position Independent support

— the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

Workspace x app.icf postbuild.bat
[app-Debug i @fecho off
. Fe R REM This is & simple script that cr
Files el REM using the tools in (%1).
B B AdvEx
= (F app - Debug v REM Make sure the old files are dels
| £l app.c N if exist 22.tmp (
| _Dlib.l:l del %2.tmp
)
| [:IOutput if exist %3 |
del &3
1
. r '
Memary_pAroxy.C Options for node "Lib™ ﬁ
— [postbuild bat i — 5y
[teste
=1 (7 Output

[Likb.out Categony: Factary Settings 31

General Options

Static Analysis E
Runtime Checking i
CJ/C++ Compiler | Outpit I List I Hdefine I Diagnostics I Chechksum | Extra Options | |+ [* -
Assembler
Output Converter Use command line options
Custom Buid Command line options: (one per ling)
Build Actions
o ke ood '
b —opi_ch
Debuager -Joadable
Simulator -no_entry
Angel
CMSIS DAP
GDB Server

IAR ROM-monitor
I-et/TTAGjet
J-link/1-Trace

TI Stellaris
Macraigar

PE micro

ROI

STLINK
Third-Party Driver
TIXDS

[0K][Cancel]

—m—m—m—e——_—_TTTY€<€T€V€V€T?-éAAmY———————————————————

14/130 AN5054 Rev 9

3

How to generate an execute-only/position independent library for SMI preparation

4. Within Lib-Debug options -> Build actions. In post build command line execute the

batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line:

"$PROJ DIRS\postbuild.bat" "$TOOLKIT DIR$" "$TARGET PATHS"
"$PROJ DIR$\1lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

wig

v rkbench p—
File Edit View Project Simulator Tools Window Help

DwH@ S b Balo o

-y el oerdh BURS| LY

..
app - Debug X

Files By

B B AdvEx

-2 9 app - Debug v

| Bleppc

| B Dliko

| [Output

(=N]Lik - Cebug
—Blibe
— B memony_prose. ¢
— [postouild bat

L Btestc

Categary:

General Options
Static Analysis
Runtme Checking
C/C++Compier | || Buld Actions Configuration |
Assembler .)
Output Converter Pre-build command line:
Custom Build E

PR

:":E' *$PROJ_DIRS \postbuid bat" "STOOLKIT_DIRS" "STARGET_PATF
ebugger

Simulator

Angel

CMSIS DAP

GDB Server

TAR ROM-monitor
T4jet/ITAGjet
JHlink/3-Trace

TI Stellaris

Third-Party Driver
TIXDS

3

AN5054 Rev 9 15/130

How to generate an execute-only/position independent library for SMI preparation

The “postbuild.bat” file is used to perform some key actions:
e --wrap: adds veneers to library functions to initialize registers used for ropi code
. ‘iexe2obj.exe” transforms the elf into a linkable object file.

See Figure 5.

Figure 5. Postbuild batch file

[S U S

1

1 o N e L R O

feche off
EEM This is a simple script that creates and ckject file (%3) from an image (%2)
EEM using the tools in (%1).

EEM Make sure the old files are deleted before we try to generate the new cnes
if exist LEmp |
del . TR
1
if exist
del

echo Do magic encryption here (copy is just a placeholder)
copy -LIp

AL lill heve 2 prapper ceperzrod

SET _ WRAP=--wrap ToString --wrap setup memory --wrap Setup memoryd I

REM convert the image to a linkable cbject file using _Lib as prefix

REM and keeping all mode symbols Jgs%ts a bit with debugging)
“binYiexe2obj.exe —-prefix Lik ——keep mode symbols . Lo I

2.3.2

16/130

5. Rebuild the project “Lib”

Relocatable SMI module preparation steps

From the object file created, “lib.o”, generate the SMI relocatble module using the STM32
Trusted Package Creator tool “libr.smi” and its corresponding data clear part (libr_clear.o:
corresponding to the input “lib.o” without the protected section code).

To execute this step, follow the steps explained for SMI generation under section
“Section 3.6.2: Steps for SMI generation (CLI)".

3

AN5054 Rev 9

How to generate an execute-only/position independent library for SMI preparation

2.3.3 Application execution scenario

1. Flash the already generated SMI relocatable module to address 0x08080000 using
STM32Cube Programmer v0.4.0 or newer (see Section Figure 63.: SFl install via SWD
execution - (2) to perform this action).

2. Link the data clear part, “libr_clear.0”, generated from STM32 Trusted Package Creator
tool to the final IAR example application instead of the old previously used “ib.o”.

3. Exclude ‘lib.o” from the build (Figure 6).

Figure 6. How to exclude the “lib.o” file from build

Workspace *
[app—Dabug -
Files K
2 [EAdvEx
&1 (app - Debug v
| app.c v
\ ED_--
LE‘ [L_le?lgl;llbtug v Options for node "app"‘ léj

:.\nb;now e Exelude from build

|— 01 postbuild bat Category [Overide inherited setfings
testc

Lo O O
[Lib.out
II Custom Tool Corfiguration

Filename extensions:

Command ling

Qutput files {one per line):

Addtional input files (one per line):

[Run this tool before all other tools

4. Rebuild the application.
5. Do these modifications in an example application ICF file:
a) Define region for PCROP block:
define symbol __ ICFEDIT _region_ PCROP_start = 0x08080000;
define symbol __ICFEDIT_region_ PCROP_end__ = Ox0809FFFF;

define region PCROP_region = mem:[from __ ICFEDIT region_ PCROP_start
to__ ICFEDIT_region_PCROP_end__J;

b) Define PCROP region as 'noload' (since it is already installed using
STM32CubeProgrammer so no need to load it again)

‘SMI’: place noload in PCROP_region { ro code section __code__Lib};

3

AN5054 Rev 9 17/130

How to generate an execute-only/position independent library for SMI preparation

These modifications are illustrated within the “app.icf” file, which is shown in Figure 7.

Figure 7. app.icf file

ann-icf|

» Ll x

/*###ICF#44 Section handled by ICF editor, don't touch! ***+*/

/*-Editor annotation file-+/

/% IcfEditorFile= KIT_DIR$\config\ide\IcfEditor\cortex_vi_0.xml" */
/#-Specials-*/

ICFEDIT_region ROM start__ = 0x24000000;
ICFEDIT region ROM end = 0x24002FFF;
ICFEDIT region RAM start__ = 0x24003000;

ICFEDIT region RAM end__ 0x2407FFFE;

— ICFEDIT region PCROP start
—_ICFEDIT region PCROP end

__ICFEDIT_size_cstack__ = 0x2000;
CFEDIT size hesp = 0x2000;
F editor section. $EICF43S%/

0x10000000;
0X1000FFFF;

__region RAMI_start__
__region REMI end

; mem with size = 4G;
ROM_region

om __ICFEDIT region
ICFEDIT region

{ start__ to _ ICFEDIT region I
start__ to
o

define block CSTACK with alignment

= L)
define block HEAP with alignment = {1

/*define block PCROE block with alignment = 256 {r0 code section _ code Lib}:*/

initialize by copy [readwrite };
do not initialize [section .noimit };

place at address mem: ICFEDIT intvec starc__ { readonly section .intvec };

place in ROM region { readonly }:
place in RAM_region | readurite,

block CSTACK, block EEAP };
place in RAMl region [section .stam };

l'Sl:’I": place noload in PCROP region | ro code section _ code Lib}: I

/*place in PCROP region [block ECROE_block }i*/

m,

6. To check that example application executed successfully on the STM32H7 device:
a) Check that address 0x08080000 was protected with PCROP.
b) The expected “printf” packets appears in the terminal output.

18/130 AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.1

3.2

Encrypted firmware (SFl) and module (SMI)
preparation using the STPC tool

The STM32 Trusted Package Creator (STPC) tool allows the generation of SFI and SMI
images for STM32H7 devices. It is available in both CLI and GUI modes free of charge from
www.st.com.

System requirements

Using the STM32 Trusted Package Creator tool for SFI/SFIx, SMI and SSP image
generation requires a PC running on either Windows® 7/10, or Ubuntu® 14 in 64-bit
versions and macOS®.

SFI generation process

The SFI format is an encryption format for internal firmware created by STMicroelectronics
that transforms internal firmware (in ELF, Hex, Bin or Srec formats) into encrypted and
authenticated firmware in SFI format using AES-GCM algorithm with a 128-bit key. The SFI
preparation process used in the STM32 Trusted Package Creator tool is described in
Figure 8.

Figure 8. SFI preparation mechanism

OEM FW Cleartext

01101
OEMFW p1010

STM32TrustedPackageCreator

+ 10101

Option Byted 1010 Encrypted SFl image file
Enc - MAC ENC
Nonce I 1101

OEM FW 01010
+ 10"01
Option Bytesq r

EEMK@}) -ﬁ__

3

AN5054 Rev 9 19/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

20/130

The SFI generation steps as currently implemented in the tool are described in Figure 9.

Figure 9. SFl image process generation

Read Firmware files

Supporte:
formats?

Parse firmware files

Perform AES-GCM
encryption

Create SFlfile

Before performing AES-GCM to encrypt an area, we calculate the Initialization Vector (V)
as:

IV = nonce + Area Index

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the unencrypted
descriptive header generated by the tool) are called areas.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

These areas can be of different types:
e ‘F’for a firmware area (a regular segment in the input firmware)

e ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds
to input from an SMI module)

e ‘C’for a configuration area (used for option-byte configuration)

o ‘P’fora“pause” area

e ‘R’for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an SFl image

is split into several parts, which is the case when the global size of the SFl image exceeds
the allowed RAM size predefined by the user during the SFI image creation.

The STM32 Trusted Package Creator overview below (Figure 10) shows the RAM size input
for SFI image generation, and also the ‘Continuation token address’ input, which is used by
SFI multi install to store states in Flash memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI multi install

1, 5TM32 Trusted Package Creator ==l g

File Edit Options Help ‘,’ G

Firmware files Firmware information SFIinformation

L
Remove

File name

Encryption key file
M3ZTrustedPackageCreatorInput/SFI good /test_firmware_key.bin m

Size

Protocol version

Nonce file

Segments
fprojects/STM3ZTrustedPackageCreatorInput/SFI/good nonce. bin m

Index Type Size Address
Option bytes file

‘projects/SFMI-PreparationToolv, 2.0_test1/Input/SFI good/ob.cav m

SMI files (Only for combined case) |

] [aad]
Remove
Image version |
24 |5
RAM size Continuation token address

Output SFI file

C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

|

3

AN5054 Rev 9 21/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 11 (below) shows the specifics of these new areas compared to a regular SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFl area

Area format

Type ('F, ‘M, 'C’)
Version

Index

Size

Address

Total Nb of areas
Tag

Encrypted Area
Content

- Firmware

- Module

- Configuration

New Pause Area

New Resume Area

‘ Type ‘P’ | ‘ Type R’ ‘
Version Version
Index Index
Size = 0 | Size = 0 |

Address of CT

| Address of CT |

Total Nb of areas
Tag

Total Nb of areas
Tag

Note:

22/130

A top-level image header is generated then authenticated, for this the tool performs AES-
GCM with authentication only (without encryption), using the SFI image header as an AAD,

and the nonce as IV.

An authentication tag is generated as output.

To prepare an SFl image from multiple firmware files, make sure that there is no overlap
between their segments, otherwise an error message appears (Figure 12: Error message

when firmware files with address overlaps used).

AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 12. Error message when firmware files with address overlaps used

{4}, STM32 Trusted Package Creator (=[] =]
File Edit Options Help ‘,’ e s
le.augmen
e ﬁB
|| tests.axf Overview
File name
Encryption key file
Type
M3ZTrustedPackageCreator/Input/SFI good ftest firmware key.bin Open
— b
{:4 Emor - M
Nonce file
Jprojects/STM32TrustedPackageCreator (’ﬁ‘) Overlap between segments, Unable to merge firmware files
- Address
— (o
‘projects/SFMI-PreparationToolv, 2,0_tes
SMI files (Only for combined case)
Remove
Image version
24 |5
RAM size Continuation token address
Output SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder
Kys AN5054 Rev 9 23/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

For combined SFI-SMI images, there is also an overlap check between firmware and

module areas. If the check fails, an error message appears (Figure 13).

Firmware files

|| tests.axf

Figure 13. Error message when SMI address overlaps with a firmware area address

SFI SMI

Firmware information SFI information

Encryption key file

Nonce file

1.0/SFMIPreparation_tool_v0. 2.0_windows,bin/Input,S

Option bytes file

‘0. 2.0/SFMIPreparation_tool_v0. 2.0_windows /bin/Inpu

SMI files (Only for combined case)

[—— Overview

\aration_tool_v0.2.0_windows/bin/Input/SFLjtest_firmwd (¢ Error ‘: ﬂ

Overlap between SFI areas

File name S5TM32F4-DISCO0.smi

Ll

Image version

3 5

Qutput SFI file

ol _w0.2.0/SFMIPreparation_tool_w0,2.0_windows/binfoutputfout.sfi FEE a5 =0

Size

262144 B

Address
0x8000000

24/130

AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Also, all SFI areas must be located in Flash memory, otherwise the generation fails and the
following error message appears (Figure 14).

Figure 14. Error message when a SFl area address is not located in Flash memory

{45 5TM32 Trusted Package Creator

File Edit

Firmware files

Options

|| tests.axf

Encryption key file

Nonce file

Jfprojects/STM32TrustedPackageCreator /Input/SF

Option bytes file

‘projects/SFMI-PreparationToolvd, 2.0_test1/Inpu

SMI files (Only for combined case)

M32TrustedPackageCreatorInput/SFIfgood/ /test_firmware_key.bin m

Help

Remove

Overview

Firmware information SFI information

|1

(=o[@] = |

"I life..augmented

Size

File name

out.sfi

266,656 KB

Protocol version 01

S

Error: One or more SFI areas are not located in Flash memory

L

Image version

24 =

RAM size

Output SFI file

Continuation token address

C:/projects/5TM32TrustedPackageCreator foutput/out. sfi

=

Remove

Select folder

Configuration

368

Address
0x8000000

(0x8030000

(0x8000000

00

3

AN5054 Rev 9

25/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

26/130

Figure 15. SFI format layout

The final output from this generation process is a single file, which is the encrypted and
authenticated firmware in “.sfi” format. The SFI format layout is described in Figure 15.

~ SFI signed header

“F" magic
Version of image
Area order number
Area size in bytes
Area Dest address ~— Firmware area(s)
Total number of areas
Area Tag
Area

Encrypted data blob

“M" magic

Version of image
Area order number

Area size in bytes
Area Dest address ~ Module area(s)
Total bumber of areas (combined case)
Area tag
Area

Encrypted data blob
“C" magic
Version of image
Area order number (TotalN)
Area size in bytes
Area Dest address (0) ~ Option bytes area
Total number of areas
Area Tag

Option bytes config

structure

AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFl image

layout, as in the example below Figure 16.

Figure 16. SFl image layout in case of split

Unsplit Image Split Image

Image Header Image Header

Area 1 ‘F Area1‘F

Area 2 ‘F Area 2 ‘F’

Area 3 ‘P’ause

Area 3 'F Area 4 ‘R’'esume

Area 4 ‘M’ Area 5 ‘F’
Area 5 'C

Area6 ‘M’
Area 7 'C

AN5054 Rev 9

27130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.3

28/130

SFIx generation process

In addition to the SFI preparation process mentioned in the previous section, two extra
areas are added in the SFI image for the SFIx preparation process:

e ‘E’for an external firmware area
e ‘'K’ for a key area (used for random keys generation)

The key ‘K’ area is optional and it can be stored in the area ‘F’.

Area E

The area ‘E’ is for external Flash memory. It includes the following information at the
beginning of an encrypted payload:

e OTFD region_number (uint32_t):

— 0...3: OTFD1 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335, and STM32L5)

- 4..7: OTFD2 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335)

e OTFD region_mode (uint32_t) bit [1:0]:

00: instruction only AES-CTR)

01: data only (AES-CTR)

10: instruction + data (AES-CTR)

11: instruction only (EnhancedCipher)

e OTFD key_address in internal Flash memory (uint32_t).

After this first part, area ‘E’ includes the firmware payload (as for area ‘F’). The destination
address of area ‘E’ is in external Flash memory (0x9... / 0x7...).

Area K

The area ‘K’ triggers generation of random keys. It contains N couples; each one defines a
key area as follows:

e the size of the key area (uint32_t)
e the start address of the key area (uint32_t): address in internal Flash memory.

Example of an area ‘K’:
0x00000002 0x00000080 0x08010000 0x00000020 0x08010100

There are two key areas:
e the first key area starts at 0x08010000 with size = 0x80 (8 x 128-bits keys)
e the second key area starts at 0x08010100 with size 0x20 (256-bits key).

The STM32 Trusted Package Creator overview below (Figure 17: RAM size and CT
address inputs used for SFIx multi install) shows the RAM size input for SFIx image
generation, and also the ‘Continuation token address’ input, which is used by SFIx multi
install to store states in external/internal Flash memory during SFIx programming.

The ‘Continuation token address’ is mandatory due to the image generation which adds
areas P and R whatever be the configuration.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 17. RAM size and CT address inputs used for SFIx multi install

5% STM32 Trusted Package Crestor - o *

File Edit Options Help

SF1 SFIx S5F WB SIGN SHI

Internal firmware files Firmware information SFIx information

Overview
External firmware files

Size |R¢gionnumh=r| Region mode I Key ad

File name Type

[T otfd_part hex

Key area file

|c:!5FIon:Fd_her_a'e.s.km
Segments

E tion key file
— =4 Index | Size Address |

e/ tpeny.bn

MNonee file

|c:!SFIxihonoe.bn

Option bytes file

[c:/sFtxfobcsn

Image version

1 E.
RAM size Continuation token address

—
Output SFI file

il e

|2 /sFIxfout.sfix

Note: To prepare an SFIx image from multiple firmware files, make sure that there is no overlap
between their segments (Intern and extern), otherwise an error message appears as same
as in the SFl use case.

‘Yl AN5054 Rev 9 29/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

30/130

The final output from this generation process is a single file, which is the encrypted and
authenticated internal/external firmwares in “.sfix” format. The SFIx format layout is
described in Figure 18.

Figure 18. SFiIx format layout

SFI Magic

Security protocol
version

Total number of area

Tag of the previous fields
using the firmware encryption
key
“F 7
Version of image
Area order number
Area size in bytes
Area Dest address
Total number of areas
Area Tag

Area Encrypted data blob

“K.” Is optional
“M.”

Version of image
Area order number
Area size in bytes

Area Dest address
Total number of areas
Area Tag

Area Encrypted data blob

“E
Version of image

Area order number

Area size in bytes

Area Dest address

Total number of areas
Area Tag

Area Encrypted data blob
“«c”

Version of image

Area order number (TotalN)
Area size in bytes

Area Dest address (0)
Total number of areas
Area Tag

Option bytes config structure

SFI Signed header

Internal firmware areas

Key area

Module areas

External firmware areas

Option bytes areas

AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

When the SFIx image is split during generation, areas ‘P’ and ‘R’ appear in the SFIx image
layout, as in the example below Figure 19.

Figure 19. SFIx image layout in case of split

Unsplit Image

Image Header
Area 'F

Area 'k’
Area 'P’
Area 'K’

Area 'EF’

Area 'P’
Area 'K’
Area 'M’

Area 'C’

Split Image

AN5054 Rev 9

31/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.4 SMI generation process

SMl is a format created by STMicroelectronics that aims to protect partners’ software (SW:

software modules and libraries).

The SMI preparation process is described below (Figure 20).

Figure 20. SMI preparation mechanism

Library Cleartex

f ! STM32TrustedPackageCreator

_____ Nonce & e e
............... Hod.sml
:Module - —

‘Enc Key £ e i v
AP Encrypted SMI

: : image file

32/130 AN5054 Rev 9

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

The SMI generation steps as currently implemented in the tool are described in the diagram
below (Figure 21).

Figure 21. SMI image generation process
| Read ELFfile

Farse the ELF file

arsing
successfull

Extract PCROP
section

v

Perform AES-GCM
encryption

v

Make ShI structure

Fail

Create SMI file

The AES-GCM encryption is performed using the following inputs:
e 128-bit AES encryption key

e The input nonce as Initialization Vector (IV)

e The security version as Additional Authenticated Data (AAD).

AN5054 Rev 9 33/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

34/130

Before SMI image creation, PCROP checks are performed on the SMI image validity:

e APCROP section must be aligned on a Flash word (256 bits), otherwise a warning is
shown.

e The section’s size must be at least 2 Flash words (512 bits), otherwise a warning is
shown.

e The section must end on a Flash word boundary (a 256-bit word), otherwise a warning
is shown.

o |[f the start address of the section immediately following the PCROP section overlaps
the last Flash word of the PCROP section (after performing the PCROP alignment
constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:

e The SMI image (Figure 22 represents the SMI format layout).

e The library data part.

Figure 22. SMI format layout

- SMI signed
header
Encrypted protected
module code SN Encoypeed
section

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.5 SSP generation process

SSP is an encryption format that transforms customer secret files into encrypted and
authenticated firmware using an AES-GCM algorithm with a 128-bit key. The SSP
preparation process used in the STM32 Trusted Package Creator tool is shown in

Figure 23.

Figure 23. SSP preparation mechanism

..........................

i Password]
' 1

|
| RMAUnlock RMA relock :—
')
 — I !
R P
: Enryption H

:

1
o key nonce | | I
! ’ 7

i oemrw !
| publckey | I
; .

STM32TrustedPackage | EEmE——— '

Creator

vl

Output §
SSPfile |

An SSP image must be created prior to SSP processing. The encrypted output file follows a
specific layout that guarantees a secure transaction during transport and decryption based

on the following inputs:

e Secret file: This 148-byte secret file must fit into the OTP area reserved for the

customer. There is no tool or template to create this file.

e RMA password: This password is chosen by the OEM. It is part of the secret file and is
placed as the first 4-byte word. To make RMA password creation easier and avoid
issues, the STM32 Trusted Package Creator tool add sit directly at the beginning of the

148-byte secret file.
e Encryption key: AES encryption key (128 bits).
e Encryption nonce: AES nonce (128 bits).

e OEM FW key: This is the major part of the secure boot sequence. Based on ECDSA
verification, the key is used to validate the signature of the loaded binary.

The first layout part (SSP magic, Protocol version, ECDSA public key, secret size) is used
as additional authenticated data (AAD) to generate the payload tag. This is checked by the
ROM code during decryption.

3

AN5054 Rev 9

35/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Table 2. SSP preparation inputs

Input Size (bytes) Content
SSP magic 4 ‘SSPP’: magic identifier for SSP Payload
SR ProocolVersion | 4|21 Do acte o o prse e o
OEM ECDSA public key 64 OEM ECDSA public key
OEM secret size 4 Size of OEM secrets, in bytes

Cryptographic signature of all fields above, to ensure

Payload tag 16 their integrity.

Encrypted OEM secrets 152 Encrypted OEM secrets. 152 is given by previous field.

This encrypted file is automatically generated by the STM32 Trusted Package Creator tool.

Figure 24. Encryption file scheme

Encrypted Secret file

SSP Magic

SSP protocol version

l OEM ECDSA pubK

AES AAD OEM Secrets size

fiMA. OCH }—b AES128-GCM ’ [Payload Tag]
secrets

Encrypted OEM secrets]

| Key&lV

3

36/130 AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.6 STM32 Trusted Package Creator tool in the command line
interface

This section describes how to use the STM32 Trusted Package Creator tool from the
command line interface in order to generate SFI/SFIx and SMI images. The available
commands are listed in Figure 25.

Figure 25. STM32 Trusted Package Creator tool - available commands

Generate SFI image,
ou also need to provide the information listed below
dd an input firmware file
: Supported firmware files are ELF HEX SREC BIM
Add input for external firmware file
rmware files are ELF HEX SREC BIN

(STM32H7A [STM32L5), [
[8:1] where 88 :

lues in internal flash memor

--no
<Nonce_Fil
r
lue must be in < .255» (in any base)
tion bytes guration file
ile with 9
mbined c)

e of a relocatable SMI (with Address = 8)
ailable ram e (for multi-image)
in bytes
wation token address (for multi-image)
: Address
--outfile Generated SFI file
<Output_File> : SFI file to be created

: Generate SMI image
1so need to provide the information listed below
--elfile
<ELF_Fil

: Section to be encry
: Section name in the ELf file
ion ke

be 16 bytes

be 12
on
H be 16 bytes
--outfile : G file
tput_File> SMI file to be created
ear lear ELF file
lear_File>» : Clear ELF file to be generated

3

AN5054 Rev 9 37/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.6.1

38/130

Steps for SFI generation (CLI)

In order to generate an SFI/SFIx image in CLI mode, the user must use the “-sfi, --sfi”
command followed by the appropriate inputs.Inputs for “sfi” command are:

-fir, --firmware

Description: adds an input firmware file (supported formats are Bin, Hex,
Srec and ELF). This option can be used more than once in order to add multiple firmware
files.

Syntax: -fir <Firmware_file> [<Address>]

<Firmware_file> :Firmware file.

[<Address>] :Used only for binary firmware.
-firx, --firmwx

Description: Add an input for external firmware file. Supported formats are
Bin, Hex, Srec and ELF. This option can be used more than once in order to
add multiple firmware files.

Syntax: -firx <Firmware_file> [<Address>] [<Region_Number>]

[<Region_Mode>] [<key_address>]

<Firmware_file> : Supported external firmware files are ELF HEX
SREC BIN.

[<Address>] :Only in case of BIN input file (in any base).

<Region_Number> : Only in case of BIN input file (in any base):

[0:3]: OTFD1 (STM32H7A3/7B3, STM32H7B0 or
STM32L5), [4:7]:
OTFD2 (STM32H7A3/7B3 and STM32H7BO0 case).

<Region_Mode> : Only in case of BIN input file (in any base), only two
bits [0:1] where

00: instruction only (AES-CTR)

01: data only (AES-CTR)

10: instruction + data (AES-CTR)

11: instruction only (EnhancedCipher)

<key_address> : Only in case of BIN input file (in any base), random
key values in internal Flash memory.

-k, --key
Description: sets the AES-GCM encryption key.
Syntax: -k <Key file>

< Key _file> : A 16 bytes binary file.
-n, --nonce
Description: sets the AES-GCM nonce.
Syntax: -n <Nonce_file>

<Nonce _file> A 12-byte binary file.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Note:

Note:

3

-v, --ver
Description: sets the image version.
Syntax: -v <Image_version>

<Image_version> : Avalue between 0 and 255 in any base.
-ob, --obfile

Description: provides an option bytes configuration file.

The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.

Only csv (comma separated value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

The number of rows in the CSV file is product dependent (refer to the example available for
each product). For instance there are 9 rows for all STM32H7 products, with the last row
"reserved”, except for dual-core devices. It is important to neither change the order of, nor
delete, rows.

Example: for STM32H7xx devices, 9 option bytes registers must be configured, which
corresponds to a total of 9 lines in the csv file (Figure 26).

Syntax: -ob <CSV_file>

<CSV file>: Acsv file with 9 values.

Figure 26. Option bytes file example

FOPTSRE_PRG, 0x1026RAD0
FPRAR PRG A, 0x81000200
FPRAR_PRG_B, 0x81000200
FSCAR_PRG_A, 0x81000200
FSCAR_PRG_B, 0x81000200
FWESN_FRG_A, UXFFFFFFFF
FWPSN_PRG_B, OXFFEFFEFF
FBOOT7_PRG, 0x24000800
RESERVED, 0x10000810

-m, --module

Description: adds an input SMI file.
This option can be used more than once in order to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>
<SMI_file >: SMI file.[<Address>]: Address is provided only for relocatable SMI.
-rs, --ramsize
Description: define the available ram size (in case of SFI multi-install)
Syntax: -rs <Size>
< Size >: RAM available size in bytes

The maximum RAM size of each device is mentioned in the descriptor. For example the
maximum RAM size of the STM32WL is 20 Kbytes.

AN5054 Rev 9 39/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.6.2

40/130

-ct, --token
Description: continuation token address (in case of SFI multi-install)
Syntax: -ct <Address>
< Address >: continuation token Flash address
-0, --outfile
Description: sets the output SFl file to be created.
Syntax: -0 <out_file>

<out_file > : the SFl file to be generated (must have the “.sfi”
extension).

Example of SFI generation command using an ELF file:

STM32TrustPackageCreator CLI.exe -sfi -fir tests.axf -k
test firmware key.bin -n nonce.bin -ob ob.csv -v 23 -o out.sfi

The result of previous command is shown in Figure 27.

Figure 27. SFI generation example using an EIf file

C:~Program Filez“~S5TMicroelectronics~8TH3IZ2Cube~S5TM3I2CubeProgrammer~bin>STH32Trust
edPackageCreator_CLI .exe —sfi —fir tests.axf —k test_firmuware_key_.bin —n nonce_h|

in —ob oh.csv —v 23 -0 out.sfi
SFI generation SUCCES

Steps for SMI generation (CLI)

In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi”
command followed by the appropriate inputs.

Inputs for the “smi” command are:

-elf, --elfile

Description: sets the input ELF file (only ELF format is supported).
Syntax: -elf <ELF_file>

<ELF _file> : ELF file. An ELF file can have any of the extensions: “.elf’, “.axf”,

.0”, “.s0”,“.out”.
-s, --sec
Description: sets the name of the section to be encrypted.
Syntax: -s <section_name>
<section_name> : Section name.
-k, --key
Description: sets the AES-GCM encryption key.
Syntax: -k <Key file>
< Key _file> : A 16-byte binary file.
-n, --nonce

Description: sets the AES-GCM nonce.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

Syntax: -n <Nonce_file>

<Nonce_file> : A 12-byte binary file.
-sV, --sver
Description: sets the security version file

The security version file is used to make the SMI image under preparation compatible with a
given RSS version, since it contains a corresponding identifying code (almost the HASH of
the RSS).

Syntax: -sv <SV_file>
<SV_file> : A 16-byte file.
-0, --outfile
Description: Sets the SMI file to be created as output
Syntax: -0 <out_file>
<out_file > : SMI file to be generated, must have the .smi extension.
-c, --clear

Description: Sets the clear ELF file to be created as output corresponding to the data part
of the input file

Syntax: -¢ <ELF_file>

<ELF _file > : Clear ELF file to be generated.
Example SMI generation command:
STM32TrustPackageCreator CLI.exe -smi -elf FIR module.axf -
s “ER_PCROP” -k test firmware key.bin -n nonce.bin -sv
svFile -0 test.smi -c clear.smi

Figure 28. SMI generation example

C=“8FHIPreparation Tool vB.2_ B>EFHIPreparationTool CLI -=mi —elf FIR_module.axf
-z "ER_PCROP" -k test_firmware_key.bin -n nonce.bin —sv suFile —-o test.smi —c cl

ear.axf
The section does not end on a Flash word boundary
SUCCES

AN5054 Rev 9 41/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.6.3

42/130

Steps for SSP generation (CLI)

In order to generate an SSP image in CLI mode, the user must use the “-ssp, --ssp”
command followed by the appropriate inputs.

Inputs for the “ssp” command are:
-ru, --rma_unlock
Description: RMA unlock password
Syntax: -ru <RMA_Unlock>
<RMA_Unlock> : Hexadecimal value 0x0000 to Ox7FFF
-rr, --rma_relock
Description: RMA relock password
Syntax: -rr <relock_value>
<relock_value> : Hexadecimal value 0x0000 to Ox7FFF
-b, --blob
Description: Binary to encrypt
Syntax: -b <Blob>
<Blob> : Secrets file of size 148 bytes
-pk, --pubk
Description: OEM public key file
Syntax: -pk <PubK.pem>
<PubK> : pem file of size 178 bytes
-k, --key
Description: AES-GCM encryption key
Syntax: -k <Key File>
<Key_File> : Bin file, its size must be 16 bytes
-n, --nonce
Description: AES-GCM nonce
Syntax: -n <Nonce_ File>
<Nonce_File> : Bin file, its size must be 16 bytes
-0, --out
Description: Generate SSP file
Syntax: -out <Output_ File.ssp>
<Qutput_File> : SSP file to be created with (extension .ssp)

If all input fields are validated, an SSP file is generated in the directory path already
mentioned in the “-0” option.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

Example SSP generation command:
STM32TrustedPackageCreator CLI -ssp —ru 0x312 —rr OXECA

-b “C:\SSP\secrets\secrets.bin”
-pk “C:\SSP\OEMPublicKey.pem” -k “C:\SSP\key.bin”

-n “C:\SSP\nonce.bin” -o "“C:\out.ssp”

Once the operation is done, a green message is displayed to indicate that the generation
was finished successfully. Otherwise, an error occurred.

Figure 29. SSP generation success

AN5054 Rev 9 43/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7 Using the STM32 Trusted Package Creator tool graphical
user interface

The STPC is also available in graphical mode, this section describes its use. The STM32
Trusted Package Creator tool GUI presents two tabs, one for SFI generation, one for SFIx
generation and one for SMI generation.

3.71 SFI generation using STPC in GUI mode

Figure 30 shows the graphical user interface tab corresponding to SFI generation.

Figure 30. SFI generation Tab

', STM32 Trusted Package Creator [|

File Edit Options Help ‘,’ i

SF1 SMI SFU HSM
e ﬁles
C |
Overview
Remove
File name tests.axf
Encryption key file
Type ELF
M3ZTrustedPackageCreator [Input/SFI/good/test_firmware_key.bin m
Size 815,887 KB
Nonce file
Segments
fprojects/STM32TrustedPackageCreator Input/SFIfgood fnonce. bin m
Index Size Address
lucoby i 1 844 B 0xB000000
projects/SFMI-PreparationToolvO, 2.0_test1/Inputy/5FI /good ob. csv m 2 0884 B 0x8030000
SMI files (Only for combined case)
[} STM32F4-DISCO0.5mi [Add | i
Remove
Image version
24 =
RAM size Continuation token address
Qutput SFI file
C:/projects/STM3ZTrustedPackageCreator foutput fout.sfi

To generate an SFl image successfully from the supported input firmwares formats, the user
must fill in the interface fields with valid values.

3

44/130 AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

SFI GUI tab fields

e Firmware files:
The user needs to add the input firmware files with the “Add” button.

If the file is valid, it is appended to the “input firmware files® list, otherwise an error
message box appears notifying the user that either the file could not be opened, or the
file is not valid.

Clicking on “input firmware file* causes information related information to appear in the
“Firmware information” section (Figure 31).

Figure 31. Firmware parsing example

|1

{25 5TM32 Trusted Package Creator = B 22

File Edit Options Help ‘,’ e
lle.

Firmware files Firmware information SFI information

Overview
File name | tests.axf -
Encryption key file
- Type ELF
Iﬂ_Pad(age_Creabor_v1.0.Zﬂnput,.’SFIIgoodfhest_ﬁrmware_key.bln
Size 815.887 KB -
Nonce file _I
Segments
I'M32_Trushed_Pad<age_Creahor_v1.0.2ﬂnputf5FIfgoodfnonce.bin m
Wex Size Address
Option bytes file 1 844 B 0x8000000
32_Trusted_Package_Creator_v1.0. FI djfob. m
I,.’STM _Trusted_Package_Creator_v1.0.2/Input/5FI /good job. csv 2 G BITETTET

SMI files (Only for combined case)

Image version

I:LZ 33
RAM size I Continuation token address I

Dutput SFI file

lloads,.’STMSZ_Trushed_Pad(age_Creahor_v 1.0.2foutputfout_totol, FEEERan NS

3

AN5054 Rev 9 45/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Note:

Note:

46/130

Encryption key and nonce file:

The encryption key and nonce file are selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for nonce).

Option bytes file:

The option bytes file are selected the same way as the encryption key and nonce. Only
csv files are supported.

STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bi'\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

SMl files:

SMI files are added the same way as the firmware files. Selecting a file causes related
information to appear in the “Firmware information” section.

Image version:

Choose the image version value of the SFI under generation within this interval:
[0..255].

Output file:

Sets the folder path in which the SFI image is to be created. This is done by entering
the folder path (absolute or relative) or by using the “Select folder” button.

By using the “Select folder” button, the name “out.sfi” is automatically suggested. This can
be kept or changed.

‘Generate SFI’ button:
Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFl file by a single click on it.

If everything goes well, a message box indicating successful generation appears
(Figure 32: SFI successful generation in GUI mode example) and information about the
generated SFl file is displayed in the SFI information section.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 32. SFI successful generation in GUI mode example

{43 STM32 Trusted Package Creator (== = |

File Edit Options Help ‘1’ T

Firmware files Firmware information SFI information

Overview

-
Remove

[»

File name out_totol.sfi

Encryption key file

Size 10627 KB
Iﬂ_Pad(age_Creator_vl.O.Zﬂnput,.’SFIIgoodfhest_ﬁrmware_ke i

{3} Success g 01 LI

. SHI successfully created
— Iype Size Address

Option bytes file [ok] I'nware 8448 (x8000000
32 Trusted_Package_Creator_vL0. R e
|/sTM32_Trusted_Package_Creator_v1.0.2/Input/SFLfgoad e 9884 B 0x8030000

SMI files (Only for combined case) 3 Configuration 6B 00

Nonce file

I'M32_Trushed_Pad<age_Creahor_v 1.0.2{Input/SF1/good /noni

Remove

Image version

|12 33
RAM size I Continuation token address I

Output SFI file

lIoads{STMSZ_Trushed_Pad(age_Creator_v 1.0.2foutputfout_toto1, FEEEEETLES

AN5054 Rev 9 47/130

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.2 SFIx generation using STPC in GUI mode

Figure 33 shows the graphical user interface tab corresponding to SFIx generation.

Figure 33. SFIx generation Tab

{8l STM32 Trusted Package Creator - O ®

File Edit Options Help ‘ I augmented
' lite.

'WB SIGN SMI HSM

Internal firmware files

Firmware information SFIx information
[—

Overview

External firmware files

I3 faa

File name Type Size Region number

Region mede | Key address

offd_part.hex Intel Hex
Key area file

[/5FIxjotfd_key _areas.kesv {84 STM32 Trusted Packa... 7 X
Segments

Encryption key file External firmware file: otfd_partLhex

|c:/sFieey.bin Startaddress: |0x30000000 Tl m

Index Size Address

| Regionnumber: o= b
Regionmode: [05] L
Key address: 0x8000000
Optonbytes e L oc] concer]

|c:/SFIxfob.csv

Honce file

|€:/sFIxjnance.bin

Image version
1 33
RAM size Continuation token address

Output SFI file

[c:/sFIxfout.sfix Select folder

To generate an SFIx image successfully from the supported input firmware formats, the user
must fill in the interface fields with valid values.

48/130 AN5054 Rev 9

)

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

SFIx GUI tab fields

Firmware files: The user needs to add the input firmware files with the “Add” button. If the
file is valid, it is appended to the “input firmware files “list, otherwise an error message box
appears notifying the user that either the file could not be opened, or the file is not valid.
Clicking on “input firmware file* causes information related information to appear in the
“Firmware information” section (Figure 34).

Figure 34. Firmware parsing example

{54 STM32 Trusted Package Creator - [m] e

File Edit Options Help " I te.augmented

SF1 SFIx 55P 'WB SIGH SMI HSM

SFIx information

Qverview

i
Add
Remove
External firmware file
N e File name Type Size Region number | Regionmode | Key address
offd partlhes | Intel Hex 00 00 0xB000000
M

|c:/sF1xjotfd_key_areas.kesv

Encryption key file

[c:/sF1efey.bin

Nonce file

[c:/sFIxjnonce.bin

Option bytes file

[c:/5F1xjob.csv

Image version
1 33

RAM size

Output SFI file

| sFijout.sfix Select folder

”

As is the case for the SFI use case, once all fields are filled in properly, the “Generate SFix
button becomes enabled. The user can generate the SFIx file by a single click on it. If
everything goes well, a message box indicating successful generation appears (Figure 35:
SFIx successful generation in GUI mode example) and information about the generated
SFIx file is displayed in the SFIx information section.

3

AN5054 Rev 9 49/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 35. SFIx successful generation in GUI mode example

{$h STM32 Trusted Package Creator — O *

File Edit Options Help ‘,’ e

5F1 SFIx 55p WB SIGH SMI HSM

Inter“al ﬁrmwa'e ﬁ‘S

I D firmware.hex Add
Remove
Overview
External firmware files
File name Size Image version | Internal segme
I D External.hex Add
Remove

Key area file
IC:!‘SFIfoey_areas.kcsv £ Success x

Encryption key file SFlx successfully created

Type Address

C:/fSFI i
|cs/sFixkey.bin [ok 0xB010000

Nonce file] K ey 00
Jc:/sFixfnonce.bin [open | 3 Pause 328 0x3010000

Option bytes file 4 Resume 32B 0x8010000
|c:fsFIxjob.csv m External

Image version & Pause 32B OxB010020
|1 33

RAM size | Continuation token address |0x08010000 Configuration

P; SFIx file
Qutput SFIx file arse
Browse
IC:!‘SFIxfout.sﬁx Select folder I _
50/130 AN5054 Rev 9 Kys

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.3 SMI generation using STPC in GUIl mode

Figure 36 shows the graphical user interface tab corresponding to SMI generation.

Figure 36. SMI generation Tab

r ™Y
{3}, STM32 Trusted Package Creator = (= g

File Edit Options Help ‘ , I S
e,

[__oven_ NE O
Encryption key file File name
ELF Machine
Nonce file i
Size LI
| [__oven RIS
Security version file Index Name Type Size |
i
Section to encrypt
Output SMI file
Select folder
Output clear ELF file
K I »
Select folder —I

To generate an SMI image successfully from an EIf file, the user must fill in the interface
fields with valid values.

3

AN5054 Rev 9 51/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Note:

52/130

SMI GUI tab fields

Elf file:
In this case the input file can only be an elf file.

If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears notifying the user that either the file could not be opened or
the file is not valid.

Encryption key and nonce file:

As for SFI, the encryption key and nonce file are selected in the same way as the EIf
file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for nonce
file).

Security version file:

The security version file is used for the same purpose as explained in the CLI section.
The security version file size must be 16 bytes.

Section:

This is a section list that can be used to select the name of the section to be encrypted.
Output files:

Sets the folder path into which the SMI image and its clear part are to be created. This
is done by entering the folder path (absolute or relative) or by using the “Select folder”
button.

For both output fields, when using the “Select folder” button, a name is suggested
automatically. This can be kept or changed.

‘Generate SMI’ button:

When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.

A message box informing the user that generation was successful must appear
(Figure 37: SMI successful generation in GUI mode example), with additional
information about the generated SMI file displayed in the ‘SMI information’ section. In
the case of invalid input data, an error message box appears instead.

3

AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 37. SMI successful generation in GUI mode example

|1

{43, STM32 Trusted Package Creator =@ =

File Edit Options Help ‘,’ ;

=.augmented

ELF file ELF information SMI information

kkage_Creahor_v1.0.Zﬂnput,.’SMIIgoodfMDK—ARM]FIR_moduIe.axf m Overview

Encryption key file Original file name | FIR_module.smi

LPad(age_Creahor_v1.0.Zﬂnput,.’SMIIgoodfhest_ﬁrmware_key.bin blumberot files .

£}, Information s3] 164844 k8

— 0x8080000 =
. SMI successfully created _I

k. * 4

Nonce file

lVISZ_Trushed_Pad(age_Creahor_v 1.0.2{Input/SMIfgood /i

Security version file

IsJSTMSZ_Trushed_Pad@ge_Creator_v 1.0.2/Input/SMIgood fsvFile

Section to encrypt
IER_PCROP = I

Output SMI file

ITSTM32_Trushed_Pad<age_Creahor_v 1.0.2foutput/FIR_module.smi B2 S80S

Output clear ELF file

h_Trusted_Pad(age_Creamr_v1.U.Zfoun:luthIR_moduIe_dear.axf

Generate SMI

3

AN5054 Rev 9 53/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.74 SSP generation using STPC in GUI mode

Figure 38 shows the SSP generation graphical user interface tab.

Figure 38. SSP generation tab

{3 STM32 Trusted Pac kage Creator - O x

File Edit Options Help

e
Overview

Secrets file

C:/SSP_Input/sacrets/148bytes_secrets.bin

Encryption key file

[c-/55P_tnput/aes_key/key.bin

OEM public key file

| C2/55P_Input/OEMPUblicKey.pem

Nonce file

'C:/SSP_Input/aes_key/iv.bin

Dutput SSP file

f
ERER

|C:,|'ssp,’0u1.55p

To generate an SSP image successfully from the supported firmware input formats, the user
must fill in the interface fields with valid values.

SSP GUI tab fields
RMA Lock: Unlock password, hexadecimal value from 0x0000 to Ox7FFF
RMA Relock: Relock password, hexadecimal value from 0x0000 to 0x7FFF

Secrets file: Binary file of size 148 bytes to be encrypted. Can be selected by entering file
path (absolute or relative), or by selection with the Open button.

Encryption key and nonce files: The encryption key and nonce file can be selected by
entering their paths (absolute or relative), or by selection with the Open button. Notice that
sizes must be respected (16 bytes for the key and 12 bytes for nonce).

OEM public key file: 178-byte .pem file.

Output SSP file: Select the output directory by entering the SSP file name to be created
with a .ssp extension.

54/130 AN5054 Rev 9 ‘Yl

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

When all fields are properly filled in, the user can start the generation by clicking on the
Generate SSP button (the button becomes active).

Figure 39. SSP output information

Secrets file information SSP information

Overview

File name Type Size

out.ssp

When the generation is complete, SSP information is available in the SSP overview section.
e File name: SSP output file name.

e Type: SSP format.

e Size: indicates the generated file size including all data fields.

AN5054 Rev 9 55/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.5 Settings

The STPC allows generation to be performed respecting some user-defined settings. The
settings dialog are displayed by clicking the settings icon (see Figure 40) in the tool bar or in
the menu bar by choosing: Options -> settings.

Figure 40. Settings icon and Settings dialog box

{8}, STM32 Trusted Package Creator E=REc X

File Edit Options Help ‘,’ I

Firmware files Firmware information SFI information
W |

Overview
Remove

File name tests.axf

Encryption key file

Type ELF
M32TrustedPackageCreatorInput/SFIfgood test_firmware_key.bin m
Size 815887 KB
Nonce file
Segments
Jfprojects [STM32ZTrustedPackageCreator /Input/SFI/good nonce. bin m
Index Size Address
Cubunlivicsjae 1 844 B 0:8000000
‘projects/SFMI-PreparationToolv, 2.0_test1/Input/SFI /good job. cav m 2 9884 B 0+8030000
SMI files (Only for combined case)
|| STM32F4-DISCO0.smi [add | i
Remove

Image version

24 =

RAM size Continuation token address
Output SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

Settings can be performed on:
e Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments in order to merge them and reduce the number of segments. The user might
choose to perform padding either with OxFF (default value) or 0x00.

e Settings file:

When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and fields contents.

e Logfile:
When checked, a log file is generated in the selected path.

3

56/130 AN5054 Rev 9

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.6 Log generation

A log can be visualized by clicking the “log” icon in the tool bar or menu bar: Options-> log.

Figure 41 shows a log example:

Figure 41. Log example

{23 STM32 Trusted Package Creator

log icon r
'I life.augmented

T e) T
09:15:06:674 SFI preparation started

ELF file 09:15:06: 788 Area 1 prepared with size 844 : firmware area I SMI information
09:15:06: 788 Area 2 prepared with size 9884 : firmware area

09:15:06: 788 Area 3 prepared with size 36 : option bytes area
|ckage_Creator_v1.0.2/Input/SMI/good/MDH | | 05:15:06:788 SFT header prepared
e 09:15:06: 788 SFI preparation finished

'7:531 SMI preparation started

18
Encryption key file 10:18:27:531 1 5MI to prepare mi
10:18:27:532 SMI data prepared with size 1640
10:18:27:532 SMI header prepared
10:18:27:532 SMI preparation finished

LPad(age_Creahor_vl.O.ZﬂnputhMIfgood t

Nonce file

lVISZ_Trushed_Pad(age_Creator_v 1.0.2/Inp

Security version file

IsfSTMSZ_Trushed_Padage_Creahor_v 1.0.2

=

Section to encrypt

ER_PCROP |

Output SMI file

l"STMSZ_Trushed_Pad(age_Creamr_v1.0.2} i

Output clear ELF file

l2_Tru5hed_Pad<age_Creahor_v1.0.Zfouu:lut,.fFIR_moduIe_dear.axf

Generate SMI

3

AN5054 Rev 9 57/130

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.7 SFI and SMil file checking function

This function checks the validity and information parsing of an SFI or SMI file.

It is accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 42 shows a check SFI example:

Figure 42. Check SFl file example

Firmware identifier HSM information
| Firmware ID =
Max counter
Encryption key file HSM status ﬂ
| |
|
Monce file
|
I Maximum counter
0 EI:
[Set HSM to operational state (HSM will be locked)
Program HSM
58/130 AN5054 Rev 9 Kys

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.1

41.1

41.2

3

Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART, USB,
SPI, CAN, I2C, JTAG and SWD interfaces. So far, programming via JTAG/SWD is only
supported with an ST-LINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of SFl and
SMI images using UART, USB, SPI, JTAG/SWD interfaces, and SFIx using only JTAG/SWD
interfaces.The tool is currently available only in CLI mode, it is available free of charge from
www.st.com.

Chip certificate authenticity check and license mechanism

The SFI solution was implemented to provide a practical level of IP protection chain from the
firmware development up to Flashing the device, and to attain this objective, security assets
are used, specifically device authentication and license mechanisms.

Device authentication

The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate this
public key in an asymmetric transfer: the certificate is the public key signed by a Certificate
Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attacker who could substitute the public
key with their own key.

License mechanism

One important secure Flashing feature is the ability of the firmware provider to control the
number of chips that can be programmed. This is where the concept of licenses comes in to
play. The license is an encrypted version of the firmware key, unique to each device and
session. It is computed by a derivation function from the device’s own key and a random
number chosen from each session (the nonce).

Using this license mechanism, the OEM is able to control the number of devices to be
programmed, since each license is specific to a unique chip, identified by its public key.

License mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a firmware key
and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip identifier to
the provider server, HSM or any provider license generator tool, which returns a license for
the identified chip. The license contains the encrypted firmware key, and only this chip can
decrypt it.

AN5054 Rev 9 59/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

License distribution

There are many possible ways for the firmware provider to generate and distribute licenses:

e Server based: an Internet server can be set up, and when a customer needs to Flash
the firmware on to a chip, they connect to the server which generates a license for this
chip.

e HSM based: Hardware security modules can be built, one of which is installed on the
programming house production line.

e Licenses can be generated in advance (but the firmware provider must know which
chips to generate licenses for).

There is no STMicroelectronics secret involved in license generation, so each firmware
provider is free to choose their preferred method.

ST offers an SFI solution based on smartcard HSMs as a license distribution tool, which can
be used in programming houses.

HSM programming by OEM for license distribution

Before an OEM delivers an HSM to a programming house for deployment as a license
generation tool for programming of relevant STM32 devices, some customization of the
HSM must be done first.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated API is available for HSM personalization and
provisioning.

This data is as follows:

e The counter: the counter is set to a maximum value that corresponds to the maximum
number of licenses that could be delivered by the HSM. It aims to prevent over-
programming.

It is decremented with each license delivered by the HSM.
No more licenses are delivered by the HSM once the counter is equal to zero.

The maximum counter value must not exceed a maximum predefined value, which
depends on the HSM used.

e The firmware key: the key size is 32 bytes. It is composed of two fields: the
initialization vector field (IV) and the key field, which are used for AES128-GCM
firmware encryption.

Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).

Both fields must remain secret; that's why there are encrypted before being sent to the
chip.
The key and IV remains the same for all licenses for a given piece of firmware.

However, they must be different for different firmware or different versions of the same
firmware.

e The firmware identifier: allows the correct HSM to be identified for a given firmware.

e The personalization data: this is specific to each MCU and delivered inside TPC
directory. More info about personalization data in Section 5.3.4: Performing HSM
programming for license generation using STPC (CLI mode).

3

60/130 AN5054 Rev 9

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM to
guarantee his data confidentiality and privacy.

ST provides the tools needed to support SFI/SFIx via HSM. In fact, HSM programming is
supported by the STM32 Trusted Package Creator tool. Figure 43 shows the GUI for HSM
programming in STPC tool.

Figure 43. HSM programming GUI in the STPC tool

{2 STM32 Trusted Package Creator -] x
File Edit Options Help ‘,’ i
=] Firmware 1D
[Version

Encryption key file
[c:fsPixpey.bin
|C:/SFIxfr\or\ce.b m
During SFl install, STM32CubeProgrammer communicates with the device to get the chip
certificate, upload it into the HSM to request the license. Once the license is generated by
the HSM, it gives it back to the STM32 device.
4.2 Secure programming using a bootloader interface
4.2.1 Secure firmware installation using a bootloader interface flow
The production equipment on the OEM-CM production line needs to be equipped with a
Flashing tool (FT) supporting the programming of SFl images. The Flashing tool to be used
on OEM-CM production line is STM32CubeProgrammer, which is given the data blob
prepared by the STPC, containing the image header and the encrypted image data blob.
Note: The SFl install is performed successfully only if a valid license is given to the Flashing tool.

3

STM32CubeProgrammer supports secure firmware install for such devices as well as all
STM32H7, STM32L4, STM32L5, STM32WL, STM32U5 and STM32MP devices available
so far.

For more details on SFI over these STM32 devices refer to AN4992 [1]. This document is
available on www.st.com.

AN5054 Rev 9 61/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

62/130

devices

The general flow of the secure firmware installation using a bootloader interface on a chip
for H7 and L4 secure devices is shown respectively in Figure 44 and Figure 45 below.

Figure 44. Secure programming via STM32CubeProgrammer overview on STM32H7

HOST

STM32CubeProgrammer

USART, SPI, USB

STM32

| UsaRT 1-» 4]

= FLASH
______ [p]
TSPl e g
——————— Q

g
—aian—— 1
-2

devices

Figure 45. Secure programming via STM32CubeProgrammer overview on STM32L4

USART, SPI

—_—_—————————

[

Host

[5TM32CubeProgrammey

—_—_—————————

STM32L4

Flash memory

- Secure

bootloader

A

AN5054 Rev 9

3

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.2.2

Note:

423

3

Secure Module installation using a bootloader interface flow

As explained in Section 3.4: SMI generation process, outputs are generated for this
particular use case:

e The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections
except the code section extracted by the STPC to prepare the SMI module.

e The encrypted SMI module, which contains the protected code.

The first part is programmed into the chip using any means (JTAG Flasher, UART
bootloader and so on, as for any regular ELF/AXF file.

The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer which places them in RAM.

The SMI has to be invoked via the secure bootloader.

The SMI install is performed successfully only if the adequate license is given to the
Flashing tool.

STM32CubeProgrammer for SFl using a bootloader interface

For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only mode so-
far available) by launching the following command:

-sfi, --sfi
Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile_path>

[<protocol=Ptype>] : Protocol type to be used : static/live
Only static protocol is supported so far

Default value static
<file_path> : Path of sfi file to be programmed

[hsm=0]1] : Set user option for HSM use value in
{0 (do not use HSM), 1 (use HSM)}
Default value : hsm =0

<lic_path|slot=slotID> : Path to the SFl license file (if hsm = 0)
or reader slot ID if HSM is used (hsm = 1)

[<licMod_path>|slot=slotID] : List of the integrated SMI license files paths
If hsm = 1, the user must provide the Slot ID parameter.

If hsm = 0, the user must provide the license path file that can be generated separately
using the following command line, provided an HSM card is available:

-hsmgetlicense

During th SFI process, the generated license can be used multiple times with the same
MCU, without the need of an HSM card.

AN5054 Rev 9 63/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.2.4

64/130

Example using UART bootloader interface:

STM32 Programmer.exe -c port=COM1l br=115200 -sfi "C:\SFI\data.sfi"
hsm=1 "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated Flash
memory address.

STM32CubeProgrammer for SMI via a bootloader interface

For SMI programming, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-smi, --smi
Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

<protocol=Ptype> : Protocol type to be used : static/live
Only static protocol is supported so far
Default value static

<file_path> : Path of smi file to be programmed

[hsm=0|1] : Set user option for HSM use
value in {0 (do not use HSM), 1 (use HSM)}
Default value: hsm=0

[<address>] : Destination address of the smi module
needed only for relocatable SMI

<lic_path|slot=slotID> : Path to the SMI license file (if hsm=0) or reader
slot ID if HSM is used (hsm=1)

Example using UART bootloader interface:

STM32 Programmer.exe -c port=COM1 br=115200 -sfi "C:\SFI\data.sfi"
hsm=0 "C:\SFI\license.bin"

This command allows programming of the SMI specified file “data.smi” into a dedicated
PCROPed area.

3

AN5054 Rev 9

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.2.5

Note:

3

STM32CubeProgrammer for SSP via a bootloader interface

In this part the STM32CubeProgrammer tool is used in CLI mode (the only mode available
so far for secure programming) to program the SSP image already created with STM32
Trusted Package Creator. STM32CubeProgrammer supports communication with ST HSMs
(hardware secure modules based on Smart Card) to generate a license for the connected
STM32 MPU device during SSP install.

The SSP flow can be performed using both USB or UART interfaces (not the STLINK
interface).

STM32CubeProgrammer exports a simple SSP command with some options to perform the
SSP programming flow.

-Ssp, --SSp
Description: Program an SSP file
Syntax: -ssp <ssp_file_path> <ssp-fw-path> <hsm=0|1> <license_path|slot=slotID>
<ssp_file_path> : SSP file path to be programmed, bin or ssp extensions
<ssp-fw-path> : SSP signed firmware path
<hsm=0|1> : Set user option for HSM use (do not use HSM / use HSM)
Default value : hsm=0
<license_path|slot=slotID> :Path to the license file (if hsm=0)
Reader slot ID if HSM is used (if hsm=1)

Example using USB DFU bootloader interface:

STM32_ Programmer_ CLI.exe -c port=usbl -ssp “out.ssp” “tf-a-ssp-
stm32mpl57f-dk2-trusted.stm32” hsm=1 slot=1

All SSP traces are shown on the output console.

AN5054 Rev 9 65/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

Figure 46. SSP install success

tequesting Chip Certificate...

requesting license for the current S5TM32 device

Init Communication ...

ldm_LoadModule(): loading module “stlibpll_SAM.d11" ..
ldm LoadModule({WIN32): OK loading library "stlibpll SAM.d11": @xc2eoeeee ...
_GetFunctionlist() returned @x@E000088, g pFunctionlList=8x62062FDE

Dpening :

Closing session with reader slot

Closing communication with HSM. ..

Starting Firmware Install operation...

Writing blob

gtach command executed

If there is any faulty input, the SSP process is aborted and an error message is displayed to
indicate the root cause of the issue.

66/130 AN5054 Rev 9

3

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.2.6

4.3

4.3.1

3

STM32CubeProgrammer get certificate via a bootloader interface

To get the chip certificate, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-gc, --getcertificate

Syntax: —gc <file_path>

Example using UART bootloader interface:

STM32 Programmer.exe -c port=COMl -gc "C:\Demo_ certificate.bin"

This command allows the chip Certificate to be read and uploaded into the specified file:
"C:\Demo__certificate.bin"

The execution results are shown in Figure 47.

Figure 47. Example of getcertificate command execution using UART interface
esting Chip Certificate :

: .par-ity = none, baudrate = 115200, data-bit = 8,
stop-hit = 1.000000, flow-control = off

Loader version: 3

Certificate File . C:\Demo_certificate.bin
i d]_r(_':dd!.r ex . It be overwritten.

ificate.bin
\Demo_certificate.bin finished successfully

Secure programming using JTAG/SWD interface

SFI/SFIx programming using JTAG/SWD flow

It is also possible to program the SFI/SFIx image using the JTAG interface. Here the read
out protection mechanism (RDP level 1) cannot be used during SFI/SFIx as user Flash
memory is not accessible after firmware chunks are written to RAM through the JTAG
interface.

The whole process happens in RDP level 0. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFI via debug interface is currently supported for STM32H753xl, STM32H7A3/7B3 and
STM32H7B0, STM32H723/333 and STM32H725/335, and STM32L5 devices.

SFIx via debug interface is currently supported for STM32H7A3/7B3 and STM32H7B0,
STM32H723/733, STM32L5 and STM32U5 devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the maximum
area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits into the
allowed RAM size.

An SFI/SFIx multi install is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

AN5054 Rev 9 67/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

68/130

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area. In the case of STM32L5 and STM32U5 devices, STM32CubeProgrammer

sets the RDP Level on 0.5.
The SFI flow for programming through JTAG is described in Figure 48.

Figure 48. SFl programming by JTAG/SWD flow overview

(monolithic SFl image example)

=| Preparing programmation Ir

3 write licensa 1o RAM

L 4

6 wmita imags haader io RAK

op A [for each areas in image]
¥ wiite area headar to RAM

g

8 wiite area payload to RAM

9 waite global headar with links to all the parls fo RAM
*

12 authenbicale aréa haades

—

[a—

II Flashing areas r'
| 10 ue!:r]-pl heanse
-
| 11 authenticate image headar
»)
lowp A ITor each aress in global hesder]

13 decrypt ar=a payload and flash i

14 wan urlil n's fnished

{ SFI saicoess }

AN5054 Rev 9

3

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.3.2

3

SMI programming through JTAG/SWD flow

For SMI programming through JTAG/SWD the process flow is similar to that using the
UART bootloader.

This means that the whole SMI image and its corresponding license must be transferred to
RAM before starting. Then, there are two options to access SMI services through JTAG:

e write a small program in RAM that calls the public APl (API details are available under
non-disclosure agreement)

e use the secure API directly.

The essential steps of the SMI programming by JTAG flow are described in Figure 49: SMI
programming by JTAG flow overview.

AN5054 Rev 9 69/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

70/130

Figure 49. SMI programming by JTAG flow overview

L17] |

args = 2| Set write mode
for SMI

— .
@) exit
failure

address = 0x24050000

Write license in RAM
No exit
failure
es

Is img len No

multiple of 4
add padding

bytes

-]

mod_dest_add = write module img in RAM |
license_dest+len(License)

Is wiite
memaory

No
Abort n exit
!/J failure

args= license_add, tart smi reset+decrypt+authenticate+install
img_hdr_add. starsmi | protected module into PCROP
mod_daia_add area

No exit
failure
yes
get security state
Mo
exit failure
ES

exit success

AN5054 Rev 9

)

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

4.3.3

Note:

3

STM32CubeProgrammer for secure programming using JTAG/SWD

The only modification in the STM32CubeProgrammer secure command syntax is the
connection type which must be set to “jtag” or “swd”, otherwise all secure programming
syntax for supported commands is identical.

Using a debug connection “HOTPLUG” mode must be used with the connect command.
Example “getcertificate” command using JTAG

STM32 Programmer.exe -c port=jtag mode=HOTPLUG -gc
testJTAG Certif.bin

The result of this example is shown in Figure 50.

Figure 50. Example of getcertificate command using JTAG

1are version : U2J2856
7008 KH=z=
Hot Plug

Ceptificate File = testJTAG_Certif .bin

Pque" ing Chip (‘31 tificate using debuy interface...
G A (sfully

if .bhin
JIAG_Certif.bin finished

ime Elﬂp"fd dlu :r.ng the getcertificate operation is: BB:B0:88.

Example “smi” command using SWD

-c¢ port=swd mode=HOTPLUG -smi protocol=static
"RefSMI MDK/FIR module.smi" "RefSMI MDK/licenseSMI.bin" -vb 3 -log

AN5054 Rev 9 71/130

Encrypted firmware (SFI/SFix)/ module (SMI) programming with STM32CubeProgrammer

44

72/130

Secure programming using Bootloader interface
(UART/I2C/SPI/USB)

It is also possible to program the SFI/SFIx image using the Bootloader interface
(UART/I12C/SPI/USB). FDCAN is not supported by STM32CubeProgrammer since it not
managed by ST-Link v3.

The whole process happens in RDP level 0.5. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFI via the Bootloader interface (UART/I2C/SPI/USB) is currently supported for STM32L5
devices. It needs to load an external loader using the -elbl command in the SRAM.

For STM32L5 devices, 1 Mbyte of SRAM is available, with 512 Kbytes in main SRAM. This
means that the maximum image size supported is 1 Mbyte, and the maximum area size is
512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits into the
allowed SRAM size.

An SFI/SFIx multi install is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

SFIl example

STM32 Programmer CLI.exe -c port=usbl -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc_signed RSSe sfi bl.bin

SFIx example

STM32_ Programmer CLI.exe -c port=usbl -elbl
MX25LM51245G STM32L552E-EVAL-SFIX-BL.stldr -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc_signed RSSe sfi bl.bin

3

AN5054 Rev 9

Example of SFl programming scenario

5.1

5.2

5.3

5.3.1

5.3.2

Note:

3

Example of SFI programming scenario

Scenario overview

The actual user application to be installed on the STM32H753xI (or STM32L5) device
makes “print £” packets appear in serial terminals. The application was encrypted using
the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.

Hardware and software environment

For successful SFI programming, some and SW prerequisites apply:

e STM32H743I-EVAL board

e STM32H753x| with bootloader and RSS programmed

e RS232 cable for SFI programming via UART

e Micro-USB for debug connection

e PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions

e STM32TrustPackageCreator v0.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Perform the SFI generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit AES
encryption key and a 96-bit nonce are also provided to the tool. They are available in the
“SFI_ImagePreparation” directory.

An “sfi”image is then generated (out.sfi).

STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin€\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Figure 51: STPC GUI during SFI generation shows the STPC GUI during the SFI
generation.

AN5054 Rev 9 73/130

Example of SFl programming scenario

Figure 51. STPC GUI during SFI generation

{£% STM32 Trusted Package Creator

File Edit Options

Help

Firmware information

out_totol.sfi

Firmware files
’u [add]
Overview
Remove
File name
Encryption key file

Size

Ij_Package_Creator_v 1.0. 2/Input/SFIfgoodtest_firmware_ke

Nonce file

I'MSZ_Trusbed_Padege_Creabor_v 1.0.2{Input/SFI/goodfnon

Option bytes file

IfSTMSZ_Trushed_Pad(age_Creahor_v 1.0, 2{Input/SFI /good

10.627 KB

{4 Success g 01

.y SFI successfully created

SMI files (Only for combined case)

Size Address
844 B (0x8000000
9884 B 0x8030000
e Configuration BB (%]

Image version

12 =

RAM size I Continuation token address

Output SFI file

lloadsJ‘STM32_Trusted_Pad<age_Creator_v 1.0.2foutputfout_totol, EEE&a0 TS

Generate SFI

74/130

AN5054 Rev 9

3

Example of SFl programming scenario

5.3.3

3

Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 52 shows an example for HSM programming by OEM to be used for SFI install.
The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 2, and is also valid for version 1 when the 'Version’ field is
set accordingly. The HSM version can be identified before performing the programming
operation by clicking the Refresh button to make the version number appear in the ‘Version’
field.

The STM32 Trusted Package Creator tool provides all personalization package files ready
to be used on SFI/SFIx and SSP flows. To get all the supported packages, go to the
PersoPackages directory residing in the tool’s install path.

Each file name starts with a number, which is the product ID of the device. You must select
the correct one.
To obtain the appropriate personalization data, you first need to obtain the product ID:

e Use the STM32CubeProgrammer tool to launch a Get Certificate command to
generate a certificate file containing some chip security information, bearing in mind
that this command is only recognized only for devices that support the security feature:

STM32_ Programmer CLI -c port=swd -gc "certificate.bin"

A file named “certificate.bin” is created in the same path of the
STM32CubeProgrammer executable file.

e Open the certificate file with a text editor tool, then read the 8 characters from the
header which represents the product ID.

For example:
— When using STM32H7 device, you would find: 45002001.
— When using STM32L4 device, you would find: 46201002.
Once you have the product ID, you can differentiate the personalization package to be used
on the HSM provisioning step respecting the following naming convention:
ProdcutlD_FlowType_LicenseVersion_SecurityVersion.enc.bin

For example: 47201003_SFI._01000000_00000000.enc.bin

Based on this name we can retrieve the associated information:

e Product ID = 47201003 for STM32L5 devices (0x472 as device ID).
e Type = SFI

e License version = 01 (Big Endian)

e Security version =0

AN5054 Rev 9 75/130

Example of SFl programming scenario

Figure 52. Example of HSM programming using STPC GUI

= O X

'E'.', STM32 Trusted Package Creator

File Edit Options Help ‘,’ T
lile.

SFI SFIx SMI HSM
HSM card index HSM information
E Firmware 1D | HSMw2_SLOT_1 -
Max counter | 1000
Firmuare identifier HSM status | OPERATIONAL_STATE
HSMw2_SLOT_1 Version 2
Type SFI LI
ey e =
|2/ TrustedFies/key.bin
Honce fila

IC:ﬁrushedFllEfnonoe.b'ln

Personalization data file

IC:HrushedHIEfenc_Sl'_Persn_l_‘i.b'ln

Maximum counter

Program HSM

Note: When using HSM version1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise an error message is displayed.

)

76/130 AN5054 Rev 9

Example of SFl programming scenario

5.34 Performing HSM programming for license generation using STPC
(CLI mode)
STM32 Trusted Package Creator provides CLI commands to program HSM cards. In order
to configure the HSM before programming, the user must provide the mandatory inputs by
using the specific options.
Example of HSM version 1 provisioning
STM32TrustedPackageCreator CLI -hsm -1 1 -k "C:\TrustedFiles\key.bin" -n
"C:\TrustedFiles\nonce.bin" -id HSMvl SLOT_ 1-mc2000
e -i:select the slot ID
e -k set the encryption key file path
e -n: set the nonce file path
e -id: set the firmware identifier
e -mc: set the maximum number of licenses.
HSMv2 allows users to personalize their own HSM to achieve, for example, compatibility
with the desired STM32 device. This solution covers the limitation of HSMv1 (static
behavior), so it is possible to support new devices that are not available on HSMv1.
To perform this operation the user first needs to know the product ID of the device. This
information is provided in the STM32 device certificate, which can be obtained with the
following command:
STM32_ Programmer.exe -c port=COM1 -gc "C:\SFI\Certificate.bin"
After getting the binary file of the device certificate, is necessary to open this file using a
HEX editor application. Once these steps are done the user can read the product ID.
Figure 53. Example product ID
“00000000 | 00 01 02 03 02 05 06 07 08 09 0a Ob Oc 0d Oe OFf
00000000 39 37 30 31 30 30 35 07 d7 €0 65 98 2Za fe 36 49701005.= e"*pé
00000010 | 29 ca 59 £3 d5 29 Sb 99 £7 a3 4e c0 bb 15 5f dl JEYSD) »™2eNis. W
00000020 | 1d 82 £4 8a %a 13 2d d3 ¢ 2a %a 02 c0 90 db 10 . B55.-0E*5. A0,
00000030 | fc 2d 28 d% c% 77 bc 4c ba 38 S5b 15 e5 b0 B8d bd - (UEwHL°8[.3°
00000040 | d0 4d c3 4a e9 dl 24 6b a8 fc 3f 51 af 42 41 dd BMAJENSk @20 BAY
00000050 | be b3 =4 bb 77 48 14 fa 4b dé 3b bk 67 44 o5 al % d»wH.aKD:»gDi;
00000060 | 63 ca 76 6b db a3 80 cf e0 61 £3 01 07 05 dd 6c cEvkUe€lazas...T1
00000070 | 74 £6 29 23 17 8f bd &7 c©S ckb 3a Sc Os Shb 58 a3 td)#. =chAE:\.[Xo
00000080 | 8c dc 8d 13 97 le ab 52 € .—. <R
00000090

3

The product ID of the STM32WL used is: 49701005

In the second step the user provisions their own HSMv2 by programming it using STPC.
The personalization data file .bin can be found under "..\bin\PersoPackages".

AN5054 Rev 9 77/130

Example of SFl programming scenario

Note:

78/130

Example of HSM version 2 provisioning

A new option [-pd] must be inserted to include the personalization data:

STM32TrustedPackageCreator CLI -hsm -1 1 -k "C:\TrustedFiles\key.bin" -n
"C:\TrustedFiles\nonce.bin" -id HSMv2 SLOT 2 -mc 2000 -pd
"C:\TrustedFiles\enc_ ST Perso L5.bin"

e -pd: Set the personalization data file path.
To obtain the appropriate personalization data file and for further information, refer to

Section 5.3.4: Performing HSM programming for license generation using STPC (CLI
mode).

A green message display indicates that the programming operation succeeded, otherwise a
red error message is displayed.

If the HSM is already programmed and there is a new attempt to reprogram it, an error
message being displayed to indicate that the operation failed and the HSM is locked.

HSM v1 supports a list of limited number of STM32 devices such as STM32L4, STM32H?7,
STM32L5, and STM32WL.

Example of HSM get information

If the HSM is already programmed or is virgin yet and whatever the version, a get
information command can be used to show state details of the current HSM by using the
command below:

STM32TrustedPackageCreator CLI -hsm -i 1 -info

Figure 54. HSM information in STM32 Trusted Package Creator CLI mode

ldm_LoadModule(): loading module "stlibpll SAM.d11" ...
ldm_LoadModule{WIN32): OK loading library "stlibpll_ SAM.d11": @x71CB@gee ...
C_GetFunctionList() returned ©x86600866, g pFunctionlList-6x71D2F568

I slot 1
SM STATE : OPERATIONAL_STATE
SM FiW IDEMTIFIER : HSMw2_SLOT_2
SM COUNTER : 2808
SM VERSION :@ 2

SM TYPE : SFI

3

AN5054 Rev 9

Example of SFl programming scenario

5.3.5

3

Programming input conditions

Before performing an SFI install make sure that:

Flash memory is erased.
No PCROPed zone is active, otherwise destroy it.
The chip must support security (a security bit must be present in the option bytes).

When using a UART interface the User security bit in option bytes must be enabled

before launching the SFI command. For this, the following STM32CubeProgrammer

command is launched:

— Launch the following command (UART bootloader used => Boot0 pin set to VDD):
-Cc port=COM9 -ob SECURITY=1

When using a UART interface the Boot0O pin must be set to VSS:

— After enabling security (bootO pin set to VDD), a power off/power on is needed
when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

When performing an SFI install using UART bootloader then, no debug interface must

be connected to any USB host. If a debug interface is still connected, disconnect it then

perform a power off/power on before launching the SFl install to avoid any debug
intrusion problem.

Boot0 pin set to VDD When using a debug interface.

A valid license generated for the currently-used chip must be at your disposal, or a
license generation tool to generate the license during SFl install (HSM).

For STM32L5 products, TZEN must be set at 0 (TZEN=0).

AN5054 Rev 9 79/130

Example of SFl programming scenario

5.3.6

Note:

80/130

Perform the SFl install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFl image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFl install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfi" hsm=1 slot=<slot_ids>

In the case of an STM32L5 device the SFl install uses the RSSe and its binary file is located
in the STM32CubeProgrammer bin/RSSe folder.

The STM32CubeProgrammer command is as follows:

STM32 Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfi" hsm=1 slot=<slot_id> -rsse <RSSe paths>

3

AN5054 Rev 9

Example of SFlI programming scenario

3

Figure 55 shows the SFI install via SWD execution and the HSM as license generation tool

in the field.

Figure 55. SFl install success using SWD connection (1)

~LINK SN: B672FF554949677067034831
ST-LINK Firmware version: U2J3IBM1Y
Target voltage: 3.21U
SWD fregquency: 4888 KHz
Connection mode: Hot Plug
Device ID: Bx458

Device name: STM3I2H7xx

Device type: MCU

Device CPU : Cortex—M?7/M4
Protocol Information

8FI File Information

SFI file path : out_EH.sfi
SFI ID = 111
SFI header information
SFI protocol version
SFI total number of areas
SF1 image version
SFI Areas information

Parsing Area 1/3 H
Area type : F
Area size : B44
Area destination address : Bx8BABRBA

Parsing Area 2/3 H

Area type

Area size : 168528

Area destination address : Bx8B3P00PA
Parsing Area 3/3 H

Area type - G

Area size : 36

Area destination address : B

Reading the chip Certificate...

Requesting Chip Certificate using debug interface...
Get Certificate done successfully

Requesting Licesne for firmware with ID = 111
requesting license for the current STHM32 device

Init Communication ...

ldm_LoadModule<?: loading module “stlibpli SAM_d411Y ...

ldm_LoadModule<WIN32>: OK loading library “stlibpll_SAM.d11": Bx5FCARBAA ..

C_GetFunctionList(> returned BxBBBBBOBB. g_pFunctionList=Bx5FCCBAYE
Init Communication with slot 2 Success?

Succeed to generate license for the current 5TM32 device
Closing communication with HSM...

Communication closed with HSM

Succeed to get License for Firmware with ID 111

Starting Firmware Install operation...

Activating security...

Warning: Option Byte: SECURITY. value: Bx1. was not modified.
Harning: Option Bytes are unchanged. Data won’t be downloaded
fActivating security Success

Setting write mode to SFI

Warning: Option Byte: SECURITY. value: Bxl1. was not modified.
Warning: Option Byte: ST_RAM_SIZE, value: Bx3,. was not modified.
Succeed to set write mode for SFI

Starting SFI part 1

Writing license to address Bx24030880
ting Img header to address Bx24831088

Writing areas and areas wrapper...

all areas processed

RS8S process started...

R58 cummaqd execution 0K

AN5054 Rev 9

81/130

Example of SFlI programming scenario

Figure 56. SFl install success using SWD connection (2)

RS5 command execution 0K
Reconnecting. .

ST-LINK SN: 0672FF554949677067034831
ST-LINK Firmware version: UZJ30M1%?
Target voltage: 3.21U

Error: ST-LINK error <DEU_NO_DEUICE>
...pretrying. ..

ST-LINK SH: ©8672FF554949677067034831
ET-LINK Firmuware version: UZJ36M1?
Target voltage: 3_21U

SWD frequency: 4HHH KH=

Connection mode: Hot Plug

Device ID: Bx458

Reconnected ¢

Requesting security state...

SECURITY State Success

SFI SUCCESS!

EFI file out_EH.zfi Install Operation Success

82/130 ANS5054 Rev 9

3

Example of SFl programming scenario for STM32WL

6.1

6.2

6.3

6.3.1

6.3.2

3

Example of SFI programming scenario for STM32WL

Scenario overview

The user application is developed by the OEM and encrypted by STPC. The OEM provides
the following elements to the programming house:

e the encrypted firmware of STM32WL
e HSMv1 or previsioned HSMv2
e STM32CubeProgrammer.

With these inputs the untrusted manufacturer is able to securely program the encrypted
firmware.

Hardware and software environment

For successful SFI programming, the following hardware and software prerequisites apply:
e STM32WL5x board with Bootloader and RSS programmed

e RS232 cable for SFI programming via UART

e Micro-USB for debug connection

e PC running on either Windows or Ubuntu 14 (in both 32-bit and 64-bit versions) or
macOS

e STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer v2.6.0 (or greater) package available from www.st.com
e HSMv1 or HSMv2.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of the user
OEM firmware (already provided in AXF format) using the STM32 Trusted Package Creator
tool.

This is done by adding the following files in the STPC tool:

e OEM firmware

e a .csv file containing option bytes configuration

e a 128-bit AES encryption key

e a 96-bit nonce

AN5054 Rev 9 83/130

Example of SFl programming scenario for STM32WL

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

A programmed HSM card should be insert in the PC, and an “out.sfi” image is then
generated.

Figure 57. STPC GUI showing the STPC GUI during the SFI generation

File Edit Options Help ‘ i
LN W] erten

Eirmcor Mes Firmware mformation
|0 LPUART WakellpFromStop hex m
=
; . i File name outsfi =
Encryplion key file {5 Success e
Size I1ﬂl.11 KB
|CrfestBee key.bin —
o SF successfully created ool weksion [01 _:I
Honce file
Lok] S
[C:_ﬂ:ﬁfﬂtt{nunc:.bh
T Index Type Sere Address
Dption bytes file Hrree |
[Cfs ML fob wi_defautt.cov .
g . I_|_'||1|||_'l||_|r=,|lﬁ|,'||1
SMT files (Onby for combined case) 1
Image version
=
RAM size 5000 Continuation token address ll:l:-ﬁﬂl:l:ltl:l:l
Output 5F1 file oot S N
Fevcomin |

Note: To perform HSM programming for license generation using STPC (GUI mode and CLI
mode) refer to the following sections:

Section 5.3.3: Performing HSM programming for license generation using STPC (GUI
mode)

Section 5.3.4: Performing HSM programming for license generation using STPC (CLI mode)

84/130 AN5054 Rev 9 ‘Yl

Example of SFl programming scenario for STM32WL

6.3.3 Programming input conditions

Before performing an SFI install on STM32WL devices make sure that:

Flash memory is erased

No PCROPed zone is active, otherwise remove it

The chip supports security (a security bit must be present in the option bytes)
The security should be disabled, if activated

The option bytes of the device are set to default values. This step is done by the two
commands given below.

-desurity: this option allows the user to disable security. After executing this command, a
power OFF / power ON should be done.

Example:
STM32_ Programmer CLI.exe -c¢ port=swd mode=hotplug -dsecurity

Figure 58 hows the resulting output on the command line.

Figure 58. Example -dsecurity command-line output

B CoWvindows) System32h cmdexe O X

electromicshSTHI2Cube \STMIZCubePropramaeriv . 6.6 i 32 Programmer CLI.exe -C

STH3IZCuber “OEgraMeer WZ.b.kE

11234333935

3

AN5054 Rev 9 85/130

Example of SFl programming scenario for STM32WL

-setdefaultob: this command allows user to configure option bytes to their default values.
After executing this command, a power OFF/power ON should be done.

Example:
STM32 Programmer CLI.exe -c port=swd mode=hotplug -setdefaultob

Figure 59 shows the resulting output on the command line.

Figure 59. Example -setdefaultob command-line output

= OO Windowsh Sy sbern 32 cmd.exe a =

selectronics\STHIACube)\ STHIZCubeProgrammer,v2 . 6.8 y\bin>5TH32 _Progremner CLI.&xe

6.3.4

Note:

86/130

Perform the SFI install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFl image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFl install.

Using JTAG/SWD
After making sure that all the input conditions are respected, open a cmd terminal and go to

<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_ Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local path>/out.sfi" hsm=1 slot=<slot_ id> -rsse "< RSSe path >"

The RSSe and its binary file is located in the STM32CubeProgrammer bin/RSSe/WL folder.

Figure 60 shows the SFI install via SWD execution.

AN5054 Rev 9 ‘Yl

Example of SFl programming scenario for STM32WL

Figure 60. SFI install via SWD execution command-line output

B Setect e

e’ Syl 10 il cow = O

3

AN5054 Rev 9 87/130

Example of SFI programming scenario for STM32U5

7

71

7.2

7.3

7.3.1

7.3.2

Note:

88/130

Example of SFI programming scenario for STM32U5

Scenario overview

The actual user application to be installed on the STM32U5 device makes “print £”
packets appear in serial terminals. The application was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.

Hardware and software environment

For successful SFI programming, some HW and SW prerequisites apply:

e STM32U5 board with bootloader and RSS programmed

e RS232 cable for SFI programming via UART

e Micro-USB for debug connection

e PC running either on Windows, Ubuntu 14 (64-bit version) or macOS.

e STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer v2.8.0 (or greater) package available from www.st.com

e HSMv2.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of the user
OEM firmware (already provided in AXF format) using the STM32 Trusted Package Creator
tool. This step is done by adding the following files in the STPC tool:

e an OEM firmware

e a.csv file containing option byte configuration

e a128-bit AES encryption key

e a96-bit nonce

STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each

product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bil\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

In addition, a programmed HSM card should be insert in the PC. An “out.sfi” image is then
generated.

AN5054 Rev 9 ‘Yl

Example of SFl programming scenario for STM32U5

Figure 61 shows STPC GUI during SFI generation.

Figure 61. STPC GUI during the SFI generation

{84 STM32 Trusted Package Creator

File Edit Options Help

SFI SFIx Ssp ‘WB SIGN

SMI

- O X

"I lile.augmented

HSM

B [ada]
e Overview
File name out.sfi ﬂ
Size 578 KB
hd
Encryption key file Segments
|c:/5TM32US Rey.bin — TR [it | Ty, Size Address
{3} Success X
Nonce file (0x8000000
|c:/5TM32U5 fnonce. bin o SFI successfully created 0x0
Option bytes file “
IC:,’EFME‘.ZUanb_hkls_bkzr\s_tzen_rdp_n_s‘csv
SMI files (Only for combined case)
[ada]
Image version
0 33
RAM size I ‘Continuation token address I
Parse SFI file
Output SFI file
e '
Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),
refer to Section 5.3.3: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.4: Performing HSM programming for license generation using
STPC (CLI mode).
7.3.3 Programming input conditions

Before performing an SFl install on STM32U5 devices, make sure that:

e The Flash memory is erased.

e No WRP zone is active, otherwise destroy it.

e The chip supports security (a security bit must be present in the option bytes).

3

If the security is activated, disable it.

AN5054 Rev 9

89/130

Example of SFI programming scenario for STM32U5

7.3.4

Note:

90/130

Perform the SFl install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so far
available for secure programming) to program the SFI image “out.sfi” already created in
previous section.

STM32CubeProgrammer supports communication with ST HSMs (hardware secure
modules based on smartcards) to generate a license for the connected STM32 device
during the SFl install process.

Using JTAG/SWD

First make sure that all the input conditions are respected, then open a cmd terminal, go to
<STM32CubeProgrammer_package path>/bin and launch the following
STM32CubeProgrammer command:

STM32_Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe path >"

The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/U5 folder.

Figure 62 and Figure 63 show the STM32CubeProgrammer command used for the SFI
install process via SWD execution.

3

AN5054 Rev 9

Example of SFI programming scenario for STM32U5

Figure 62. SFIl install via SWD execution (1)

Reconnecting...
Reconnected !

requesting license for the current STM32 device

Init Communication ..

: OK loading library "stli 1_SAM.d11": ex

() returned @x00000008, g pFunctionlist-@x@5A32FD8

g session with solt ID 1...

Closing communication with HSM...

Starting Firmware Install operation...

: Option CWM1_PEND, value: @x7F, was not modified.
SECH STRT, wal 0x@, was not modified.

Data won't be downloaded
2_PEND, value: @x7F, was not modified.
RT, value: @ not modified.

ged, Data won't be downloaded

Memory Programming ...
Opening and parsing file: c_sign RSSe_sfi_bl_cut2.bin
:en ¢

File download complete
Time elapsed during download operation: 00:00:00.200

3

AN5054 Rev 9

91/130

Example of SFI programming scenario for STM32U5

Figure 63. SFl install via SWD execution - (2)

Reconnecting...
Reconnected !

requesting license for the current STM32 device
Init Communication ...

ldm_LoadModule(): loading module "stlibpl M:d1a R
ldm_LoadModule (WIN32): OK loading library 1libp11_SAM.d11":
C_GetFunctionlist() returned Gx00! 0@, g_pFunctionlList=0x

Opening session with solt ID 1...

on with reader

Closing communication with HSM...

Starting Firmware Install operation...

Warning: Option WM1_PEND, value: @x7 was not modifie
MWarning: Option 11_PSTRT, value B, was not modified.
i Option chang ata wo be downloaded
Option | e: @x7F, was not modified.
Jption By 2_PSTR : 0x@, was not modified.

be downloaded

Memory Programming ...

Opening and parsing fi c_signed_RSSe_sfi_bl_cut2.bin
File 1 enc ned_| _sfi_bl_cut2.bin
Size \
Address : ©x20048300

sing memc
Download in Progres

File download complete
Time elapsed during download operation: 00:00:00.200

92/130 AN5054 Rev 9

3

Example of SMI programming scenario

8.1

8.2

8.3

8.3.1

3

Example of SMI programming scenario

Scenario overview

In this scenario, the 3rd party’s library to be installed on the STM32H753xI device makes
“printf” packets appear in the serial terminal if the library code execution called by the
application does not crash.

The library code was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SMI
module.

Hardware and software environment

The same environment as explained in Section 4.1.1: Device authentication.

Step-by-step execution

Build 3" party Library

ST or 3rd party developers can use any IDE to build the library to be encrypted and installed
into the STM32H7 device.

In this scenario the SMI module based on the built library is not relocatable. The destination
address is hardcoded in SMI module to the following value: 0x08080000.

AN5054 Rev 9 93/130

Exam

ple of SMI programming scenario

8.3.2

Perform the SMI generation

For encryption with the STM32 Trusted Package Creator tool, the 3rd party module is
provided in ELF format. A 128-bit AES encryption key, a 96-bit nonce and a security version
file are also provided to the tool. They are available in the “SMI_ImagePreparation”
directory. After choosing the name of the section to be encrypted, a “.smi”image is then

generated (FIR_module.smi).

The clear data part of the library without the encrypted section is also created in ELF format

(FIR_module_clear.axf).

Figure 64 shows the STPC GUI during SMI generation.

Figure 64. STPC GUI during SMI generation

{45 5TM32 Trusted Package Creator

= = 28

File Edit Options Help

"I lite.augmented

ELF file

Ibad_Pad(age_Creator_vl.D.Z (1)/Input/sMI good/FIR_module.axf m

Encryption key file

Iackage_Creatnr_vl.D.Z (1)/Input/SMIfgood ftest_firmware_key.hin m

ELF information SMI information

Overview

Original file name

FIR_module.smi

MNumber of files

1

Last file size 1.64844 KB
Nonce file
SMI adldress (:B080000 LI
-
I’__Trusted_Pad(age_Creahor_v1.0.2 (1)/Input/SMI good /nonce.bin {?& Information |__SZ |
Security version file . . SMI successfully created
I'M327TrushedfPackagefCreatorfv1.0.2 {1)/Input/SMI/good /svFile “

Section to encrypt

ER_PCROP |

Output SMI file

}‘I32_Trusted_Pad<age_Creahor_v1.0.2 (L)foutput/FIR_module.smi 255801020

Output clear ELF file

l’ushed_Package_Creamr_v1.0.2 {1)joutput/FIR_module_dear.axf EZ2EES00L S

Generate SMI

94/130

AN5054 Rev 9

)

Example of SMI programming scenario

8.3.3

8.34

3

Programming input conditions

Before performing the SMI install make sure that:

e The SMI module destination address is not already PCROPed, otherwise destroy this
PCROPed area.

e The Boot0 pin set to VDD.
e The chip supports security (existing security bit in option bytes).

e When performing SMI install using UART bootloader, no debug interface is connected
to any USB host. If a debug interface is still connected, disconnect it then perform a
power off/power on before launching the SMI install to avoid any debug intrusion
problem.

e The proper license generated for the currently-used chip must be at your disposal (or
an HSM or secure server to generate it during SMI programming).

Perform the SMI install
Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<S8TM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_ Programmer CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local path>/FIR module.smi"
"<local paths>/<licenseSMI.bin>"

This command allows the SMI specified file “FIR_module.smi”’ to be programmed into a
dedicated PCROPed area at address (0x08080000).

Figure 65: SMI install success via debug interface shows the SMI install via SWD execution.

AN5054 Rev 9 95/130

Example of SMI programming scenario

96/130

Figure 65. SMI install success via debug interface

EX Administrator: C\Windows\system32iemd.exe = &

Microzoft Windows [Uersion 6.1.76811
Copyright <c> 288? Microsoft Corporation. All rights reserved.

C:~Usersshannachi*cd C:“Usersshannachi~Documents“Projects*STM3I2H? _projectsdocs™d
ocs_forSTMIZH7Re lease~AN“Su_packagessstmdZ_programmer_package_vHA.4.8

C:“Usersshannachi~Documents>Projects*8STHIZHY projectrdocs docs_FforSTHIZH7Re lease
~AN“Sw_packages»stm3d2_programmer_package_vB.4.8>cd hin

C:sUzeprsshannachisxDocuments»Frojects E8THIZH? _project docssdocs _forSTHIZH7Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8~bin>83TH3Z2_Programmer_CLI .exe —c
port=swd mode=HOTPLUG —smi protocol=static "C:Users-hannachisxDocumentsz“Projects
~ETH3IZH? _project docs docs_forETMH3ZHY7RHe leaze AN~SHI_ImagePreparation~FIR_module.
emi" "C:isUszersshannachisDocumentssProjects E8THIZH? projectdocs docs_forSTHIZHYR
eleaze~AN~SHI _ImagePreparation~licenszeSHI .hin"

ST-LINK Firmware version U2J27M15
SUD frequency = 480A KH=z

Connection mode: Hot Plug

Device ID: Bx45%8

PPntncnl @ static
= GC:slUsersshannachisDocumentssProjects \STHIZH? projectsdocs™
furSTH32H?Releaue\HN\SHI_ImagePreparatiun\FIR_mndule.smi

Etarting SMI install operation for file : CGC:slUsersshannachisDocumentssProjects™
STMIZH? _projectdocsdocs_forSTM32ZH7Release AN\EMI_ImagePreparation“FIR_module.s

mi ...
EMI File Information H

EMI file path : C:sUsersshannachisxDocunentssProjects~5THIZH
7 prugect\ducé\ducg _for5THIZHYRelease~AN~EMI _InagePreparation“FIR_module.zmi

licenze file path : C:sUsersshannachisxDocunentssProjects~5THIZH
?_projectsdocssdocs_forS8TH32H?Releaze~AN~SHI _ImagePreparationslicenseSHI .hin
SMI code destination addressz : BxBAEEHBA
SMI code zice : 1688

Setting write mode to SMI
Succeed to set write mode for SHMI
Writing license @ address HAx248568068. ..

License file successfully written at adress Bx24@5608008
Writing SMI module image to addressz BxZ24858883.._.

EMI image successfully written at address BxZ24850833
Starting SMI process with license B Bx248588008 and image @ Bx2405%0088. ..

REE process started. ..
REE command execution OK
Heconnecting. ..

—LINK Firmware version = U2J27M15
WD frequency = 4888 KH=
Connection mode: Hot Plug
Device ID: Bx45%8

Heconnected *

Requesting security state...

SECURITY State Success

SMI SUCCESS?

SMI file C:sUsershannachisDocuments»Projects~STM3I2ZH? _projectsdocssdocs_forSTHIZ
H7Re lease~ANSMI _ImagePreparation“FIR_module.smi Install Operation Success

Time elapsed during the SMI install operation iz: BB:08:83_294

C:sUzeprszsshannachixDocumentsz»Frojects E8THIZH? _project docssdocs _forSTHIZH7?Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8-hin>

3

AN5054 Rev 9

Example of SMI programming scenario

8.3.5

3

How to test for SMI install success

1. Flash the clear data part “FIR_module_clear.hex” (available under the “Tests” directory)
into address 0x08084000 using STM32Cubeprogrammer or any other Flashing tool.

2. Flash the test application “tests.hex” (which is based on the SMI module), available

under the “Tests” directory at start user Flash address “0x08000000” using

STM32Cubeprogrammer or any other Flashing tool.
The option bytes configuration becomes as below (Figure 66).

Figure 66. OB display command showing that a PCROP zone was activated after SMI

OPTION BYTES BANK: @

Read Out Protection:
RDP : BxAA (Level B, no protectiond

RES:
RSS51 Bx@ (Mo 5FI process on going)

BOR Level:
BOR_LEV : BxB (reset level is set to 2.1 U

User Configuartion:
IWDG1L : Bx1 (Independent watchdog iz controlled by hardwarel
MRST_STOP_D1 Bx1l ¢(STOP mode on Domain 1 is entering without reset)
MRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)
FZ_IWDG_STOP Bx1 <Independent watchdog is running in STOP mode?
FZ_IWDG_SDBY Bx1 <{Independent watchdog is running in STANDBY mode>
SECURITY Bx1 (Security feature enabled>
BCM? @x1 (CM-7 bhoot enahled>
MRST_STOP_D2 Bx1l ¢(STOP mode on Domain 2 is entering without reset)
NRST_STEY_D2 Bx1 <STANDBY mode on Domain 2 is entering without reset?
SUAP_BANK BxB {after hoot loading. no swap for user sectors?
DMEFPA Bx1 ¢{delete PcROP protection and earse protected aread

DMESA Bx1 (delete Secure protection and erase protected areal

Boot address Option Bytes:
BOOT_CHM7_ADDA: 8x888 (BxBOBOABE)
BOOT_CH7_ADD1: 8x1FF@ <Bx1FFOB008>

PCROP Protection:

PCROPA_str : Bx888 (PxBO106888>
PCROPA_end : Bx886 (PxBOBO6BA)

Secure Protection:
SECA_str : BxFF <(BxBBO1FEB>
SECA_end : BB <BxBOBOBFF>

DICM RAM Protection:
ST_RAM_SIZE : Bx2

Urite Protection:
nl/RF@ CUWrite protection active sector)
nWRP1 (Urite protection active sector)
nWRP2 {Urite protection active sector)
nWRP3 {Urite protection active sector)
nWRP4 CUrite protection active sector)
nl/RFS CWrite protection active sector)

nl/RF6 CUWrite protection active sector)

nWRP? {Urite protection active sector?

AN5054 Rev 9

97/130

Example of SMI programming scenario

3. If a UART connection is available on the board used, open the “Hercule.exe” serial
terminal available under the “Tests” directory, open the connection. On reset the
dedicated “printf” packets appears.

3

98/130 AN5054 Rev 9

Example of SFIx programming scenario for STM32H7

9.1

9.2

9.3

9.3.1

Note:

9.3.2

3

Example of SFIx programming scenario for STM32H7

Scenario overview

There are three steps during this scenario:

e Generate SFIx image using the STPC.

e Provisioning HSM card via STPC.

e Use STM32CubeProgrammer to perform the SFIx process.

Once this scenario is successfully installed on the STM32H7B3I-EVAL, follow the steps
below:

e Write internal firmware data in the internal Flash memory starting at the address
0x08000000.

e Write external firmware data in the external Flash memory starting at the address
0x90000000.

e \Verify that the option bytes were correctly programmed (depends on area C).

Hardware and software environment

For successful SFIx programming, some HW and SW prerequisites apply:

e STM32H7B3I-EVAL board containing external Flash memory.

e Micro-USB for debug connection.

e PC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra.

e STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer V2.3.0 (or greater) package available from www.st.com

e HSMv1.1 card.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

In this use case there are different user codes. Each one is specific to a Flash memory type
(internal/external).
Perform the SFIx generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

AN5054 Rev 9 99/130

Example of SFIx programming scenario for STM32H7

Note:
product.

STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each

It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “sfix” image is then generated (out.sfix).

Figure 67. Successful SFIx generation

{?;, 5TM32 Trusted Package Creator

File Edit Options

Help

- O X

Lyy ...

Firmware information SFIx information

|C :[SFIx/key_areas.kcsv

Encryption key file

|C 1 f5FIxfkey.bin

SFI SFIx ssp WB SIGN
Internal firmware files
|D firmware.hex Add
Remove
Overview
External firmware files
File name
| D External hex Add
Remove
Key area file
{} Success X

SFIx successfully created

Image version | Internal segme

Nonce file

|C 1 f5FIx/nonce. bin

Option bytes file

|C 1 f5FIxjob.csv

Image version

1 =
RAM size

I Continuation token address

Qutput SFIx file

IC 1 /SFIxjout.sfix

“ 0x8010000
(1]

[open 3 Pause 28 06010000

4 Resume 32B 0x2010000

3 Pause 32B 0x8010020
7 Resume 32B 0xB010020 E

IOXOSO 10000
Parse SFIx file
Select folder I

100/130

AN5054 Rev 9

3

Example of SFIx programming scenario for STM32H7

9.3.3

Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 68: Example of HSM programming using STPC GUI shows an example for HSM
programming by OEM to be used for SFIx install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 1. The HSM version can be identified before performing
the programming operation by clicking the “Refresh” button to make the version number
appear in the Version field.

Figure 68. Example of HSM programming using STPC GUI

File

{* STM32 Trusted Package Creator — O X

Edit Options Help ‘,’ T

SFIx S5p 'WB 5IGN SMI HSM
HSM card index HSM information
E Firrnware 1D test
Max counter 92
AT 2 e HSM status OEM_STATE
Itest Version 1
Type
Encryption key file
e
eiar e Coper |
Monce file

|C :/HSM/nonce. bin

Personalization data file

Maximum counter

ld =

3

AN5054 Rev 9 101/130

Example of SFIx programming scenario for STM32H7

Note:

9.3.4

9.3.5

9.3.6

102/130

When using HSM version 1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise an error message is displayed.

Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 5.3.4: Performing HSM programming for license generation using STPC
(CLI mode).

Programming input conditions

Before performing an SFIx install make sure that:

e Use JTAG/SWD interface.

e No PCROPed zone is active, otherwise disable it.

e The chip must support security (a security bit must be present in the option bytes).

e The SFIx image must be encrypted by the same key/nonce used in the HSM
provisioning.

Perform the SFIx install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with ST HSMs (hardware secure
modules based on smart card) to generate a license for the connected STM32 device during
SFIx install.

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

Using JTAG/SWD

STM32 Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfix" hsm=1 slot=<slot id> -el <ExternalLoader Path>

Figure 69: SFix install success using SWD connection (1) through Figure 72: SFlx install
success using SWD connection (4) shows the SFIx install via SWD execution and the HSM
as license generation tool in the field.

3

AN5054 Rev 9

Example of SFIx programming scenario for STM32H7

Figure 69. SFiIx install success using SWD connection (1)

mode :
t mode
ID H
name : STM32H7A/B
Flash size : 2 MBytes
Dev : MCU
Device CPU : Cortex-M7

Protocol Information
SFI File Information

SFI file path

SFI HSM slot ID

SFI header information
SFI protocel version
SFI total number of areas
SFI image version

SFI Areas information

Parsing Area 1/7
Area type
Area size
Area destination address

Parsing Area 2/7
Area type
Area size
Area destination address

Parsing Area 3/7
Area type
Area siz
Area destination address

Parsing Area 4/7
Area type
Area size :
Area destination address 1 @9x900060000

3

ANS5054 Rev 9 103/130

Example of SFIx programming scenario for STM32H7

Figure 70. SFIx install success using SWD connection (2)

Parsing Area 5/7
Area type
Area size ;32
Area destination address : BxB8001028
Parsing Area 6/7
Area type
Area size
Area destination address
Parsing Area 7/7
Area type
Area size

Area destination address

Reading the chip Certificate...

Requesting Chip Certificate from device ...
Get Certi e don fully
requesting license for the current STM32 device

Init Communication ...

ldm_LoadModule(): loading module “stlibpll SAM.d11™ ...
ldm_LoadModule(WIN32): OK loading library “stlibpll SAM.d11": Bx62087@000 ...
GetFunctionlist() returned 8x88080080, g pFunctionlist=Bx628EFS568
1 1ib initialization S

g session with solt ID 1...

Closing
Communi

= from HS
Starting Firmware Install operation...

Erase external flash size : 513 startAddress : 8x90000000 endAddress : @x90000200
Erasing external memory sector @

3

104/130 AN5054 Rev 9

Example of SFIx programming scenario for STM32H7

Figure 71. SFIx install success using SWD connection (3)

Mctivating security...

Warning: Option Byte: SECURITY, value: ©@x1, was not modified.
Warning: Option Bytes are unchanged, Data won't be downloaded
Activating security Success

Setting write mode to SFI

Warning: Option Byte: SECURITY, wvalue: 8x1, was not modified.
Warning: Option Byte: ST_RAM_SIZE, value: 8x3, was not modified.
Warning: Option Bytes are unchanged, Data won't be downloaded
Succeed to set write mode for SFI

Starting SFI part 1

Writing license to address @x2403080@
Writing Img header to address @x24831000
Writing areas and areas wrapper...

RSS process started...

RSS command execution OK
RSS complete Value = @x@
Reconnecting. ..

ST-LINK SN : ©e4988193837510B35333131
ST-LINK FW : V3JIM1
Voltage : 3.28V

SWD freq 1 24800 KHz
Connect mode: Hot Plug
Reset mode : Core reset
Device ID 1 Bx48
Reconnected !

Requesting security state...
Warning: Could not wverify security state after last chunk programming

Starting SFI part 2

Writing license to address @x2403080@
Writing Img header to address @x24831000
Writing areas and areas wrapper...

RSS process started...

RSS command execution OK
RSS complete Value = @x@
Reconnecting. ..

ST-LINK SN : @e4880193837518B35333131
ST-LINK FW : V3J1M1
Voltage

SHD freq 1 248088 KHz
Connect mode: Hot Plug
Reset mode : Core reset
Device ID 1 Bx48
Reconnected !

Requesting security state...
Warning: Could not wverify security state after last chunk programming

3

ANS5054 Rev 9 105/130

Example of SFIx programming scenario for STM32H7

Figure 72. SFiIx install success using SWD connection (4)

|Downloading area [3] data for external flash memory at address ©x980800080...
[Data download complete

Starting SFI part 3

Writing license to address @x24838800
Writing Img header to address @x24831000
Writing areas and areas wrapper...

all areas processed

RSS process started...

RSS command execution OK
Warning: Could not verify security state after last chunk programming

SFI file C:\Users\

Time elapsed during SFI install operation: ©0:00:44.321

106/130 AN5054 Rev 9

3

Example of SFIx programming scenario for STM32L5

10

10.1

10.2

10.3

10.3.1

3

Example of SFIx programming scenario for STM32L5

Scenario overview

There are three steps during this scenario:

e Generate SFIx image using the STPC

e HSM card provisioning via STPC

e Use STM32CubePrg to perform the SFIx process.

Successful installation of this scenario on the STM32L5 provides the following results:

e The internal Flash memory is readable from base addresses 0x08000000 and
0x08040000. It contains the internal firmware.

e The external Flash is programmed so as to be readable with external Flash loader. You
can then read the external Flash encrypted by the OTFDEC keys. The pattern of values
must be present in the binary files of external firmware.

e If the application works correctly, LED4 blinks.

Hardware and software environment

For successful SFIx programming, some hardware and software prerequisites apply:
e an STM32L5-based evaluation board containing external Flash memory

e a Micro-USB for debug connection

e a PC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra

e an STM32TrustPackageCreator v1.2.0 (or greater) package available from
www.st.com

e an STM32CubeProgrammer V2.3.0 (or greater) package available from www.st.com
e an HSMv1.1 card.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware. Note that in this
use case there are different user codes, each being specific for a Flash memory type
(internal/external).

AN5054 Rev 9 107/130

Example of SFIx programming scenario for STM32L5

10.3.2 Perform the SFix generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

Note: STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bi'\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “sfix”image is then generated (out.sfix).

Use case 1 generation of SFIx without key area:

Internal firmware files:
1. Add a non-secure binary with start address equal to 0x08040000.

2. Add an internal binary file at 0x0C000000 (application to be executed after
downloading SFIx to verify full process success by blinking an LED).

3. Add an OTFDEC key binary at 0x0C020000 (to be used as the key in OTFD ENC-
DEC).

External FW files: add an external binary at 0xX90000000 with these parameters:
e Region number =0

e Region mode = 0x2

e Key address = 0x0C020000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.
Nonce file: use the same nonce as HSM.
Option bytes file: use .csv contains option-byte configuration.

RAM size: 0x19000 to split the input areas avoiding memory overflow.

3

108/130 AN5054 Rev 9

Example of SFIx programming scenario for STM32L5

Figure 73. Successful SFIx generation use case 1

{3k STM32 Trusted Package Creator — m] =

File Edit Options Help "I !

le.augmented

|17 fw_ext_flash_1MB.bin

SFI SFIx 55P WB SIGH SMI
Internal firmware files Firmware information SFIx information
otfdec_key.bin Add
I ctcecie 3
Overview
External firmware files
File name Size Image version | Internal segrms
Add g g
Remove

1.08 MB

Key area file
I {} Success

Encryption key file o 5Flx successfully created

IC:;’SFIxJkey.bin

Address

08040000

Nonce file

IC:;’SFIxj'nuncE.bin m

Option bytes file

IC +fSFTxfob. csv

Image version
|1 32
RAM size 0x1900 Continuation token address IUxUSUGUUUU

Output SFIx file

IC:;’SFIonut‘sﬁx Select folder

‘Generate SFIx

3

AN5054 Rev 9 109/130

Example of SFIx programming scenario for STM32L5

Use case 2 generation of SFIx with key area:

This is essentially the same process as test case1. The main difference is:

e Add a ".kesv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key
area field, instead of using an OTFDEC key binary file.

e The key address for external FW files is the first address of the Area ‘K’ key file, which

is 0x0C020000.
Figure 74. Successful SFIx generation use case 2
{4 STM32 Trusted Package Creator _ u] %
File Edit Options Help ‘7’ i o
SFI S5FIx 55p WE SIGN SMI HSM
Internal firmware files Firmware information SFIx information
| _| Project_ns.bin j 2
Overview
External firmware files
= File name Size Image version | Internal segme
[T Fw_ext_flash_1ME.bin
Remove

Key area file
|C:J'SF[xJ|tev_aleas kesv m

E tion key file

— = Index I Type Size Address [LI

lc:/sFTxfkey.bin [_open | 33 Resume 328 0B060140 —!
Nonce file
IC:EFI::.hon-oe‘m m

Option bytes file
fc: seiiob.cov K=

Image version

1 E:

RAM size |0x1500 Continuation token address IO::O&O:‘:OOOO 4 Resume | 1e 0x8060180 hd|
Output SFIx file AR
[CrrDiort e | [Browse |

After the generation of the SFIx image in this use case the output file should contain 12
internal segments (F area), and 166 external segments (E area).

3

110/130 AN5054 Rev 9

Example of SFIx programming scenario for STM32L5

10.3.3

10.3.4

10.3.5

10.3.6

Note:

3

Performing HSM programming for license generation using STPC
(GUI mode)

Refer to Section 9.3.3: Performing HSM programming for license generation using STPC
(GUI mode).

Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 9.3.4: Performing HSM programming for license generation using STPC
(CLI mode).

Programming input conditions

Before performing an SFIx install make sure that:
e A JTAG/SWD interface is used
e The chip supports security (a security bit must be present in the option bytes)
e The SFiIx image is encrypted by the same key/nonce as is used in the HSM
provisioning.
e The option bytes are:
— DBank=1
- nSWBOOTO0=1
— nBOOTO0=1
— RDP=AA

Perform the SFIx install using STM32CubeProgrammer

In this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFIx install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfix" hsm=1 slot=<slot_id> -rsse <RSSe Path> -el
<Externalloader Path>

The RSSe binary file is located in STM32CubeProgrammer install path in the bin/RSSe
folder.

Figure 75: SFIx install success using SWD connection (1) through Figure 79: SFix install
success using SWD connection (5) show the SFIx install via SWD execution and the HSM
as license generation tool in the field.

AN5054 Rev 9 111/130

Example of SFIx programming scenario for STM32L5

Figure 75. SFIx install success using SWD connection (1)

C: \Program Files\STMicroelectronics\STM32Cube\STH32CubeProgrammer\bin>STH32_Programmer_CLT.exe -c port-swd mode-HOTPLUG reset=Crst -sfi protocol-static C:\data_store\app_LED_V.sfix hsm=1 slot=1 -rsse "C:\Program Files\STMicroelectronics
[STH32Cube\STM32CubeProgrammer\bin\RSSe\L5\enc_signed_RSSe_sfi_jtag.bin" -el Externalloader\MX25LM512456_STM32L552E-EVAL-SFIX. stldr

STM32CubeProgrammer v2.3.0

: @670FF535351717867133324
: V2I34M25
3.26V

Protocol Information : static

SFI File Information

SFI file path

SFT HSM slot TD

SFI header information
SFI protocol version s
SFI total number of areas
SFI image version

SFT Areas information

: C:\data_store\app_LED_V.sfix
s 1

Parsing Area 1/39

Area type
Area size
Area destination address

Parsing Area 2/39

Area destination address

T F

5536

: @xco00000

6
: 0xc020000

Parsing Area 3/39

Area destination address

Parsing Area 4/39
Area type
Area size
Area destination address

Parsing Area 5/39
Area type
Area size
Area destination address

Parsing Area 6/39
Area type
Area size
Area destination address

E
102336
8x90000000

Parsing Area 7/39
Area type
Area size
Area destination address

Parsing Area 8/39
Area type
Area size
Area destination address

Parsing Area 9/39
Area type E
Area size 182336
Area destination address Bx90018Fbo

Parsing Area 18/39
Area type
Area size
Area destination address

Parsing Area 11/39
Area type
Area size
Area destination address

Parsing Area 12/39 H
Area type E
Area size 182336
Area destination address Bx99031f60

Parsing Area 13/39
Area type
Area size
Area destination address

Parsing Area 14/39
Area type
Area size
Area destination address

112/130

Example of SFIx programming scenario for STM32L5

Figure 77. SFIx install success using SWD connection (3)

Succeed to get License for Firmware from H5M slot ID 1
Starting Firmware Install operation...

Set RDP to OxAA

Reconnecting. ..
Reconnected !
Installing RSSe

Memory Programming ...

Opening and parsing file: enc_signed RSS5e sfi jtag.bin
File 1 enc_signed_RSSe_sfi_jtag.bin
Size H 00 Bytes
Address : 0005100

Erasing memory corresponding to segment @:
Download in Progress:

File download complete
Time elapsed during download operation: ©0:80:00.455
: Option Byte: TZEN, value: @x1, was not modified.
Option Byte: nBoot®, value: ©x8, was not modified.
: Option Byte: nSWBoot8, value: 8x8, was not modified.
g: Option Bytes are unchanged, Data won't be downloaded
: Option Byte: SECBOOTADD@, : Bx1FFeee, was not modified.
Option Byte: SECWM1_PEND, H 7F, was not modified.
: Option Byte: SECWM1_PSTRT, wvalue: ©» was not modified.
: Option Byte: SECWM2_PEND, value: 7F, was not modified.
g: Option Byte: SECWM2_PSTRT, value: @ was not modified.
: Option Bytes are unchanged, Data won't be downloaded

Reconnecting. ..

Reconnected !

Get RSSe status...

Erase external flash size : . artAddress : @x90000080 endAddress : @x99120000
Erasing external memory sectors [@

Starting SFI

Processing license...
Processing Image Header
Processing Area 1...

rea Address = @xc@e00ae
rea Type =F
Processing Area 2...

rea Address

rea Type

Processing Area 3...

rea Address = 8xcB40800

3

ANS5054 Rev 9 113/130

Example of SFIx programming scenario for STM32L5

Figure 78. SFIx install success using SWD connection (4)

rea Type
Processing Area 4...
rea Address
rea Type
Processing Area 5...
rea Address
rea Type
Processing Area 6...
rea Address = 8x906008008
rea Type =E
Buffer Address = @x20005100
E Area Full Size

E Area Data Size

rea Address
rea Type =R
Processing Area 9...

rea Address = @x90018fb8
rea Type E
Buffer Address = @x20005100
E Area Full Size = 182336
E Area Data Size

Processing Area 10...
rea Addres
rea Type
Processing Area 11...
rea Address
rea Type
Processing Area 12...
rea Address = @x98031f68
rea Type
Buffer Address = ©x20005100

E Area Full

E Area Data

Figure 79. SFix install success using SWD connection (5)

rea Addre
rea Type
Buffer Address
E Area Full Size
E Area Data Size
Processing Area 37
Area 3

= @xl16@
=R

fy last area
rea Address = @x8@
rea Type C
SFI Process Finished!
SFI file C:\data_store\app_LED V.sfix Install Operation Success

Time elapsed during SFI install operation: ©@:01:25.116

3

114/130 AN5054 Rev 9

Example of combined SFI-SMI programming scenario

11

1.1

11.2

11.3

Note:

3

Example of combined SFI-SMI programming scenario

Scenario overview

The user application to be installed on the STM32H753xI device makes “printf” packets
appear in the serial terminal.

In this case the OEM application is built based on a third party’s library as explained in IAR
example (Section 2.3: Execute-only/position independent library scenario example under
EWARM).

The application is encrypted using the STPC, the SMI module corresponding to 3rd party’s
library code is uploaded as input during combined SFI generation and represented as an
area of type ‘M’ within firmware application areas.

The SFI OEM application firmware could then be uploaded (on an OEM server for example)
with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI application
concerned and the integrated SMI module(s).

Hardware and software environment

The same environment as explained in Section 5.2: Hardware and software environment.

Step-by-step execution

1. Build the OEM application.

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicoelectronics or 3rd parties for example.

In this example we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.

For encryption with the STM32 Trusted Package Creator tool, OEM firmware and the
clear data part are both provided in Hex format (corresponding to the SMI module to be
integrated within the SFI image). A CSV file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

STM32CubeProgrammer V2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin€\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

AN5054 Rev 9 115/130

Example of combined SFI-SMI programming scenario

Figure 80 shows the STPC GUI during combined SFI generation.

Figure 80. GUI of STPC during combined SFI-SMI generation

{1, STM32 Trusted Package Creator o @3 =

File Edit Options Help ‘,’ S

Firmware files Firmware information SFIinformation

‘ || FIR_data.hex Overview

Remove
File name out_comb.sfi -
Encryption key file
Si 13.9336 KB
Iad<age_Creator_v1.0.2{1}ﬂnput,.’SFIfgoodftest_ﬁrmware_ke .bin Dpe €
| £5 Success u 01 d
Nonce file
IZ_Trusted_Pad(age_Creator_\r 1.0.2 (1)/Input/SFI/good noni < SH successfully created
— - Type Size Address
CEbonivE R [ok] - 122808 058000000
ackage_Creator_v1.0.2 (1)/Input/SFI_SMI_combined,FIR,
Podge. Creatr.v1.0.2 ()Imput/SFSML kil ware 1168 0xB084000
SMI files (Only for combined case) 3 Module 1688 B 0xB080000
LI FIR pcrop.smi [add | 4 | Configuration 368 00
Remove
Image version
Izo 3:
RAM size I Continuation token address I
Output SFI file

kSTM32_Tru5ted_Pad<age_Creahor_v 1.0.2 (1)/outputfout_comb.sfi

3. Programming input conditions are the same as for the SFI programming scenario
(Section 5.3.4: Performing HSM programming for license generation using STPC (CLI
mode)).

4. Perform the SFI install using the SWD/JTAG or a bootloader interface (here the SWD
interface is used).

116/130 AN5054 Rev 9

3

Example of combined SFI-SMI programming scenario

11.3.1

3

Using JTAG/SWD

Once all input conditions are respected, go to the “stm32_programmer_package v0.4.1/bin”
directory and launch the following command:

STM32 Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local path>/out comb.sfi" "<local path>/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
“<STM32CubeProgrammer_package path>/bin” directory and launch the following
command:

STM32 Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local path>/out comb.sfi"
"<local paths>/<licenseSFI.bin>"

Figure 81: Combined SFI-SMI programming success using debug connection shows the
combined SFI-SMI install trace success.

AN5054 Rev 9 117/130

Example of combined SFI-SMI programming scenario

118/130

Figure 81. Combined SFI-SMI programming success using debug connection

ST-LIMK Firmware version : U2J26M15
SWD fregquency = 4888 KHz

Connection mode: Hot Pluyg

Device ID: Ax45@

Protocol
SFI File

static
Ref 8F1_MDK-8FI_Combined~out_comb.sfi

Starting SFI install operation for file : RefSFI_MDK-SFI_Combined~-out_comb.sfi
"SFI File Information

SFI file path RefSFI_MDK-SFI_Combined/out_comh_sfi
8FI license file path Ref SFI_MDK-SFI _Combhined-licenseSFIcombh_h?53hEH.

S8FI header information
SFI protocol version 1
8FI total number of areas 4
SFI image wversion 2
SFI Areas information H

3

Parzing Area 1.4 H
Area tupe F
Area size 12280
Area destination address Bx8AARBAA

Parszing Area 2.-4 H
Area type F
Area size 116
Area destination address Bx80348000

Parsing Area 3-4 H
Area tupe M
Area size 1688
Area destination address Bx8A3ABHA

Parzing Area 4.4 H
Area type [
Area size 36
Area destination address

write mode to SFI
to set write mode for SFI
license to address BxZ24807800
Img header to addressz Bx2400808000
areas and areas wrapper...

R85 process started. ..

RSS command execution 0K
Reconnecting. ..

ST-LIMK Firmware version : U2J26M15
SWD freguency = 4888 KHz

Connection mode: Hot Plug

Device ID: BAx458

Reconnected *

Requesting security state...

SECURITY State Success

SFI SUCCESSt

SFI file RefSFI_MDK-SFI_Combhined-out_combh.sfi Install Operation Success

Time elapzed during the SFI install operation is: 00:80:-04.85%6
Press <RETURN> to close this window...

AN5054 Rev 9

3

Example of combined SFI-SMI programming scenario

11.3.2 How to test the combined SFI install success

The option bytes configuration must be modified as shown in Figure 82: Option bytes after
combined SFI-SMI install success.

o 3 party library module is programed into a PCROP area
e The SFlimage is protected using RDP level1.
If a UART connection is available on the board used, open the “Hercule.exe” serial terminal

available under the “Tests” directory, open the connection and on reset the dedicated
“printf” packets appears.

3

AN5054 Rev 9 119/130

Example of combined SFI-SMI programming scenario

120/130

Figure 82. Option bytes after combined SFI-SMI install success

OFTION BYTES BANK: @

Read Out Protection:
RDP : BxA (Level 1, read protection of memories)

RSE:
R851 BxB (No SFI process on goingl

BOR Level:
BOR_LEU : Bx2 (reset level is set to 2.7 U

User Configuartion:
IWDG1 : Bx1l <(Independent watchdog is controlled by harduware?
1UDG2 Bx1 (Window watchdog is controlled by hardware?
MRST_STOP_D1 Bx1 (STOP mode on Domain 1 is entering without reset?
NRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)
FZ_IWDG_STOP Bx1 (Independent watchdog iz running in STOP mode?
FZ_IWDG_SDBY Bx1 (Independent watchdog is running in STANDEBEY mode>
SECURITY Bx1 (Security feature enabled>

BCM? Bx1 (CM-7 boot enahbhled>

MRST_STOP_D2 Bx1 (STOP mode on Domain 2 is entering without reset?
NRST_STBY_D2 Bx1 (STANDBY mode on Domain 2 is entering without reset)
SUAP_BANK Bx@ C(after boot loading,. no swap for user sectors)

DHEPA Bx1 (delete PcROP protection and earse protected area?

DMESA Bx1 (delete Secure protection and erase protected aread

Boot address Option Buyutes:
BOOT_CHM7_ADDA: Bx80@ (BAxEAROBAA>
BOOT_CM?7_ADD1: Bx1FF1 {B@x1FFi8808>

PCROP Protection:
PCROPA_str 1 BxBBA (BxBB10008>
PCROPA_end : BxBB6 <(BxBBB0688>

Secure Protection:
SECA_str : BxFFF <(Bx8B1FFE@>
SECA_end : BxB (OxBABBOFF>

DTCH RAM Protection:
ST_RAM_SIZE : Bx3 <16 KB>

Write Protection:
nWRPB (lrite protection active sector)
nWRP1 (Urite protection active sector)
nWRP2 (Urite protection active sector)
nWRP3 (Urite protection active sector)
nW/RP4 (Urite protection active zsector)
nWRPS CUrite protection active sector)
nWRP6 (Urite protection active sector)

nWRP? (lrite protection active sector)

AN5054 Rev 9

3

Example of SSP programming scenario for STM32MP1

12 Example of SSP programming scenario for
STM32MP1
12.1 Scenario overview

On each SSP install step, STM32 ecosystem tools are used to manage the secure
programming and SSP flow.

Three main steps are done using SSP tools:

e Encrypted secret file generation with STM32 Trusted Package Creator

e HSM provisioning with STM32 Trusted Package Creator

e SSP procedure with STM32CubeProgrammer.

12.2 Hardware and software environment

The following prerequisites are needed for successful SSP programming:

e an STM32MP1-DK2 board

e a Micro-USB for DFU connection

e aPC running on either Windows 7/10 or Ubuntu 14 64-bit or macOS High Sierra

e STM32TrustPackageCreator v1.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer V2.5.0 (or greater) package available from www.st.com

e an HSMv2 card.

12.3 Step-by-step execution

12.3.1 Building a secret file

A secret file must be created prior to SSP processing. This secret file must fit into the OTP

area reserved for the customer. OTP memory is organized as 32-bit words.

On an STM32MP1 microprocessor:

e One OTP word is reserved for RMA password (unlock/relock): OTP 56.

e 37 free words are reserved for customer use. The secret size can be up to 148 bytes:
OTP 59 to 95.

There is no tool or template to create this file. A 148-byte binary file must be used as the
reference to construct the secret file.

3

AN5054 Rev 9 121/130

Example of SSP programming scenario for STM32MP1

12.3.2 Performing the SSP generation (GUI mode)

For encryption with the STM32 Trusted Package Creator tool, the secret file is provided in
BIN format in addition to the RMA password values.

An OEM public key, a 128-bit AES encryption key and a 96-bit nonce are also provided to
the tool.

An “.ssp”image is then generated (out.ssp).

Figure 83. STM32 Trusted Package Creator SSP GUI tab

{5 STM32 Trusted Package Creator -] o

File Edit Options Help ‘1’ to.cugmontod

W8 SIGN

Password : RMA Lock |[0x312

Secrets fie

File name Type Size

|c:/55P_Inputysacrats/ 148bytes_secrets.bin

14Bbytes_secret...

Encryption key file

[c:/ssP_input/aes_key/key.bin

OEM public key file

|C:/55P_Input/ DEMPublickey. pem

Nonce fike

|C:."SSP_th|"aes_kewn-.bn

Output SSP file

3
EEER

[c:/ssproutssp

3

122/130 AN5054 Rev 9

Example of SSP programming scenario for STM32MP1

12.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house, to be used for
license generation during the SSP install process. In this example, HSMs are used as
license generation tools in the field.

See Section 4.1.2: License mechanism for HSM use and programming details.

This example uses HSM version 2. The HSM version can be identified before performing
the programming operation by clicking the Refresh button to make the version number
appear in the Version field.

Note: HSM version 2 must be used for STM32 MPU devices.

Figure 84. Example of HSMv2 programming using STPC GUI

{:h STM32 Trusted Package Creator - O X

File Edit Options Help "’ G

R.8=ne

SF1 SFIx ssp WB SIGN SMI HSM
HSM card index HSM information
- B
Max counter 13
Firmware identifier HS5M status OPERATIOMNAL_STATE
|ssp_mPu| Version 2
Type S5P =

Encryption key file

[C:/ssp/key.bin [_open |
Honce file

| C:/ssp/nence.bin m
Personalization data file

Jckages/S000300A_SSF._01000000_00000000.enc.bin (B ol

Maximum counter

b =

‘Yl AN5054 Rev 9 123/130

Example of SSP programming scenario for STM32MP1

12.3.4

12.3.5

124/130

The STM32 Trusted Package Creator tool provides all personalization package files, ready
to be used on SSP flow. To obtain all the supported packages, go to the “PersoPackages”
directory residing in the tool’s install path. Each file name starts with a number, which is the
product ID of the device. The correct one must be selected.

SSP programming conditions

Before performing an SSP flow make sure that:
e aDFU or UART interface is used
e the chip supports security

e the SSP image is encrypted by the same key/nonce as used in the HSM provisioning
step.

Perform the SSP install using STM32CubeProgrammer

In this step the STM32CubeProgrammer tool is used in CLI mode (the only mode available
so far for secure programming) to program the SSP image already created with STM32
Trusted Package Creator. STM32CubeProgrammer supports communication with ST HSMs
(hardware secure modules based on a Smart Card) to generate a license for the connected
STM32 MPU device during SSP install.

Example using USB DFU bootloader interface:

STM32_ Programmer_ CLI.exe -c port=usbl -ssp “out.ssp” “tf-a-ssp-
stm32mpl57f-dk2-trusted.stm32” hsm=1 slot=1

3

AN5054 Rev 9

Example of SSP programming scenario for STM32MP1

3

All SSP traces are shown on the output console (Figure 85).

Figure 85. STM32MP1 SSP install success

Requesting Chip Certificate...

requesting license for the current 5TM32 device
Init Communication

ldm_LoadModule(): ding module “"stlibpll_ SAM.d11" ...
ldm_LoadModul): OK loading library "stlibpll_SaM.d11"
(_GetFunctionList() returned @x00008000, g pFunctionList=8x620862

Opening session with solt ID 1...

Closing session with reader slot ID 1...

Closing communication with HSM...

Starting Firmware Install operation...

Writing blob

Detach command executed

AN5054 Rev 9 125/130

Reference documents

13

126/130

Reference documents

Table 3. Document references

Reference Document title
(1] AN4992, STM32H7 secure firmware/module install overview.
STMicroelectronics.
2] UM2428, Hardware secure modules (HSM) for secure firmware install (SFI).
STMicroelectronics.
[3] AN5510, Overview of secure secret provisioning (SSP)

AN5054 Rev 9

3

Revision history

14

3

Revision history

Table 4. Document revision history

Date

Revision

Changes

03-Aug-2018

1

Initial release.

18-Apr-2019

2

Updated publication scope from ‘ST restricted’ to
‘Public’.

16-Oct-2019

Updated:

— Section 4.1.2: License mechanism

— Section 5.3.3: Performing HSM programming for
license generation using STPC (GUI mode)

— Figure 43: HSM programming GUI in the STPC tool
(title caption)

— Figure 52: Example of HSM programming using
STPC GUI

03-Feb-2020

Replaced occurrences of STM32L451CE with
STM32L462CE in Section 4.2.1: Secure firmware
installation using a bootloader interface flow.

Updated document to cover secure programming with
SFIx.

26-Feb-2020

Updated:

— Section 4.3.1: SFI/SFIx programming using
JTAG/SWD flow

— Section 5.3.3: Performing HSM programming for
license generation using STPC (GUI mode)

— Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode)

— Figure 69: SFix install success using SWD connection
(1)

— Figure 72: SFix install success using SWD connection

(4).

27-Jul-2020

Updated:

— Introduction

— Section 3.1: System requirements

Added:

— Section 3.5: SSP generation process

— Section 3.6.3: Steps for SSP generation (CLI)

— Section 3.7.4: SSP generation using STPC in GUI
mode

— Section 4.2.5: STM32CubeProgrammer for SSP via a
bootloader interface

— Section 12: Example of SSP programming scenario
for STM32MP1.

AN5054 Rev 9 127/130

Revision history

128/130

Table 4. Document revision history

Date

Revision

Changes

19-Nov-2020

Updated:

— Introduction on cover page

— License mechanism general scheme

— HSM programming by OEM for license distribution

— Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode).

Added:

— Section 4.4: Secure programming using Bootloader
interface (UART/I2C/SPI/USB)

— Section 6: Example of SFI programming scenario for
STM32WL.

29-Jun-2021

Updated:

— In the whole document, replaced STM32H7A/B by
STM32H7A3/7B3 and STM32H7B0, STM32H72/3 by
STM32H723/333 and STM32H725/335, STM32H7B
board by STM32H7B3I-EVAL

— Replaced BL by bootloader.

— Section 3.2: SFI generation process: removed
references to RSS.

— Section 4.1.2: License mechanism: removed Figure
HSM programming toolchain.

— Section 4.2: Secure programming using a bootloader
interface, Section 4.2.2: Secure Module installation
using a bootloader interface flow, Section 4.2.3:
STM32CubeProgrammer for SFI using a bootloader
interface

— Section 4.3.1: SFI/SFIx programming using
JTAG/SWD flow and Section 4.3.2: SMI programming
through JTAG/SWD flow.

— Section 4.4: Secure programming using Bootloader
interface (UART/I2C/SPI/USB)

— Example of SFI programming scenariolSection 5.2:
Hardware and software environment and Example of
SFI programming scenario for STM32WL/Section 6.2:
Hardware and software environment: removed
bootloader and RSS versions

— Section 5.3.4: Performing HSM programming for
license generation using STPC (CLI mode): removed
STM32L4 from the list of devices that support SFI via
debug interface.

Added:

— Support for STM32U5 Series.

— Section 7: Example of SFI programming scenario for
STM32U5.

AN5054 Rev 9

3

Revision history

3

Table 4. Document revision history

Date

Revision

Changes

02-Aug-2021

Added note about CSV file in Section 3.6.1: Steps for
SFI generation (CLI) and Figure 26: Option bytes file
example.

Corrected binary file names in Section 4.4: Secure
programming using Bootloader interface
(UART/I2C/SPI/USB).

Section 3.6.1: Steps for SFI generation (CLI)
Added note about option byte file example in:

— Section 3.7.1: SFI generation using STPC in GUI
mode

— Section 5.3.2: Perform the SFI generation (GUI mode)
— Section 6.3.2: Perform the SFI generation (GUI mode)
— Section 7.3.2: Perform the SFI generation (GUI mode)

— Section 9.3.2: Perform the SFIx generation (GUI
mode)

— Section 10.3.2: Perform the SFIx generation (GUI
mode)

— Section 11.3: Step-by-step execution.

Updated Corrected board name in Section 4.2:
Secure programming using a bootloader interface.

Corrected board name in Section 7.2: Hardware and
software environment.

AN5054 Rev 9 129/130

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

3

130/130 AN5054 Rev 9

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only/position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI multi install
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in Flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SFIx generation process
	Figure 17. RAM size and CT address inputs used for SFIx multi install
	Figure 18. SFIx format layout
	Figure 19. SFIx image layout in case of split

	3.4 SMI generation process
	Figure 20. SMI preparation mechanism
	Figure 21. SMI image generation process
	Figure 22. SMI format layout

	3.5 SSP generation process
	Figure 23. SSP preparation mechanism
	Table 2. SSP preparation inputs
	Figure 24. Encryption file scheme

	3.6 STM32 Trusted Package Creator tool in the command line interface
	Figure 25. STM32 Trusted Package Creator tool - available commands
	3.6.1 Steps for SFI generation (CLI)
	Figure 26. Option bytes file example
	Figure 27. SFI generation example using an Elf file

	3.6.2 Steps for SMI generation (CLI)
	Figure 28. SMI generation example

	3.6.3 Steps for SSP generation (CLI)
	Figure 29. SSP generation success

	3.7 Using the STM32 Trusted Package Creator tool graphical user interface
	3.7.1 SFI generation using STPC in GUI mode
	Figure 30. SFI generation Tab
	Figure 31. Firmware parsing example
	Figure 32. SFI successful generation in GUI mode example

	3.7.2 SFIx generation using STPC in GUI mode
	Figure 33. SFIx generation Tab
	Figure 34. Firmware parsing example
	Figure 35. SFIx successful generation in GUI mode example

	3.7.3 SMI generation using STPC in GUI mode
	Figure 36. SMI generation Tab
	Figure 37. SMI successful generation in GUI mode example

	3.7.4 SSP generation using STPC in GUI mode
	Figure 38. SSP generation tab
	Figure 39. SSP output information

	3.7.5 Settings
	Figure 40. Settings icon and Settings dialog box

	3.7.6 Log generation
	Figure 41. Log example

	3.7.7 SFI and SMI file checking function
	Figure 42. Check SFI file example

	4 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	Figure 43. HSM programming GUI in the STPC tool

	4.2 Secure programming using a bootloader interface
	4.2.1 Secure firmware installation using a bootloader interface flow
	Figure 44. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 45. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure Module installation using a bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using a bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via a bootloader interface
	4.2.5 STM32CubeProgrammer for SSP via a bootloader interface
	Figure 46. SSP install success

	4.2.6 STM32CubeProgrammer get certificate via a bootloader interface
	Figure 47. Example of getcertificate command execution using UART interface

	4.3 Secure programming using JTAG/SWD interface
	4.3.1 SFI/SFIx programming using JTAG/SWD flow
	Figure 48. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 49. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Figure 50. Example of getcertificate command using JTAG

	4.4 Secure programming using Bootloader interface (UART/I2C/SPI/USB)

	5 Example of SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Perform the SFI generation (GUI mode)
	Figure 51. STPC GUI during SFI generation

	5.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 52. Example of HSM programming using STPC GUI

	5.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	Figure 53. Example product ID
	Figure 54. HSM information in STM32 Trusted Package Creator CLI mode

	5.3.5 Programming input conditions
	5.3.6 Perform the SFI install using STM32CubeProgrammer
	Figure 55. SFI install success using SWD connection (1)
	Figure 56. SFI install success using SWD connection (2)

	6 Example of SFI programming scenario for STM32WL
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build OEM application
	6.3.2 Perform the SFI generation (GUI mode)
	Figure 57. STPC GUI showing the STPC GUI during the SFI generation

	6.3.3 Programming input conditions
	Figure 58. Example -dsecurity command-line output
	Figure 59. Example -setdefaultob command-line output

	6.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 60. SFI install via SWD execution command-line output

	7 Example of SFI programming scenario for STM32U5
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	7.3.1 Build OEM application
	7.3.2 Perform the SFI generation (GUI mode)
	Figure 61. STPC GUI during the SFI generation

	7.3.3 Programming input conditions
	7.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 62. SFI install via SWD execution (1)
	Figure 63. SFI install via SWD execution - (2)

	8 Example of SMI programming scenario
	8.1 Scenario overview
	8.2 Hardware and software environment
	8.3 Step-by-step execution
	8.3.1 Build 3rd party Library
	8.3.2 Perform the SMI generation
	Figure 64. STPC GUI during SMI generation

	8.3.3 Programming input conditions
	8.3.4 Perform the SMI install
	Figure 65. SMI install success via debug interface

	8.3.5 How to test for SMI install success
	Figure 66. OB display command showing that a PCROP zone was activated after SMI

	9 Example of SFIx programming scenario for STM32H7
	9.1 Scenario overview
	9.2 Hardware and software environment
	9.3 Step-by-step execution
	9.3.1 Build OEM application
	9.3.2 Perform the SFIx generation (GUI mode)
	Figure 67. Successful SFIx generation

	9.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 68. Example of HSM programming using STPC GUI

	9.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	9.3.5 Programming input conditions
	9.3.6 Perform the SFIx install using STM32CubeProgrammer
	Figure 69. SFIx install success using SWD connection (1)
	Figure 70. SFIx install success using SWD connection (2)
	Figure 71. SFIx install success using SWD connection (3)
	Figure 72. SFIx install success using SWD connection (4)

	10 Example of SFIx programming scenario for STM32L5
	10.1 Scenario overview
	10.2 Hardware and software environment
	10.3 Step-by-step execution
	10.3.1 Build OEM application
	10.3.2 Perform the SFIx generation (GUI mode)
	Figure 73. Successful SFIx generation use case 1
	Figure 74. Successful SFIx generation use case 2

	10.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	10.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	10.3.5 Programming input conditions
	10.3.6 Perform the SFIx install using STM32CubeProgrammer
	Figure 75. SFIx install success using SWD connection (1)
	Figure 76. SFIx install success using SWD connection (2)
	Figure 77. SFIx install success using SWD connection (3)
	Figure 78. SFIx install success using SWD connection (4)
	Figure 79. SFIx install success using SWD connection (5)

	11 Example of combined SFI-SMI programming scenario
	11.1 Scenario overview
	11.2 Hardware and software environment
	11.3 Step-by-step execution
	Figure 80. GUI of STPC during combined SFI-SMI generation
	11.3.1 Using JTAG/SWD
	Figure 81. Combined SFI-SMI programming success using debug connection

	11.3.2 How to test the combined SFI install success
	Figure 82. Option bytes after combined SFI-SMI install success

	12 Example of SSP programming scenario for STM32MP1
	12.1 Scenario overview
	12.2 Hardware and software environment
	12.3 Step-by-step execution
	12.3.1 Building a secret file
	12.3.2 Performing the SSP generation (GUI mode)
	Figure 83. STM32 Trusted Package Creator SSP GUI tab

	12.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 84. Example of HSMv2 programming using STPC GUI

	12.3.4 SSP programming conditions
	12.3.5 Perform the SSP install using STM32CubeProgrammer
	Figure 85. STM32MP1 SSP install success

	13 Reference documents
	Table 3. Document references

	14 Revision history
	Table 4. Document revision history

