Diploma Thesis

University of Applied Sciences Augsburg
Department of Computer Science

A framework for menu structured user interfaces on embedded gstems

Submitted by Petr Novothk, winter semester 2005/2006

Examiner: Prof. Dr. Hubert gl
Examiner: Prof. Dr. Nikolaus Klever

Diploma Thesis

University of Applied Sciences Augsburg
Department of Computer Science

| assure that the diploma thesis is my own work and has never been useed toefany auditing
purposes. All used sources, additional used information and citatiertgiated as such.

Petr Novotik

A framework for menu structured user interfaces
on embedded systems

Petr Novotik

Copyright(©2005 Petr Novotik.

Permission is granted to copy, distribute and/or modify this document undirths of the GNU
Free Documentation License, Version 1.2 or any later version publisheleblfree Software
Foundation; with no Invariant Sections, no Front-Cover Texts, andaskBover Texts. A copy
of the license is included in the appendix entitled “GNU Free Documentation ¢é¢en

Contents

Contents
List of Figures
List of Listings

1 Introduction
1.1 Originalidea

1.2 Howtoreadthisdocument e

2 Anatomy of the project
2.1 Whyanotherlibrary?
2.2 Legallssues e
2.3 Splittingup e e
2.3.1 Application e
2.3.2 Menucompiler e
2.3.3 Menudescriptionlanguage 0.
234 CMF . . e
2.3.5 Menuinterpreter
2.3.6 Simulators
2.4 Workingtogether
2.5 MenuDefinition.

3 MEXC Documentation

3.1 LICENSE e

10

CONTENTS CONTENTS
3.2 Introduction 10
3.3 Displaylayout. e 11
3.4 Surfingaround 13
3.5 Enteringapassword. 31
3.6 Editingmenulines 14

3.6.1 Navigatingwithinaline 14
3.6.2 Numberfields. 14
3.6.3 Counterfields 16
3.6.4 Timefields 16
3.6.,5 Datefields 17
3.6.6 Switchfields 17
3.6.7 Optionfields e 18
3.6.8 Stings 18
3.6.9 Trggers e e 19
3.7 Programmingwithmexc e 19
3.7.1 Whatmexcneeds 19
3.7.1.1 Displayaccessing 20
3.7.1.2 Keyboardinterface., 22
3.71.3 Sleeping 23
3.7.1.4 String utilities oo 23

3.7.2 Memoryrequirements 23
3.7.3 Compilingtheinterpreter 24
3.7.4 Writinga programo e e e e 27
3.7.41 Datatypes 28

3742 mexanit. 28
3743 mexdoop 29
3.7.4.4 mexcsetcallbackhandler 29
3.7.45 mexcenableline o oo 30
3746 mexaedraw 30
3.747 Anexample 30

3.8 Simulator 31

CONTENTS CONTENTS
3.8.1 Compilingit 32
3.8.2 Usingit 32

4 MLX Documentation 34

4.1 LICENSE 34
4.2 Background e e e e e 34
4.3 Bird'S-eYe VIEW o e e e e e 35
4.4 RequIrements 35
4.5 Introductiontamelx 35
451 Descriptionelement 36
452 Menuelement. 37
453 Line-formatelement 38
45,4 Linecomponents e 38
4541 Commonattributes 38

4542 Integer e 39

4543 Float 40

4544 StUiNg e 40

4545 Counter 41

4546 Switch 42

4547 Option 43

4548 TiMe e 43

4549 Date 44

454,10 Trigger e e e 45

4.5.4.11 Horizontal fill 45

4.6 Commandlineoptions e 46
4.7 CMF-CompactMenuFormat 48
4.7.1 Notation 48
4.7.2 Overallstructure 49
473 prolog 50
474 menu-line 50
475 line-comp e e 52

CONTENTS CONTENTS

4751 uchardd 53
4752 uchar'ddd 54
4753 ucharthh’ 54
4754 char'sdd 54
4755 char'sddd 54
4756 uint2'DDD’ 54
4757 uint2'DDDD’ 55
4758 uint2'DDDDD’ 55
4759 Unt2HHHH 55
47510 int2'SDDD’ 55
47511 int2'SDDDD’ e 56
47512 float'SILF 56
47513 float'SILF 56
47514 counter 56
4.7.5.15 focounter 57
47516 time-long. 57
4.7.5.17 time-short 58
47518 date-long 58
4.7.5.19 date-short 58
47520 switch 59
4,75.21 option e 59
47522 StUiNG o 60
47523 password 60
4.7.5.24 triggero 61
4.8 mM2mMelX.pY . . .o e e e e e 61
4.9 Writing extensions e e e 61
49.1 Extendingthelanguage. 62
4.9.2 Writingabytecodegenerator 63
49.3 Extendingtheparser 64
4.94 SUuMMAry e 65
4.10 melx.dtd 65

Vi

CONTENTS

CONTENTS

5

Implementation

5.1 The Menu Interpreter
5.1.1 Thecmf Sub-Library.

5.1.2 Handling Pascal-style Strings

5.1.3 Utility Functions
514 TheEngine
5141 GlobalData
5.1.4.2 Initialization
5.1.4.3 Opening Menu Tables

5.1.4.4 Thin Layer ovecmf
5.1.45 Getting Key Presses
5.1.4.6 Displaying Matters

5.1.4.7 Editing Line Components
5.1.48 TheMainLoop
5.2 TheMenuCompiler.

5.2.1 Byte Code Generating Layer

5.2.2 Input ProcessinglLayer
5.2.3 TheController

Conclusion

6.1 Summary of Achievements

6.2 Further Development

Utilized Software

A.1 Development environment

A.2 Typesetting and Drawings

Source code

GNU Free Documentation License

1. APPLICABILITY AND DEFINITIONS
2. VERBATIMCOPYING
3. COPYING IN QUANTITY

Vii

CONTENTS

CONTENTS

4. MODIFICATIONS
5. COMBINING DOCUMENTS
6. COLLECTIONS OF DOCUMENTS
7. AGGREGATION WITH INDEPENDENT WORKS
8. TRANSLATION
9. TERMINATION
10. FUTURE REVISIONS OF THIS LICENSE
ADDENDUM: How to use this License for your documents

References

Index

viii

List of Figures

2.1 Components of mIx/mexapplication 7
2.2 Access to values provided by a menu description L. 8

2.3 Structureofamenutable 9
3.1 A1l6x4LCDandkeyboarddesign 11
3.2 Displaylayout[8] e 11
3.3 Adisplayexample 13
3.4 Numeric valuesondirectionkeys 4 1
3.5 Input string lists and suggested layout for the numeric keyboard 18
3.6 Display arrangement for an example application 22
4.1 Commandline parametersrofx., 47
4.2 Overall structureof CMF o 9 4
4.3 Definition ofline-opts iNCMF 51
5.1 Source code dependencyneéxc. 69
5.2 Bitmask of sswitchline component 74
5.3 Inheritance oValMelxHandler = andNonValMelxHandler 88

List of Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
51
5.2
5.3
54

Creatingthelibrary 24
Compiling the library with customizationoptions 25
mtypes.h/28-32 28
mtypes.h /37 . . . 28
Skeleton of an application 31
Accessing menu variablesincallbacks L. 31
Creatingthesimulator. 32
Command line arguments of the simulator 32
Checking the byte—ordermark 0 5
Definition of cmftimet L 57
Definitonofcmfdatet 58
Accessing each bit of a switchcomponent 59
Command line optionsof m2melx 61
Definition of a checkboxelement 2 6
Extended line—format with checkbox 62
Extended idenid_map with checkbox 63
Implementation of class LcCheckbox 63
Implementation of dstartcheckbox method 64
The Melx Data Type Definition 65
Example for accessingalinecomponent 71
mexc.c / 53-57 (the display context) 5 7
mexc.c / 102-109 (cursor visibility macros) 76
Example for using cursor visiblity macros 6 7

LIST OF LISTINGS LIST OF LISTINGS

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

mexc.c / 179-181 (initializing cmf sub—library) 77
mexc.c 188-189 (initializing RAM variables) 77
mexc.c / 1099-1104 (Opening a new display context) 78
mexc.c / 1120-1125 (Restoring an old display context) 79
Possible implementation of geéyloop 79
mexc.c 620—638 (Implementation of ey loop) 80
mexc.c / 688-702 (determining whetherto blink) 81
mexc.c / 709-713 (settingdp blink)o L. 82
mexc.c / 976977 (settingupdatedelay) 82
mexc.c / 223-227 (Determining timeoutvalue) 3 8
Using ByteListEmitterclass 84
Memory optimization algorithm 85
cmf.py / 303 =304 (Generation of variable addresses) 86
handler.py / 260-264 (Using Python’s introspectiontools) 88
handler.py /274-280 e 90

Xi

Chapter 1

Introduction

Embedded systems — systems with a limited amount of resources and spetbiedrear are be-

coming more and more integrated in our lives. Examples are modern microwane or heating

systems, but also more complicated devices like mobile phones or PDAs. dileeseamples for

devices where software, running on a spartan configuration of laedvnteracts with the user
and takes control over the state of the system.

When we compare such devices, as a user we will notice, that a lot of thlerto tas over a
small display, and accept input from devices like a special keyboaadtouchscreen. We may
even have the impression that the way, in which such systems represamtndéne screen, is
similar among them. For a programmer, such a similarity in function and design pfdinadion
suggests to write libraries. Libraries can be reused in several progvithaait having to struggle
with the implementation details of the provided functionality. This, of course, ieatdpelp for
an application developer.

In the present work, we will introduce a library targeted at providingaanfework for developing
user interface applications for embedded systems. This framework, oahtédex¢concentrates
on presenting data to the user in a menu structured way, which is well kmownslystems run-
ning on mobile phones, for example. Creating programs with this library diffem program-
ming with libraries available for desktop computers, because of the targftrplaan embedded
system.

1.1 Oiriginal idea

The idea of thanlx/mexdramework was born in the late nineties by HubettgH Indeed, there
is already a realization of the framework. It can be foundh#pf//www.hhoegl.com/mel/mel.
html] and is called “MEL/MEX”. Of course, it is no accident that both projectvén similar
names. In fact, the framework introduced in this paper, is just a completéege Mr. Hogl's
work. Many things have been rethought, changed, and a few addetthecother hand, many
things have been kept the same.

1.2. HOW TO READ THIS DOCUMENT CHAPTER 1. INTRODUCTION

It could be interesting to compare both projects with each other and poiirt atiiat exactly they
differ, however, asnix/mexchas been written from scratch and is considered to be the successor
of MEL/MEX, such an analysis is not given here.

1.2 How to read this document

Unlike others, the chapters in this document are not built on top of each dtlogvever, being
new to the subject, it is best to read them in sequence. The following list giveverview of
chapters considered to be essential for a complete understandimg/ofexc

e Chapter 2 will be of interest to anybody new to the project. It serves gea@ral introduc-
tion to mix/mexc

e Chapter 3 is the official documentationrmofxg the menu library. It introduces the library’s
related programming details and shows how to mexc For programmers who want to
create an application using the library, this chapter will definitely be of interes

e Chapter 4 covers thalx byte code compiler, which is used to create the menu specification
for use withmexc Beside explaining the usage of the program, this chapter also describes
the produced byte code in full length.

e Chapter 5 gives a walk through the source codenekcandmlx. Many passages of the
chapter require an advanced knowledge of the C and Python prograrfangwgage. This
chapter is provided in the hope of giving some information about the implemeantatio
invite developers to contribute to the project.

The last chapter — chapter 6 — gives a short overview of what hasdmgeved with this work,
and provides some thoughts about how this project can be extended.

The following typographic conventions are used throughout this paper:

italic Used for the names of parts of the project and to emphasize terms.
typewriter Used for LCD examples, commands and source code.
sans serif Used for external links which are additionally enclosed with brackets.

Chapter 2

Anatomy of the project

In this chapter we will define what parts make upithig/mexgroject and how they cooperate with
each other. Being new tolx/mexmr MEL/MEX, reading this chapter is strongly recommended.

2.1 Why another library?

Currently, there are many graphical libraries for use on embeddedrsy/srticles like [1] and
[2] give a good overview of available closed source and Open Ssofagons. However, none of
them is intended for use with character based liquid crystal displays (L&©@)many of them are
too large to be used for tiny systems.

mix/mexowvas designed to be small to fit into memory modules with only a few kilobytes and to
function with both character and graphical based LCDs. As the intentlystomisplay menus
and interact with the user, it would be wasting to use a full featured gralpliticary for such a
purpose.

2.2 Legal Issues

The whole project, including this document, is released under differenslgse Intentionally, free
licenses have been used to grant distribution of this project in the sefsesoSoftware

2.3 Splitting up

As the name itself denotes, this project consists out of two parts. Actualhg #re more than
two. Let’s introduce each shortly and finally have a look at how these wartstogether.

1For more information on the philosophy of Free Software refehtp[//www.gnu.org/philosophy/].

2.3. SPLITTING UP CHAPTER 2. ANATOMY OF THE PROJECT

2.3.1 Application

The term “application” is frequently used in this document. Depending ondhtexkt it refers to
different things. Whenever we talk about an application in the sensedef ttat is to be linked
with mex¢ we refer to the code that a programmer has to writepih@ routine for example, in
order to create a program withexc

2.3.2 Menu compiler

mix aims to provide a way of describing and creating a menu hierarchy. Thehebfollowing
requirements have to be met:

e The description of a menu has to be human readable, so defining the mearatharan be
made with a usual text editor.

¢ It must be independent of a programming language to allow also hongonoggers to spec-
ify a menu.

e It has to be independent of the platform the description is stored at to praiddems with
endianness (see [3]).

e It must provide an efficient way of being parsed by a computer program.

¢ It has to be very compact, especially because it is targeted at systems lyithfew kilo-
bytes of memory.

To meet all the requirements at the same time isn’t possible, as some of theppasit®to each
other. Therefore, it has been decided to split the creation of a menu in&iéyws. A programmer,
using a text editor, defines the structure of the menu, and then transfoions thore computer
program friendly format using a special compiler liféx.

Strictly speakingmixisn’'t a compiler as those introduced in [4]. However, it behaves ances us
as such, and therefore, we will continue to refemti as a “compiler” throughout this document.

mix, explained in chapter 4 in full detail, was written entirely in Pythbttd://www.python.
org], an interpreted, object oriented, and well-documented language dedibalmany operating
systems. The decision for the language had the following backgrounds:

e Python code is interpreted, and thma$ has to be distributed in source code form. This al-
lows everyone an insight into the program, and contributes to understaartinighproving
the final application.

e “Python comes with batteries included!This means that the language ships with a large
guantity of library functions which can be immediately used by Python prograsriar-
ther, as the standard library is distributed with the Python interpreter itself eitgared

2This is a popular slogan for Python and is often accompanied by a fuohyrelike at http://www.python.org/
doc/].

CHAPTER 2. ANATOMY OF THE PROJECT 2.3. SPLITTING UP

that a program using functions from this library will run also on any othechime having
Python installed.

e Python supports programming of object oriented code in a very clearAitinugh object
orientation is available in many languages, Python brings a uniquely cleategaheno-
tation for OO code. This simplicity has a great impact on the understandingyritimty of
Python code.

2.3.3 Menu description language

The input language to thmlx compiler is callednelxthroughout this document and is a subset
of the Extensible Markup Language (XML). The exact structure imfedxdocument is described
in section 4.5 in full detail. It is no accident that XML was chosen as a baée. following
considerations led to the choice of this technology:

¢ XML has become very popular and is a well known technology. Todayamefind exam-
ples for use of XML nearly everywhere in the world of computers. Due ¢opthpularity
of XML, programmers already familiar with XML don’t have to learn a completady
language to describe a menu hierarchy.

¢ XML is an easy to understand subject, and is easy to be parsed by copqmgerms. There
are only a few rules that define a well-formed XML document. Due to its popylehere
is a considerable amount of parsers written in various programming laeguigwing
programs to move through XML documents without having to implement a lot af.cod

e XML is platform independent, and thus it greatly contributes to the portabilitst pfo-
gram'’s data.

o XML is extensible. With the usage of namespaces it is possible to freely eatdocument
without breaking the compatibility to the old format.

More information on XML can be found at the World Wide Web Consortiuhitgf://mwww.w3.
org/]) orin XML related literature like [5].

2.3.4 CMF

Surprisingly, the core component of this project is not a program or aulaptdut the definition

of a data structure. CMF, the “Compact Menu Format”, is a description ofraurhierarchy as a
variable sized data structure for use witlexc Special attention to the design of this structure has
been paid, as changes to the format have an impact omtigdgndmexc

The main factor of influence on the design of CMF, the output ohthecompiler, have been the
last three requirements given in section 2.3.2. Understanding CMF is a pigostards under-
standing thanexclibrary, therefore a detailed analysis of CMF is given in section 4.7.

5

2.3. SPLITTING UP CHAPTER 2. ANATOMY OF THE PROJECT

2.3.5 Menu interpreter

The goal of the second part oflx/mex¢is to implement a library to ease the creation of interac-
tive applications for embedded systems. The librargxc is meant to take the menu description,
display the menu, and handle all the details of interacting with the user. Thsing the de-
veloper to concentrate on the actual algorithm of the program. Themd®cwas designed and
written to meet the following requirements, which mainly have their origin in the fhat, the
target platform is limited in the amount of available memory.

The library needs to be small.

It needs to use the stack sparingly.

It must not rely on system services, such as dynamic memory allocation.

It must not write to the menu description as that could be stored in a read-onipmarea.

The library must not be dependent on the hardware of the output antddepices.

The core of the library is about the menu, thus the data structure thaibsesstre menu is of
great importance to the implementationnoéxc Therefore, requirements to the library must also
be considered by the menu data structure and the program which creates it.

To understand the implementationroéxg it is important to understand CMF, the structure of the
menu description in binary format, as outputtechlx. What CMF makes so special, is that beside
describing a menu hierarchy, it also defines memory locations whexeor a program will access
and store values associated with the menu. This information reless&tom requiring dynamic
memory allocation services, and enables an application designer to storerthaeseription on

a read-only memory module.

Another keystone ofnexcis to be independent on the hardware of the output and input devices
over which the library communicates with the user. Therefore, it has e@deat! to leave the im-
plementation of hardware dependent routines on the programmer of etmambedded system.

2.3.6 Simulators

There are programs, called “simulators”, which link agaimsixcand provide a way to test and
debug the library. The reason for the name is that they simulate a charastt bCD, thus
no real display module has to be attached to the development system. Cuthertlyare four
different simulators.

gsim is a GTK+ based program, and is the most elaborate simulator. It can loaduedestrip-
tion from a file and runs on GNU/Linux, MS Windows, and FreeBSD systeeside a
virtual keyboard it provides also a so-called “inspector” which allowsdineeloper to view
and edit the current state of a menu on the fly. This application has provenuseful for
menu developers to see and test a menu before it actually gets uploadethtg¢heystem.

6

CHAPTER 2. ANATOMY OF THE PROJECT 2.4. WORKING TOGETHER

csim is a curses based simulator that can be run within a terminal and does da gesphical
workstation. It has been tested on GNU/Linux systems only. This simulatoséitzn the
code of a simulator provided by Hubertgl for his MEL/MEX project.

dsim is a DOS based simulator, and was written to run andnestcon an Intel 8088 processor
under the MS DOS operating system. It has been successfully compiled wibpgn\Wat-
com C/C++ products. More information on these products is given in Agigel This is
actually just a proof of concept program.

psim is another simulator which was written to tesexcon an embedded system running the
Palm OS on a Motorola DragonBall VZ processor. This is also just a mbabncept
program.

2.4 Working together

Now that we know what parts make up ttméx/mexqroject, let’s look at how these work together.
Figure 2.1 shows the chain of dependency between the individual c@nfsowhen creating a
program using thenexdibrary. As the diagram showsjlx takes anelxdocument as its input and

runtime
simulator / hardware CMF

| |

application code
mIx

I !

melx

mexc

development

Figure 2.1: Components ofralx/mexapplication

outputs the binary menu description in CMF format, which in turn is used as thetmthemexc
library. mexcis dependent on some application code which provides access to thetarthahre
connected to the system. The application itself is dependent on the libragufec The big
advantage is that the application code is not dependent on the menu ti@scrip

The two big bubbles indicate when the individual parts are used. \Wiiités used purely as a
development tool, the other parts in the “runtime” bubble are located on tret sygtem.

There is a further detail about the way the components are working togéthde having stated

7

2.5. MENU DEFINITION CHAPTER 2. ANATOMY OF THE PROJECT

that the application isn’'t dependent on a menu description, actually themdeisemdency on the
values that the menu provides. As figure 2.2 shows, an application wartsdssathese values
and does so. Alsmexcitself accesses these values. However, both use a different way to get
hold of them. The latter uses the menu description, while the application codedtiylprovided

with the addresses of the variables. More information on this is provided wittxample in
section 3.7.4.7. Even another principle is shown in the diagram. The menuptiesccan be

CMF
mexc

Figure 2.2: Access to values provided by a menu description

stored in a read-only memory region (ROM) as it is accessed only in reattdlg. The values,
on the other hand, must be located in writable memory (RAM). The base of tmmeaegion

is determined by the application code. The binary menu description only hdsggsoivithin the

provided memory region.

2.5 Menu Definition

Throughout this document we use the terms “menu”, “menu table”, “menu, laref “line com-
ponent”. Let’s define what these terms address.

Wikipedia, the free encyclopedia, statesiianuis a list of commands presented to the operator
by a computer or communication system” [6]. A menu, as it is referred to in tlaardent, is

a structure holding lists of commands with relationships between each othraend tablewill
always refer to a single list of commands. Withmenu linewe are referencing a single line
displayed in a menu table. A menu line is a container for line componenlisleAomponents

the actual entity that is displayed in a menu line. There can be more componarsgisgie menu
line, and optionally they can be edited.

Figure 2.3 shows the structure of a menu table. Such a table, shortenedtwitlthe diagram,
references menu linem(), which reference line components (). Thus, a menu table itself is a
tree with a depth of 3. However, menu lines can also reference menu tablgsich case these
are referred to asubmenusFrom a general point of view, looking at the menu table level only,
the references between them — references to submenus — span aisoThisetree is the whole
menu.

CHAPTER 2. ANATOMY OF THE PROJECT

2.5. MENU DEFINITION

@

R

O¥O

T

D

O

Figure 2.3: Structure of a menu table

Chapter 3

MEXC Documentation

This chapter is a slightly modified version of the official documentationniexc First it will
explain how the library displays a menu and how the user can interact with én ithvill give
a detailed description of how line components are rendered and how theamsedit them. The
rest of the chapter concentrates on programming related issues.

3.1 License

The mexclibrary is Free Software provided under the terms of the GNU Lesser r@eRablic
License (LGPL) [7]. The fileCOPYINGthat is distributed wittmexg contains a copy of the GNU
LGPL.

3.2 Introduction

mexcis there to display menus, navigate through them, and provide a way to lat edilsgrede-
fined input elements. Developers of embedded applications don’t neaiteécsuch functionality
over and over again. Together with tivdx compiler, which generates the byte code whigbxc
will interpret, all the developer has to do, is to describe the menu and prowidem callback han-
dlers. However, the executor is not a self containing program and tleoger needs to provide
mexcwith a few things about the environment to make it work.

Typically, a user interface for an embedded system consists of a LCR anthll keyboard con-
nected to it.mexcwas written for such a configuration and assumes that the display hasta2 lea
lines. Typical LCDs have sizes of 16x2, 16x4, 20x2, and 20réxccan control such displays,
but other sizes with at least two lines and 14 columns are possible, too. \Aftbateto the key-
board,mexcexpects it to have at least 5 keys. Four of them are interpreted as dir&eiye and
one as ENTER (TAB)mexccan also interpret ten additional keys with the meaning of numbers
ranging from 0 to 9, and an eleventh POINT key. The design of suclytzoleed has been much

10

CHAPTER 3. MEXC DOCUMENTATION 3.3. DISPLAY LAYOUT

in vogue on modern mobile phones for some years. The direction keysdimglENTER, are
often implemented with a small joystick on those devices. Figure 3.1 shows adigpdy with
the expected keyboard and the additional eleven keys.

lcd: keyboard:
column 1 ... 16 e oo +
Fommmm e + [" | 12 3|
[coeeeeeiiinnns | row 1 | [| 4 56 |
[coeeeeiiiiinns [| <- enter -> | 7 8 9 |
[correriiinienns [[| | 0 .|
[coeiiiiienanns | row 4 | % | |
SRR —— + R RRER— S — +

Figure 3.1: A 16x4 LCD and keyboard design

The executor does not know anything about the hardware. It ddesmv what display or key-
board controller is attached to the system, and it doesn’t waméacwas designed to be general
purpose as much as possible. It is entirely written in C and needs to be linked wedefined
set of functions to make it display things and react to key presses. Betondhis later.

First we will explain howmexcactually displays a menu and how it navigates the user through it.
After defining how to enter passwords and edit input fields, therebydntiog each, we will look
at the library from a programmer’s point of view.

3.3 Display layout

mexcuses a fixed layout on the screen. The first line is cdilealder lineand displays various
information about the current state of the user interface. The rest bihtseis used to display the
data of the currently opened menu table.

R —— +

[TTTTTTTTTTTTNLLK| <- Header line
[Coree S| <- Menu line 1
[Ceo S| <- Menu line 2
[Ce S| <- Menu line 3

T —— +

Figure 3.2: Display layout [8]

Figure 3.2 shows how a four line display is used. Comparing the displayti@ybere have been
no changes from Mr. Bigl's original MEX. As indicated by the letters, the screen is divided into
various fields:

T This field displays the title of the currently opened menu table. It has no spleeifith, but it
gets as much columns assigned as possible. That is the width of the LCD mifamgh(

11

3.3. DISPLAY LAYOUT CHAPTER 3. MEXC DOCUMENTATION

‘NLLK fields). The title is displayed left-aligned and cut if it's too long to fit into the field
completely.

N This field holds the so-callegiavigation characteand tells the user whether the current menu
line is editable or not. Either a colon: (), when there is at least one editable component,
or an asterisk ¢’), in the case of aead-onlymenu line, is displayed.

L The L-field shows the line number of the current menu line.
K The K-field displays either a blank (* '), or a plus sigr{f, or an exclamation mark ().

e The blank is displayed when all available menu lines of the currently openad me
table are visible on the screen. On a four line display this would be the casedéna
table with only 3 or less lines.

e A plus sign says that there are more menu lines than those currently displayed
screen. They can be made visible by scrolling the menu table up or down.

e An exclamation mark indicates that there are more menu lines than those oretye, scr
but that the cursor is on the last possible line in the current menu tablee Thesether
menu lines the user needs to scroll upwards.

C By default, the first column of each menu line is reserved for the curdrts hot empty, it
indicates that the appropriate menu line is currently actimexccan be configured to use
this column for menu data and draw the current menu line with inverted colars,thie
C-field is actually optional.

S The last column of each menu line is also reserved. It displays the subnuicatar. Typically,
if there is a submenu it will show a “greater than” sigr’j. However, there can be &*
instead, which has to be interpreted as “there is a password protectadrawib

The rest, marked with dots in figure 3.2, is used for displaying menu datauBe®f the
reservation of the first and last column, the menu data has fewer spaitabbe than a
display may offer.

In the exampl& shown in figure 3.3, the title of the currently opened menu table reads tPrefe
ences’. Following the title there is an asterisk which indicates that the curremti line is not
editable. The current line is marked with the tilde characté?) {h the first column. It's the 5th
line in the menu table as noted by the number following the asterisk. On the ritite bfthere is

an exclamation mark telling us that no more menu lines follow the current line. Thisstieat
the user will have to scroll upwards to see the other menu lines.

The >'s and P’s at the end of the menu lines show that for each there is a submenu. Ghersu
from the last line is protected by a password. The user will have to entefatdmexcwill grant
access to the submenu.

The original example which was introduced by Mrddf originates from the documentation of MEX[8], it was
slightly modified here.

12

CHAPTER 3. MEXC DOCUMENTATION 3.4. SURFING AROUND

|Preferences * 5|
| Sensors... >|
| Parameter... >|
["System... P

Figure 3.3: A display example

3.4 Surfing around

Using the four direction keys of the keyboard, it is possible to move fredlyimthe menu hi-
erarchy. By pressing UP or DOWN the cursor can be moved to the psewvionext menu line
respectively. If the current menu line has a submenu indicator, preR$BigT will causemexc

to step into the submenmexcwill of course ask for the password, if any, and then open the menu
table only if the input was correct. The LEFT key brings the user backfoaisubmenu to where

he was before.

With a numerical keyboarthexccan provide a very fast way of moving through a menu. Pressing
a NUMBER key, while not editing a component, causescto jump directly to thenthmenu line

of the currently opened menu table; in this context zero has a value of t& target menu line
has a submenumexcwill immediately enter it, optionally a password may be requested. If there
is no submenu but editable components in the target fivexcwill prepare everything to let the
user change the first editable component. Pressing the POINT key, whieliting a component,
will always drop the user to the first line of the top-level menu table. Becatishe limitation

of 10 lines to be directly addressed, the menu programmer should puefrgaccessed menu
lines at the beginning of the menu table.

It should be noted thahexccan return to the top level menu table by itself if the user doesn’t press
any key for a specified humber of seconds. This number is specifiedelqyrtigrammer of the
menu and can be up to 255 seconds, which is a little bit more than 4 minutes.

3.5 Entering a password

Whenever the user is required to enter a passwoekcwill open an input field in the header line
of an appropriate length. For a five characters long passweve:..... " will be displayed in
the header line, the rest of it cleared, and the cursor, a blinking blackabeced on the first dot.
On any subsequent key press, a dot)(‘is changed into an asterisk (‘**') and the cursor shifted
by one to the right, thus indicating how many password characters hawelveen entered. For
passwords being longer than the width of the display the user can still eatpatisword, but the
cursor will stay at the right edge if it's already there.

13

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

While the cursor is in the password input field, the direction keys plus EN-
TER of the attached keyboard get the following meaning. The LEFT key
is mapped to a 1, the RIGHT key to a 2, the UP key to a 3, the DOWN
key to a 4, and the ENTER key to a 0 as shown in figure 3.4. Additionally,
the NUMBER keys from a numerical keyboard can be interpreted, toe. Th
POINT key gets not interpreted, and pressing it will insert the ‘invalidcha
acter’ into the password buffer. A programmer of a menu should consider
that passwords should consist only of digits. Otherwisexcwill never
successfully validate it.

=
NOw
N

Figure 3.4: Nu-
meric values on di-
rection keys

When all characters have been correctly entered, then immediately &ssimg the last character
the actual action happens. In the other case, when the user entexedasbaord, the header line
will flash for a second and the attempt to perform an action is aborted.

3.6 Editing menu lines

Every menu line is built up of so-calldithe componentsSome of these components can be edited
and provide input elements to a program. In this section we will look at the admigwithin a
single menu line and at each component. We will see how the various companexisplayed,
what values they can hold, and how they are edited.

3.6.1 Navigating within a line

The navigation within a menu line happens via the ENTER key. When the ¢urmemnu line
doesn’t contain editable components, the N-field in the header line is s&t, tthén pressing
the ENTER key has no effect. On the other hand, when there are editabfgoents, pressing
ENTER causes the so-callédrizontal cursor a blinking blackbox, to appear and jump to the
first editable field. Pressing ENTER again will move the cursor to the netdal#e component
and so on, until the horizotal cursor disappears.

While the cursor is visiblemexcis in the so-calleadit state In this case, the other keys beside
ENTER are specially interpreted and cannot be used to navigate throeighetiu. How these
keys are interpreted depends on the component being edited.

3.6.2 Number fields

A number field can contain a float, a signed, or an unsigned integer numbé&s. nimber is
displayed right aligned within a fixed width on a screen. A specification oatadable number
types currently supported is given in the following list.

|[dd-int.......... 42| This is an unsigned one-byte integer with a value range of 0 .. 99.
There is no sign in front of the number. The component consumes exactlgharacters
on the screen even for numbers with only one digit.

14

CHAPTER 3. MEXC DOCUMENTATION 3.6. EDITING MENU LINES

|ddd-int........ 123| This is an unsigned one-byte integer with a value range of 0 .. 255.
There is no sign in front of the number. The component consumes exaetty ¢tharacters
on the screen even for numbers with only one or two digits.

|hh-int.......... E6| This is an unsigned one-byte integer with a value range of 0 ..
255 (OxFF) displayed in hexadecimal format. There is no sign in frontehtimber. The
component consumes two characters on the screen. For values le4$ thaero is put in
front of it.

[sdd-int........ -42| This is a signed one-byte integer with a value range of -99 .. +99.
The sign is always displayed, however, this can be configured at cdiopiime. The
component consumes three characters of a menu line.

|sddd-int......-123| This is a signed one-byte integer with a value range of -128 ..
+127. The sign is always displayed, however, this can be configureahagtilation time.
The component consumes four characters of a menu line.

|DDD-int........ 567| This is an unsigned two-byte integer with a value range of 0 .. 999.
The component consumes three characters of a menu line. The sign i®wot s

|DDDD-int......5243| This is an unsigned two-byte integer with a value range of O ..
9999. The component consumes four characters of a menu line. This sigindisplayed.

|DDDDD-int....12345| This is an unsigned two-byte integer with a value range of O ..
65535. The component consumes five characters of a menu line. Ths smjrdisplayed.

|[HHHH-int......FDE9| This is an unsigned two-byte integer with a value range of O ..
65535 (OXFFFF). The value is displayed in hexadecimal format andiowesfour charac-
ters of a menu line with optional leading zeros. The sign is not shown.

|SDDD-int......-576| This is a signed two-byte integer with a value range of -999 ..
+999. The sign is always displayed, however, this can be configureahagtilation time.
The component consumes four characters of a menu line.

|SDDDD-int....-5243| This is a signed two-byte integer with a value range of -9999 ..
+9999. The sign is always displayed, however, this can be configtiehgilation time.
The component consumes five characters of a menu line.

|siif-float...+12.4| This is a IEEE 754 float with a value range of -99.9 .. +99.9. Note
that there is always only one fraction digit displayed. The sign is alwisptayed, however,
this can be configured at compilation time. The component consumes fivectdrarof a
menu line. The float value to be displayed is rounded to one fraction digitacye

|siiif-float.+123.4| This is a IEEE 754 float with a value range of -999.9 .. +999.9.
Note that there is always only one fraction digit shown. The sign is alwayisle, but this
is configurable at compilation time. The component consumes six charaicéemsemu line.
The float value to be displayed is rounded to one fraction digit accuracy.

15

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

Editing one of the above specified numbers can be done with all four dindatigs. Initially, the
horizontal cursor is placed at the first character of the number. Thidbeaa digit or the sign.
By pressing LEFT or RIGHT the horizontal cursor is shifted in the appate direction to the
previous or next character of the number. Editing a float, the cursor jorgyghe decimal point.
When the cursor is on a sign, pressing UP or DOWN toggles the sign eith€rdpto ‘-'. When
the cursor is on a digit, pressing UP or DOWN will in- or decrease the digifser Thereby,
pressing UP on & will change it to ‘0’, and pressing DOWN on &’ will change it to ‘9’.

Optionally, numbers can be edited using the NUMBER keys. Pressing skehwill input the
appropriate digit at the current cursor position and move the cursor teetktecharacter. While
editing float values, pressing the POINT key will cause the cursor immediately behind the
decimal point and set the digits in front of it to zero if the cursor actually bedsre the decimal
point.

Pressing the ENTER key causes the cursor to leave the component.

3.6.3 Counter fields

A counter field displays either a float or a signed two-byte integer. The auislbendered right-
aligned within a fixed width on the screen. The value range of a counter is litmjtélde menu
programmer who defines the range. What counters makes really diffesennormal numbers is
the way they are edited.

While editing, the horizontal cursor is placed and kept on the last chadtee displayed num-
ber. The value of the counter is increased with the UP key and decregtbethe DOWN key.

By which value the counter is altered is defined in the provided menu byte bumtementing or
decrementing outside the specified range is not possible by the usesinBreEFT, RIGHT, the
NUMBER keys or the POINT has no effect.

3.6.4 Time fields

A time component can occur in two different formats. The short formahbdseconds’. Editing
time components is done in two steps for the short format and in
three steps for the long format. Each part of a time component

|long:......19:42:03| is edited like an integer counter with special ranges. Initially

|short:.......19:42] the ‘hours’ are edited using the UP and DOWN keys. It can be
in- or decreased in the range of 0 .. 23. Pressing ENTER will
move the horizontal cursor to the ‘minutes’ . Pressing there

UP or DOWN will in- or decrease the minutes in the value range of 0 .. 59. Hongtime

component pressing ENTER again will move the cursor to the ‘secondshvaine equally edited

as the ‘minutes’. For a short time component pressing enter while editing that&sirwill stop

editing the component.

As can be seen in the example, time is displayed in ‘24H’ format. Numbers smalledthare
prefixed with a zero, so each part has exactly two digitsxcputs colon !’ between each part of

16

CHAPTER 3. MEXC DOCUMENTATION 3.6. EDITING MENU LINES

the time. Thus, a short time consumes 5 characters, while a long time needa@&etsa

3.6.5 Date fields

The date field is very similar to the time component. It consists of three partsnyeiath, and day.
Each part is an integer counter and each is edited on its
own. Initially, the horizontal cursor is placed on the year

|long:.....2005-10-17] part which can be increased by one with the UP key and de-

|short:......05-10-17] creased with the DOWN key. The value range for the year
begins with 0 and ends with 9999 for the long and 99 for the
short date type. After pressing ENTER, the cursor jumps to

the month part which can also be in- and decreased by one. A month coomtd fup to 12.

Pressing ENTER again moves the cursor to the day part which is editechtieensgy as the other

parts. The value range for a day starts with 1 and ends with 31. PresBifg, RIGHT, the

NUMBER keys or POINT while editing a date field has no effect.

A date is displayed in the "YYYY-MM-DD’ format, optionally with the year paribg shortened
to two digits. Thus, this line component takes 10 or 8 characters of a linediegeon the format.
mexcuses a dash ") to separate the parts of a date. It should be notedrtfexicitself does not
check for invalid dates, e.g. 2005-02-31. It is on the programmer tleatthss library to do so.

3.6.6 Switch fields

A switch displays a bit field of length and consumes an equal number of characters in a line. It
represents bits which can be toggled upon editing. The horizontal cursor is initially placgte

first bit. Using the UP and DOWN keys, the bit under the cursor can bdgdgg or off. Using

the LEFT and RIGHT keys, the cursor can be positioned at the previmlsext bit respectively.
Pressing one of the NUMBER keys or the POINT has no effect, exoegitnfy the help string to

be displayed. Here are two examples for switch fields:

[PORT-1: % s
IMask: 101011101101

The characters representing ttve or off state can differ from switch to switch. They are not
hardcoded irmexg¢ but are specified by the programmer of the menu and stored in the byte code
separately for each switch.

There is something special about the switch field. Whenever a key presssgnexcwill display
a help string, which is associated with the bit under the cursor, in the hiaelet his help string
will disappear after a certain number of seconds. This number is defindtelprogrammer of
the menu.

17

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

3.6.7 Option fields

An option field displays a string from a string list which is defined in the byteecdthe string
is rendered right-aligned in a width which is defined by the longest string itighePressing
the UP or DOWN key will cause the component to browse through the stringricstlisplay the
previous or next string. Thereby, the list is treated like a ring. When thedfiring is displayed,
the previous one is the last in the list. And if the last string is currently displayednext one
becomes the list’s first. Pressing LEFT, RIGHT, the NUMBER keys or PIChis no effect.

3.6.8 Strings

Beside displaying constant stringmsexcalso provides a way to let the user edit a string. It should
be noted that the length of a string cannot be altered. All the user may chemgiee characters
within the string.

Having only the small 5 key keyboard, changing a character is done ltheifog way. Pressing
UP or DOWN changes the character at the current cursor position. WWilTland RIGHT the
cursor can be shifted by one character into the appropriate directieasiRg ENTER will leave
the component and stop editing the string.

S — [R — +
0 -> ., 2"0-0@/:_ | ‘T |2 3|
1> 1 | 1 | ABC | DEF |
2 -> ABC2abc S S S— +
3 -> DEF3def | 4 |5 | ‘6|
4 -> GHl4ghi | GHI | JKL | MNO |
5 -> JKL5jkI S — S S— +
6 -> MNO6mno | 7 | 8| ‘9|
7 -> PQRS7pqgrs | PQRS | TUV | WXYZ |
8 -> TUV8tuv — ER— o +
9 -> WXYZ9wxyz | ‘0" | |
- > HI>=8 | .7 | |+

S n—— + S —— +

Figure 3.5: Input string lists and suggested layout for the numeric kegtboa

Having the additional numeric keyboard available, editing a string is much nwondoctable.
mexctries to imitate the way strings are entered on mobile phones. Each key on theimume
keyboard has an associated list of characters which can be browsadhtby repeatedly pressing
the same key in a small period of time. At the current cursor position, the $¢rimgsigned the
currently selected character. Waiting for a short while or pressing ankdy will make the cursor
jump to the next position. This way a skilled user can insert a new text in avastvith only

one finger. To help the user learning the keyboard laymetcwill display the current character
list in the header line. While repeatedly pressing a key, and thus choosimgexh character, the
displayed help string in the header line will rotate, so the currently selectgdathr is always at

18

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

the beginning.

Figure 3.5 shows what character lists are assigned to each key fromarttexinal keyboard. The
grid sketch on the right is a suggestion for a layout of the numerical leghwith possible labels.

3.6.9 Triggers

A trigger is nothing more than a “soft-button” on the screen. To activateutierbthe user needs
to press any key except ENTER. Pressing ENTER will leave this companerwill not activate
the soft-button. Triggers occur in two manners, normal and passwotdgbed. When entering
the edit state, the horizontal cursor is placed at ¥i®f ‘' P'.

|Reset System Values: [X]| <-- normal trigger
|[Reboot Whole System: [P]] <-- password protected trigger

As shown in the example, password protected triggers are displayedRis 'aActivating them
requires the user to enter a correct password before the action isdcaut. How to enter a
password is described in section 3.5.

3.7 Programming with mexc

This part of the documentation is directed to programmers who want tanagefor their own
applications. Firstly, we will take a look at what has to be done to get theyilrarking properly.
Then we will explain the compilation and configuration details. After introdutiegpublic API,
we will finally have a look at how a simple program that usesxccan be written.

3.7.1 Whatmexc needs

When usingmexg the first thing to understand is what the library needs to be provided. s it
been concepted to work with many kinds of hardware, the developer implemenprogram for
a specific system has to write a set of hardware dependent routindsmscwill use. Providing
the library with such routines, the programmer has great power at handtiongize the look and
feel of the final application. The functions can be split into four categodesplay accessing, key
press fetching, waiting and C string utilities.

micd_* mexcrequires routines that start with the prefixtcd _” and provide access to the con-
nected display. They provide functionality for writing a string at a specfigsition, clear-
ing parts of the display, controlling visiblity and position of the cursor and tettieg¢ how
many lines and columns of the display it may use.

mfpkey_get This routine providesnexcwith an inteface to the attached keyboard. The keyboard
is completely unknown to the library and can be some virtual buttons on a &reeims for

19

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

example. All the details of the hardware are hidden to the library in the implementitio
this function.

msleep In many situationsmexcneeds to wait for a little time. To be sure this is done efficiently
and accurately the library relies on the programmer to implement a sleeping noosisiely
using hardware dependent features.

str* There are two string utility functions, nametgrcpy andstrlen , which mexcuses to
deal with C style strings. The implementation of them is trivial and they are ndinaae
dependent at all, but there are optimizations that we should consider.

Of course mexcneeds to be fed with the menu byte code it should interpret, but we will look at
this later. Now let’s dive into the details of the required functions.

3.7.1.1 Display accessing

Having the source code afiexcat hand, a glance into the file calledcd.h will reveal what
display accessing routin@sexcexactly needs. Let's look at each and define what effects they are
expected to perform.

void mlcd_cu_off (void)
Calling this routine should immediatelly hide the horizontal (LCD) cursor — it isnoéte
blinking blackbox when visible. Upon entering the main loagexchides the cursor and
shows it only when the user is about to edit a component.

void mlcd_cu_on (void)
This routine should make the horizontal cursor visible again. It is the cpanrteto the
previous function.

void mlcd_cu_gotoxy (unsigned char X, unsigned char y)
While the previous functions control the visibility of the cursor, this routinetas the
cursor’s position. The andy parameters specify the column and the line the cursor should
be positioned at.

void mlcd_clrchr (unsigned char n)
This routine is expected to cleacolumns to the right starting at the current cursor position.
Actually, mexccould implement this by writingn space characters, however, a hardware
dependent implementation of this routine can be much more efficient. This ronéinp®r
may not change the current cursor positiorexcdoesn’t require a specific behaviour.

void mlcd_clrin (unsigned char n)
This routine should clear a whole line on the display. The line is indexed -byero is
assumed to be the index of the first line. As with the previous function, alsorikisnay or
may not change the current cursor position.

20

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

unsigned char get_micd_lines (void)
This routine is called upomexcs initialization and supposed to return the number of lines
the library will use. An example given below will explain this in more detalil.

unsigned char get_micd_cols (void)
This is the counterpart to the previous routine and should return the nushlsetumns
mexcwill use on the display. An example given below will explain this in more detail.

void mlcd_wrstrxy (unsigned char X, unsigned char y, char * s tr)
mexcuses this function to print zero terminated strings on the displandy specify where
on the display the string should be printed. The cursor is expected to bekeftd the writ-
ten string.

void mlcd_wrstrxymax (unsigned char x, unsigned char vy,
char *str, unsigned char n)
This function is similar to the previous one, but the passed string doestt toebe zero
terminated necessarily. It should print at mostharacters but respect a zero terminator, if
there is one. The function is expected to leave the cursor behind the wtritemn s

void mlcd_wrchrxy (unsigned char x, unsigned char vy,
unsigned char c)
This function is used bynexcto put a single character on the display at the specified posi-
tion. It is expected to leave the cursor behind the written character.

void mlcd_invertin (unsigned char n)
The “invert-line” function is actually optional and, when available, usethkeydo highlight
the currently selected menu line. All the routine is expected to do, is to redeaspdtified
line with inverted colors. When the same line is inverted twice, it should displayatty.
Inverting is meant to be temporarily only. Whenewsexcwrites to an inverted line the new
characters are expected to be displayed normally, not inverted.

Being able to use this functiomexcwon't reserve the first column for the current line in-
dicator as described in section 3.3. Thus, there is one more column for thedatn As
mentioned, this routine is optional and the programmer must decide whether tonemle
it or not. Mainly, this decision depends on the display being used and itbitiipa. The Ii-
brary needs to be compiled with tA®ONFIGENABLEINVERTLN preprocessor definition
to make it use the function.

mexcensures that all printed strings fit within the rectangle defineddty_micd _lines and

get _mlcd _cols . This rectangle can be smaller than the actual screen. Due to the factehat th
cursor positioning happens completely viathied * functions, the application programmer has
the possibility to position the display rectangle occupiedr@kcanywhere on the screen.

Of course the library can occupy the whole screen, but let’s discudsitbeiing more compli-
cated scenario. Let’s say we have a 40x20 display, but we martto use only a 20x5 area in
the right corner at the bottom as shown in figure 3.6. To nmakrcaddress the proper screen area
all we need to do, is to provide a suitable implementation ofthesl_* functions.

21

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

get _micd _lines andget _mlcd _cols will simply return the constants 5 and 20 respectively.
The other routines, which position the cursor, need to add a constaet tifthe passed coordi-
nates before moving the cursor. In our scenario they will simply add 15doyeargument and
20 to eachx argument.

There is one more thing that should be pointed at. As mentioned, the outpinesare assumed
to leave the cursor behind the written character or string. Whexcwrites a string which ends
exactly on the last column of the screen area assigned to the library, thieeegisestion “What to
do with the cursor?”. In this situatiomexcdoesn’t require any specific behaviour and it is on the
implementation of thenlcd_* routines to put the cursor somewhere.

3.7.1.2 Keyboard interface

To get access to the keyboamexcuses only one function. This routine is declared in the file
mfpkey.h as follows.

unsigned char mfpkey get (void);

The advantage of using this routine is tina¢xcitself has no idea about the keyboard hardware.

It could be even a small joystick attached to the system. This routine is reSigoiasfetch a key
press and supplmexowith a constant defined in the same header file as the function’s declaration.
The important thing to note here is, thafpkey _get is called by the library whenever it needs

a key press to interpret, but there is no way into the other direction. Theaard®t send any

key press event to the library. Fortunatatyexccalls this function quite often. So with a small
keyboard buffer no key press should get lost.

mfpkey _get is expected not to block the library by waiting for a key press. If there tking

to servemexcwith, it should immediatelly return witMFPKEYNONEThe library will idle for a
short while and try againmexcmay perform a specific action upon idling for a defined interval,
therefore it is important not to block it.

The header file defines quite a few constants. These are understooexibgnd have to be re-
turned bymfpkey _get . The first six defintions are required to let the user interact with the menu.

40

+ +

| screen |

I |

I I
20 | 20 I

| R +

| 5| mexc |

Figure 3.6: Display arrangement for an example application

22

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

ServingMFPKEYNUMPAD definitions is optional. They allow the user to navigate through a
menu more quickly and edit a component with more comfort, but they are nessary. When the
user isn’t editing a component and the library getshtiePKEYQUIT_MEXCLOOPdefinition, it

will jump out of its main loop exc_loop) and return to the caller.

3.7.1.3 Sleeping

Beside the already discussed routines one more needs to be linked with &ing [Hris function
will allow mexcto put itself into sleep mode for a specified number of milliseconds.

void msleep (unsigned short msec);

A simple implementation would just loop until the time is over. On systems which alreagidp
a task sleeping service the code could call such a system function. A bl&veore complicated
code could perform some background task whikxds idling. It could for example look whether
a key press occured and put it into a keyboard buffer queue.

3.7.1.4 String utilities

Further onmexauses the two routinestrcpy andstrlen which are notincluded in the library.
These are often included in the development environment libraries oiresleded as built-ins by
the compiler.

For examplegcc , when not passed theno-builtin option, replaces calls tstrlen on
constant strings with the actual length of the strings at compilation time. Thiks@san opti-
mazation of speed and code size. If this function is used only in conjuncttbrcenstant strings,
this case is true fomexg then there will be no call tetrlen at runtime and the function’s code
needs not to be linked to the library.

However, if the development environment doesn't bring the two functmesneeds to implement
and link them to the library.

3.7.2 Memory requirements

Using thesize program, we can examine the size of thexdibrary. However, this size is greatly
dependent on the utilized compiler, the optimization options of it and the usespfquessor
definitions being discussed in section 3.7.3. Using the GNU C compiler, the fsmexxfor a
32-bit Intel platform should vary between 10RBnd 20KE with assert s disabled.

2The exact compilation command to produce the result was:

gcc -Os -fomit-frame-pointer -DHAVE _STRINGH -DCONFIGDISABLE_FLOAT -c *.c
3The exact compilation command to produce the result was:

gcc -DHAVE_STRING.H -DCONFIGNUMPAIXEYBOARD -c *.c

23

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

The other question is, how much statiexcneeds. The required stack size is dependent on the
target architecture, the used compiler, and its optimization options. Furthtreorequired stack
size also depends on the number of columescwill use on the screen and the depth of the menu
structure itself, too. Using the GNU debugger, tests withkcon a 32-bit Intel platform with a 20
columns display and a menu structure of depth 3 have shown, that the litwadg around 550
bytes of stack.

It also needs to be considered, that the binary menu description neasdspace, too. To quickly
find out how much memory a concrete menu consumes;hieary option of themIxcompiler
can be used. It will produce the menu as a binary file which size can lilg datermined by
system services.

3.7.3 Compiling the interpreter

mexcis known to compile smoothly with GCGand was successfully tested on Intel architectures
as well as on a Motorola DragonBall VZ processor. Using the OpenWatn+ compiler
tools’, mexcwas successfully run on the Intel 8088 processor. There are decolihings that
can be configured at compilation time and we will look at them in this section.

The providedviakefile can be used to builchexc The following listing shows how the library
can be built by hand.

"mexc% Is *.c

cmf.c mexc.c mutils.c pstring.c
“mexc% gcc -c *.c

“mexc% Is *.0

cmf.o mexc.o mutils.o pstring.o
"mexc% ar rcs libmexc.a *.0
"mexc% Is libmexc.a

libmexc.a

Listing 3.1: Creating the library

Of course, optimization options can be passeddo or the compiler of choice. For example,
using thegcc options-fomit-frame-pointer and-Os at the same time, it is known to
reduce the needed stack sizenafxcby almost a half on modern desktop computers.

There are various preprocessor definitions that configure the liptaehaviour. They don't have
any substitution value and can be defined on the command line gsiig -D option. In the
following list we will introduce each and also explain the effects.

HAVE_ASSERT_Hhe source code fanexcis studded with calls tassert to quickly find
bugs during development. The function itself is declared in the systemtidadesert.h
However, some development environments don’t provide such a hékjehus causing

“The official web page for the GCC project can be founchépf//gcc.gnu.org/].
5The official web presentation of Open Watcom can be founttigf/www.openwatcom.org/].

24

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

problems at compilation time. Therefore, wHedAVE_ASSERT k& not defined at compi-
lation time, the header file is not included by the code and all calls tagkert function
get removed on the fly. Actually, they get substituted with nothing by the pcegsor.

HAVE_STRING_Hmexcuses two functions of the standard C librasgrcpy andstrlen
They are declared through the system headestiileg.h . On some systems this file may
not be available, and therefore including this file is protected wittHA¥E_STRING_H
definition. Only if it is defined at compilation time the code will include the systendéea
However, not defining it doesn’t prohihbitexcfrom using the two string functions. In this
case, the programmer needs to provide and link themebc

CONFIG_NUMPAD_KEYBOARDP already mentioned in the introductiomexcis capable of
interpreting an additional numerical keyboard. If such a keyboardtisvailable on the
target system, the code responsible for handling those key pressbs désabled at com-
pilation time. This results in a smaller size of the library.

CONFIG_ENABLE_MLCD_INVERLSEe description ahlcd _invertin in section 3.7.1.1.

CONFIG_DISABLE_FLOATDefining this flag at compilation time will disable all code dealing
with thefloat data type. This flag comes from a test on an Intel 8088 processor. If the
target platform doesn’t support floating-point operations this flagilshbe defined. Of
course it will reduce the size of the library at the cost of not being ableabwithfloat
numbers.

To compilemexcowith support for the numerical keyboard but not for floats the followiognmand
line would be used:

"mexc% gcc -¢ -DHAVE_STRING_H -DCONFIG_NUMPAD_KEYBOARD \
-DCONFIG_DISABLE_FLOAT *.c

Listing 3.2: Compiling the library with customization options

While the definitions shown above control whether some features will bededlor excluded
from the code, the following definitions provide customization of featurelsidted in it. These

are defined in the filenconfig.h and must not be removed, but can be changed to reflect the
requirements.

MEXC_MAX_LINE_LENSs used only whemmexcis *not* compiled withgcc. The GNU C
compiler has a very nice feature called “Arrays of Variable Length” whithbles the library
to allocate such arrays on the stack. When this feature is not availabled@enust assume
a fixed length for its buffers. It is important thetEXC_MAX_LINE_LENs equal to or
greater than the value returneddpgt _mlcd _cols , otherwise buffer overflows will make
the code run incorrectly, and possibly cause endless loops.

MEXC_MAX_PWD_LHEids the same background as the previous option and is used only when
compiling *not* with gcc . It defines the length of the password buffer and must not be
smaller than the longest password in the menu definition to avoid buffer @wsrfl

25

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

MEXC_MAX_DISP_CONTEXT_DEP3Malue is important not to be smaller than the maxi-
mum depth of the menu hierarchy. When entering a submeraxcstores the current
display context in a table and increases the current context level. Véhaming from the
submenu, the library restores the last display context and decreasegahd he value of
MEXC_MAX_DISP_CONTEXT_DEPgides the number of possible entries in the context
table. One entry stores three pointers, so on a 32-bit platform an enttypkeélup 12 bytes.

If this value is too smallmexcwill display the error message “err. menu too deep” and
refuse to enter the submenu when the user reaches the table space limit.

MEXC_LC PASSWORD_STRINSines the string to be displayed as a password protected trig-
ger line component. The length of the string should be non-evenexstries to position
the horizontal cursor upon activating the component into the mid of the degplapel.

MEXC_LC_TRIGGER_STRINGas the same meaning as the previous item with the exception
that it is displayed for normal triggers — triggers that are not passwortdgied.

With MEXC_FORCE_SIGN_ON_SIGNED_NUMBIBRiI&ag defined as non-zenmexcwill al-
ways display a sign on signed numbers. Thus a posivite signed numbecéegded with a
plus #). This behaviour can be turned off by specifying a zero.

MEXC_FIRST_PRINTABLE_CHARNAMEXC_LAST_PRINTABLE_CHA¢efine an interval
in the character code table. Characters in this interval, including both esmife entered
when editing a string with the UP and DOWN keys.

MEXC_BLINK_INTERVALdefines the number of seconds after which a blinkable component
should be erased on the screen and after the same interval redrawntlgs, letting the
component visually blink.

MEXC_ASK PWD_PROMP1he string thatmexcwill display as a prompt in front of the pass-
word input field. See section 3.5.

MEXC_FLASH_DELAYs the number in milliseconds a flash will last. Sometimes the user
presses a key which is not suitable in the current situatroexcwarns the user about it
with a short flash in the header line.

MEXC_GET_KEY_DELAMWs described in section 3.7.1.thexccalls mfpkey _get to fetch
a key press. However, when there is nothikt;PKEYNONEgets returned anchexcwill
sleep forMEXCGET.KEY_.DELAY milliseconds before trying to fetch again. The smaller
the value of the definition the quickerexcwill response to key presses. The current imple-
mentation ofmexcrestricts the value not to be smaller than 4.

MEXC_SHOW_ERRMSG_DElsfnother interval in milliseconds. It defines how long an error
message will be displayed.

MEXC_BLACK_ BOX_ CHARould be the character code of a black box character. It is used to
produce the flash in the header line. If no such character is availabletlagrycan be used,
too.

26

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

MEXC_CUR_LINE_INDICATOR_CHAR used only ifCONFIG_ENABLE_MLCD_INVERLN
is *not* defined. It defines the cursor character displayed in the filsihen of a menu line
as described in section 3.3.

MEXC_SUBMENU_INDICATOR_CHéélines the character to be displayed at the right border
of a menu line if there is a submenu.

MEXC_SUBMENU_PWD_INDICATOR_CHafhes the character to be displayed at the right
border of a menu line if there is a password protected submenu.

MEXC_LAST_LINE_INDICATOR_CHARIefines the character to be displayed in the K-field
as described in section 3.3 when the cursor is on the last line of a menu table.

MEXC_MORE_LINES_INDICATOR_CHA¥Rfines the character to be displayed in the K-field
as described in section 3.3 when there are more lines in the menu table thaniwigitde
screen area.

MEXC_MLINE_EDITABLE_CHARefines the character to be displayed in the N-field when the
current menu line contains editable components.

MEXC_MLINE_READ_ONLY_CHABfines the caracter to be displayed in the N-field when the
current menu line has no editable component.

MEXC_TIME_SEPARATOR_CHAsRhe character to be put between the hours, minutes, and
the seconds of a time component.

MEXC_DATE_SEPARATOR_CHARhe character to be put between the year, month, and the
day of a date component.

MEXC_FILLER_CHARs the character to be put where something is missing. It should be the
blank character to interact smoothly with thdcd _clrchr function.

MEXC _PASSWORD_CHi&fRnes the character that should be echoed when entering a password

Creating different applications for different platforms will probablyuig to configure the library
for each platform and application. Because of this and the fact that ihepaite a lot to be
configured there is no complete building and installation system.

3.7.4 Writing a program

From a programmer’s point of view, usimgexcis quite simple. However, there are several steps
that need to be done.

e First of all themexcinterpreter needs to be compiled and possibly customized. This is
discussed in section 3.7.3.

27

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

e As mexcis expected to be linked with a predefined set of functions, the secondsgiep
create these routines.

e Next, the binary menu image whighexcwill interpret is needed. For this step thax
compiler has been written.

e Finally, everything is prepared to write a complete program.
We will now give an overview of thenexcAPI and look at an example a little bit later.

3.7.4.1 Datatypes

The APl is exported through the header fitexc.h which includes the declaration of four public
functions. The used data types are definehippes.h . Here are the appropriate excerpts:

28 |typedef unsigned char uchar;

typedef char schar;
30 |typedef unsigned short uint2;
typedef short sint2;

32 |typedef unsigned char * addr_t;

Listing 3.3: mtypes.h / 28-32

37 |typedef void (*fcncbp) (uchar, addr_t);

Listing 3.4: mtypes.h /37

While all data types are just synonyms for those already existing in the Cdgegyicncbp
needs a short explanation. It is a pointer to a function with two parametdrsareturn value.
The first argument of the function has to be of typesigned char and the second a pointer
to anunsigned char

3.7.4.2 mexdnit

uchar mexc_init (addr_t mcode, addr_t ram, fcncbp def cb_h andler);

Initialization of the library happens with a call toexc_init . Beside initializing the library’s
globals, it will verify the passed menu byte code and intialize all menu variabRAM. With an
exception to thget _mlcd _* functions, none of the display accessing routines gets called at this
moment.

mexc_init will return zero to indicate that everything went alright. Otherwise, it will retone
of the following constants which are defineddamf.h .

CMEINIT _BADID indicates that the byte code to interpret isn’t in CMF format.

28

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHRMEXC

CMEINIT _UNSUPPORTEMERSIONindicates that the byte code version isn’t supported by
the library. CMEMAJORVERSIONand CMEMINORVERSIONdefined incmf.h show
the supported version.

CMEINIT _BADBYTE ORDERnNdicates thamexcand the byte code don't match the same en-
dianness. Often, this error comes from specifying the wrong argumehé teendian
option of themlIx compiler or not using the option at all.

The three expected argumentsiiexc_init have the following meaning:

mcode must be a pointer to the menu binary image. This parameter must it bk

ram must be the address of a writable memory area. This parameter milyldeif there are
only constant strings in the whole menu.

default _cb_handler After a line component has been edited by the usexcwill notify
the application by calling a handler function. By default, it will invoke the timt passed
as the third argument tmexc_init . This parameter may BdULL

3.7.4.3 mexdoop

void mexc_loop (void);

A call to this function will start the main loop. It will display the top-level menu tablait for
key presses, and interpret them. It is necessaryntiexic_init has already been called before.
mexc_loop will not return as long as it hasn't fetched tMFPKEYQUIT_MEXCLOOPkey
press.

3.7.4.4 mexcsetcallback handler

fcncbp mexc_set callback _handler (fcncbp * fo, fcncbp fn) ;

As already mentioned in section 3.7.4.2, the third parameterexc_init is the address of a
function to be called whenever any component has been edited. Howaleack handlers for in-
dividual components can be installed by usingxc_set _callback _handler . Its parameters
are:

fo ; the addresses of the memory block holding the address of the handlerctdlde: Usu-
ally one will pass a&CALL_* definition for the appropriate component from the header file
outputted by thenlx compiler.

fn ; the address of the function to call when the appropriate componentkashited.

29

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

Usually, calls tamexc_set _callback _handler occur after initializingmexcand before run-
ning its main loop. The installed handler is called with two arguments, the first baingnerical
value representing the type of the edited component, and the second lpingea to the com-
ponent’s current value. Definitions for each type thetxcunderstands can be found in the file
cmf.h .

The returned value is the address of the previously installed callbackehandlULL if there was
none before.

3.7.4.5 mexcenableline

void mexc_enable_mline (unsigned char *addr, uchar val);

This routine provides a convenient way of enabling and disabling dynammu Hirges. mexc
simply hides disabled menu lines. Currently, calling this routine will cause thgneter to return
to the top-level menu table and hide the appropriate line if the user is not editimgEonent.

addr specifies the address of the boolean ‘enable’ value declaretxiy the generated menu
header file. It is associated with a concrete menu line.

val is the new state of the menu line and will be stored where the first argumens pmifny
other value than zero will enable a menu line.

mexcassumes there is always at least one visible line in a displayed menu tablexarople,
entering a submenu with all menu lines disabled will crash the interpreter!

3.7.4.6 mexaedraw

void mexc_redraw (void);

Having themexc_loop started and the user currently not being editing a component, invoking
this function will simply redraw the screen area occupied by the library.

3.7.4.7 Anexample

Figure 3.5 provides a skeleton for an application usimexc At first, mexc.h must be included.

It makes the public API available. Includingenu.h, the generated menu header file, imports
the declarations af_mix_menu and__MLX_RAM_BASE_which are used upon initialization
of mexc If the initialization fails the program simply aborts. Otherwise, it starts the maip loo
which will display the top-level menu table and react upon key presses.

30

CHAPTER 3. MEXC DOCUMENTATION 3.8. SIMULATOR

#include <mexc.h>
#include "menu.h"

int main ()

{
if (mexc_init (g_mIx_menu, _ MLX_ RAM_BASE__, NULL))

return 1; /* error occured */
/* ... mexc callback installation */
mexc_loop ();

return O;

}

Listing 3.5: Skeleton of an application

Following the initialization ofmexg there is room to install custom functions which are to be
called after components were edited. Let's assume the following code shgipg inmenu.h .

#define dd_integer ((unsigned char *)(__ MLX_RAM_BASE__ + 0x00))
#define CALL_dd_integer ((fcncbp *)(__ MLX RAM BASE _+ O x04))

With the following statement betweanexc_init and mexc_loop a custom function, here
namedon _edited _cb, would be called after the user edited the integer component.

mexc_set_callback_handler (CALL_dd_integer, on_edited _ch);

The custom callback needs to be of typecbp as explained in section 3.7.4.1. In our example,
the first argument can be ignored as we connect exactly one compgotieatallback. The second
argument is a pointer to the current value of the component and optionaitisrie be casted to
the proper data type pointer. Here is a demonstration:

void on_edited_cb (unsigned char type, unsigned char * valu e)
{

assert (value == dd_integer); [* from nmenu. h */

assert (type == 0); /[* or LC TYPE UCHAR DD fromcnf.h */

printf ("current value changed to %d\n", *value);

}

Listing 3.6: Accessing menu variables in callbacks

3.8 Simulator

During the development ahex¢ a simulator was needed to test and debug the cgsien is a
GTK+-2.0 based program which implements the requimett_* , msleep , andmfpkey_get

31

3.8. SIMULATOR CHAPTER 3. MEXC DOCUMENTATION

routines. The program runs on MS Windows, various GNU/Linux distrilmstiand FreeBSD;
other operating systems have not been tested yet. It has proven thahthatar is very useful
when writing menu definitions. One can immediately see, on the developmentiplatibat the
menu will look like.

3.8.1 Compiling it

To compile the simulator, the providédakefile or Makefile.win32 should be used. Of
course, the appropriate makefile should be checked for valid paths a@FbAGSmakefile
variable.

“gsim% make

usage: make [gsim|ggsim|menulclean]
“gsim% make gsim

[...]

“gsim% Is -F gsim

gsim*

Listing 3.7: Creating the simulator

There are four targets, two of themgsim andggsim — are actually simulatorsgsim is the
character based LCD simulator, whigsim is graphics based. The latter one is an experiment
to showmexcwith the CONFIG_ENABLE_MLCD_INVERTL®onfiguration.

Under MS Windows the simulator amdexcare known to compile smoothly with tools available
by the MinGW project. The GTK+ library 2.0 or higher is required. When géitakefile also
thepkg-config program will be needed.

3.8.2 Usingit

To start the simulator, a filename containing the binary menu image must be specifibe
command line. Invokingsim without this parameter will make it return with an error.

“gsim% ./gsim
Usage: ./gsim [-z zoom | -c columns | -l lines | -i | -k] <menu>

Listing 3.8: Command line arguments of the simulator

The binary menu image to be passedfim needs to be in a binary file. Thelx compiler can
generate such a file when passed-tinary option. Let’s examine the other parameters.

-z awaits a numeric argument, the zoom factor, and causes the simulated LCHligplaged
as many times larger as specified. Default: 1.

-c awaits a numeric argument and sets the number of characters to fit into ariediaglt: 20.

32

CHAPTER 3. MEXC DOCUMENTATION 3.8. SIMULATOR

-I awaits a numeric argument and sets the number of lines on the LCD. Default: 4.

-i - will popup the ‘inspector’ window which disassembles the binary menu imagjesqmesents
it in tree view. It allows to change the current value of line components. liditells have
a red background.

-k will popup a virtual keyboard.

The simulated LCD itself is a small green window witle * columns and -l ’ lines. To navi-
gate through the displayed menu the virtual keyboard window or the diredteys can be used.
MFPKEY_RTAB mapped on ENTER of the real keyboard.

33

Chapter 4

MLX Documentation

4.1 License

mixis Free Software provided under the terms of the GNU General Publicdéq&PL) [9]. The
file COPYINGthat is distributed wittmlx, contains a copy the GNU GPL.

4.2 Background

The idea ofmix has began with the M-Language by HubefiidH In his introduction to the M-
Language he writes:

“The M-Language is a notation for describing menu-directed user intesfahich are
to be displayed on small LCD-panels (16x4 or 20x4). ML independentgrilees a)
menu hierarchy and b) the contents of each menu line. The menu line corapriits ¢
constructed by using many different building blocks, e.g. strings, intiégidields,
switches, options, soft functions keys flexible horizontal whitespaderaamy more.
ML ML was designed to fit the needs for embedded system design. A confgiler
ML written in Python generates a block of tagged binary data which is salagtng
and can easily be included into ones own embedded application.”[10]

With melxthe M-Language’s intention doesn't change in any way. In faetixand its compiler,
mlx, is just a rewrite with some improvements of Mrogl’s work. The main change is the format
of the language. While the M-Language looks a little bit like a Lisp programgekfile is an
XML document which must validate against thelx.dtd — this DTD is listed later in section
4.10. Looking closely at both languages, we will notice that there is little @iffee between them
in structure.

34

CHAPTER 4. MLX DOCUMENTATION 4.3. BIRD'S-EYE VIEW

4.3 Bird’'s-eye view
Let's look at what steps it takes to usex.

1. Firstly, we will create a description of a menu interface which is intended thdplayed on
some small LCD-panels connected to an embedded system. To define theipranchly
we can use our favorite editor.

2. Having the menu description, we will us@x to compile it into a compact binary format.
By defaultmlIx produces two files.h anda.c .

3. Now the generated C file can be compiled and linked to an interpreter andienu dis-
playing program.

4.4 Requirements

mixrequires a standard Python distribution of version 2.3 or higher. If Weddnixto validate the
source files, th@mlproc modules, which are part of thg/thon-xml 1 package, are needed.

4.5 Introduction to melx

melxis the language which thalx compiler understands, it describes a menu in its full hierarchy.
Simply spoken, the language is a predefined set of elements and attribgdedzed in XML
format. The exact structure of a validexcfile is defined by the Data Type Definition (DTD)
listed in section 4.10.

Let’s step through a minimal menu definition to show what the basic elementsdchvéhahamelx
file looks like.

1 <?xml version="1.0" encoding="US-ASCII'?>
2 <IDOCTYPE melx SYSTEM ’'melx.dtd’>

As in each XML document, the first line must always be givemcoding can of course have an-
other value. But botimIx andmexccurrently do not support multibyte characters. Hoetype
declaration in the second line is optional, but important for the validation whistrasgly rec-
ommended to help finding errors. The system identifier, that comes afteeyinkd SYSTEM
must be the path of a file holding the DTD definition. If this path is relative it isaliesl of
the directory thanelxdocument is located at. Thus, in this exampieIx.dtd and themelx
document must be in the same directory.

As stated by theloctype declaration, the top level element has tabelx . The DTD says that
amelx element must have one child element caltiedcription , at least one child element
with the namemenu, and zero or more children calléde-format in this order.

1The home page of this project is 4tip://pyxml.sourceforge.net/].

35

4.5.

INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

3 <melx>

4 <description>

5 <delay-to-top value='120'/>

6 <delay-password value="10"/>

7 <delay-help value="2'/>

8 <top-menu ref="m-top’/>

9 </description>

10 <menu id="m-top’ title="First Menu’>

1 <line ref="I-line-01'/>

12 </menu>

13 <line-format id="l-line-01'>

14 <string value="This is a string."/>

15 </line-format>

16 </melx>

The above shown code satisfies the requirements. First there contestingtion , then all
themenus, and finally all thdine-format s. Let’s look at each component in more detail and

explain their meanings.

Note:

45.1

Thed

If not otherwise mentioned the following restrictions apply.

Most elements are empty. This means that they don’t contain characterrd#tepele-
ments, and thus, can be shortly writtenadement ...» instead ok.element . > </element-.

Strings and passwords cannot be longer than 255 characters. Mutthayi@cters are cur-
rently not supported.

Values ofid attributes must be unique within the document. No oitieattribute can have
an already used identifier.

All values which are expected to be numbers must be in decimal or in hérsaleotation.
Numbers in hex format must begin witBx”.

The characters ‘&', £ and ‘>’ cannot be entered directly, but must be coded with their
predefined entities which are ‘&’, ‘<’, and ‘>’. FurthemIxdoes not parse strings
for *\x’ sequences like the C compiler. Nevertheless, a similar construct alre&sly iex
XML and is called “notation for character reference” (e.g. ‘ÿ’).

Description element

escription element consists of four child elements which must be defined in the order

shown in the example above. The following list explains their meanings.

delay

-to-top ... must be empty. It must have exactly one attribute with the neahee that
holds numbers within the range of 0 to 255. Any other content for this attribotmsidered
as an error. The intention of this information is to give the number of secafiteiswhich

36

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TQVIELX

the menu displaying program should return to the top-level menu table if thensydles.
A zero defines the infinity, in other words, the program should nevenrétuhe top-level
menu table automatically.

delay-password. .. must be empty and have exactly one attribute navakte . That attribute’s
content must be a number in the range of 0 to 255. It declares the numbecarids to
wait, while the system idles, before aborting a password request. Inwthids, when the
user is about to enter a password, but waits for more xXrgatonds, the interpreter should
abort the input.

delay-help ... has the same format as both previous elements. Its meaning is to defimbarnu
of seconds after which a displayed help string has to disappear.

top-menu ...is also an empty element with one required attribute namedwhich references
a menu table to be displayed at the top level. The valuefof must be the same as ah
value of amenu element.

45.2 Menu element

menu elements define collections of lines which are to be displayed as a menu talgds lddist
of valid attributes of anenu element.

id must be defined for each menu element and is a unique identifier so a mengaakbe
referenced.

title is an optional attribute and defaults to the empty string. It is the title of the menu taidh w
the interpreter may display somewhere on the screen.

password can be given to protect the menu table. A user should be allowed to view this men
table only if he knows the correct password.

Eachmenu element must have at least one child. There are two elements which cavitberar
mixed.

line This element simply references the definition of an advanced menu lineteThattribute
must therefore be identical with tige of aline-format element. The optionaubmenu
attribute can reference a menu table to be entered when the user tells theeteteigpdo
so.

Dynamic menu lines can be implemented through the optional attréneble-vname

It takes a valid C identifier which will be available in the generated headerriteisa
synonym for the address of an allocated byte in RAM. This byte denotethehthe menu
line is currently enabled or not. Enabled menu lines behave normal, whildetisaignu
lines should be grayed out and should not respond to user eveexs.for example, doesn’t
display disabled menu lines at all.

37

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

const-string-line This element was introduced to be a handy shortcut for:

<line ref="some-id’/>
</menu> <!-- end of a menu -->

<line-format id="some-id’>
<string value='some-string'/>
</line>

Thus, aconst-string-line does not have eef attribute, butvalue instead. The
string defined throughialue will be the only thing to be displayed in the menu line, and
it will be constant. Read about the string line component to learn more abostamt
strings. Aconst-string-line element has the same optional attribusemenu
andenable-vname with the same meanings aside element. Additionally, dlink
attribute is understood and causes the displayed string to blink.

45.3 Line-format element

The elementine-format is the description of the structure of a single menu line. A menu
line consists of at least one line component — the components are discussetbment. The
order of the components in which they appear in a line is defined by the thieleare defined in
aline-format element. There is nothing exciting about the element. All it must haveits an
attribute with a unique identifier so the line descriptor can be referenced.

4.5.4 Line components

Finally, let’s turn to the small entities calletife components There can be as much line com-
ponents in each menu line as we want, however, we have to consider thatete to fit into a
single line on the LCD. Each line component needs some space on the displaynuch space it
actually consumes, is finally determined by the interpreter or the progranhabéas the drawing
on the device. Nevertheless, we will give a length for each line compdhanthe interpreter is
encouraged to reserve. Fortunately, thexcinterpreter does respect our proposals.

45.4.1 Common attributes

There are optional attributes which are supported by almost all currentlyrmeplied line com-
ponent elements, so let’s discuss them first. If not otherwise stated lieacomponent element
has the following attributes with an appropriate meaning and default value.

blink This attribute must be either 1 or 0. Any other value is considered to be @mn kit is set
to 1, then the line component is assumed to blink with a fixed interval on the disphay
interval is defined by the interpreter and cannot be set bynilkeompiler. Default: 0.

38

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TQVIELX

edit Also this attribute can hold either 1 or 0. If set to 1, the interpreter shouhdqe@ way of
allowing the user to change the value of the line component.nfdselibrary, for example,
provides editing of all components with a 5-button keyboard. Additionallyjritexpreter
library is assumed to call a custom callback handler to notify the applicatiorcbfage
when the user finished editing the component. For some line componentsirittdonake
sense to declare them non-editable. Default: O.

update If a user changes the value of a component, then the library will updatagplayl But
what happens if a program code (e.g. a callback or a parallel thrbadpes the value?
The program code doesn’t have to know about a display at all, butidiege needs to be
reflected on it. Therefore, we can tell the library whether it should updatemponent
periodically and how often it should do so. This attribute holds a number vdgtihes the
seconds to wait before the current value of the component shouldltmwe. The number
must be between 0 and 255, both values including. A zero cancels thissffeatd in simple
words, it meansdon’t periodically update Default: O.

Note: It doesn’'t make sense to define gpdate value other than zero without specifying
the vname attribute. Withoutvname, an application won't know where a component’s
current value in RAM is and, thus, won’t be able to access and chaegeuthent value.
Themlx compiler checks for that and prints a warning.

vhame The current value of a line component is always stored somewhere in. RA#location
of the memory block is computed during compilation of thelxsource. To make these
memory blocks accessible to an application which maybe linked to an interpretaylib
and which does not know about the byte code (the addresses are thiere), mix writes
the addresses to a generated header file as ‘#dedime addressvherenameis substituted
with the value of thevname attribute andaddresswith the computed address. In addition,
mix allocates a memory block where the address of a callback handler is sinedn-
terpreter library is assumed to call this handler after the user has editedporent. The
address of the memory block where the routine’s address is stored §atxdda the header
file under the namiCALL ' + vname so an application is able to register custom callbacks.
As vnameis used in a C header file, its value must be a proper C identifierchecks for
that. Default: the empty string.

45.4.2 Integer

An integer element defines a component that displays several types of integer msunie
pending on thdype attribute, the data type, the value range, and the displaying width differ.

<integer type='dd’ value='42" edit="1"/>

type The requiredype attribute of this element determines some further details about the com-
ponent. Thebytescolumn in the following table shows the number of bytes the integer
is stored in (this is the memory block available ungdeame). The charscolumn gives

39

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

the number of characters needed to display the component. The other sahowld be
self-explanatory.

type bytes interpretation value-range chars comment
dd 1 unsigned 0..99 2
ddd 1 unsigned 0..255 3
hh 1 unsigned 0 .. OxFF 2 hex
sdd 1 signed -99 .. +99 3 sign
sddd 1 signed -128 .. +127 4 sign
DDD 2 unsigned 0..999 3
DDDD 2 unsigned 0..9999 4
DDDDD 2 unsigned 0.. 65535 5
HHHH 2 unsigned 0 .. OXFFFF 4 hex
SDDD 2 signed -999 .. +999 4 sign
SDDDD 2 signed -9999 .. +9999 5 sign

value This is the default value of the integer component. It must be in the coaagerwhich
depends on the value tfpe . This attribute is required.

blink, edit, update, vname See 4.5.4.1.

45.4.3 Float

The line component introduced with tfleat element is meant to present a number as a float.
Currently there are two types which differ only in the format they are meam thisplayed.

<float type='siif value='12.4'/>
<float type='siiif’ value="-123.4'/>

type This is an optional attribute which defaultsgiif , beside this it can also be setdiif
The type says nothing about the value itself, but about how to display its sieant to
be the sign, ‘i’ digits and ‘f’ the fraction digit. An interpreter should displag float as
specified with a dot or a comma between the last digit and the first fraction digit.

value This specifies the component’s initial value and is required. It has to bata flo

blink, edit, update, vname See 4.5.4.1.

Depending on théype attribute this component should take up 5 or 6 characters on the display.

4.5.4.4 String

The string component is probably the most frequently used compondht\&rg often it is used
to display static information that will never change during the execution obgram. Therefore,
this component is somewhat special.

40

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TQVIELX

If the component is not declared to be editable, the attribupdate andvname have no effect.
In this case, the current value of the string will never be copied to RAMisTh program which
links to an interpreter library will not be able to access the string. Only therjilwal extract the
string out of the byte code and display it.

Strings are always stored the Pascal way. This means they are nt¢entated, but their length
is stored in the first byte. The string itself begins in the second byte. Théhfaicthe length is
saved in a one-byte cell is limiting a string’s length to 255 characters.

<string value='a constant string’/>
<string value="an editable string’ edit="1" blink="1"/>

value This is the string to be displayed. If the string is editable, this is the string'sitiefue.
This attribute is required.

blink, edit, update, vname See 4.5.4.1.

The length of the string determines how much space is needed on the display.

4545 Counter

The counter component is a number on the display which, when edited edacreased or de-
creased by a defined value. Depending on the type, the counter haigied two-byte integers
or floats

<counter type='integer’ edit="1’

value="42’ min="-100" max="100" step="2'/>
<counter type='float’ edit="1

value="12.4" min="10.0" max='15.0" step='0.5"/>

type This attribute is required and determines the data type to use. It dateberor float

value This attribute is required and sets the initial value of the counter. It musttiaeebemin
andmax, including both values.

min This attribute is required and sets the lower boundary of the counter. ttbawsnaller than
max.

max This attribute is required and sets the upper boundary of the countersitoagreater than
min .

step This attribute is required and is the value by which to increase or decremasetuhter.

blink, edit, update, vname See 4.5.4.1.

41

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

How much space is needed on the LCD to display the component is determirieel &igributes
min andmax. The longest of those two sets the width of the component. For example,ghe fir
counter in the code shown above would need 4 characters as the ccamtizdke up a value of
-100.

45.4.6 Switch

A switch component is a binary field whose bits can beaeotr off. By defining *' for the
on-state and ‘.’ for theoff-state, a switch would typically be drawnag*.** onan LCD.

To define such a component, we will use vdtch element withswitch-item s as children.
The number of the children is limited to 32 but must be at least 1. sitiech is one of few
elements that is hot empty. The example given below defines the abovesdiddigdd.

<switch on-char="*" off-char="." edit="1">
<switch-item info="Budweiser’ value='1'/>
<switch-item info="Dobrovar’ value="0'/>
<switch-item info="Steiger’ value='0"/>
<switch-item info="Eger’ value="1"/>
<switch-item info="Plzen’ value="1'/>
<switch-item info="Martiner’ value='0"/>
<switch-item info="Gambrinus’ value=1"/>
<switch-item info="Smaedny Mnich’ value="1"/>

</switch>

Attributes of aswitch are ...

on-char This attribute is optional and defines the character to use farrstate. Default:*’
off-char This attribute is optional and defines the character to use fafth&tate. Default:."’

blink, edit, update, vname See 4.5.4.1.
Attributes of aswitch-item are ...

info This attribute is required and defines an help string to be displayed wheeditethe ap-
propriate bit.

value This attribute is required and defines the initial state of a bit. It can either be)(0
(off).

How much space on the LCD this component needs depends on the nurspecified bits. For
each bit it should take up one character.

42

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TQVIELX

4.5.4.7 Option

An option is a component to let the user choose one item out of a fixed listeohatives. The
code shown below, for example, defines an option to let the user cha@seeof a month.

<option edit="1" default="0-03'/>
<option-item value="Jan’ id='0-01'/>
<option-item value="Feb’ id="0-02'/>
<option-item value="Mar’ id="0-03'/>
<option-item value="Apr’ id="0-04'/>

</option>

As shown, theoption element is not empty and must contain at least @ptéon-item ele-
ment, but no more than 256ption elements have the following attributes:

default This attribute is required and is a reference to an item which should be display
default. The value must be the same as the value @ aattribute of oneoption-item
within the appropriateption

blink, edit, update, vname See 4.5.4.1.
Theoption-item has two required attributes:

value This string is to be displayed when the item is selected.

id A unigque identifier.

The length of aroption on the display is determined by the longeption-item s value.

4548 Time

The time component is there to display a time with or without seconds and may lodiRti#2
in the ‘short’ format or likel2:42:37 in the ‘long’ format. The delimiter character printed
between the single time parts is not setrblx but provided by the interpreter.

<time type='long’ hours="12" minutes="42’ seconds='37’
vname="CURRENT_TIME_ADDR’ update="1'/>

<time type='short’ hours="12" minutes='42’ seconds="0’
edit="1" vname="ALARM_ADDR’/>

Beside the time specific attributes, this example also shows the usage of the iuesiipdate
andvname. With the first time component, a program can periodically update the variatile a
address CURRENTIME _ADDR and the interpreter will update/redraw the component every

43

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

second, when it is on the screen. The second time component, for instancgerve as an input
field to let the user define an alarm.

The data type for the time value is a three or two bytes structure respeciitelyirst byte holding
the hours, the second byte holding the minutes and for the long time format théykerholding
the seconds.

The following attributes are defined for the time element:

hours This attribute is required and is the ‘hours’ component of the time. It mustrherder
between 0 and 23, including both.

minutes This attribute is required and is the ‘minutes’ component of the time. It must benaer
in the range of 0 to 59.

secondsThis attribute is required and is the ‘seconds’ component of the time. It reeshbimber
in the range of 0 to 59.

type This attribute is optional and defaults to ‘short’. It can also be set to ‘lamgl indicates
whether the time component will have seconds or not.

blink, edit, update, vname See 4.5.4.1.

The length in characters of a short time should be 5, of a long time it should be 8

45.4.9 Date

A date is similar to the time component. It could be displaye@0f-10-24 in the long format
or 05-10-24 in the short one. In the end, it depends on the interpreter. The mainediffers
that a ‘short’ date cannot hold values greater than 255 for a year, imhite long format, it can
be up to 9999. As with the time component, also for datdg,has no influence on the delimiter
character between the year, month, and day parts.

<date type='short’ year="2005' month="10" day="24'/>
<date type='long’ day='1" month="1" year="2004'/>

The following attributes of @ate element are defined:

day This attribute is required and must be a number between 1 and 31, includmgaboes.
month This attribute is required and must be a number in the range of 1 to 12.

year This attribute is required and must be a number in the range of 0 to 999%fyfppd 999
for a short date is possible, however the compiler assumes 99 is meant.

type This attribute is optional and defaults to ‘short’. Beside its default valuegritlme set to
‘long’. This attribute denotes the size of the year.

44

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TQVIELX

blink, edit, update, vname See 4.5.4.1.

The length of the displayed date component should be 10 charactersofuy &ype and 8 for a
short type.

4.5.4.10 Trigger

A trigger differs from all the components mentioned above. It actuallymbdisplay any infor-
mation at all, but is meant to be a “soft-button” which, when activated, catisiéne to perform
some action.

<string value="Reset: '/>
<trigger vname="reset_system’/>

The shown code shippet would probably be displayedRaséet: [X] ’inaline. The interpreter
is responsible for providing a way to activate the trigger, when the usetswa do so. The
following attributes of d@rigger element are defined:

vname This required attribute has the same meaning as described in 4.5.4.1 with th&axce
that only theCALL_ definition will result in the generated header file.

password With this optional attribute set, an interpreter should request for this pagdvedore
calling the installed handler routine.

blink This attribute is optional and has the same meaning as described in 4.5.4.1

It depends on the interpreter how many characters a trigger takes wpmésicinterpreter Ii-
brary displays a trigger a$X] ’, password protected triggers 8] '. Thus, it takes up three
characters.

45.4.11 Horizontal fill

An hfill element is actually a fictional component and resolves into a constant dtamr-
pose is to provide a way to put fixed or variable sized gaps between thecoilmponents. For
example, if we want to have a line with right-aligned components, we wouldrukélla

<line-format id="foo’>
<string value="temp:'/>
<hfill char="."/>
<integer type='dd’ value='20’ update="10’
vhame='cur_temperature’'/>
</line-format>

45

4.6. COMMAND LINE OPTIONS CHAPTER 4. MLX DOCUMENTATION

In the example abovemlx would compute how many characters to put between the given string
and the integer, so that the integer is aligned at the right edge of the difplayterpreter would
draw the line astemp......... 20 on a 16 characters wide LCD.

We can even specify more than olmidl element in dine-format . In this configuration,
mix tries to distribute the free (character) space to the specified gaps equally.

<line-format id="bar’>
<string value="X'/>
<hfill char="-"/>
<string value="Y'/>
<hfill char="."/>
<string value="Z'/>

</line-format>

On a 16 character wide LCD the given example would produge-a-=-Y....... z " printed

line. If we carefully count the characters, we will notice that the dasbestcone more than the
dots. This is because the 13 remaining characters, which are to be eqdsaiyuted, cannot be
divided without a remaindemlx prefers the last gap and assigns the rest of the free characters to
it.

Thehfill element understands two optional attributes.

char This attribute defines the character to fill the gaps with. Default: a blank (*)

count With thecount attribute the number of characters to be putinto a gap can be defined. The
default value, zero, causes the gap to grow as much as possible.

The width of this element is variable or fixed (\daunt attribute), but it can also be zero if there
iS no space to distribute, so it is not guaranteed that there will be a gapdretwe components.

4.6 Command line options

Before we can use thmlx compiler, we need to understand its command line options. The com-
mandpython mix.py --help at the shell prompt will print a list of options recognized by
the program. We should get a listing as show in figure 4.1.

Only long format options are supported, and two arguments are requitbd tompiler. Let's
step through the command line parameters to define their meanings.

--help This option prints a listing as shown in figure 4.1.

--version This option prints the version number of the compiler and exits the program.

--dont-validate This option causes the compiler not to validate the source file. Given this pption
the compiler will not use themlprocmodules from thepython-xml " package, but mod-
ules from the standard library that are installed with the default Python distib This

46

CHAPTER 4. MLX DOCUMENTATION 4.6. COMMAND LINE OPTIONS

"mix% python mix.py --help

usage: mix.py: [options] meme-origin <filename>

options are:
--align do align addresses
--endian={little|big} use specified byte-order (def: big)
--awidth=n address bus width in bytes (def: 2)
--mem-optimization do optimize memory layout
--no-header do not produce the header a.h file
--binary produce a.bin file instead of a.c
--output base ‘base’ as name for output filenames
--max-line-width=n num characters in one line (def: 18)
--max-title-width=n num characters for title (def: 16)
--dont-validate do not validate the source file

xmlproc required for validating

--help print this text, then exit
--version print the version, then exit

Figure 4.1: Command line parametersuk

enables the use of the compiler on machines withoutplgghbn-xml " package installed.
However, if the source file isn’'t properly structured the compiler'slteswndefined.

--max-line-width This option takes a numerical argument and tells the compiler to print warnings
about menu lines which are longer than the given number. As we learoed thehfill
element, the compiler can right-align components or stretch them from eaah athis
requires a line width to be given. By default it is?1.8

--max-title-width As with the previous option, also this one takes a numerical argument and tells
the compiler to print warnings about menu titles which are longer than the galaa. By
default it is 16.

--output This option requires an argument. By default, thkx compiler will output two files
named a.h " and ‘a.c '. With the --output option the a’ of the filenames can be
changed to a custom name.

--binary By default, the compiler will output the generated byte code as an array fitea Using
this option, the compiler will generate a binary file instead of the C file. The Yiilarwill
be appended thebin' suffix and contains the raw bytes of the binary menu image. It is
useful for applications that want to the load byte code dynamically. g8ira simulator,

2mexcuses 18 characters of a 20 character wide display for menu dataefftaéning two columns are reserved,
one for the current line indicator and the other for the submenu indicator.

3mexcuses 16 characters for the title on a 20 column display. The remaining@gslare reserved to display some
other information.

a7

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

which was written as a part of this project, can run different byte codigm®ut the need of
being recompiled.

--no-header This option suppresses the generation of the header file.

--align For each line component, with the exception of constant strings, the comitileatas
a memory block of an appropriate size somewhere abwem-origin . We can tell the
compiler to align memory blocks with a size of two bytes on even addresses andryne
blocks with a size of 3 or more bytes on addresses divisible by 4. Somevdraranay
require this.

--mem-optimization This option has only an effect if it's used together with thalign op-
tion. When optimizing, the gaps, that originates from aligning memory blockdjliget
by other memory blocks. This option can cause a considerable reductioembry con-
sumption at the cost of the fact that a single line’s components don't hdaaincreasing
addresses for their current values. In most cases this should beblempt

--awidth This option is important to be properly set and defines the width of an aldtés the
size of a pointer and can be determined with th&iZeof operator, which depends on the
compiler and the target platform the produced byte code will be used at.

--endian This option causes the compiler to output values, which are stored in moreiiean
byte (e.g. short or floats), either in little- or big-endian. It is important to keovevhich
platform the byte code will be interpreted.

meme-origin This is a required command line parameter and has to be a numerical value (must
begin with ‘0x’ for hexadecimal format) and tells the compiler to allocate memory blocks
above this address. This will often be the address of the beginning of Br\lhe target
system.

filename This is the path to thenelxsource file.

4.7 CMF - Compact Menu Format

The “Compact Menu Format” is a definition of the byte code thitproduces. Its current version
is 0.4. It is a compact binary representation of a menu hierarchy speduyfiadmelxsource. The
binary format is very similar to Mr. Bgl's PMF (Portable Menu Format) [11], however, CMF
differs to make the code more compact and efficient.

The following sections reflect many things already discussed in sectiomd ¥ill be interesting
to programmers who want to implement a CMF parsing program.

4.7.1 Notation

In the following description we will use the convention to enclose terminal sysmibobraces
< .. > . Within these braces a terminal symbol is separated by a colon followed bynbear

48

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

which denotes the size in bytes of the symbol. Witho:2> , for example, we have a terminal
symbol which takes up two bytes. Sometimes we will have brackets with an ihteraasingle
number behind a terminal definition. #00:2>[3,0] , for instance, denotes that we refer to
the bits 3, 2, 1 and 0 of the terminal symbol ‘foo’ which has a size of two bytkksther symbols,
namely those not enclosed<dn.. > braces, are non-terminal symbols. To indicate zero or more
repetitions of a symbol, it is enclosed in curly brag¢es }

Some terminal elements (e.g. strings or passwords) are noteelement:n+1> . The +1’
indicates that the element is a string, and strings are stored the Pascal @slf-irThey are not
zero terminated, but their first byte, referred to as the ‘length byte’, mwhaids the valua as an
one-byte unsigned integer, is followed hybytes holding the string’s characters. Thus a string
actually takes up+1 bytes in CMF.

4.7.2 Overall structure

byte-code ::=
prolog menu-table { menu-table }

prolog :=
<pmf-id:3>
<major-version:;1>
<minor-version:1>
<delay-to-top:1>
<delay-clr-help:1>
<delay-password:1>
<byte-order-mark:2>

menu-table ::=
<menu-title-string:n+1> (*) menu-line { (*) menu-line }

menu-line =
<ldtag:1> line-opts (*) line-comp { (*) line-comp }

line-comp =
<Ictag:1> line-comp-opts

Figure 4.2: Overall structure of CMF

The definition in figure 4.2 shows the structure of a CMF formated menuigéear A ‘(*)
in the definition is an indicator for an optional padding zero byte. Sometimds lsgtes are
necessary to make the following structures specially aligned. Currentig #ne two alignment
rules that apply to the byte code.

e A menu-line is always aligned on a non-even offset within the byte code. Padding zer
bytes are put in front of it to make the offset okkitag:1> not divisible by 2.

49

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

e Aline-comp is always aligned on an even offset within the byte code. A padding zero
byte may precede the structure to make the offsetd€eg:1> divisible by 2.

There is no indication which menu table is actually the first to be displayed. Byeotion,
the first menu table — the top-level menu table — to be displayed isyémi-table following
immediately theprolog

4.7.3 prolog

pmf-id ...is an array of 3 characters. This array is filled with ‘C’, ‘M’, and (Br in numbers
0x43, 0x4D, and 0x46) in this order. A parsing program must checthfe to ensure it has
the right binary data.

major-version ...denotes the major version number of the byte code.
minor-version ...denotes the minor version number of the byte code.

delay-to-top ...is an unsigned-byte integer and gives the number of seconds grétéeishould
wait before it is supposed to return to the top-level menu table. A valuaofrzéicates the
interpreter should never return to the top-level menu table automatically.

delay-clr-help ...is an unsigned-byte integer and gives the number of secondsvolohng a
help string should be displayed. A value of zero indicates a help strindgdshotbe cleared
automatically.

delay-password...is an unsigned-byte integer and gives the number of seconds diieh &
password query should be aborted when the user makes no input. Aofaler indicates
an interpreter should infinitely wait for the password.

byte-order-mark ... is an unsigned two-byte integer with the fixed value of OXFEFF. Horveve
accessing it via an array of bytes it can have two values: OXFFFE intcaseumber was
stored in big-endian, or OXFEFF in case it was stored in little-endian. Angapsogram
can easily determine whether it supports the proper byte-order with thevfiotjacode:

unsigned short * p = (unsigned short *)&byte code[8];
if (*p !'= OXFEFF)
/* wrong byte order determined */

Listing 4.1: Checking the byte—order mark

4.7.4 menu-line

A menu line begins with an unsigned one-byte integddt@g:1>) which decides what fields
are available from the line options. Following tliee-opts there is always at least one line
component. Let’s look at the bits of ddftag

50

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

if <ldtag:1>[1,0] == 00 # not first and not last line

line-opts ::= <next-line-ofs:2> <prev-line-ofs:2>
if <ldtag:1>[1,0] == 01 # first line but not last
line-opts ::= <next-line-ofs:2>
if <ldtag:1>[1,0] == 10 # last line but not first
line-opts ::= <prev-line-ofs:2>

if <ldtag:1>[1,0] == 11 # is last and is first line
nothing for line-opts in this case (maybe submenu)

line-opts ::=
if <ldtag:1>[2] == 1 # dyn-enable feature
line-opts ::= ... <var-addr:2>
var-addr is appended to the previous options
if <ldtag:1>[3] == 1 # has submenu
line-opts ::= ... <smenu-abs-ofs:2>

submenu-abs-ofs is appended to previous options
if <ldtag:1>[3,4] == 11 # submenu password
line-opts ::= ... <password-str:n+1>
password is appended to the previous options

Figure 4.3: Definition ofine-opts in CMF

bitmask meaning if the appropriate bit is sekidtag:1>
0x01 s first menu line (no preceding menu lines)
0x02 islast menu line (no following menu lines)
0x04 menu line can be dynamically enable/disabled
0x08 menu line points to a submenu

0x10 submenu is password protected

Depending on these bits the structure diha-opts must be dynamically assembled. Access-
ing values following this structure can be a little bit problematic because it hae ficed size.
However, this can be efficiently implemented with a lookup table holding the sszesath case.
The exact definition of the dynamic structure depending on the shownglagswn in figure 4.3.

The ‘.. .-ofs ’fields, namelynext-line-ofs andprev-line-ofs , are offsets to the pre-
vious or the next menu line respectively. They count from includinddtey and contain the
optional padding zero byte. This means, in the case of a next menu linegageta add the
next-line-ofs to the address of the currddtag to obtain the address of the next.

The optionalvar-addr field is an offset into RAM and points to an unsigned one-byte integer
that should be used as a boolean value. This byte is often referred te an#ble byteand

its value as theénable value The interpreter has to initialize this byte and interpret its value
accordingly.

smenu-abs-ofs holds an absolute offset to the submenu. An absolute offset is countad fr
including the first byte of the first menu table. This is the first menu table lochtedtly behind
theprolog . Thus, to access a submenu we need to adaienu-abs-ofs the address of the
prolog and its size.

51

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

To access the first line of menu-table we need to look at the absolute offset of the byte
immediately following the menu title. Because all menu lines are aligned on noreéfgets, we
must increase the offset of the byte following the menu title by one if it is evaah tlaus, jump
over a padding zero byte. When accessing menu lines on the base-ofs. .’.fields, there is no
need to worry about the padding zero byte.

4.7.5 line-comp

A line component is the actual entity that is displayed in a menu line. Currentlg trer 23
different types of line-components which are to be implemented by an intermed there is still
place for another eight components. The type of a component is defynia irst five bits of
thelctag and determines the actual byte code structure. The following table givesgeaview
of the available components which are explained in more detail later, eachawmnitsSThemask
column suggests how to display the components.

<Ictag:1>[4,0] type mask comment
0x00 uchar dd unsigned one-byte integer
0x01 uchar ddd -
0x02 uchar hh hex
0x03 char sdd signed one-byte integer
0x04 char sddd -
0x05 uint2 DDD unsigned two-byte integer
0x06 uint2 DDDD -
0x07 uint2 DDDDD -
0x08 uint2 HHHH hex
0x09 int2 SDDD signed two-byte integer
0x0a int2 SDDDD -
0x0b float SILLF ieee-754 float
0x0c float SILF -
0x0d counter DD..D signed two-byte int counter
0x0e fcounter SIL.F ieee-754 float counter
0xOf time-long HH:MM:SS -
0x10 time-short HH:MM -
O0x11 date-long YYYY-MM-DD -
0x12 date-short YY-MM-DD -
0x13 switch “RLRED max. 32 items
0x14 option ‘L optl, opt2, ...
0x15 string pascal strings
0x16 password “[P]" -
0x17 trigger “IX]” -

0x18 - Oxif - - -

There are three further flags #tctag:1> . The following table explains their meanings.

52

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

<Ictag:1>[5] description

0 (read-only) component should not be editable by the user

1 (read-write) component should be editable by the user
<Ictag:1>[6] description

0 (dont-blink) component should not blink on the display

1 (do-blink) component should blink on the display
<Ictag:1>[7] description

0 (not-last) after this component there is another one

1 (last) this component is the last in the menu line

In the following sections each line component’s byte code structure is gwitnsome hints.
Nearly all structures begin with the following fields:

<update:1> A one-byte unsigned integer to define an interval in seconds in which an inte
preter should redisplay the current value of the component. Of coansimterpreter can
update it only if it is currently displayed. An interval of zero disables thtematic updates.

<call-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
a handler’s address is installed. This handler should be called afterahedited a compo-
nent. The pointer being relative is explained in a moment.

<var-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
the current value of the component is stored. How large the memory blocH iscanit has
to be interpreted is determined by a component’s type.

A relative pointeris just like a relative path. An interpreter will be given a base addres# &d
supposed to add this address to all relative pointers to actually accessyragtiar right location.

As mentioned, dine-comp structure is always stored on an even offset within the byte code.
When accessingline-comp we must jump over optional padding zero bytes. We’'ll just fetch
a component’s offset as usual but increment it by one, in case it isvaot e

4.7.5.1 uchar ‘dd’

if <Ictag:1>[4,0] == 0x00
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block, which is accessible byahaddr relative
pointer, are unsigned one-byte integatsfault is the component’s initial value. An interpreter
is supposed to display this component as a two-digit decimal number withogn &). The
size of the code for this component including tbig is 7 bytes.

53

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

4.7.5.2 uchar ‘ddd’

if <lctag:1>[4,0] == 0x01
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is suppode displayed
as a three-digit decimal number.

4.7.5.3 uchar ‘hh’

if <lctag:1>[4,0] == 0x02
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is suppoée displayed
as a two-digit hexadecimal number.

47.5.4 char ‘sdd’

if <Ictag:1>[4,0] == 0x03
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block are signed one-byte intedefault is the

components initial value. An interpreter is supposed to display the compaseattwo-digit
decimal number with a sign in front of it (‘+/-’). The size of the code for ttusnponent including
thelctag is 7 bytes.

4755 char ‘sddd’

if <Ictag:1>[4,0] == 0x04
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “char sdd” with the exception that it is suppmbe displayed as
a three digit number with a sign.

4.7.5.6 uint2 ‘DDD’

if <lctag:1>[4,0] == 0x05
<update:1>

54

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

<call-addr:2>
<var-addr:2>
<default:2>

default , which is the component’s initial value, and the corresponding memory bleciura
signed two-byte integers. An interpreter is supposed to display the comigema three-digit dec-
imal number without a sign (‘+’). The size of the code for this componertdiog thelctag

is 8 bytes.

4.7.5.7 uint2 '‘DDDD’

if <Ictag:1>[4,0] == 0x06
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supgosssidisplayed
as a four-digit decimal number.

4.7.5.8 uint2 ‘DDDDD’

if <Ictag:1>[4,0] == 0x07
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is suppodedisplayed
as a five-digit decimal number.

4.7.5.9 uint2 ‘HHHH’

if <lctag:1>[4,0] == 0x08
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supfosssidisplayed
as a four-digit hexadecimal number.

4.7.5.10 int2‘'SDDD’

if <Ictag:1>[4,0] == 0x09
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

55

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

default , whichis the component’s initial value, and the corresponding memory btedigned
two-byte integers that should be displayed as three-digit decimal numitra gign in front of
it. The size of the code for this component includinglittag is 8 bytes.

4.7.5.11 int2 'SDDDD’

if <lctag:1>[4,0] == OxOa
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This is the same as the “int2 SDDD” component with the exception that it shou@pkyed as
a four-digit number with a sign.

4.7.5.12 float ‘SII.F’

if <Ictag:1>[4,0] == O0x0b
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

default , the initial value, and the corresponding memory block are IEEE-754 simgtasion
(32-bit) floating point numbers. They should be displayed with a sign foliolse two digits
before the decimal point and one digit after the decimal point. The size aofdtle for this
component including thietag is 10 bytes.

4.7.5.13 float ‘SIII.F’

if <lctag:1>[4,0] == 0x0c
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

This component is the same as ‘float SII.F’ with the exception that it shoulisbéayed with one
more digit before the decimal point.

4.7.5.14 counter

if <Ictag:1>[4,0] == 0Ox0d

<update:1>
<call-addr:2>
<var-addr:2>
<min:2>

<max:2>

<step:2>

<default:2>
<field-width:1>

56

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

default , the counter’s initial value, the corresponding memory blogk, , max, andstep are
signed two-byte integers. A counter should be in-/decrementexidpy within the range fnin ;

max]. field-width is an unsigned one-byte integer and gives the width in characters needed
to display the counter within the specified value range. The size of the codieis component
including thelctag is 15 bytes.

4.7.5.15 fcounter

if <Ictag:1>[4,0] == 0x0e

<update:1>
<call-addr:2>
<var-addr:2>
<min:4>

<max:4>

<step:4>

<default:4>
<field-width:1>

This is essentially the same as a ‘counter’ with the exceptiondbfult , the correspond-
ing memory blockmin, max, andstep are IEEE-754 single precision (32-bits) floating point
numbers to be displayed as a ‘float SII.F’' component. The size of thefoodleis component
including thelctag is 23 bytes.

4.7.5.16 time-long

if <lctag:1>[4,0] == OxOf
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>
<seconds:1>

hours , minutes andseconds are unsigned one-byte integers. The memory block, which
holds the current value, is a data type of three bytes with the first byte teriwpurs, the second
byte being the minutes and the third byte being the seconds of the time. In C vie demeribe
the data type with a strucmf_time_t as shown in listing 4.2.

struct cmf_time_t {
unsigned char hours;
unsigned char minutes;
unsigned char seconds;

k

Listing 4.2: Definition of cmftime._t

The size of the code for this component includingldtag is 9 bytes.

57

4.7. CMF - COMPACT MENU FORMAT

CHAPTER 4. MLX DOCUMENTATION

4.7.5.17 time-short

if <Ictag:1>[4,0] == 0x10
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>

This component is the same as “time-long” but without seconds. The size afotte for this

component including thietag
4.7.5.18 date-long

if <lctag:1>[4,0] == 0x11
<update:1>
<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:2>

is 8 bytes.

day andmonth are unsigned one-byte integers, whjlear is an unsigned two-byte integer.
The corresponding memory block, which holds the current value, hiag @%4 bytes and the C

structure definition as shown in listing 4.3.

struct cmf_date t {
unsigned char day;
unsigned char month;
unsigned short year;

3

Listing 4.3: Definition of cmfdatet

The size of the code for this component including ltttag

4.7.5.19 date-short

if <lctag:1>[4,0] == 0x12
<update:1>
<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:1>

is 10 bytes.

This is the same as a “date-long” with the exception that the year is an unsigeduyte integer.

The size of the code for this component including ltttag

is 9 bytes.

58

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

4.7.5.20 switch

if <lctag:1>[4,0] == 0x13

<update:1>

<call-addr:2>
<var-addr:2>
<length:1>

<nswitch:1>
<on-char:1>
<off-char:1>
<default:4>

<string:n+1>

<string:n+1>

length is an unsigned one-byte integer that gives the size in number of bytes obthfonent
including thelctag . nswitch is also an unsigned one-byte integer and defines the number of
valid switches/bits and help strings. The maximum can b@BzZhar andoff-char are both
characters to be displayed for a bit in the appropriate state. The stragadrthe end of the struct
defines a help string (Pascal style) for eachdhffault , which is the switch’s initial value, and

the corresponding memory block are 4-byte arrays with the first 8 switntem the first byte,

the next 8 switches/bits in the second byte and so on. Due to the fact thaptatfoemns don’t
support 32-bit data types, this component has not been implemented asignea four-byte
integer. Nevertheless, we can easily access each bit with the C coddrglising 4.4.

unsigned char * mask = &mem_block of switch[0];
for (i = 0; i < 32; i++4)
{

byte_index =i / 8

bit index = i % 8

if (mask[byte_index] & (1<<bit_index))

; /* bit is set */
else
/* bit is not set */

}

Listing 4.4: Accessing each bit of a switch component

The size of the code for this component including tbeg is variable and defined in the
length field.

4.7.5.21 option

if <Ictag:1>[4,0] == 0x14
<update:1>
<call-addr:2>
<var-addr:2>
<length:1>

59

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

<nopts:1>
<field-width:1>
<default:1>
<string:n+1>

<string:n+1>

length and the string array at the end of the component’s code have the same gresamwiithin

a “switch”. nopts is an unsigned one-byte integer giving the number of optidetault , the
initial value, and the corresponding memory block are unsigned one-lgtgens being indexes
into the string arrayfield-width , an unsigned one-byte integer, gives the width in characters
of the longest string. The size of the code for this component includinigthg is variable and
defined in thdength field.

4.7.5.22 string

if <lctag:1>[4,0] == 0x15

if <lctag:1>[5] == # line-comp is read-only
constant string
<string:n+1>

else # line-comp is read-write
<update:1>
<call-addr:2>
<var-addr:2>
<string:n+1>

The string component is somewhat special. If the component is not edithbtethe value, a
Pascal string, is following immediately thetag , and the size of the component’s code is the
length of the string plus two (length byte of the stringctag). In this case, there is no relative
pointer and no corresponding memory block.

If the string is editable, the corresponding memory block has the length ofrthg glus one (the
length byte). The size of this component in this case is also variable and texdrgmi‘length-of-
the-string + 7.

4.7.5.23 password

if <Ictag:1>[4,0] == 0x16
<unused:1>
<call-addr:2>
<string:n+1>

This component is a password protected trigger. The ‘is-editable’ flafgdtag:1> is always
set. But instead of changing the appearance of the component, aneigerginould ask for a
password, verify it, and if it was correct, call the installed callback havdtéch address is stored
at the location the relative pointeall-addr points to.

It is assumed that this component will be displayed Pk '. Its code size in bytes including the
Ictag is the length of the password plus 5.

60

CHAPTER 4. MLX DOCUMENTATION 4.8. MZMELX.PY

4.7.5.24 trigger

if <lctag:1>[4,0] == Ox17
<unused:1>
<call-addr:2>

This component is essentially the same as a “password” with the exceptiondhaigimo pass-
word to be requested. It is assumed to be displayed fs]a’. This component’s code size in
bytes including théctag is 4.

4.8 m2melx.py

For programmers, who are already familiar with the M-Language and whotaawitch tomelx

this section may be of interest. Aselxwas introduced to replace the M-Language, a script has
been written to convert M-Language documentsiglxdocuments, and thus, allow developers a
guick movement towards thralx compiler.

The converter script named2melx.py takes an M-file and creates an semantically equal menu
definition in themelxlanguage. Then2melx script can be started with or without parameters. In
the later configuration, the converter expects its input from stdin and phietesult to stdout. If
started with the-h * option, the message shown in listing 4.5 will be printed. As listed there, it is
possible to specify an input file and a filename where to write the result.

"mix% python m2melx.py -h
usage: python m2melx.py [-h] [-0 <output-filename>] [<inp ut-filename>]

Listing 4.5: Command line options of m2melx

Note: The converter does no error checking, and assumes that the memiptitsgiven in the
M-Language is correct. If it isn’t, the result of the converter is unaefin

4.9 Writing extensions

In this section we will look at hownlx can be extended with custom line components. The
compiler was written in a manner that makes it not too hard to integrate a progranowa
components. However, some experience with DTDs, SAX, and Pythgngmmning is required.
An understanding of CMF, which is described in section 4.7, is essential.

Due to the compactness of the output format, there is place for only eighlimewomponents.
However, this should be enough. Before starting to make changestove should investigate
whether it's worth the trouble at all. We should try to realize our idea with aadjyranplemented
component, because we need to consider that, bedijalso the byte code interpreter needs to
be extended, too.

Throughout this section we will introduce an example component calledktlox” that actually
could be realized with apption . However, ourcheckbox will produce fewer bytes. It will

61

4.9. WRITING EXTENSIONS CHAPTER 4. MLX DOCUMENTATION

have the four attributdslink, edit, update andvnameas described in section 4.5.4.1. Of course it
will have a defaulvalue We will assume that an interpreter will display the componenfgs *
(checked) or (o) ' (unchecked), and thus use only three characters for it on thersck&ben
used a lot in a menu definition, the new component will save a considerabilenanfonemory in
comparison with amption . The byte code for aheckbox will be the same as for “uchar dd”
which is described in section 4.7.5.1.

4.9.1 Extending the language

At first we need to extend thmelxlanguage which is defined througtelx.dtd . A copy of this
DTD is given in section 4.10. The XML parser, precisely spoken thetédhamdler, used bgnixis
written in a manner that makes it simple to handle empty elements, however, nestimgstalso
possible. To introduce a new componentrialxwe need to add an element definition to the DTD.
Listing 4.6 shows what we would appendreIx.dtd

<I[ELEMENT checkbox EMPTY>
<IATTLIST checkbox %common-lcomp-attrs; value CDATA (1/0) "0" >

Listing 4.6: Definition of a checkbox element

The trick with the shown definition is that it uses #igommon-lcomp-attrs; attribute entity
already defined iimelx.dtd . By using this entity, the new element gets attributes that are
common to almost all components. Additionalyaue attribute that can hold eithel* or ‘0’

was introduced to theheckbox . It has a default value, and thus the menu programmer will not
need to explicitly specify this attribute.

To use the new element, it must be made available as a chiidesformat . The element’s
name must be put into the list of valid children of the container. In our exartie]efinition of
line-format , after insertingcheckbox , would look like in listing 4.7.

<IELEMENT line-format
(hfilllinteger|string|counter|option|switch|
time|float|date|trigger|checkbox)+ >

<IATTLIST line-format id ID #REQUIRED >

Listing 4.7: Extended line—format with checkbox

Now we are allowed to writenelxdocuments witltheckbox es. The compiler will not complain
about the new element when validating, however, it will still do nothing with it duietly ignore
it. The next step is to write a byte code generatordoeckbox es and then couple it with the
parser.

62

CHAPTER 4. MLX DOCUMENTATION 4.9. WRITING EXTENSIONS

4.9.2 Writing a byte code generator

The source code ohlx has a file callegmf.py which implements the byte code generators for
all components. In this file we can find the classwhich is the parent of all generators and which
we will use to inherit our new class from.

Before we begin to implement the inherited class, we should make the followarggehtoLc .

It holds a dictionary calledlent_id_map which represents a mapping between logical names
and IDs. These IDs are thetag s first five bits as described in section 4.7.5. In our example,
we will add a theckbokto the dictionary with the next free ID as shown in listing 4.8.

ident_id_map = {'uchar-dd’ : 0x00,

‘trigger’ : 0x17,
‘checkbox’ : 0x18 } # new

Listing 4.8: Extended idend_map with checkbox

Now we need to subclagd. We will call the new classcCheckbox , its implementation is
show in listing 4.9, but let’s first take a look at the meaning of the methods to berirepted:

_init __In the constructor of the subclass the first thing to do is to call the constroictbe
base class with appropriate parameters.

alloc _addrs As the documentation dfc says, this method gets called before the byte code
generation and provides a chance to the componenttaidow that it needs some mem-
ory space in RAM. When this method is called, a component only registerdoaatan
request. After all components have registered their requestdegins to compute the ad-
dresses, and then they can be retrieved. Inohackbox example, the component will
register a one-byte data type for the current value and a functioressldata type for the
address of a handler which is to be called after the component has bitsh ed

bc When this method gets called, the byte code generation process is actigemdthod is
assumed to return a list of bytes that represents the byte code for a cemp®he imple-
mentation should always use the passeitter object to output the byte list. Addresses
of memory blocks, which were registered in thboc _addrs method, can now be re-
trieved via the passeaallocator object.

str _len This method is intended to answer the following question: “How many characters
does this component consume in one line at most?”. Having this informatizican warn
the user if a line contains to many components which will not completely fit into it. én th
checkbox example, this method will simply return the constant

class LcCheckbox (Lc):
def __init__ (self, value, blink, writable, update, vname)

63

4.9. WRITING EXTENSIONS CHAPTER 4. MLX DOCUMENTATION

‘value’ : the default value of the conmponent

‘witable’: should the user edit the conponent?
Lc.__init__ (self, blink, writable, update, vhame)

self.default = value

def alloc_addrs (self, allocator):
self.reg_vname =\
self.vname or allocator.generate_new_name ()
put_into_header = self.vname and True or False
register a one byte block for the current val ue
allocator.reg_var (self.reg_vname, 'unsigned char’, \
1, None, put_into_header)
allocator.reg_cb (self.reg_vname, None, put_into_heade r)

def bc (self, emitter, allocator):
return emitter.uchar (self.lctag (‘checkbox’)) +\
emitter.uchar (self.update) +\
emitter.uint2 (allocator.cbaddr (self.reg_vname)) + \
emitter.uint2 (allocator.varaddr (self.reg_vname)) + \
emitter.uchar (self.default)

def str_len (self):
return 3

Listing 4.9: Implementation of class LcCheckbox

There are some things which appear to be magic but simply happen in thellsse The call

of the base class constructor makes certain member variables availabléy sathename
self.writable , self.update , andself.blink . They are set to its equivalent construc-
tor parameters. There is one special member variable csdiéthst which is set tdFalse

by default and indicates whether a component is the last one in a menu lineraBg we don't
need to access this variable. The call to skedf.Ictag method returns thictag with the
proper component ID and flags. This works because we have ingbeeddring theckbokto-
gether with the ID into thédent _id _mapdictionary and the flag variables are available to the
base class.

4.9.3 Extending the parser

Finally, the parser needs to be extended and everything is done. In theridéer.py we will

find the clasdMelxHandler that handles SAX events upon parsing the XML input file. For our
example, we need to handle the beginnaigckbox tag. WhenMelxHandler s called to
handle this start tag, it passes the request tathstart _checkbox method if it can be found.
Looking at the already implementeld _start _integer method, we can use it as a template
for the new component and end up with something like shown in listing 4.10.

def do_start checkbox (self, rname, attrs):

64

CHAPTER 4. MLX DOCUMENTATION 4.10. MELX.DTD

Ic = cmf.LcCheckbox (atoi (attrs['value’), \
*self.def _Ic_attrs (attrs))
self.__cur_If.append (Ic)

Listing 4.10: Implementation of detartcheckbox method

That's alll We only need to create an instance of the new line componentasidsappend it to
the component list of the current menu line which is represented througtethe __cur _If
variable.

4.9.4 Summary
Now, that we havenlx working with our own extension, let's summarize the steps.

1. Extend the language by inserting an element definitionnmatx.dtd and extending the
line-format element.

2. Write a component class amf.py which subclasselsc and generates the byte code for
the new component.

3. Extend theMelxHandler class inhandler.py with ado_start _el enent - nane
method which creates an instance of the new component and inserts theiotgjebe
component list of the current menu line (line-format).

So far so good. Now we will probably want to extend the interpreter libarimplement a
program that can handle the new component beside the others.

410 melx.dtd

Here is the content aghelx.dtd which defines the input languagertdx.

<IENTITY % blink-attr "blink (1]0) '0™>

4 |<IENTITY % edit-attr "edit (1]0) '0™>

<IENTITY % update-attr "update CDATA '0">

<IENTITY % vname-attr "vname CDATA #IMPLIED">

<IENTITY % common-lcomp-attrs

8 "%blink-attr; %edit-attr; %update-attr; %vname-attr;">

<IENTITY % enable-vname-attr "enable-vhame CDATA #IMPLIE D">

<IELEMENT melx
12 (description, menu+, line-format*) >

<IELEMENT description
(delay-to-top, delay-password, delay-help, top-menu) >

16

65

4.10. MELX.DTD CHAPTER 4. MLX DOCUMENTATION

<IELEMENT delay-help EMPTY >
<IATTLIST delay-help value CDATA #REQUIRED>

20 |<IELEMENT delay-password EMPTY >
<IATTLIST delay-password value CDATA #REQUIRED >

<IELEMENT delay-to-top EMPTY >
24 |<IATTLIST delay-to-top value CDATA #REQUIRED >

<IELEMENT top-menu EMPTY >

<IATTLIST top-menu ref IDREF #REQUIRED >

28

<IELEMENT menu (const-string-line | line)+ >

<IATTLIST menu id ID #REQUIRED
title CDATA #IMPLIED

32 password CDATA #IMPLIED >

<IELEMENT line EMPTY >

<IATTLIST line ref IDREF #REQUIRED
36 submenu IDREF #IMPLIED
%enable-vname-attr; >

<IELEMENT const-string-line EMPTY >

40 |<IATTLIST const-string-line value CDATA #REQUIRED

submenu IDREF #IMPLIED

%blink-attr;

%enable-vname-attr; >

44

<IELEMENT line-format
(hfilljinteger|string|counter|option|switch|
time|float|date|trigger)+ >

48 |<IATTLIST line-format id ID #REQUIRED >

<I[ELEMENT integer EMPTY >

<IATTLIST integer

52 %common-lcomp-attrs;

type (dd|ddd]|hh|sdd|sddd]|
DDD|DDDD|DDDDD|HHHH|SDDD|SDDDD) #REQUIRED

value CDATA #REQUIRED >

56

<IELEMENT string EMPTY >

<IATTLIST string

%common-lcomp-attrs;
60 value CDATA #REQUIRED>

<I[ELEMENT counter EMPTY >
<IATTLIST counter

64 %common-lcomp-attrs;

type (integer|float) #REQUIRED

66

CHAPTER 4. MLX DOCUMENTATION

4.10. MELX.DTD

value CDATA #REQUIRED

min CDATA #REQUIRED
s | max CDATA #REQUIRED
step CDATA #REQUIRED >

<IELEMENT switch (switch-item+) >
72 |<IATTLIST switch
%common-lcomp-attrs;
on-char CDATA "™
off-char CDATA """ >
76
<I[ELEMENT switch-item EMPTY >
<IATTLIST switch-item

info CDATA #REQUIRED
80 value (1|0) #REQUIRED >

<IELEMENT option (option-item+) >
<IATTLIST option

84 %common-lcomp-attrs;

default IDREF #REQUIRED >

<IELEMENT option-item EMPTY >
gs |<IATTLIST option-item value CDATA #REQUIRED
id ID #REQUIRED >

<IELEMENT time EMPTY >
92 |<IATTLIST time
%common-lcomp-attrs;

hours CDATA #REQUIRED
minutes CDATA #REQUIRED

9% seconds CDATA #REQUIRED
type (short|]long) "short" >

<IELEMENT float EMPTY >

100 |<!ATTLIST float

%common-lcomp-attrs;

value CDATA #REQUIRED

type (siif|siiif) "siif* >

104

<IELEMENT date EMPTY >

<IATTLIST date
%common-lcomp-attrs;

108 day CDATA #REQUIRED
month CDATA #REQUIRED
year CDATA #REQUIRED
type (short|long) "short" >

112
<IELEMENT trigger EMPTY >
<IATTLIST trigger vname CDATA #REQUIRED

67

4.10. MELX.DTD CHAPTER 4. MLX DOCUMENTATION

116

120

password CDATA #IMPLIED
%blink-attr; >

<IELEMENT nhfill EMPTY >
<IATTLIST hfill char CDATA " "
count CDATA "0" >

Listing 4.11: The Melx Data Type Definition

68

Chapter 5

Implementation

This chapter discusses the implementatiomekcandmlx, and will require an understanding of
the binary menu description in CMF format which is described in section 4 & ahhlysis given
here is not meant to be a description of each line of the source code, kelymmvide enough
information to get new programmers picking up the code and making changeand possibly
contributing to further development of the project. We will concentrate obals& concepts, look
at the structure of the sources and discuss some tricky lines of code.

5.1 The Menu Interpreter

From the beginning on it has been tried to build a layered design of the cadeke it clear
and easy to maintain, although there have been made compromises, as tebaddeun under
restricted circumstances. Figure 5.1 outlines the dependencies betwesmnutbe files ofmexc

pstring.c mutils.c

CMF specification <« cmfc <«——— mexc.c

Figure 5.1: Source code dependencynaixc

Each source file implements a set of functionality that is used by the othex<CNIR specification
is the description of the structure of a binary menu image. As shomrfic relievesmexc.c of
having to know the details of the menu description.

Now, let’s step through the source files and show what functionality theyigw. All file names
in this section are relative to the source code directoryrferc See Appendix B.

69

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

5.1.1 Thecnf Sub-Library

To abstract from the fact that a CMF formated binary menu image is actuadiyrayof bytes, and

to provide a more comfortable way for using a concrete CMF structurergkepurpose code has
been implemented iomf.c andcmf.h . It has the advantage that changes in the structure needs
to be reflected only to this sub-library and don't necessarily affeat csihg themf module.

Talking aboutcmf.c andcmf.h as a library isn’'t correct, as the code isn’t released as such.
However, it could. The present text will refer to tbmf code as a sub-library to indicate that it
actually is a library, but as part of another library, nanmeaigxc

The header filemf.h defines the public API of this sub-library. It consists out of numerous
constants, C macros, and function declarations as well as of data stautttat reflect parts of the
menu byte code. Code that uses tinef module should never access the byte code directly but
use thecmf API.

All public functions of thecmf API begin with the prefixémf_'. As the sub-library accesses
the binary menu image in read-only mode, the wayet‘’ would be redundant and therefore has
been omitted in function names. The exported function can be categorifatbes.

e Both functions,cmf _init and cmf_init _ram, are special in the form that they are
used for initialization of the library and RAM variables defined through CNIey op-
erate on the whole CMF structure. Another function that operates on tblewtiucture is
cmf first _mtable which returns a pointer to the top-level menu table.

¢ Functions that begin with themf_mtable_ prefix are related to a given menu table only
and expect such an argument. They need to be passed a pointer to a hieinuttze byte
code.

e Further, functions starting witbmf_lcomp_ concentrate on a line component and there-
fore expect as an argument a pointer such a structure in the byte code.

e There are a few more functions with start with the prefixt_ comp-namend are meant to
be used with the appropriate line components.

These functions are accompanied by the following set of C macros:

e Macros starting with the prefikDTAG* are meant to retrieve information from the line
descriptor tag associated with each menu line. They need to be passellithefihe tag.

e Macros starting with the prefik CTAG* are meant to retrieve information from the line
component tag associated with each line component. They need to be fressatiie of
the tag.

Further the following byte code related definitions are providedrofzh :

e LC_TYPE* definitions provide names for the numerical IDs of the currently undeistoo
line components.

70

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

¢ CMEMAJORVERSIONandCMEMINORVERSIONare dedicated to reflect the supported
CMF byte code version.

cmf.h also defines a structure for each supported line component. Stakca is introduced

with a namelc_ comp-namet . These structures reflect the byte code structures as they have
been defined in section 4.7. The advantage of them is that they can bevéaidioe menu byte
code and provide a very clear way to access it. As the type of a line comipisngetermined

at runtime, the use of thenion calledlc _t, which includes all line component structures, has
proven to be comfortable and simplifies the code at the same time. An examplesfollow

addr_t mtable;
addr_t mline;
Ic t * Ic

/* menu_code is the array holding the nenu byte code */
if (cmf_init (menu_code))
return; [* initialization failed */

/[* get the top-level menu */

mtable = cmf_first_ mtable ();

/* there nmust be at |east on nenu table */
assert (mtable !'= NULL);

/[* get the nenu’'s first line */

mline = cmf_mtable_mline (mtable);

/* each menu nust have at |east one nenu line */
assert (mline !'= NULL);

/* get the line's first conponent */

Ic = (Ic_t *)cmf_mline_Icomp (mline);

/* a menu |line nust have at |east one line conp */
assert (Ic !'= NULL);

if (LCTAG_TYPE (Ilc->common.Ictag) == LC_TYPE_TIME_SHORT)
printf ("%02d:%02d\n", Ic->Ic_time.hours, Ic->Ic_time. minutes);
else if (LCTAG_TYPE (Ic->common.Ictag) == LC_TYPE_UCHAR _ DD)
printf ("Default value: %d\n", Ic->lc_uchar.def);

Listing 5.1: Example for accessing a line component

The advantage of using the _t union is that we don’t need to declare pointers for all possible
line components, but leave the dirty work to the compiler. It should be notatthh returned
pointers of theemf routines are pointers into the binary menu image. If that image is stored in a
read-only memory region, we must reference the pointers for readiggnar writing.

The implementation of the sub-library is fairly straight forward and well doeanted in the source
code itself, but let’s look at some points which may not be obvious immediately.

71

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

e As the individual line components in the byte code are not separated himateebyte,
but merely following each other, it is necessary to know the size of the logte for each
component to be able to jump from one to the next. However, some componeststs of
a variable number of bytes and their exact sizes must be determined at runtime

The functioncmf _lIcomp _length , which returns the size of the byte code for a given line
component, uses a lookup table with the appropriate sizes. Whenever i fibigl table
has the value of zero, the component is disassembled and its size computed.

e As explained in section 4.7.4, following thétag , which is associated with each menu
line, there is a variable number of fields. These fields’ existence is detatimjfeags set in
theldtag . To efficiently access these fields, or those that follow,nthesubmenu _ofs
lookup table has been defined. It holds the offsets fromidtegy , not including it, up to
the optional submenu field. Considering the first three flags dtitag as a number, they
can be used to index the lookup table.

This method relies on the order of the flags and their association with the fidlolsinhg
Idtag . However, CMF has been designed to provide this possibility of determinang th
offsets and will not change this in future versions. Thus, this method dsrack as it may
look like at the first glance.

e cmf_init _ram initializes all memory regions specified by the menu byte code. There-
fore, it must traverse the menu table tree and iterate over all line compon€his.is
accomplished by traversing the tree structure recursively in depttoefaist. When only a
limited amount of memory is available, recursion is critical. However, the implementatio
of cmf _init _ram pays attention to not allocating too much space on the stack, and, in
general, the depth of a menu usually isn’t to deep to cause serious problems

5.1.2 Handling Pascal-style Strings

The CMF specification introduces strings that are not zero-terminatesgealsin the C language,
but preceded with a length bytestring.c implements a small set of functions for handling
Pascal-style strings. They all start with the pregfstr .

PSTRLENandPSTRSTR both being C macros, simply return the length and the pointer to the
first character of strings respectively. Although their definition is trisiadl doesn’t save a
lot of work, there are two reasons why to use them:

a) Firstly, they introduce names for the operations. Further, they alsatedinn which
object they operate. This leads to more readable code.

b) Should there be changes to the data type of the length value, for exaroqgasimg
its size to a two-byte integer, only changes to the macros would be necessary

Both macros must be passed a pointer to a Pascal-style string.

1We refer to the word “hack” by its original meaning as stated in The Jafijerj12].

72

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

pstr _copy is equivalent tostrcpy , but operates on Pascal-style strings. It simply copies
its first argument to the place where the second argument points to. Haléngth byte,
which can be directly accessed, usage ofrtf@ncpy or memmovefunctiong would be
ideal and result in fast operation. However, as the code is targetedtetdeled systems
where such system functions probably won'’t be available, this routinesdtpe string one
byte after another.

pstr _to _r _cstr (“Pascal to right-aligned C string”) is a service routine to copy the charsic
of a Pascal-style string to a buffer and zero-terminate them. Furthermereglting string
will be right-aligned within a width that the caller must specify along with the attarao
use for padding. As with the previous function, it was decided againsigbeof system
services likememcpyor memmove

5.1.3 Utility Functions

General purpose utility functions has been put into therfilgils.c . Mainly, it implements
“number to string” conversion functions.

uchar *utorstr (uchar *buffer, schar w, uchar hex, uchar fil [, uint2 n);

utorstr converts the unsigned two-byte integemto a right-aligned C string representation.
buffer , a pointer to the memory region that will receive the string, must be atigages long.

w defines the width in which the resulting string will be right-aligned. Padding medsing the

fill character. Witthex being non-zero, the number is outputted in hexadecimal format. The
returned pointer ibuffer

The implementation of this functions uses a trick on the hexadecimal outputx&mpée, if we
should convert a 12 to its hexadecimal representation, we could do theifadlconsiderationas
12 is greater than 9, subtract 10 from 12, and add the result to the ckarraode of A to finally
receive the character GOn the other hand we could also think like thes 12 is grater than 9,
add the ASCII code of the digit 7 to it, to receive the charactefli& second method is obviously
faster, but it relies on the fact that the ASCII code of the digit 7 is smallek@than the ASCII
code of the uppercase letter A.

uchar *storstr (uchar *buffer, schar w, uchar fs, uchar fill , sint2 n);

storstr provides essentially the same service for signed numbersitdestr for unsigned
numbers. There is one exceptiostorstr ~ cannot format its output in hexadecimal notation.
Instead it can be told, to force putting a sign in front of the number. W&ers non-zero, also
positive numbers will be accompanied by the sign.

uchar *ftorstr (uchar *buffer, schar w, uchar fill, float f)

2Seeman memcpyandman memmove

73

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

ftorstr converts a float number to a C string. The output format usdéisfa template, with

s being the signj the digits before the decimal point, afda digit behind the decimal point.
Depending on thev parameter to this function, thein the template can grow. THe parameter
controls whether a sign will be outputted for positive floats.

The implementation uses some arithmetic and type conversion. It rounds themtanamne digit
after the decimal point to display numbers like 42.29999999 as 42.3.

uchar get switch_bit (uchar *mask, uchar bit);
uchar flip_switch_bit (uchar *mask, uchar bit);

get _switch _bit andflip _switch _bit provides access to bits of an array as introduced
by a switch line component. They expect a byte array and an index whittessgs one bit
within the byte array. Figure 5.2 shows a switch bitmask along with the indexbe diits. The

mask

T~

bits: 0-7 8-15 16-23 24-31

Figure 5.2: Bitmask of awitchline component

implementation of both functions uses bit arithmetic operators. In caip of _switch _bit , it
toggles a bit within the mask before it returns the bit's new vafjet. _switch _bit just returns
the current value of a bit without altering the bitmask.

5.1.4 The Engine

The file mexc.c implements the core of the library and can be considered as its engine, most
functions of it are documented by using doxygen style comments. The modwpéndent on
functionality provided with the already discussed files and the functions ifmflemented by an
application programmer as discussed in section 3.7.1.

5.1.4.1 Global Data

At the beginning of the source file there are global data definitions whictviveliscuss next.
However, why is there global data at all, when good software desighdsacs to avoid it. Of
course, it would be possible to avoid globals by allocating it on the stack asslipas function
parameters to the code that operates on it. However, this would lead to theirfigildisadvan-
tages.

e The code would get worse readable, as a lot of parameters wouldggetdbaround only to
be outreached to other functions further down the execution path.

74

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

e The size of needed stack space would considerably grow as arguméntstions are put
on the stack. As the code is targeted at low memory systems, this is an essaTgideca-
tion.

Usage of globals in this project has *not* been established to serve giiemzation, although it
is more efficient to access data directly than referencing it with a pointguiig with the advan-
tage of efficiency would definitely be a “premature optimizatforll global variable names start
with the prefixg_ to indicate their globality and are declarstatic to restrict their visibility to
mexc.c . The following paragraphs discuss some important global variables.

Display Context
As CMF doesn't define references to parent menus and beoaisrestores the state of the
display, termedlisplay contextwhen the user jumps back from a submenu, the context must
be stored before the user dives into a submenu. This is done gndicearray accompanied
by g_cur _dc_idx . The display context array is used as a staglcur _dc _idx indexes
the currently active entry. Thereforg, dc[g_cur_dc_idx] was a frequently used
statement in the code, which has been replaced by ity _dc pointer to reduce code size.
Each timeg_cur _dc_idx is altered, the code makes sure thatur _dc points to the cur-
rent table entry. Therefore we can assume thatur_dc == &g_dc[g_cur_dc_idx] '
is always true.

A display context itself, an entry in tigedc array, is a structure of typdisp _context _t .
Having the three pointers from a display context, which is shown below in litiagthe
display can be restored to the state before a submenu was entered.

s3 | typedef struct {

54 addr_t mtable; /[* current menu table */
55 addr_t cur_mline; [* current menu line */
56 addr_t top_mline; /* menu line at the top the screen */

57 |} disp_context_t;

Listing 5.2: mexc.c / 53-57 (the display context)

It is important to consider, that the implementation cannot rely on dynamic meriocg-a
tion, and therefore, a fixed amount of entries forghdc array is allocated in the program’s
data section. The size of the array is finally determined by number substitutée Ipre-
processor definitioMEXCMAXDISP _CONTEXTDEPTH

Blinking Components
Each time after the code went through all the menu lines to be displayed — this is in
disp _draw _mlines -theg_do_blink global variable gets set to one of the following
values with the appropriate meaning.

3The statement “Premature optimization is the root of all evil.” originatesm ffony Hoare and has become famous
by Donald Knuth. It is a frequently used idiom in software developmenatkly hint at problems which results from
optimizing at a too early stage. See also [13].

75

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

e A zero denotes that currently there is no component on the screen thed le blink-
ing.

e DOBLINK_DRAWnNdicates that there is at least one component on the screen which
should blink, and that the next time the component will be drawn it should b#evis

e DQOBLINK_ERASENndicates that there is at least one component on the screen which
should blink, and that the next time the component will be drawn it should @ot b
visible.

Editing Components
Whenever the “edit state” is entered — this is when the user edits a compameihe
horizontal cursor is visible on the screen — the global varighéliting is set to non-
zero, otherwise it is zero.

Visibility of the Cursor
When the LCD cursor, a blinking black box, is currently set to be visible) the global
variableg_cursor _visible issettonon-zero, otherwise to zero. Setting the cursor’s vis-
ibility should be done by using the two mac®®8T.CURSORONandPUT_.CURSORDFF
to ensure not forgetting to set also the global variable.

102 |#define PUT_CURSOR_OFF() do { \
103 g_cursor_visible = 0; \

104 micd_cu_off (); \
105 } while (0)

106 |#define PUT_CURSOR_ON() do { \
107 g_cursor_visible = 1; \

108 micd_cu_on (); \
109 } while (0)

Listing 5.3: mexc.c / 102-109 (cursor visibility macros)

Both macros expand intodo .. while loop whose body will be executed exactly once.
This ensures that the two instructions inside the loop always stay togetbeinea situation
like shown in listing 5.4.

if (foo)
PUT_CURSOR_OFF ();
else
PUT_CURSOR_ON ();

Listing 5.4: Example for using cursor visiblity macros

Already at compilation time it is clear, through the usage of the constant Oththiddop
will never repeat, modern compilers will not produce code that reflectsg End thus no
overhead will be caused.

76

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

Automatic Update

As specified in CMF, individual line components can request to be pedilhglicpdated,
and even specify the number of seconds after which their current satudd be redrawn.
Currently,mexcredraws all menu lines on the screen, whenghgpdate _delay global
variable is set to non-zero. Strictly speaking, it redraws the lines aftenthay seconds
as specified byg _update _delay . This variable gets set to the minimal requested update
period while the code parses all menu lines to be displayed. When there apenponents
on the screen that should be periodically updatedpdate _delay is setto zero. Thus,
it is ensured thamexcwill not redraw the menu lines more often than necessary.

5.1.4.2 Initialization

Initialization of themexdibrary is done with a call tonexc_init , its public interface is discussed
in section 3.7.4.2. As first, the routine initializes ttmaf sub-library with a call tacmf _init

This makes the sub-system available upon successful return. In thecatee— when the sub-
system initialization fails -mexc_init simply returns with the error code from the sub-library
as shown in listing 5.6.

179 [rv = cmf_init (mcode);
180 [if (rv)
181 return rv;

Listing 5.5: mexc.c / 179-181 (initializing cmf sub—library)

After a few global variables have been set, the dynamic variables locateé\h which are
associated with and defined in the given menu description, are initializexnyinit _ram.
From this point on, the application and the library can access those variable

188 |[/* initialize the ramvariables */
189 | cmf_init_ram (cmf_first_mtable (), ram, default_cb_hand ler);

Listing 5.6: mexc.c 188-189 (initializing RAM variables)

Thereafter, the number of lines and columns to be usedhbycon the screen is fetched by
calling theget _micd _lines andget _mlcd _cols functions and stored ig_lcd _lines and
g_lcd _cols respectively. It is important not to call any other display related routingBis
point, as the application programmer should not be restricted to having to initiaézéisplay
before callingmexc_init

Finally, global variables that represent the display context are dyoipéialized and the display
context itself is set to be invalid as there is still no menu table open.

77

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

5.1.4.3 Opening Menu Tables

Having introduced the display context argydc earlier, now we will see where this array is used.
There are three functions accompanied by a helper function addlempen mtable to operate

ong._dc.

Thedc _open _mtable function initializes the current display context entrygirc with a given
menu table. As already mentioned, this entry can be referenced wigh¢be _dc pointer.
After having initialized the context’s variables, the whole screen is redianwasing the
public functionmexc_redraw .

Thegoto _top _menufunction is responsible for jumping out of any submenus, thereby deleting
all saved display contexts, and open the top-level menu table by cdtirgpen _mtable
with the appropriate menu table as its argument. However, when the currpetiynoenu
table is already the top-level table and the table’s first menu line is at the top etthen,
no redrawing of the screen has to be done, as this is the initial state. Eorémh@awing, a
non-zero value needs to be passedato _top _menu. As a side-effect this routine puts
the cursor off, if it is visible.

Thegoto _submenu function expects a menu line as its argument, not a menu table, as the op-
tional submenu password is stored as part of a menu line. After assuairtgeérgiven menu
line is associated with a menu table and optionally verifying the password, bineesw is
entered. Thereby a new display context fromdghdc array is activated and initialized by
callingdc _open _mtable as shown in listing 5.7.

1099
1100
1101
1102
1103
1104

if (g_cur_dc_idx < (MEXC_MAX_DISP_CONTEXT_DEPTH-1))
{
g_cur_dc_idx++;
g_cur_dc++;
dc_open_mtable(cmf_mline_submenu (mline));
}

Listing 5.7: mexc.c / 1099-1104 (Opening a new display context)

It is important that the code assures not to incregsmir _dc_idx to a value equal to
or greater thaMEXCMAXDISP _CONTEXIDEPTHto avoid corruption of global data by
writing beyond the end of thg_dc array.

The go_dc _back function is the counterpart to the previously discussed one. It throwy aw
the current display context by decrementmgur _dc _idx andg_cur _dc. Thereby, the
lastly used context becomes active again and is finally put on the scres¢ingl5.8 shows
how easy it is to restore an old display context due to used data type, & stack

4g_dc is an ordinary array of a fixed size, but it's the way the array is usedhbies it being regarded as a stack.

78

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

1020 |if (g_cur_dc_idx > 0)
1021 {

1022 g_cur_dc_idx--;
1023 g_cur_dc--;
1024 mexc_redraw ();

1025 }

Listing 5.8: mexc.c / 1120-1125 (Restoring an old display context)

5.1.4.4 Thin Layer overcnf

mexc.c implements three functions on top of tbhenf sub-library to provide the same function-
ality but respect the “enable value”of a menu line in a special manner. &his @and its purpose
is described in section 4.7.4.

Becausenexcis targeted at small displays, it simply ignores disabled menu lines by not drawin
them on the screen. Whenever the next or previous menu line is fetchewex@mmline _next
ormexc_mline _prev respectively, the returned menu line, if any, is guaranteed to be enabled a
the time of the function call. The third functiomexc_mtable _mline , fetches the first enabled
menu line of a menu table.

With these three routines the rest of coderiaxc.c doesn't have to know about dynamic menu
lines. In fact, when dynamic lines were introduced, the implementation of the tbutéines were
added and all calls tomf _mline _next , cmf_mline _prev , andcmf_mtable _mline were
replaced with calls to theimexc_ equivalents. No more work has been necessary to extend the
library.

5.1.4.5 Getting Key Presses

Key presses are fetched with thefpkey _get routine which is described in section 3.7.1.2.
When there are no key presses that function immediately reddFRBKEYNONE However, it
would be desirable to have a function that waits for a key press and thengét to the caller.
This is achieved with thget _key function. When its argument is not zero, this function returns
MFPKEYNONEaftern seconds of no keyboard activity.

The implementation ajet _key gives a perfect example of programming for embedded systems.
Listing 5.9 shows an easy to understand implementation, however, it repoindsng to be a
32-bit integer to make the code work. But this requirement cannot bepteckeas the code is
targeted at platforms which do not have to support such a data type.

do {
key = mfpkey_get ();

if (MFPKEY_NONE != key)
break;

79

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

else

{
msleep (MEXC_GET_KEY_DELAY);

howlong += MEXC_GET_KEY_DELAY;
if (timeout && howlong >= timeout*1000)
break;

}
} while (1);

Listing 5.9: Possible implementation of glety loop

The implementation irmexc.c is somewhat trickier, but needs only two one-byte integers to
achieve the same result. Figure 5.10 shows how it is done. As we dstat@dften is a one-
byte integer and this can cause a problem WiiEtKCGET.KEY_DELAYis smaller than 4, as the
division would result in a value greater than 255 (modern compilers will coentne division at
compilation time as both operands are constants). This problem can be sirtwelg bp making
howoften a two-byte integer. However, it is very unlikely that a smaller value than 4 will b
specified for the definition. Further on, modern compilers gke will warn us when there is a
problem with the comparison.

620 |do {

621 key = mfpkey get ();

622

623 if (MFPKEY_NONE != key)

624 break;

625 else

626 {

627 msleep (MEXC_GET_KEY_DELAY);

628

629 if (timeout && ++howoften == 1000/MEXC_GET_KEY_DELAY)
630 {

631 howoften = 0;

632 howlong++;

633 }

634

635 if (timeout && howlong == timeout)

636 break; /* key is M-PKEY_NONE */
637 }

638 |} while (1);

Listing 5.10: mexc.c 620-638 (Implementation of gel loop)

5.1.4.6 Displaying Matters

When the whole screen needs to be (re-)drawn, caltiegc_redraw is appropriate. This com-
mand divides into two parts, drawing the header line @igp _draw _hdr and drawing the menu

80

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

lines withdisp _draw _mlines . Both functions operate on the current display context available
throughg_cur _dc.

disp _draw _hdr ’'s implementation consists of drawing the title of the currently opened menu
table and drawing some information on the screen as described in sectiding latter is realized
with thedisp _draw _hdr _info function which is called also from other routines. The core point
of the separation is to reflect the need for redrawing the information fieldsyot the title. The
implementation oflisp _draw _hdr _info consists mainly of assembling a string which reflects
the state of the current menu line, and finally drawing it into the upper righiec@f the screen.

disp _draw _mlines is responsible for drawing as many menu lines on the screen as possible.
As a secondary target, this function updates some global variables; wleetilat this in a mo-
ment. Although the primary target is drawing, no calls to drawing routines edound inside

the function’s body. To draw a menu line, it is necessary to disassemblé draw the individ-

ual parts. This complicated task is accomplished bydisp _draw _mline function which is
examined in a short while. Thudisp _draw _mlines concentrates on its secondary target, and
directs the drawing requests to the menu line parsing routine. While the fuiitetiates over the
menu lines to be drawn on the screen, it collects some information and setgltitvakvariables

to reflect the requests defined in the menu. Listings 5.11 and 5.12 shovatizatien.

e Even before the iteration over the lingsupdate _delay is set to zero, because we ini-
tially assume there are no line components on the screen to be automaticallydupdaén
the individual menu lines are disassembledlisp _draw _mline the global gets appro-
priately set from the values of the individual line components.

e Further, while iteratingdisp _draw _mline ’sreturn value is evaluated, which tells whether
the passed menu line contains blinkable line components. If the return valae-izero a
local variabledo _blink is set toDQBLINK_DRAWThis local variable is evaluated after
the loop ends.

e g_cur lcd _line gets setto the index of the line on the display in which the current menu
line is displayed. This global is later used to determine whether scrolling the taklauis
necessary when navigating through it.

ess | g_update_delay = O; /* assume we do not need to update */
689

eo0 | mline = g_cur_dc->top_mline;

eo1 |for (lineno = FIRST_MENU_LINE_IDX; lineno < g_lcd_lines; | ineno++)
692 {

693 /* update g cur _lcd |ine */

694 if (mline == g_cur_dc->cur_mline)

695 g_cur_lcd_line = lineno;

696

697 if (disp_draw_mline (mline, lineno))

698 do_blink = DO_BLINK_DRAW;

699

700 if (mline)

81

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

701 mline = mexc_mline_next (mline);
702 }

Listing 5.11: mexc.c / 688-702 (determining whether to blink)

The evaluation of thdo _blink local variable is given in listing 5.12. It simply sejsdo _blink
to zero if there are no components on the screen that should blink. Ifahesaich components,
the value gets toggled froMQBLINK _DRAWo DOBLINK _ERASEand vice versa.

709 |if (1(g_do_blink && do_blink))
710 g_do_blink = do_blink;

711
712 |if (g_do_blink)

713 g_do_blink = "g_do_blink;

Listing 5.12: mexc.c / 709-713 (settingdyp_blink)

The already mentionedisp _draw _mline function is quite long because it implements the
rendering for each line component to the screen. Though, there is littley tabsat it. To be
efficient, this routine allocates a buffer of lengthicd _cols and renders all components of the
given menu line into it, mainly using routines discussed in sections 5.1.3 and Eihdly, af-

ter all components are rendered in the buffer, it is written all in once ontediteen by calling
micd _wrstrxy . If the passed menu line pointer is NULL, thericd clrin s used to wipe

out everything that was before in the display line index by the paksedo argument. As

a side effect this function sets tlgeupdate _delay global variable. Listing 5.13 shows the
code.update _val is the minimal update interval beside zero, that was extracted from the vis-
ited line components. When all components of the given menu line have atewadiae of zero,

set _update is zero, otherwise non-zero. The glolopglpdate _delay gets set to a new up-
date value only when the new value isn’t zero and is smaller ¢hapdate _delay . Because
disp _draw _mlines sets the global to zero, the variable will be zero if there are no compo-
nents on the screen which should be periodically updated. On the otheéyr Wwhan there are
such components, the variable will define the minimal update interval amongocemis to be
updated.

976 |If (set_update && (!g_update_delay || (g_update_delay > up date_val)))
977 g_update_delay = update_val;

Listing 5.13: mexc.c / 976977 (settingupdatedelay)

5.1.4.7 Editing Line Components
Almost over a half of the code imexc.c deals with editing line components, however, no great
complexity hides behind it.

The functionedit _cur _mline , which is called when the user requests to do so, is the first
point to look at. After entering the function, the global variaplediting is set to non-zero to

82

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

indicate the current state of the library. Befexdit _cur _mline returns to the caller, this global
is set to zero again. A loop over the line components of the current menu §teetied. Whenever
an editable line component is found, a specific function which can handieothponent’s type
is called and takes control over editing the specified component. We will centim refer to
these special routines as “edit functions”. After an edit function retutime callback handler
associated with the component gets called, if there is one, and the loop esntintil it reaches
the last component. However, there is one exception to the describedffexeaution! When
an edit function returns a non-zero value, looping over the rest ofdimponents is aborted, and
thegoto _top _menu functions is called beforedit _cur _mline returns. To understand the
reason of this behavior we need to know what it means when an edit fanmetiorns a non-zero
value. It simply signalizes that a timeout occurred and that the library sihetwid to the top-level
menu table.

There are a couple of edit routines which produce no side effects balglata except of putting
the cursoron andoff usingPUT.CURSORONand PUT.CURSORDFFE Their implementation is
straight forward and should not be hard to understand.

5.1.4.8 The Main Loop

mexc_loop is the library’s main loop. Once started, the routine returns only when itdsttie
MFPKEYQUIT_MEXCLOOPkey press. The functiomexc_init must have already been called
whenmexc_loop starts execution. At this point also the display must have been initialized.

The first steps of the function are to UBEIT.CURSORDFFto hide the cursor, and to initialize
the current display context with the top-level menu table using the discdssegen _mtable
routine. Then the loop itself is started. Inside it, a key press is fetchedharappropriated action
is carried out. Fetching a key press is done ugjag _key which takes a number of seconds to
wait as long as no key press occurs. The interesting part of the main Idefeisnining the value
that is to be passed gt _key , and handling the timeout. As listing 5.14 shodslay is set to
the minimum of three values. Zero is handled in a special way, all three valigetb be zero to
getdelay settoO.

23 |delay = g_prolog->delay_to_top;

224 |if (g_update_delay)

225 delay = delay ? MIN(delay, g update_delay) : g update dela Y;
226 |if (g_do_blink)

227 delay = delay ? MIN(delay, MEXC_BLINK_INTERVAL) :
MEXC_BLINK_INTERVAL;

Listing 5.14: mexc.c / 223-227 (Determining timeout value)

Whenget _key returns withMFPKEYNONEa timeout occurred. The function waited tielay
many seconds but got no key press to report. Handling the timeout evsinipte due to the
preparations. When it’s time to go to the top-level menu table, the codegratis_top _menu.
Otherwise, when there are components to blink or to be updated, the the mesmarnredrawn
usingdisp _draw _mlines .

83

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

5.2 The Menu Compiler

mlx, the menu compiler, is written in two layers. The first processes the comjiilpts an XML
document, and creates a data structure, a tree, which is need whenahe kger computes the
output, a binary data described by CMF. These two layers are controlladsmall application
which provides a command line interface.

Due to the nature of object orientation, in which manméx is written, the data structure created
by the first layer is actually represented as the second layer. Howhisedoesn't change the
design. In the following discussion we will look at the two layers and alsotielspplication
controlling the steps necessary to produce the program’s output. We step’into each detail,
but provide enough information to get an idea of how to readribesource code.

All files names in this section are relative to the source code directanbofSee Appendix B.

5.2.1 Byte Code Generating Layer

As it will help to understand the first layer, let's discuss the second oste Tihis layer is com-
pletely implemented in the filemf.py and consists of 16 classes. While three classes are purely
used to implement helper objects, the rest of them reflects all parts of a nexauchy. Let'’s
introduce the helper classes first.

CmfError serves to report errors. It subclasgeseption as suggested in [14]. Whenever
an error within thecmf module occurs, an exception of this type is raised. Catching this
exception is up to the caller of the appropriatef code.

ByteListEmitter implements a byte code generator for low level data types, namely inte-
gers, floats, and strings. It is this class, that is responsible for pragiBascal-style strings.
An object of this class is initialized with one boolean value and tells whether tdped
byte code for the data types is to be in big- or little-endian. Listing 5.15 showstlhie
class can be used and what it produces.

"mix% python

>>> jmport cmf

>>> be = cmf.ByteListEmitter(True) # big-endian
>>> |le = cmf.ByteListEmitter(False) # little-endian
>>> be.int2(-1234)

[251, 46]

>>> |e.int2(-1234)

[46, 251]

>>> be.uint2(OxXFEFF)

[254, 255]

>>> |e.uint2(OxFEFF)

[255, 254]

>>> be.string("hello, world")

[12, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100]

84

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

>>> |e.string("hello, world")

[12, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100]
>>> be.float4(12.4)

[65, 70, 102, 102]

>>> le.float4(12.4)

[102, 102, 70, 65]

Listing 5.15: Using ByteListEmitter class

MemAllocator isn't complex as it may seem at the first glance. An object of this class ab-
stractly represents a continuous memory region in which variables havestorieel. The
user of an object of this class firstly feeds the allocator with variables taubaiw the
memory region, this is also called registering variables, and finally lets thetaojepute
the variables’ offsets within the region. Due to this approach, optimization tétatot
of the memory addresses can be applied. Both algorithms, non-optimizingtindzing,
for computing the final offsets are implemented in #iec method. The optimization
algorithm is quite easy, although its realization is somewhat tricky. Listing 5.di®esithe
basic idea.

repeat as long as there are variables to process:
* get next variable to process
* is there a memory gap into which the variable fits?
-> yes:
* put the variable into the gap
* remove this gap from the ’'gaps list’
-> no:
* allocate space for the variable at an aligned
offset at the current end of the memory
* is there now a new gap due to the alignment?
-> yes:
* put the gap into the ’'gaps list’

Listing 5.16: Memory optimization algorithm

The rest of the classes is used to create the hierarchy of the menu ahat@tbe proper byte
code. Such aByteListEmitter can produce byte code for basic data types, the classes to
be introduced can produce the byte code for more elaborate data like atmmoent or a menu
line. Thereby, the individual parts of the menu hierarchy are coveyéadividual classes.

Cmf represents the whole menu. It is the class that outputs a menu descriptipecidied in
section 4.7. The complexity is divided and partly shifted down towards otasses. Thus,
the implementation is pretty easy. It only knows how to produce the byte coale GMF
prolog as described in 4.7.2 and 4.7.3, and directs the rest of the workdoltheenu table
it references, Menu object which represents the top-level menu table.

When theCmf.bc method is called, the caller requests the byte code for the menu and the
machinery to produce it is started. It is done in two cycles.

85

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

Firstly, aMemAllocator object is created, and the top-level menu takdéisc _addrs
method is called. This will cause a complete population of the allocator object avitble
requests. Then the addresses are computed by the olgjdat's method.

303 | self.menu.alloc_addrs (alloc)
s04 | alloc.alloc ()

Listing 5.17: cmf.py / 303 —304 (Generation of variable addresses)

The second step consists of producing the byte code itself. This is simpybyarollecting

the CMF prolog’s parts into a list using &yteListEmitter object and afterwards call-
ing the top-level menu tablelsc method. The returned result is appended to the produced
prolog.

Finally Cmf.bc returns with the byte code along with the allocator object, as beside the
addresses, this object holds also other valuable informatiomthawill write into one of
the generated files.

Menuis a more complicated class and presents a single menu table. It holds a listwlimesn
a title, and an optional password for the menu table it represents. As a nidmitgelf has
no variables to allocate, imloc _addrs method simply passes the request further down
to each menu line of the table.

The complexity of theMenu.bc method originates from the fact that references — refer-
ences are offsets within the byte code — are needed at a level at wieichirev length of

the individual parts isn’t known. Thus, the first thing to do in this method i®topute the
length of all menu tables by callifgc _len on each. Then the byte code itself is generated
according to the CMF specification. As far as a menu table is concernedpaim$y con-
sists of producing the menu table’s title, its menu lines, and optionally outputtirdjnmad
zero bytes to align the menu lines on non-even offsets. The byte code mithe lines is
simply requested from th®lenuLine class objects. Then, when tiMenu object is the
top-level menu table, thbc method of the other menu tables is called, and the returned
byte code is appended to the already generated list of bytes.

The methodc len simply accumulates the size of all parts of a menu table. This includes
the table’s title, the optional padding zero bytes, and the length of all menuitisiele a
menu table.

MenuLine , a class for representing the container for line components, holds a lisis# #nd
a reference to an optional menu table, also referred to as submenu inrttéstcdf a menu
line should be dynamically disabled/enabled,ateble _vname member variable has a
name for the variable to be allocated usinglamAllocator

Thealloc _addrs method registers the optional “enable” variable, if there is one. Then it
passes the request to all line components of the menu line and also to the loptlomanu.

The next method in the process of the byte code generation is the invochtimba _len
method. It gets called bivlenu.bc _len . The length of the byte code for a menu line

86

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

is simply computed by accumulating the length of all components of a line, this irsclude
the fields shown in figure 4.3 on page 51 and the line components itself. Tdtl lefithe

line components is retrieved as the length of the list of bytes which each cemipoinject
produces. Thus, at this point, the byte code for each line componentésaged. To avoid
generating the byte code again, later inltikemethod, it is stored in thebc _len _cache
variable. This works, because line components don’'t need any negsavhich are avail-
able only at the time of a call to tHec method.

Due to the work already done by the _len methodMenuLine.bc ’simplementation is
really simple. Allit does is generating the bytes for fields shown in figure dd3apending
it to the already generated byte code stored inthe len _cache member variable. This
is the byte code for the line components of the line.

Lc is the base class for those implementing the individual types of line compoiiégslass is
not meant to be instantiated. However, as the Python language doestswgiher abstract
classes like C++ nor interfaces like Jalza, is a proper class providing just empty versions
of the methods to be overwritten by subclasses. In fact, these methodngeraiee an
exception whenever they are called, thus indicating the abstractnesdasaas of.c must
overwrite three methods, namedjioc _addrs , bc, andstr _len . Their meanings are
explained in the documentation string of the class and in section 4.9.2.

The advantage dfc is to bundle common functionality of all line components to one class.
Thelctag method, has all necessary information to producddiagy byte as introduced

in section 4.7.5. Thaent _id _mapdictionary brings a little bit of clarity into the jungle

of the IDs for line components and enables callers ofitkeey method to pass a hame
instead of a numerical value. Thus, the numbers are concentrated pliacedn the code
and are not bound to a concrete implementation of a line component. This allasznre
able management to the logical order of line components and allows to optmitzdn
constructs in the C source code of thexclibrary.

What we haven’t mentioned yet, is the waZmf object with a menu hierarchy is created. This is
the job ofmlxs first layer which is explained next.

5.2.2 Input Processing Layer

Processing the input of thralx compiler is encapsulated in the fhandler.py which provides

the classMelxHandler . However, the filemonvalhandler.py and valhandler.py

construct a thin layer over the implementationMdélxHandler , each on its own. Both files
provide classes which are subclassed fitdeixHandler and another class. Figure 5.3 shows
an inheritance diagram. Depending on thdont-validate option tomlx, only one of the
subclassed handler classes is used and determines the functionality d¥ithpaXser. As its
name suggestalMelxHandler validates the input document against a referenced DTD, while
NonValMelxHandler doesn’t. It may be surprising that both classes have been implemented
in separate files and not put together into one. This has been done td@aaiidg of modules

87

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

—

xml.parsers.xmlproc.Applicatio Me IxHandler xml.sax.handler.ContentHandl¢

A A

ValMelxHandler NonValMelxHandler

Figure 5.3: Inheritance ofalMelxHandler ~ andNonValMelxHandler

which are not needed at runtime, and thus reduce the overhead of diregloahich can even on
modern machines take a considerable amount of time.

Both classesyalMelxHandler andMelxHandler , implement a subset of the SAX API, a
method and specification for how to parse XML documents. It has beeadediagainst DOM,
another API specification for parsing XML documents, to reduce the mefootgrint of mix. As
the data to be read is stored in a custom data structure, it is not necesstangtiv also in a DOM
tree.

However, as both classes have to provide the same core of functionatiiremon code has been
put into theMelxHandler class. Actually, the other handlers don’t implement any functionality
at all, they simple map calls from the appropriate parser tdtbkxHandler class.

To understand the structure lielxHandler we need to be aware of the fact that a SAX parser
calls certain methods. As far 8&lxHandler is concerned, there are three methods of interest.

e handle _start _tag gets called for each starting XML tag. Along with the name of the
element, the method gets also the element’s attributes.

e handle _end_tag is called for each ending XML tag. As there is no other information,
only the name of the element is passed to the method.

e set _locator gets called with an object that is to be stored for later use. This object, a
locator, can be asked to give the end position of a SAX event, e.g. in thersterd method.
The handler uses it mainly for providing line numbers when reporting ®amnd warnings
about the processed document.

When we closely look at the implementation of the first two methods, we will detatthiey
try to find an appropriate method and call it, if it is available. This is done usiagtiwerful
introspection took of Python. Listing 5.18 shows theandle _end_tag method. Thus these
methods function only as a redirector of the work to be done.

260 | def handle_end tag (self, name):
261 # try to call a specific nethod
262 fn = 'do_end_’' + name.replace(’-’, ')

SA very good introduction to thhasattr andgetattr ~ functions is given in [15].

88

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

263 if hasattr(self, fn):
264 getattr (self, fn)(name)

Listing 5.18: handler.py / 260-264 (Using Python’s introspection tools)

As we can learn from listing 5.18, in the case of an end tag, the method to bd oal&t be
nameddo _end _el enent - nane. In the case of a start tag, itéo _start _el enrent - nane.
Thereby, all dashes in the element’s hame are converted to undersénes the real work of
processing the compiler’s input is handled by individual methods, if theydafined. This is an
very elegant way which allows incremental developrhent

Although it would be possibléielxHandler does not check the structure of the input stream,
which is defined by the DTDmelx.dtd . It simply relies on correct syntax of the parsed docu-
ment. Using validating parsers, likenlproc , checking the syntax is done by the parser, and the
handler can concentrate on the actual work, creating a tree structursdidén thecmf module.
The following paragraphs will explain the basic steps. Neverthelessiutig of the source code
will be necessary to understand the handler.

When the tnexc” element starts, this is the root element of a menu description imtsglan-
guage, the handlertdo _start _melx method gets called, which create€mf object and stores

it in the member variablemf. This object needs to be filled with menu tables and those in turn
with menu lines and so on. When the end tag of the element is fetdbeeind _melx is called,
which assumes the object stored in tef member variable to be properly filled with the menu
hierarchy as described by the input document. After doing some “posegsing” of the created
structure there is nothing more to do by the handler. We will look later at witst‘processing”
exactly does.

The next interesting element to be handled tisp“menu Its arrival at the parser causes
do_start _top _menu to be called. In this method, thep -menu member variable gets as-
signed a tuple of two values, a string that uniquely references somethinthis icase a menu
table — and the current location in the input stream. Actually, we would like te sfdenu object

in the member variable, but we haven't got the menu table’s definition yetnévlee we cannot
reference an object, because its description still hasn’t been reatth stere a tuple instead of the
object. This tuple is called pending referencand has to be replaced by the real object later.

The methodslo_start _menu anddo_start _line go hand in hand with each other. The
first creates &Menu object and stores it in the member variableur _menu. Additionally, the
created object is also stored in the dictionampenus along with the location of its definition in
the source documendo _start _line creates MenuLine object with two pending references
and appends it to the currelienu object'smlines list — the curreniMenu object is referenced
with the __cur _menu member variable. When arfenu” element endsgdo_end _menu removes
the reference to the currektenu object.

do_start _line _format is similar to the menu” handling method. Under_cur _If a new
list is created and appended to thés dictionary. Child elements of dihe-format " ele-

®By speaking of incremental development we want to say that the seftwar be developed and tested in small
iterative cycles on real data. The full meaning of the term “incremeia¢ldpment” is explained in [16].

89

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

ment create instances of subclassdsoond append them tacur _If . do_end_line _format
simply destroys the reference to the current line format list holddar _If .

Another interesting method o _start _hfill . In the case of a non-zero specifiezbtint ”
attribute, it simply creates an appropridteString object and appends it to the current line
format list (_cur _If). In the other case, no object but the pure character is appendeddortiad
list, and additionally a reference to this line format list is appended to_tfee _with _hfills

list.

Having reached the end tag of theélx ” element, there is the following data gathered, which
still needs to be processed in some way.

e top _menu; a pending reference toMenu object regarded as the top-level menu table.
e cmf; aCmf object. ltsmenu member variable is stiNone.

e __menus; a dictionary ofMenu objects with the location of their definitions in the source
file. Further, eachMenu object'smlines member variable holds a list dflenuLine
objects. If these objecté¢s member variable is a tuple, it is a pending reference to a list
of line components. Also, if these objec@lbmenu member variable is a tuple, it is a
pending reference tolenu object regarded as a submenu.

e _Ifs ;adictionary of lists of line components. Each list is accompanied by the loaaition
its definition in the source file [the-format ” element).

o _Ifs _with _hfills ; a list of references to lists stored in thdfs dictionary. These
referenced lists contain an “hfill” which needs to be expanded.

do_end_melx , shown in listing 5.19, calls several methods which perform post primgesssks

on the above listed data. The names of the calls speak for themselves. Aatnblliyhe calls

to expand _hfills andfix _pending _refs are necessary. The others can be regarded as
optimization or error checking processing. After end melx returns, themf member variable
references a properly initialized data structure, which now can be gpassbecmf module to
generate the byte code.

274 |def do_end_melx (self, rname):

215 self.expand_hfills ()

276 self.concatenate_const_strings ()

277 self.check_line_widths ()

218 self.fix_pending_refs ()

279 if not self.has_errors():

280 self.check_for_endless_loops ()

Listing 5.19: handler.py / 274-280

90

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

5.2.3 The Controller

To combine the two layers into one application, the filk.py implements a command line
interface for the user and performs all necessary work to produaiesieed result using themf
and handler modules.

Parsing command line parameters is solely done withgigtept module from the standard
Python library. This module’'getopt function supports the “same conventions as the UNIX
getopt() function” [17]. It provides a standard behavior for reacting agdiastly specified
parameters and allows the application to keep the code for evaluating tmegbars small.

After callingparse _file , which results into a call to the first layer, the returri&uf object, if
notNone, is directed to generate the byte code, this is the invocation to the secondfi@yery-
thing goes alright, the byte code generation routine returns a list of byteg @&ith an appropriate
MemAllocator object. The object contains computed addresses of variables allocatbe fo
menu description, theirs synonyms, and some other information about Bapknding on what
the user specified at the command line, the byte code list ardéh®Allocator object are used
to produce the compiler’s outpukrite _c_header ,write _h_header , andwrite _binary

are responsible for this. Their implementation is pretty easy.

The most interesting part ohlx.py is the implementation gbarse _file . Python allows to
dynamically load modules, and this in turn allows the routine to be written for usedifiéiient
modules without the requirement of having all the modules installed. Only thwesteare going
to be used at runtime, are needed. If the routine is told to validate the inpuingod, it tries to
import 7 thexmlval module from thexmlproc 8 distribution. Then a parser object is created
along with an object of the clasgalMelxHandler . This object is registered to the parser,
and finally parsing is started. In the other case, when a non-validatirsgrpelass from the
standard Python library is used, the steps are the same with the excepticgtasttiating the
NonValMelxHandler class and importing the appropriate modules insteaard¥al

'import is Python’s term for loading a module into one’s own application.
8More information abouxmlproc can be found atttp://www.garshol.priv.no/download/software/xmlproc/].

91

Chapter 6

Conclusion

The goal of this work, to create a programming framework for writing ustrfiace applica-
tions targeted at embedded systems, and its realization have revealetiasygbainto different
domains of development. Design of binary data formats, understandingMhdethnology, de-
sign of compiler like programs, and the design of libraries as well as writingceacode for low
memory systems are only a few subjects addressed by this work.

6.1 Summary of Achievements

With mix/mex¢a complete rewrite and stable version of the original idea was createnlvdissas
a base for further development and improvements, and replaces itepssde MEL/MEX.

Extensive documentation to each part of the project was a secondgey, tand was successfully
fulfilled to help new developers understand these parts, quickly adapttthéheir own projects,
and possibly contribute tmix/mexadtself.

Giving the outcomes of this work to the world as Free Software is an importargtonke of the
mix/mexgroject. Although there may be good reasons for keeping a softwaredckosirce, the
advantages of Open Source and Free Softwarenfefmexare too significant to be ignored. On
the one hand, it helps attracting attention by the fact that programmersear¢oftook at and
change the source code to their own needs. On the other hand, itsawirénprovements by
individual programmers will be available to others.

6.2 Further Development

Although much efforts have flown in to the realized project, there is still emoogm for extend-
ing it or contributing to it. Here are some thoughts about what would be téssita have for the
mix/mexagroject. They are ordered by their level of importance.

92

CHAPTER 6. CONCLUSION 6.2. FURTHER DEVELOPMENT

e Availability. Currently, the project is not hosted on any server which alldassnload of
the sources. It would be essential to the success of the project to finddapdpce where
it can be made available to the public. Platforms lik&tg://www.berlios.de/] or [http:
l/sourceforge.net/], just to mention a few, would be preferable, as they are well known and
provide great support for developing Open Source and Free Seftwa

e Reducing library’s size. By surrounding all code dealing with an indizidine component
with preprocessor definitions likecCONFIGDISABLE_COVPONENT_NANE', it would be
possible to exclude this code from the library at compilation time. Thus the afiptica
programmer might be able to reduce the size of his application by excludiatjdnality
that is not needed.

e Configuration system. It would be nice to have a configuration systenmatitagion time
to let the application developer quickly choose what features to includearatude from
the library. GNU Autoconf/Automake would be a standard choice for exarhplgever, it
would require a UNIX-like environment.

e Optimization. As with each project there is still enough room for overall optititimaf the
whole project.

e Touchscreen interface. Theexdibrary currently uses only a keyboard interface as an input
device. In conjunction with a touchscreen it would be desirable to allow thetagap on
a menu line and letexcactivate it. Realizing this would concern only few changes to the
file mexc.c of mexds sources.

¢ Namespaces. Currentimix doesn’t support namespaces. The elements and its attributes
in the melxlanguage are not defined under a specific namespace. Introduangaurd
concern changes to some parts of thi& compiler and slight changes toelx.dtd . The
benefit of namespaces would be the possibility to enrich menu descriptionsiweitmation
from other applications without interfering withix.

¢ Installation. Currently, there is no installation script for thix compiler. It would be nice to
have a distribution script, possibly using the “distutils” (sk#gd://docs.python.org/dist/
dist.html]) to do a system wide or user local installation of the program and its modules.

e Graphics. mlx/mexcwas designed to work mainly with non-graphics displays. However,
as graphical LCD become cheaper and are increasingly used, it weulddirable to have
the concept ofix/mexalso with graphical features, like bitmaps and variable wide fonts.
Such extensions would probably be best not implemented as extensimhg/nwexdtself,
but as another branch of the project.

o GUI melxeditor. Having an editor with a graphical user interface tailored to creatiely
sources could ease the creation of menu descriptions and would takereviayrden of
learningmelx Platform portable toolkits like GTK+, QT, Tk, or wxWidgets are preferable

93

Appendix A

Utilized Software

With only a few exceptions, thalx/mexgroject and this documentation has been developed using
Open Source and Free Software exclusively. The following sectionshollv which programs
and libraries have contributed to the development of this project.

A.1 Development environment

The main development took place under the Debian 3.1 (Sarge) GNU/Lirstersywith OSt
certified Open Source software. Development of the DOS based simuéstdrden done under
the Microsoft Windows XP operating system.

As far as development tools are concerned, free programs in the medrifreg speech, not free
beer? have been preferred.

e The GNU C compiler, released under the GNU GPL [9], was used to compilnéxe
library, the curses and GTK+ based simulators. GCC is available for matigrpia. Its
official home page istttp://gcc.gnu.org/].

e For debugging purposes GNU GDB, a powerful debugger, has bsem It is released
under GNU GPL [9] and available fronhitp://www.gnu.org/software/gdb/gdb.html].

e To build native binaries for MS Windows with GCC, tools from the MinGW projeave
been used. This project is located http://www.mingw.org/] and partially released into
public domain, under the GNU GPL [9], and under the GNU LGPL [7].

e Development of the Palm OS based simulator was done under ug#reof and the
prc-tools available for GNU/Linux and MS Windows systems. Both projects are re-
leased under the GNU GPL [9]. Also needed was the Palm OS SDK VerdlpwHich is

1“Open Source Initiative (OSI) is a non-profit corporation dedicated anaging and promoting the Open Source
Definition for the good of the community, ...” as statedkty://www.opensource.org/].
2The exact phrase is “Don't think free as in free beer; think free aeim$peech.” and is given in [18].

94

APPENDIX A. UTILIZED SOFTWARE A.2. TYPESETTING AND DRAWINGS

not released under a license approved by OSI, but provided urelt?dhm OS software de-
velopment kit software license agreement” availableh&tpf//www.palmos.com/cgi-bin/
sdk40.cqi]. The presented license must be accepted to download the SDK.

e For development of the DOS based simulator the OpenWatcom C/C++ comuibirqbs
have been used. These are released under the terms of the Sybasé/&pem Public
License which is approved by the OSI. The web presentation of OperoWatan be found
at [http://www.openwatcom.org/].

e Python, a modern and very popular programming language, was used toniemplgemIx
menu compiler. The Python interpreter is released under a GPL-compatibisdiesmd
presented on the web ditfp://www.python.org/].

e Subversion, a revision control system, has been used to keep trabamdes during the
development of all parts of the project. It is released under an ApaSieAyle license,
which is given at the projects home page, which is locateltti:f/subversion.tigris.org/].

The following third party libraries — libraries that are not shipped with the meati@evelopment
tools — where involved in the development of some simulatorsnalxd

e mix optionally usesxmlproc , Python modules for parsing XML documents. It is re-
leased under a formal BSD-ish license and available frbttpj//www.garshol.priv.no/
download/software/xmlproc/]. It is also distributed as part of the “XML package for
Python” located athttp://pyxml.sourceforge.net/].

¢ GTK+, the GIMP toolkit, a library for creating graphical user interfadesised bygsim .
This library has been ported to many platforms and is released under theLGRU [7].
Its home page is located dttfp://www.gtk.org].

e csim is implemented using thecurses library. curses , the predecessor oturses
has a long history and actually is part of each UNIX-compatible system. Far imimrma-
tion onncurses see pttp://dickey.his.com/ncurses/ncurses.html] or [19].

A.2 Typesetting and Drawings

This document as well as the stand-alone versions offitsecand mix documentation were cre-
ated using teTeX [ttp://www.tug.org/teTeX/]), a TeX distribution for UNIX compatible sys-
tems which consists only of Free Software. However, the index of thisrdent) as produced
by the tools of the teTeX distribution, was customized by a small self-written Byphagram
(fixidx.py) which is distributed with this document’s sources.

All graphical drawings of this document has been created with InkS@ap®pen Source scal-
able vector graphics (SVG) editor which can export SVG to PostScriptdbfor use withATEX
documents. InkScape is released under the terms of the GNU GPL [9] awdilable from
[http://mww.inkscape.org/].

95

Appendix B

Source code

The printed edition of this document is supplemented by a CD-ROM with the scode for the
mix/mexgroject. Beside the sourcesmiexg milx, and the simulators, there are also included the
IATEX sources of this documentation and its compiled version in various formats.

The directory hierarchy on the CD-ROM is structured as follodist denotes the mount point
of the medium, thus there is no such directory on the CD-ROM.

dist/ root of the CD-ROM
bin/ pre-compiled versions of some simulators
gsim.exe a version of the GTK+ based simulator for use on Win32 platforms
dsim.exe a simulator for use on MS DOS platforms
psim.prc a simulator for use on Palm OS platforms

doc/ documentation directory
thesis.* compiled version of this document in PDF and PS formats
mexc.* compiled stand-alone documentatiomaéxcin PDF and PS formats
mix.* compiled stand-alone documentatiomaiik in PDF and PS formats
packed/ contains tar-gzipped source packages
src/ source code directory
csim/ sources for a curses bases simulator
dsim/ sources for a DOS based simulator
gsim/ sources for a GTK+ based simulator
psim/ sources for a Palm OS based simulator
mexc/ sources for thenexclibrary
mix/ sources for thenlx menu compiler
data/ test input files fomlIx compiler
docs/ IATEX sources for this document

96

Appendix C

GNU Free Documentation License

Version 1.2, November 2002
Copyright(©)2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this licenserdog, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other funcdimhaseful document
"free” in the sense of freedom: to assure everyone the effectieedm to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarilig ticense
preserves for the author and publisher a way to get credit for thek, wudrile not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative workshe document must
themselves be free in the same sense. It complements the GNU General Radrigel which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for freeaeftlvecause free soft-
ware needs free documentation: a free program should come with mamoaiding the same
freedoms that the software does. But this License is not limited to softwareaisart can be
used for any textual work, regardless of subject matter or whetherubikshed as a printed book.
We recommend this License principally for works whose purpose is instructiceference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that corgaintice placed
by the copyright holder saying it can be distributed under the terms of thés&é& Such a notice

97

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

grants a world-wide, royalty-free license, unlimited in duration, to use toat wnder the condi-
tions stated herein. TH®ocument”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressetyag” . You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into anothguéaye.

A “Secondary Section”is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Docutoghe Document’s
overall subject (or to related matters) and contains nothing that couldifalitly within that
overall subject. (Thus, if the Document is in part a textbook of mathematfscandary Section
may not explain any mathematics.) The relationship could be a matter of histariwaction

with the subject or with related matters, or of legal, commercial, philosophicétagtr political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Documentasedlender this License.

If a section does not fit the above definition of Secondary then it is natatldo be designated as
Invariant. The Document may contain zero Invariant Sections. If thaiDeat does not identify

any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Covexr diex
Back-Cover Texts, in the notice that says that the Document is releasked s License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may imost 25 words.

A “Transparent” copy of the Document means a machine-readable copy, representeaxtrimed f
whose specification is available to the general public, that is suitable fiminmg\the document
straightforwardly with generic text editors or (for images composed ofgixgneric paint pro-
grams or (for drawings) some widely available drawing editor, and thattede for input to text
formatters or for automatic translation to a variety of formats suitable for inpuktddaematters.
A copy made in an otherwise Transparent file format whose markup,senab of markup, has
been arranged to thwart or discourage subsequent modificationdbgrsda not Transparent. An
image format is not Transparent if used for any substantial amount bf fexopy that is not
“Transparent” is calledOpaque”.

Examples of suitable formats for Transparent copies include plain AS@ibut markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTé&hd standard-
conforming simple HTML, PostScript or PDF designed for human modificatBxamples of
transparent image formats include PNG, XCF and JPG. Opaque formatddmurioprietary for-
mats that can be read and edited only by proprietary word processaik4l, r XML for which
the DTD and/or processing tools are not generally available, and the reagbinerated HTML,
PostScript or PDF produced by some word processors for outppbges only.

The“Title Page” means, for a printed book, the title page itself, plus such following pagegas a
needed to hold, legibly, the material this License requires to appear in the tibe par works

in formats which do not have any title page as such, “Title Page” means thedaxthe most
prominent appearance of the work’s title, preceding the beginning ofatie &f the text.

98

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

A section“Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ intheolanguage.
(Here XYZ stands for a specific section name mentioned below, suthciaowledgements”,
“Dedications”, “Endorsements”, or “History” .) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XY Zrdot to this
definition.

The Document may include Warranty Disclaimers next to the notice which statahigLicense
applies to the Document. These Warranty Disclaimers are considered tolhaethdy refer-
ence in this License, but only as regards disclaiming warranties: anyiotpkcation that these
Warranty Disclaimers may have is void and has no effect on the meaning ti¢bisse.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially eononer-
cially, provided that this License, the copyright notices, and the licensgengaying this License
applies to the Document are reproduced in all copies, and that you astderaonditions whatso-
ever to those of this License. You may not use technical measures toatlostcontrol the reading
or further copying of the copies you make or distribute. However, you acagpt compensation
in exchange for copies. If you distribute a large enough number of sgpie must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and youintialy display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printeetgpof the Doc-
ument, numbering more than 100, and the Document’s license notice reqoives Texts, you
must enclose the copies in covers that carry, clearly and legibly, all @mger Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cowveh &vers must also clearly
and legibly identify you as the publisher of these copies. The front coust present the full title
with all words of the title equally prominent and visible. You may add other matemittie covers
in addition. Copying with changes limited to the covers, as long as they pectantitle of the
Document and satisfy these conditions, can be treated as verbatim copgihgr respects.

If the required texts for either cover are too voluminous to fit legibly, yausthput the first ones
listed (as many as fit reasonably) on the actual cover, and continuesttante adjacent pages.

If you publish or distribute Opaque copies of the Document numbering marel®0, you must
either include a machine-readable Transparent copy along with eacfu®papy, or state in or
with each Opaque copy a computer-network location from which the gametva@ork-using pub-

lic has access to download using public-standard network protocols deteriipansparent copy
of the Document, free of added material. If you use the latter option, you takestreasonably
prudent steps, when you begin distribution of Opaque copies in quantégstae that this Trans-
parent copy will remain thus accessible at the stated location until at leasteam after the last

99

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

time you distribute an Opaque copy (directly or through your agents or msjailEthat edition to
the public.

It is requested, but not required, that you contact the authors of dleerBent well before redis-
tributing any large number of copies, to give them a chance to provide ithlawupdated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under theitons of sections
2 and 3 above, provided that you release the Modified Version undeispty this License, with
the Modified Version filling the role of the Document, thus licensing distributiahrandification
of the Modified Version to whoever possesses a copy of it. In additiamnyast do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from thateoDibcument,
and from those of previous versions (which should, if there werelmnlysted in the History
section of the Document). You may use the same title as a previous version ifgheab
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entitiesesigdor authorship
of the modifications in the Modified Version, together with at least five of thecjpal
authors of the Document (all of its principal authors, if it has fewer thaa) fiunless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Versiore asilttisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacetite¢@ther copyright
notices.

F. Include, immediately after the copyright notices, a license notice givinguhic permis-
sion to use the Modified Version under the terms of this License, in the foomrsin the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections andresl Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to iteam stating at
least the title, year, new authors, and publisher of the Modified Versigivas on the Title
Page. If there is no section Entitled “History” in the Document, create one Gtiuantitle,
year, authors, and publisher of the Document as given on its Title Pageadigean item
describing the Modified Version as stated in the previous sentence.

100

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

J. Preserve the network location, if any, given in the Document for pabliess to a Trans-
parent copy of the Document, and likewise the network locations given in tieeirbent
for previous versions it was based on. These may be placed in the “His>ion. You
may omit a network location for a work that was published at least foursylegfiore the
Document itself, or if the original publisher of the version it refers to gipermission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pres¢he Title of the
section, and preserve in the section all the substance and tone of etlehammntributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in tikeartd in their titles.
Section numbers or the equivalent are not considered part of thersgttés.

M. Delete any section Entitled “Endorsements”. Such a section may not bel@tcia the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to comiligtie with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendieggjtialify as Secondary
Sections and contain no material copied from the Document, you may at ptian aesignate
some or all of these sections as invariant. To do this, add their titles to the Imstaofdnt Sections
in the Modified Version’s license notice. These titles must be distinct fronotmgr section titles.

You may add a section Entitled “Endorsements”, provided it contains nothirgniolorsements of
your Modified Version by various parties—for example, statements ofrpg@mw or that the text
has been approved by an organization as the authoritative definitiortasidasd.

You may add a passage of up to five words as a Front-Cover Text, aagbage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modifiegi®e. Only one pas-
sage of Front-Cover Text and one of Back-Cover Text may be aolgléar through arrangements
made by) any one entity. If the Document already includes a cover tetlidsame cover, previ-
ously added by you or by arrangement made by the same entity you are actiogdpalf of, you
may not add another; but you may replace the old one, on explicit permigsiorthe previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this Licemegogrmission to use their
names for publicity for or to assert or imply endorsement of any Modifiediva.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this é¢jaerder the
terms defined in section 4 above for modified versions, provided that ydudm in the combi-
nation all of the Invariant Sections of all of the original documents, unmedjifind list them all

101

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

as Invariant Sections of your combined work in its license notice, and thapseserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multipiiédéInvariant
Sections may be replaced with a single copy. If there are multiple Invarianio8s with the
same name but different contents, make the title of each such section ugigddibg at the end
of it, in parentheses, the name of the original author or publisher of thabsef known, or else
a unique number. Make the same adjustment to the section titles in the list of iv&eietions in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the varariginal
documents, forming one section Entitled “History”; likewise combine any sectontitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must ddletedions Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documentse@leader this
License, and replace the individual copies of this License in the variotsndents with a single
copy that is included in the collection, provided that you follow the rules of thignse for

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distributavtdadlly under this
License, provided you insert a copy of this License into the extractedndet, and follow this
License in all other respects regarding verbatim copying of that dodumen

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and @midigmt documents
or works, in or on a volume of a storage or distribution medium, is called arréggte” if the
copyright resulting from the compilation is not used to limit the legal rights of tmemilation’s
users beyond what the individual works permit. When the Document isdedlin an aggregate,
this License does not apply to the other works in the aggregate which reentselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copieg @dlcument, then if
the Document is less than one half of the entire aggregate, the Documengs Taxts may be
placed on covers that bracket the Document within the aggregate, detlieoaic equivalent of
covers if the Document is in electronic form. Otherwise they must appearimeg covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transtadibthe Docu-
ment under the terms of section 4. Replacing Invariant Sections with tramslagquires special

102

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

permission from their copyright holders, but you may include translatibasroe or all Invariant

Sections in addition to the original versions of these Invariant Sectionsméy include a trans-
lation of this License, and all the license notices in the Document, and angifaDisclaimers,

provided that you also include the original English version of this Licemskthe original ver-

sions of those notices and disclaimers. In case of a disagreement béhsdeamslation and the
original version of this License or a notice or disclaimer, the original vargidl prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications™;History”, the
requirement (section 4) to Preserve its Title (section 1) will typically requienging the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document excepkjaressly provided
for under this License. Any other attempt to copy, modify, sublicense tilaite the Document
is void, and will automatically terminate your rights under this License. Howeaaties who
have received copies, or rights, from you under this License will ag¢ ltheir licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions oNheRBee Documentation
License from time to time. Such new versions will be similar in spirit to the pressnsion, but
may differ in detail to address new problems or concerns. See http://wwwrgfeopyleft/.

Each version of the License is given a distinguishing version numbere IDtftument specifies
that a particular numbered version of this License “or any later versipplies to it, you have the
option of following the terms and conditions either of that specified versiatf any later version

that has been published (not as a draft) by the Free Software FoundHtibe Document does
not specify a version number of this License, you may choose any wezsér published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of thededa the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation Licease, V
sion 1.2 or any later version published by the Free Software Foundatibm;ne
Invariant Sections, no Front-Cover Texts, and no Back-Cover Téktsopy of the
license is included in the section entitled “GNU Free Documentation License”.

103

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

If you have Invariant Sections, Front-Cover Texts and Back-Coexts, replace the “with... Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Covexts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other caatibimof the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, wemenend releasing these
examples in parallel under your choice of free software license, suttieaGNU General Public
License, to permit their use in free software.

104

References

[1] Niall Murphy. Graphics Libraries for Embedded System@vailable from http://www.
embedded.com/97/feat9708.htm).

[2] LinuxDevices.com. Embedded Linux Graphics Quick Reference Gui@zcember 2005.
(Available fromhttp://www.linuxdevices.com/articles/AT9202043619.html).

[3] Wikipedia. Endianness December 2005. (Available frofttp://en.wikipedia.org/wiki/
Endianness).

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilerbau Teil 1 Oldenbourg Wis-
senschaftsverlag GmbH, Rosenheimer Strasse 145, D-818itHdn, 1999.

[5] Elliotte Rusty Harold and W. Scott MeanXML in a Nutshell O’Reilly & Associates, Inc.,
2nd edition, 2002.

[6] Wikipedia. Menu (computing) December 2005. (Available frotmtp://en.wikipedia.org/
wiki/Menu_%28computing%c29).

[7] Free Software FoundatioiNU Lesser General Public LicensEebruary 1999. (Available
from http://www.gnu.org/copyleft/lesser.html).

[8] Hubert Hogl. MEX - The Menu Executor April 2001. (Available fromhttp://www.
fh-augsburg.de/~hhoegl/da/da-22/mex.html).

[9] Free Software FoundationGNU General Public License June 1991. (Available from
http://www.gnu.org/copyleft/gpl.html).

[10] Hubert Higl. A ‘Menu Language’ introduction May 2004. (Available fromhttp://www.
fh-augsburg.de/~hhoegl/da/da-22/mel.html).

[11] Huber Higl. The Portable-Menu-Format May 2004. (Available fromhttp://www.
fh-augsburg.de/~hhoegl/da/da-22/mel.htmI#SEC23).

[12] Eric Raymond.Jargon File 4.4.7 December 2003. (Available frommttp://catb.org/~esr/
jargon/).

[13] Wikipedia. Optimization (computer sciencePecember 2005. (Available frommtp://en.
wikipedia.org/wiki/Optimization_%28computer_science%29).

105

REFERENCES REFERENCES

[14] Guido van RossumPython Tutorial 2005. (Available frormhttp://docs.python.org/tut/tut.
html).

[15] Mark Pilgrim. Dive into Python Apress, July 2004. (Also available fromttp://
diveintopython.org/).

[16] Wikipedia. Iterative and incremental developmemecember 2005. (Available frommttp:
/len.wikipedia.org/wiki/lterative_development).

[17] Guido van Rossumget opt — Parser for command line optionSeptember 2005. (Avail-
able fromhttp://docs.python.org/lib/module-getopt.html).

[18] Sam Williams.Free as in FreedomO’Reilly, Mai 2002. (Also available fronhttp://www.
oreilly.com/openbook/freedom/).

[19] Pradeep Padal&lCURSES Programming HOWT@005. (Available fromhttp://www.tldp.
org/HOWTO/NCURSES-Programming-HOWTOY/).

106

Index

A
ac file. ... 47
ah file...........o i 47
additional keys 10, 13, 14, 16-18, 25
alignment.......... seepadding zero byte
application, definitionof............... 4.
ASCI ... T3
assert function............... 234, 25
asserth file....................... 24
automatic top-level return........ 136, 50
automatic update seeupdating
B
big-endian 48, 584
byteorder seeendianness
ByteListEmitter class..... 84, 85, 86
C
C o 11
characterreference.................. 36.
checkbox......................... 61ff.
classes
ByteListEmitter ~ 84, 85, 86
Cmf.................. 85, 87, 90, 91
CmfError ... 84
Exception 84
Le ..o 63, 687, 90
LcCheckbox 63
MelxHandler 64, 6587, 88, 89
MemAllocator 85, 86, 91
Menu.................. 8586, 89, 90
MenuLine 86, 89, 90
NonValMelxHandler 87,91
ValMelxHandler 87, 88, 91
CMF............. 5-7, 2848ff., 61, 69-87
Cmfclass................. 85, 87, 90, 91
cmfc file.............. 690

107

cmf.h file................. 28-3(0¢0, 71
cmfpy file................... 63, 6B4
cmf first _mtable function.....70,71
cmf_init function............ 70,71, 77
CMEINIT -BADBYTE.ORDERIefine.. 29
CMEINIT _BADID define............ 28
cmf_init _ram function....... 70, 72,77
CMEINIT _UNSUPPORTEMERSIONdefine
29
cmf _Ilcomp _length function........72
CMEMAJORVERSIONdefine 2971
CMEMINORVERSIONdefine 2971
cmf _mline _lcomp function.......... 71
cmf_mline _next function........... 79
cmf _mline _prev function........... 79
cmf _mtable _mline function..... 71,79
CmfError class.................... 84
Compact Menu Format......... seeCMF
compiler 4,23, 24, 36,71, 80,92
configuringmexc. 24
COPYINGhile ... 10, 34
csimsimulator........................ 7.
D

dc _open _mtable function........ 78, 83
debugger............ seeGNU debugger
defines

CMEINIT -BADBYTEORDER... .29
CMEINIT BADID
CMEINIT _.UNSUPPORTEMERSION

29
CMEMAJORVERSION. 29,71
CMEMINORVERSION........ 29,71
DQOBLINK_DRAW. 76, 81, 82
DOBLINK_ERASE............ 76, 82
LCTYPE* ... s 70

INDEX INDEX
LCTAG* i 70 enable value..... seedynamic menu lines
LDTAG* ... 70 enable value, definitionof 51
MFPKEYNONE........ 22,26,79, 83 endianness................4,29,648,50
MFPKEYNUMPAD 23 big-endian................. 48, 584
MFPKEYQUIT_MEXCLOOR23, 29, 83 little-endian 48, 584

definitions Exception class................... 84

application....................... 4.
editstate. 14
enablevalue 51
headerline...................... 11
horizontal cursor 14
line component................... 8.
MENU. ...it i 8.
menuline........................ 8.
menutable....................... 8.
pending reference 89
relative pointer.................. 53
submenu. ... 8.
direction keys....... 10, 13, 14, 16-18, 33
disp _context _t structure.......... 75
disp _draw _hdr function.......... 8081
disp _draw _hdr _info function...... 81
disp _draw _mline function....... 8182
disp _draw _mlines function..7581, 82,
83
display accessing routines........ 20, 28
display context....... 2&/5, 77,78, 81, 83
display layout....................... 11
DQOBLINK _DRAWefine 76,81, 82
DQOBLINK _ERASHlefine 76, 82
Document Type Definition...... seeDTD
DOM. .. 88
dsimsimulator 7.
DTD.......ovviine 3435, 61, 62, 87, 89
dynamic memory allocation........... 6.
dynamic menulines 387, 79, 86
E
editfunction 83
edit state, definitionof 14
edit _cur _mline function........ 82,83
embedded system1, 3, 6, 7, 10, 35, 73, 79,
92
examples ... 1.

Extensible Markup Language . . seeXML

F
files
AC a7
ah ... a7
assert.h 24
cmf.C o 690
cmf.h 28-3070, 71
cmfpy ..o 63, 614
COPYING...........oiit 10, 34
handler.py 64, 6587
Makefile 24, 32
Makefile.win32 32
mconfig.hl 25
melx.dtd 34, 35, 6265, 89, 93
mexc.c 69,74, 75, 79, 80, 82, 93
mexc.h 28, 30
mfpkey.hl 22
mlcd.h 20
MIX.PY e a1
mtypes.h 28
mutils.c ... 73
nonvalhandler.py 87
pstring.c 72
string.h ... 25
valhandler.py 87
flash.......cccoiiiii 126
flip _switch _bit function.......... 74
Free Software............. 3, 392, 93-95
Free Software Foundation......... 97ff.
FreeBSD 6,32
ftorstr function................... 74
functions
assert ... 2324, 25
cmf first _mtable 70, 71
cmf_init 70,71, 77
cmf_init ram...........70,72,77

108

INDEX INDEX
cmf_lcomp _length 72 strecpy .o 23, 25,73
cmf_mline _comp 71 strlen ... 23,25
cmf_mline _next 79 utorstr ... 73
cmf_mline prev 79
cmf_mtable _mline 71,79 G
dc_open _mtable 78, 83 g-cur _dc variable......... 75,78,79, 81
disp _draw _hdr 8081 g-cur _dc_idx variable........ 75,78, 79
disp _draw _hdr _info 81 g.cur lcd _line wvariable............ 81
disp _draw _mline 8182 g-cursor _visible variable........ 76
disp _draw _mlines ...75,81 82, 83 gdcvariable.................... 75,78
edit cur mline 82 83 g-do_blink variable............. 75, 82
flip _switch bit 74 g-editing variable.............. 76, 82
ftorstr ... 74 g-led cols variable............. 7,82
get KeY ..o, 79, 83 g-lcd _lines variable............... 7
get _micd cols 21 22 25 77 g-update _delay variable....: 77,81, 82
get _micd _lines 21,22, 77 GCC............... seeGNU C compiler
get switch bit 74 get key function................ 79,83
godc_back 78 get .mlcd cols function.. .21, 22, 25, 77
goto _submenu 78 get _mlcd _lines function..... 21,22, 77
goto top menu............. 78,83 get _switch _bit function........... 74
MEMCPY. -+« e e e eeeeeeeeaaenn 73 ggsimsimulator 32
MeMMOVEoveenennn.. 73 GNU C compiler............. 23-25, 804
mexc_enable _mline 30 GNU debugger..................... 24
mexc_init 28 29, 31, 77, 83 GNU Free Documentation License . 97ff.
mexc_loop 2329, 30, 31, 83 GNU Lesser General Public License. .10.
mexc_mline _next 79 GNU/LINUXovveeeeeens 6,7,32,94
mexc.mline _prev 79 go_dc _back function................ 78
mexc_mtable mline79 goto _submenu function............. 78
mexc_redraw 30, 78,80 goto _top _menufunction......... 78,83
mexc.set callback _handler .29 graphical library 3.
mipkey get 22 26, 79 gsim simulator 81, 32,47
mlcd clrchr 20, 27 GTK+. .. 6,31, 325
micd clrin - 20, 82 H
micd _cu _gotoxy 20 ,
micd cuoff 20,76 handler.py f||_e... """"""" 64, 6557
mied cuon .. 20’ 76 hegder line, deﬁm'uonI o.f. 11
micd :inv;artln 21: o5 horizontal cursor, definitionof 14
micd _wrchrxy 21 |
micd _wrstrxy —.............. 21,82 INSPECtOr, 3
micd wrstrxymax —............. 21 Intel 32-bit platform 23
msleep ... 23 Intel 8088 processor............. 7,24,25
pStr COPY ... 3 Intel architecture 24
pstr to r._cstr 73
storstr ... 73 K

109

INDEX INDEX
keyboard.......................... 101 MEX.o 1,2,3,7,92
accessseemfpkey _get function MEXC. o v vttt et @,0ff.
additional keys . .10, 13, 14, 16-18, 25 mexc.c file...... 69,74, 75, 79, 80, 82, 93
direction keys...10, 13, 14, 16-18, 33 mexc.h file...................... 28, 30
mexc_enable _mline function....... 30

L
Lcclass.................... 63, 687, 90
Ic t structure 71
LC_TYPE* defines.................. 70
LcCheckbox class..................\ 63
LCD. .3, 6,10, 11, 20, 32-35, 38, 42, 46, 76

SIZES .ot 10
LCTAG* defines.................... 70
LDTAG* defines.................... 70
LGPL .. 10
license........cooviiiii.. 3,10, 97
line component, definitionof........... 8.
liquid crystal display seeLCD
LiSp . 34
little-endian 48, 584

M
M-Language..................... 34,61
macros

PSTRLEN...................... 72

PSTRSTR. ... 72

PUT.CURSOROFF............ 76, 83

PUT.CURSORON............. 76, 83
mainloop............... seemexc_loop
Makefile file................... 24, 32
Makefile.win32 file.............. 32
mconfig.h file..................... 25
MEL...........oooviiiiit 1,2,3,7,92
melx.dtd file...... 34, 35, 6265, 89, 93
MelxHandler class.... 64, 6537, 88, 89
MemAllocator class......... 85, 86, 91
memcpyfunction.................... 73
memmovdunction................... 73
memory requirements............... 23
Menuclass................. 886, 89, 90
menu line, definitionof................ 8.
menu table, definitionof............... 8.
menu, definitionof.................... 8.
MenuLine class.............. 86, 89, 90

mexc_init function28, 29, 31, 77, 83
mexc_loop function.... 2329, 30, 31, 83

mexc_mline _next function.......... 79
mexc_mline _prev function.......... 79
mexc_mtable _mline function....... 79
mexc_redraw function........ 30, 78,80
mexc_set _callback _handler 29
mfpkey.h file....................... 22
mfpkey _get function......... 22, 26,79
MFPKEYNONElefine 22, 26,79, 83
MFPKEYNUMPAD defines.......... 23
MFPKEYQUIT_MEXCLOOPdefine 23, 29,
83
MINGW ... 334
ml _submenu_ofs variable........... 72
mlcd.h file......................... 20
mlcd _clrchr function........... 20, 27
mlcd _clrin function............ 20, 82
mlcd _cu _gotoxy function........... 20
mlcd _cu _off function........... 20, 76
mlicd _cu _on function............. 20,76
mlcd _invertin function........ 21,25
mlcd _wrchrxy function............. 21
milcd _wrstrxy function.......... 21,82
mlcd _wrstrxymax function......... 21
mix.py file......................... 91
Motorola DragonBall VZ 7,24
MSDOS.......... 7.
MSWindows.................. 6, 32,94
msleep function.................... 23
mtypes.h file....................... 28
mutils.c file......... 73
N
NAMESPACESo vt e iiiee e eees 95,
navigation
throughamenu.............. 13 14
throughamenuline 14
navigation character 12

110

INDEX INDEX
nonvalhandler.py file............ 87 Size program..................oun 23
NonValMelxHandler class..... 87,91 sizeof operator.................... 48
SIZES . 10
O soft-button....................... 19, 45
object orientation.................. 5.84 storstr function 73
OpenSource B, 94 strcpy function.............. 23 25,73
OpenWatcom C/C++ compiler........ 25 stringh file....................... 25
operating systems strlen function................. 23,25
FreeBSD..................... 6, 32 structures
GNU/LINUX.............. 6,7,32,94 disp context t............... 75
MSDOS ... lc .t T
MS Windows............... 6,32,94 submenu, definitionof 8.
PalmOS 7,94
T
_ P The GIMP toolkit seeGTK+
padding zero byte ... 49,50-53,86 gee ...l 8 72, 84,89
PalmOS.......................... 7,.94
password input field........... 13, 14, 26 §]
pending reference, definition of 89 updating 39, 53,77, 81, 82
periodical update seeupdating utorstr function................... 73
pkg-config program............... 32
psimsimulator 7. \
pstr _copy function................. 73 valhandler.py file................ 87
PSTRLENMACIOovvvvnn.. 72 ValMelxHandler ~ class...... 87,88, 91
PSTRSTRMACIOcvvveeann.. 72 variables
pstr _to _r _cstr function........... 73 geur dc............. 75,78,79, 81
pstring.c file..................... 72 g-cur dc.dx 75,78, 79
PUT.CURSOROFFmacro......... 76, 83 gcur Jcd _line 81
PUT.CURSORONmMacro........... 76, 83 g-cursor .visible 76
Python.........cooviineenn... 2,561 gdc ... 75,78
gdooblink 75, 82
R gediting 76, 82
RAM...8, 28, 37, 39, 41, 48, 51, 63, 70, 77 g_ICd cols ..., 77, 82
read-only memory.................. 6,.8 glcd lines 77
relative pointer, definitionof.......... 53 g.update _delay 77,81, 82
ROM. ... 8. ml submenu ofs 72
S w
SAX . e 61, 638 Windows _______________ seeMS Windows
SimUIa.tor 6,7 writable MEeMOrYcovennn... 8, 29
CSIM. o e 7.
dsim........... i 1 X
ggsim ... 32 XML ... 5, 34-36, 62, 64, 84, 87, 88, 92, 95
gsim.................... &1, 32, 47 Document Type Definition. . seeDTD
PSIM . 1 DOM ... 88

111

INDEX INDEX

DTD............ 3435, 61, 62, 87, 89
Namespaces.ccovveenn.. 95,
SAX 61, 6488

112

