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1 Embedded Systems Debugging

Embedded systems in general, and ARM based system-on-chip (SOC) designs in particular, have seen
an immense growth during the past years, with free and open software becoming an integral part of
embedded systems development. A survey ran by linuxdevices.com [ELMS05] shows that 43% of the
participants have used embedded Linux in their, or their companies, products, and 55% expect to do so
within the next two years. The processor architecture used in most designs is ARM, being used by 30%
of the developers, prior to x86 which has been used by 28%. Open source tools are the first choice for
59% of the participants, and more than 82% believe the tools available for embedded Linux development
are either very good or acceptable.
While free and open source projects offer a high-quality toolchain for ARM development, debugging
support is lacking behind, especially as far as system programming is concerned. The GNU Debugger
(gdb) offers excellent debugging support, but covers only some areas of embedded systems debugging.
Low level tasks require additional hard- and software, and existing open source solutions for these tasks
are incomplete or at least partially deficient.
The goal of this diploma thesis is the design and implementation of a free solution for debugging of
ARM7 and ARM9 family based SOC designs, making the use of proprietary commercial tools obsolete.
The software written as part of this work is initially going to have support for selected members of these
processor families, but extensibility to additional cores shall be simplified by an appropriate architectural
design. The target interface will be based upon the IEEE Standard Test Access Port and Boundary-Scan
Architecture [IEEE1149]. Support for different interfaces between a host PC and an IEEE 1149.1 com-
patible target is an expressed goal.

Debugging embedded systems is different in many aspects from traditional application debugging.
Compared to desktop systems, embedded systems have limited resources, such as main memory, pro-
cessing power, or input and output capabilities. This makes it inconvenient or even impossible to run a
software debugger together with the debuggee on the same system. Depending on the development task,
there might be no software running on the target at all, like during bootloader development. In that case,
there is usually no debugger on the system, too. During application development, the hardware is ex-
pected to be error-free, meaning that every subsystem (CPU, memory, storage, I/O) actually works. On
embedded systems, the hardware itself could have errors, like an instable memory interface or untested
system components. If the memory system is faulty or just untested, any code could fail, even a debug-
ger.
Because of these restrictions, embedded systems are usually debugged using remote debugging: The
debugger is running on a host computer, and controls the target either through hardware, or through a
small software running on the target. It’s possible for the developer to make use of all the comfort his
workstation offers, while the target doesn’t have to run a full featured debugger.
The purpose of debugging is to identify and remove defects in software programs. This can be achieved
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2 Embedded Systems Debugging

by either passively watching the code-, and possibly the data flow, or by actively stopping the target at
the point of interest. Passive debugging has the advantage of being non-intrusive, and allows program
flow and timing to be inspected, while active debugging enables the developer to control the program
flow, or alter the contents of target memory.
Some years ago, program code for embedded systems had to be loaded onto memory chips using ex-
ternal programmers. The chips had to be removed from the target, programmed, and put back into the
system. Being able to download program code from the host to a target system while this is running
greatly simplifies embedded systems development.

The following sections are meant to show some commonly used solutions for embedded debugging
in genearal, and an overview of currently available solutions for ARM7/ARM9 debugging in particular.
[Asb01] gives an detailed review of the challenges of embedded systems design, the implications for
debugging, and the various debug solutions used in embedded systems design.

1.1 Debug Solutions

Logic Analyzers, Trace Hardware

Logic analyzers and dedicated trace hardware, like theARM embedded trace macrocell(ETM)
[IHI0014J], allow the program flow to be passively monitored. Logic analyzers monitor the target’s
data and address bus, and usually generate a listing of executed instructions, possibly annotated with the
data accessed. While this works for older microcontrollers, where every instruction executed results in
an access to the memory system, it’s not possible to trace execution within modern cached architectures.
Instructions contained inside the cache wont show up on the memory interface, making a complete trace
impossible. Dedicated trace hardware is tightly coupled to the microcontroller core, and keeps track of
every instruction executed, without having to rely on the memory interface. The amount of raw data can
grow rapidly on systems with high clock rates, making it difficult to get the information out of the target,
and hard to find the relevant parts. Advanced solutions like the ETM9 allow triggerpoints, for example
instruction addresses, to be defined, at which the trace hardware starts monitoring the core. Filters further
limit the amount of data that has to be transfered from the core to the debugging host.

In-Circuit Emulators, ROM Emulators

An in-circuit emulator (ICE) replaces the target microcontroller with a special debug variant, that in-
cludes hardware debugging facilities. The emulator is connected to a host computer which runs the
debugger software. This allows both passive and active debugging, giving a non-intrusive view of the
program flow, and allowing fine control over program execution, CPU state and memory contents. Read
Only Memory (ROM) emulators substitute target non-volatile memory with dual-ported Random Ac-
cess Memory (RAM) modules, that can be accessed from a debugger and the target at the same time.
Where code has to be run from ROM this allows a debugger to replace instructions with hooks neces-
sary for debug entry, like TRAP or Software Interrupt (SWI) instructions. Code testing is improved, as
the memory chips don’t have to be programmed with external tools. An ICE might support hardware
breakpoints, where address comparators constantly monitor the address bus, and force the system into
debug state when an address matches during an instruction fetch. This allows breakpoints to be set on
code contained in ROM without using a ROM emulator. If the ICE further provides overlay memory, it’s
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possible to load code into the target, replacing instructions contained in ROM regions. The ICE watches
the accessed memory space, and switches to it’s included RAM when an access to overlayed memory
occurs.

Debug Stubs

Debug stubs, often called "debug monitors", run on the target system, and connect to a host computer
running the debug software. They require working initialization code, that sets up the target clocks, main
memory, and a communication channel. This makes a Debug stub unsuitable for early development
stages, where initialization code has to be debugged itself.
The stub utilizes an interrupt on the target to take control over program execution, a stub using RS232
communication for example would use the serial interrupt vector. When the host debugger sends data to
the debugging stub, an interrupt is generated, giving the stub control over the target. The stub uses some
kind of TRAP or BREAKPOINT instruction, or a SWI to replace breakpointed instructions. Once the
target hits one of the breakpointed instructions, control is given to the debugging stub, which can inform
the debugging host about the breakpoint.
The required initialization and the use of target resources are a major drawback of debugging stubs, but
they require only little extra hardware, making them interesting for situations where development tools
cost is important.

Integrated Debug Circuitry, On-Chip Debug

Integrated debug circuitry gives the power of in-circuit emulators at a much higher flexibility. Instead of
having to replace the target’s microcontroller with a special debug version, every chip shipped contains
the debug functionality. A serial communication channel, able to operate at high clock speeds, is used to
connect the debug circuitry to a host debugger, allowing low pin-count debug connections.

1.2 ARM Debug Solutions

Due to the popularity of SOC designs based on the ARM7 and ARM9 family there several vendors who
provide tools to work with the integrated debug circuitry included in all ARM7 and ARM9 based mi-
crocontrollers. There are commercial tools available as well as free and open source implementations,
offering a wide range of supported functionality. Some are offered as combined solutions, where hard-
ware that interfaces between a host PC and the debug target comes together with debugging software,
while others are pure hardware solutions, that can be combined with various software products. Here,
debug software doesn’t necessarily mean a full-featured debugger, but rather software that talks to the
hardware, providing a set of debug functions to a debugging frontend. The following overview isn’t
meant as a comprehensive listing, but rather to show a few typical designs.

Combined Hardware and Software Solutions

ARM Multi-ICE

http://www.arm.com/products/DevTools/MultiICE.html
TheARM Multi-ICEallows debugging of a wide variety of ARM based cores and supports all possible
functionality, including access to special system-control registers, semihosting and flash programming.
It connects to the host computer using a PC parallel port and accesses the target with a JTAG clock of
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up to 10 MHz. It comes together with a software called theMulti-ICE server, which contains the target
specific debug functionality and provides the remote debugging interface (RDI) to a debugger frontend.
The Multi-ICE server software requires a PC running a version of Microsoft Windows. Linux or other
free operating systems are not supported.

ARM RealView RVI

http://www.arm.com/products/DevTools/RVI.html
TheARM RealView ICEsupercedes the Multi-ICE, providing JTAG clock rates of up to 50 MHz, larger
cable lengths, and host connection via Ethernet or universal serial bus (USB), giving greater flexibility.
The RVI contains an ARM9 processor which takes care of all the target specific debug functionality. It
requires theRealView Debugger (RVD)as a frontend, which is available for Microsoft Windows, Linux
and Solaris.

Abatron BDI2000

http://www.abatron.ch/
TheBDI2000connects to a host computer via RS232 or 10BASE-T Ethernet, and supports JTAG clock
rates up to 16 MHz. The hardware can be configured for a wide variety of target systems, including
a configuration for ARM7 and ARM9 targets. The target specific debug functionality is contained in-
side the BDI2000. Various debugger frontends are supported, likeARM RealView Tools, Metrowerks
CodeWarrioror the free GNU Project Debugger (GDB). An additional telnet interface provides direct
access to hardware-specific debug functions. The BDI2000 gives access to almost all possible debug
functionality, including system-control registers.

Hardware-only Solutions

Macraigor Wiggler, Parallel Port Wigglers

http://www.macraigor.com/wiggler.htm
TheMacraigor Wiggleris a simple device that connects a PC parallel port to the target JTAG interface.
The host PC simulates the target interface by switching signals on and off, a technique often called "bit-
banging". It acts as a signal buffer, providing necessary level translation between the PC (5V Transistor-
Transistor Logic (TTL)) and the target (1.5V...5V). Schematics for wiggler-compatible clones are freely
available on the net and can be adjusted to special requirements, like adding or removing signals that are
optional in the JTAG standard, but required by some targets. Figure 1.1 shows the functional equivalent
of a complete wiggler clone. The Wiggler’s speed is limited by the PC’s parallel port, which requires a
minimum of about 1µsperin or out instruction [Rs00]. A complete clock cycle requires at least 2µs,
limiting the maximum frequency to 500 kHz.

Macraigor Raven

http://www.macraigor.com/raven.htm
Like a Wiggler, theMacraigor Ravenconnects to the host using a PC parallel port, but it uses the
enhanced parallel port (EPP) protocol and higher-level commands. Logic inside the Raven translates the
parallel data from the host to a serial bitstream at up to 8 MHz. The internal design of the Raven is
proprietary, schematics are not available. Binary drivers are available for Microsoft Windows and Linux.
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Figure 1.1: Wiggler schematics

Amontec Chameleon POD

http://www.amontec.com/chameleon.shtml
TheAmontec Chameleon PODis based on a Xilinx Coolrunner (XPLA3) XCR3128XL-VQ100 complex
programmable logic device (CPLD) (http://www.xilinx.com). It connects to the host using a PC
parallel port, and supports many different configurations, including emulations of the Macraigor Wiggler
and Raven. The configurations, that may be downloaded for free, are programmed into the Chameleon
using proprietary software available only for Microsoft Windows.

USBJTAG-1

The device designed by Hubert Högl around a FTDI2232C (http://www.ftdichip.com/FTProducts.
htm#FT2232C), connects to a host PC using a USB 1.1 Full-Speed (11 Mbit) interface. Using its Multi-
Protocol Synchronous Serial Engine (MPSSE) [AN2232C-01], the FTDI chip is capable of JTAG clocks
between 6 MHz and 93 Hz.

Figure 1.2 shows an example implementation using the DLP-2232M evaluation kit, available at
http://www.ftdichip.com/Products/EvaluationKits/DIPModules.htm#DLP-2232M. The eval-
uation kit contains all circuitry necessary for the USB functionality, making it ideally suited for proto-
typing.
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Figure 1.2: USBJTAG-1 schematics

Software Solutions

Macraigor OCD Commander, OCDRemote

http://www.macraigor.com/ocd_cmd.htm, http://www.macraigor.com/full_gnu.htm
The Macraigor software packages are intended to be used with the Macraigor Wiggler, Raven, usbDemon
and mpDemon devices, but it’s possible to use the software licensed as freeware together with Wiggler
and Raven clones, too. Supported cores include many ARM7 and ARM9 members, as well as MIPS,
Motorola PowerPC, and Intel XScale. Access to special registers is limited. There’s no information
available about the extent of cache and MMU handling. The OCD Commander is a complete graphical
debugger, while the OCDRemote is a console application that interfaces the Macraigor hardware with
the a GDB client. Both are available for Microsoft Windows and Linux. The Linux software comes
with binary-only objectfiles that are linked into the provided kernel module. Writing Flash memory
is not possible using the freeware programs, but Macraigor offers a (non-free) software called "Flash
Programmer" that is able to program flash chips on ARM7 and ARM9 targets.

Open Source Software

There are a few open source projects to support ARM7 and ARM9 debugging, all licensed under the
GNU General Public License (GPL). Functionality is limited compared to the available commercial so-
lutions, and all but the gdb-jtag-arm seem to be unmaintained or no longer under active development. The
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only JTAG hardware interfaces supported are Wiggler and compatibles. None of the projects provides
handling of the MMU or caches found on cores like the ARM720t or ARM920t.

� JTAGER by Rongkai Zhan
http://jtager.sourceforge.net/
JTAGER supports ARM7TDMI, ARM720t, and ARM920t based targets. Flash memory write
support is included for SST39LF/VF160 (http://www.sst.com/) and MBM29LV650 (http:
//www.spansion.com/) chips. A command line interface is implemented for user interaction,
GDB support isn’t included. Version 0.3.0 was released on October, 17th 2004, and is still in an
early development stage. Bugs and shortfalls of the code can lead to target system crashes and
memory inconsistencies.

� armtool by Erwin Authried (part of Midori Linux)
http://home.at/cgi-bin/viewcvs.cgi/midori/sources/armtool/
Armtool only supports ARM7TDMI based targets, is able to read and write target memory, and
allows code downloaded to the target to be executed. It’s suitable for batch usage, but doesn’t
allow user interaction, neither through a command line interface nor using a debugging frontend.
Flash support isn’t included.

� jtag-arm9 by Simon Wood
http://jtag-arm9.sourceforge.net/
Jtag-arm9 only supports ARM9 based targets, and contains a command line interface for user
interaction. It is able to halt and resume the target, read and modify target registers, and supports
memory read and write operations. Flash support isn’t included.

� gdb-jtag-arm by Tobias Lorenz
http://gdb-jtag-arm.sourceforge.net/
Gdb-jtag-arm is the only open source project that supports the GNU Debugger (gdb) as a debug-
ging frontend. It is based on jtag-arm9, fixing some, but not all, of the original software’s bugs.
Target system crashes or failures writing target memory can result from these defects.



2 IEEE 1149 - JTAG

The Joint Test Access Group (JTAG) was formed in 1985 to create printed circuit board (PCB) and in-
tegrated circuit (IC) test standards. The latest version of their proposal was approved by the Institute of
Electrical and Electronics Engineers (IEEE) as IEEE Std. 1149.1-2001 [IEEE1149],IEEE Standard Test
Access Port and Boundary-Scan Architecture. The standard was created to support testing of component
functionality, component interconnections and component interaction on assembled products. Subse-
quently, the term JTAG shall refer to the mentioned IEEE standard unless otherwise noted. This chapter
is intended to give the reader enough understanding of the standard necessary for the operation of a JTAG
based debugger. The main objective is therefor the design of a bus master, not the connected devices.

2.1 Test Logic

Instruction register

Test data registers

M
U

X

TCK TMS nTRST

TDOTDI

TAP controller

Figure 2.1: Test logic

A device that conforms to the JTAG standard contains one instruction register (IR), a number of
test data registers (DR) and a test access port (TAP) controller which handles all test operations. The
boundary-scan technique uses scan cells connected to a component’s inputs and outputs, forming a serial

8
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shift register. Test patterns are shifted (or "scanned") by a TAP bus master through the TAP into a
component and apply known values to the scan cells. The scan cells’ previous content is shifted out of
the component and can be captured by the TAP bus master. The instruction register is required to be at
least two bits long, and is used to control test functionality. The data registers are specific to a particular
device, but the standard demands at least two register, a one-bit long bypass register, and a boundary-scan
register. Figure 2.2 shows two components containing test logic like the conceptual example shown in
Figure 2.1 connected to a single bus master.

TDI TDO TDO

TCK

TMS

TDI TDI

TAP bus master

component #2

TDO

nTRST

component #1

Figure 2.2: JTAG TAP / Boundary-Scan Architecture

2.2 JTAG/TAP Signals

Table 2.1: JTAG interface signals

Name (abbreviation) Description Direction
Test Clock (TCK) Serial clock signal out
Test Mode Select (TMS) Controls movement of the JTAG state machine out
Test Data Input (TDI) Serial data fed into tested equipment out
Test Data Output (TDO) Serial data read back from tested equipment in
Test Reset (nTRST) Optional signal to asynchronously initialize test equipment out

Table 2.1 shows the signals defined by the JTAG standard and their direction from the bus master’s
point of view. The TCK signal allows data to be scanned into multiple components independently from
component specific system clocks. TCK may be stopped at 0 for an indefinite time, while test compo-
nents are guaranteed to retain their current state, but not necessarily stopped at 1, which is permissible
but not required by the standard.
The TMS signal selects the path taken in the JTAG state machine (see Figure 2.3). This signal is sampled
at the rising edge of TCK, and is expected to be changed by the TAP bus master on the falling edge of
TCK. The state machine is designed in a way that allows the Test-Logic-Reset state to be reached after
five TCK cycles with TMS held high from every possible state. The standard requires circuitry to apply
a logic 1 to TMS when the signal is undriven, ensuring normal operation when no test equipment is
connected.
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TDI transmits serial data shifted from the bus master to connected TAP controllers. Like TMS it is sam-
pled on the rising edge of TCK, and in case of an undriven signal circuitry shall apply a logic 1 to TDI,
too. Serial data from connected TAP controllers is shifted out of a component using the TDO signal. It
changes its state on the falling edge of TCK, and should be sampled by the bus master on the rising edge
of TCK.

2.3 JTAG State Machine

Run-Test/Idle (8) Select-DR-Scan (1)

Capture-DR (2)

Shift-DR (3)

Exit1-DR (4)

Pause-DR (5)

Exit2-DR (6)

Update-DR (7) Update-IR (f)

Exit2-IR (e)

Pause-IR (d)

Exit1-IR (c)

Shift-IR (b)

Capture-IR (a)

Select-IR-Scan (9)

Test-Logic-Reset (0)

TMS=H

TMS=L

TMS=H TMS=H

TMS=L TMS=L

TMS=H

TMS=L

TMS=H

TMS=L

TMS=L

TMS=L

TMS=H TMS=H TMS=H

TMS=L TMS=L

TMS=LTMS=L

TMS=H

TMS=H TMS=HTMS=L TMS=L

TMS=L

TMS=L

TMS=H

TMS=L

TMS=H

TMS=H

TMS=H TMS=H

Figure 2.3: JTAG state machine

All JTAG operations are controlled through a state machine implemented in the TAP controller. The
state machine is driven by TMS and is clocked by the rising edge of TCK. When a test session is initi-
ated, the bus master has to initialize all connected TAP controllers by putting them into Test-Logic-Reset
(TLR) state. TLR is reached by either forcing nTRST low or by executing five TCK cycles with TMS
kept high. Once in TLR, the device identification register (IDCODE) or the bypass register (BYPASS)
is selected, and all test functionality is reset. If TMS is low on a rising edge of TCK in TLR, the state
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machine enters the Run-Test/Idle state. Depending on the currently selected instruction, test operations
can be executed in the (RTI) state, or the test logic is left idle, and no operations occur. From RTI, Select-
DR-Scan (SDS) is reached. SDS is, like Select-IR-Scan (SIS), Exit1-DR/IR (E1D, E1I) and Exit2-DR/IR
(E2D, E2I), a temporary states where no test operations occur, used to select different paths through the
state machine. In Capture-DR (CD), the currently selected test data register may be parallel loaded if
appropriate, or left unchanged if the register doesn’t have a parallel input or if the current instruction
doesn’t require the current value to be captured. During Capture-IR (CI), a fixed value of b01 is loaded
into the least significant two bits of the IR, and design specific values may be put into any remaining IR
bits. Once Shift-DR or Shift-IR is reached, the TAP bus master takes TMS low and starts outputting the
desired value on each falling edge of TCK. The device under test will sample TDI on the rising edge
and stay in Shift-IR while TMS is kept low. Pause-DR/IR may be used to indefinitely idle during - or
between - scan operations. No test logic operations occur while a TAP controller is in Pause state. On the
falling edge of TCK in Update-DR, the current value of the serial shift register is latched onto parallel
outputs, if this is required for the currently selected test data register. Similarly, the current value of the
instruction serial shift register is latched onto parallel outputs on the falling edge of TCK in Update-IR.
Latching a new value on the IR parallel outputs makes this value the new current instruction.
Figure 2.4 shows an example session where a value of b0100 is scanned into a 4-bit long instruction
register. During Capture-IR, a value of b0001 was loaded into the IR and can be captured by the bus
master during the scan. Data register scans are similar, only a different path in the state machine is taken.
The data register accessed depends on the current value of the instruction register and possibly on test
operations executed earlier.

RTI SDS SIS CI SI SI SI SI E1I UI RTI

TMS

TCK

TDO

TDI

sample point

Figure 2.4: JTAG signals and states
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2.4 JTAG Instructions

The JTAG standard requires several instructions to be available on a device compliant to standard IEEE
1149.1, but most of these are unimportant for the purpose of ARM debugging. The following instructions
are used in debugging ARM7/ARM9 based systems:

Table 2.2: JTAG instructions (subset)

Name Description
BYPASS When the BYPASS instruction is selected on a device, the 1-bit wide bypass register

is connected as the current test data register. This allows the scan chain in configu-
rations with multiple successive devices to be shortened, making accesses faster. A
device in BYPASS mode should not perform any test operation. One binary code for
BYPASS shall be all ones (e.g. b1111 or 0xf for a device with a 4-bit wide instruction
register), but additional codes may map to BYPASS, too.

EXTEST The mandatory EXTEST instruction selects the boundary-scan register as the current
test data register. Signals that are driven from outside of the component are loaded
into the boundary-scan register during the falling edge of TCK in Capture-DR state,
and signals that are driven from the component are loaded from the boundary-scan
register on the falling edge of TCK in Update-DR state. This allows signals from the
system to the component to be captured, and known values to be applied to signals
driven from the component to the system. The binary code of the EXTEST instruction
may be chosen by the component designer.

INTEST The optional INTEST instruction also selects the boundary-scan register, but is used
to capture signals driven out of the component, and known values to be applied to
signals driven into the component. The binary code of the INTEST instruction may
be chosen by the component designer.

IDCODE IDCODE is an optional instruction that selects a device identification register as the
current test data register. While IDCODE is selected, no other test data register shall
be selected. The binary code of the IDCODE instruction may be chosen by the com-
ponent designer.



3 ARM7 / ARM9 Architecture

This aim of this chapter is to describe the architecture implemented by ARM7 and ARM9 family targets,
with a focus on aspects relevant for a debugger. These two core families share a great deal of debug
functionality, making it possible to support both with a single debug solution.

3.1 Core Families

Currently available ARM7 family members, the ARM7TDMI, ARM710T, ARM720T, and ARM740T,
are based on an ARM7TDMI core, with the exception of the ARM720T Rev 4, which is based on an
ARM7TDMI-S synthesizable core. Older ARM7 members like the ARM700 or ARM750 are beyond
the scope of this work and thus, ARM7 shall only refer to the above mentioned cores for the remainder of
this document. The ARM9 family is based on the ARM9TDMI core, which is not available separately,
but only as part of an ARM920T, ARM922T or ARM940T. Other ARM9 cores, like the ARM926EJ-S,
ARM946E-S and ARM966E-S are based on the synthesizable ARM9E-S or ARM9EJ-S core, and con-
tain slightly different debug functionality. This document is going to indicate these differences, but the
prototype software resulting from this diploma thesis will be limited to ARM7TDMI, ARM720T and
ARM920T cores. ARM9 cores with the letter E form a family of their own, but for the purposes of this
document ARM9 shall refer to both families. See Table 3.1 for a list of letters used in ARM core and
architecture names and their meaning.

The ARM architecture version implemented by the ARM7TDMI and ARM9TDMI based cores is

Table 3.1: ARM core features

Letter Description
T Thumb mode support (compressed 16-bit instruction set)
D Debug support
M Enhanced Multiplier (multiply with 64 bit)
I Embedded-ICE
E ARM ’Enhanced’ DSP instruction set
J Jazelle Java acceleration technology

ARMv4T, while the newer ARM9E(J)-S based cores implement ARMv5TE or ARMv5TEJ. The major
difference between the two architecture versions is the support of the ARM ’Enhanced’ DSP instruction
set, which is available on all ARMv5 cores, and the Jazelle Java acceleration technology, available only
on ARMv5TEJ cores. From the debugger’s point of view, the added DSP instructions don’t require any
special handling, as they don’t affect the processor state, but if debug state is entered from Jazelle state,
the core has to be switched to ARM state before the core and system state may be examined. All ARMv5

13
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Figure 3.1: ARM banked registers

cores also support a software breakpoint instruction (BKPT) that forces the core into debug state when it’s
executed. On cores without support for this instruction, the software breakpoint behavior has to be sim-
ulated using a data dependent breakpoint, that triggers once a certain instruction is fetched from memory.

The basic execution context is the same for ARMv4T, ARMv5TE and ARMv5TEJ, and has to be
restored by a debugger before control can be transfered back to system software.

� 31 general purpose registers, including the program counter (PC). Only 16 registers are accessible
at any time, the remaining registers are banked registers available only from within a particular
processor mode. Figure 3.1 shows the association between processor modes and banked registers.
Note that System mode shares all registers with User mode. Register R15 is the PC, and its use is
subject to special restrictions. Register R14 is the link register which stores the return address on
function calls or exception entry. Register R13 is often used as a stack pointer, although this is not
mandatory. The remaining registers may be used at the developer’s or the compiler’s choice.

� 6 status registers. The current program status register (CPSR) contains information about the cur-
rent processor mode and state, while the saved program status registers contain the saved state
from which an exception mode was entered. Only exception modes have a saved program sta-
tus register. see Figure 3.2 for the program status register format in architecture versions up to
ARMv5TEJ.

� The current processor mode is one of User (USR), Fast Interrupt (FIQ), Interrupt (IRQ), Supervisor
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Figure 3.2: program status register format

(SVC), Abort (ABT), Undefined Instruction (UND), and System (SYS). All but the User mode are
so called privileged modes, with full access to the hardware. Depending on the current mode, only
a subset of the 31 general purpose registers and 6 status registers may be accessed.

� The current processor state is either ARM, Thumb, or Jazelle (on cores with Java support).

� A flat address space of 232 8-bit bytes.

Cores with a memory management unit (MMU) and caches require additional properties defining
the current execution context. The MMU translates virtual addresses (VA) into physical addresses (PA)
and may have a translation lookaside buffer (TLB) to store recently used or explicitly stored translations.
The current content of the TLB should be considered part of the execution context, as additional page
table walks, caused by evicted TLB entries, could have an impact on application critical timings. The
same is true for caches that keep recently used memory blocks in high-speed memory tightly coupled to
the processor. When accessing memory in a cached system, a debugger has to make sure that as much of
the cache state as possible is preserved.

ARM7TDMI Implementation

The ARM7TDMI features a 3-stage pipeline with Fetch, Decode and Execute stages (see Figure 3.3), and
a von-Neumann architecture memory system, where instructions and data are fetched from a unified bus.
Implementation defined store instructions, that read the program counter [DDI0100E, p. A2-7] (STR,
STRT, and STM), store the address of the current instruction plus 12 bytes. On a data abort, instructions
with addressing modes that update a base register will have their base register updated ("base updated"
data abort model) [DDI0180A, p. 2.2].
An instruction is fetched from the memory system during the Fetch stage, decoded (and possibly de-
compressed in case of Thumb instructions) in the Decode stage, and executed during one or more cycles
in the Execute stage. Required registers are read during the first Execute cycle, and data memory is
accessed during one or more subsequent Execute cycles.
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Figure 3.3: ARM7TDMI 3-stage pipeline

ARM9TDMI Implementation

The ARM9TDMI features a 5-stage pipeline that splits the ARM7TDMI’s Execute stage into separate
Execute, Memory and Write stages (see Figure 3.4). It has a modified Harvard architecture with two
separate internal busses for instruction and data that connect externally to unified memory. Like the
ARM7TDMI, implementation defined store instructions, that read the program counter [DDI0100E,
p. A2-7] (STR, STRT, and STM), store the address of the current instruction plus 12 bytes. The
ARM9TDMI implements a "base restored" data abort model, where the base register will always be
restored to the value before the aborted instruction was executed [DDI0180A, p. 2.2].
Like the ARM7TDMI, an ARM9TDMI fetches an instruction in the Fetch stage, and decodes it in the
Decode stage. Registers are read during the Decode stage, and additional logic ensures a behavior similar
to older ARM cores where registers were read one stage later. During the Execute stage, shift and ALU
operations are executed, generating results for data instructions, or addresses used in load/store instruc-
tions. Data memory is either read or written in the Memory stage, and registers are written in the Write
stage. Because of the pipelined architecture, instructions may have to be stalled, if source operands of
an instruction were written by an immediately preceding instruction which isn’t yet finished. This case
is called an interlock, and the core stops fetching new instructions until the results from the preceding
instruction are available [DDI0180A, p. 7.5].

instruction
fetch

decode
reg. read

shift/
ALU

data memory
access

reg.
write

Fetch Decode Execute Memory Write

Figure 3.4: ARM9TDMI 5-stage pipeline

3.2 Core Debugging

All ARM7 and ARM9 cores have halt-mode debugging support, that allows the core to be completely
stopped. During this debug state, a debugger may capture and modify core signals, allowing the core
and system state to be examined and changed. While in debug state, the core is no longer clocked from
its main clock (memory clock (MCLK) on ARM7TDMI, fast clock (FCLK) or bus clock (BCLK) on
ARM9TDMI) but from a debug clock (DCLK) that’s generated by the debug logic.
The ARM core macrocell is deeply embedded inside an ARM based SOC and core signals are not avail-
able on external pins. To still be able to debug these systems, ARM7 and ARM9 cores implement a
JTAG compatible TAP controller with boundary-scan chains around the core signals. There are two scan
chains available on hard macrocells (ARM7TDMI and ARM9TDMI based), one consisting of almost all
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core signals, primarily intended for device testing, and another one that consists of a subset of the first,
with signals especially important for debug. Figures 3.5 and 3.6 show the order of signals on the debug
scan chains. When shifting data in or out of the device, the signal closest to TDO is the least significant
bit. It is important to note that D[0:31] (ARM7TDMI) and I[0:31] (ARM9TDMI) are in reversed bit
order. Systems based on the synthesizable ARM7TDMI-S and ARM9TDMI-S core lack the first scan
chain but are otherwise similar to the hard macrocell implementations.

For the purpose of a debugger it’s sufficient to use scan chain 1, which shall from now on be called the
debug scan chain. This scan chain may be used in INTEST (see table 2.2) mode, allowing core signals to
be captured, and known values to be scanned into the core, or in EXTEST mode, allowing signals from
outside of the core to be captured, and known values to be driven to the outside of the core. During debug,
the debug scan chain is used in conjunction with the INTEST instruction. Thescan path select register,
a special test data register used to select between several boundary-scan paths, is accessible by the ARM
specific SCAN_N JTAG instruction. When SCAN_N is selected, a fixed value, with the most significant
bit set to one and all others set to zero, is loaded into the scan path select register during Capture-DR,
making it possible to recognize serial communication problems. After scanning a new value into the
scan path select register, the new scan chain is made the currently active scan chain during Update-DR.
From that point on, JTAG instructions accessing the boundary-scan register (INTEST, EXTEST) apply
to the new scan chain.

ARM7TDMI Debug Scan Chain
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Figure 3.5: ARM7TDMI scan chain 1 (Debug)

Signals D[0:31] of the ARM7TDMI are connected to the core’s data bus, and are used to fetch in-
structions or read/write data. The BREAKPT signal is used to mark instructions that have to be executed
at system speed (clocked from MCLK, rather than DCLK), like instructions accessing memory or in-
structions that make the core return from debug state back to its normal state. The first time BREAKPT
is scanned out of the core, it contains information about whether the core entered debug state due to a
breakpoint (BREAKPT low) or because of a watchpoint (BREAKPT high).

ARM9TDMI Debug Scan Chain

Signals ID[0:31] of the ARM9TDMI are connected to the core’s instruction bus, and are used to fetch
instructions. The data lines DD[31:0] connected to the bi-directional data bus are used to read or write
data. SYSSPEED is similar to the ARM7TDMI’s BREAKPT signal, serving both as a flag for system
speed instructions and as an indicator for the reason for debug entry. The WPTANDBKPT signal allows
a debugger to determine if an instruction that triggered a watchpoint was immediately followed by a



18 ARM7 / ARM9 Architecture

031

34

66

32

35

TDO

TDI

DD31DD30DD29DD28DD27DD26DD25DD24DD23DD22DD21DD20DD19DD18DD17DD16DD15DD14DD13DD12DD11DD10 DD9 DD8 DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID16 ID18ID17ID14 ID15ID13ID0 ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12

SYSSPEED

WPTANDBKPT

DDEN/unused

Figure 3.6: ARM9TDMI scan chain 1 (Debug)

breakpointed instruction. In that case, the breakpointed instruction wouldn’t have been executed, and
would be the next instruction after debug state is left. The DDEN signal is available only on hard macro-
cell cores, its bit position is unused on synthesizable cores. When DDEN is high, the core is driving data
out on DD[31:0] which may be captured by a debugger.

Debug Instruction Execution

Once in debug state, a debugger may serially shift data into the debug scan chain by selecting scan
chain 1 (via SCAN_N) and INTEST. While the debug scan chain is selected and INTEST is the current
instruction, a DCLK cycle is pulsed on the rising edge of TCK when the TAP controller is in Run-
Test/Idle state, making the core act upon the values currently contained in the debug scan chain. A
debugger has to take the processor pipeline into account, that is the pipeline stages in which values
appear on the databus or have to be written to the bus by the debugger, and possible interlocks in case of
ARM9TDMI based cores.

3.3 Embedded-ICE

The Embedded-ICE (formerly known as "ICEBreaker") macrocell available on all ARM7 and ARM9
cores provides on-chip debug functionality similar to an ICE (see §1.1). The Embedded-ICE unit is
accessed through JTAG scan chain 2, which is selected through SCAN_N similarly to the debug scan
chain (scan chain 1) and may only be used with the INTEST instruction. The Embedded-ICE scan chain
(see Figure 3.7) is the same for ARM7 and ARM9 targets, and consists of 32 data bits, 5 address bits and
a flag to distinguish between read (nRW low) and write (nRW high) accesses. Embedded-ICE features
are accessible through registers, whose number is placed in the address field. The data field contains
register data read or to be written, and is aligned to the least significant bit for registers with less than
32 bits. For register reads, the Embedded-ICE scan chain has to be accessed twice, once to program
the nRW field for reading and the address of the register to be read, and once to capture the data of the
selected register. Register writes are accomplished with a single access programming nRW for writing,
the address, and the new register data. Register reads and writes are executed during the Update-DR
state.
Every Embedded-ICE implementation provides a common set of supported features, with extensions

or restrictions specific to certain families, cores or revisions. Embedded-ICE units contained in ARM7
and ARM9 family cores have two comparators that can be used to break on instruction fetches or data
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Figure 3.7: Embedded-ICE scan chain (Scan chain 2)

accesses. Each comparator consists of an address register, a data register, a control register, and a mask
register for each of the three registers with a layout similar to the value register that may be used to make
the comparator ignore masked bits in the comparison. The value/mask register combination allows three
possible requirements to be set:

� A positive match. The respective bit is required to be 1. This is achieved by programming the
value register bit to 1, and the mask register bit to 0.

� A negative match. The respective bit is required to be 0. This is achieved by programming the
value register bit to 0, and the mask register bit to 0.

� An ignored bit. A match should occur whether the bit is 1 or 0. This is achieved by programming
the mask register to 1, irrespective of the value bit.

The layout of the comparator registers is almost the same for all ARM7/ARM9 cores, with the exception
of a slightly different layout of the control register found on ARM9TDMI based cores, which is due to
the modified Harvard architecture of these cores.
The debug control register and the debug status register give access to debug signals that allow a core to
be put into halt-mode debug state using an external request, and information about the core state to be
examined by a debugger. The signals available through these registers depend on the exact core being
used, but a common subset is provided by all implementations.
The Embedded-ICE debug communications channel allows a debugger to communicate with software
running inside the core without using additional system resources like a RS232 port. It is accessible
from a debugger via a control and a data register, and can be accessed from the core using coprocessor
instructions. The control register is used to manage the communication between a debugger and the
running core, and contains information about the Embedded-ICE version implemented.
Table 3.2 shows the available registers and their addresses. A detailed layout of the registers is given

in figure 3.8, without registers of a flat 32 bit layout like the watchpoint data and address registers or the
debug comms data register. The watchpoint control mask register has a layout similar to its control value
register but is one bit shorter, as the Enable bit can not be masked.

Embedded-ICE Usage

Debug Request

Entering debug mode on the debugger’s request works the same for all ARM7 and ARM9 targets. The
debugger asserts DBGRQ by programming the debug control register with DBGRQ set to 1, and polls
the debug status register until it reads a 1 in DBGACK. On ARM9 based cores DBGRQ could be left
asserted, but ARM7 based cores require it to be deasserted in order to execute instructions at debug
speed. The core is then in debug state and may be examined by the debugger.
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Table 3.2: Embedded-ICE register map

Address Register name Availability restrictions
0x0 Debug control register
0x1 Debug status register
0x2 Abort status register only ARM7 cores with monitor mode debug

(ARM7TDMI Rev 4, ARM7TDMI-S Rev4,
and ARM720t Rev4)

Vector catch register all ARM9 cores
0x4 Debug comms control register
0x5 Debug comms data register
0x8 Watchpoint 0 address value
0x9 Watchpoint 0 address mask
0xa Watchpoint 0 data value
0xb Watchpoint 0 data mask
0xc Watchpoint 0 control value
0xd Watchpoint 0 control mask
0x10 Watchpoint 1 address value
0x11 Watchpoint 1 address mask
0x12 Watchpoint 1 data value
0x13 Watchpoint 1 data mask
0x14 Watchpoint 1 control value
0x15 Watchpoint 1 control mask

Hardware Breakpoints

Hardware breakpoints are realized using one of the two comparators. The address value and mask regis-
ter should be programmed to match the desired address, with the least significant bit masked for Thumb
breakpoints (16 bit instructions) or the two least significant bits masked for ARM breakpoints. This
ensures that the breakpoint triggers even with undefined signal levels on unused address lines.
A variant of HW breakpoints would be the use of a data dependent breakpoint. By programming the
watchpoint’s data register to match a certain instruction value, the breakpoint would only trigger if that
instruction is fetched. Together with the address value and mask registers this could be used to set a
breakpoint on the execution of a certain instruction in a specified part of the address space.
On ARM7 targets, a comparator may be programmed to match on instruction and data accesses by mask-
ing the nOPC field in the watchpoint control register. That’s not possible on ARM9 targets due to their
modified Harvard architecture, as the comparator can only watch a single bus. A generic breakpoint
layout that works for ARM7 and ARM9 targets programs nOPC to a negative match.
If breakpoint matches should be restricted to Thumb instruction fetches, MAS[0] (ITBIT on ARM9) may
be programmed to require a positive match. MAS[1:0] is used to determine the size of a memory access,
with b00 meaning byte accesses, b01 being a half word access (16 bit) and b10 being a word access (32
bit). An instruction fetch with MAS[1:0] set to b01 is therefor a 16-bit Thumb instruction fetch.
Using the Range, Chain and Extern fields in the watchpoint control register allows more complex break-
points to be defined. The technical reference manuals of each ARM core give information on the possi-
bilities and some usage guidelines.
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Software Breakpoints

Software breakpoints work by replacing an instruction in the target memory with a special instruction
that forces the core to enter debug state. Cores implementing the ARMv5TE(J) architecture may use the
dedicated BKPT instruction for this purpose, while older cores use a value defined in a data dependent
instruction breakpoint. The watchpoint address mask register is programmed to ignore the address (all
bits 1), and the data register is set to match on a certain instruction value. To be able to use the same
instruction value for ARM and Thumb state breakpoints, a symmetric pattern with the same value in the
upper and lower 16 bit of a 32 bit word should be chosen. 0xDEEEDEEE (32 bit ARM breakpoint) and
0xDEEE (16 bit Thumb breakpoint) is a possible implementation that fits to the Thumb state breakpoint
instruction available on ARMv5TE(J) BKPT (0xDExx) [DDI0100E]. The control register should be
programmed to require a negative match on nOPC and ignore all other bits.

Watchpoints

Hardware watchpoints are similar to HW breakpoints, but monitor the data bus. This is achieved by
programming the nOPC field in the watchpoint control register to a positive match. Using the nRW field,
a watchpoint can be limited to reads (negative match), writes (positive match) or any access (ignore).

Vector Catching

It may be important for a debugger to catch all or certain exceptions generated in the target. On ARM7
targets, this has to be achieved using a HW or SW breakpoint, requiring the use of one of the two
comparators. ARM9 targets contain a dedicated vector catch register that allows breakpoints to be set
on all or selected exceptions. The vector catch register only triggers on exception mode entry, not on a
regular fetch caused by a branch to an exception address.

Single-Stepping

Single-stepping is implemented in hardware on most ARM9 cores with the exception of ARM9E-S Rev
2 and ARM9EJ-S based designs, where this capability can’t be found. TheSingle Stepbit contained in
the debug control register of cores supporting single-stepping forces the core to re-enter debug state after
a single instruction has been fetched and executed.
Cores without hardware single-stepping capability have to simulate this behavior using a breakpoint
combined out of two comparators. The two comparators form an inverse breakpoint, that breaks on
everything but the current address:

� Both watchpoint units are programmed for HW breakpoint usage, requiring a negative match on
nOPC and ignoring the data value (data mask registers set to all ones).

� Watchpoint 1 matches the address of the current instruction (the one to be executed), but isn’t en-
abled. Inside the ARM7/ARM9 Embedded-ICE unit, the Range output of watchpoint 1 is derived
from its address comparator and connected to watchpoint 0’s Range input. An address match on
watchpoint 1 appears as a positive value on watchpoint 0’s Range field.

� Watchpoint 0 is enabled and set to match on any address, but is required to have a negative match
on its Range field.
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� The core resumes execution from debug state. On the first instruction fetch, watchpoint 1 matches
the address but doesn’t trigger as it’s not enabled. Watchpoint 0 matches the address, but its Range
input is high (from watchpoint 1), preventing it from triggering.

� On the second instruction fetch, watchpoint 1 no longer matches the address. Watchpoint 0 still
matches the address, this time with a low Range input, making it trigger. The core enters debug
mode after executing one instruction.

This method doesn’t work for instructions that branch back to themself, a combination that’s probably
rarely seen in reality. In that case, watchpoint 1’s address comparator would match forever, preventing
the core from re-entering debug state. A debugger should take care of that possibility by implementing a
timeout by which the core should have reentered debug state.

3.4 Debug State Entry

Debug state may be entered as a result of the following conditions:

� Debug request. Either an external debug request (EDBGRQ) or as a result of programming the
Embedded-ICE control register with DBGRQ set to 1. The core is forced to enter debug state after
it finished executing the current instruction. On ARM7 cores, the program counter (PC) contains
the address of the instruction to be executed next plus two addresses (8 byte in ARM state, 4 byte
in Thumb state), whereas on ARM9 systems it contains the address plus three addresses (12/6
bytes).

� Breakpoint. A breakpoint can be triggered by an Embedded-ICE watchpoint, a software breakpoint
instruction on ARMv5TE(J) targets or an external breakpoint signal (IEBKPT). If an instruction
fetch causes a breakpoint to trigger, the instruction is still fetched into the pipeline and marked as
breakpointed. If the instruction reaches the execute stage (i.e. it’s not flushed due to a branch or
exception entry), the core enters debug state without executing the breakpointed instruction. On
both ARM7 and ARM9 systems, the PC contains the address of the breakpointed instruction plus
three addresses. BREAKPT on ARM7 cores or SYSSPEED on ARM9 cores are low the first time
they’re scanned out of the debug scan chain after a breakpoint occurred.

� Watchpoint. Either an external watchpoint (DEWPT) or an Embedded-ICE watchpoint (nOPC
positive match). The instruction causing the memory access and the immediately following in-
struction have been executed after a watchpoint triggered. Just as it’s the case for a breakpoint,
the PC contains the value of the next instruction plus three addresses on both ARM7 and ARM9
systems. A watchpoint is signaled by high values of BREAKPT and SYSSPEED the first time
these bits are scanned out.

� Watchpoint + Breakpoint. The instruction immediately following a watchpoint may be break-
pointed, in which case it’s not going to be executed. This can’t be detected on an ARM7 system,
but on an ARM9 WPTANDBKPT may be examined to detect such a situation. The PC contains
the address of the instruction to be executed next plus three addresses.

In addition to the debug reason detection via BREAKPT/SYSSPEED, newer ARM9 cores like the
ARM9E-S Rev 2 and the ARM9EJ-S offer a Method of entry field in the debug status register (see
Figure 3.8) with detailed information about the condition that caused debug entry [DDI0240A].
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3.5 Core State

Once in debug state, a debugger may start to examine the core state using instructions scanned into the
debug scan chain (see §3.2). The core registers of the current processor mode can be read using a "store
multiple" (STM) instruction. The debugger puts theSTM instruction in the processor pipeline, clocks the
core by moving through Run-Test/Idle, and loads two additional "no operations" (NOP) into the pipeline.
During the 4th cycle, the values of the registers referenced by theSTM instruction start to appear on
D[0:31] (ARM7) and DD[31:0] (ARM9), and can be capture by the debugger [DDI0100E, p. A4-84].
The current program status register (CPSR) may be read using a "move PSR to general purpose register"
(MRS) instruction that moves the CPSR into one of the general purpose registers followed by a "store reg-
ister" instruction that makes the value of that register appear on the data bus (D[0:31]/DD[31:0]). Saved
program status registers of exception modes are handled similarly using the R bit of theMRS instruction
that moves the SPSR instead of the CPSR [DDI0100E, p. A4-60].
Registers of other modes require a change to that mode which can be done using a "move to status reg-
ister from core register" (MSR) instruction. While during normal execution, the current processore mode
may only be changed when in privileged modes or on exception entry, there’s no such restriction while
the core is in debug state. A debugger can put aMSR instruction with an immediate operand in the proces-
sor pipeline, and may start examining registers of the new mode once theMSR instruction is completed
[DDI0100E, p. A4-64].

3.6 System State

It’s not possible to access system memory while the core is in debug state and clocked from DCLK, so the
core must resynchronize to its main clock (BCLK/FCLK/MCLK, see §3.2). ARM cores define a JTAG
instruction RESTART that’s used to restart the core from debug state. The core resynchronizes to the
memory system once the TAP controller reaches the Run-Test/Idle state with RESTART as the current
instruction. Using load multiple (LDM) instructions executed at system speed to read system memory
and store multiple (STM) instructions executed at debug speed to capture the read values a debugger may
examine the system state. If system memory is to be modified, the operations may occur in the opposite
order, usingLDM at debug speed to load the new values into core registers and usingSTM to write them.
On ARM7 based cores, the instruction prior to the one that is to be executed at system speed has to be
scanned into the core with the BREAKPT bit set high. ARM9 based cores require the instruction that
should be executed at system speed to be scanned in with the SYSSPEED bit low, followed by aNOP
with SYSSPEED high.
After the necessary instructions have been put into the processor pipeline, RESTART is loaded into the
TAP controller, and the state machine is moved to Run-Test/Idle state. The core resynchronizes to the
memory clock, executes the system speed access, and reenters debug state. A debugger should poll the
debug status register to determine when the operation completed.

3.7 Exit from Debug State

Exit from debug state is similar to system state accesses, but instead of a load/store instruction a branch
is loaded into the processor pipeline. A debugger has to restore the execution context (see list 3.1) before
it may exit from debug state. This may be achieved usingMSR instructions to modify the CPSR and
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Table 3.3: LDR operation cycle timing (ARM7) with PC as destination

Pipeline stage Cycle number Action
Fetch 1 LDR instruction is fetched
Decode 1 instruction fetched, LDR is decoded
Execute 1 instruction fetched, LDR source address is calculated
Execute 2 nothing fetched, new PC is loaded from memory
Execute 3 nothing fetched, PC register is written
Execute 4 instruction fetched from new PC
Execute 5 instruction fetched from new PC+4

LDM instructions that load the core registers. Finally, the PC has to be reloaded, as it got incremented
on every instruction executed during debug.LDR instructions that load the PC are similar to a branch,
as they require the core pipeline to be flushed, and new instructions have to be fetched from memory.
Table 3.3 shows the cycles executed on ARM7 cores [DDI0029G, p. 6-13], but the order of operations
is the same for ARM9 systems. During Execute cycles 4 and 5, new instructions are fetched, and the PC
is incremented. ARM9 systems may fetch the branch with SYSSPEED set and the followingNOP during
these cycles, requiring a branch back to the current instruction (-2 addresses), but ARM7 systems need
an additionalNOP during the 4th Execute cycle. This results in aNOP fetched duringLDR’s execute cycle
4, aNOP with BREAKPT set duringLDR’s execute cycle 5, and the final branch back to the last but two
instruction (-4 addresses).
After the branch has been clocked into the pipeline, RESTART is selected as the current JTAG instruc-
tion. Once the TAP controller reaches Run-Test/Idle, the processor starts executing from the restored
PC.
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ARM cores with a MMU or Caches require special treatment. The debugger has to ensure coherency
between the caches and main memory, while as much as possible of the cache and MMU state has to
be preserved. This chapter is going to look at the implications for ARM720t cores (MMU and unified
cache) and ARM920t cores (MMU and separate instruction and data caches). The same considerations
are true for other cores, but the support provided by the on-chip debug facilities may be different, requir-
ing different actions by a debugger. A basic understanding of MMU/Cache implementations in general
are required, detailed information is given in [DDI0100E] and [Sf00].

4.1 Unified versus Separate Cache Implementations

Unified Cache (e.g. ARM720t)

Figure 4.1 shows the basic organization of a unified cache system like the ARM720t. The ARM7TDMI
processor core issues virtual addresses to the MMU and the unified cache. While the MMU is turned off,
the core still issues its addresses to the MMU, which passes them through unaltered, giving a flat 32 bit
address space.
ARM7TDMI data reads from addresses that are already contained in the cache are satisfied from there. If
the data isn’t in the cache, the MMU checks its TLB to see if there’s already a translation for the required
virtual address. In cases where the TLB contains the required translation, and the virtual address is in a
cacheable memory area, a line fetch is executed to fill the cache with data from the bus interface, which
is then transfered to the ARM7TDMI. Uncacheable memory is transfered directly from the bus interface
to the core. On a TLB miss, the MMU executes a page table walk to find a translation for the virtual
address, which is written to the TLB. The MMU generates a translation abort, if no valid translation
is found, and the core enters the data abort exception handler. Instruction fetches are similar, but an
instruction abort is generated instead of a data abort.
The ARM720t has a write-through cache and operates on read-miss allocation [DDI0192A, p. 4.2].
Memory writes update the cache on a hit, but will always be written to main memory, too. Cache lines
are only loaded or replaced on read operations - write operations that don’t generate a hit inside the cache
wont alter it.
Coherency isn’t an issue for ARM720t based systems due to the unified write-through cache. It’s suffi-
cient to disable the caches during memory reads to ensure that cache content is preserved. Read hits are
still served from the cache if it’s disabled, [DDI0192A, p. 4.2], and cache misses lead to system memory
accesses.

26
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Figure 4.1: ARM unified cache organization (ARM720t)

Separate Caches (e.g. ARM920t)

Figure 4.2 shows the organization of an ARM920t processor with its separate data and instruction caches.
Virtual/physical address translation is handled similar to the ARM720t, but two independent MMUs take
care of instruction and data virtual addresses.
The ARM920t data cache can operate on a write-through or a write-back policy, depending on the con-
figuration of the particular memory location, while naturally the instruction cache doesn’t write any
memory. Writes to write-through memory regions update the cache and are sent to the write buffer, too,
while writes to write-back memory only update the data cache entry and mark it as dirty. Dirty cache
lines are written to main memory if the cache line is to be replaced or if an explicit data cache flush was
initiated. Both caches implement a read-miss allocation like the ARM720t.
Keeping the instruction and data cache in a coherent state is an important task of a debugger designed
for ARM920t based systems, as accesses to the data caches and main memory wont affect the instruction
cache. When the debugger modifies program code, for example by setting a software breakpoint, a write
could go to the data cache only, in case of a write-back region. As soon as that instruction is to be fetched,
the instruction cache is queried, and might return an instruction it fetched before the debugger modified
the code. On an instruction cache miss, a line fill is executed, loading instructions from system memory,
which may have outdated code, too. To ensure coherency and preserve as much of the cache state as
possible in every possible case, it is important to carry out the following steps in case of a memory write
while caches are enabled:
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� Disable line fills for instruction and data caches on debug entry. This ensures that no cache lines
are replaced during debugging.

� Examine the cacheable/bufferable bits for a memory location that is to be written. If the region
is marked as write-back cacheable, execute either a cache flush, change the memory region tem-
porarily to write-through, or write the memory twice, once using the virtual address while MMU
and caches are enabled, and once using the physical address while MMU and caches are disabled.
This guarantees that the data cache and system memory are in a coherent state.

� Invalidate the instruction cache for every address that was written. The core is going to execute a
line fetch if it has to execute an instruction from an address that was invalidated before, fetching
the modified code from system memory.

These steps are time consuming, if larger memory blocks have to be written, so a debugger might apply
them only to small modifications, like writing of half-words and words. This ensures that breakpoints
always affect instructions possibly contained in the instruction cache, while keeping the overhead for
other operations to a minimum. Larger transfers typically affect either modified data, where coherency
isn’t an issue, or code download, in which case the user can explicitly specify that coherency is to be
ensured, if this is desired.
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4.2 System Control Coprocessor

The MMU, caches and other system features available only on cached systems are controlled by copro-
cessor 15 (CP15). It has a common programmer’s model available on all implementations, while special
features or restrictions only apply to selected cores. [DDI0100E, p. B2-1 ff.] gives detailed information
about the system control coprocessor’s programmer’s model. This section is going to explain the use of
functionality necessary or useful for a debugger.

� Main ID register. Accessible as register 0 with opcode2 set to 0. Contains information about
the processor core like architecture version, part number and core revision number. Useful to
determine if revision dependent features are available.

� Cache Type register. If available (like on ARM9 cores) this register gives detailed information
about the cache type (write-back/through, supported functions), whether it’s a unified cache or
separate I/D caches, and the size and organization of the caches (line length, associativity, num-
ber of cache sets). This is especially important on cores with configurable cache sizes like the
ARM926EJ-S. The Cache Type register is accessed as register 0 with opcode2 set to 1.

� Control register, CP15 Register 1. Used to control system features like the MMU and caches. See
[DDI0100E, p. B2-13] and a particular core’s technical reference manual for a list of available
configuration options. This register should be made user-accessible through a debugger.

� MMU translation table base register, CP15 Register 2. Used as the offset to the first-level page
table for a first-level descriptor fetch. Only bits 31 to 14 are used, the remaining 14 bits should be
zero. The first-level page table is therefor aligned to a 16 kB boundary.

� Fault status register, CP15 Register 3. Contains information about the abort reason. On ARM9
cores there are two registers available, one for data aborts and one for prefetch aborts (instruction
fetch abort). The instruction fault registers are only accessible from a debugger.

� Fault address register, CP15 Register 4. The address that caused an abort. ARM9 cores have two
registers, one for data aborts and one for prefetch aborts.

� MMU, cache and write buffer control registers. The use of these registers is mostly implementation
defined.

� FCSE ID register, CP15 Register 13. This register contains the fast context switch extension
process id (PID) of the current process in its top seven bits. FCSE allows process memory to
be relocated by replacing the top seven bits of a virtual address with the PID. This gives 128
process memory blocks of 32 MB size that can be switched without having to modify the virtual-to-
physical address translation. Virtual addresses (VA) are first translated using the FCSE, producing
a modified virtual address (MVA), which is then fed to the caches and MMU.

ARM720t CP15 Accesses

Coprocessor 15 registers may be accessed through a debugger using the JTAG boundary-scan chain 15
together with the INTEST instruction. Figure 4.3 shows the layout of scan chain 15, with data bits
CPDATA[0:31] and a flag indicating whether the value represents data or an instruction. Coprocessor
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Figure 4.3: ARM720t scan chain 15 (CP15)

Table 4.1: ARM720t CP15 read operations

CPDATA31..0 (in) CPDATA31..0 (out) Instruction bit Clock
coprocessor instruction ignored 1 yes
NOP instruction ignored 1 yes
NOP instruction ignored 1 no
0x0 ignored 0 yes
0x0 read value 0 yes
NOP instruction ignored 1 yes

instructions are executed by serially shifting them into scan chain, and moving the TAP controller to Run-
Test/Idle where the coprocessor is clocked. [ARMFAQ2] gives an example on how to access coprocessor
15 using JTAG accesses. The CP15 follows the ARM7TDMI pipeline with its Fetch, Decode and Execute
stages. An instruction that should be executed has to be scanned into the pipeline with the instruction
bit high, followed by twoNOP instructions. The last access to scan chain 15 before the value is read
has to have the instruction bit low, indicating a data access. The coprocessor instruction is executed in
the second Execute cycle, during which the debugger can capture the data. Coprocessor register writes
are similar and require the new value to be scanned into scan chain 15 during the second Execute cycle.
Table 4.1 shows the process of executing a coprocessor 15 instruction that reads a coprocessor register.
The coprocessor instruction has to be built according to the register that should be accessed. The final
NOP was necessary during all tests to ensure that CP15 operations worked properly. The only public
documentation about ARM720t CP15 accesses is the FAQ entry [ARMFAQ2].

ARM920t CP15 Accesses

There are two access types for CP15 registers on ARM920t cores, physical access mode and interpreted
access mode. Both use the JTAG boundary-scan chain 15, which may only be used together with the
INTEST instruction. [DDI0151C, p. 9-32 ff.] lists the registers accessible by each of the two methods.
The layout of scan chain 15 is shown in figure 4.4. The mode of operation is selected by bit 0 (next to
TDO), with a 0 indicating an interpreted access and 1 a physical access.

Physical Access Mode

Scan chain 15 behaves similar to the Embedded-ICE scan chain when used in physical access mode with
bit 0 set high. The data, address and nRW bits are serially shifted into the scan chain. During Update-
DR the register is read or written, requiring an additional pass for register reads, where the value of the
selected register is shifted out of the boundary-scan register.
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Interpreted Access Mode

Before an interpreted access may be executed, the CP15 test state register (register 15) has to be modified
using a physical access to set the CP15 interpret mode bit [DDI0151C, p. B-4]. The desired coprocessor
instruction is then scanned into scan chain 15 with bit 0 low to select interpreted access mode. The
ARM9TDMI is used to execute a system speed load (CP15 register read) or store (CP15 register write)
operation, which executes the coprocessor instruction, reading or writing the core register specified in
the system speed load/store. After the coprocessor accesses are finished, the CP15 test state register has
to be restored in order to disable interpreted access mode.



5 Requirements Specification

This chapter is going to analyze the requirements for the debugger, providing a basis for the architectural
design and the following implementation. The Open On-Chip Debugger is going to run as a daemon
process on a host PC, making use of a JTAG compliant hardware interface that connects to the target
system. The target system consists of a SOC with an ARM7 or ARM9 core, memory in form of RAM
and ROM, and peripherals like Ethernet, RS232, and CAN. The debugger should be able to load code
into target memory, control code execution on the target, and examine the target state. In case there’s
no code on the target that takes care of required initial setup, the debugger has to carry out these setup
steps. User interaction with the debugger ought to be possible via a command line interface that allows
users from remote systems to log in and make use of the debug functionality, as well as through a GDB
(The GNU Debugger) remote protocol server that lets a user take advantage of the sophisticated debug
support available in GDB.
Figure 5.1 shows how the parts of the debugging environment are connected together. The debug host
connects to the target microcontroller through some kind of JTAG hardware interface. Access to target’s
memory has to go through the target’s microcontroller, as the debugger has no direct connection to the
memory chips. During development, peripherals like Ethernet and RS232 are connected to the debug
host, too, allowing target functions to be accessed.

The debugger will have to continuously evolve to support new or modified cores, to provide support
for additional flash devices, and to allow additional JTAG hardware interfaces to be integrated. Debug
statements should be left in the code, and may be enabled using a configuration option. It should be
possible to change the amount of debug information presented to the user during runtime, to allow a
developer to examine the debugger’s behavior during selected operations.
Both a configuration file and command line arguments may be used to configure the debugger, and com-
mand line arguments should take precedence over configuration file options. It should be possible to
select a configuration file via a commandline argument, to allow a developer to debug multiple targets or
target configurations, without having to change or replace the configuration file every time.

5.1 JTAG

To allow easy adoption to different JTAG hardware devices, a common interface that abstracts the under-
lying hardware has to be defined. JTAG operations move the state machine, scan bitstreams into either a
data- or the instruction register, and allow the Test Reset (TRST) line to be manipulated. ARM defines
an additional System Reset (SRST), that allows core logic to be reset without affecting the test state and
should be considered to be part of the JTAG interface, too. The Test clock (TCK) may be free running,
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Figure 5.1: Debug environment

i.e. it runs even when there’s no JTAG operation to be executed, or may be stopped during its low phase.
To account for interfaces that don’t allow TCK to be stopped, operations may only finish in stable states,
where one of the two possible transitions leads back to the state itself. Test-Logic Reset (TLR), Run-
Test/Idle (RTI), Shift-DR (SD), Pause-DR (PD), Shift-IR (SI) and Pause-IR (PI) fulfill this requirement.
The two shift states are not suitable to finish an operation, as they modify the register content. Table 5.1
lists the possible JTAG operations.

The operations listed in 5.1 are of a very low level, and a large number of them is required to execute
an operation in the target. Depending on the JTAG hardware and how it’s connected to the debug host,
a considerable amount of time may pass while a command is sent to the interface and the host waits for
its completion. Devices connected via USB 1.1 for example send data in timeframes of 1 ms. If the host
sends individual commands to the device, latency may limit the interface to a few hundred operations
per second. To allow high throughput despite high latency, it should be possible to send many operations
to the JTAG hardware before the host has to wait for their completion.
The JTAG interface is defined by the hardware being used, the current state inside the state machine, the
endstate in which JTAG operations should be finished, and the currently selected instruction.

5.2 Target

The debugger’s goal is to support ARM7 and ARM9 based targets. While these share some common de-
bug functionality, there are differences between the two core families, and between the members of each
core family. An abstract interface should encapsulate as much debug functionality as possible, while
target specific extension give access to non-standard functions. Table 5.2 lists the operations that have to
be implemented by each target.
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Table 5.1: JTAG operations

Operation Description
Endstate Changes the currently selected endstate, affecting following operations but not

causing any immediate action.
Reset Reset the JTAG state machine, either by pulling nTRST low, or via five TCK

cycles during which Test Mode Select (TMS) is held high. This moves the
state machine from every possible state to Test-Logic-Reset.

IR Scan Move the state machine from its current state to Shift-IR, serially shift a binary
pattern into the instruction register, and capture the shiftregister output. When
the scan is finished, move the state machine to the currently selected endstate.

DR Scan Similar to an IR Scan, but operates on the currently selected data register in-
stead of the instruction register.

Runtest Move the state machine to Run-Test/Idle, and execute a given number of TCK
cycles, before moving to the selected endstate.

Statemove Moves from the current state to the selected endstate.
TRST Change the TRST line as requested
SRST Change the SRST line as requested

Table 5.2: Common target operations

Operation Description
Poll target state Retrieve information about the current target state. If the target

entered debug state since the last poll, the current execution con-
text should be captured and saved, to allow the target to be re-
sumed later.

Architecture state Retrieve architecture specific information about the current target
state. This should give a quick overview about target dependent
state information, like the state of the MMU or caches (if avail-
able), or important target registers like the program counter (PC)
or the current program status register (CPSR)

Halt Forces the target into debug state. No code should be executing
on the target, and the debugger should be able to examine and
modify the target’s state.

Resume Makes the target leave debug state. The execution context has
to be restored, and the target should start executing instructions
from where it was stopped, or at a new address, if this is desired.

Step The target leaves debug state, executes exactly one instruction,
and reenters debug state. Before leaving debug state, the exe-
cution context has to be restored. How stepping is implemented
depends on the actual core version.
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Reset A warm reset of the target is executed. This resets all system
functionality, but leaves the debugger in control of the target. It
should be possible to halt the target immediately after coming
out of reset, and target specific initialization may be carried out
if desired. If neither halt nor initialization is required, the target
may start executing instructions from the reset vector.

Get/Set GDB register(s) Because a GDB remote protocol server is a major requirement for
the debugger, every target has to implement access to registers in
accordance with the GDB remote protocol. This allows a single
GDB stub to be used for all targets, as the target specific ordering
of registers is done by the target. The ARM GDB remote protocol
expects registers to be transfered in a bytestream of the target’s
endianess, starting with the core registersr0 to r15 (each 32 bit),
the floating point registersf0 to f7 (each 96 bit), the floating point
status registerfps and the current program status registerCPSR.
If a single register is requested, a number, starting with zero and
ordered like the full register list, is given to each register.

Read/Write memory Access to target memory using load/store instructions of a spec-
ified size should be possible. ARM cores are 32 bit cores that
support 8, 16, and 32 bit accesses. The debugger may specify any
number of items of the selected size to be read or written. The
target should take care of memory consistency between caches
and main memory. Memory accesses may produce a data abort,
in which case the debugger should restore the target state and in-
form the user about problems this may have caused.

Add/Remove breakpoints It should be possible to set breakpoints of a selected size on ad-
dresses aligned to that size. This allows both ARM and Thumb
state breakpoints to be specified. If desired, the breakpoint may
be specified as a hardware breakpoint, in which case no memory
modifications are necessary. Otherwise, the breakpoint should be
implemented as a software breakpoint that replaces the original
instruction in the target memory with a special pattern that forces
the core into debug state once it is executed.

Add/Remove watchpoints Watchpoints, that monitor a given memory region for reads,
writes, or both, may be set using an address and a mask that
specifies which bits of the accessed address should be ignored
when comparing it to the monitored memory region. Watchpoints
should only be implemented using dedicated HW resources, be-
cause monitoring every instruction that is executed for the mem-
ory it accesses (SW watchpoint) would be too time consuming.

A target may be either little- or big endian, and the debugger may be running on a little- or big endian
host. The GNU Debugger (GDB) expects all data to be transfered in target endianess, so this should be
the endianess used while the data is handled by the debugger, too. If data is to be presented to the user,
it should be evaluated according to the target’s endianess.
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On startup, the target is in an unknown state, as the debugger can not know if the target is halted or
running. After the debugger examined the target state, the target may be in running state, where it is
executing instructions at full system speed. If the target was already halted when the debugger examined
it for the first time, the target remains in an unknown state, as the debugger can not know if the core is
in a state where it’s safe to be resumed later. When a user requests a target reset, or if the debugger is
configured to reset the target on startup, the target is in reset state until it’s either resumed or put into
debug mode. A configuration option should allow a user to specify what the debugger does when it is
started and connects to the target.

Core Differences

While an abstract target interface allows different cores to be controlled using a common set of oper-
ations, there are many similarities between ARM7 and ARM9 cores that may be handled by the same
code, making an additional interface necessary that gives common code parts access to target specific
operations.
All ARM cores use a scan path select register and the SCAN_N JTAG instruction to determine which
boundary-scan register is being accessed, but this register is four bits wide on ARM7 cores, and five bits
wide on ARM9 cores. This information should be available to common code that selects the current
boundary-scan register.
The Embedded-ICE unit has a debug comms control register that contains the version of the Embedded-
ICE interface implemented by the core. Depending on that version, the debugger may decide what debug
functionality is available. The Embedded-ICE registers provided by a particular core and their size may
also vary, and a target should make the layout of its Embedded-ICE registers available to common code
that handles access to these registers.
Common code should be able to handle the core’s current state, and needs access to the target specific
operations listed in table 5.3.

ARM7/ARM9 MMU and Cache Support

Every target should provide access to as much information as possible. Targets with a system control
coprocessor (CP15) should allow the user to read and write coprocessor registers. The format of the
coprocessor register accesses depends on the core family. On ARM720t cores, CP15 is accessed using
coprocessor instructions as if they were executed in the program code. ARM920t cores provide two
access methods (see §4.2), a user should refer to the technical reference manual for a list of registers
accessible with each method [DDI0151C].
Cores with a MMU should provide a command that allows a user to translate virtual addresses to phys-
ical addresses. All ARM7 and ARM9 cores implement similar address translation, making it possible
to support both with a single solution. To allow common address translation for all cores, the debugger
needs to be able to access memory using physical addresses to simulate the page table walking. It fur-
ther has to turn off the MMU and needs to read the translation table base. While ARM9 cores support
tiny pages of 1 kB size, the smallest pages usable in ARM7 systems are 4 kB small pages, and a page
descriptor that indicates a tiny page is an error on these cores. A common interface has to be defined that
encapsulates target specific access to the required functions.
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Table 5.3: ARM core specific target operations

Operation Description
Examine debug reason While all ARM cores may enter debug state because of the same

reasons, it depends on the debug functionality provided by each
core how this information is accessed.

Save execution context Once the core entered debug state, its current execution context
has to be saved. This includes the core registers of the current
processor mode on all cores, but may extend to state information
specific to a particular core, like the instruction/data fault status
and address registers on ARM9 based cores with a MMU.

Save full context Registers that don’t belong to the processor’s current mode only
have to be read if they are explicitly requested, as they’re safe
from getting modified during normal debug operation.

Restore execution context Before the core may be restarted (for resume or single-stepping),
the execution context has to be restored. Every register that has
been modified by debug operations and every register explicitly
changed by the user has to be written back to the core.

Step Execute a single step. The context has already been restored.
Resume Resume the core. The context has already been restored.

5.3 Flash

On ARM7/ARM9 based systems, flash memory is handled by writing commands to addresses assigned
to the flash chip. Status information for example is obtained by writing a status command, followed
by reading from an address located within the flash. The actual procedure depends on the flash chip in
question and varies among vendors and product families. Flash writing thus requires working memory
accesses for a given core.
Flash chips on a target should be erasable and programmable through the debugger. If a flash chip pro-
vides a hardware protection mechanism, it should be possible to set and remove this protection. Because
additional flash chips should be easy to include, an interface that describes the operations on a flash chip
is required. The code necessary for a new flash chip is then limited to the implementation of that interface
without having to touch other parts of the debugger.
A flash chip may be 8, 16, or 32 bits wide, and is connected to the microcontroller using a bus of 8, 16,
or 32 bits. It’s possible to combine multiple chips of a uniform size to form a bus wider than the width
of each chip. One or more chips form a flash bank that starts on a certain memory address, and the width
of the bus and the chips determines how many chips form a single flash bank. The flash interface should
provide operations to probe if flash memory is located at a given address, report information about the
blocks of a flash bank located at a given address, set or remove the protection of selected blocks, erase
blocks, and write binary data at a selected offset on a flash bank.
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5.4 User Interaction

A command line interface should be realized using a telnet server embedded in the debugger. A user
connects to the server process using a telnet client, allowing a single debug system to be used by differ-
ent users at possibly remote locations. The use of a remote interface further allows easy integration of
the software into a standalone debugging solution without the need for a host PC with JTAG hardware.
The telnet interface should be conformant to [RFC854], with support for advanced features described in
later telnet specifications. The TCP port on which the server listens for incoming connections should be
user configurable, and should use 4444 as a default if no other port is specified.

The GNU Debugger (GDB) implements a remote protocol for use over serial lines that’s also being
used on TCP/IP network connections [GDB01]. The protocol specifies packets that are used by GDB to
control the target’s operation. Packets are introduced by a$, followed by the packet data, and finished
by a # and a two hex-digit (8 bit) checksum that is calculated as the sum of all characters between$
and# modulo 256. The target replies to commands with packets of the same format. After commands
that resume or single-step the target, the reply is delayed, until the target reenters debug state. While the
target is running, a GDB session can be interrupted by a user, usually using ’ˆC’. This event is transfered
as a binary 0x3 to the target, and not enclosed in a normal GDB packet. The GDB remote serial protocol
server should use a user configurable TCP port, or 3333 as a default if no other port is specified.

5.5 Quality and Performance

It is important that a debugger never displays wrong or inaccurate information. In case of a problem, the
debugger has to inform the user that something might have gone wrong, and it has to abort execution if
an unrecoverable error occurred. The daemon process should provide four levels of information:

� Error messages that are fatal for the program’s further execution.

� Warnings that indicate a problem, but allow the program to continue execution.

� Informational messages, that are generated during normal program execution. They give a user
additional information about the debuggers operation which may be helpful when diagnosing a
problem.

� Debug messages, which may occur at a high rate. These should be used to identify problems
during further development of the debugger, to allow easy adoption to new cores, and to assist in
adding support for new flash devices and JTAG hardware interfaces.

Debuggers for embedded systems are often measured by the speed at which it’s possible to download
code into the target’s memory. It is important to optimize the debugger for high download speeds, as the
size of the data that has to be transfered may be large compared to the speed that is typically achieved. A
Linux kernel image and a ramdisk that should be tested may require several megabytes to be transfered
to a target, and simple JTAG interfaces only allow speeds up to a few kilobytes per second.
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Single-step operation is another aspect that’s sensitive to performance. A user might want to trace
through the code executing on the target. This makes it necessary to reenter debug state, save the core’s
execution context, restore register modified by the debug entry, and resume the core after every instruc-
tion executed.



6 Design and Architecture

This chapter is going to describe the design and architecture of openocd, the Open On-Chip Debugger,
based on the requirements specified in the previous chapter, laying a foundation for the implementation
to build upon.

6.1 Software Modules

The software should be modularized, to allow subsystems to be easily extended or exchanged, without
having to worry about dependencies in other parts of the code. Figure 6.1 shows the modules and their
interaction. The daemon is the first part that is initialized, and controls the remaining components.
It manages the program configuration by evaluating the command line arguments, and uses the CLI
module to parse the configuration file. Every module may register commands with the CLI module
that are used as configuration statements, user commands, or both, in case a configuration option may
be changed later. The JTAG module is the only part that accesses the hardware being debugged, and
provides an interface for other modules to communicate with the target. The Target module encapsulates
common debug functions and registers target specific commands with the CLI module. It is accessed
by the daemon to keep track of the target state while the daemon waits for new connections, and offers
target debug functionality to the GDB and CLI modules. The GDB module is invoked after the daemon

Target

hardware
Daemon GDB CLIJTAG

Target Flash

Figure 6.1: Openocd modules
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accepted a new GDB connection, and maps the GDB remote serial protocol to the interface provided by
the target module. A monitor packet is specified by the GDB remote protocol, that allows commands to
be sent which should be interpreted by the GDB server. The GDB module hands these command strings
to the CLI module for evaluation, and returns any replies to the remote GDB, extending the functions
accessible from within a GDB session to all commands provided by the various modules. The CLI
module implements the telnet server, handles configuration parsing and allows other modules to register
commands. The Flash module is only accessed via the command interface, as the GDB protocol doesn’t
specify flash operations, and uses memory access functions provided by the Target module to program
the flash chips.

6.2 Configuration Management and CLI Module

The debugger configuration is determined by command line arguments, a configuration file, and any
changes a user makes at runtime using configuration commands. The configuration file should be used
both to configure the debugger and to describe necessary target initialization. Because the commands
used to initialize the target are the same as those that will be used later on the command line interface, a
configuration file format that allows arbitrary commands to be specified is required. Simple formats that
use key-value pairs aren’t sufficient, and complex formats based on the Extensible Markup Language
(XML) are inconvenient to be used for files that will be manually edited.
The LGPL licensed libcli (http://sourceforge.net/projects/libcli/) implements a telnet server
with command line editing capabilities, and allows command strings and corresponding call-back func-
tions to be registered. In addition to the telnet interface, the library provides a function to interpret a text
file as if the lines were entered at the command line interface. When the library encounters one of the
registered commands, it invokes the call-back function, and supplies that function with an array of all the
arguments given to the command. The libcli library defines two modes in which it evaluates commands,
an execution mode and a configuration mode. Commands may be specified to be available in one or both
modes. It’s possible to limit a command’s scope by parsing the configuration file in configuration mode,
and setting execution mode for all interactively entered commands. This ideally fits all requirements,
and provides configuration commands and a telnet based command line interface using a single library.
The number of configuration options that may be changed using command line arguments should be
kept small, to avoid a large number of arguments a user would have to remember. Options that may be
specified on the command line have to be initialized to an invalid value. This allows the configuration
command handler to determine if the option was set on the command line (which takes precedence), or if
it contains an invalid value, in which case the value from the configuration file may be used. If a module
is called and finds one of its options still uninitialized, it may choose a default value, turn off a feature
that would be configured by this option, or signal an error that forces the debugger to quit, if the option
is essential for the debugger’s operation.
Every module registers its configuration commands with the CLI module. When the configuration file is
parsed, these functions get called, and allow further configuration commands to be registered. This al-
lows different module implementations (like targets or JTAG interfaces) to use the same command name
for different implementation specific functions, because only commands that belong to the currently con-
figured implementation are registered with the CLI module. The following example shows an excerpt
from an openocd configuration file that configures the debugger for use with an arm920t target, and sets
the arm7/arm9 specific option ’breakmode’ to the value ’hw’.
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#target
target arm920t
...
#arm7/9 specific
breakmode hw

The configuration command ’target’ was registered by the target module. When it’s called, it searches
a list of implemented targets for the name specified. If a matching target is found, this is asked to register
commands specific to it. The ARM920t is handled by code common to all ARM7 and ARM9 targets,
and registers commands specific to these targets, like the breakmode command that enables software
breakpoints. The breakmode command has already been registered when it is encountered, and the cor-
responding call-back function is called.

The configuration file is also used as a script of initialization commands that should be executed
on the target, for example to setup an SDRAM controller, or to configure the buswidth of connected
flash chips. When the debugger is set to perform target initialization after the target has been reset, the
configuration file is parsed in libcli’s execution mode, ignoring all commands that are registered for con-
figuration mode.

6.3 JTAG Module

The JTAG module provides access to JTAG operations. Different JTAG hardware interfaces define their
own implementation of an abstract interface, and may use common code that’s suitable for many different
devices. The JTAG interface defines two levels of commands: High-level commands, that read or write
test data registers and control the TAP state machine, and low-level commands, that directly modify
the JTAG signals (so-called bit-bang operation). Interfaces that implement the high-level command set
don’t have to provide the low-level commands, while simpler devices (like Wiggler compatibles) that
only offer direct control of the JTAG signals use the high-level bitbang operations defined by the JTAG
module. The JTAG module keeps track of the currently selected instruction, and provides CLI commands
to adjust the JTAG device speed and to read the IDCODE register of a connected target.
To support JTAG hardware interfaces with high latency, all performance critical code queues JTAG
commands until their results are required. Queued data register scan commands specify the new value
that should be written into the register, and may specify a memory location where data scanned out of
the register should be stored. A JTAG data register is described by multiple fields of up to 32 bits length,
which is sufficient for the 32 bit architecture of ARM7 and ARM9 based systems.

6.4 Target Module

The Target module encapsulates the debug functionality, and defines CLI commands useful for all target
implementations:

� Configure the startup mode. The debugger may just attach to the target, reset the target and let it
run, reset the target and put it into halt mode, or reset the target and initialize it.

� Configure the target’s endianess.
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Table 6.1: ARM7 and ARM9 target modules

ARM7 ARM9
ARM720t ARM740t ARM92xt ARM940t

- Memory access - Memory access - Memory access - Memory access
- MMU support - MPU support - MMU support - MPU support

- CP15 access - CP15 access
- CP15 access
ARM7TDMI ARM9TDMI

- Debug instruction execution - Debug instruction execution
- Step and Resume - Step and Resume

ARM7 / ARM9 common
- Core registers
- Embedded-ICE access
- Debug mode request
- JTAG instructions
- Breakpoint and Watchpoint handling

� Control the target execution. A user may halt, single-step, resume, or reset the target.

� Poll the target state. This calls the target interface, and provides the user with information about
the current target state.

� Read memory. Memory may be read using any number of accesses of 8, 16, or 32 bits size.

� Write memory. A single memory location may be written using an access of 8, 16, or 32 bits size.

� Load binary file. This downloads a binary file from the host PC to the target at a selected memory
address. To achieve high speed, memory is accessed using 32 bit accesses.

� Dump binary file. A selected part of target memory is read using 32 bit accesses and written to a
file on the host PC.

ARM7 and ARM9 Common Code

Table 6.1 shows how the ARM cores of the ARM7 and ARM9 family (without ARM9E members) build
upon common functionality. There are various dependencies between these parts: Target specific parts,
like memory accesses for example require access to the Embedded-ICE registers, which can be shared
between all implementations. Common parts on the other hand, like handling software breakpoints, re-
quire access to the target specific implementation of memory accesses. These dependencies are solved
using interfaces that give common parts access to the required target specific implementations, and by
making common parts known to all cores that build upon this common code.

Target State Management

The Target module keeps track of the current target state. Once the debugger is launched, its view of the
current target state (unknown, running, halted, or reset) is initialized to report an unknown state. The
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Figure 6.2: Target state

target state is polled by the currently active server module, which is either the Daemon, the CLI, or the
GDB server, using calls to the target module. If the target module detects an entry into debug state, it
handles that state change, and sets a flag signaling debug entry to other modules. The server modules use
this flag to inform the user about state changes, and may request additional information from the target
module, like the current architecture state or the current register content (see table 5.2).
The possible transitions of the target state are shown in figure 6.2. From unknown state, the target enters

either the reset or the running state, depending on the selected startup mode. It’s not possible to know
if the target is in a sane state when the debugger detects a halted target when it first polls the target, so
the target remains in unknown state in that case, until the user explicitly requests a target reset. Reset
is only a temporary state, which is left by moving into halted or running state, depending on the reason
for entry into reset state (selected startup mode or reset command). While in halted stated, the execution
context is preserved, and debugging functions may be executed, like examining registers and memory
read and write accesses. Halt state is left when the user requested the target to be resumed, on single-step
requests, and if a target reset should be executed. Before moving from halt state to the running state, the
execution context has to be restored.
During running state, the target is polled to detect entry into debug state. The running state is left when
the target module detects a debug entry or if the user requested a target reset.
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The target state is expected not to change on other occasions than those mentioned above. Especially,
asynchronously resetting the target hardware should be avoided, as this changes the target’s state without
giving a debugger a chance to detect this change. The SRST line is designed to be bi-directional, so
it should possible to detect such an event, but on many targets, the SRST line is only connected uni-
directional.

Breakpoint Handling

Breakpoints are kept in a list, with information about the address they affect, if it’s an ARM or a Thumb
state breakpoint, whether it’s a software or a hardware breakpoint, if it’s currently set, which comparator
it uses in case of a hardware breakpoint, and the original instruction in case of a software breakpoint.
When a breakpoint is to be added, the list of breakpoints is searched for a previous breakpoint set on that
address, in which case no further actions are taken. Otherwise the breakpoint is added to the list, and the
debugger sets the newly added breakpoint.

A set hardware breakpoint is associated with one of the two Embedded-ICE comparators, and forces
the target into debug state if an instruction from that address is fetched and executed. In case of a soft-
ware breakpoint, a target dependent instruction code has been written into the target’s memory, and the
original content of that address is stored in the breakpoint list.

When the target resumes execution, the list of breakpoints has to be searched for the address at which
the target should be resume. If there’s a breakpoint set on this address, it has to be disabled, or the debug-
ger would reenter debug state without executing that instruction. Disabling a breakpoint means either
disabling the comparator with which it is associated, or restoring the original instruction in case of a
software breakpoint. The debugger single-steps over that address, and reenables the breakpoint. The de-
bugger is then resumed, no matter if there’s a breakpoint set or not. This makes it trigger on breakpoints
set on the next but one instruction, but not on breakpoints set on the next address. Single-stepping is
similar, as a breakpoint set on the current address has to be disabled, too, or the target wouldn’t execute
the instruction.

If a breakpoint should be removed, its address is searched in the list. When the address is found, the
breakpoint is disabled and then removed from the list.

Watchpoint Handling

Like breakpoints, watchpoints are kept in a list, with information about the memory region they affect,
whether they should trigger on reads, write, or both, and on which of the two comparators they are set.
Watchpoints don’t have to be disabled, as any instruction that causes a watchpoint to trigger is executed
before debug state is entered.

Before a watchpoint is removed, the associated comparator is disabled and marked as free, then the
watchpoint is deleted from the list.
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6.5 Flash Module

The Flash module uses the target module to access memory. The flash interface has to be implemented
for every Flash type that should be supported. The module registers CLI commands that configure the
flash used on the target, and commands that allow a user to access flash functionality:

� Configure the size of one flash chip.

� Configure the width of a single flash chip. Flash chips like the Intel Strata Flash (28FxxxJ3) can
be used in byte (8 bits) or in half-word (16 bits) mode, depending on how they’re wired to the
microcontroller.

� Configure the width of the bus that connects a flash bank to the microcontroller.

� Probe a given address for the presence of a flash bank that matches the configuration.

� Print information about the blocks of a flash bank at a given location. If the flash supports a
protection mechanism, information about the protection state should be printed, too.

� Erase a range of blocks on a flash bank at a given location.

� Write a binary file at a selected offset on a flash bank at a given location.

6.6 GDB Module

The GDB module accepts packets from a remote gdb client, validates the checksum, and calls the ap-
propriate target functions. It registers a call-back function with libcli that takes any output generated by
commands processed by the CLI module, and sends them as a reply to a connected gdb client. When a
monitor command is submitted to the GDB server, it hands the command unaltered to the CLI module.

The gdb dynamically handles breakpoints and watchpoints. Once a target is resumed, all currently
enabled breakpoints and watchpoints are sent to the debugger. When the target reenters debug state,
they are removed again. If a breakpoint is set on the current address, that breakpoint isn’t sent to the
debugger. This means that the debugger must not disable any breakpoints while a gdb client is connected,
and any encountered breakpoint should trigger, even if it’s set on the current address. This scenario may
occur with multiple successive breakpoints, in which case the gdb steps over the first instruction, sets all
breakpoints, and resumes the target on an address with a breakpoint set.
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This chapter is going to show how the design and architecture described in the previous chapter is im-
plemented. During this chapter, the term "the software" shall refer to the Open On-Chip Debugger
(openocd), version 0.3, as released on July, 17th 2005. Excerpts from the code use line numbers from this
version of the program code. The implementation of one JTAG hardware interface (USBJTAG-1/ftd2xx)
and one target (ARM920t) will be explained in detail, as the other interfaces and targets implemented
are similar enough to be documented by the source code alone. All code is written in C, and tries to use
only a minimum of external functionality, to allow easy porting of the code to different host platforms.

The software’s code is located in several subdirectories below the./src directory, with only the
code for the daemon residing in the top level directory. Every subsystem has a directory of its own, and
will be linked into a static library. These libraries, together with external dependencies and the code of
the daemon, are linked into the executable.

./openocd.c

./jtag/*.[ch] -> libjtag.a

./target/*.[ch] -> libtarget.a

./flash/*.[ch] -> libflash.a

./gdb/*.[ch] -> libgdb.a

./helper/*.[ch] -> libhelper.a

7.1 Program Subsystems

daemon

The daemon is responsible for setting up the other subsystems and for accepting new connections to the
telnet and gdb ports. It also manages the program shutdown, by checking the target state and resuming
it in case it was left halted, and calls deinitialization functions of the other subsystems to give them an
chance to free used resources.

Listing 7.1: ./openocd.c

65 /* shutdown_openocd == 1: exit the main event loop,
and quit the debugger */

66 int shutdown_openocd = 0;

Theshutdown_openocd flag is used to tell the daemon that a shutdown has been requested. It may be
set by the CLI handler for theshutdown command or by thesigint_handler():

47
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Listing 7.2: ./openocd.c

74 /* allow shutdown with SIGINT to the daemon */
75 void sigint_handler(int sig)
76 {
77 signal(SIGINT , sigint_handler);
78 shutdown_openocd = 1;
79 }

The handler reinstalls itself as the signal handler for a SIGINT signal (otherwise it would catch the
signal only once), in case the possibility to abort a shutdown is added later, and sets theshutdown_openocd

flag to 1. When this flag is evaluated next time, the daemon will initiate the shutdown procedure.

Listing 7.3: ./openocd.c

74 /* daemon initialization and main loop */
75 int main(int argc , char *argv[])

main() performs various initialization tasks, creates the sockets for telnet and gdb connections,
waits for incoming connections, and supervises the program shutdown. It initializes the CLI, calls
jtag_register_commands(), target_register_commands(), andflash_register_commands(), invokes
parse_cmdline_args() andparse_config_file, and calls thexxx_init() functions of the jtag, target,
and flash subsystems. It implements a simple TCP server that waits for new connections, accepts those,
and gives the corresponding file descriptor to the appropriate server module (CLI or gdb).

libcli

The libcli library (http://sourceforge.net/projects/libcli/) is used to implement the command
line interface (CLI), the telnet server through which the CLI is accessible, and the configuration com-
mand handling. It was written to mimic the configuration interface found on Cisco networking products,
and is licensed under the terms of the GNU Lesser General Public License (LGPL).

The library is initialized by callingstruct cli_def *cli_init(), which returns a value of type
struct cli_def*, that has to be passed to all other libcli functions. Several functions allow the appear-
ance of the CLI to be adjusted, like setting the hostname, defining a command line prompt, or setting a
banner that is shown when a client connects.

cli_register_command(struct cli_def *cli , struct cli_command *parent ,
char *command , int (*callback)(struct cli_def *, char *, char **, int ),
int privilege , int mode , char *help)

cli_register_command() adds a new command to the CLI. Thecommand parameter is the command’s
name, thecallback is a pointer to a function that’s called to handle the command. Theprivilege would
allow multiple levels of access to be set up, but that’s unnecessary for the purposes of this software.
mode may beMODE_EXEC, which specifies that the command may only be used while in execute mode,
MODE_CONFIG, specifying commands that are only executed during configuration mode, orMODE_ANY, in-
dicating that the command may be executed at any time. The distinction between configuration and
execute mode comes from the Cisco interface this library tries to simulate. On these systems, the normal
mode of operation is "execute", and only after entering a special statement, "configuration" commands
may be executed. For this software, the two modes serve perfectly to distinguish between configuration
commands and CLI commands. While the command line options and the configuration file are being
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parsed, the libcli is driven inMODE_CONFIG state, and is then switched toMODE_EXEC, when the configura-
tion parsing is done. Thehelp strings are displayed on the CLI when a user entered thehelp command.

cli_regular(struct cli_def *cli , int (*callback)(struct cli_def *))

A timeout mechanism is implemented in libcli to give other parts of the software a chance to run
code on a regular basis. The callback function specified bycli_regular() is called every second while
a client is connected to the telnet server. A future version of the library may allow to select the timeout,
which would allow the debugger to react faster on changes of the target state.

./helper

The helper directory contains functionality that doesn’t belong to any of the modules, but is used by
those, like centralized logging functionality, commonly used user-defined data types, and the program
configuration management.
types.h defines three unsigned data types of 8, 16, and 32 bits size, that are used to access binary data
transfered from the target. These definitions are probably not portable to systems with a native integer
size of more than 32 bits, and would have to be adapted to such systems.

Centralized logging is implemented inerror.[ch], and was inspired by the logging code found
in the Input Abstraction Layer (IAL), by Timo Hönig. The logging code defines four levels of log
information, with an increasing volume of messages.LOG_ERROR defines messages of the highest priority,
which indicate fatal errors that cause the program to abort execution.LOG_WARNING messages inform
about problems, that can likely be dealt with.LOG_INFO is for informational messages, that may help
when a problem with the software arises.LOG_DEBUG is used for debug statements and trace marks, that
show which parts of the code were executed.

Listing 7.4: ./helper/error.h
31 enum log_levels
32 {
33 LOG_ERROR = 0,
34 LOG_WARNING = 1,
35 LOG_INFO = 2,
36 LOG_DEBUG = 3
37 };
38
39 void log_printf(enum log_levels level , const char *file , int line ,
40 const char *function , const char *format , ...);
41
42 extern int debug_level;
43
44 #define DEBUG(expr ...) \
45 do { \
46 log_printf (LOG_DEBUG , __FILE__ , __LINE__ , __FUNCTION__ , expr); \
47 } while (0)

The global variabledebug_level, that may be changed using a command line option or a config-
uration command suppresses messages of a higher level. Insidelog_printf(), a buffer is filled with
the supplied format string and its arguments, and then printed tostderr. A macro is defined for each
message type, that prepends a printf-style format string and its arguments with information about the
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level of that message, and the source file, line number, and function that printed the message. The above
code shows the definition of theDEBUG macro, the other levels are defined similarly. Thedo ... while

loop around the call tolog_printf() allows the macro to be used like a function call, with a finishing
semicolon.

if (expr)
DEBUG("expr was true");

else
DEBUG("expr was false");

Without the enclosingdo ... while , the above example would expand to

if (expr)
log_printf (LOG_DEBUG , __FILE__ , __LINE__ , __FUNCTION__ ,

"expr was true");;
else

log_printf (LOG_DEBUG , __FILE__ , __LINE__ , __FUNCTION__ ,
"expr was false");;

which is an error, as the second semicolon, while being harmless in a different context, would be an
additional statement before theelse and thus invalid C code.

The command line and the configuration file are parsed inconfiguration.[ch], which uses lib-
cli to call the appropriate configuration command handlers. Command line arguments are processed by
parse_cmdline_args(). GNU getopt_long() parses the argument array, and returns a character iden-
tifying the encountered option after each call, which is then used in aswitch statement to handle the
option and its arguments. In case of an option with a corresponding configuration command, a command
string is built and fed intocli_run_command(), which then calls the command handler. This allows the
same validity checks to be applied to command line arguments and configuration file options.

Listing 7.5: ./helper/configuration.c
82 case ’d’: /* --debug | -d */
83 if (optarg)
84 snprintf(command_buffer , 128, "debuglevel %s", optarg);
85 else
86 snprintf(command_buffer , 128, "debuglevel 3");
87 cli_run_command(cli, command_buffer);
88 break ;
89 case ’i’: /* --interface | -i */
90 snprintf(command_buffer , 128, "interface %s", optarg);
91 cli_run_command(cli, command_buffer);

Listing 7.5 illustrates the handling of two configuration options. The debug option(--debug | -d)
sets thedebug_level that is used to limit the number of log messages printed to the daemon’s error
stream (stderr). The debug option is insofar a special case, as the semantics of the command line ar-
gument differs from the configuration command, which may be given in a configuration file or on the
CLI. If no argument is given to the command line option, debug level 3 (LOG_DEBUG) is assumed, while
on the CLI, the absence of an argument is used to display the current debug level. This is handled in the
switch statement, as the command handler can’t know about these semantic differences. The interface
option(--interface | -i) doesn’t require such special treatment, as the semantics are the same for
command line arguments and the CLI.
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parse_config_file() opensopenocd.cfg by default, or the config file specified on the command
line. It passes theFILE* pointer to the config file tocli_file() in MODE_CONFIG, which interprets the file
as if every line was entered on the CLI, executing the command handler of every configuration command
encountered, while commands reserved for execution mode are ignored.

binarybuffer.[ch] provides handling of little-endian bit streams like they’re required when deal-
ing with JTAG scan chains. Data is shifted in on TDI of a connected component, and out on TDO. The
least significant bit of the least significant byte has to be scanned in first, making a little-endian byte
stream the natural endianess for this application.

Listing 7.6: ./helper/binary_buffer.c
53 int buf_set_u32(u8* buffer , unsigned int first , unsigned int num ,

u32 value);

setsnum bits (up to 32) starting at thefirst bit in the appropriate bytes ofbuffer,

Listing 7.7: ./helper/binary_buffer.c
71 u32 buf_get_u32(u8* buffer , unsigned int first , unsigned int num)

does the opposite, reading up to 32 bits at an arbitrary position inside the buffer.u32 flip_u32(u32 value)

provides efficient flipping of 32-bit words by using a table with 256 entries to look-up eight bit at a time.
This is required for the debug boundary-scan registers of ARM7 and ARM9 controllers, where some of
the bits are in reversed order (see §3.2).

./jtag

Generic JTAG code and drivers for JTAG hardware devices are found in the jtag subdirectory. The header
file jtag.h has to be included by all parts of the software that require access to jtag functions.

Listing 7.8: ./jtag/jtag.h
38 enum tap_state
39 {
40 TAP_TLR = 0x0, TAP_RTI = 0x8,
41 TAP_SDS = 0x1, TAP_CD = 0x2, TAP_SD = 0x3, TAP_E1D = 0x4,
42 TAP_PD = 0x5, TAP_E2D = 0x6, TAP_UD = 0x7,
43 TAP_SIS = 0x9, TAP_CI = 0xa, TAP_SI = 0xb, TAP_E1I = 0xc,
44 TAP_PI = 0xd, TAP_E2I = 0xe, TAP_UI = 0xf
45 };
46
47 extern int tap_move_map [16];

Listing 7.9: ./jtag/jtag.c
415 /* maps the 16 states of the TAP state machine to one of the six

stable states
416 * unstable states map to -1
417 * that way the tap_move array can be just 6 items, instead of 16
418 */
419 int tap_move_map [16] = {
420 0, -1, -1, 2, -1, 3, -1, -1,
421 1, -1, -1, 4, -1, 5, -1, -1
422 };
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The tap_state enumeration defines the 16 possible TAP controller states, which are mapped to
six stable states by thetap_move_map array. Because the implemented JTAG system is designed with
provision for systems were the test clock (TCK) is free running, the JTAG functions only move from one
stable state to another stable state. A driver may look up the required TMS sequence to move from one
stable state to another using a two dimensional table. Using the mapping of 16 TAP states to 6 stable
states viatap_move_map, the size of that table can be reduced from a 16x16 table to a 6x6 table.TAP_TLR

maps to 0,TAP_RTI to 1, TAP_SD to 2, TAP_PD to 3, TAP_SI to 4, andTAP_PI maps to 5. Unstable states
map to -1, which could be used to detect errors.

Listing 7.10: ./jtag/jtag.h
123 typedef struct jtag_interface_s
124 {
125 char * name;
126
127 /* high level command set
128 * reset() - reset tap controller to TLR, set endstate to TLR
129 * xx_scan(...) - scan write_buf into DR or IR scanpath, finish in

selected end_state
130 * runtest(...) - go to R-T/I, and execute num_cycles in there,

then advance to end_state
131 * state_move() - advance to selected end_state
132 * endstate(...) - set desired end_state - this throws an exception

for unstable states
133 */
134 int (*reset)(void );
135 int (*ir_scan)(int num_bits , const u8 *write_buf , u8 *read_buf);
136 int (*dr_scan)(int num_bits , const u8 *write_buf , u8 *read_buf);
137 int (*runtest)(int num_cycles);
138 int (*state_move)(void );
139 int (*endstate)(enum tap_state state);
140
141 /* queued command execution
142 */
143 int (*queue_command)(jtag_command_t command);
144 int (*execute_queue)(void );
145
146 /* reset functions
147 */
148 int (*trst)(int val);
149 int (*srst)(int val);
150
151 /* low level command set
152 */
153 int (*read)(void );
154 void (*write)(int tck, int tms , int tdi);
155
156 /* interface initialization
157 */
158 int (*speed)(int speed);
159 int (*register_commands)(struct cli_def *cli);
160 int (*init)(void );
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161 int (*quit)(void );
162
163 int ir_length;
164 u32 expected_instruction;
165 u32 idcode_instruction;
166
167 } jtag_interface_t;

The user definedjtag_interface_t of type struct jtag_interface_s is the interface that has to
be implemented for every JTAG hardware interface. A JTAG hardware interface is referenced by its
name field, which is matched against the argument to ainterface configuration command or command
line option. The high-level command set has to be provided by all implementations, butjtag.c defines
generic functions for use with bitbang devices, that are able to toggle every line individually. The low-
level commands are only required for devices that make use of the bitbang functions.

Device setup may be performed ininit(), which is called before the first jtag access is initiated.
Clean-up code can be executed inquit(), that is called after the last jtag access has finished, if this is
necessary. Device specific configuration commands can be registered inregister_commands(), which is
called immediately after ainterface configuration command or command line option has been found.
The meaning of theint speed argument required by thespeed() function depends on the current in-
terface. Slow interfaces, like the bitbang interface implemented inparport.c don’t necessarily have to
interpretspeed calls at all.ir_length is necessary to determine how many bits have to be scanned into
the instruction register. Theexpected_instruction is compared against the value captured when a new
instruction is scanned into the target, and allows JTAG communication problems to be detected.
The high-level command set directly reflects the requirements set for the JTAG subsystem, and should
be self explanatory. The queued command execution will be explained in some detail, as it’s the way
JTAG is used most often throughout the remaining code.queue_command() takes one argument of type
jtag_command_t, which is a user definedstruct jtag_command_s type. The command is added to a
queue inside the JTAG driver, and will be executed byexecute_queue(), but hardware interfaces, that
don’t take a performance penalty when executing commands immediately, don’t have to implement the
queueing.

Listing 7.11: ./jtag/jtag.h

98 typedef union jtag_command_container_u {
99 ir_scan_command_t ir_scan;
100 dr_scan_command_t dr_scan;
101 state_move_command_t state_move;
102 runtest_command_t runtest;
103 reset_command_t reset;
104 endstate_command_t endstate;
105 } jtag_command_container_t;
106
107 enum jtag_command_type
108 {
109 JTAG_IR_SCAN = 0, JTAG_DR_SCAN = 1,
110 JTAG_STATE_MOVE = 2, JTAG_RUNTEST = 3,
111 JTAG_RESET = 4, JTAG_ENDSTATE = 5,
112 };
113
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114 typedef struct jtag_command_s
115 {
116 jtag_command_container_t cmd;
117 enum jtag_command_type type;
118 } jtag_command_t;

jtag_command_t implements polymorphism by declaring a structure with a user definedunion type
jtag_command_container_t, and atype field that specifies the actual type of the command. The com-
mand types offer functionality similar to the high-level command set, with the exception of
dr_scan_command_t, which works on data fields of up to 32 bits length, instead of a linear buffer. This
gives the JTAG subsystem information about the relation between bits on the scan chain and their mean-
ing to the code that queued the scan command, allowing it to write data captured from the scan chain
to the appropriate buffers without further help from the calling code. Additionally, each command type
allows a new JTAG endstate to be specified, reducing the number of commands that have to be queued.
If the endstate doesn’t have to be changed, an invalid value of -1 may be assigned to thenew_endstate

field.

Listing 7.12: ./jtag/jtag.h
51 typedef struct dr_scan_field_s
52 {
53 int num_bits;
54 int do_flip;
55 u32 in_value;
56 u32 *out_value;
57 int do_check;
58 u32 check_value;
59 } dr_scan_field_t;

Listing 7.13: ./jtag/jtag.h
67 typedef struct dr_scan_command_s
68 {
69 int num_fields;
70 int num_bits;
71 dr_scan_field_t *fields;
72 enum tap_state new_endstate;
73 } dr_scan_command_t;

Thefields member ofstruct dr_scan_command_s expects a pointer to an array ofdr_scan_field_t

items, that define the layout of the scan chain this command should work on. The items start at the least
significant bit, and later items define parts of the scan chain of higher significance. Figure 7.1 shows
how the ARM9TDMI debug scan chain (scan chain 1) maps to adr_scan_command_t and its associated
dr_scan_field_t. num_fields defines the length of the array pointed to by*fields, num_bits is just
a convenience field to help debugging and to facilitate buffer calculations without having to parse the
fields array to get the total number of bits.
The first 32 bits (those closest to TDO) of the debug scan chain connect to the databus of the ARM9TDMI.
They’re written to the value specified as ’D’, and their previous content may be stored to the location
pointed to by ’d’, if there’s data to be read. The next three bits define the values of DDEN, WPTAND-
BKPT, and SYSSPEED, but when clocking instructions into the debug scan chain, only SYSSPEED may
be set, to indicate an instruction that should be executed at system speed. The last 32 bits are in reversed
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Figure 7.1: ARM9TDMI dr_scan_command_t and dr_scan_field_t[]

bit order, and have thus thedo_flip flag set to 1. The value scanned in is the new instruction, and data
scanned out can be discarded, as the instruction previously written to the instruction bus isn’t relevant.
do_check can be used to tell the JTAG subsystem to verify that the data scanned out of the scan chain into
this field matches thecheck_value. This allows test patterns to be defined and validated without having
to store every value. If a check failed, the JTAG driver has to inform the caller ofexecute_queue() about
that error.

jtag.c provides two helper functions for building and processing the buffers used in data register
scan operations.jtag_build_dr_buffer() uses the buffer handling functions defined inbinarybuffer.c
to set the bits of a linear buffer according to thefields array associated with a data register scan opera-
tion. jtag_read_dr_buffer operates on a linear buffer, and evaluates its contents according to thefields

description of the current command. If a field has itsdo_check flag set, the captured value is compared
against thecheck_value, and an errorERROR_JTAG_CHECK_FAILED is returned in case the comparison
failed.

Listing 7.14: ./jtag/jtag.c
41 jtag_interface_t* jtag_interfaces[] = {
42 &parport_interface ,
43 &ftdi2232_interface ,
44 &ftd2xx_interface ,
45 NULL ,
46 };

jtag.c definesjtag_interfaces, an array of pointers to the JTAG drivers.jtag_init() is called
after the configuration has been parsed. At that point,jtag_interface should have been set by an
interface configuration command, and thejtag_interfaces array is searched for an entry that matches
the configured interface. If a match is found, the driver’sinit() function is called, and the driver’sjtag_t
interface is assigned to the globaljtag variable, that gives other subsystems access to the currently
configured JTAG hardware interface.

ftd2xx.c and ftdi2232.c

The ftd2xx driver implements thejtag_interface_t for the USBJTAG-1, a USB 1.1 Full-Speed device
(up to 11 Mbit/s) based on the FT2232C chip from FTDI (see §1.2). The driver relies on the closed-
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source libftd2xx from FTDI, but an alternative driver is available asftdi2232.c, which uses the GPL
licensed libftdi from Intra2net AG (http://www.intra2net.com/opensource/ftdi/). The reason
for including both drivers is the superior performance of libftd2xx. Using libftdi, an average download
speed of 5 kB/s from the host PC to an ARM920 based SOC could be achieved, while the libftd2xx based
solution reached around 25 kB/s. Low-level documentation for the FT2232C’s USB communication is
available only under an NDA, making an in-depth analysis of libftdi’s performance problems difficult.

Listing 7.15: ./jtag/ftd2xx.c

66 enum { FTD2XX_TRST = 0x10, FTD2XX_SRST = 0x40 };
67 static u8 discrete_output = 0x0 | FTD2XX_TRST | FTD2XX_SRST;
68 static FT_HANDLE ftdih;

The enumeration definingFTD2XX_TRST andFTD2XX_SRST is used to control the nTRST and nSRST
lines, which are connected to GPIOL0 and GPIOL2 on the USBJTAG-1, but could be connected to any
of the eight available GPIO lines of the FTDI2232C channel A [DS2232C]. If similar designs were to be
implemented, using a different reset signal assignment, this definition would have to be extended to allow
multiple variants.u8 discrete_output saves the current state of the eight GPIO lines, to allow a single
line to be toggled while retaining the state of the other lines.FT_HANDLE ftdih is used by libftd2xx to
identify an open connection to a FT2232C device, and is an required argument of almost everyFT_xxx()

function.

Listing 7.16: ./jtag/ftd2xx.c

70 /* queued command support
71 */
72 typedef struct ftd2xx_command_queue_s
73 {
74 jtag_command_t cmd;
75 struct ftd2xx_command_queue_s *next_cmd;
76 } ftd2xx_command_queue_t;
77
78 static ftd2xx_command_queue_t *ftd2xx_command_queue = NULL;
79 static u8 *ftd2xx_buffer = NULL;
80 static int ftd2xx_buffer_size = 0;
81 static int ftd2xx_queued_size = 1;
82 static int ftd2xx_read_pointer = 0;
83 static enum tap_state ftd2xx_queue_endstate = TAP_TLR;
84 static int ftd2xx_queued_error = ERROR_OK;
85 #define FTD2XX_BUFFER_SIZE 131072
86 #define BUFFER_ADD ftd2xx_buffer[ftd2xx_buffer_size ++]
87 #define BUFFER_READ ftd2xx_buffer[ftd2xx_read_pointer ++]

ftd2xx_command_queue implements a linked list offtd2xx_command_queue_t objects which encap-
sulate the genericjtag_command_t type. ftd2xx_queue_command() adds a new command to the queue,
which is executed onceftd2xx_execute_queue is called. ftd2xx_buffer points to a linear buffer of
FTD2XX_BUFFER_SIZE bytes size. The number of bytes currently in the buffer is saved in
ftd2xx_buffer_size, while ftd2xx_queued_size is used to calculate the number of bytes that’s required
for all queued commands. Ifftd2xx_queued_size grows beyondFTD2XX_BUFFER_SIZE, the last command
is temporarily removed from the queue which is then executed. After that, the temporarily removed com-
mand is put into the queue as the first item, and will be executed whenftd2xx_execute_queue() is called.
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ftd2xx_read_pointer is used when the buffer read from the device is processed. TheBUFFER_ADD and
BUFFER_READ macros provide convenient access to the buffer and make the code more readable.

Listing 7.17: ./jtag/ftd2xx.c

89 /* tap_array[i][j]: tap movement command to go from state i to state j
90 * 0: Test-Logic-Reset
91 * 1: Run-Test/Idle
92 * 2: Shift-DR
93 * 3: Pause-DR
94 * 4: Shift-IR
95 * 5: Pause-IR
96 */
97 static u8 tap_move [6][6] =
98 {
99 {0x7f, 0x00, 0x17, 0x0a , 0x1b , 0x16},
100 {0x7f, 0x00, 0x25, 0x05 , 0x2b , 0x0b},
101 {0x7f, 0x31, 0x00, 0x01 , 0x0f , 0x2f},
102 {0x7f, 0x30, 0x20, 0x17 , 0x1e , 0x2f},
103 {0x7f, 0x31, 0x07, 0x17 , 0x00 , 0x01},
104 {0x7f, 0x30, 0x1c, 0x17 , 0x20 , 0x2f}
105 };

When clocking data to TMS, the FT2232C expects a single byte of which up to seven bits will be
scanned, starting with the least significant bit. The value of the eighth bit will be written to TDO, which
is then held static for the duration of the TMS clocking [AN2232C-01]. Thetap_move array lists the
necessary TMS sequences when moving from one stable state to another stable state. The mapping from
one of the sixteen TAP controller states to one of the six stable states is achieved using thetap_move_map

from jtag.c.
ftd2xx_init() configures the FT2232C for JTAG communication, sets the direction of the GPIO

lines used for TRST and SRST to output, and allocates the buffer used to communicate with the device.
ftd2xx_quit closes the device, and frees the allocated buffer. The high-level command set is imple-
mented similar to the queued commands, but executes every command immediately. Its use is limited
because of the performance problems that results from the high latency caused by the USB communica-
tion, and is included only for compatibility with code that doesn’t use queued commands.

Listing 7.18: ./jtag/ftd2xx.c

525 int ftd2xx_queue_command(jtag_command_t command)
526 {
527 ftd2xx_command_queue_t **last_cmd = ftd2xx_get_last_command_p ();
528
529 if ((command.type < JTAG_IR_SCAN) || (command.type > JTAG_ENDSTATE))
530 return ERROR_INVALID_ARGUMENTS;
531
532 /* allocate memory for a local copy of command */
533 *last_cmd = malloc(sizeof (ftd2xx_command_queue_t ));
534 (*last_cmd)->cmd = command;
535 (*last_cmd)->next_cmd = NULL;

Commands are added to the queue inftd2xx_queue_command(). The if statement ensures that only
valid command types are processed. A pointer to memory allocated for the new command is assigned to
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the last pointer to aftd2xx_command_queue_t object, and the content of the suppliedcommand argument
is copied to the newly allocated memory.

Listing 7.19: ./jtag/ftd2xx.c

525 if (command.type == JTAG_DR_SCAN)
526 {
527 /* allocate memory and copy scan field descriptions */
528 (*last_cmd)->cmd.cmd.dr_scan.fields =
529 malloc(sizeof (dr_scan_field_t) *

(*last_cmd)->cmd.cmd.dr_scan.num_fields);
530 memcpy((*last_cmd)->cmd.cmd.dr_scan.fields ,

command.cmd.dr_scan.fields ,
531 (sizeof (dr_scan_field_t) *

(*last_cmd)->cmd.cmd.dr_scan.num_fields));
532 }

In case of a data register scan command, the scan field descriptions are copied to allocated memory.
This is necessary to allow the calling code to destroy all data structures associated with the scan com-
mand. ftd2xx_queue_command() further calculates the number of FT2232 command bytes required to
execute the scan command, and adjustsftd2xx_queued_size accordingly. Listing 7.20 shows how the
last command is temporarily removed from the queue, if the required buffer size grew beyond the size of
the buffer allocated for communication with the device.

Listing 7.20: ./jtag/ftd2xx.c

583 if (ftd2xx_queued_size > FTD2XX_BUFFER_SIZE)
584 {
585 int retval;
586 ftd2xx_command_queue_t *tmp_cmd = *last_cmd;
587
588 *last_cmd = NULL;
589 if ((retval = ftd2xx_execute_queue ()) != ERROR_OK)
590 ftd2xx_queued_error = retval;
591 ftd2xx_command_queue = tmp_cmd;
592 }

An error that occurred while executing the queue is saved inftd2xx_queued_error, and will be de-
livered whenftd2xx_execute_queue() is called.

ftd2xx_execute_queue() iterates through the linked list of commands, fills the command buffer
ftd2xx_buffer accordingly, and calculates the number of bytes that will be read back in
ftd2xx_expect_read. This is necessary because the libftd2xx functionFT_Read(), that’s used to read
back scan results from the device, has to know the amount of bytes that should be read. Instruction
and data register scans are handled byftd2xx_add_[id]r_scan(), while simpler commands are handled
insideftd2xx_execute_queue().

A JTAG_STATE_MOVE command adds the MPSSE command byte for a TMS scan, the number of bits to
be scanned, and the TMS sequence required to move from the current TAP state to the currently defined
end state.JTAG_RUNTEST saves the current endstate and adds the commands to move to Run-Test/Idle
(similar toJTAG_STATE_MOVE) for the desired number of cycles, and to move back to the saved endstate,
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or a new endstate if one has been specified.JTAG_RESET adds the command to change nTRST and nSRST
as specified, andJTAG_ENDSTATE changes the endstate without adding anything to the command buffer.

Listing 7.21: ./jtag/ftd2xx.c
692 jtag_build_dr_buffer(command , buffer);
693
694 ftd2xx_endstate(TAP_SD);
695
696 /* move from current state to Shift-DR */
697 BUFFER_ADD = 0x4b;
698 BUFFER_ADD = 0x6;
699 BUFFER_ADD = tap_move[tap_move_map[cur_state]]

[tap_move_map[end_state]];
700 cur_state = end_state;
701
702 if (command ->new_endstate == -1)
703 ftd2xx_endstate(saved_endstate);
704 else
705 ftd2xx_endstate(command ->new_endstate);

Listing 7.21 shows howftd2xx_add_dr_scan() callsjtag_build_dr_buffer to build a linear buffer
from thefields description, and adds the command bytes necessary for moving from the current TAP
controller state to Shift-DR.ftd2xx_endstate() checks if its argument is a valid endstate (i.e. if it’s
a stable state), and changes theend_state variable. The MPSSE command byte for executing a TMS
scan without writing or reading TDI/TDO is 0x4b. The next byte is the amount of bits to be scanned
minus one (one bit is always scanned), followed by a byte defining the TMS sequence. This shows how
tap_move andtap_move_map are used to look up the necessary value. If a new endstate was specified for
the scan command, that state is set usingftd2xx_endstate(), otherwise the previous endstate, which
was saved on entry toftd2xx_add_dr_scan, is restored.

Listing 7.22: ./jtag/ftd2xx.c
707 /* add command for complete bytes */
708 if (num_bytes > 1)
709 {
710 BUFFER_ADD = 0x39;
711 BUFFER_ADD = (num_bytes -2) & 0xff;
712 BUFFER_ADD = (num_bytes >> 8) & 0xff;
713 }
714
715 /* add complete bytes */
716 while (num_bytes -- > 1)
717 {
718 BUFFER_ADD = buffer[cur_byte];
719 cur_byte++;
720 bits_left -= 8;
721 }

After the TAP state movement command has been added, a command to scan complete bytes is
added. The command byte 0x39 executes a TDI/TDO scan, and expects a little-endian 16 bit value spec-
ifying the number of bytes that have to be scanned.num_bytes is the result of dividing the total number
of bits by 8, rounded towards positive infinity (always rounded up). The integer division implemented
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in C rounds towards zero by cutting any decimals, so rounding towards positive infinity is achieved by
calculating (num_bits + 7) / 8. Because the last bit of a scan operation has to be scanned while moving
out of Shift-DR, the last byte has to be treated separately.

Listing 7.23: ./jtag/ftd2xx.c

723 /* the most significant bit is scanned during TAP movement */
724 last_bit = (buffer[cur_byte] >> (bits_left - 1)) & 0x1;
725
726 /* process remaining bits but the last one */
727 if (bits_left > 1)
728 {
729 BUFFER_ADD = 0x3b;
730 BUFFER_ADD = bits_left - 2;
731 BUFFER_ADD = buffer[cur_byte];
732 }
733
734 /* move from Shift-DR to end_state */
735 BUFFER_ADD = 0x6b;
736 BUFFER_ADD = 0x6;
737 BUFFER_ADD = tap_move[tap_move_map[cur_state]]

[tap_move_map[end_state]] | (last_bit << 7);
738 cur_state = end_state;
739
740 free(buffer);
741
742 return ERROR_OK;
743 }

The most significant bit is stored inlast_bit. If more than one bit is left to be scanned, a command
to scan between one and seven bits is added to the buffer, followed by the number of bits and a byte
defining their value. Shift-DR is left using a command that executes a TMS scan while writing TDO
and reading TDI. After the command byte 0x6b, the number of bits minus one and the required TMS
sequence, bit-wise ORed with the most significant data bit, are added to the command buffer.

ftd2xx_add_ir_scan() is similar toftd2xx_add_dr_scan(), but moves to Shift-IR, and simply as-
signs the instruction value to a local variable, instead of using a helper function to build a linear buffer. If
the software should to be ported to a big-endian host, this has to be handled differently, as the currently
used assignment would result in a wrong byte order on a big-endian system.

Listing 7.24: ./jtag/ftd2xx.c

605 u32 instr = command ->new_instruction;

After all commands have been processed, the "Send Immediate" command byte is added to the buffer,
to inform the device that all captured data should be transmitted immediately. The buffer is sent to the
device usingFT_Write(), and results are read back viaFT_Read(). ftd2xx_execute_queue once again it-
erates through all commands, and reads the scan results for data and instruction register scan commands.
In case of aJTAG_DR_SCAN command, thefields array and the command itself are freed, otherwise only
the command is freed.
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ftd2xx_read_dr_scan() extracts the scan results and adds them to a linear buffer, which is then
supplied tojtag_read_dr_buffer() to execute necessary validity checks and to save scan results to the
appropriate location, where it can then be read by the code that originally queued the scan command.
Processing the buffer returned from the device is similar to creating the command buffer. Complete bytes
are handled first, followed by the remaining bits minus one, which is saved in a byte of its own, resulting
from the TMS scan.

./target

The target directory contains the specification of the abstract target interface (target.h), target indepen-
dent functions intarget.c, the ARM7/ARM9 common code, and the target specific code and interfaces
for ARM7TDMI, ARM9TDMI, ARM720t and ARM920t cores. The header filetarget.h has to be
included by all parts of the code that require access to the target.

Listing 7.25: ./target/target.h
26 enum target_state
27 {
28 TARGET_UNKNOWN = 0, TARGET_RUNNING = 1,

TARGET_HALTED = 2, TARGET_RESET = 3
29 };
30
31 enum target_startup_mode
32 {
33 TARGET_RESET_AND_HALT = 0, TARGET_RESET_AND_RUN = 1,

TARGET_ATTACH = 2, TARGET_INIT_HALT = 3,
34 };
35
36 extern char *target_state_strings [];
37
38 enum target_endianess
39 {
40 TARGET_BIG_ENDIAN = 0, TARGET_LITTLE_ENDIAN = 1
41 };
42
43 extern char *target_endianess_strings [];

target.h defines enumerations that describe the possible states of a target (enum target_state),
its endianess (enum target_endianess) and the desired mode of startup (enum target_startup_mode).
The char * arraystarget_state_strings andtarget_endianess_strings provide text strings for the
enumeration values, and are used to print status information.

Listing 7.26: ./target/target.h
45 typedef struct target_s
46 {
47 char *name;
48 enum target_endianess endianess;
49 enum target_state state;
50 int state_changed;
51
52 /* poll current target status */



62 Implementation

53 enum target_state (*poll)();
54 /* architecture specific status reply */
55 int (*arch_state)(void );
56 /* gdb specific halt reason */
57 int (*gdb_last_signal)(void );
58
59 /* target execution control */
60 int (*halt)(void );
61 int (*resume)(int current , u32 address);
62 int (*step)(int current , u32 address);
63 int (*reset)(int halt);
64
65 /* target register access
66 * get/set_gdb_registers operates on a linear buffer in

target-endianess,
67 * ordered as expected by the gdb remote protocol
68 * get/set_gdb_reg access a single target register, reg_num is

defined by gdb
69 */
70 int (*get_gdb_registers)(u8 **buffer , int *size);
71 int (*set_gdb_registers)(u8 *buffer , int size);
72 int (*get_gdb_reg)(u32 *value , int reg_num);
73 int (*set_gdb_reg)(u32 value , int reg_num);
74
75 /* target memory access
76 * size: 1 = byte (8bit), 2 = half-word (16bit), 4 = word (32bit)
77 * count: number of items of <size>
78 */
79 int (*read_memory)(u32 address , u32 size , u32 count , u8 *buffer);
80 int (*write_memory)(u32 address , u32 size , u32 count , u8 *buffer);
81
82 /* target break-/watchpoint control
83 * hw: 0 = sw breakpoint, 1 = hw breakpoint
84 * rw: 0 = write, 1 = read, 2 = access
85 */
86 int (*add_breakpoint)(u32 address , u32 size , int hw);
87 int (*remove_breakpoint)(u32 address);
88 int (*add_hw_watchpoint)(u32 address , u32 mask , int rw);
89 int (*remove_hw_watchpoint)(u32 address);
90
91 int (*register_commands)(struct cli_def *cli);
92 int (*init)(struct cli_def *cli);
93 int (*quit)(void );
94
95 } target_t;

The interface defined bytarget_t has to be provided by all target implementations. Thename field
is used to reference a target, and is matched against the argument to atarget configuration command.
Theendianess is set by the generic target code intarget.c, and may be evaluated by the target specific
code where necessary. Thestate is handled by target specific code (see §6.4), that usesstate_changed

to inform the user interface (CLI or gdb) about changes of the target state.
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When atarget configuration command is encountered and a matching target is found, the target’s
register_commands() function is called to give the target specific code a chance to register configuration
commands and regular CLI commands. After the configuration is finished, the target initialization code
in init() is called. Before the system is shutdown, the target’squit() function is called, to allow target
specific code to free used resources.
poll() is used by generic target code to obtain information about the target’s current state in a regular
interval. If the target state changed, appropriate action should be taken, like examining the reason for de-
bug entry and saving the basic execution context.arch_state() may display more detailed information
on the CLI about the current target state.gdb_last_signal() is called to inform a gdb client about the
reason for debug entry using POSIX signal definitions like SIGINT or SIGTRAP.
The target state is controlled usinghalt(), resume(), step(), andreset(). Resume and single-step
take two arguments, specifying whether the target should execute from the current or a different address.
After coming out of reset, an immediate halt may be requested.
The get_gdb_registers(), set_gdb_registers(), get_gdb_reg(), and set_gdb_reg() functions are
called to access core registers on behalf of a connected gdb client. See table 5.2 in the requirements
specification for a description of the expected format.get_gdb_registers() has to allocate a buffer
large enough to hold the full register list, and returns a pointer to the buffer ofint *size bytes in
u8 **buffer, which has to be freed by the calling code.gdb_set_registers() takes abuffer sup-
plied by the calling code, validates the buffer’ssize, and sets the registers to the values from the buffer.
get_gdb_reg() andset_gdb_reg() operate on the register selected by thereg_num argument.
Target memory is accessed in items of 8, 16, or 32 bits. A buffer of an appropriate size is given to
read_memory() or write_memory(). A target may require accesses to be aligned to the item size.
Breakpoints are set usingadd_breakpoint(). The size field specifies the size of the instruction that
should be breakpointed, and is only relevant for software breakpoints. A size of 2 requests a Thumb
state breakpoint, while a size of 4 requests an ARM state breakpoint. Thehw flag indicates a hardware
breakpoint. Breakpoints are removed withremove_breakpoint(), which should remove any breakpoint
set on a given address.
Watchpoints are defined by an address, a mask, and a flag indicating the type of access on which the
watchpoint should trigger. Therw argument toadd_hw_watchpoint() is 0 for reads,1 for writes, and2
to catch both reads and writes.remove_hw_watchpoint() is called to remove all watchpoints set on an
address.

Listing 7.27: ./target/target.c
180 int target_init(struct cli_def *cli)

target_init() is called after the configuration has been parsed and the JTAG subsystem has been
successfully initialized. Thetargets array is searched for an entry that matches thetarget_name config-
uration variable, and theinit() function of a matchingtarget_t implementation is called to initialize
the configured target. After the initialization has been passed, the globaltarget pointer is set to the
configured target.
If a valid target was found,target_process_startup() is called to evaluate thetarget_startup configu-
ration. If the debugger is configured toattach to the target, nothing is done intarget_process_startup().
In case ofreset, or reset_halt, target->reset() with thehalt argument set accordingly is used to
reset the target. If the startup mode is set toinit_halt, target->reset() is called withhalt set to
1. Once the target entered debug state,target_process_init() is invoked to open the configuration
file and to run it throughcli_file() with the libcli mode set toMODE_EXEC. This doesn’t execute any
configuration commands, but runs the commands registered asMODE_EXEC or MODE_ANY instead.
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Listing 7.28: ./target/target.c
219 int handle_target(struct cli_def *cli)

handle_target() is called in regular intervals by the daemon (while waiting for new connections),
the CLI, and the gdb server to monitor the target state. While the target isn’t in halt state,target->poll()

is called to have target specific code determine the current target state. Thetarget->state_changed flag
is evaluated, and in case of a state change, a non-zero value is returned to inform the user interface about
it.

arm7_9_common.[ch]

Listing 7.29: ./target/arm7_9_common.h
27 enum arm7_9_mode

Listing 7.30: ./target/arm7_9_common.h
49 enum arm7_9_state

Thearm7_9_mode enumeration defines symbolic names for the seven modes an ARM processor may
be in, and assigns them values that match the M[4:0] bits in the current program status register (CPSR).
Thearm7_9_state currently defines two states, ARM and Thumb, which could be extended to include
Jazelle, once support for the ARM9EJ-S cores is added.

Listing 7.31: ./target/arm7_9_common.h
55 typedef struct arm7_9_core_reg_s
56 {
57 char *name;
58 int num;
59 enum arm7_9_mode mode;
60 u32 value;
61 int dirty;
62 } arm7_9_core_reg_t;
63
64 typedef struct arm7_9_ice_reg_s
65 {
66 char *name;
67 int size;
68 int addr;
69 u32 value;
70 } arm7_9_ice_reg_t;

Userdefined types are used for core registers (arm7_9_core_reg_t) and Embedded-ICE registers
(arm7_9_ice_reg_t). A core register is defined by itsname (r0-r15, and a mode suffix), a numbernum

(0-15, or a negative value to indicate special registers), the processor (mode) to which the register be-
longs, the register’s currentvalue, and adirty flag indicating that the register has to be restored before
debug state may be left. An ICE register has aname, a size field that determines how many of the 32
Embedded-ICE data bits are valid, anaddress, and a currentvalue.

Listing 7.32: ./target/arm7_9_common.h
73 enum arm7_9_bkpt_type
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74 {
75 ARM7_9_SW_BKPT ,
76 ARM7_9_HW_BKPT ,
77 };
78
79 typedef struct arm7_9_breakpoint_s
80 {
81 u32 addr;
82 enum arm7_9_state state;
83 enum arm7_9_bkpt_type type;
84 int set;
85 u32 orig_instr;
86 struct arm7_9_breakpoint_s *next;
87 } arm7_9_breakpoint_t;
88
89 typedef struct arm7_9_watchpoint_s
90 {
91 u32 addr;
92 u32 mask;
93 int rw;
94 int set;
95 struct arm7_9_watchpoint_s *next;
96 } arm7_9_watchpoint_t;

ARM7 and ARM9 based cores may use software or hardware breakpoints, for which the enumeration
data typearm7_9_bkpt_type defines symbolic names.arm7_9_breakpoint_t defines attributes for both
software and hardware breakpoints. The addressaddr specifies the code location on which the breakpoint
should trigger. Thestate distinguishes between ARM and Thumb state breakpoints, andtype is either
ARM7_9_SW_BKPT or ARM7_9_HW_BKPT. Theset flag determines if the breakpoint is currently disabled (set
== 0) or active, and the watchpoint unit used in case of a hardware breakpoint (1 for watchpoint unit 0, 2
for unit 1). In case of a software breakpoint, the original instruction is saved inorig_instr. Breakpoints
are managed using a linked list, withnext pointing to the next breakpoint, orNULL, in case of the last
breakpoint in the list.
A watchpoint is defined by its address, themask that selects which bits will be ignored in a comparison,
a read/write/access flag, and a field holding the number of the watchpoint unit used to implement the
watchpoint (set). Like breakpoints, watchpoints are contained in a linked list, withnext pointing to the
next watchpoint in the list.

Listing 7.33: ./target/arm7_9_common.h

191 typedef struct arm7_9_debug_s
192 {
193 int scan_n_size;
194 u32 embedded_ice_ver;
195 arm7_9_ice_reg_t *ice_regs;
196
197 u32 arm_bkpt;
198 u16 thumb_bkpt;
199 int sw_bkpts_use_wp;
200
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201 int (*examine_debug_reason)(void );
202 int (*minimum_context)(void );
203 int (*full_context)(void );
204 int (*restore_context)(void );
205
206 int (*execute_resume)(void );
207 int (*execute_step)(void );
208
209 int (*read_memory)(u32 address , u32 size , u32 count , u8 *buffer);
210 int (*write_memory)(u32 address , u32 size , u32 count , u8 *buffer);
211 } arm7_9_debug_t;

To account for differences between the ARM7 and ARM9 families, the actual cores, and core re-
visions, thearm7_9_debug_t interface has been defined. Thescan_n_size field determines the size of
the scan path select register (SCAN_N), to allow common scan chain selection code for all ARM7
and ARM9 cores to be used.embedded_ice_ver holds the Embedded-ICE version implemented by the
core being debugged. This would allow ARM7TDMI(-S) Rev4 cores to be distinguished from older
ARM7TDMI cores, which is necessary to handle the monitor mode debug features available on Rev4
cores correctly.arm_bkpt andthumb_bkpt specify the instruction value that should be used for software
breakpoints in ARM and Thumb state.sw_bkpts_use_wp is a flag that decides whether a watchpoint
unit has to be used to implement software breakpoints or if the core supports the breakpoint instruction
(BKPT) introduced with ARM9E cores.

examine_debug_reason() is called immediately after debug entry was detected, and must not modify
the core state.minimum_context() has to save the basic execution context, including core specific reg-
isters like fault status and address registers (FAR, FSR). Only registers of the current mode have to be
saved, as the core shouldn’t change the processor mode while it is in debug state. If a user requests a reg-
ister that doesn’t belong to the current mode,full_context() is called to query all remaining registers.
Before debug state is left withexecute_resume() or execute_step(), restore_context() has to restore
every register that has been modified during debug.read_memory() andwrite_memory() are required by
the ARM7 and ARM9 common code to support software breakpoints, where the original instruction is
saved and replaced by a special debug instruction.

The arm7_9_common.h header also defines enumerations for the JTAG instructions
(enum arm7_9_jtag_instr), the reasons for debug entry (arm7_9_debug_reason), and Embedded-ICE
constants. It further provides macros for ARM opcodes used during debug, that allow an opcode to be
built using the instruction mnemonic and a list of parameters. Listing 7.34 shows an example macro that
is used for store multiple instructions:

Listing 7.34: ./target/arm7_9_common.h

261 /* Store multiple increment after
262 * Rn: base register
263 * List: for each bit in list: store register
264 * S: in privileged mode: store user-mode registers
265 * W=1: update the base register. W=0: leave the base register untouched
266 */
267 #define ARM7_9_STMIA(Rn, List , S, W) (0xe8800000 | (S << 22) |

(W << 21) | (Rn << 16) | (List))
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The STMIA instruction saves multiple registers to increasing memory locations. The base register
contains the address at which the registers should be stored. The list is a field of 16 bits, where each
bit determines if the corresponding register (r0-r15) should be stored. With the S flag set, theSTMIA
instruction would store the user mode registers, instead of the registers that belong to the current mode.
The W flag determines if the base register is updated afterSTMIA finishes (plus 4 bytes for every register
stored), or if the base is left untouched.
The other instruction macros are implemented similarly, and [DDI0100E] may be consulted for further
information on the format of each instruction.

arm7_9_common.c contains code relevant for all ARM7 and ARM9 based systems, and defines im-
portant data structures. Thearm7_9_core_regs array holds all core registers. The general purpose regis-
ters (r0 to r15) are initialized with their name, mode and number, while negative numbers are assigned to
the status registers. The current processor status register (CPSR) has the number -1, and the saved status
registers have -2. These are used to identify the status registers when the context is saved or restored.
The two dimensionalarm7_core_reg_map[mode][number] array maps the two indicesmode(an ordinal
number, ranging from 0 to 6) andnumberto one of the register’s from the lineararm7_9_core_regs
array, simulating the banked registers implemented in ARM processor cores. The register numbers 0 to
8 for example always map to the corresponding user mode registers, while register 13 and 14 map to
a different register for each mode (except system mode, which shares all registers with the user mode).
Two functions,arm7_9_mode_to_number andarm7_9_number_to_mode, translate between the mode values
defined byenum arm7_9_mode and the ordinal number used by thearm7_9_core_reg_map array. If the
mode values were used as indices into the array, there would have been many unused entries, as only
seven of the 32 possible mode encodings are valid.

Listing 7.35: ./target/arm7_9_common.h
179 #define ARM7_9_CORE_REG_MODE(mode , num)

(arm7_9_core_reg_map[arm7_9_mode_to_number(mode)][num])

The convenience macroARM7_9_CORE_REG_MODE takes a mode value (enum arm7_9_mode type) and
a number, and resolves to a pointer to the appropriate register. This allows the list of registers to be
accessed using the linear array, the two dimensional mode-number array, or the semantically more con-
venientarm7_9_mode-number array.

There are three arrays of strings, providing textual representations of the ordinal processor mode
(arm7_9_mode_strings), the processor state (arm7_9_state_strings), and the reason for debug entry
(arm7_9_debug_reason_strings).

Listing 7.36: ./target/arm7_9_common.c
150 struct cli_def *arm7_9_cli;
151 extern int is_gdb_session;
152
153 /* implementation specific, supplied by actual core code */
154 arm7_9_debug_t *arm7_9_debug = NULL;
155
156 /* global state vars */
157 enum arm7_9_state arm7_9_saved_state;
158 enum arm7_9_mode arm7_9_saved_mode;
159 enum arm7_9_debug_reason arm7_9_saved_debug_reason;
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160 int arm7_9_cur_scanchain;
161
162 /* linked list of breakpoints */
163 struct arm7_9_breakpoint_s *arm7_9_breakpoints;
164 struct arm7_9_watchpoint_s *arm7_9_watchpoints;
165
166 /* embedded ice comparators in use */
167 static int wp0_used = 0, wp1_used = 0;
168 static int wp_available = 2;
169
170 /* watchpoint unit used for implementing sw breakpoints */
171 static int sw_bkpt_wp = -1;
172
173 /* ARM7_9_HW_BKPT or _SW_BKPT, -1 signals uninitialized value */
174 enum arm7_9_bkpt_type arm7_9_breakmode = -1;

Listing 7.36 shows global variables introduced byarm7_9_common.c. arm7_9_cli is used as a hack
to decouple the target interface defined intarget_t from the command line interface library (libcli). It
is initialized whenarm7_9_init() is called, and is only used byarm7_9_arch_state(), which prints ver-
bose information about the target state to the CLI.is_gdb_session tells the target implementation that a
gdb client is currently connected, which has implications for the handling of breakpoints (see §6.6). If
additional debug frontends are added in a later version, probably by supporting the ARM remote debug
interface (RDI), a common interface would have to be defined, that allows the debugger to specify how
debugger-dependent features should be handled.arm7_9_debug has to be set to the appropriate values by
the code implementing the target interface for a particular core.
The target state is described byarm7_9_saved_state, arm7_9_saved_mode (both set byarm7_9_debug->
minimum_context()), arm7_9_saved_debug_reason (set byarm7_9_debug->examine_debug_reason()),
andarm7_9_cur_scanchain (modified byarm7_9_set_scanchain()).
wp[01]_used show if the corresponding Embedded-ICE watchpoint unit is still available, if it’s already
used for implementing a hardware breakpoint or watchpoint (wp[01]_used == 1), or if it’s locked, either
to support software breakpoints or due to a user request. If the current core doesn’t support a break-
point instruction to implement software breakpoints,sw_bkpt_wp is set to the number of the watchpoint
unit used.wp_available holds the number of currently available watchpoint units. The configuration
commandbreakmode controlsarm7_9_breakmode, setting it to eitherARM7_9_HW_BKPT (only hardware
breakpoints may be set) orARM7_9_SW_BKPT (software breakpoints are enabled).
arm7_9_lock_watchpoint() andarm7_9_unlock_watchpoint() may be used to lock/unlock a watchpoint
unit outside ofarm7_9_common.c. If the requested watchpoint is available, it is marked as used, and a
non-zero value is returned, otherwise zero is returned. While it is locked, the watchpoint wont be used
by the breakpoint handling code.
arm7_9_get_breakpoint() searches the linked list of breakpoints for a given address, and returns a
pointer to a matchingarm7_9_breakpoint_t, or NULL, if no match is found.

Listing 7.37: ./target/arm7_9_common.c

293 /* write SCAN_N register */
294 int arm7_9_set_scanchain(jtag_scan_chain_t* sc_new)

arm7_9_set_scanchain() changes the current JTAG instruction to SCAN_N, selects the requested
scan chain, and verifies the value scanned out of the scan path select register, which should have the
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most significant bit set to one, and all other bits set to zero. It makes use of the JTAG queued command
system to be able to work with JTAG hardware interfaces that have a high latency.

Listing 7.38: ./target/arm7_9_common.c
331 /* mark all core regs as clean (don’t have to be restored at

step/resume) */
332 int arm7_9_clean_core_regs(void )

arm7_9_clean_core_regs() iterates through the linear list of core registers, and marks every register
as clean. It may be called by core-specific code inminimum_context() to mark all registers as clean, after
they have been read from the target.

Listing 7.39: ./target/arm7_9_common.c
345 int arm7_9_guard_ice_status(u32 value)

arm7_9_guard_ice_status() allows JTAG commands to be queued even if the content of an Embedded-
ICE register would have to be examined before additional commands can be queued. This is the case
when the debugger has to poll the Embedded-ICE status register, to determine if it returned from an in-
struction executed at system speed during memory read or write operations. With typical JTAG speeds,
it is unlikely that a core requires more time to reenter debug state than it takes the debugger to poll the
Embedded-ICE status register, so the debugger could continue after the first poll.
arm7_9_guard_ice_status() reads the status register and requests the queued command support code
to compare the register with an expected value. If the core was able to execute its system speed in-
struction fast enough, the status register matches the expected value, and the debugger may continue,
otherwise it detects a fatal error, and has to reset the system.

Listing 7.40: ./target/arm7_9_common.c
400 int arm7_9_read_ice_reg(arm7_9_ice_reg_t* reg)

Listing 7.41: ./target/arm7_9_common.c
454 int arm7_9_write_ice_reg(arm7_9_ice_reg_t* reg)

arm7_9_read_ice_reg() queues JTAG commands to change the current scan chain to the Embedded-
ICE scan chain (scan chain 2), selects INTEST as the current instruction, and executes two data register
scans, one to shift the desired Embedded-ICE register address and the read bit into the scan chain, and
one to capture the register value. To write an Embedded-ICE register,arm7_9_write_ice_reg() may
be called, which queues JTAG commands similar to the read function, but adds only one data register
scan that shifts the Embedded-ICE register address, the write bit, and the new register value into the scan
chain.

Listing 7.42: ./target/arm7_9_common.c
496 int arm7_9_setup_sw_bkpt(void )

Listing 7.43: ./target/arm7_9_common.c
544 int arm7_9_dismantle_sw_bkpt(void )

On cores that don’t support a software breakpoint instruction (BKPT),arm7_9_setup_sw_bkpt() may
be called to setup the Embedded-ICE unit to trigger a breakpoint on a debug instruction value. It tries to
lock one of the watchpoint units, and initializes the unit as a data dependent breakpoint with the value
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specified inarm7_9_debug->arm_bkpt and the address mask register set to ignore the address from which
an instruction is fetched.arm7_9_dismantle_sw_bkpt() is provided to allow the software breakpoint
support to be turned off and to free the watchpoint unit, in case a user requires an additional hardware
breakpoint or watchpoint.

arm7_9_debug_entry() is called after the core entered debug state, and usesarm7_9_debug->

examine_debug_reason() andarm7_9_debug->minimum_context() to query the target state.

arm7_9_register_commands() registers configuration commands and CLI commands that apply to
all ARM7 and ARM9 targets.arm7_9_init() configures the JTAG interface for use with ARM7 and
ARM9 systems, initializes some state variables, and configures one of the Embedded-ICE units for
software breakpoints, if these are enabled via thebreakmode configuration option and the core doesn’t
support the software breakpoint instruction.arm7_9_quit() disables both watchpoint units, to make sure
that no breakpoint or watchpoint triggers while the core isn’t monitored by the debugger.

Listing 7.44: ./target/arm7_9_common.c
643 enum target_state arm7_9_poll()

arm7_9_poll() queues JTAG commands to read the Embedded-ICE status register, and executes the
JTAG command queue. If the DBGACK bit is set and the target was previously in running state, the
entry into debug state is handled, and the user interface is informed about the state change by setting the
target->state_changed flag.

arm7_9_arch_state prints information about the current target state, including the core state and
mode, the address of the instruction that will be executed next, and the current processor status register.

arm7_9_gdb_last_signal() returns a POSIX signal that reflects the reason for debug entry. If debug
state was entered because of a debug request, SIGINT is delivered. If the reason was a breakpoint or a
watchpoint, SIGTRAP is delivered.

Listing 7.45: ./target/arm7_9_common.c
727 int arm7_9_halt(void )

arm7_9_halt() ensures that the processor is currently in running- or in reset state, otherwise it returns
an error, to ensure that the target state isn’t corrupted. It programs the Embedded-ICE control register
with DBGRQ set high, deasserts a possibly asserted reset line, and waits for the core to enter debug
state by continuously reading the Embedded-ICE status register. If DBGACK doesn’t go high within
five seconds after debug entry was requested, a timeout is signaled to the calling code. No matter if
debug entry was successful, the DBGRQ signal is set low again, to allow the core to continue operation.
On ARM9 targets, this wouldn’t be necessary until a system speed instruction is executed, but ARM7
systems require this step to be able to execute instructions at debug speed. If DBGACK went high,
arm7_9_poll() is called, which handles the entry into debug state (see §6.4).

Listing 7.46: ./target/arm7_9_common.c
788 int arm7_9_resume(int current , u32 address)

arm7_9_resume() checks if the target is in debug state, and changes the program counter (r15), if
resume was requested for a different address than that of the current instruction. In case of a CLI session,
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the list of breakpoints is searched for the address on which execution should be resumed. Should the
address be found, that breakpoint is disabled, and a single-step is executed by calling core specific code
to restore the context, execute the step, and save the new context. After that, the breakpoint is enabled
again. If a gdb client is connected, these steps are unnecessary, as gdb handles breakpoints differently
(see §6.6). Core specific code is then called to restore the context and execute the resume sequence.

Listing 7.47: ./target/arm7_9_common.c

836 void arm7_9_embeddedice_step()

arm7_9_embeddedice_step() is used to program the Embedded-ICE watchpoint units to support
single-step on cores without hardware single-step support, according to the procedure described at §3.3.
Code that calls this function should backup the registers of both Embedded-ICE units to be able to restore
them after the step has been executed.

Listing 7.48: ./target/arm7_9_common.c

870 int arm7_9_step(int current , u32 address)

arm7_9_step() checks the target state, changes the program counter if desired, and disables a break-
point set on the address at which the single-step should be executed, likearm7_9_resume(). It sets the
arm7_9_saved_debug_reason to indicate a single-step, and calls core specific code to restore the context
and execute the step. Similar toarm7_9_resume(), the breakpoint is enabled again, if there was one set.

Listing 7.49: ./target/arm7_9_common.c

910 int arm7_9_reset(int halt)

If the target was halted, it is resumed, beforearm7_9_reset() asserts the SRST line. The software
waits 500ms to give the target time to reset itself, and changes thetarget->state to reflect the reset. If
thehalt flag is set,arm7_9_halt() is called to enter debug state immediately after coming out of reset,
otherwise SRST is desasserted, to allow the target to start executing instructions.

Listing 7.50: ./target/arm7_9_common.c

950 int arm7_9_get_gdb_registers(u8 **buffer , int *size)

arm7_9_get_gdb_registers() usescalloc() to allocate 168 bytes of zero-initialized memory. GDB
expects a buffer with sixteen core registers of 4 bytes size, eight floating point registers of 12 bytes
size, the floating point status register, and the current program status register. The core registers of the
current processor mode are stored in the allocated memory by treating it as an array of unsigned integers.
To support big-endian targets or hosts, this would have to be changed. Floating point registers aren’t
supported, so the space reserved for these is left at zero. At the end of the buffer, the CPSR is stored.
The pointer to the buffer and its size are returned to the caller, which has to free the memory when it’s
done using it.

Listing 7.51: ./target/arm7_9_common.c

981 int arm7_9_set_gdb_registers(u8 *buffer , int size)

arm7_9_set_gdb_registers() works similar toarm7_9_get_gdb_registers(). It validates the buffer
size, and treats the buffer as an array of unsigned integers, that are written to the core registers. Every
register written is marked as dirty, and will be transfered to the core when the target is resumed.
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arm7_9_get_gdb_reg() andarm7_9_set_gdb_reg() simply return or set the requested core register
value. Register between 0 and 15 refer to the general purpose registers. Registers 16 to 24 select floating
point register, and result in an error. Register 25 selects the current program status register.

Breakpoints are handled by arm7_9_set_breakpoint(), arm7_9_unset_breakpoint(),
arm7_9_add_breakpoint(), andarm7_9_remove_breakpoint(). When a breakpoint should be added,
arm7_9_add_breakpoint is called. The list of breakpoints is searched for a breakpoint with the same
address, and the function aborts with a positive return code, if an existing breakpoint is found. In
case of a hardware breakpoint,wp_available is examined to see if one of the comparators is avail-
able, and an error is returned if no watchpoint unit is free to be used. If a software breakpoint has to be
added,arm7_9_breakmode is checked if software breakpoints are enabled. In both cases, memory for an
arm7_9_breakpoint_t object is allocated, and the fields are filled according to the desired breakpoint.
The breakpoint size is used to determine if an ARM or an Thumb state instruction should be break-
pointed. If all checks were passed,arm7_9_set_breakpoint() is called. This function ensures that the
target is halted, and that the breakpoint isn’t already set. In case of a hardware breakpoint, it checks
which of the comparators is unused, and programs it as a data independent instruction breakpoint that
triggers on the desired address. In case of a software breakpoint, the target memory at the desired address
is read, and its content is saved in the breakpoint’sorig_instr field. Depending on the size, either the
arm7_9_debug->arm_bkpt or thearm7_9_debug->thumb_bkpt instruction is written to replace the original
instruction. Theset field is changed to indicate that the breakpoint has been set, and reflects the watch-
point unit used in case of a hardware breakpoint.

arm7_9_unset_breakpoint() is called when a breakpoint should be disabled. For hardware break-
points, the watchpoint unit on which the breakpoint is set is disabled, and if a software breakpoint should
be disabled, the saved instruction is written back to the target memory. Theset field is then cleared,
to show that the breakpoint has been unset. Whenarm7_9_remove_breakpoint() is called, the list of
breakpoints is searched for the address, andarm7_9_unset_breakpoint() is called if the breakpoint is
currently enabled. The linked list is modified to allow the breakpoint to be removed, and the memory
used for the breakpoint is freed.

Watchpoints are handled byarm7_9_add_hw_watchpoint() and arm7_9_remove_hw_watchpoint().
Set/unset functions aren’t required, because watchpoints don’t have to be disabled, as an instruction that
triggers a watchpoint is always executed. When a watchpoint should be added, the list of watchpoints is
searched for the address of the new watchpoint, and the function is aborted if there’s already a watchpoint
set on that address.wp_available is checked to see if a watchpoint unit is available, and an error is
returned if not. Depending on therw flag, the watchpoint’s control mask register is programmed to
ignore the nRW signal (rw == 2, catch all accesses), or to evaluate that signal (rw == 0, catch reads,
or rw == 1, catch writes). The data mask register is programmed to ignore the data value, and the
address and mask are programmed as requested. The watchpoint’sset flag is set to the number of the
comparator used, and the correspondingwp[01]_used variable is set to 1 to show that it’s not available.
Whenarm7_9_remove_hw_watchpoint() is called, the list of watchpoints is searched for the address of
the watchpoint that should be removed. When a match is found, the comparator used for the watchpoint
it disabled, and thewp[01]_used variable is set to 0. The linked list is modified to allow the watchpoint
to be removed, and the memory used for the watchpoint is freed.
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Listing 7.52: ./target/arm7_9_common.c
1398 int arm7_9_handle_breakmode_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

arm7_9_handle_breakmode_command() handles the breakmode configuration command. It evaluates
the first argument given to the command, and enables or disables the use of software breakpoints accord-
ingly.

Listing 7.53: ./target/arm7_9_common.c
1427 int arm7_9_handle_reg_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

arm7_9_handle_reg_command() is called when a user entered thereg command on the CLI.
arm7_9_debug->full_context() is invoked to read the contents of all core registers in all modes. The
command’s arguments are parsed, and depending on the number of arguments, either all registers are
displayed on the CLI (no arguments), a single register is displayed (one argument), or one register is
assigned a new value (two arguments).

Listing 7.54: ./target/arm7_9_common.c
1500 int arm7_9_handle_icereg_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

arm7_9_handle_icereg_command() is similar to thereg command handler, but operates on Embedded-
ICE registers instead of core registers.arm7_9_read_ice_reg() andarm7_9_write_ice_reg() are used
to access the Embedded-ICE registers referenced by their address.

Listing 7.55: ./target/arm7_9_common.c
1542 int arm7_9_handle_bp_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

arm7_9_handle_bp_command() gives access to the list of breakpoints. If thebp command is entered
without any arguments, a list of all breakpoints currently set is displayed. Otherwise,
arm7_9_add_breakpoint() is called with the address of the breakpoint. The size is set to 4, if noth-
ing else was specified, and a software breakpoint is requested, if there wasn’t an argumenthw requesting
a hardware breakpoint.

Listing 7.56: ./target/arm7_9_common.c
1592 int arm7_9_handle_wp_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

Like thebp handler,arm7_9_handle_wp_command() displays the list of watchpoints currently set. If
three arguments were specified,arm7_9_add_hw_watchpoint() is called to set a read, write, or access
watchpoint at the desired address with the chosen mask.

Listing 7.57: ./target/arm7_9_common.c
1616 int arm7_9_handle_rbp_command(struct cli_def *cli , char *cmd ,

char **args , int argc)

Listing 7.58: ./target/arm7_9_common.c
1624 int arm7_9_handle_rwp_command(struct cli_def *cli , char *cmd ,

char **args , int argc)



74 Implementation

arm7_9_handle_rbp_command() andarm7_9_handle_rwp_command() callarm7_9_remove_breakpoint()
andarm7_9_remove_watchpoint() to remove a breakpoint or watchpoint set on the address specified in
the first argument to therbp or rwp command.

arm9tdmi.[ch]

The header file for the code common to all ARM9 based cores declares functions that may be called by
core specific code, and defines two additional Embedded-ICE enumeration values.ARM9TDMI_VEC_CATCH

holds the address of the Embedded-ICE vector catch register found on all ARM9 based cores.
ARM9TDMI_DBG_CONTROL_SSTEP is the bit mask for the debug control register used to enable hardware
single-stepping, a feature available on ARM9TDMI and ARM9E-S Rev. 1 based cores.

The arm9tdmi_target interface may be used for ARM9 based cores while their MMU and caches
are disabled. It doesn’t handle cache consistency, and works with the addresses presented on the core’s
internal bus. If these are virtual addresses, displaying memory works, but modifications may fail to up-
date the instruction cache, resulting in inconsistencies. Thearm9tdmi_ice_regs array defines the list of
Embedded-ICE registers available on ARM9TDMI based cores. Core specific code should change the
size fields of the registers to match a particular core (e.g. ARM9E-S cores have a larger debug status
register).
Thearm9tdmi_debug structure provides ARM7/ARM9 common code with the size of the ARM9 SCAN_N
register, the Embedded-ICE version, the list of Embedded-ICE registers, the instruction values required
for software breakpoints, the flag indicating that software breakpoints require a watchpoint unit, and
pointers to core specific debug functions.

Listing 7.59: ./target/arm9tdmi.c
151 static int arm9tdmi_has_singlestep = 0;
152 static int arm9tdmi_full_context_queried;

arm9tdmi_has_singlestep is a flag used by the ARM9TDMI code to determine if the core supports
the hardware single-step feature. It is set inarm9tdmi_init() if an Embedded-ICE version 2 or 5 is
found.arm9tdmi_full_context_queried shows whether the content of all core registers in all modes has
already been fetched since the last debug entry.

Listing 7.60: ./target/arm9tdmi.c
154 /* put an instruction in the ARM9TDMI pipeline, and set the databus to

"in"
155 * the databus content is then placed in "out" */
156 int arm9tdmi_put_instruction(u32 instruction , int sysspeed , u32 in,

u32 *out)

arm9tdmi_put_instruction is used to place an instruction in the ARM9TDMI pipeline, and to
set and read the ARM9TDMI data bus. The function queues JTAG commands, but doesn’t execute
them, to allow larger command queues to be built. The macro_SLOW_DEBUG_ may be defined to make
arm9tdmi_put_instruction() execute every instruction immediately. This allows more debug infor-
mation to be displayed and helps in diagnosing problems with the debug code. The JTAG endstate is
changed toTAP_PD, and the JTAG instruction is switched to INTEST.
A data register scan command with three scan register fields is built. The first field is 32 bits long, and is
used to read and write the data bus. The second field is 3 bits long, and sets the value of the SYSSPEED
signal used to flag instructions that should be executed at system speed. The third field contains the
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instruction that should be executed and is 32 bits long, but has a reversed bit order. Thedo_flip flag of
the scan field description is used to indicate that the JTAG code should reverse this field before scanning
it into the target and before writing the results to the debugger memory.
Following the data register scan command, a runtest command is queued, that moves the TAP state ma-
chine from TAP_PD to TAP_RTI and back to TAP_PD, pulsing the debug clock (DCLK) to execute one
cycle.

Listing 7.61: ./target/arm9tdmi.c
218 int arm9tdmi_register_commands(struct cli_def *cli)

The ARM9TDMI code doesn’t register commands of its own, but callsarm7_9_register_commands()

to make use of commands that are relevant to all ARM7 and ARM9 targets.

Listing 7.62: ./target/arm9tdmi.c
228 int arm9tdmi_init(struct cli_def *cli)

The initialization code for the ARM9TDMI assigns itsarm9tdmi_debug structure to thearm7_9_debug
variable that’s used by ARM7 and ARM9 common code to access core specific debug functionality.
arm7_9_init() is called to give shared code a chance to initialize itself. The Embedded-ICE debug com-
munications control register is read, and its upper four bits are evaluated to determine the Embedded-
ICE version implemented by the current core. On cores that support hardware single-stepping, the
arm9tdmi_has_singlestep flag is set accordingly. Thearm9tdmi_quit() code disables the vector catch-
ing feature to ensure that debug state isn’t entered without a debugger monitoring the target, and calls
arm7_9_quit().

Listing 7.63: ./target/arm9tdmi.c
267 int arm9tdmi_examine_debug_reason(void )

arm9tdmi_examine_debug_reason() is called after the ARM7/ARM9 shared code detected an entry
into debug state. On ARM9TDMI cores, the reason for debug entry is encoded in two control bits of
the debug scan chain. A data register scan command is built to read the scan chain and is executed
immediately. Another scan command is built to write the values scanned out with the first command
back to the target, to ensure that its state isn’t modified. Becausearm9tdmi_examine_debug_reason()

doesn’t move through the TAP_RTI state, no debug cycles are executed.

Listing 7.64: ./target/arm9tdmi.c
329 if (debug_reason & 0x4)
330 if (debug_reason & 0x2)
331 arm7_9_saved_debug_reason = ARM7_9_REASON_WPTANDBKPT;
332 else
333 arm7_9_saved_debug_reason = ARM7_9_REASON_WATCHPOINT;
334 else
335 arm7_9_saved_debug_reason = ARM7_9_REASON_BREAKPOINT;

Thedebug_reason is taken from the three control bits of the debug scan chain. The most significant
bit is the BREAKPT signal, and indicates a breakpoint condition when low. If BREAKPT is high, the
second bit, WPTANDBKPT has to be examined. When it’s high, a watchpoint and breakpoint occurred
simultaneously, otherwise the reason for debug entry was a watchpoint. The least significant bit is the
DDEN signal (Data Data Bus Output Enabled, indicates a write on DD[31:0]), which is irrelevant for the
debug entry reason.
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Listing 7.65: ./target/arm9tdmi.c

342 int arm9tdmi_read_cpsr(u32 *cpsr)
343 {
344 /* MRS r0, cpsr */
345 arm9tdmi_put_instruction(ARM7_9_MRS(0, 0), 0, 0, NULL);
346
347 /* STR r0, [r15] */
348 arm9tdmi_put_instruction(ARM7_9_STR(0, 15), 0, 0, NULL);
349 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, NULL);
350 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, NULL);
351 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, cpsr);
352
353 return ERROR_OK;
354 }

To read the current program status register, aMRS r0, CPSR instruction is inserted into the
ARM9TDMI pipeline, that moves the content of the CPSR to the general purpose register r0. The
ARM7_9_MRS macro takes two arguments, one to specify the destination register, and one to set the S bit
that selects between the CPSR (S == 0) and the SPSR (S == 1). After that, aSTR r0, [r15] instruction
is put into the pipeline, that stores the content of register r0 to the address located in r15. ThreeNOPs are
inserted to move the store register instruction into the Memory stage, where the value can be captured on
the data bus. The code doesn’t execute the JTAG scan chain to allow larger command queues to be built.

Listing 7.66: ./target/arm9tdmi.c

356 int arm9tdmi_minimum_context(void )

arm9tdmi_minimum_context() is called after the core entered debug state and the reason for debug
entry has been identified. It reads the Embedded-ICE status register to check the current value of the
ITBIT bit that shows if the core is in ARM state (ITBIT low) or in Thumb state (ITBIT high). Thumb
state debugging isn’t supported yet, so the debugger quits with an error message if the target is found to
be in Thumb state. ASTMIA r0, {r0-r15} is put into the processor pipeline to save the contents of
all registers that belong to the current processor mode. TwoNOPs move theSTMIA to the Memory stage,
where the register content is captured. Thearm9tdmi_put_instruction() calls that capture the register
values don’t actually put instructions into the pipeline, because no new instructions are being fetched
while theSTMIA stays in the Memory stage.arm9tdmi_read_cpsr() is called to get the CPSR, and all
JTAG commands queued up to this point are executed. This ensures that thecontext array and the CPSR
value have been read from the target before they’re used.
arm7_9_mode_to_number() is called to check that the content of the CPSR holds a valid processor mode.
If this check fails a serious problem has occurred, and the software quits. The values from thecontext

array are transfered to the register list using theARM7_9_CORE_REG_MODE macro, and all of these values
are marked as clean, to indicate that the values held by the debugger are the same as those in the core
and don’t have to be restored before debug state is left.
The value of the program counter stored by theSTMIA instruction is fixed by subtracting 0x18, because
theSTMIA itself added 0xc to the PC, and debug entry added another 0xc. If the core was in one of the
exception modes (not User or System mode), the saved program status register (SPSR) of that mode is
saved similar toarm9tdmi_read_cpsr().
All core regs are marked as clean,arm9tdmi_full_context_queried is set to 0, as only the registers of
one mode have been queried yet, and registers r0 and r15 are marked as dirty, because register r0 was
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modified when the CPSR was read, and register r15 was changed with each instruction executed in debug
state.

Listing 7.67: ./target/arm9tdmi.c
457 int arm9tdmi_full_context(void )

arm9tdmi_full_context() goes through all modes except the current processor mode (has already
been stored) and the System mode (shares registers with the User mode) using ordinal mode numbers,
and stores the banked registers of each mode. The processor mode is changed using a MSR instruction
with an immediate operand:

Listing 7.68: ./target/arm9tdmi.c
482 /* change processor mode */
483 tmp_cpsr = arm7_9_core_regs[ARM7_9_CPSR].value & 0xE0;
484 tmp_cpsr |= arm7_9_number_to_mode(i);
485
486 /* MSR CPSR_c, #imm8 */
487 arm9tdmi_put_instruction(ARM7_9_MSR_IM(tmp_cpsr , 0, 1, 0), 0, 0, NULL);

The processor mode is stored in bits 0 to 4 of the program status register, but using an immediate
operand withMSR, eight bits of the CPSR are changed at a time. The upper three bits of the CPSR’s
least significant byte are bitwise ORed with the mode value of the mode currently being handled to
form the operand. Registers r13 and r14 are banked in each mode, and are therefor always saved us-
ing two STR rN, [r0] instructions. In case of the FIQ mode, additionally r8 to r12 are stored using
STR instructions. If the mode being handled is an exception mode (not User or System), the SPSR
of that mode is saved, too, using anMRS instruction macro with the S bit (second macro argument)
set high. The memory locations to which the register values should be stored are calculated using the
arm7_9_core_reg_map[mode][num] array. After all registers have been handled, the original core mode
is restored using anMSR instruction.

Listing 7.69: ./target/arm9tdmi.c
550 int arm9tdmi_write_psr(u32 value , int r)

arm9tdmi_write_psr() may be called to change all 32 bits of the CPSR (r == 0) or the SPSR (r == 1)
at the same time. Using aMSR instruction with an immediate operand, 8 bits are written at the same time.
The additionalNOPs that are inserted into the pipeline are necessary to adhere to the instruction cycle
timing of theMSR instruction, which incurs two additional I-cycles (internal cycles) after the instruction
reached the Execute stage. The number of cycles could be reduced by using aMSR instruction with a
register operand, but that would require the use of a general purpose register, which would have to be
restored afterwards. Using the immediate instruction variant, no register’s have to be modified, making
arm9tdmi_write_psr() more flexible to use.

Listing 7.70: ./target/arm9tdmi.c
572 int arm9tdmi_restore_context(void )

Before the core may leave debug state, the execution context has to be restored using
arm9tdmi_restore_context, which is called by ARM7/ARM9 common code. It uses the linear register
array (arm7_9_core_regs) to iterate through each register. If a register is marked as dirty and doesn’t
belong to the current processor mode, the CPSR is modified to bring the processor into that mode using a
MSR instruction with an immediate operand. In case of a regular register (r0-r14), the register is restored
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using aLDR instruction with r15 as the base address. It is important to use a base register that contains
a 4-byte aligned address, otherwise the loaded value would be rotated to reflect endianess effects on un-
aligned loads [DDI0100E, p. A4-37]. If the current register is one of the saved program status registers
(SPSR),arm9tdmi_write_psr() is called with ther argument set to 1 (see above).
After all registers have been restored, the CPSR is examined. If it’s marked as not dirty, but the current
core mode doesn’t match the saved core mode, aMSR instruction with an immediate operand is used to
restore the processor mode. If the CPSR is marked as dirty,arm9tdmi_write_psr() is called with ther
argument set to 0. The program counter (r15) is restored last, as it will be modified again by each instruc-
tion executed. When loading the PC, the instruction cycle timing has to be carefully followed, to ensure
that the instruction fetched next comes from the desired address. The data bus is read during the second
Execute cycle. During the third Execute cycle, the value read is written to the register file, and in the
fourth Execute cycle, the first instruction is fetched from the new address.arm9tdmi_restore_context()

therefor executes Execute cycles one to three of theLDR instruction, to ensure a following instruction is
fetched from the correct address.

Listing 7.71: ./target/arm9tdmi.c
656 int arm9tdmi_execute_resume(void )

arm9tdmi_execute_resume() is called by the ARM7/ARM9 common code after the core context
has been restored. It scans a branch instructionB -2 into the pipeline that causes a branch back to the
instruction itself. After the branch, aNOP with the SYSSPEED bit set high is scanned into the pipeline.
The JTAG instruction is changed to RESTART, and a runtest command is built and put into the queue
with the new_endstate field set to TAP_RTI. The JTAG command queue is executed, which results in
the branch instruction being executed at system speed, bringing the core back to normal operation.

Listing 7.72: ./target/arm9tdmi.c
689 int arm9tdmi_execute_step(void )

Single-stepping is similar to resuming the core, but depending on thearm9tdmi_has_singlestep

flag, either theARM9TDMI_DBG_CONTROL_SSTEP bit has to be set in the Embedded-ICE debug control
register, or the two Embedded-ICE watchpoint units have to be programmed for an inverse-breakpoint
(see §3.3). The watchpoint unit registers are backed up, beforearm7_9_embeddedice_step() is called to
program the inverse breakpoint. The core is then resumed with the same steps as inarm9tdmi_resume().
arm7_9_poll() is called for up to five seconds to wait for the core to reenter debug state. The
ARM9TDMI_DBG_CONTROL_SSTEP is then cleared again, in case the core supports this feature, otherwise
the Embedded-ICE registers are restored. If the target timed out while the debugger waited for it to
reenter debug state, an error is returned, to inform calling code that the core isn’t in halt mode.

Listing 7.73: ./target/arm9tdmi.c
773 int arm9tdmi_read_memory(u32 address , u32 size , u32 count , u8 *buffer)

Only memory reads of 8, 16, or 32 bit items aligned to the access size are supported, and the argu-
ments given toarm9tdmi_read_memory() are checked against these requirements. Theaddress is loaded
with a LDR r0, [r15] instruction into register r0, which serves as the base register for the following
system memory accesses.
Memory is most efficiently accessed using aLDM load multiple instruction, that may be used to load up
to 14 values from system memory into registers r1 to r14. Registers r0 and r15 can not be used, because
one register has to contain the base address for the accesses (r0), and the PC (r15) is too limited in its
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use. Only full word accesses (32 bit) are possible using load multiple instructions, thereforLDRH (load
register halfword) andLDRB (load register byte) have to be used for smaller accesses.

Listing 7.74: ./target/arm9tdmi.c

812 case 4:
813 buf32 = (u32*)buffer;
814 while (num_accesses < count)
815 {
816 u32 reg_list;
817 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 :

(count - num_accesses);
818 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
819 arm9tdmi_put_instruction(ARM7_9_LDMIA(0, reg_list , 0, 1),

0, 0, NULL);
820 arm9tdmi_put_instruction(ARM7_9_NOP , 1, 0, NULL);
821
822 jtag_set_instruction(ARM7_9_RESTART);
823 jtag ->queue_command(state_move);
824
825 for (timeout=0; timeout <5; timeout++)
826 {
827 arm7_9_read_ice_reg(&arm9tdmi_ice_regs[ARM7_9_DBG_STAT]);
828 if ((retval = jtag ->execute_queue()) != ERROR_OK)
829 return retval;
830
831 if (arm9tdmi_ice_regs[ARM7_9_DBG_STAT].value &

ARM7_9_DBG_STATUS_SYSCOMP)
832 break ;
833 sleep(1);
834 }

If size is set to 4, a pointer variablebuf32 is set to the value ofbuffer, casted to aU32* pointer.
num_accesses counts the number of items accessed so far, and as long as this is below the number of
requested accesses (count), memory is read from the target system in blocks ofthisrun_accesses, and
stored using thebuf32 pointer. thisrun_accesses is either the number of items remaining (count -
num_accesses) or 14, whichever is smaller. Thereg_list for theARM7_9_LDMIA macro is calculated de-
pending on the number of accesses required. TheLDMIA instruction is put into the pipeline, followed by a
NOP with the SYSSPEED bit set high. The JTAG instruction is changed to RESTART, a state move com-
mand is queued that moves the TAP controller state machine to TAP_RTI, and the Embedded-ICE status
register is scheduled to be read. Executing the JTAG command queue makes the core execute theLDMIA
at system speed and reads the status register, which is checked for theARM7_9_DBG_STATUS_SYSCOMP bit
to determine if the core reentered debug state. This is done for up to five seconds, after which the target
is considered to be stalled, and a timeout error is returned.

Listing 7.75: ./target/arm9tdmi.c

841 arm9tdmi_put_instruction(ARM7_9_STMIA(0, reg_list , 0, 0), 0, 0,
NULL);

842 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, NULL);
843 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, NULL);
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844
845 for (i=1; i<=thisrun_accesses; i++)
846 {
847 arm9tdmi_put_instruction(ARM7_9_NOP , 0, 0, buf32);
848 buf32++;
849 }
850 num_accesses += thisrun_accesses;
851 if ((retval = jtag ->execute_queue()) != ERROR_OK)
852 return retval;

If the accesses completed successfully, aSTMIA instruction executed at debug speed is used to scan
the data out of the registers into the debugger. The values are captured onceSTMIA reached the Memory
stage, and are written to the memory pointed to by thebuf32 pointer, which is advanced after each word.
If the software is to be ported to a big-endian host, or if support for big-endian targets is to be added, this
would have to be changed, to take endianess effects into account.

Accesses of 2 and 1 bytes size are handled similarly, but instead of a singleLDMIA instruction,LDRH
or LDRB are executedthisrun_accesses times. An additional arraythisrun_buffer, large enough to
take 14 words, is used to capture the up to 14 words saved bySTMIA. If the data should have been stored
directly to the buffer, as it’s done for 32 bit accesses, the debug scan chain field description would have to
be changed, to be able to access the lower 8 or 16 bit of the data bus independently from the others, and
the JTAG queued command system would have to support half-word or byte destinations for the values
captured from a data register scan. After storing the data in thethisrun_buffer using a single run, the
data is copied into thebuffer using thebuf8 or buf16 pointer respectively.

After all requested memory has been read, the used registers are marked as dirty, to make sure they’re
restored before the core is resumed.arm9tdmi_read_cpsr() is called to see if an access caused a data
abort, in which case the CPSR would be restored using aMSR instruction with an immediate operand.

Listing 7.76: ./target/arm9tdmi.c

841 int arm9tdmi_write_memory(u32 address , u32 size , u32 count , u8 *buffer)

Like memory reads, memory writes are only possible with items of 8, 16, or 32 bits, and have to
be aligned to the access size.arm9tdmi_write_memory() checks the parameters against these restriction,
and loads theaddress into register r0, which is used as the base register. Memory is written similarly
to how it’s read, but instead of executing system speed load instructions followed by debug speed store
multiples, load multiple instructions are executed at debug speed to fill the registers with the data that
should be written, and store instructions are executed at system speed to write the register content to the
target memory. The code to write memory doesn’t have to use temporary arrays as the read code does
(thisrun_buffer), because the JTAG scan chain fields for the data bus are always 32 bits large, no matter
what size the data being accessed is.

Using 14 registers of 4 bytes size in a singleSTM instruction, it’s possible to write 56 bytes at a time
to the target memory. After theSTM has executed, the debugger has to wait for the DBGACK signal
to go high in the debug status register. That means that on systems with high latency, the time, that
passes between sending the queued commands to the target, and waiting for a reply with the content of
the Embedded-ICE status register, limits the maximum download speed that can be achieved, no matter
how fast the JTAG clock actually is. To be able to bypass this restriction, possibly unsafe code can be
enabled by defining theUNSAFE_MEMORY_WRITE macro insidearm9tdmi.c. This replaces the status regis-
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ter checking with a call toarm7_9_guard_ice_status() that checks if the Embedded-ICE status register
contains the value 0xd to indicate a completed system speed access. If everything went well, and the
core was able to execute every access in the time it took the debugger to initiate the ICE register read, the
Embedded-ICE status register value matches, and the target memory was written successfully. If during
all the system speed accesses, the status register didn’t match only once, the target is in an possibly un-
safe state, as the debugger may have tried to execute instructions at debug speed while the core was still
performing the system speed access. This error can be detected, and the procedure may be tried again,
after resetting the target and slowing the JTAG clock down.

Like arm9tdmi_read_memory(), arm9tdmi_write_memory() checks the CPSR after all data is written,
and restores it if necessary.

armv4mmu.[ch]

The memory management units implemented in ARM7 and ARM9 cores offer the same programmer’s
model with only small differences, so both core families are supported by common code located in
armv4mmu.[ch].

Listing 7.77: ./target/armv4mmu.h

27 typedef struct armv4mmu_debug_s
28 {
29 u32 (*get_ttb)(void );
30 int (*read_memory)(u32 address , u32 size , u32 count , u8 *buffer);
31 int (*write_memory)(u32 address , u32 size , u32 count , u8 *buffer);
32 void (*disable_mmu_caches)(int disable_mmu , int disable_caches);
33 void (*restore_mmu_caches)(void );
34 int has_tiny_pages;
35 } armv4mmu_debug_t;

The common MMU code requires access to core-specific functions, which is realized through the
armv4mmu_debug_t interface defined inarmv4mmu.h. get_ttb() is called to determine the translation
table base address, the physical address where the first-level page table is located.read_memory() and
write_memory() are used to access target memory. They shouldn’t do any translations or cache/MMU op-
erations, but simply read or write memory at the address specified (e.g. like thearm9tdmi_xxx_memory()

functions). disable_mmu_caches() is called to disable the MMU, the caches, or both, while
restore_mmu_caches() has to restore both to their previous state, i.e. to what they were set on de-
bug entry.has_tiny_pages is a flag indicating whether the current core supports tiny pages (ARM9) or
not. This is used to catch page table errors on ARM7 systems, where information indiciating a tiny page
is an error.

armv4mmu.h further defines an enumeration of possible memory regions (ARMV4_SECTION,
ARMV4_xxx_PAGE), and declares functions that may be used by cores with MMU and caches to handle
these:

Listing 7.78: ./target/armv4mmu.h

41 extern u32 armv4mmu_translate_va(u32 va, int *type , u32 *cb,
int *domain , u32 *ap);

42 extern int armv4mmu_read_physical(u32 address , u32 size , u32 count ,
u8 *buffer);
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43 extern int armv4mmu_write_physical(u32 address , u32 size , u32 count ,
u8 *buffer);

44
45 extern int armv4mmu_handle_virt2phys_command(struct cli_def *cli ,

char *cmd, char **args , int argc);
46 extern int armv4mmu_handle_md_phys_command(struct cli_def *cli ,

char *cmd, char **args , int argc);
47 extern int armv4mmu_handle_mw_phys_command(struct cli_def *cli ,

char *cmd, char **args , int argc);

Textual representations of the memory region enumeration types are defined inarmv4mmu.c by the
armv4mmu_page_type_names array ofchar pointers.

Listing 7.79: ./target/armv4mmu.c
39 u32 armv4mmu_translate_va(u32 va, int *type , u32 *cb, int *domain ,

u32 *ap)

armv4mmu_translate_va() takes a virtual address inva, and returns the corresponding physical ad-
dress. The type of memory region is returned using the*type pointer, the cacheable and bufferable bits
via *cb, the domain bits through*domain, and the access permission via*ap. The translation process is
fully described in [DDI0100E, p. B3-6].
The translation table base (TTB) is queried usingarmv4mmu_debug->get_ttb(), and the first-level de-
scriptor is fetched using a phyiscal memory access. The location of the first-level descriptor is calculated
by taking the most significant 18 bits from the TTB, and adding the most significant 12 bits from the vir-
tual address shifted to the right by 18. The two least significant bits of the first level descriptor determine
its type. The value b00 is reserved, and results in a translation error. The value b11 is used for a fine
page table, and is only valid for systems that support tiny pages, soarmv4mmu_debug->has_tiny_pages

is checked, and a translation error is returned if the core doesn’t support these. The domain is always
encoded in bits 5 to 8 of the first-level descriptor, and is assigned to the memory pointed at by*domain.
A value of b10 indicates a section descriptor, in which case no second-level descriptor is required. The
remaining fields are filled using the values from the descriptor, and the return value is calculated by tak-
ing bits 24 to 31 from the first-level descriptor ORed with bits 0 to 23 of the virtual address.
The address of the second-level descriptor is calculated by taking the most significant 22 bits of a coarse
page table first-level descriptor (type b01) ORed with bits 12 to 19 of the virtual address shifted 10 bits
to the right, or the most significant 20 bit of a fine page table first-level descriptor (type b11) ORed with
bits 10 to 19 of the virtual address shifted 8 bits to the right.
The type of a second-level descriptor is determined by bits 0 and 1, too, like for a first-level descriptor.
The value b00 is reserved, and results in a translation error. The cacheable and bufferable bits are always
encoded in bits 2 and 3, and are returned via the*cb pointer. The other fields are filled using the bits from
the second-level descriptor, and the physical address of the requested page is calculated and returned.
If a translation error occurred withinarmv4mmu_translate_va(), the *type is set to -1 to indicate an
error, and the return value can be interpreted as an error code.

Thearmv4mmu_read_physical() andarmv4mmu_write_physical() functions usearmv4mmu_debug->
disable_mmu_caches() to disable both the MMU and caches, call the read or write memory function,
and usearmv4mmu_debug->restore_mmu_caches() to restore the MMU and caches to their previous state.

armv4mmu_handle_virt2phys_command() is a simple wrapper around thearmv4mmu_translate_va()
function. It takes one argument that is interpreted as a virtual address, callsarmv4mmu_translate_va(),
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and displays the results.

armv4mmu_handle_md_phys_command() andarmv4mmu_handle_mw_phys_command() are wrappers around
the armv4mmu_xxx_physical() functions. They take an address and a count (md), or an address and a
value (mw), and call the corresponding physical memory access function.

arm9cache.[ch]

ARM9 based targets may have caches of a variable size. The code inarm9cache.[ch] can be used to
identify these caches and provides a command handler for a CLI command that prints information about
the caches to the user interface.

Listing 7.80: ./target/arm9cache.h

24 typedef struct arm9_cachesize_s
25 {
26 int linelen;
27 int associativity;
28 int nsets;
29 int cachesize;
30 } arm9_cachesize_t;
31
32 typedef struct arm9_cache_s
33 {
34 int ctype; /* specify supported cache operations */
35 int separate; /* separate caches or unified cache */
36 arm9_cachesize_t Dsize; /* data cache */
37 arm9_cachesize_t Isize; /* instruction cache */
38 } arm9_cache_t;
39
40 arm9_cache_t arm9_cache;
41
42 extern int arm9_identify_cache(u32 cache_type_reg , arm9_cache_t *cache);
43 extern int arm9_handle_cacheinfo_command(struct cli_def *cli , char *cmd,

char **args , int argc);

Thearm9_cachesize_t type holds information about a data or an instruction cache, describing its in-
ternal structure. Thearm9_cache_t type specifies the caches implemented on a core: the operations they
support, whether it’s a unified cache or separate data and instruction caches, and twoarm9_cachesize_t

fields that describe the two parts of the cache.

Listing 7.81: ./target/arm9cache.c

24 int arm9_identify_cache(u32 cache_type_reg , arm9_cache_t *cache)

arm9_identify_cache() takes the value of the cache type register, a CP15 register on cores that sup-
port it, as an argument, and fillsarm9_cache with information about the caches found on the current core.
[DDI0100E, p. B2-9] explains the layout of the cache type register, and how this information may be
used to calculate the properties of the caches.
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arm920t.c

Thetarget_t interface for arm920t cores is defined asarm920t_target, thearm7_9_debug_t is defined
asarm920t_debug, and thearmv4mmu_debug_t interface is defined asarm920t_mmu_debug. The ARM920t
is based on an ARM9TDMI core, so theirtarget_t andarm7_9_debug_t are very similiar, with a few
exceptions where the ARM920t has to do additional steps to those the ARM9TDMI does. The ARM920t
supports tiny pages, and has thehas_tiny_pages flag set to 1.

Listing 7.82: ./target/arm920t.c
123 static int arm920t_mmu_enabled = 0;
124 static int arm920t_icache_enabled = 0;
125 static int arm920t_dcache_enabled = 0;
126 static int arm920t_caches_identified = 0;
127
128 u32 arm920t_saved_cp15_control_reg;
129 u32 arm920t_saved_dfsr;
130 u32 arm920t_saved_ifsr;
131 u32 arm920t_saved_dfar;
132 u32 arm920t_saved_ifar;

The ARM920t has additional attributes that describe its execution context. On debug entry, the
MMU, instruction cache, and data cache may be enabled, and have to be in the same state when the core
is resumed.arm920t_caches_identified is a flag that indicates whetherarm9_identify_cache() has
been called already to identify the caches. As the caches wont change during a debugging session, this
information only has to be calculated once.arm920t_saved_cp15_control_reg holds the value of the
coprocessor 15 register 1, the control register, which has to be restored before the core may be resumed.
arm920t_saved_xfsr andarm920t_saved_xfar contain the value of the data and instruction fault status
and address register. These are set by the core when a data or instruction fetch abort occured, and give
detailed information about the reason for the abort and the address on which it occured. If a system speed
memory access is aborted while the debugger is connected, the fault registers can get modified, and have
to be restored to their previous state.

Listing 7.83: ./target/arm920t.c
134 int arm920t_arch_state()

arm920t_arch_state() calls arm7_9_arch_state() to display information about the current state,
and additionally displays the state of the MMU, the data cache and the instruction cache, using the
information from thearm920t_xxx_enabled flags.
The system control coprocessor (CP15) of an ARM920t core is accessed using a combination of physical
and interpreted accesses (see §4.2).

Listing 7.84: ./target/arm920t.c
153 int arm920t_read_cp15_physical(int reg_addr , u32 *value)

Physical read access to CP15 registers is implemented inarm920t_read_cp15_physical(). The func-
tion takes the register address that should be read, and a pointer to the memory location where the result
should be stored. The CP15 scan chain is selected, and the current JTAG instruction is changed to IN-
TEST. A data register scan command is built, and the JTAG scan chain field description is created to
match the layout of scan chain 15. The least-significant bit of the scan chain is set to 1 to indicate a phys-
ical access. Like Embedded-ICE registers, CP15 registers have to be read using two JTAG scans, one
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that programs the read/write bit and the address, and the second to capture the data. The endstate for the
scan operation is changed to TAP_RTI to ensure that the TAP state machine moves through Update-DR
between the two scans.

Listing 7.85: ./target/arm920t.c

211 int arm920t_write_cp15_physical(int reg_addr , u32 value)

arm920t_write_cp15_physical() is called to write a CP15 register using a physical access. The
procedure is similar to a CP15 register read, but only one access is required, programming the read/write
field, the address, and the data to be written.

Listing 7.86: ./target/arm920t.c

265 int arm920t_read_cp15_interpreted(u32 opcode , u32 *value)

The CP15 instruction opcodes that may be used to access CP15 registers in interpret mode are
listed in [DDI0151C, p. 9-35]. arm920t_read_cp15_interpreted() sets the CP15 interpret bit (bit
0) in the test state register using a read-modify-write access. The test state register is read through
arm920t_read_cp15_physical(), its value is changed, and the new value is written back using
arm920t_write_cp15_physical(). The CP15 scan chain is selected, and the current JTAG instruction
is changed to INTEST. A data register scan command is built, similar to a physical access, but the least-
significant bit is set to 0, to indicate an interpreted access. The opcode for the desired operation is
scanned into bits 1 to 32 (instruction word), bits 33 to 39 (address and read/write) are set to zero. The
scan command is put into the JTAG queue, and aLDR r0, [r15] instruction, followed by aNOP with
the SYSSPEED bit set high, is put into the ARM9TDMI pipeline viaarm9tdmi_put_instruction(). The
system speed load instruction is executed by changing the JTAG instruction to RESTART and moving
the state machine to Run-Test/Idle. The Embedded-ICE status register is polled until the SYSCOMP bit
goes high, showing that the system speed access completed, or until five seconds have passed, which
is treated as a timeout error. If the access completed successfully, the CP15 test state register is re-
stored using a read-modify-write access that clears the CP15 interpret bit (bit 0). The debugger inserts a
STR r0, [r15] instruction usingarm9tdmi_put_instruction() into the core pipeline, and clocks it to
the Memory stage with threeNOPs. The content of the CP15 register that was transfered to r0 is captured
and written to the memory location specified by the*value pointer.

Listing 7.87: ./target/arm920t.c

367 int arm920t_write_cp15_interpreted(u32 opcode , u32 value , u32 address)

arm920t_write_cp15_interpreted() loads the value that should be written into register r0, and
the address at which the value should be written into r1. Specifying an address is necessary, be-
cause several CP15 operations, like flushing the instruction cache, depend on the address value. Us-
ing arm9tdmi_put_instruction(), two LDR instructions that load registers r0 and r1, are put into the
processor pipeline, and clocked into the Memory stage, wherevalue and address are written to the
registers. The CP15 interpret bit (bit 0) of the CP15 test state register is set using a read-modify-
write access similar toarm920t_read_cp15_interpreted(), the CP15 scan chain is selected, and the
current JTAG instruction is set to INTEST. A data register scan command identical to the one from
arm920t_read_cp15_interpreted() is built and put into the JTAG command queue. A system speed
STR r0, [r1] is executed, and after the core completed the instruction (SYSCOMP high), the CP15
test state register is restored.
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Listing 7.88: ./target/arm920t.c
468 void arm920t_disable_mmu_caches(int disable_mmu , int disable_caches)

To disable the MMU or the Caches,arm920t_disable_mmu_cache() callsarm920t_read_cp15_physical()
to read the current value of the CP15 control register, clears the MMU enable bit (ifdisable_mmu is set)
and the ICache and DCache enable bits (ifdisable_caches is set), and writes the modified value back to
the control register.

arm920_restore_mmu_caches() restores the CP15 control register using a call to
arm920t_write_cp15_physical() with the value stored inarm920t_saved_cp15_control_reg.

Listing 7.89: ./target/arm920t.c
493 int arm920t_register_commands(struct cli_def *cli)

arm920t_register_commands() registers commands fromarm9cache.c, armv4mmu.c, and its own
commands, that give a user access to the CP15 registers using physical accesses (CP15), and interpreted
accesses (CP15i). After these have been registered,arm9tdmi_register_commands() is called to reg-
ister commands that apply to all ARM9 cores, which in turn callsarm7_9_register_commands() for
commands that are available on all ARM7 and ARM9 cores.

Listing 7.90: ./target/arm920t.c
515 int arm920t_init(struct cli_def *cli)

arm920t_init() assigns the arm920t implementations of thearm7_9_debug_t andarmv4mmu_debug_t
interfaces to the globalarm7_9_debug andarmv4mmu_debug pointers, and callsarm9tdmi_init() to initial-
ize the common ARM9 code.arm920t_quit() doesn’t execute any code itself, but callsarm9tdmi_quit()

to give underlying code a chance to quit.

Listing 7.91: ./target/arm920t.c
538 int arm920t_minimum_context(void )

arm920t_minimum_context() has to save the additional attributes that define the ARM920t’s exe-
cution context.arm9tdmi_minimum_context() is called to ensure that all registers have been saved be-
fore they’re used otherwise. The CP15 control register is read using a physical access, and saved to
arm920t_saved_cp15_control_reg. If arm920t_caches_identified isn’t already set, the CP15 cache
type register is read using a call toarm920t_read_cp15_physical(). arm9_identify_caches() is in-
voked with the value of the cache type register, and thearm920t_caches_identified flag is set to 1.
The state of the MMU and the caches is saved inarm920t_mmu_enabled, arm920t_dcache_enabled, and
arm920t_icache_enabled by examining the bits fromarm920t_saved_cp15_control_reg. The instruc-
tion and data fault status and address register are read using calls toarm920t_read_cp15_interpreted(),
and linefills on the instruction and data cache are disabled by setting thedisable DCache linefilland
disable ICache linefillbits using a read-modify-write access to the CP15 test state register.

Listing 7.92: ./target/arm920t.c
583 int arm920t_restore_context(void )

arm920t_restore_context() restores the content of the instruction and data fault status and address
registers (IFSR, IFAR, DFSR, DFAR) using calls toarm920t_write_cp15_interpreted() with the values
stored when the core entered debug state (arm920t_saved_xfxr). The CP15 test state register is restored
using a read-modify-write access that clears thedisable DCache linefillsanddisable ICache linefillsbits.
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Finally, arm9tdmi_restore_context() is called to prepare the core for a resume or single-step operation.

Because linefills are disabled for the data and instruction caches,arm920t_read_memory() doesn’t
have to take any extra measures when reading memory, and can rely onarm9tdmi_read_memory() for
this purpose. If an address being accessed is contained in the data cache, the request is served from the
cache, otherwise main memory is read and the cache isn’t updated.

Listing 7.93: ./target/arm920t.c
614 int arm920t_write_memory(u32 address , u32 size , u32 count , u8 *buffer)

Because of its separate caches and the support for write-back (only the cache is updated on a hit,
and modified cache lines are marked as dirty) memory regions, the ARM920t has to ensure consistency
between the data cache, the main memory, and the instruction cache (see §4).arm920t_write_memory()

callsarm9tdmi_write_memory() to write all data, without taking caches into account. The memory writes
most likely to cause coherency problems are writes that modify a single item of two or four bytes, used
to set software breakpoints in ARM and Thumb state. If the data cache is enabled during such a write
operation,arm920t_write_memory() calls armv4mmu_translate_va() to retrieve information about the
memory region affected by the write. If the cacheable and bufferable bits are set to b11, indicating a
write-back memory region,armv4mmu_write_physical() is called to update the main memory, too. If
the instruction cache is enabled, an interpreted write access to CP15 register 7 is initiated to clean an
instruction cache line selected by an address.

arm920t_get_ttb() callsarm920t_read_cp15_interpreted() to read the translation table base and
returns the captured value.

arm920t_handle_cp15_command() andarm920t_handle_cp15i_command() are simple wrappers around
the CP15 access functions.

./flash

flash.[ch]

Listing 7.94: ./flash/flash.h
27 typedef struct flash_s
28 {
29 char *name;
30 int (*info)(u32 base , struct cli_def *cli);
31 int (*erase)(u32 base , int first , int last);
32 int (*protect)(u32 base , int set , int first , int last);
33 int (*write)(u32 base , u8 *buffer , u32 offset , u32 count);
34 int (*probe)(u32 base);
35 } flash_t;

Theflash_t interface defined inflash.h has to be implemented for every supported flash chip or
chip family. Thename field is used to reference a flash driver, and is matched against the argument to a
flash configuration command. Thebase argument has to be given to every flash function, and identifies
a flash bank. This allows multiple flash banks of a similar configuration to be accessed individually.
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info() is called when the user requested information about a flash bank.erase() is used to erase the
blocks fromfirst to last. If a flash implements hardware protection,protect() is used to set or clear
the protection bits of the selected blocks, otherwise a flash may return a positive result and ignore the
call. write() should writecount bytes from the memory pointed at bybuffer to the flash starting at
offset bytes from the base of a flash bank.probe() is called to check if a flash bank that matches the
configuration is located at the addressbase.

flash.c defines theflashes array that contains pointers to all available flash drivers, the flash initial-
ization functionflash_init(), that is called after the JTAG and target subsystems have been initialized,
and several CLI handler functions that allow a user to access theflash_t interface.flash_init() checks
the flash configuration variables to ensure that the chip and bus widths are multiples of 8 and that the
flash size isn’t zero. If a flash is configured, the array offlashes is searched for a matching driver. If
a driver is found, the driver’sflash_t interface implementation is assigned to the globalflash variable
to allow other parts of the code to access the flash, otherwise an error is returned, indicating an invalid
flash configuration. The debugger may continue operation in that case, but the CLI flash commands are
not available.

The handler functions defined inflash.c are simple wrappers around the interface functions. They
parse the command arguments and call the appropriate interface functions.

intel28fxxxj3.c

Listing 7.95: ./flash/flash.c
36 flash_t intel28fxxxj3_flash =
37 {
38 .name = "intel28fxxxj3",
39 .info = intel28fxxxj3_info ,
40 .erase = intel28fxxxj3_erase ,
41 .protect = intel28fxxxj3_protect ,
42 .write = intel28fxxxj3_write ,
43 .probe = intel28fxxxj3_probe
44 };
45
46 static u32 num_blocks = 0x0;
47 static u32 block_size = 0x0;
48 #define SINGLE_BLOCK (128 * 1024)

intel28fxxxj3.c implements theflash_t interface for Intel 28FxxxJ3 flash chips [I290667].
intel28fxxxj3_flash contains thename of the flash driver ("intel28fxxxj3"), and pointers to the func-
tions required by the interface.num_blocks holds the number of blocks of one flash chip, andblock_size

contains the size of one flash block. A single 28FxxxJ3 flash block has 128 kB or 64 kW, but up to four
chips may form a single flash bank, in which case the blocks are twice or four times the size of a
SINGLE_BLOCK.

Listing 7.96: ./flash/flash.c
50 u8 intel28fxxxj3_read_status_register(u32 base)

The command set supported by StrataFlash chips features a status register, that’s accessible af-
ter writing 0x70 to any address located on the chip.intel28fxxxj3_read_status_register() uses
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Figure 7.2: Intel 28FxxxJ3 status register layout

target->write_memory() to write the command to the base of the flash bank, reads the current status
usingtarget->read_memory(), and switches the flash chip back to array mode (the default mode of op-
eration, that allows random read accesses to the device) by writing 0xff to the flash. Figure 7.2 shows
the layout of the status register.

intel28fxxxj3_quick_status() may be used when the device is already in theread status register
mode, as it’s the case after a erase or write command was sent to the flash.

If an error occured during a flash operation, the corresponding bit in the status register is set,
and remains set until the status register is cleared by writing 0x50 to an address on the flash chip.
intel28fxxxj3_clear_status_register() clears the status register by callingtarget->write_memory()
to write 0x50 to the base of the flash bank.

intel28fxxxj3_array_mode() switches the device back to array mode by writing 0xff to the base of
the flash bank.

intel28fxxxj3_info() callsintel28fxxxj3_probe() to check for the presence of a flash bank at the
given base, and displays information about its size, the number of blocks, and the starting address of
each block to the CLI.

Listing 7.97: ./flash/flash.c

115 int intel28fxxxj3_probe(u32 base)

intel28fxxxj3_probe() adjusts theblock_size, if a flash bank consists of more than one chip. It
callstarget->write_memory() to write 0x90, theRead Identifier Codecommand, to the base of the flash
bank. This allows the manufacturer code to be read from address 0x0 of the flash device, and the device
code from address 0x1. Because address bit A0 isn’t used when reading the identifier codes [I290667, p.
39], the offset to the base address has to be shifted one bit to the left, to align the address with address
bit A1. After that, the flash is switched back to array mode by writing 0xff to the base of the flash bank.
The manufacturer code has to be 0x89 (Intel), and the device code has to be 0x16, 0x17, 0x18, or 0x1d.
num_blocks is set according to the size of the flash chip that is determined by the device code.
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Listing 7.98: ./flash/flash.c
186 int intel28fxxxj3_erase(u32 base , int first , int last)

intel28fxxxj3_erase() verifies thatfirst is smaller thanlast, and that both fall into a range valid
for the flash device.intel28fxxxj3() is called to probe the supplied base address for a flash bank
that matches the configuration. Before the erase operation begins, the status register is cleared using
intel28fxxxj3_clear_status_register(). To erase a flash block, 0x20, theblock erase setupcom-
mand, has to be written to an address that falls on the block that should be erased, followed by 0xd0, the
block erase confirmcommand.intel28fxxxj3_quick_status() is then called to read the status register
until the WSMS bit (see Figure 7.2) goes high, indicating that the operation is finished. The status regis-
ter is then checked for the ECLBS bit, which, if high, indicates an error that happened during the erase
operation. If the operation completed successfully, theblock_address is adjusted, and the operation is
repeated until all requested blocks have been erased, and the flash is switched back to array mode using
intel28fxxxj3_array_mode().

Hardware protection isn’t supported yet by the intel28fxxxj3 driver, so theintel28fxxxj3_protect()

function simply returnsERROR_OK.

Because Intel StrataFlash memory may be used in 8 bit and 16 bit configurations, and flash banks
may be formed of up to 32 bits width, flash has to be written using accesses of up to 32 bits at a time.
This isn’t a problem, because flashes have all bits set to 1 when they are erased, and are written by setting
the required bits to 0. If only a part of a 32 bits wide flash bank has to be written, the remaining bytes of
the flash word are written to the value they contained before, leaving them in their previous state.

Listing 7.99: ./flash/flash.c
231 void intel28fxxxj3_add_byte(u32 *word , u8 byte)

intel28fxxxj3_add_byte() adds single bytes to a word buffer that is later written to the flash. De-
pending on thebus_width, the previous value ofword is shifted, and the newbyte is put in the right
place. If the software should be ported to big-endian systems, this code would have to be enhanced to
handle the endianess correctly.

Listing 7.100: ./flash/flash.c
255 int intel28fxxxj3_write_word(u32 base , u32 address , u32 word)

intel28fxxxj3_write_word() changes the flash to word/byte program mode by writing 0x40 to the
base of the flash bank. After that, the data with a size of the fullflash_buswidth is written, and the
status register is polled until the WSMS bit goes high, indicating that the flash is ready to accept a new
command. The status register is checked for an error by examining the PSLBS bit, which is high if an
error occured.

Listing 7.101: ./flash/flash.c
275 int intel28fxxxj3_write(u32 base , u8 *buffer , u32 offset , u32 count)

intel28fxxxj3_write() is called to write an arbitrary number of bytes without having to align the
data to the access size. The supplied base address is probed for a flash device that matches the config-
uration, and the arguments are checked for obvious errors, like writing beyond the end of the flash or a
count of zero bytes. If there’s data to be written that isn’t aligned to theflash_buswidth, a word is built,
using calls tointel28fxxxj3_add_byte(), that contains the bytes from addresses before the new data,
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the new data, and possibly bytes after the last address that should be written, if theflash_buswidth is
32 bits, and one of the middle bytes should be written. After those, data of the fullflash_buswidth

size is written, possibly followed by an incomplete word at the end. That last word is built using
intel28fxxxj3_add_byte() to add remaining bytes from thebuffer and any bytes after the last ad-
dress that should be written. At the end ofintel28fxxxj3_write(), or in case an error occured while
writing, the flash is switched back to array mode by callingintel28fxxxj3_array_mode().

./gdb

gdb.c implements the server for the GDB remote protocol.

Listing 7.102: ./gdb/gdb.c
39 static int (*regular)(struct cli_def *cli);
40
41 static int gdb_fd = 0;
42 int is_gdb_session = 0;
43
44 void gdb_regular(struct cli_def *cli , int (*callback)(struct cli_def *cli))
45 {
46 regular = callback;
47 }

A callback, that should be invoked in regular intervals, may be assigned to theregular() function
pointer usinggdb_regular(). This gives a behavior similar to the CLI implemented by libcli.gdb_fd

is a global variable local togdb.c (thereforstatic ), that allows the file descriptor of the current gdb
connection to be accessed from within several functions without having to carry it in every function’s
argument list.is_gdb_session is a globally visible flag that’s used by the GDB module to inform other
subsystems that the target is currently being controlled by a remote gdb client.

Listing 7.103: ./gdb/gdb.c
49 int get_char()

get_char() manages astatic char read_buffer[256], that is filled by reading 256 characters
from thegdb_fd when the buffer is empty. One character at a time is returned fromread_buffer to the
calling function until an attempt to fill the buffer fails, because the remote connection has been closed.

Listing 7.104: ./gdb/gdb.c
72 void put_packet(char *buffer , int len)

put_packet() is used to send packets to the gdb client using thegdb_fd. A ’$’ character is sent
to start a new packet, followed by the payload data oflen bytes length supplied inbuffer. The data
is followed by a ’#’ character and the checksum transmitted as a two hex-digit byte. The checksum is
calculated by continuously adding each byte frombuffer to anunsigned char variablemy_checksum.
This results in the sum of all the bytes inbuffer modulo 256, becausemy_checksum overflows whenever
its value grows beyond 255. The result is written to the three character arraychecksum usingsnprintf()
with a format string that prints an integer formatted as two hex digits. The resulting string is sent to the
remote gdb client. To verify that the packet was received correctly, the reply is read fromgdb_fd. If the
reply was a ’+’ character,put_packet() can be finished, otherwise the packet has to be retransmitted.

Listing 7.105: ./gdb/gdb.c
101 void cli_print_gdb(struct cli_def *cli , char *line)
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cli_print_gdb() is a call-back function for libcli that is used to route output from CLI commands
through the GDB server. The call-back function registered withcli_print_callback() is called once
for every line that should be printed, and doesn’t contain any newlines. The gdb remote serial protocol
specifies the ’O’ packet for arbitrary text strings that should be output to the user. The text has to be trans-
mitted hex-encoded, that is, every character has to be encoded using two hex digits.cli_print_gdb()

allocates a buffer twice the size of the string that should be transmitted plus four additional bytes. The
first character of the output buffer is set to ’O’ to indicate a hex-encoded ASCII data packet. The text
string is added to the buffer using a loop that prints every character as a two hex digit value. The last
three characters are ’0’, ’a’, and 0x0, "0a" for a newline, and 0x0 to terminate the string. The complete
string is sent to the client usingput_packet().

Listing 7.106: ./gdb/gdb.c
122 int get_packet(char *buffer , int *len)

get_packet() reads a packet from the gdb client, and returns it in thebuffer supplied by the calling
function withlen set to the number of valid characters. Characters from the client are requested using
get_char(), until a ’$’ character that starts a new packet or ’ˆC’, the SIGINT signal is found. Any other
characters are dropped with a warning printed to the daemon’s error stream. The packet is read until a
’#’ is encountered that finishes the packet. Every character read is used to calculatemy_checksum, similar
to put_packet(). The checksum is then read using two calls toget_char(), andstrtoul() is used to
convert the two hex digits into an unsigned integer. If the two checksums match, a ’+’ character is sent
to the client, acknowledging the packet, otherwise a ’-’ is sent to request a retransmission.

Listing 7.107: ./gdb/gdb.c
565 void gdb_loop(struct cli_def *cli , int fd)

gdb_loop() is called by the daemon when a new gdb connection has been accepted. The file de-
scriptor argumentfd is assigned togdb_fd to able to access the connection from all functions inside
gdb.c. The target is halted viatarget->halt(), because a gdb client expects the target to be stopped
when the connection is initiated. After sleeping for a second to give the target time to enter halt state, the
regular() callback is called to handle the target. Using calls topoll(), the remote connection is moni-
tored for activity. Ifpoll() returned anEINTR error, a user interrupted the system call using<ctrl><c>
to shut down the daemon, and thegdb_loop() is left, giving control back to the daemon. If thepoll()
timed out, theregular() callback is invoked to handle the target. If a non-zero return value is returned,
indicating entry into debug state, a ’S’ packet, that delivers thetarget->gdb_last_signal(), is sent to
the client to inform it about the changed state.
If the polling showed incoming data (POLLIN set), the data is requested by callingget_packet(), and the
character after the last valid one is set to 0x0 to terminate the string. The first character of the read data
determines the type of the packet received, and is used in aswitch statement to determine the action
that should be taken. The packets are handled byxxx_packet() functions defined ingdb.c. These func-
tions are wrappers that call the appropriate functions of thetarget_t interface after parsing the received
packet, see [GDB01] for a description of the various packets.
Before gdb_loop() is left, target->resume() is called to resume the target, andis_gdb_session is
cleared.
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This chapter is going to verify that the goals set for this diploma thesis have been achieved, by comparing
the implemented software with the requirements. The software in its current state supports ARM7TDMI,
ARM720t, ARM9TDMI (generic), and ARM920t cores, and allows two different JTAG hardware inter-
faces to be used. It is completely open, relying only on free and open source software, with the exception
of the library required by the ftd2xx driver. Where this is a problem, the ftdi2232 driver may be used,
that works with the GPL licensed libftdi, instead of the proprietary ftd2xx library.
The target subsystem is modularized and layered, allowing additional cores to be added while using parts
of the existing code. All required target functionality is implemented in thetarget_t interface and the
CLI commands that allow core specific functionality to be added. Debugging of cores with a MMU and
caches is supported by the generic code inarmv4mmu.[ch] andarm9caches.[ch], together with the
core specific CP15 support available for ARM720t and ARM920t cores.
The requiredjtag_t interface is defined injtag.h, and supports all requested operations, including the
queuing of large command lists to facilitate the use of JTAG interfaces that incur high latency. Support
for additional JTAG interfaces can be easily added, possibly reusing large parts of the code, in case of a
bit-bang device.
Flash writing is supported for Intel StrataFlash chips, but theflash_t interface is generic enough to sup-
port various different flash devices.
User interaction is implemented using libcli to provide a command line interface accessible via telnet,
and through the code ingdb.c, that allows a remote gdb client to connect using the gdb serial remote
protocol.
Error reporting is consistent throughout the code, printing messages of a user selectable priority to the
daemon’s console. To offer a maximum of performance, the ftd2xx driver for the USBJTAG-1 interface
has been created, giving download speeds to target memory of up to 25 kB/s.

8.1 Functional Verification

The software has been successfully tested on a Cogent CSB337 single board computer (SBC) that con-
tains an ARM920t based Atmel AT91RM9200 microcontroller, SDRAM and 8 MB Intel StrataFlash
memory (28F640J3, 64 Mbit). The debugger was connected to the target through an Amontec Chameleon
POD in its Wiggler configuration using theparport driver, as well as through an USBJTAG-1 interface
using theftdi2232c and theftd2xx driver. The u-boot bootloader running on the core has been de-
bugged using both the telnet and the gdb interface. An up-to-date Linux kernel, 2.6.12-rc1, has been used
to verify the MMU and cache support. Breakpoints have been set on code executed in a loop, ensuring
that the code was contained in the instruction cache, to test the handling of cache coherency. Random
binary data was written to the flash, read back to the debugger, and compared, showing no differences.
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The flash blocks used for testing have been successfully erased.
To test the ARM7 support, a Kurz FutureUnit SBC that contains an ARM720t based Hynix HMS30C7202
microcontroller, SDRAM and 16 MB Intel StrataFlash Memory (28F128J3, 128Mbit). Again, both a
Wiggler-compatible interface and the USBJTAG-1 interface have been used to connect to the target. The
LDBoot bootloader running on the FutureUnit works with an enabled MMU, so this has been used to
test both the basic functionality as well as the MMU and cache handling.

The tests carried out so far were not formally specified, and don’t cover every possible aspect, thus
there’s no guarantee that the code is actually correct in every way. Yet, there were no crashes of the
running target with the latest version of the code, and a stopped Linux kernel or bootloader could always
be resumed without affecting its operation.

Debug Entry

Because the ARM technical reference manuals are vague on the topic of debug entry, test code has been
written to ensure correctness of the program counter (PC) that is reported to the user. The code listing
below has been assembled, converted into a flat binary, and was transfered to the CSB337 at address
0x20000100 (start of SDRAM + 0x100) and the Kurz FutureUnit at address 0x7f000100 (start of internal
SRAM + 0x100). The core was resumed at the beginning of the code, and the behavior on a debug request
(halt command), a breakpoint, a watchpoint, and a watchpoint followed by a breakpointed instruction,
has been tested.

0x20000100 mov r0, #0x20000000
0x20000104 mov r1, 1
0x20000108 str r1, [r0]
0x2000010c mov r1, 2
0x20000110 str r1, [r0]
0x20000114 mov r1, 3
0x20000118 str r1, [r0]
0x2000011c mov r1, 4
0x20000120 str r1, [r0]
0x20000124 b 0x20000100

This code loads register r0 with the address of a free memory location (start of SDRAM or SRAM),
loads register r1 with four different values, and stores the content of r1 to the memory pointed at by r0.
When the target is stopped, the instruction that has been executed last may be determined by looking at
the PC, r1 and the current value at 0x20000000. If r1 has been changed, but the memory still contains
the previous value, themov instruction was executed, but thestr not yet. If the content of r1 and the
memory match, thestr has been executed, but the following instruction not yet. The only ambiguity is
at the end, where it’s not completely clear if the branch has already been executed. This may be solved
by looking at the PC: if it’s beyond 0x20000124, the branch definitely hasn’t been executed, as entry into
debug state never added more than 0x10 to the address of the instruction that has to be executed next.

Table 8.1 shows the test scenarios (target system and reason for debug entry), the value that was
stored by thestore multiple instructionSTM used to save core registers on debug entry, a corrected value,
by subtracting 0xc that are added bySTM instructions that store the PC, and the actual address of the
instruction that would have to be executed next, derived from the current values of the PC, r1, and the
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Table 8.1: Debug entry test results

System/Entry reason Stored bySTM Corrected (-0xc) Next instruction
ARM920t/debug request 0x2000013c 0x20000130 0x20000124
ARM920t/breakpoint 0x20000124 0x20000118 0x2000010c
ARM920t/watchpoint 0x20000118 0x2000010c 0x20000100
ARM920t/wpt. and bkpt. 0x20000124 0x20000118 0x2000010c
ARM720t/debug request 0x7f000128 0x7f00011c 0x7f000114
ARM720t/breakpoint 0x7f000134 0x7f000128 0x7f00011c
ARM720t/watchpoint 0x7f000140 0x7f000134 0x7f000128
ARM720t/wpt. and bkpt. 0x7f000124 0x20000118 0x2000010c

memory. The PC of ARM920t targets (and therefor all ARM9 targets, as these are compatible in that
aspect) always contains the address of the instruction that has to be executed next plus three addresses
(0xc bytes). On ARM720t targets, the PC contains the address of the instruction that has to be executed
next plus two addresses (0x8 bytes) if it entered debug state because of a debug request, and plus three
addresses (0xc bytes) if the reason for debug entry was a breakpoint, a watchpoint, or a watchpoint fol-
lowed by a breakpoint. Single-stepping is similar to a breakpoint, so the values for breakpoints apply to
single-step debug entry, too.

8.2 Performance Verification

The performance was measured by uploading a 128 kB file from the host PC to an ARM920t target’s
RAM using theload_binary command. Time was measured using a stopwatch, which is accurate
enough, considering that the upload took between 5 seconds using theftd2xx driver, and 25 seconds
using theparport driver.
Memory is written in chunks of 560 bytes. At the beginning of a chunk, the base address is loaded,
requiring 4 instructions to be inserted into the ARM9TDMI pipeline.
To load the data into target registers, aLDMIA instruction and twoNOPs, that move theLDMIA to the Mem-
ory stage, are put into the pipeline. Loading the registers requires 14 instructions. ASTMIA followed by
a NOP with SYSSPEED high is used to execute the system-speed access. The RESTART instruction is
selected, the JTAG state machine is moved to TAP_RTI, and the Embedded-ICE status register is read.
This is repeated ten times to write a complete chunk (560 byte / (14 registers * 4 byte/register))

In order to evaluate the performance of the JTAG interfaces, the number of low level operations had
to be calculated. Two measurements have been chosen: The number of TCK cycles required, and the
number of MPSSE command bytes sent to the FT2232C chip.

Table 8.2 shows the number of TCK cycles and FT2232C command bytes required to put an instruc-
tion into the ARM9TDMI pipeline and to read an Embedded-ICE register. The first three operations of
arm9tdmi_put_instruction() are only necessary when the debug scan chain and INTEST have to be
selected (loading the base, and everyLDMIA but the first, the number in brackets shows the TCK cycles /
command bytes for successive instructions).

Table 8.3 shows the number of TCK cycles and FT2232C command bytes necessary to write 56 bytes
to target memory. Writing a complete 560 byte chunk requires 20536 TCK cycles and 5991 FT2232C
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Table 8.2: TCK Cycles and FT2232 Command Bytes

arm9tdmi_put_instruction() arm7_9_read_ice_reg()

JTAG operation TCK Cmd bytes JTAG operation TCK Cmd bytes
IR Scan (4bit) 17 9 IR Scan (4bit) 17 9
DR Scan (5bit) 18 9 DR Scan (5bit) 18 9
IR Scan (4bit) 17 9 IR Scan (4bit) 17 9
DR Scan (67bit) 80 20 DR Scan (38bit) 51 13
Runtest 14 6 DR Scan (38bit) 51 13
Total 146 (94) 53 (26) Total 154 53

Table 8.3: Costs for writing 56 byte

Operation TCK cycles Cmd bytes
LDR r0, [r15] 146 53
NOP 94 26
NOP 94 26
NOP (base address) 94 26
Load base address 428 131

LDMIA r0, {r1-r14} 146 53
NOP 94 26
NOP 94 26
14x NOP (data) 14 x 94 14 x 26
STMIA r0!, {r1-r14} 94 26
NOP 94 26
Select RESTART 17 9
Move to Run-Test/Idle 7 3
Read Embedded-ICE status 154 53
Write 56 byte 2016 586

command bytes, and writing 128 kB takes about 4.8 million TCK cycles or 1.4 MB FT2232 command
bytes.

Parport Driver

Theparport driver works by toggling bits on the PC’s parallel port using portin andout commands.
The TCK signal has to be switched to 1 and back to 0 using 2outs for one TCK cycle, and whenever
it’s necessary to read TDO, an additionalin has to be executed. Writing 128 kB took about 25 seconds,
which equals 192,000 TCK cycles per second (128 kB / (560 Byte / 20536 TCK cycles))).
According to [Rs00], one port access should take 1µs, resulting in about 500,000 TCK cycles per sec-
ond. Because 192,000 TCK cycles per second is less than half the theoretical maximum, the reason for
the limited performance has been further investigated. To verify the information from [Rs00], a small
C/assembler program has been written (see Listing D, Appendix D) that reads and stores the value of
the time stamp counter (TSC, a 64-bit counter that’s increased on every CPU cycle), executes twoout
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instructions, and reads the time stamp counter again. The difference of the two TSC values gives the
number of cycles elapsed. This is repeated 100.000 times and an average is calculated, to smooth out
effects like the current system load and context switches. On a 750 MHz host CPU an average of 3000
cycles, or 4µs(3000 cycles / 750 cycles/µs), were required to execute twoout instructions.
In addition to the twoout instructions, onein instruction is required in about 1/4 of all TCK cycles to
read captured scan chain data. The performance is therefor obviously limited by the time required to
toggle parallel port bits.

FTD2xx Driver

The ftd2xx driver sends 586 bytes to the FTDI chip to write 56 byte, until it has to wait for the
Embedded-ICE status register to be transfered back to the system, therefor its performance is limited
by the time that passes between sending the command buffer and receiving the captured data. Writing
128 kB took about 5 seconds, equaling 25 kB/s, or 2.1 ms per 56 byte. USB 1.1 data is transfered in
frames of 1 ms length, so 2.1 ms for sending the data and reading back the results is close to the theoret-
ical maximum.



9 Further Development

Although all major goals for the software haven been accomplished, there’s room for enhancements and
improvements. The software has been released under the terms of the GNU General Public License to
allow other developers to build upon the code that has been written so far. The project is being hosted
at BerliOS (http://developer.berlios.de/projects/openocd/), a platform that aims to provide
services for developers and users of open source software.

� Endianess. The software currently supports only little-endian targets on little-endian hosts. Several
parts of the code have to be converted to support big-endian systems.

� Thumb support. If the target is in Thumb state during debug entry, the debugger is shut down. The
code identifying Thumb state is already there, but to complete Thumb support, code that handles
the switch to ARM state on debug entry and back to Thumb state before the core is resumed has
to be added and tested.

� Faster flash writing. If target RAM would be used while writing flashes, performance could be
increased by several orders of magnitude. The data would be transfered to RAM, together with a
small code fragment that programs the flash using the data contained in RAM.

� Debug communications channel. The Embedded-ICE debug communications channel allows a
debugger to talk to code running on the target. This could be used together with the GDB File-I/O
remote protocol extension to give code running on the target access to resources of the host system,
like disk and terminal I/O.

� Additional cores. Currently, only ARM7TDMI, ARM720t, and ARM920t cores are supported.
Support for more cores should be added, while using and possibly generalizing the existing parts.

� Additional JTAG devices. To further increase performance, USB 2.0 Hi-Speed interfaces or de-
vices with more sophisticated on-board logic would have to be used. If the JTAG queued command
support could be integrated in a JTAG hardware interface, performance could be increased to the
limit set by the maximum JTAG clock frequency.

� Additional user interfaces. Adding support for other remote protocols, like the ARM remote debug
interface (RDI), could increase the potential user base.
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A Utilized Free and Open Source Software

This diploma thesis has been created only using free and open source software. The following chapter is
going to list the tools utilized and what they’ve been used for.

A.1 Development Platform

A Debian 3.1 (Sarge) GNU/Linux system has been used for both developing the software and type-
setting this document. The system ran Linux kernels up to 2.6.12-mm1, compiled from the sources
available athttp://www.kernel.org. The K Desktop Environment (KDE) (http://www.kde.org),
Release 3.4.0, served as the desktop environment. KDevelop 3.2.0 (http://www.kdevelop.org), the
KDE Development Environment, an integrated development environment supporting a wide variety of
programming languages, has been used to write the source code and manage the build process.

A.2 Typesetting

This entire document was typeset using teTeX (http://www.tug.org/teTeX/), a TEX distribution for
Unix systems, consisting only of free software. Instead of one of the document classes that come with
teTeX, the Memoir class by Peter Wilson has been used. Memoir is a flexible class for typesetting general
fiction, non-fiction and mathematical works as books, reports, articles or manuscripts. Memoir is avail-
able from the Comprehensive TeX Archive Network (CTAN) athttp://www.ctan.org/tex-archive/
macros/latex/contrib/memoir/. The glossary package (http://www.ctan.org/tex-archive/
macros/latex/contrib/glossary/?action=/tex-archive/macros/latex/contrib/) was used to
create the glossary and to maintain abbreviations used in the text. All listings have been typeset with the
help of the listings package (part of teTeX).

A.3 Figures

All figures have been created using Xfig, a drawing program for the X Window System. Xfig offers built-
in support for integrating figures within TEX documents by exporting them to combined Postscript/La-
TeX and PDF/LaTeX formats. This combines TeX’s typesetting flexibility with the drawing capabilities
offered by Xfig.
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B Source Code

The printed edition of the diploma thesis includes a CD-ROM with the source code of the Open On-Chip
Debugger and the Port I/O Measurement program. Also included on the CD-ROM is the PDF and TEX
source of this document. The source code is available asopenocd-0.3.tar.gz, and in unpacked form
in theopenocd directory. The Port I/O Measurement program can be found in theport_io directory.
The thesis PDF and source code are located in thethesis directory.

The latest version of the source code can be found athttp://developer.berlios.de/projects/
openocd/, either as a source archive or via CVS:

cvs -d:pserver:anonymous@cvs.berlios.de:/cvsroot/openocd login

cvs -z3 -d:pserver:anonymous@cvs.berlios.de:/cvsroot/openocd co
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C Program Usage

C.1 Command Line Options

Table C.1 lists the options that may be given on the command line. These options take precedence over
the configuration file.

Table C.1: Command line options

Short opt Long opt Description
-h –help Print command line argument description, and exit.
-f <file> –file Use <file> as configuration file, instead of the default openocd.cfg.
-d [0-3] –debug Set debug level. If the argument is omitted set debug level to 3 (all

messages).
-i <interface> –interface Use JTAG hardware <interface>.
-c <cable> –pp_cable Use <cable> specification for the parport interface.
-p <port> –pp_port Use parallel port <port>.
-t <mode> –startup Select debugger action on startup. One of reset_run, reset_halt,

init_halt, or attach.

C.2 Configuration Commands

Table C.2: Configuration commands

Command Description
telnet_port <port> Sets the port the daemon uses to listen for incoming telnet connections.

Default is 4444.
gdb_port <port> Sets the port the daemon uses to listen for incoming gdb connections.

Default is 3333.
debuglevel <level> Selects the maximum level of log messages that should be printed. 0

shows only Error messages, 1 includes Warnings, 2 Informational mes-
sages, and three print everything including Debug messages.

interface <name> Use JTAG interface driver <name>. Currently supported drivers are
parport, ftdi2232, andftd2xx.
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jtag_speed <speed> Sets the JTAG clock frequency. The <speed> argument’s actual mean-
ing depends on the interface. The parport driver currently ignores this
setting. For ftdi2232c devices, the resulting JTAG frequency is 6MHz /
(1 + speed).

parport_port <port> Use parallel port <port>.
parport_cable <cable> Use <cable> specification for the parport interface.
target <name> Debug a target with a <name> core. Currently supported cores are

arm7tdmi, arm720t, arm9tdmi, andarm920t.
startup <mode> Select debugger action on startup. <mode> should be one of reset_run,

reset_halt, init_halt, or attach.
endianess <little|big> Selects the endianess of the target.
breakmode <hw|sw> Enable support for software breakpoints, or restrict to hardware break-

points.
flash <name> Select a flash driver. Currently only Intel Strata Flash is supported, using

theintel28fxxxj3 driver.
flash_size <size> Sets the size of one flash chip. The intel28fxxxj3 driver uses this to

ensure that the configured chip matches a found chip.
flash_chipwidth <width> Sets the width of a single flash chip. Intel 28fxxj3 chips can be used in

x8 or in x16 configuration.
flash_buswidth <width> Sets the width of the flash bus. A flash bank may consist of more than

one chip, in which case the bus is n-times the size of a single chip.

C.3 Command Line Interface

Table C.3: CLI commands

Command Description
help Show available commands
quit, logout, exit Disconnect from the telnet server (doesn’t touch target).
history Show a list of previously run commands.
debuglevel <level> Selects the maximum of log messages that should be printed.

0 shows only Error messages, 1 includes Warnings, 2 Informa-
tional messages, and three print everything including Debug
messages.

shutdown Shut the debugger debug (resumes target).
sleep <msec> Sleeps for the specified amount of milliseconds. Useful to wait

in startup scripts, for example to give a PLL time to lock.
idcode Read and print the JTAG idcode.
jtag_speed <speed> Sets the JTAG clock frequency. The <speed> argument’s ac-

tual meaning depends on the interface. The parport driver cur-
rently ignores this setting. For ftdi2232c devices, the resulting
JTAG frequency is 6 MHz / (1 + speed).

halt Request debug entry. Once the target enters debug state, status
information will be printed.
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resume [addr] Resumes the target at [address], or at the current position, if
the argument is omitted.

poll Get information about the current target state.
step [addr] Single-step the target at [address], or at the current position, if

the argument is omitted.
md[whb] <addr> [n] Display [n] memory (w)ords, (h)alf-words, or (b)ytes at

<addr>.
mw[whb] <addr> <value> Write (w)ord, (h)alf-word, or (b)yte <value> at <addr>.
reset [halt|init] Reset the target. If halt is specified, the target enters debug

state immediately after coming out of reset. If init is speci-
fied, the configuration file is used to initialize the target after
it entered debug state out of reset.

load_binary <file> <addr> Download binary <file> to target memory at <addr>.
dump_binary <file> <addr> <size> Dump <size> bytes starting at <addr> to <file>.
flash_probe <base> Probe for the flash specified in the configuration file at address

<base>.
flash_info <base> Print information about the flash located at <base>.
flash_erase <base> <first> <last> Erase blocks <first> to <last> of the flash bank located at

<base>.
flash_binary <base> <addr> <file> Write binary <file> to the flash bank located at <base>, start-

ing at <addr>.
cp15 <opcode> [value] ARM720t: Read or write a CP15 register using <opcode>. If

[value] is specified, the register is written, otherwise a read is
executed.

cp15 <num> [value] ARM920t: Read or write CP15 register <num> using a phys-
ical access. If [value] is specified, the register is written, oth-
erwise a read is executed. See the ARM920t TRM for the list
of accessible registers.

cp15i <opcode> [value] ARM920t: Read or write a CP15 register using an interpreted
access with <opcode>. If [value] is specified, the register is
written, otherwise a read is executed. See the ARM920t TRM
for the list of accessible registers.

cacheinfo ARM920t: Print information about identified caches.
virt2phys <va> Execute a simulated page table walk, and print information

about the translation found for the virtual address <va>.
md[whb]_phys <addr> [n] Display [n] memory (w)ords, (h)alf-words, or (b)ytes at phys-

ical address <addr>. The MMU is temporarily switched off.
mw[whb]_phys <addr> <value> Write (w)ord, (h)alf-word, or (b)yte <value> at physical ad-

dress <addr>. The MMU is temporarily switched off.
breakmode <hw|sw> Enable support for software breakpoints, or restrict to hard-

ware breakpoints.
reg [num|name] [value] Display/modify core registers. If no argument is given, all

registers of all modes are displayed. If a number or a name is
specified, that register is displayed. If a register is specified,
and a value is given as a second argument, that register is set
to [value].
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icereg [num] [value] Display/modify Embedded-ICE registers. If no argument is
given, all ICE registers are listed. If a number is given, that
register is read, or written, if a [value] is specified.

bp [addr] [hw] List breakpoints, or set a breakpoint at [addr]. If hw is spec-
ified, a hardware breakpoint is set, otherwise software break-
points are used.

rbp [addr] Remove breakpoint set at <addr>.
wp <addr> <mask> <r/w> Set a read, write, or access watchpoint on <addr> with the

specified <mask>.
rwp <addr> Remove watchpoint at <addr>.



D Port I/O Measurement Listing

1 #include <sys/io.h>
2 #include <stdio.h>
3
4 int main()
5 {
6 int i;
7 int sum = 0;
8 unsigned int upper , lower , upper2 , lower2;
9
10 if (ioperm (0x378 , 3, 1) != 0)
11 return -1;
12
13 for (i=0; i<100000; i++)
14 {
15 asm (
16 "rdtsc;"
17 "pushl %%edx;"
18 "pushl %%eax;"
19 "movl $0x378 , %%edx;"
20 "movl $0x0 , %%eax;"
21 "outb %%al ,%%dx;"
22 "outb %%al ,%%dx;"
23 "rdtsc;"
24 "popl %%ebx;"
25 "popl %%ecx;"
26 : "=c" (upper),
27 "=b" (lower),
28 "=a" (lower2),
29 "=d" (upper2)
30 );
31 sum += lower2 - lower;
32 }
33
34 printf("average: %f\n", sum / 100000.0);
35 }
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E GNU Free Documentation License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
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This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
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format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
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technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
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4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
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Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
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list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
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the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.



Glossary

(modified) Harvard architecture The Harvard architecture describes a memory sys-
tem where instructions and data live in separate ad-
dress spaces. Transfers from data memory to in-
struction memory are usually not possible, or only
using special transfer functions. The modified Har-
vard architecture relaxes this restriction, and de-
scribes a system where two separate memory sys-
tems for data and instructions are connected to a
unified memory containing data and instructions in
a single address space.

BCLK Bus clock. The clock by which an ARM9TDMI(-
EJS) core is driven while it’s running in FastBus
mode. In synchronous or asynchronous mode, the
core is clocked from BCLK during memory ac-
cesses that can’t be satisfied by a cache or the write
buffer.

Complex Programmable Logic Device Logic device performing programmable functions
in a circuit design. Macrocells containing the
logic functions are interconnected using a central
switching matrix (Global Routing Pool).

DCLK Debug clock. The clock by which an
ARM7/ARM9 core is driven while in halt-mode
debug state.

Embedded System A combination of computer hardware and soft-
ware, and perhaps additional mechanical or other
parts, designed to perform a dedicated function.
Contrast with general-purpose computer.
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Embedded-ICE On-chip debug circuit that is part of all current
ARM7 and ARM9 family cores. It provides on-
chip hardware debug capabilities through a JTAG
compatible Test Access Port.

Enhanced Parallel Port A parallel port standard available on many mod-
ern PC systems. Supports bi-directional commu-
nication and allows the use of DMA to accelerate
communications.

FCLK Fast clock. The clock by which an ARM9TDMI(-
EJS) core is driven while it’s running in syn-
chronous or asynchronous mode and no memory
access requiring a synchronization to BCLK is nec-
essary.

Flash memory A type of non-volatile memory segmented into
blocks that can be individually erased and re-
programmed.

In-Circuit Emulator Debug hardware that connects to a target system
instead of the original microcontroller.

Jazelle The Jazelle Java acceleration technology speeds
up processing of Java bytecode by executing most
Java instructions directly in hardware, without Em-
ulation using a virtual machine.

JTAG Joint Test Access Group, but commonly used
to describe the IEEE Standard Test Access Port
and Boundary-Scan Architecture, IEEE 1149.1
[IEEE1149].

MCLK Memory clock. The clock by which an
ARM7TDMI(-S) core is driven while it’s running.
It is the same clock used to access the memory sys-
tem.

MMU Memory management unit. Part of a processor that
translates virtual address into physical address us-
ing page tables stored in system memory. Consits
of the page table walking hardware and possibly a
translation lookaside buffer (TLB).

nTRST Test Reset is an optional asynchronous test logic
reset signal on a JTAG compatible Test Access
Port.
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Random Access Memory Memory which can be read and written without re-
strictions on the number of read and write opera-
tions or the order of successive operations.

Read Only Memory Memory with fixed content, which can be read but
not written.

Remote Debugging Interface Proprietary protocol from ARM used for remote
debugging

SBC Single board computer. A complete computer sys-
tem implemented on a single printed circuit board,
consisting of a microprocessor together with mem-
ory, storage, communication interfaces and other
peripherals.

Semihosting Semihosting allows the target being debugged to
access resources on the host PC, like disk and ter-
minal I/O. The target code has to be linked against
special libraries that use the semihosting facilities
instead of normal target systems. The data is trans-
fered through a communication channel like the
Embedded-ICE debug comms channel available on
ARM7 and ARM9 targets.

Software Interrupt A software-generated interrupt, often used to call
system functions from user space.

System On Chip A highly integrated chip, containing a microcon-
troller together with peripherals like memory in-
terfaces, Ethernet controllers, LCD controllers.

TCK The Test Clock is a serial clock used to transfer
data independent of component specific clocks on
a JTAG compatible Test Access Port.

TDI Test Data Input transmits serial data shifted from a
TAP bus master on a JTAG compatible Test Access
Port to connected components.

TDO Test Data Output transmits serial data shifted from
a connected component to the Test Access Port bus
master on a JTAG compatible TAP.

Test Access Port A general-purpose port that can give access to
many test support functions built into a component
[IEEE1149, p. 17]. Defined by the IEEE standard
1149.1. Proposed by the Joint Test Access Group
as a way to test component functionality, compo-
nent interconnections, and component interaction.
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The GNU Project Debugger A portable debugger available on many UNIX sys-
tems. Supported programming languages include
C, C++, Pascal and Objective-C. Useful for debug-
ging local applications as well as remote debug-
ging.

Thumb Thumb is a compressed 16-bit instruction set ex-
tension available on all current ARM7 and ARM9
family cores. It works with the full 32-bit length of
ARM registers, but limits access to eight general
purpose registers. The remaining registers may be
accessed using special transfer instructions, but not
with general data processing instructions.

TLB Translation lookaside buffer. Stores recently used
or explicitly stored translations between virtual ad-
dresses and physical addresses.

TMS Test Mode Select determines the transition inside
the JTAG state machine on the next rising edge of
TCK.

Transistor-Transistor Logic A circuit technology where the output is derived
from two transistor. 0V indicate a logic zero, 5V a
logic one.

Universal Serial Bus A serial bus interface used to connect peripheral
devices to a computer system. Widely adopted
standard, increasingly common in computer-
related areas such as digital home-entertainment

von-Neumann architecture A processor design for universal computers that
operates on a unified memory, where data and in-
structions live in the same address space.
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