

http://opensource.amazon.com

Andy Oram and Zaheda Bhorat

Open Source in the Enterprise

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04195-5

[LSI]

Open Source in the Enterprise
by Andy Oram and Zaheda Bhorat

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Michele Cronin
Production Editor: Kristen Brown
Copyeditor: Octal Publishing Services, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery

July 2018: First Edition

Revision History for the First Edition
2018-06-18: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Open Source in the Enterprise, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Amazon. See our statement of editorial
independence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Acknowledgments. vii

Open Source in the Enterprise. 1
Why Are Companies and Governments Turning to Open Source? 2
More Than a License or Even Code 4
Groundwork for Understanding Open Source 5
Adopting and Using Open Source Code 7
Participating in a Project’s Community 13
Contributing to Open Source Projects 17
Launching an Open Source Project 20
Open Source and the Cloud 24
Conclusion 25

v

Acknowledgments

Creating and growing open source projects and communities takes a village.
Throughout this book, we reference projects, processes, books, reports, best
practices, and all forms of contributions developed by foundations, companies,
communities, and individuals. We trust that these will be incredibly valuable
resources on your open source journey and will provide the additional depth
needed on each topic.

On this, the twentieth anniversary of open source, we’d like to acknowledge our
deepest thanks to every individual member of an open source community who
has contributed to open source in any way for their significant and valuable con‐
tributions, in sharing code, tools, lessons, practices, processes, and advocacy for
open source for the benefit of all.

We’d also like to thank our reviewers who made extensive comments and helpful
suggestions—Cecilia Donnelly, Karl Fogel, James Vasile, Chris Aniszczyk,
Deborah Nicholson, Shane Coughlan, Ricardo Sueiras, Henri Yandell, and
Adrian Cockcroft. And finally, thanks to both the O’Reilly Media and AWS teams
for supporting this book to bring these resources together.

—Andy and Zaheda

vii

Open Source in the Enterprise

Free and open source software is everywhere, frequently taking over entire fields
of computing. GNU/Linux is now the most common operating system, powering
data centers and controlling Android devices around the world. Apache Hadoop
and its follow-on open source technologies brought the big data revolution to a
wide range of organizations, whereas Docker and Kubernetes underpin
microservices-based cloud computing, and artificial intelligence (AI) has over‐
whelmingly become the province of open source technologies such as Tensor‐
Flow and Apache MXNet. The major players in computing—such as Amazon,
Apple, Facebook, Google, Huawei, IBM, Intel, Microsoft, PayPal, Red Hat, and
Twitter—have launched and maintain open source projects, and they’re not
doing it out of altruism. Every business and government involved with digital
transformation or with building services in the cloud is consuming open source
software because it’s good for business and for their mission.

It is time for organizations of every size and in every field to include free and
open source software in their strategies. This book summarizes decades of les‐
sons from open source communities to present a contemporary view of the
trend. We’ll help you effectively use the software, contribute to it, and even
launch an open source project of your own.

Not only do companies get better software by utilizing open source, but the
dynamics of working in that community-based fashion opens up new channels
for creativity and collaboration within these companies. Conversely, institutions
that fail to engage with open source will fall behind those that use it effectively.

Finally, it’s worth mentioning that trade secrets and confidential business plans
can coexist with open source engagement. If even the US National Security
Agency and UK Government Communications Headquarters can use open
source software, you can, too.

1

https://www.linuxfoundation.org/
http://hadoop.apache.org/
https://www.docker.com/
https://kubernetes.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
http://bit.ly/2JJuEt3
http://bit.ly/2JJuEt3
https://github.com/gchq

Why Are Companies and Governments Turning to Open
Source?
There are solid business reasons for using, supporting, and creating open source
software. Benefits include the following:

Multiplying the company’s investment
Open source benefits from the famous principle: “The smartest people in
every field are never in your own company.” At best, an ecosystem of innova‐
tion will grow up around an open project. Evidence that opening a project
pays off financially comes from a recent report prepared under World Bank
auspices. Careful tracing of contributions to their project—a form of geospa‐
tial software called GeoNode—showed that the World Bank’s subsidiary had
invested about one million dollars in the project but had benefited from an
estimated two million dollars invested by other organizations.

Benefiting from the most recent advances
The AI projects mentioned in the introduction are a good example. Your
data scientists will want implementations of the best and most up-to-date
algorithms, and these implementations will usually be open source. There is
no need to reinvent the wheel in-house. Furthermore, your company can
innovate more quickly by using tools and existing code that you can get with
a simple download and installation process.

Spreading knowledge of the software
When the code is open—and especially when a robust community grows up
around it—adoption is broader. This initially takes effort on the company’s
part, but it leads to more people throughout the industry understanding the
code and the contribution process.

Increasing the developer base
Broader adoption, along with wide discussion of the source code, translates
into a larger pool of talented developers from which the company can hire to
work on the code and related projects.

Upgrading internal developer skills
The spread of knowledge goes in many directions. Developers already recog‐
nize that the best way to learn good coding skills is to work on an open
source project because they can study the practices of the top coders in the
field. These benefits spread to the company that employs the open source
developers.

Building reputation
Most people want to work for organizations they can boast about. Adopting
open source—both the code and the practices that go with it—shows that

2 | Open Source in the Enterprise

http://bit.ly/2JVyrqQ
http://bit.ly/2JFavs4
http://bit.ly/2JFavs4
http://geonode.org/

your organization is cool. And if you can release your own code as open
source and win adoption for it, you prove that your organization is a leader
in your field, adept at the best development practices.

Recruiting and retaining developers
Good developers want to work on exciting projects that affect large groups of
people. They also want their skills and contributions to be widely recognized,
and they enjoy the interactions they can have with peers around the world.
All these considerations lead them to gravitate toward open source projects,
and if your competitors are more successful than you in supporting such
projects, developers will bring their talents and reputations to those compa‐
nies instead of yours.

Faster startup of new companies and projects
In the frenetic pace of today’s social and business environments, a startup or
new division needs to go from concept to product in months, not years.
Working with a community, both on existing software and on your own
innovations, saves you time and lets you focus limited employee time on crit‐
ical competitive parts of your product.

Many governments have launched major open source policies and initiatives. As
France and the United States demonstrate, we are now seeing a shift from the use
of open source to policies that encourage the development of open source and
investment in open source communities. Some have committed to an “open
source first” strategy, requiring vendors as well as internal developers to use open
source licenses and practices wherever possible. For example, the government of
France has stated that all agencies must do future code work in open source.
With such policies, agencies can revise obsolete, expensive, slow procurement
practices that have been notorious for causing failed software projects and outra‐
geous cost overruns. For governments, open source becomes a staging ground
for the latest, more responsive software practices that have proven more efficient
and productive in other sectors.

Furthermore, governments are realizing that each agency’s needs are similar to
other agencies, around the nation and around the world. Open source means, at
least, that the investment made by one agency can save money for all the rest—
and, at best, that the agencies will share requirements and collaborate in the clas‐
sic open source manner to create software that helps governments better serve
their citizens everywhere. Open source collaboration also opens opportunities for
smaller companies, citizen developers, and nonprofits to contribute to innova‐
tion in government services. Finally, the software creates a common standard
that fosters interoperability for many kinds of development.

Why Are Companies and Governments Turning to Open Source? | 3

http://bit.ly/2HLvO5v
http://bit.ly/2JTtTko
https://code.gov/

More Than a License or Even Code
In open source, a productive community and its accompanying practices are just
as important as the code itself. Officially, of course, open source is defined by a
license. Popular ones include the GNU General Public License, the Mozilla Pub‐
lic License, and the Apache License, all of which go through occasional version
changes. But in practical terms, you need much more than a license to have a
thriving open source project.

Many people cite the principle “community before code” from the Apache Soft‐
ware Foundation. At a conference, one open source community leader explained
the principle as follows:

If you have great code and a dysfunctional community, people will leave and the
code will atrophy. If you have dysfunctional code but a great community, people
will improve the code.

That observation extends to the culture of your own company, where it becomes
crucial to create a community among developers from different teams and let
them work productively in the larger project community.

We summarize these practices in this book, along with references to resources
that will help you on your open source journey. Here are a few places to go for
more information:

• An extensive reading list provided by the Linux Foundation. Perhaps the
most cited books from this list are Karl Fogel’s Producing Open Source Soft‐
ware (O’Reilly, 2018) and Eric Raymond’s classic The Cathedral and the
Bazaar (O’Reilly, 2009).

• A comprehensive set of guides from the Linux Foundation. These are devel‐
oped by members of the TODO Group, a collaboration among open source
program offices and contributors from companies that have adopted open
source principles, practices, and tools.

• Resources and answers to questions from the open source community at
Opensource.com.

So powerful are open source practices and community behavior that many com‐
panies mimic open source techniques internally, in a process called InnerSource.
You can pursue this process, described in another O’Reilly Media report, in par‐
allel with open source participation or on its own.

Most organizations—unless they grow organically out of a healthy open source
project—greatly underestimate the role of open source culture. This culture is
strikingly different from the secretive, hierarchical, management-driven cultures
of most companies today. Values of open source projects include listening skills,
transparency, collaboration, sharing expertise, mentoring, recognizing merit

4 | Open Source in the Enterprise

http://bit.ly/2HRdIz4
https://mzl.la/2MrPfnr
https://mzl.la/2MrPfnr
https://www.apache.org/licenses/
http://bit.ly/2JUsrOO
http://bit.ly/2yhvkoy
https://producingoss.com/
https://producingoss.com/
http://bit.ly/2Mq1uRG
http://bit.ly/2Mq1uRG
http://bit.ly/2HPlyZX
http://bit.ly/2MsWpI3
https://opensource.com/resources
http://bit.ly/2JCC71i
https://oreil.ly/2JBVpnd

wherever people demonstrate it, respecting diversity of needs and opinions, and
disciplining one’s own ego to accept criticism.

Many companies establish an open source program office (OSPO), where open
source is fostered, supported, nurtured, shared, and explained both inside and
outside the company. OSPOs are vital for larger organizations that have invested
heavily in consuming and contributing to open source software. OSPOs from
different companies also collaborate to share best practices that sustain open
source development and communities. You can learn more about OSPOs via case
studies by the TODO Group.

Groundwork for Understanding Open Source
Before discussing open source software from three angles—how to adopt soft‐
ware developed elsewhere, how to contribute to a project, and how to launch a
project of your own—let’s quickly try to dispel a few myths:

Open source software is low quality or less secure
Now that major companies are involved in open source, this myth is not
cited so often, but it persists in attitudes that often go unstated. People accus‐
tomed to typical procurement processes have trouble believing that some‐
thing distributed without cost can be high quality. In fact, open source
projects have replaced the need to charge for licenses through a number of
other funding strategies. But the key issue is that strong open source projects
adopt strict quality processes, which your organization can also adopt for
your own benefit. As for security, flaws occur in both open source and closed
software. Neither is guaranteed to avoid breaches. Experience suggests that
transparency and a large development community in open source lead to
faster fixes and faster distribution of the fixed software.

Open source software lacks support
Popular open source projects have many sources of technical support from
both organizations and individuals. The open code is a great advantage
because you are not locked into a single company for support. Smaller and
younger projects might not have yet developed this ecosystem of support, so
getting support here might require you to devote more developer time and
draw on informal help from the community. Likely enough, you will stumble
over a critical bug that requires immediate attention someday, and you will
be thankful that you can apply your own developers or a hire a developer to
fix the bug instead of waiting for an indifferent vendor’s fix.

Open source software projects are unmanaged and chaotic and free for the taking
As you will see through the course of this book, successful open source
projects have well-defined processes for decision-making, review of code,
and dealing with users like your organization. You must follow certain rules

Groundwork for Understanding Open Source | 5

http://bit.ly/2t7oonT
http://bit.ly/2yciGa1
http://bit.ly/2yciGa1

when you use code developed by others. The code almost always has a
license, but with different rules from proprietary code. If one of your devel‐
opers copies code found on the internet into your own products, you will
almost certainly be violating a license, and it’s a bad practice for legal and
other reasons. These points receive more discussion at the Open Source Ini‐
tiative and Software Freedom Conservancy. Later sections of this book
explain current practices for accepting open source code into your organiza‐
tion.

Using open source software requires you to open your code
This is something of a reverse of the previous myth. Certainly, you need to be
aware of what the license requires before you use open source software.
Some licenses have rules for contributing back changes you make, and as
you’ll see later, you benefit by doing so. (These licenses are sometimes called
“viral,” but their users dislike the negative connotations of that word; “copy‐
left” is a more neutral term.) Most open source projects, even those with
rules for contributing back code, are distributed as libraries that you can link
into your own code without opening the functions you write yourself (for
instance, the GNU Lesser General Public License).

You can gain a user base and community by releasing code on a public repository
Opening code out of laziness never works. Open source projects do have an
advantage over proprietary ones in gaining adoption, but only if you treat
the project as a respected element of your business strategy. Open source
projects realize value only as part of an active community. In many cases, the
interactions inherent in that process are in and of themselves highly valuable
to participants. But open source dynamics reward ongoing investment. You’ll
see more of how to do this during the course of the book. Inactive projects
produce declining benefits over time as the costs of stagnation add up.

An open source project will occupy all your developers’ time with support requests
In open source, you trade the time you spend on support for the contribu‐
tions you get back from the community. Certainly, you must budget time for
support, but your company can control how much time to put in and can
pull back in order to meet deadlines on internal projects or control excessive
support costs. In a successful open source community, all members engage in
education, and your company is not solely responsible for providing it.

6 | Open Source in the Enterprise

https://opensource.org/
https://opensource.org/
https://sfconservancy.org/
http://bit.ly/2MoTuAt

Terminology: Free and Open Source
The terms free and open source appear interchangeably in this book, because with
negligible exceptions, everything that falls under the definition of free software
also falls under the definition of open source, and vice versa. The term free soft‐
ware is used by those who want to emphasize the aspects of liberty, privacy, and
sharing, whereas open source is used by those who emphasize its practical and
business benefits.

Do not use the obsolete term freeware, which used to refer to programs whose
developers kept the source code closed while distributing the executable files cost
free. This is not free software as currently understood. To be truly free (or open
source), the source code must be available and must be under a license that
allows its users to modify and redistribute it.

Adopting and Using Open Source Code
We trust you are curious what open source code can offer, and perhaps eager to
find code that can solve a business need. This section summarizes the key pro‐
cesses you need to adopt to successfully use other people’s open source code. The
resources cited earlier in the book go into much more detail.

Create and Document an Internal Open Source Policy
Your development team should know exactly what open source code it is using,
and where. This tracking is done by your OSPO or by a virtual team of employ‐
ees if you have not yet set up an OSPO. Tracking has two main purposes: estab‐
lishing an audit trail to demonstrate that you are using the code properly, and
ensuring that you comply with the license obligations on your third-party open
source dependencies. Collecting this information is critical for many reasons;
most organizations do so through automated tools in their development cycle.

Writing a strategy paper is valuable to educate managers and employees. Think
big and aim for the end state that you are trying to achieve. At the same time,
frame the broad, high-level goals in the context of business outcomes. Here are
some points that have been have used successfully to explain what open source
can do for an organization:

• Attract and retain talent
• Increase agility, drive innovation, and accelerate the creation of business

value
• Reduce costs and improve efficiency by focusing your staff on writing busi‐

ness logic and by eliminating reinvent-the-wheel heavy lifting

Adopting and Using Open Source Code | 7

http://bit.ly/2l7Jkrh
https://opensource.org/osd

• Generate revenue or gain market share, either through your product or
through thought leadership

Break down your strategy into milestones. This allows you to assign ownership
and speed up the delivery of the multiple processes that are needed. In terms of
strategy, think about these:

• Open source governance and policies that clarify to the broader company
how and when it can use open source

• Policies specifying how developers can contribute to external open source
projects: roles and time spent

• Encouraging an open policy in applicable software projects from the start
among technology leadership and enterprise architecture groups

• Starting an InnerSource model in tandem, in which you adopt open source
practices for internal development across your entire company

Because the adoption of open source crosses many organizational boundaries
and can lead to new organizational structures, you might need to explore the cre‐
ation of new policies that allow developers to collaborate internally across those
structures.

It is important to find a senior sponsor who will help open doors and champion
your cause. This can be the most difficult task we describe in this section, but it is
critical. You will need the sponsor on your journey. Make your strategy paper
compelling, and they will buy into your high-level, long-range vision. Aim for
CTO or CIO support, but be prepared to have to work your way up to that.

Legal staff need to be trained to understand licenses that might be radically dif‐
ferent from anything they have dealt with previously. The marketing and PR
teams also need to discuss the effects of open source on your practices, quality,
and responsiveness to customers. This requires them to study open source prac‐
tices, collaborate on communication with the communities, and translate these
new practices into interactions with your customers. Members of the open source
community that you’re joining (and probably hiring from) can explain to your
marketing team the importance of attending and supporting events held by the
community. In addition, the sales team needs to understand licensing well
enough to answer questions about using and extending the code, when present‐
ing your solution to customers.

If you don’t have a clear process, you risk having someone incorporate open
source code informally without following good practices. Not only could this vio‐
late the code’s license, but it deprives you of the benefits of properly using open
source code. For instance, critical bug fixes are released regularly by open source
projects, and you need to know where you’re using this code in order to install

8 | Open Source in the Enterprise

the fixes. Instituting clear processes also allows your employees to become valued
members of the community and represent your organization’s needs there.
Finally, a clear and well-communicated policy leads to dramatically more partici‐
pation and more awareness of your open source initiative throughout the
company.

Formalize Your Strategy Through an OSPO
Developers can participate informally as members of open source communities,
but companies who want to fully benefit need to centralize the logistics for sup‐
porting open source: legal vetting, project vetting, recruiting developers to work
on the code, sponsoring projects and events, managing communications and
community relations, and so on. Most companies entering open source have
therefore created an OSPO to promote it and handle the associated tasks. Several
OSPO leads have collaborated via the Linux Foundation’s TODO group to assem‐
ble sample open source templates and policies that can be useful to companies
getting started. Your OSPO can sponsor the activities we describe in subsequent
sections.

Build Ties Throughout the Company
After creating a policy, make sure that all of your developers know it. Many other
areas of the company, such as the legal and procurement teams, need to be on
board as well.

First, create a supportive community of open source practitioners within the
company. Developers and others who have worked in open source communities
can do this at a grassroots level, with or without support and guidance from
management. The advocates spend time evangelizing and educating other
employees about open source through activities such as regular lunchtime ses‐
sions, webinars, and presentations at team meetings.

A training course given to all developers in the company will make sure everyone
has the same understanding and expectations about using and contributing to
open source.

These outreach activities all help demystify open source and accustom the
employees to its culture. Most important, those activities uncover other potential
champions, so you can begin working with them early on.

Assess Potential Projects
There are plenty of places to find open source code. GitHub and GitLab are two
well-known code hosting sites (both use the popular Git version control software
developed originally by Linus Torvalds). A search for keywords describing your
need (for instance, “employee management”) might well turn up thousands of

Adopting and Using Open Source Code | 9

https://github.com/todogroup/policies
https://github.com/
https://about.gitlab.com/

projects. So be careful to determine that an interesting project really meets your
needs. One Linux Foundation guide focuses on the process, and the book Open
Source for the Enterprise by Dan Woods and Gautam Guliani (O’Reilly, 2015) also
offers guidelines for judging project readiness. Following is a list of typical things
to check for:

Code quality
You can assess this by examining the code, checking the ratings (stars) if the
project is on GitHub, looking at the number of reported bugs, and seeing
what people say about the project online. All code has errors, and you want
to see that people report them, so the presence of bug reports is a good thing
—so long as the important bugs get fixed.

Active development
Has the project put out any new releases recently, or at least bug fixes? Are
there many pull requests, which indicate interest in the code?

Project maturity
How long has the project been in existence? Is there an active community?
Are there a number of people maintaining the code? Does it have funding?
Are books, videos, and other forms of education available?

Level of support
Can you get help to install and maintain the software? Is there good docu‐
mentation for the project?

Health of the community
Are the mailing lists active? Do developers respond quickly and positively
when bugs are reported? Are people polite and productive when responding
to issues? A growing community is a good sign but not a necessity, because a
project that serves a small user base might turn out to be just right for you.
On the other hand, an inactive or declining community is a warning sign.

Public decision making
Are all choices debated on the public list? If you get a sense that leaders make
important decisions privately and just report results to a mailing list or
repository, it’s a red flag indicating that you might not be able to influence
the direction of the project. You might not think such influence is important
now, but as you become dependent on the software, you might want to have
a say in the future.

Governance/commit access
Is there a documented way for new contributors to gain commit access? If
you invested your time and expertise in contributing to the project, you will
want it to support an increase in your responsibilities.

10 | Open Source in the Enterprise

https://www.linuxfoundation.org/using-open-source-code/
http://shop.oreilly.com/product/9780596101190.do
http://shop.oreilly.com/product/9780596101190.do

Security reporting
Professional projects will provide a way for people who discover security
flaws to contact the leadership privately so that the flaws can be fixed before
advertising their existence.

Comply with the License
The OSPO or team responsible in your organization for tracking the use of open
source code should also make sure you obey the license. This requires attention
from both developers, who understand the technical implications of the license,
and legal staff. Participants from the open source community have formed the
OpenChain Project to make open source license compliance simpler and more
consistent and thus encourage more companies to use open source software. Rec‐
ognizing that it can be difficult to find the license or attribution of code, another
open source project called ClearlyDefined helps users to find and maintain this
compliance information. The book Open Source Compliance in the Enterprise by
Ibrahim Haddad (The Linux Foundation, 2016) covers compliance in depth.

Build a strong relationship with your legal team and partner with them. They will
almost certainly be dealing with incoming work around open source: for
instance, they need to approve doing the work under an open source license and
check the contributor agreements under which your developers submit code to
the projects. This is an opportunity to collaborate on the unfamiliar aspects of
open source, build a strong relationship, and earn trust. Use these relationships
to help position open source policies in a more favorable light for development
and developers.

Also form ties with your procurement colleagues. You can add value here by rec‐
ommending specific additional items to put into procurement contracts around
open source and help the team review contracts with third parties.

Manage Community Code as Seriously as the Code You Create
Even though an outside organization developed the open source code, you need
to manage its use within your organization. It should be subject to testing and to
checking for back doors and other flaws. You need to set goals and deadlines for
incorporating the code into your own, just as when your employees write code
for your company, and devote resources to making sure everything goes as
planned.

Of course, some tasks are different when you get code from outside. You need to
act as part of the community that maintains the code. For instance, you need to
integrate your developers with the community’s version control system; this
might require an account where the community hosts the code, such as GitHub
or GitLab. If you alter the code (discussed in more detail in “Contributing to

Adopting and Using Open Source Code | 11

https://www.openchainproject.org/
https://clearlydefined.io/about
http://bit.ly/2HKTXt7
https://github.com/
https://about.gitlab.com/

Open Source Projects” on page 17), you should set up a branch of the version
control system for your version or use your own internal version control.

Change Your Reward and Management Structure
Developers working with an open source community will do things differently
from closed projects and will need additional skills in communication and nego‐
tiation. Your reward structure must reflect the extra tasks you require of these
developers. You must set aside developer time for such tasks as learning the tools
used by the project, participating in chats and on mailing lists, mentoring less
experienced colleagues, checking and modifying other peoples’ contributed code,
and attending conferences or leadership meetings for the open source project.

In particular, as developers and other employees spend time on efforts less
directly related to the deliverables of their specific teams, you will need to adjust
performance evaluation criteria for both them and their managers. This is espe‐
cially true for companies that pay performance bonuses. It’s crucial to align the
goals and incentives within the company with success factors on the open source
project. In turn, when employees attend and speak at conferences, blog about
their work on the project, and participate in governance, their contributions
reflect well on your company and allow you to reap later benefits such as hiring
new developers.

Besides approving these changes, which can be extensive, to the compensation
plan for many employees, managers must also recognize that software deadlines
are dependent on activities by the community, not just internal employees. Dead‐
lines for software projects are notoriously difficult to set accurately, even when
they are run totally by internal teams, so the new dependencies on outsiders
might simply help management recognize reality. If the community decides that a
feature your company needs is low priority, go ahead and use your own resources
to finish it in a timely manner—and contribute the improvements back to the
community. Other companies will be doing similar things, and all will benefit.

Ego and Open Source
It is natural to take pride in creative output. Software is rarely any longer a single
person’s ingenious inspiration in the way Donald Knuth developed TEX and
Metafont on his own. But even when software requires team effort, working
tightly together as a team provides its own sense of a unique shared identity. Fur‐
thermore, the team can boost a developer’s personal needs. It’s easy in a close-
knit group for each member to know the other’s strengths. A manager can see
exactly how someone contributed and base pay increases and promotions on
those contributions.

12 | Open Source in the Enterprise

This psychological and practical reward structure is profoundly changed by open
source. We must consider how each developer finds personal fulfillment and an
acknowledgment of their contributions in an open source context.

When starting or joining an open source project, a team must give up some con‐
trol and must learn to work within much more amorphous groups of people who
come and go, all motivated by different goals. But ultimately, the individual has
an even greater chance to shine on an open source project, because every contri‐
bution is available for the world to see. It might turn up in distantly related
projects that were never imagined. And demonstrating solid contributions that
other people choose to adopt is a wonderful boost to a job application. Open
source also rewards people who have skills in communication, project and people
management, design, web development, documentation, translation, and much
more in addition to coding chops. All contributions matter in a project.

This high visibility of open source projects can also scare managers who worry
that their best contributors will be lured by higher salaries or more prestigious
jobs offered by a competitor. The solution to that problem is to be that competi‐
tor. Make sure your employees have the time to contribute to the open source
software you use, both as coders and in a leadership role. Give them the freedom
to run with good ideas and provide them the resources to implement useful tools
that developers or teams come up with. If you have star performers, encourage
them to join boards and speak at conferences. They will help turn your company
into a magnet for other top developers.

Participating in a Project’s Community
The health and success of your company will now depend, to a greater or lesser
degree, on the health and success of the open source project. Not only should you
devote employee time to participation as community members (a topic covered
in more detail in the section “Change Your Reward and Management Structure”
on page 12), but your company can be a valuable resource. Your experiences with
the software, including pull requests, bug fixes, and change requests, can help the
community improve the code for everybody’s benefit.

Participation means doing the same things other contributors do. Developers
working with the code can do the following:

• Post questions, ideas, and bug reports
• Contribute fixes and new features, signing the contributor agreements that

give the project rights to the contributed code
• Attend code-a-thons and conferences, always being transparent about whom

they work for

Participating in a Project’s Community | 13

• Become committers (advanced developers who are trusted to change the
core code repository) and participate in the project’s governance, as they
grow into their community and leadership roles

Their participation will help them gain recognition from the community of users
and developers for both their own work and your company’s support.

Many successful projects in free and open source software follow community
principles commonly known as the Apache Way. Although members of these
projects might not use exactly the same terms as defined by leaders of the Apache
Software Foundation, the principles are recognizable in the projects’ day-to-day
conduct.

Developers will come to your company with these values or will learn them as
they work on open source projects. What’s really difficult for the company is that
similar values—tempered by the need for confidentiality in certain areas, which
every organization experiences—must percolate from the developers through the
entire organization. Advocates for open source work need to schedule discus‐
sions with management and get their buy-in on the culture needed to reap the
benefits of open source. The value of transparency and community participation
must be accepted at all levels of the company by managers, giving developers the
freedom to determine where best to invest their efforts.

Here are some of the activities developers need to do when joining an open
source community:

• Check the code of conduct and contributor agreements, which are important
to adhere to

• Become adept at the tools used by the project
• Review the project’s documentation (which varies in comprehensiveness and

completeness), starting with the README file
• Become comfortable with the process for making contributions provided by

the project
• Ask questions and become familiar with other contributors through partici‐

pation in mailing lists or groups
• Start taking items to work on from the project’s TODO list
• Submit bug fixes

After your employees gain an understanding of the open source code, your orga‐
nization might find reasons to make your own changes. Often, a project will not
have the exact features that you want. You might also decide to make different
performance trade-offs. Open source projects encourage users to send all of their
changes back “upstream” to the project repository. Depending on the license and

14 | Open Source in the Enterprise

https://www.apache.org/foundation/governance/

how you plan to use the code, you might be required to do so. Well-designed
projects are modularized so that people who want your changes can adopt them
and others can ignore them.

It can take a long time—even years—to get your changes into the main project,
or core. The project leaders might hold off for many reasons: they might decide
that no one else needs your enhancements, or be afraid that they’re buggy, or
worry that they’ll have a negative effect on performance. You also can run
aground over cultural barriers: your developers simply might not understand the
community well enough to gain its attention and trust. But it’s worth addressing
any concerns the project leaders have and persist in trying to work together with
them, not on your own.

You might need to set up a separate branch for development or clone the code
and take it internal to your organization. This is called a fork. There are usually
ways to reintegrate your fork with the main branch later, if the core committers
agree to that.

When you contribute or push your fixes back, you get the enormous benefit of a
thorough and uncompromising code review. The code that ultimately goes in will
end up much better than the code you submitted: fewer bugs, better perfor‐
mance, and an architecture that is more generalized for future uses.

Furthermore, if your code becomes part of the core, you can simply install any
updates that come from the project, secure in the knowledge that they have your
enhancements and will work with them. If you fork the code, you must either
give up getting new versions (and suffer from any security flaws and bugs the
original code contained) or tediously reapply your enhancements to the new ver‐
sion, testing carefully and checking for changes that invalidate your own work.

The cost of maintaining forks is quite high over time, and most companies that
lack the training to contribute back to the original project also lack the internal
processes that would allow them to benefit from the original project’s continued
development. They don’t download and incorporate upstream bug fixes, security
patches, and feature improvements because the effort of coordinating with the
original project increases as the original and custom versions diverge.

All that said, you might find that the changes you make to code have no prospect
of being accepted into the core. Or, you might have reasons for withholding your
changes; for instance, if you need to bury secrets in the code for regulatory or
competitive reasons. Some companies choose to maintain a separate branch,
publicly or privately, and do the grunt work of reapplying enhancements to new
versions. Sometimes, companies contribute part of their changes back but with‐
hold others. Any withholding, however, can reduce the value and appeal of the
project.

Participating in a Project’s Community | 15

Quality and Security: A Comparison of Open and Closed Source
Just as you evaluate a vendor for quality, good business practices, customer sup‐
port, and general reputation before buying its goods, you need to evaluate open
source software. The section “Assess Potential Projects” on page 9 offers some
pointers as a start. With open source software, the risks of making the wrong
choice are that you don’t get the quality you expected or that interest in the
project dries up and contributors move elsewhere. If the latter problem happens,
you probably should move too, although you have the option of taking responsi‐
bility for the code and recruiting others to keep it going.

In return, open source has several advantages over a closed-software vendor.
Open source offers you other options if your vendor no longer suits your needs;
that is, goes out of business, abandons the field you’re in and takes the product in
a different direction, ratchets up the cost of the product precipitously, refuses to
fix a bug or add a feature that is important to you, or even inserts malware that
tracks your activity. All of these things have happened in proprietary software.
Open source software grants you control over your future direction. You can
switch vendors and decide how to fix problems in ways that best suit your needs.

Much ink has been strewn about on claims that closed source is higher quality or
lower quality or more secure or less secure than open source code. The question
has not been resolved either way. To encourage robust development practices, the
Core Infrastructure Initiative at the Linux Foundation has created a “best practi‐
ces” guide covering a wide range of common issues, from source control to test‐
ing and code analysis.

Security experts almost universally agree that an open source process is better for
secure code and standards, because experts everywhere can evaluate it. On the
other hand, the notorious Heartbleed flaw, which lay dormant in the widely
deployed open source security software OpenSSL for many years, shows that
open source is no panacea. Fortunately, major open source projects made signifi‐
cant, externally verifiable, process changes to prevent something like Heartbleed
from happening again. For instance, companies working with the Linux Founda‐
tion now collaborate to support the developers working on OpenSSL as full-time
contributors.

At any rate, security in these highly networked times has become much more
complicated than hardening your system. You can assiduously install all patches
and avoid opening suspicious attachments but still download malware from a
compromised website you visit or fall victim to a phishing scheme. Security must
always be viewed holistically. It is cultural and policy-driven as much as
technical.

16 | Open Source in the Enterprise

http://bit.ly/2HNwvve
http://bit.ly/2HNwvve
http://heartbleed.com/

Contributing to Open Source Projects
If you use open source code, you will get much more from the project by contri‐
buting back, both through code and through other practices such as sponsorship
and donations. It makes sense to begin by creating an open source project around
noncritical software such as a tool in your support software, a platform add-on,
or a plug-in.

This section covers making contributions to existing projects, and the next sec‐
tion looks at the extra steps involved in launching one of your own.

Establish the “Why” Throughout the Company
You understand by now that adopting open source is not a matter of copy and
paste but represents a serious commitment from your organization. Managers
must approve the use of resources for the open source project, including the
kinds of participation in the community discussed earlier. You need a story that
justifies the investment of checking the code and community and then participat‐
ing as community members. Thus, you need to explain clearly how the use of the
code contributes to the business goals of the organization, and you need to check
regularly to make sure that the local goals of the developers stay aligned with
these larger goals. A whitepaper from Mozilla and Open Tech Strategies offers
ten different overall strategies for creating and running open source projects. The
variety of governance structures and motivational frameworks discussed in that
paper and the impacts they have on outcomes show how important such choices
are.

Hire from the Community
A great way to jump-start your use of an existing open source project is to hire
qualified contributors who are currently working on the project. Some compa‐
nies recruit the leaders or key committers, paying them to work full time on the
open source project. Other companies strike some kind of balance, allowing a
developer to work part time on the open source code and the rest of the time
integrating the code into the company or doing other company-specific projects.

The balance between internal and open source work can be difficult to maintain
because managers are always eager to get more help for internal projects and are
liable to slip more and more of this work onto the developer’s schedule. To
recruit developers from the community, your company must show your sincere
commitment to the project, through your business plan and your participation in
the project. You might also need to review your employee contract and amend it
to support developers who want to contribute to their open source projects in
their own time. When developers are hired, both management and the develop‐

Contributing to Open Source Projects | 17

http://bit.ly/2HONzB4

ers themselves must stay alert and stick to the original deal about how they divide
their time.

Regardless of how much time you invest in the open source project, a healthy
project that you adopt for the right reasons will pay you back handsomely for the
reasons stated in “Why Are Companies and Governments Turning to Open
Source?” on page 2 earlier in the book.

Develop Mentoring and Support
Your employees will need training, both to work with the new code you are
handing them and to join the open source project. If you don’t already have
employees comfortable with working in an open source environment—and it’s
worth polling your developers to find out, because you might be surprised to
learn that some of them have experience with open source—it’s worth hiring
developers who do, as explained in the previous section. These developers should
also mentor others, because this is a key part of bringing developer resources into
open source projects, whether within the company or in the wider community.
As mentioned earlier, working on open source projects is an excellent way to
improve a company’s developer skills.

Set Rules for Participation
Open source changes every organization that adopts it, even just to participate in
one outside project. Developers at many levels of the organization, and some‐
times other employees, are now exposing their conversations and decisions to
public scrutiny. Assume that what a developer says in an online forum for an
open source project will be seen by the entire world and will last online forever.
This might sound like a reason to discourage participation, but it’s not. It just
means that you need to establish rules for online participation, such as a code of
conduct that enforces honest but respectful dialog and that lays out the rights of
people who regularly experience discrimination or abuse. Many open source
projects provide good codes of conduct that you can adopt. Several codes that
have been carefully tested and vetted already are offered by the TODO Group.
Revised versions of this code of conduct are implemented by companies such as
Amazon Web Services across their open source projects.

There has recently been a heightened awareness of practices in the computer
industry (and other parts of society) that discourage the contributions of women
and minorities, or that create a harassing and unsupportive environment. These
are habits you’ll want to root out of your organization, regardless of whether
they’re exposed to public scrutiny. The company and community must take posi‐
tive and affirmative steps at diversity and inclusion.

18 | Open Source in the Enterprise

http://todogroup.org/opencodeofconduct/
https://aws.github.io/code-of-conduct.html

Foster Open Communication
Beyond showing respect, your developers need to engage with the open source
community productively, which might require a culture change. Developers
might be used to calling an informal meeting of two to four people and making
design decisions informally. Some kinds of Agile and Scrum methodologies
encourage this behavior, but they also provide techniques for accepting input
from wide swaths of the organization. Therefore, Agile and Scrum can be adap‐
ted to open source. In fact, open source is open to a wide range of methodologies.

Developers must now learn to conduct all discussions of significant design issues
in forums where the decisions are archived for others to view. For changes that
you intend to contribute back to the community, discussions must be on the
community mailing list or communication channels everyone can join, such as
Slack, Gitter, Stack Overflow, or Google Groups. Otherwise, you will take the
community by surprise when you submit changes and will probably fail to get
changes accepted.

In addition to providing information in a timely manner, developers must also
look beyond the narrow horizons of their team and recognize the value of input
from a diverse range of people, either from other parts of your company or from
outsiders who might live halfway around the world. This is where techniques of
respectful dialog must enter your corporate culture. Developers need other new
skills, as well: they must be good listeners, take feedback from a variety of devel‐
opers, reject unsuitable contributions while encouraging the contributor to learn
and try again, and deal with people from different backgrounds with varying lan‐
guage skills.

When developers are accustomed to making design decisions in hallway conver‐
sations or over the telephone, they might need some time to learn to make deci‐
sions in more open ways and to use the less-intuitive communication media
provided by mailing lists and bug trackers. Joining an open source project is an
excellent way to raise the priority of good communications, honest disagreement,
and open, respectful dialog throughout your organization.

Decisions can take longer when the crowd become involved. If you short-circuit
the open source discussion process and make a quick decision in order to get a
product out the door, you might need to roll back some of the work done later so
that the code can be maintained and can adapt to future needs.

An important side benefit of diligently recording decisions is that the project
becomes less dependent on particular individuals and can reorganize itself grace‐
fully if key individuals leave. No single person has unique or irreplaceable
information.

Contributing to Open Source Projects | 19

https://slack.com/
https://gitter.im/
https://stackoverflow.com/
https://groups.google.com/

Launching an Open Source Project
As your organization comes to recognize the benefits of the open source develop‐
ment model, you might decide to start a project of your own. Careful planning
can make the difference between a quickly forgotten fiasco and a thriving, sus‐
tainable code base. A Linux Foundation guide offers more details about the pro‐
cess and a comprehensive project launch checklist. All the principles of the
previous sections apply, and some further considerations are summarized in this
section.

Choose a License
Your legal staff must understand how you plan to use the code, including
whether you will make closed enhancements for internal use. The license you
choose will control your own use as well as the decisions other companies and
individuals make to adopt your software. So, make sure it is aligned to the busi‐
ness’s strategy.

There is no reason to get fancy, though. Earlier in this book, we mentioned a few
of the most popular licenses. Although there is a long list of open source licenses
at the Open Source Initiative, we strongly urge that you to go with one of the
popular and recent licenses. GitHub offers a guide with a selection of well-crafted
licenses. If you don’t think one of these meets your needs, go back and candidly
reevaluate your motivation for going open source. If you can’t use a popular
license, you are probably trying to do something out of sync with open source
principles, and could end up driving away the people whom you want to attract.

Open the Code Right Out of the Gate
It’s best to create a public repository and invite participation from outside your
company before you create a single line of code. Otherwise, you won’t be able to
open your code until you review it thoroughly to strip out proprietary secrets
and embarrassing comments. Opening the code from the start—part of an “open
source first” approach—will encourage your own developers to follow best cod‐
ing practices.

Select a name for your project that will resonate with the community. Names can
be very personal (for example, Linux was named after the creator of the operat‐
ing system) or can describe the software, as in the office software called
LibreOffice. The project can be named after a mascot or even be a nonsense word
chosen to be easy to remember (such as Hadoop). Run through the same checks
and due diligence that your legal team does for trademarks to ensure that no
duplicate exists, that the name is not offensive in some language, and so on. See
the section “Keep Up Communication” on page 22 for information on promoting
your project and brand.

20 | Open Source in the Enterprise

http://bit.ly/2sWo0cO
https://opensource.org/licenses
https://choosealicense.com/
https://www.libreoffice.org/

The first code you open could be messy, if it’s created by people used to internal
team work instead of open source development. Opening immature code can be
difficult for both your developers and your managers to accept. But simply docu‐
ment the progress you’ve made and what you need from the community, and you
will be rewarded by them—given, that is, a commitment to winning over and
mentoring new users. If you have a good idea, many hands will reach in to fix
your problems. If you don’t have a good idea, you’ll hear that unpleasant news
from outsiders and will be able to abandon the project before wasting more
developer time.

Use Best Practices for Stable Code
You can use one of the popular public repositories to store code and documenta‐
tion, or can set up a version control system of your own with public access. Have
developers check in their changes daily or as often as needed. Developers refer to
this practice as “release early, release often.” Continuous integration and regres‐
sion tests (both considered best practices in open source communities) should
ensure that the developer doesn’t break anything. Most projects still offer formal
releases in order to guarantee stability (especially to major corporate users), but
open source permits feedback and improvements on a continuous basis.

Set Up Public Discussion Forums
You can’t expect people to respect your process and make contributions if you
hide decisions from them. As explained earlier in “Foster Open Communication”
on page 19, developers within your company are now part of the wider commu‐
nity that hopefully will flock to the project outside your company. A simple mail‐
ing list might be all that you need. Any tools you use for discussions should be
open to the public and should be based themselves on free and open source soft‐
ware so that you don’t put up barriers to participation.

Make Life Easy for Newbies
Attracting people who are unfamiliar with your code and organizational setup is
critical at the very start of your project, and it remains important even after you
are well established. Do not drift into an insular culture understood only by peo‐
ple who have participated for several years. Devote resources constantly to activi‐
ties that draw in new people, such as the following:

Documentation
This ranges from quick Getting Started guides to architectural descriptions
that explain what is unique and valuable about your project. Many people
who lack the skills to contribute code would be happy to write documenta‐
tion; you need to find, recruit, and engage them.

Launching an Open Source Project | 21

Conferences and code-a-thons
These demonstrate your commitment to the community and foster enthusi‐
asm. Many people become long-term contributors after attending such
events, which are a good way to recruit new contributors and inspire existing
contributors to do even more. They also ensure that the wider community is
heard when key decisions are made. Get community involvement in organiz‐
ing the events as well as attending them. Local meetups can be cheap to orga‐
nize—offer a space in your offices and buy a few pizzas and sandwiches—
and can build strong community support.

Code of conduct
Establish respect as a key value of your project from the start. A written code
of conduct is critical, even if what it says seems obvious to you. Make sure
that project leaders intervene quickly when people are rude or abusive. Even
a single tense exchange can drive away a substantial number of users. If you
are not welcoming to diverse genders and other groups, you will lose (per‐
haps forever) the chance to recruit from a big group of talent. And the bad
reputation will stain your organization, as well.

To-do lists
When people have been using your code for a while, they begin to ask how
they can help. Provide a prominent list of tasks that you—and other mem‐
bers of the community—have identified as priorities.

You need to assess at different stages in development how much time you can
dedicate to the community; hopefully others will start to pick up the task and
answer questions. Ultimately, though, you’ll lose users unless you take their
needs seriously, support them in creating the features they want, and give them a
say. Hiring a community manager is a good investment: such a member of your
staff can educate both company employees and outside community members
about how to help the project progress smoothly and productively. As the project
grows big and widely adopted, it might become time to hand control over to an
independent governance organization altogether, which is the topic of an upcom‐
ing section (“Release the Project to an Independent Governance Organization”
on page 24).

For an in-depth discussion of how to work well with a community, the book The
Art of Community by Jono Bacon (O’Reilly, 2012) is very useful.

Keep Up Communication
Talking with a community goes beyond public relations, which typically focus on
press releases about major events. You want the community and the world at
large to know about evolution in the project before, during, and after each step.
Encourage your employees to blog and use social media in appropriate ways to
get the news out. Consider a commitment to recruit an informative post at least

22 | Open Source in the Enterprise

https://opensource.com/resources/conferences-and-events-monthly
http://shop.oreilly.com/product/0636920021995.do
http://shop.oreilly.com/product/0636920021995.do

once every two weeks from someone in the community (and even more often for
large projects) along with regular tweets. A small investment in branding, such as
stickers that community members can put on their laptops, or socks and t-shirts,
shows pride in the project and gets the name where it is seen by the people you
want. Such practices attract new users and remind existing community members
that you have a vibrant project.

Adopt Metrics and Measurement
We are a data-driven society. All organizations must learn how to collect useful
metrics and educate employees on how to use the data when making decisions.
Some metrics are easier to collect than others, so you need to determine what’s
really useful to you. Begin by collecting lots of metrics; then, over time, as you
find out which ones are really useful, you can scale back. Typical metrics include
the following:

• Numbers of contributors and contributions, and what people and places they
come from

• Number of users, which you might be able to calculate roughly from statis‐
tics on downloads, mailing list participation, and other proxies

• Growth or shrinkage of the contributor mailing list
• Numbers of reported issues, bugs, and fixes
• Number of forks and stars on GitHub
• Page views of web pages, blogs, and tweets associated with your project

The CHAOSS Community is defining metrics that are useful to collect across
most projects.

Generally, you want to see the measures increase. Even an increase in reported
bugs can be a good thing because it shows that the code is useful. The speed with
which reported bugs are fixed can be a more important metric. If pull requests
stagnate or go down, you need to think of ways to promote the project—or per‐
haps it’s time to launch an effort to add new features that make the project more
appealing.

If most of your contributions are coming from a couple of organizations, you
might need to encourage more diversity. There is a risk that your code will be
optimized for one or two major users, losing value for other potential users. And,
if a major contributor suddenly pulls out, you can be left without crucial support.

Different metrics are useful in different circumstances. For some projects, it’s all
right for pull requests and community participation to stabilize. Perhaps your
project has a narrow application but is very useful for the people who need it.

Launching an Open Source Project | 23

https://chaoss.community/
http://bit.ly/2sWYq7u

Your measurements can become part of a continuous improvement process.
Make them available to managers through dashboards and encourage managers
to pull them up at meetings and during the process of prioritizing future work.
As with nearly all software, good open source tools exist for dashboards and visu‐
alizations displaying metrics. Bitergia offers open source dashboards, and Ama‐
zon has released an OSS attribution builder and OSS contribution tracker that
their OSPO uses to manage its open source projects.

Release the Project to an Independent Governance Organization
Suppose that you have followed the advice of this book and the resources to
which we’ve pointed you. Your project looks like a success and is being adopted
by people outside your organization. When the project is big and stable enough,
it’s probably valuable to make it independent from your company. This will fur‐
ther encourage other organizations to support it, financially and otherwise. It will
announce to the world that the project is sustainable and does not depend on
your own management decisions for its future, which in turn will draw more
people to use it and contribute to it. But because making an independent founda‐
tion is a lot of work, you should wait for clear evidence that it’s important; for
instance, requests from major contributors or the need to raise funds outside
your own organization.

Setting up a foundation is a complex task. A few major projects set up independ‐
ent foundations, such as Linux, Mozilla, and OpenStack, but the vast majority of
open source projects—even such popular tools as the Spark data processing tool
—work under the auspices of an existing foundation. The Apache Software
Foundation, Eclipse Foundation, and Linux Foundation sponsor wide varieties of
software that extend beyond their original missions. Other organizations serve
particular industries, such as HL7 for health care and Automotive Grade Linux
for software in cars.

Open Source and the Cloud
The move to open source during the past decade or so has been paralleled by the
adoption of cloud computing at many levels: infrastructure, data, and services. In
fact, free and open source software is a major driver of the cloud, and service
providers—many of them listed at the beginning of this book—are major crea‐
tors of open source software. Cloud providers rely heavily on open source soft‐
ware such as Linux, and virtualization software such as KVM and Xen.
Customers running their software in the cloud choose open source software for
the same reason.

The key advantage open source software offers both cloud providers and cloud
users is its cost-free deployment. You can start up 10 instances of a virtual

24 | Open Source in the Enterprise

https://bitergia.com/opensource/
http://bit.ly/2LOzGVL
http://bit.ly/2JDTA9k
http://bit.ly/2LQAtWa
https://mzl.la/2HOXeaO
http://bit.ly/2LPYjBx
https://spark.apache.org/
http://bit.ly/2JCHspm
http://bit.ly/2JCHspm
http://bit.ly/2MsxzZd
http://bit.ly/2JAiZRr
http://www.hl7.org/
https://www.automotivelinux.org/
http://bit.ly/2ybjpZ5
https://www.xenproject.org/

machine, expand quickly to 30 to meet peak needs, and then shrink back to 10
without trying to keep track of cost per seats, or adjust payments.

Open source software has become a lingua franca, widely known and deeply
understood by experienced developers. This increases its appeal to cloud provid‐
ers and customers, because they understand the impacts of using each project.
Also, basing a cloud business on well-tested, preexisting software allows you to
spin up faster and add more enhancements. For instance, most cloud providers
remain competitive by adding all the latest hot technologies such as deep learn‐
ing. The providers realize that making it simpler to operate open source tools has
tremendous value to their customers. The most successful new projects are natu‐
rally great candidates for new services. The wealth of high-quality open source
options in these areas allows rapid upgrades to services and quickly enhances
their platforms for customers’ development efforts.

Customers also feel safer when cloud providers use open source tools. It reduces
the risk of lock-in and allows customers to adopt hybrid solutions that run their
applications on multiple cloud providers or using on-premises software as well as
cloud providers.

Because cloud providers own and manage their services, they are empowered to
release tools and support software as open source and thus benefit from com‐
munities that form to improve the software.

Conclusion
The production and use of open source software has matured tremendously over
the past decade. From informal collaboration, often around a “benevolent dicta‐
tor,” it has evolved into a discipline. Community managers, open source program
offices, codes of conduct, and other facets of organized development practices are
widespread. Websites have become more sophisticated, good communication
practices and processes are codified on collaboration sites such as GitHub by
groups like the TODO Group, and projects recognize the importance of that
long-neglected cousin to source code: documentation.

This book described open source as it is conducted by the most advanced, tech‐
nology led companies and government agencies in 2018, with a look toward the
future. We have consolidated resources and references to materials that will make
your open source ventures successful and answered questions where you might
have had concerns. Yes, there’s a lot to learn in the adoption, use, and release of
open source code. Yet many companies are doing so successfully. They maximize
the strategic value of adopting open source through culture change and by
investing in support for developers and all employees engaged in these efforts.

Thousands of companies use open source software, and many contribute to it.
This book showed you how to start your own journey with a pilot project,

Conclusion | 25

working with developers and other key stakeholders. Poll your developers to find
out whether they are already using open source code. It’s important for the mem‐
bers of your organization to learn from their experiences and perhaps to involve
them in a more formal policy regarding open source. The community will be a
willing mentor as you embark on this journey.

Read some of the documents to which this book points and follow some basic
good practices for checking the quality of the open source project. Document
what you do and use your experience to determine your next steps.

With adjustments and revisions to your corporate practices, you can use open
source libraries for such things as deep learning or web development. The big
next step is incorporating open source software into your products. An even big‐
ger step is to open your own code and start a new open source project. This book
offered an overview of the tasks facing organizations that undertake these efforts,
along with pointers to more detailed sources of information.

Large corporations’ embrace of open source demonstrates that it is a fixture of
software development and becoming the new normal. We can see that software is
changing markets and driving the value of all sorts of organizations, ranging
from governments to financial services, and including traditional fields such as
agriculture and construction. Each organization chooses a balance between
building its own software, purchasing closed-source products or services, and
consuming or creating open source.

Startups also recognize the power of community. For them, the open source pro‐
cesses are a multiplier for their limited, precious resource of developer time.

Similar principles apply in other areas of creative production (although each type
differs in the details): open source hardware such as Arduino, artwork released
under some Creative Commons licenses, data provided under an open license,
open standards (such as the Open Standards principles defined by the UK gov‐
ernment), information provided through an open license by governments, and so
on.

Thus, open source software provides value across many fields. It’s time to incor‐
porate the best of open source tools and methods into your company strategy
and culture, which will increase your competitive advantage.

Furthermore, adopting open source practices—including InnerSource for soft‐
ware you don’t want to open to the world—can make your organization more
productive, your innovation faster-moving, your employees happier, and your
decision-making more efficient. These are the extra gifts of open source you will
come to appreciate during your journey.

26 | Open Source in the Enterprise

https://www.arduino.cc/
https://creativecommons.org/
https://opendatacommons.org/
http://bit.ly/2JI5H1m
http://bit.ly/2JI5H1m
http://bit.ly/2JBTxLm

About the Authors
Andy Oram is an editor at O’Reilly Media, a highly respected book publisher and
technology information provider. His work for O’Reilly includes the influential
2001 title Peer-to-Peer, the ground-breaking 2005 book Running Linux, and the
2007 bestseller Beautiful Code.

Zaheda Bhorat is the head of open source strategy at AWS. A computer scientist,
Zaheda is a long-time active contributor to open source and open standards
communities. Previously, she shaped the first-ever open source program office at
Google; launched successful programs, including Google Summer of Code; and
represented Google on many industry standards executive boards across multiple
technologies. She also served as a senior technology advisor for the Office of the
CTO at the UK Government Digital Service, where she co-led the open standards
policy, which is in use by the UK government on open document formats.

Zaheda was responsible for OpenOffice.org, and later NetBeans.org, at Sun
Microsystems, where she built a thriving global volunteer community and deliv‐
ered the first user version, OpenOffice 1.0. Zaheda is passionate about technol‐
ogy, education, open source, and the positive impact of collaboration for social
good. She serves on the UK Government’s Open Standards Board, which deter‐
mines the standards government should adopt. She also serves on the board of
directors of the Mifos Initiative, an open source effort that is positioning finan‐
cial institutions to become digitally connected providers of financial services to
the poor. Zaheda speaks internationally on topics related to open source and
social good. You can find her on Twitter @zahedab.

http://www.openoffice.org/
http://www.netbeans.org/

	Cover
	AWS
	Copyright
	Table of Contents
	Acknowledgments
	Chapter 1. Open Source in the Enterprise
	Why Are Companies and Governments Turning to Open Source?
	More Than a License or Even Code
	Groundwork for Understanding Open Source
	Adopting and Using Open Source Code
	Create and Document an Internal Open Source Policy
	Formalize Your Strategy Through an OSPO
	Build Ties Throughout the Company
	Assess Potential Projects
	Comply with the License
	Manage Community Code as Seriously as the Code You Create
	Change Your Reward and Management Structure

	Participating in a Project’s Community
	Contributing to Open Source Projects
	Establish the “Why” Throughout the Company
	Hire from the Community
	Develop Mentoring and Support
	Set Rules for Participation
	Foster Open Communication

	Launching an Open Source Project
	Choose a License
	Open the Code Right Out of the Gate
	Use Best Practices for Stable Code
	Set Up Public Discussion Forums
	Make Life Easy for Newbies
	Keep Up Communication
	Adopt Metrics and Measurement
	Release the Project to an Independent Governance Organization

	Open Source and the Cloud
	Conclusion

	About the Authors

