MLX - Menu Language Xml

Petr Novotnik

December 19, 2005

Abstract

This document describes thax byte-code compiler v0.5, its input languagelx“Menu
Language Xml”, and also its generated output CMF “Compaativieormat” v0.4.

Contents

1 License

2 Background

3 Bird's-eye view

4 Requirements

5 Introduction to melx

6 Command line options

7 CMEF - Compact Menu Format
8 m2melx.py

9 Writing extensions

10 melx.dtd

14

16

30

30

34

1 License

mix is Free Software provided under the terms of the GNU General Public 48c@BPL). The
file COPYI NG that is distributed witimlx, contains a copy the GNU GPL. It can also be retrieved
from the web at atfjt t p: / / www. gnu. or g/ copyl eft/gpl . ht m].

2 Background

The idea ofmlx has began with the M-Language by Hubert Hégl. In his introduction to the M-
Language he writes:

“The M-Language is a notation for describing menu-directed user icesfahich are
to be displayed on small LCD-panels (16x4 or 20x4). ML independentgrilges a)
menu hierarchy and b) the contents of each menu line. The menu line corateris ¢
constructed by using many different building blocks, e.g. strings, intégdields,
switches, options, soft functions keys flexible horizontal whitespaderaany more.
ML ML was designed to fit the needs for embedded system design. A corfiler
ML written in Python generates a block of tagged binary data which is salagtng
and can easily be included into ones own embedded application.”

With melxthe M-Language’s intention doesn’t change in any way. In faetixand its compiler,
mlx, is just a rewrite with some improvements of Mr. Hogl's work. The main chanteeiformat
of the language. While the M-Language looks a little bit like a Lisp programekfile is an
XML document which must validate against tirel x. dt d — this DTD is listed later in section
10. Looking closely at both languages, we will notice that there is little diffezebetween them
in structure.

3 Bird's-eye view
As first, let’s look at whatnlxis for and how we can use it.

1. Firstly, we will create a description of a menu interface which is intendea tdisplayed
on some small LCD-panels connected to an embedded system. To define thaieran
chy we can use our favorite editor. Then we can use programs fikgr oc_val 2 for
validation to be sure the structure of the input documemitois valid.

2. Having the menu description, we will ugdx to compile it into a compact binary format.
By defaultmlIx produces two files.. h anda. c.

Hubert Hogl; ht t p: / / www. f h- augsbur g. de/ ~hhoegl / da/ da- 22/ mel . ht m]
2This program comes with theyt hon- xm package found ahft t p: / / pyxmi . sour cef or ge. net/].

3. Now the generated C file can be compiled and linked to an interpreter andému display-
ing program.Together with thealx compiler an interpreter library has been written which
can navigate through the menu and invoke callback functions. More inframeboutmexc
can be found in its documentation.

To understand whynlx can be so useful in conjunction with an interpreter, imagine we have an
embedded system with an LCD connected to it and want to present a menu usetheNot
using mlx, we would probably write a not trivial assembler or C program which walddhe
displaying and navigation through the menu. When we create another syittem completely
different menu structure but the same look and feel ... why should \ite amother assembler or

C program, why not use one library with a defined set of functionality arg iomplement the
system dependent functions? Exactly this is the idea behind the conceybt ahd a byte code
interpreter. As indicated in the above listed points, all we have to define is the steicture and

the rest is more or less already done.

There is one thing to note. The design of the byte code, the compiler, anda¥idqa mexc
interpreter is driven by the idea that the byte code itself is placed in a rdgdacessible memory
region. Another read-write accessible memory region must be available Wieecurrent state of
the menu is stored. However, both regions are separated from each othe

4 Requirements

mixrequires a standard Python distribution of version 2.3 or higher. If ilkegdnixto validate the
source files, than pr oc modules, which are part of theyt hon- xm 2 package, are needed.

5 Introduction to melx

melxis the language which thalx compiler understands, it describes a menu in its full hierarchy.
Simply spoken, the language is a predefined set of elements and attribgdized in XML
format. The exact structure of a validexcfile is defined by the Data Type Definition (DTD)
listed in section 10.

Let’s step through a minimal menu definition to show what the basic elementscavehahamelx
file looks like.

1 <?xm version="1.0" encoding="US-ASCl |’ ?>
2 <! DOCTYPE nel x SYSTEM ' nel x. dtd’ >

As in each XML document, the first line must always be givemcodi ng can of course have an-
other value. But botmlxandmexccurrently do not support multibyte characters. Dot ype
declaration in the second line is optional, but important for the validation whistrasigly rec-
ommended to help finding errors. The system identifier, that comes afteeyinoid SYSTEM

3The home page of this project is &tt[t p: / / pyxm . sour cef or ge. net/].

must be the path of a file holding the DTD definition. If this path is relative it isoliesl of
the directory thanelxdocument is located at. Thus, in this exampie] x. dt d and themelx
document must be in the same directory.

As stated by theloct ype declaration, the top level element has toneg x. The DTD says that
amel x element must have one child element caliescri pti on, at least one child element
with the namarenu, and zero or more children calléd ne- f or mat in this order.

3 <mel x>

4 <descri pti on>

5 <del ay-to-top val ue="120'/>

6 <del ay- password val ue='10"/>

7 <del ay- hel p value="2"/>

8 <top-nenu ref="mtop />

9 </ description>

10 <menu id="mtop’ title="First Menu >
1 <line ref="I-line-01"/>

12 </ menu>

13 <line-format id="1-1ine-01" >

14 <string value="This is a string.’ />
15 </line-formt>

16 </ mel x>

The above shown code satisfies the requirements. First there conaessttiei pt i on, then all
thenenus, and finally all the i ne- f or mat s. Let’s look at each component in more detail and
explain their meanings.

Note: If not otherwise mentioned the following restrictions apply.

e Most elements are empty. This means that they don’t contain characterrdatepele-
ments, and thus, can be shortly writtenadement ...»# instead ok.element . > </element-.

e Strings and passwords cannot be longer than 255 characters. Mutthatacters are cur-
rently not supported.

e Values ofi d attributes must be unique within the document. No otleattribute can have
an already used identifier.

¢ All values which are expected to be numbers must be in decimal or in heradewtation.
Numbers in hex format must begin witBX”.

e The characters ‘&', £’ and >’ cannot be entered directly, but must be coded with their
predefined entities which are ‘&’, ‘<’, and ‘>’. FurthemIxdoes not parse strings
for '\ x’ sequences like the C compiler. Nevertheless, a similar construct already i
XML and is called “notation for character reference” (e.g. ‘ÿ’).

5.1 Description element

Thedescri pti on element consists of four child elements which must be defined in the order
shown in the example above. The following list explains their meanings.

delay-to-top ... must be empty. It must have exactly one attribute with the naaleue that
holds numbers within the range of 0 to 255. Any other content for this attribotmsidered
as an error. The intention of this information is to give the number of secdtetsnhich
the menu displaying program should return to the top-level menu table if thensydles.
A zero defines the infinity, in other words, the program should nevenrétuhe top-level
menu table automatically.

delay-password. .. must be empty and have exactly one attribute nanag¢die. That attribute’s
content must be a number in the range of 0 to 255. It declares the numbecaids to
wait, while the system idles, before aborting a password request. Inwtrds, when the
user is about to enter a password, but waits for more Xsatonds, the interpreter should
abort the input.

delay-help ... has the same format as both previous elements. Its meaning is to defimdarnu
of seconds after which a displayed help string has to disappear.

top-menu .. .is also an empty element with one required attribute naneédwhich references
a menu table to be displayed at the top level. The valueedéf must be the same as ad
value of amenu element.

5.2 Menu element

menu elements define collections of lines which are to be displayed as a menu tatgds lddist
of valid attributes of arenu element.

id must be defined for each menu element and is a unique identifier so a mengaahbe
referenced.

title is an optional attribute and defaults to the empty string. It is the title of the menu taih w
the interpreter may display somewhere on the screen.

password can be given to protect the menu table. A user should be allowed to view this men
table only if he knows the correct password.

Eachnmenu element must have at least one child. There are two elements which cabitberar
mixed.

line This element simply references the definition of an advanced menu liner &hattribute
must therefore be identical with thel of al i ne- f or mat element. The optionalubrenu

attribute can reference a menu table to be entered when the user tells thestatetigpdo
so.

Dynamic menu lines can be implemented through the optional attrdnaél e- vhane.
It takes a valid C identifier which will be available in the generated headerriideisa
synonym for the address of an allocated byte in RAM. This byte denotetheththe menu
line is currently enabled or not. Enabled menu lines behave normal, whildetisaienu
lines should be grayed out and should not respond to user eneexs.for example, doesn’t
display disabled menu lines at all.

const-string-line This element was introduced to be a handy shortcut for:

<line ref="sonme-id />
</ menu> <!-- end of a nenu -->

<line-format id="some-id >
<string val ue="sonme-string />
</line>

Thus, aconst - st ri ng-1i ne does not have aef attribute, butval ue instead. The
string defined througkial ue will be the only thing to be displayed in the menu line, and
it will be constant. Read about the string line component to learn more abostant
strings. Aconst-string-Iine element has the same optional attribusegonmenu
andenabl e- vnane with the same meanings a$ ane element. Additionally, @l i nk
attribute is understood and causes the displayed string to blink.

5.3 Line-format element

The element i ne- f or mat is the description of the structure of a single menu line. A menu
line consists of at least one line component — the components are distusse@tbment. The
order of the components in which they appear in a line is defined by the threleare defined in

al i ne-f ormat element. There is nothing exciting about the element. All it must haveiiglan
attribute with a unique identifier so the line descriptor can be referenced.

5.4 Line components

Finally, let’s turn to the small entities calletire components There can be as much line com-
ponents in each menu line as we want, however, we have to consider thatete to fit into a
single line on the LCD. Each line component needs some space on the displayuch space it
actually consumes, is finally determined by the interpreter or the progranhabéas the drawing
on the device. Nevertheless, we will give a length for each line componanthi interpreter is
encouraged to reserve. Fortunately, thexcinterpreter does respect our proposals.

5.4.1 Common attributes

There are optional attributes which are supported by almost all currenthginemted line com-
ponent elements, so let's discuss them first. If not otherwise stated limaciomponent element
has the following attributes with an appropriate meaning and default value.

blink This attribute must be either 1 or 0. Any other value is considered to be @mn it is set
to 1, then the line component is assumed to blink with a fixed interval on the disphay
interval is defined by the interpreter and cannot be set byniikeompiler. Default: 0.

edit Also this attribute can hold either 1 or 0. If set to 1, the interpreter shouldge@ way of
allowing the user to change the value of the line componentnidelibrary, for example,
provides editing of all components with a 5-button keyboard. Additionallyjriterpreter
library is assumed to call a custom callback handler to notify the applicatiorcbfiage
when the user finished editing the component. For some line components ittdnake
sense to declare them non-editable. Default: 0.

update If a user changes the value of a component, then the library will updategpiayl But
what happens if a program code (e.g. a callback or a parallel threéadpes the value?
The program code doesn’t have to know about a display at all, butitiege needs to be
reflected on it. Therefore, we can tell the library whether it should upaatemponent
periodically and how often it should do so. This attribute holds a number vadatihes the
seconds to wait before the current value of the component shoulditmwme. The number
must be between 0 and 255, both values including. A zero cancels thissfeatd in simple
words, it meansdon't periodically update Default: O.

Note: It doesn’t make sense to define apdat e value other than zero without specifying
thevnane attribute. Withoutvnane, an application won't know where a component’s
current value in RAM is and, thus, won't be able to access and chaegeuthent value.
Themlx compiler checks for that and prints a warning.

vhname The current value of a line component is always stored somewhere in. FA#location
of the memory block is computed during compilation of thelxsource. To make these
memory blocks accessible to an application which maybe linked to an interpretaylib
and which does not know about the byte code (the addresses are thiere), mix writes
the addresses to a generated header file as ‘#dedime addressvherenameis substituted
with the value of thevnane attribute andaddresswith the computed address. In addition,
mix allocates a memory block where the address of a callback handler is sidnedn-
terpreter library is assumed to call this handler after the user has editedpprent. The
address of the memory block where the routine’s address is stored fjrexide the header
file under the nam&CALL_' + vhame so an application is able to register custom callbacks.
As vnameis used in a C header file, its value must be a proper C identifierchecks for
that. Default: the empty string.

5.4.2 Integer

An i nt eger element defines a component that displays several types of integer rsuniiee
pending on thd ype attribute, the data type, the value range, and the displaying width differ.

<integer type="dd value="42" edit=1/>

type The required ype attribute of this element determines some further details about the com-
ponent. Thebytescolumn in the following table shows the number of bytes the integer
is stored in (this is the memory block available uns@ane). The charscolumn gives
the number of characters needed to display the component. The other sahould be
self-explanatory.

type bytes interpretation value-range chars comment
dd 1 unsigned 0..99 2
ddd 1 unsigned 0..255 3
hh 1 unsigned 0.. OXFF 2 hex
sdd 1 signed -99 .. +99 3 sign
sddd 1 signed -128 .. +127 4 sign
DDD 2 unsigned 0..999 3
DDDD 2 unsigned 0.. 9999 4
DDDDD 2 unsigned 0.. 65535 5
HHHH 2 unsigned 0 .. OXFFFF 4 hex
sbbb 2 signed -999 .. +999 4 sign
SDDDD 2 signed -9999 .. +9999 5 sign

value This is the default value of the integer component. It must be in the comrgerwhich
depends on the value bfype. This attribute is required.

blink, edit, update, vname See 5.4.1.

5.4.3 Float

The line component introduced with thé oat element is meant to present a number as a float.
Currently there are two types which differ only in the format they are medne tisplayed.

<float type='siif’ value="12.4"/>
<float type="siiif’ value="-123.4"/>

type This is an optional attribute which defaultsgoi f , beside this it can also be setddi i f .
The type says nothing about the value itself, but about how to display iis isieant to
be the sign, ‘i’ digits and ‘f’ the fraction digit. An interpreter should displag float as
specified with a dot or a comma between the last digit and the first fraction digit.

8

value This specifies the component’s initial value and is required. It has to bata flo

blink, edit, update, vname See 5.4.1.

Depending on theype attribute this component should take up 5 or 6 characters on the display.

5.4.4 String

The string component is probably the most frequently used compondht\&rg often it is used
to display static information that will never change during the execution obgram. Therefore,
this component is somewhat special.

If the component is not declared to be editable, the attribupekat e andvnamne have no effect.
In this case, the current value of the string will never be copied to RAMIsTh program which
links to an interpreter library will not be able to access the string. Only theryitwdl extract the
string out of the byte code and display it.

Strings are always stored the Pascal way. This means they are ntéeirwated, but their length
is stored in the first byte. The string itself begins in the second byte. Thehfacthe length is
saved in a one-byte cell is limiting a string’s length to 255 characters.

<string value="a constant string' />
<string value="an editable string’” edit="1 blink="1/>

value This is the string to be displayed. If the string is editable, this is the string’siiefue.
This attribute is required.

blink, edit, update, vname See 5.4.1.

The length of the string determines how much space is needed on the display.

5.4.5 Counter

The counter component is a number on the display which, when edited edacrieased or de-
creased by a defined value. Depending on the type, the counter haigied two-byte integers
or floats

<counter type='integer’ edit=1

val ue=" 42" mn="-100" max="100" step="2"/>
<counter type='float’ edit="1

value="12.4" min=10.0" max="15.0" step="0.51/>

type This attribute is required and determines the data type to use. It dategeror float

9

value This attribute is required and sets the initial value of the counter. It musttieebeni n
andmax, including both values.

min This attribute is required and sets the lower boundary of the counter. tthawsnaller than
max.

max This attribute is required and sets the upper boundary of the countersttragreater than
nmn.

step This attribute is required and is the value by which to increase or decreasetuhter.

blink, edit, update, vname See 5.4.1.

How much space is needed on the LCD to display the component is determirieel dtgributes

nm n andnmax. The longest of those two sets the width of the component. For example, the firs
counter in the code shown above would need 4 characters as the ccamtike up a value of
-100.

5.4.6 Switch

A switch component is a binary field whose bits can beosebr off. By defining *’ for the
onstate and ‘. for theoff-state, a switch would typically be drawn’as. **. ** on an LCD.

To define such a component, we will use tha t ch element withswi t ch- i t ens as children.
The number of the children is limited to 32 but must be at least 1. sMiet ch is one of few
elements that is not empty. The example given below defines the abovesgiddiedd.

<switch on-char="*' off-char="." edit=1 >

<swi tch-item i nfo=" Budwei ser’ value="1'/>
<swi tch-iteminfo=" Dobrovar’ value="0"/>
<switch-iteminfo="Steiger’ value="0/>
<switch-iteminfo="Eger’ value="1'/>
<switch-iteminfo="Plzen value=1/>
<switch-iteminfo="Martiner’ value=0"/>
<swi tch-iteminfo=" Ganbrinus’ value="1'/>
<switch-iteminfo=" Smaedny Mich value="1/>
</swi tch>

Attributes of aswi tch are ...

on-char This attribute is optional and defines the character to use farttstate. Default:*’
off-char This attribute is optional and defines the character to use fafthgtate. Default: .’

blink, edit, update, vname See 5.4.1.

Attributes ofaswi t ch-i t emare...

10

info This attribute is required and defines an help string to be displayed wheeditethe ap-
propriate bit.

value This attribute is required and defines the initial state of a bit. It can either ba) 1 0
(off).

How much space on the LCD this component needs depends on the nunspecified bits. For

each bit it should take up one character.

5.4.7 Option

An option is a component to let the user choose one item out of a fixed listeohatives. The
code shown below, for example, defines an option to let the user chamseeaof a month.

<option edit="1" default="0-03"/>
<option-itemvalue="Jan’ id="0-01"/>
<option-itemvalue="Feb’ id="0-02"/>
<option-itemvalue="Mar’ id="0-03 />
<option-itemvalue="Apr’ id="0-04"/>
</ opti on>
As shown, theopt i on element is not empty and must contain at least@piei on- i t emele-
ment, but no more than 256pt i on elements have the following attributes:

default This attribute is required and is a reference to an item which should be display

default. The value must be the same as the value ofdaattribute of oneopti on-item
within the appropriat®pt i on.

blink, edit, update, vname See 5.4.1.
Theopt i on-i t emhas two required attributes:

value This string is to be displayed when the item is selected.

id A unigue identifier.

The length of aropt i on on the display is determined by the longept i on- i t enis value.

5.4.8 Time
The time component is there to display a time with or without seconds and may lodi?liké&2

in the ‘short’ format or likel2: 42: 37 in the ‘long’ format. The delimiter character printed
between the single time parts is not setlx but provided by the interpreter.

11

<time type='long’ hours="12' m nutes= 42" seconds=' 37’
vhane=" CURRENT_TI ME_ADDR update="1'/>

<time type='short’ hours="12" ninutes='42" seconds='0’
edit="1" vname=' ALARM ADDR />

Beside the time specific attributes, this example also shows the usage of theitwiesiipdat e
andvnane. With the first time component, a program can periodically update the variathie a
address CURRENT_TIME_ADDR and the interpreter will update/redranctimponent every
second, when it is on the screen. The second time component, for instancgerve as an input
field to let the user define an alarm.

The data type for the time value is a three or two bytes structure respecilitelyirst byte holding
the hours, the second byte holding the minutes and for the long time format héyiérholding
the seconds.

The following attributes are defined for the time element:

hours This attribute is required and is the ‘hours’ component of the time. It mustrharder
between 0 and 23, including both.

minutes This attribute is required and is the ‘minutes’ component of the time. It must benaer
in the range of 0 to 59.

secondsThis attribute is required and is the ‘seconds’ component of the time. It re@shbimber
in the range of 0 to 59.

type This attribute is optional and defaults to ‘short’. It can also be set to ‘lemgl indicates
whether the time component will have seconds or not.

blink, edit, update, vname See 5.4.1.

The length in characters of a short time should be 5, of a long time it should be 8

5.4.9 Date

A date is similar to the time component. It could be displaye@iG35- 10- 24 in the long format
or 05- 10- 24 in the short one. In the end, it depends on the interpreter. The mainedifferis
that a ‘short’ date cannot hold values greater than 255 for a year, e long format, it can
be up to 9999. As with the time component, also for datdz,has no influence on the delimiter
character between the year, month, and day parts.

<date type='short’ year=" 2005 nonth= 10" day='24'/>
<date type='long’ day="1 nonth="1 vyear= 2004"/>

The following attributes of aat e element are defined:

day This attribute is required and must be a number between 1 and 31, includmygaboes.

12

month This attribute is required and must be a number in the range of 1 to 12.

year This attribute is required and must be a number in the range of 0 to 999%fy8ged 999
for a short date is possible, however the compiler assumes 99 is meant.

type This attribute is optional and defaults to ‘short’. Beside its default valuearitloe set to
‘long’. This attribute denotes the size of the year.

blink, edit, update, vname See 5.4.1.

The length of the displayed date component should be 10 charactersofoy &/pe and 8 for a
short type.

5.4.10 Trigger

A trigger differs from all the components mentioned above. It actuallymbdsplay any infor-
mation at all, but is meant to be a “soft-button” which, when activated, cattsitine to perform
some action.

<string value="Reset: '/>
<trigger vnane='reset_system />

The shown code snippet would probably be displayedRasét : [X] 'inaline. The interpreter
is responsible for providing a way to activate the trigger, when the usetsvia do so. The
following attributes of & ri gger element are defined:

vhame This required attribute has the same meaning as described in 5.4.1 with théaxtiegt
only theCALL __ definition will result in the generated header file.

password With this optional attribute set, an interpreter should request for this pagdvedore
calling the installed handler routine.

blink This attribute is optional and has the same meaning as described in 5.4.1
It depends on the interpreter how many characters a trigger takes wpméictinterpreter li-

brary displays a trigger a$ X] ’, password protected triggers dsP] ’. Thus, it takes up three
characters.

5.4.11 Horizontal fill
An hfill elementis actually a fictional component and resolves into a constant dtamnmur-

pose is to provide a way to put fixed or variable sized gaps between thecotimponents. For
example, if we want to have a line with right-aligned components, we wouldruséid | .

13

<line-format id='foo >
<string value="tenp:’'/>
<hfill char=."/>
<i nteger type="dd’ value= 20" update= 10
vnanme=' cur _tenperature’/>
</line-fornat>

In the example abovemlx would compute how many characters to put between the given string
and the integer, so that the integer is aligned at the right edge of the didplayterpreter would
draw the line ast'enp: 20’ on a 16 characters wide LCD.

We can even specify more than onki | | elementin d i ne-format. In this configuration,
mix tries to distribute the free (character) space to the specified gaps equally.

<line-format id="bar’>
<string value="X/>

<hfill char="-"/>
<string value="Y />
<hfill char="."/>

<string value="2Z"/>
</line-format>

On a 16 character wide LCD the given example would produgea----Y....... Z' printed

line. If we carefully count the characters, we will notice that the dasbhastcone more than the
dots. This is because the 13 remaining characters, which are to be eqdstiluted, cannot be
divided without a remaindemlx prefers the last gap and assigns the rest of the free characters to
it.

Thehfill element understands two optional attributes.

char This attribute defines the character to fill the gaps with. Default: a blank (*)

count With thecount attribute the number of characters to be put into a gap can be defined. The
default value, zero, causes the gap to grow as much as possible.

The width of this element is variable or fixed (\daunt attribute), but it can also be zero if there
is no space to distribute, so it is not guaranteed that there will be a gapdretwe components.

6 Command line options

Before we can use thmlx compiler, we need to understand its command line options. The com-
mandpyt hon m x. py - - hel p at the shell prompt will print a list of options recognized by
the program. We should get a listing as show in figure 1.

Only long format options are supported, and two arguments are requitbd tmmpiler. Let’s
step through the command line parameters to define their meanings.

14

~m x% pyt hon nl x. py --help

usage: mx.py: [options] memorigin <filenanme>

options are:
--align do align addresses
--endian={little|big} use specified byte-order (def: big)
--awi dt h=n address bus width in bytes (def: 2)
--memoptim zation do optimnm ze nenory | ayout
- - no- header do not produce the header a.h file
--binary produce a.bin file instead of a.c
--out put base ‘base’ as nanme for output filenanes
--max-1ine-w dt h=n num characters in one line (def: 18)
--max-title-w dth=n num characters for title (def: 16)
--dont-validate do not validate the source file

xm proc required for validating

--help print this text, then exit
--version print the version, then exit

Figure 1: Command line parametersnolix

--help This option prints a listing as shown in figure 1.
--version This option prints the version number of the compiler and exits the program.

--dont-validate This option causes the compiler not to validate the source file. Given this pption
the compiler will not use themlprocmodules from thefyt hon- xm " package, but mod-
ules from the standard library that are installed with the default Python distib This
enables the use of the compiler on machines withoutplye tron- xm ” package installed.
However, if the source file isn’t properly structured the compiler’'sltéswndefined.

--max-line-width This option takes a numerical argument and tells the compiler to print warnings
about menu lines which are longer than the given number. As we learoettaehf i | |
element, the compiler can right-align components or stretch them from eaah athie
requires a line width to be given. By default it is*1.8

--max-title-width As with the previous option, also this one takes a numerical argument and tells
the compiler to print warnings about menu titles which are longer than the galaa. By
default it is 16.

--output This option requires an argument. By default, thix compiler will output two files

“mexcuses 18 characters of a 20 character wide display for menu dataefftagning two columns are reserved,
one for the current line indicator and the other for the submenu indicator.

>mexcuses 16 characters for the title on a 20 column display. The remainingdnslare reserved to display some
other information.

15

nameda. h’and ‘a. ¢’. With the- out put option the a’ of the filenames can be changed
to a custom name.

--binary By default, the compiler will output the generated byte code as an array fitea Osing
this option, the compiler will generate a binary file instead of the C file. The Yiiiarwill
be appended thebin' suffix and contains the raw bytes of the binary menu image. It is
useful for applications that want to the load byte code dynamically. gehemsimulator,
which was written as a part of this project, can run different byte codibout the need of
being recompiled.

--no-header This option suppresses the generation of the header file.

--align For each line component, with the exception of constant strings, the comibileatas
a memory block of an appropriate size somewhere ab®ve ori gi n. We can tell the
compiler to align memory blocks with a size of two bytes on even addresses andryne
blocks with a size of 3 or more bytes on addresses divisible by 4. Somwéraranay
require this.

--mem-optimization This option has only an effect if it's used together with theal i gn op-
tion. When optimizing, the gaps, that originates from aligning memory blockdjligel
by other memory blocks. This option can cause a considerable reductioembry con-
sumption at the cost of the fact that a single line’s components don't hdaaincreasing
addresses for their current values. In most cases this should bellempt

--awidth This option is important to be properly set and defines the width of an axldtés the
size of a pointer and can be determined with thei @eof operator, which depends on the
compiler and the target platform the produced byte code will be used at.

--endian This option causes the compiler to output values, which are stored in moremiean
byte (e.g. short or floats), either in little- or big-endian. It is important tovkoo which
platform the byte code will be interpreted.

meme-origin This is a required command line parameter and has to be a numerical value (must
begin with ‘0x’ for hexadecimal format) and tells the compiler to allocate memory blocks
above this address. This will often be the address of the beginning of RAMetarget
system.

filename This is the path to thenelxsource file.

7 CMF - Compact Menu Format

The “Compact Menu Format” is a definition of the byte code thitproduces. Its current version
is 0.4. It is a compact binary representation of a menu hierarchy speuyfiadmelxsource. The
binary format is very similar to Mr. Hégl's PMF (Portable Menu Format), hesveCMF differs
to make the code more compact and efficient.

16

The following sections reflect many things already discussed in sectiod @Widlrbe interesting
to programmers who want to implement a CMF parsing program.

7.1 Notation

In the following description we will use the convention to enclose terminal sysmibobraces

< .. >. Within these braces a terminal symbol is separated by a colon followed bynbar
which denotes the size in bytes of the symbol. Wiftoo: 2>, for example, we have a terminal
symbol which takes up two bytes. Sometimes we will have brackets with an ihteraasingle
number behind a terminal definition. & oo: 2>[3, 0], for instance, denotes that we refer to
the bits 3, 2, 1 and 0 of the terminal symbol ‘foo’ which has a size of two byglsther symbols,
namely those not encloseddn. . > braces, are non-terminal symbols. To indicate zero or more
repetitions of a symbol, it is enclosed in curly bra¢es . }.

Some terminal elements (e.g. strings or passwords) are noteel arent : n+1>. The +1’
indicates that the element is a string, and strings are stored the Pascal @MslfFiiThey are not
zero terminated, but their first byte, referred to as the ‘length byte’,whidds the valua as an
one-byte unsigned integer, is followed hybytes holding the string’s characters. Thus a string
actually takes um+1 bytes in CMF.

7.2 Overall structure

byt e-code :: =
prol og menu-table { menu-table }

prolog ::=

<pnf-id: 3>

<mmj or - ver si on: 1>
<m nor - versi on: 1>
<del ay-to-top: 1>
<del ay-cl r- hel p: 1>
<del ay- password: 1>
<byt e- or der - mar k: 2>

nmenu-table ::=
<menu-title-string:n+1> (*) menu-line { (*) nmenu-line }

nenu-line ::=
<ldtag: 1> line-opts (*) line-conmp { (*) line-conp }

[ine-conp ::=
<lctag: 1> |line-comp-opts

Figure 2: Overall structure of CMF

17

The definition in figure 2 shows the structure of a CMF formated menu déscrig\ ‘' (*) ' in the
definition is an indicator for an optional padding zero byte. Sometimes suel bye necessary
to make the following structures specially aligned. Currently, there are tworaégt rules that
apply to the byte code.

e A nenu- | i ne is always aligned on a non-even offset within the byte code. Padding zer
bytes are put in front of it to make the offset okhdt ag: 1> not divisible by 2.

e Aline-conp is always aligned on an even offset within the byte code. A padding zero
byte may precede the structure to make the offset<dfet ag: 1> divisible by 2.

There is no indication which menu table is actually the first to be displayed. Byeotion,
the first menu table — the top-level menu table — to be displayed isghe- t abl e following
immediately thepr ol og.

7.3 prolog

pmf-id ...is an array of 3 characters. This array is filled with ‘C’, ‘M’, and (Br in numbers
0x43, 0x4D, and 0x46) in this order. A parsing program must checthfs to ensure it has
the right binary data.

major-version ...denotes the major version number of the byte code.
minor-version ...denotes the minor version number of the byte code.

delay-to-top ...is an unsigned-byte integer and gives the number of seconds grétezishould
wait before it is supposed to return to the top-level menu table. A valueofrzéicates the
interpreter should never return to the top-level menu table automatically.

delay-clr-help ...is an unsigned-byte integer and gives the number of secondsvioloing a
help string should be displayed. A value of zero indicates a help stringdshoube cleared
automatically.

delay-password...is an unsigned-byte integer and gives the number of seconds dfien &
password query should be aborted when the user makes no input. Ao¥aler indicates
an interpreter should infinitely wait for the password.

byte-order-mark ... is an unsigned two-byte integer with the fixed value of OXFEFF. Homveve
accessing it via an array of bytes it can have two values: OXFFFE inteasaeumber was
stored in big-endian, or OXFEFF in case it was stored in little-endian. Angamogram
can easily determine whether it supports the proper byte-order with theviiefjaode:

unsi gned short * p = (unsigned short *)&byte code[8];
if (*p !'= OXFEFF)
; /* wong byte order determ ned */

Listing 1. Checking the byte—order mark

18

if <ldtag:1>[1,0] == 00 # not first and not last line
line-opts ::= <next-line-ofs:2> <prev-|ine-ofs:2>
if <ldtag:1>[1,0] == 01 # first line but not |ast
line-opts ::= <next-line-ofs:2>
if <ldtag:1>[1,0] == 10 # last line but not first
line-opts ::= <prev-line-ofs:2>
if <ldtag:1>[1,0] == 11 #is last and is first line
nothing for line-opts in this case (nmaybe submenu)
line-opts ::=
if <ldtag:1>[2] == # dyn-enabl e feature
line-opts ::= ... <var-addr:2>
var-addr is appended to the previous options
if <ldtag:1>[3] == # has submenu
line-opts ::= ... <snmenu-abs-ofs:2>
subnenu-abs-ofs i s appended to previous options
if <ldtag:1>[3,4] == 11 # subnmenu password
line-opts ::= ... <password-str:n+1>
password is appended to the previous options

Figure 3: Definition of i ne- opt s in CMF

7.4 menu-line

A menu line begins with an unsigned one-byte integérdt ag: 1>) which decides what fields
are available from the line options. Following thene- opt s there is always at least one line
component. Let's look at the bits of &rdt ag.

bitmask meaning if the appropriate bit is sekindt ag: 1>
0x01 isfirst menu line (no preceding menu lines)
0x02 islast menu line (no following menu lines)
0x04 menu line can be dynamically enable/disabled
0x08 menu line points to a submenu
0x10 submenu is password protected

Depending on these bits the structure dfiane- opt s must be dynamically assembled. Access-
ing values following this structure can be a little bit problematic because it haes fixed size.
However, this can be efficiently implemented with a lookup table holding the sszesath case.
The exact definition of the dynamic structure depending on the shownidlagswn in figure 3.

The ‘.. .- of s’ fields, namelynext - | i ne- of s andpr ev- | i ne- of s, are offsets to the pre-
vious or the next menu line respectively. They count from including itiieag and contain the
optional padding zero byte. This means, in the case of a next menu lineeedeta add the
next - | i ne- of s to the address of the currentlt ag to obtain the address of the next.

The optionalvar - addr field is an offset into RAM and points to an unsigned one-byte integer
that should be used as a boolean value. This byte is often referred te a&n#ble byteand

19

its value as theeénable value The interpreter has to initialize this byte and interpret its value
accordingly.mexg¢ for example, doesn’t draw menu lines which the enable value is zeradh@no
way would be to gray out these lines.

smenu- abs- of s holds an absolute offset to the submenu. An absolute offset is countad fr
including the first byte of the first menu table. This is the first menu table lochtedtly behind
thepr ol 0g. Thus, to access a submenu we need to addrenu- abs- of s the address of the
pr ol og and its size.

To access the first line of aenu-t abl e we need to look at the absolute offset of the byte
immediately following the menu title. Because all menu lines are aligned on noreégets, we
must increase the offset of the byte following the menu title by one if it is evaah tlaus, jump
over a padding zero byte. When accessing menu lines on the base-aff's’.fields, there is no
need to worry about the padding zero byte.

7.5 line-comp

A line component is the actual entity that is displayed in a menu line. Currently #ner23
different types of line-components which are to be implemented by an interpaned there is still
place for another eight components. The type of a component is defynea lirst five bits of
thel ct ag and determines the actual byte code structure. The following table givesaview
of the available components which are explained in more detail later, eachamitsThemask
column suggests how to display the components.

20

<l ctag: 1>[4,0] type mask comment

0x00 uchar dd unsigned one-byte integer
0x01 uchar ddd -
0x02 uchar hh hex
0x03 char sdd signed one-byte integer
0x04 char sddd -
0x05 uint2 DDD unsigned two-byte integer
0x06 uint2 DDDD -
0x07 uint2 DDDDD -
0x08 uint2 HHHH hex
0x09 int2 SDDD signed two-byte integer
0x0a int2 SDDDD -
0x0b float SIL.F ieee-754 float
0x0c float SIILF -
0x0d counter DD..D signed two-byte int counter
0x0e fcounter SILF ieee-754 float counter
OxOf time-long HH:MM:SS -
0x10 time-short HH:MM -
Ox11 date-long YYYY-MM-DD -
0x12 date-short YY-MM-DD -
0x13 switch R R max. 32 items
0x14 option optl, opt2, ...
0x15 string pascal strings
0x16 password “[P]" -
0x17 trigger “IX]” -
0x18 - Ox1f - - -

There are three further flags €t ct ag: 1>. The following table explains their meanings.

<l ctag: 1>[5] description
0 (read-only) component should not be editable by the user
1 (read-write) component should be editable by the user

<l ctag: 1>[6] description
0 (dont-blink) component should not blink on the display
1 (do-blink) component should blink on the display

<l ctag: 1>[7] description
0 (not-last) after this component there is another one
1 (last) this component is the last in the menu line

In the following sections each line component's byte code structure is gwttnsome hints.
Nearly all structures begin with the following fields:

21

<updat e: 1> A one-byte unsigned integer to define an interval in seconds in which an inte
preter should redisplay the current value of the component. Of coams@terpreter can
update it only if it is currently displayed. An interval of zero disables thematic updates.

<cal | - addr : 2> A relative pointer (an unsigned two-byte integer) to a memory block where
a handler’s address is installed. This handler should be called afterahedited a compo-
nent. The pointer being relative is explained in a moment.

<var - addr : 2> A relative pointer (an unsigned two-byte integer) to a memory block where
the current value of the component is stored. How large the memory blocH iscanit has
to be interpreted is determined by a component’s type.

A relative pointeris just like a relative path. An interpreter will be given a base addres# @nd
supposed to add this address to all relative pointers to actually accessyrainar right location.

As mentioned, & i ne- conp structure is always stored on an even offset within the byte code.
When accessinglai ne- conp we must jump over optional padding zero bytes. We'll just fetch
a component’s offset as usual but increment it by one, in case it isvant e

7.5.1 uchar ‘dd’

if <lctag:1>[4,0] == 0x00
<updat e: 1>
<cal | -addr: 2>
<var - addr: 2>
<defaul t: 1>

def aul t and the corresponding memory block, which is accessible by dine addr relative
pointer, are unsigned one-byte integetsf aul t is the component’s initial value. An interpreter
is supposed to display this component as a two-digit decimal number withogn &). The
size of the code for this component including thet ag is 7 bytes.

7.5.2 uchar ‘ddd’

if <lctag:1>[4,0] == 0x01
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<defaul t: 1>

This component is the same as “uchar dd” with the exception that it is suppode displayed
as a three-digit decimal number.

7.5.3 uchar ‘hh’
if <lctag:1>[4,0] == 0x02

<updat e: 1>
<cal | - addr: 2>

22

<var - addr : 2>
<defaul t: 1>

This component is the same as “uchar dd” with the exception that it is suppode displayed
as a two-digit hexadecimal number.

7.5.4 char ‘sdd’

if <lctag:1>[4,0] == 0x03
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<default: 1>

def aul t and the corresponding memory block are signed one-byte intedefsaul t is the
components initial value. An interpreter is supposed to display the compaseattwo-digit
decimal number with a sign in front of it (‘+/-’). The size of the code for ttusnponent including
thel ct ag is 7 bytes.

7.5.5 char ‘sddd’

if <lctag:1>[4,0] == 0x04
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<defaul t: 1>

This component is the same as “char sdd” with the exception that it is supfbe displayed as
a three digit number with a sign.

7.5.6 uint2 ‘DDD’

if <lctag:1>[4,0] == 0x05
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<def aul t: 2>

def aul t, which is the component’s initial value, and the corresponding memaory bleclrar
signed two-byte integers. An interpreter is supposed to display the comisa three-digit dec-
imal number without a sign (‘+"). The size of the code for this component dictythel ct ag
is 8 bytes.

7.5.7 uint2 ‘DDDD’

if <lctag:1>[4,0] == 0x06
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<defaul t: 2>

23

This component is the same as “uint2 DDD” with the exception that it is supgodeddisplayed
as a four-digit decimal number.

7.5.8 uint2 ‘DDDDD’

if <lctag:1>[4,0] == 0x07
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<def aul t: 2>

This component is the same as “uint2 DDD” with the exception that it is suppodedisplayed
as a five-digit decimal number.

7.5.9 uint2 ‘HHHH’

if <lctag:1>[4,0] == 0x08
<updat e: 1>
<cal | -addr: 2>
<var - addr: 2>
<defaul t: 2>

This component is the same as “uint2 DDD” with the exception that it is suppogesldisplayed
as a four-digit hexadecimal number.

7.5.10 int2‘'SDDD’

if <lctag:1>[4,0] == 0x09
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<defaul t: 2>

def aul t , which is the component’s initial value, and the corresponding memory btedigned
two-byte integers that should be displayed as three-digit decimal numitra gign in front of
it. The size of the code for this component including ltted ag is 8 bytes.

7.5.11 int2 ‘SDDDD’
if <lctag:1>[4,0] == 0x0a
<updat e: 1>
<cal | - addr: 2>

<var - addr: 2>
<def aul t: 2>

This is the same as the “int2 SDDD” component with the exception that it shou@pkyed as
a four-digit number with a sign.

7.5.12 float ‘SII.F’

24

if <lctag:1>[4,0] == 0x0b
<updat e: 1>
<cal | -addr: 2>
<var - addr: 2>
<def aul t: 4>

def aul t, the initial value, and the corresponding memory block are IEEE-754 smmgtsion
(32-bit) floating point numbers. They should be displayed with a sign foliolse two digits
before the decimal point and one digit after the decimal point. The size ofdde for this
component including thect ag is 10 bytes.

7.5.13 float ‘SIII.F’

if <lctag:1>[4,0] == 0xO0c
<updat e: 1>
<cal | -addr: 2>
<var - addr: 2>
<defaul t: 4>

This component is the same as ‘float SII.F’ with the exception that it shoulisbé&ayed with one
more digit before the decimal point.

7.5.14 counter

if <lctag:1>[4,0] == 0x0d
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<m n: 2>
<max: 2>
<step: 2>
<def aul t: 2>
<field-wdth: 1>

def aul t, the counter’s initial value, the corresponding memory bloéky, max, andst ep are
signed two-byte integers. A counter should be in-/decrementext by within the rangef n;

max]. fi el d-wi dt h is an unsigned one-byte integer and gives the width in characters needed
to display the counter within the specified value range. The size of the codeis component
including thel ct ag is 15 bytes.

7.5.15 fcounter

if <lctag:1>[4,0] == 0x0e
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<m n: 4>
<max: 4>
<step: 4>

25

<defaul t: 4>
<field-w dth: 1>

This is essentially the same as a ‘counter’ with the exceptiondbétaul t, the correspond-
ing memory blockni n, max, andst ep are IEEE-754 single precision (32-bits) floating point
numbers to be displayed as a ‘float SII.F’ component. The size of thefoodleis component
including thel ct ag is 23 bytes.

7.5.16 time-long

if <lctag:1>[4,0] == OxOf
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<hours: 1>
<m nut es: 1>
<seconds: 1>

hour s, m nut es andseconds are unsigned one-byte integers. The memory block, which
holds the current value, is a data type of three bytes with the first byte therigurs, the second
byte being the minutes and the third byte being the seconds of the time. In C vie: demeribe
the data type with a structnf _t i ne_t as shown in listing 2.

struct cnf _tinme_t {

unsi gned char hours;
unsi gned char m nutes;
unsi gned char seconds;

b

Listing 2: Definition of cmf_time_t

The size of the code for this component including ltlee ag is 9 bytes.
7.5.17 time-short

if <lctag:1>[4,0] == 0x10
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<hours: 1>
<m nut es: 1>

This component is the same as “time-long” but without seconds. The size afotlte for this
component including thect ag is 8 bytes.

7.5.18 date-long

if <lctag:1>[4,0] == Ox11
<updat e: 1>

26

<cal | - addr: 2>
<var - addr: 2>
<day: 1>
<nont h: 1>
<year: 2>

day andnont h are unsigned one-byte integers, whjlear is an unsigned two-byte integer.
The corresponding memory block, which holds the current value, hiae @%4 bytes and the C
structure definition as shown in listing 3.

struct cnf_date_t {
unsi gned char day;
unsi gned char nont h;
unsi gned short vyear;

b

Listing 3: Definition of cmf_date_t

The size of the code for this component including ltledt ag is 10 bytes.
7.5.19 date-short

if <lctag:1>[4,0] == 0x12
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<day: 1>
<nmont h: 1>
<year:1>

This is the same as a “date-long” with the exception that the year is an unsigedulte integer.
The size of the code for this component including ltlee ag is 9 bytes.

7.5.20 switch

if <lctag:1>[4,0] == 0x13

<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>

<l engt h: 1>

<nswi tch: 1>
<on-char: 1>

<of f-char: 1>
<defaul t: 4>
<string:n+l>

<string: n+l>

| engt h is an unsigned one-byte integer that gives the size in number of bytes obthjgonent
including thel ct ag. nswi t ch is also an unsigned one-byte integer and defines the number of

27

valid switches/bits and help strings. The maximum can be@82char andof f - char are both
characters to be displayed for a bit in the appropriate state. The strangedrthe end of the struct
defines a help string (Pascal style) for eachdéf aul t , which is the switch’s initial value, and
the corresponding memory block are 4-byte arrays with the first 8 switdte the first byte,
the next 8 switches/bits in the second byte and so on. Due to the fact thajptathoems don’t
support 32-bit data types, this component has not been implemented aisignedl four-byte
integer. Nevertheless, we can easily access each bit with the C coddrylisting 4.

unsi gned char * nmask = &rem bl ock_of switch[0];
for (i =0; i < 32; i++)
{

byte index =i / 8

bit index =i %8

i f (mask[byte_index] & (1<<bit_index))

/I* bit is set */
el se
; /* bit is not set */

}

Listing 4: Accessing each bit of a switch component

The size of the code for this component including thet ag is variable and defined in the
| engt h field.

7.5.21 option

if <lctag:1>[4,0] == 0x14
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<l engt h: 1>
<nopts: 1>
<field-wdth: 1>
<defaul t: 1>
<string: n+l>

<string:n+l>

| engt h and the string array at the end of the component’s code have the same greswiithin

a “switch”. nopt s is an unsigned one-byte integer giving the number of optide$.aul t , the
initial value, and the corresponding memory block are unsigned one-biggeirs being indexes
into the string arrayf i el d- wi dt h, an unsigned one-byte integer, gives the width in characters
of the longest string. The size of the code for this component includingahag is variable and
defined in thd engt h field.

7.5.22 string

if <lctag:1>[4,0] == 0x15

28

if <lctag:1>[5] == # line-conp is read-only
constant string
<string: n+1>

el se # line-conp is read-wite
<updat e: 1>
<cal | - addr: 2>
<var - addr: 2>
<string: n+l1>

The string component is somewhat special. If the component is not editabtethe value, a
Pascal string, is following immediately thect ag, and the size of the component’s code is the
length of the string plus two (length byte of the string 8t ag). In this case, there is no relative
pointer and no corresponding memory block.

If the string is editable, the corresponding memory block has the length ofrthg glus one (the
length byte). The size of this component in this case is also variable and cahgs.iength-of-
the-string + 7.

7.5.23 password

if <lctag:1>[4,0] == 0x16
<unused: 1>
<cal | - addr: 2>
<string:n+l>

This component is a password protected trigger. The ‘is-editable’ flaféat ag: 1> is always
set. But instead of changing the appearance of the component, anetéergiould ask for a
password, verify it, and if it was correct, call the installed callback harvdtéch address is stored
at the location the relative pointeal | - addr points to.

It is assumed that this component will be displayed 493 '. Its code size in bytes including the
| ct ag is the length of the password plus 5.

7.5.24 trigger

if <lctag:1>[4,0] == 0x17
<unused: 1>
<cal | - addr: 2>

This component is essentially the same as a “password” with the exceptidhehais no pass-
word to be requested. It is assumed to be displayed X .' This component’s code size in
bytes including thé ct ag is 4.

7.6 CMF parser
With the mexcinterpreter library, C code has been implemented to navigate through the G@MF a
provide the programmer with structure definitions for each line componerg.cole is released

under a free license and can be used for new projects. The pars#tesw the filescnf . ¢ and
cnf . h of themexcsources.

29

8 m2melx.py

For programmers, who are already familiar with the M-Language and whotaawitch tomelx

this section may be of interest. Aselxwas introduced to replace the M-Language, a script has
been written to convert M-Language documentsgixdocuments, and thus, allow developers a
quick movement towards thralx compiler.

The converter script name®2nel x. py takes an M-file and creates an semantically equal menu
definition in themelxlanguage. TheRmrel x script can be started with or without parameters. In
the later configuration, the converter expects its input from stdin and phietesult to stdout. If
started with the- h’ option, the message shown in listing 5 will be printed. As listed there, it is
possible to specify an input file and a filename where to write the result.

~m x% pyt hon n2nel x. py -h
usage: python n2nel x.py [-h] [-0 <output-filenane>] [<input-filenane>]

Listing 5: Command line options of m2melx

Note: The converter does no error checking, and assumes that the memiptitesgjiven in the
M-Language is correct. If itisn’t, the result of the converter is uneefin

9 Writing extensions

In this section we will look at hownlx can be extended with custom line components. The
compiler was written in a manner that makes it not too hard to integrate a programwa
components. However, some experience with DTDs, SAX, and Pyth@ngmoning is required.
An understanding of CMF, which is described in section 7, is essential.

Due to the compactness of the output format, there is place for only eighlimewomponents.
However, this should be enough. Before starting to make changefteve should investigate
whether it's worth the trouble at all. We should try to realize our idea with amdjranplemented
component, because we need to consider that, bedijalso the byte code interpreter needs to
be extended, too.

Throughout this section we will introduce an example component callea¢tkblox” that actually
could be realized with anpt i on. However, ourcheckbox will produce fewer bytes. It will
have the four attributelslink, edit, update andvnameas described in section 5.4.1. Of course it
will have a defaulvalue We will assume that an interpreter will display the componen{ 3 *
(checked) or(0) ' (unchecked), and thus use only three characters for it on thersci&@en
used a lot in a menu definition, the new component will save a considerablenaofanemory in
comparison with ampt i on. The byte code for aheckbox will be the same as for “uchar dd”
which is described in section 7.5.1.

30

9.1 Extending the language

At first we need to extend thaelxlanguage which is defined througkel x. dt d. A copy of this
DTD is given in section 10. The XML parser, precisely spoken the eventller, used bynlx is
written in a manner that makes it simple to handle empty elements, however, nestingsthlso
possible. To introduce a new componentrielxwe need to add an element definition to the DTD.
Listing 6 shows what we would appendrtel x. dt d.

<l ELEMENT checkbox EMPTY>
<I ATTLI ST checkbox %ommon-|conp-attrs; value CDATA (1]0) "0" >

Listing 6: Definition of a checkbox element

The trick with the shown definition is that it uses teomon- | conp- attrs; attribute entity
already defined inrel x. dt d. By using this entity, the new element gets attributes that are
common to almost all components. Additionalyaue attribute that can hold eithel* or ‘0’

was introduced to theheckbox. It has a default value, and thus the menu programmer will not
need to explicitly specify this attribute.

To use the new element, it must be made available as a child mé- f or mat . The element’s
name must be put into the list of valid children of the container. In our exartimajefinition of
I'i ne-format, after insertingcheckbox, would look like in listing 7.

<! ELEMENT 1 i ne-f or mat
(hfill]integer]|string|counter|option|swtch|
time|float|date|trigger|checkbox)+ >
<I ATTLIST line-format id | D #REQU RED >

Listing 7: Extended line—format with checkbox

Now we are allowed to writenelxdocuments witltheckboxes. The compiler will not complain
about the new element when validating, however, it will still do nothing with it duietly ignore
it. The next step is to write a byte code generatordbeckboxes and then couple it with the
parser.

9.2 Writing a byte code generator

The source code ohlx has a file calleenf . py which implements the byte code generators for
all components. In this file we can find the classwhich is the parent of all generators and which
we will use to inherit our new class from.

Before we begin to implement the inherited class, we should make the followargehtoLc.

It holds a dictionary calleddent _i d_map which represents a mapping between logical names
and IDs. These IDs are thect ag'’s first five bits as described in section 7.5. In our example, we
will add a ‘checkbokto the dictionary with the next free ID as shown in listing 8.

31

ident _id map = {’uchar-dd’ : 0x00,

"trigger’ : 0x17,
" checkbox’ : 0x18 } # new

Listing 8: Extended ident_id_map with checkbox

Now we need to subcladsc. We will call the new class cCheckbox, its implementation is
show in listing 9, but let’s first take a look at the meaning of the methods to be implechen

__init__ Inthe constructor of the subclass the first thing to do is to call the constroictioe
base class with appropriate parameters.

al | oc_addr s As the documentation dfc says, this method gets called before the byte code
generation and provides a chance to the componenttadnow that it needs some mem-
ory space in RAM. When this method is called, a component only registerdoaataon
request. After all components have registered their requastfegins to compute the ad-
dresses, and then they can be retrieved. Inohweckbox example, the component will
register a one-byte data type for the current value and a functioessldata type for the
address of a handler which is to be called after the component has besh ed

bc When this method gets called, the byte code generation process is actisemdthod is
assumed to return a list of bytes that represents the byte code for a cemip®he imple-
mentation should always use the pasegtt t er object to output the byte list. Addresses

of memory blocks, which were registered in thel oc_addr s method, can now be re-
trieved via the passeal | ocat or object.

str_| en This method is intended to answer the following question: “How many chasacter
does this component consume in one line at most?”. Having this informatizican warn
the user if a line contains to many components which will not completely fit into it. én th
checkbox example, this method will simply return the constant

cl ass LcCheckbox (Lc):
def __init__ (self, value, blink, witable, update, vnane):
‘value’: the default value of the conponent
‘witable : should the user edit the component?

Lc. _init__ (self, blink, witable, update, vnane)
sel f.default = val ue

def alloc_addrs (self, allocator):
self.reg_vnane =\
sel f.vnanme or allocator. generate_new nane ()
put _into_header = self.vnanme and True or Fal se
register a one byte block for the current val ue
allocator.reg_var (self.reg_vnanme, ’unsigned char’, \
1, None, put_into_header)

32

allocator.reg_cb (self.reg_vnane, None, put_into_header)

def bc (self, emitter, allocator):
return emtter.uchar (self.lctag ('’ checkbox’))
em tter.uchar (self.update)
emtter.uint2 (allocator.cbaddr (self.reg vnane))
emtter.uint2 (allocator.varaddr (self.reg_vnane))
emtter.uchar (self.default)

+ + + +
— — - -

def str_len (self):
return 3

Listing 9: Implementation of class LcCheckbox

There are some things which appear to be magic but simply happen in theldsse The call

of the base class constructor makes certain member variables availabléy sainE. vhane,

sel f.writabl e,sel f.update,andsel f. bl i nk. They are set to its equivalent construc-
tor parameters. There is one special member variable cae#ledl . | ast which is set tdFal se

by default and indicates whether a component is the last one in a menu lineraBg we don’t
need to access this variable. The call to ¢f& f . | ct ag method returns thect ag with the
proper component ID and flags. This works because we have ingbaesiring theckbokto-
gether with the ID into thé dent _i d_nap dictionary and the flag variables are available to the
base class.

9.3 Extending the parser

Finally, the parser needs to be extended and everything is done. In thaliitd er . py we will

find the clasdvel xHandl er that handles SAX events upon parsing the XML input file. For
our example, we need to handle the beginritgckbox tag. WhenMel xHandl er is called

to handle this start tag, it passes the request talthest art _checkbox method if it can be
found. Looking at the already implementdd_st art _i nt eger method, we can use it as a
template for the new component and end up with something like shown in listing 10.

def do_start _checkbox (self, rnane, attrs):
Ic = cnf.LcCheckbox (atoi (attrs[’'value']), \
*self.def_lc_attrs (attrs))
self.__cur_If.append (lc)

Listing 10: Implementation of do_start_checkbox method
That's all! We only need to create an instance of the new line component ddsspaend it to

the component list of the current menu line which is represented througtethie. ~_cur _| f
variable.

33

9.4 Summary

Now, that we havenlx working with our own extension, let's summarize the steps.

1. Extend the language by inserting an element definitionrmetox. dt d and extending the
l'i ne-format element.

2. Write a component class onf . py which subclasselsc and generates the byte code for
the new component.

3. Extend thevel xHandl er class inhandl er . py with ado_st art _el enent - nane
method which creates an instance of the new component and inserts theiotgebte
component list of the current menu line (line-format).

So far so good. Now we will probably want to extend the interpreter libcarimplement a
program that can handle the new component beside the others.

10 melx.dtd

Here is the content afel x. dt d which defines the input languagenux.

<IENTITY % blink-attr "blink (1]0) '0" ">

4 |[<VENTITY %edit-attr "edit (1/0) '0" ">

<IENTITY % update-attr "update CDATA 'O ">

<IENTITY % vnanme-attr "vname CDATA #l VPLI ED'>

<IENTITY % conmon-1| conp-attrs

8 "Oblink-attr; %dit-attr; %update-attr; %name-attr;">
<IENTITY % enabl e-vnane-attr "enabl e-vname CDATA #| MPLI ED">

<! ELEMENT nel x
12 (description, menu+, line-format*) >

<! ELEMENT description

(del ay-to-top, delay-password, del ay-help, top-nmenu) >
16
<! ELEMENT del ay- hel p EMPTY >
<! ATTLI ST del ay- hel p val ue CDATA #REQUI RED>

20 |<! ELEMENT del ay- password EMPTY >
<! ATTLI ST del ay- password val ue CDATA #REQUI RED >

<! ELEMENT del ay-to-top EMPTY >
24 |<I ATTLI ST del ay-to-top val ue CDATA #REQUI RED >

<! ELEMENT t op- nenu EMPTY >
<! ATTLI ST top-nmenu ref | DREF #REQUI RED >

34

28

32

36

40

a4

48

52

56

60

64

68

72

76

<l ELEMENT nenu (const-string-line | line)+ >

<! ATTLI ST menu id I D #REQUI RED
title CDATA #| MPLI ED
password CDATA #l MPLI ED >

<! ELEMENT | i ne EMPTY >

<I ATTLI ST line ref | DREF #REQUI RED
subnenu | DREF #| MPLI ED
%nabl e-vnane-attr; >

<! ELEMENT const-string-1ine EMPTY >

<I ATTLI ST const-string-1line value CDATA #REQUI RED
submenu | DREF #| MPLI ED
%l ink-attr;
%enabl e-vname-attr; >

<! ELEMENT i ne-f or mat
(hfill]integer]|string|counter|option|swtch|
time|float|date|trigger)+ >

<I ATTLIST line-format id | D #REQU RED >

<! ELEMENT i nt eger EMPTY >
<I ATTLI ST i nt eger
%common-| conp-attrs;
type (dd| ddd| hh| sdd| sddd|
DDD| DDDD| DDDDD| HHHH| SDDD| SDDDD) #REQUI RED
val ue CDATA #REQUI RED >

<l ELEMENT string EMPTY >
<I ATTLI ST string
%comon- | conmp-attrs;
val ue CDATA #REQUI RED>

<! ELEMENT counter EMPTY >
<I ATTLI ST count er
%comon- | conmp-attrs;

type (integer|float) #REQU RED
val ue CDATA #REQUI RED

mn CDATA #REQUI RED

max CDATA #REQUI RED

step CDATA #REQUI RED >

< ELEMENT switch (switch-itemt) >
<I ATTLI ST swi tch

%comon- | conp-attrs;

on-char CDATA "*"

of f-char CDATA "." >

35

80

84

88

92

96

100

104

108

112

116

120

<! ELEMENT swi tch-item EMPTY >
<I ATTLI ST switch-item

info CDATA #REQUI RED

val ue (1| 0) #REQUI RED >

<!
<

ELEMENT option (option-itemt) >
ATTLI ST option

%comon- | conp-attrs;

default | DREF #REQU RED >

<!
<

ELEMENT option-item EMPTY >
ATTLI ST option-item val ue CDATA #REQUI RED

id I D #REQUI RED >

<! ELEMENT ti ne EMPTY >
<I ATTLI ST tinme

%common- | conmp-attrs;

hour s CDATA #REQUI RED

m nut es CDATA #REQUI RED

seconds CDATA #REQUI RED

type (short|long) "short" >

<!
<

ELEMENT fl oat EMPTY >

ATTLI ST f 1l oat

%common-| conp-attrs;

val ue CDATA #REQUI RED
type (siif|siiif) "siif" o>

<!
<

ELEMENT date EMPTY >
ATTLI ST date
%common-| conp-attrs;

day CDATA #REQUI RED
nont h CDATA #REQUI RED
year CDATA #REQUI RED
type (short]long) "short" >

<! ELEMENT trigger EMPTY >

<! ATTLI ST trigger vnane CDATA #REQUI RED
password CDATA #| MPLI ED
%l ink-attr; >

<! ELEMENT hfill EMPTY >
<! ATTLI ST hfill char CDATA " "
count CDATA "0" >

Listing 11: The Melx Data Type Definition

36

