
MLX - Menu Language Xml

Petr Novotník

December 19, 2005

Abstract

This document describes themlxbyte-code compiler v0.5, its input languagemelx“Menu
Language Xml”, and also its generated output CMF “Compact Menu Format” v0.4.

Contents

1 License 2

2 Background 2

3 Bird’s-eye view 2

4 Requirements 3

5 Introduction to melx 3

6 Command line options 14

7 CMF - Compact Menu Format 16

8 m2melx.py 30

9 Writing extensions 30

10 melx.dtd 34

1

1 License

mlx is Free Software provided under the terms of the GNU General Public License (GPL). The
file COPYING, that is distributed withmlx, contains a copy the GNU GPL. It can also be retrieved
from the web at at [http://www.gnu.org/copyleft/gpl.html].

2 Background

The idea ofmlx has began with the M-Language by Hubert Högl. In his introduction to the M-
Language he writes:

“The M-Language is a notation for describing menu-directed user interfaces which are
to be displayed on small LCD-panels (16x4 or 20x4). ML independently describes a)
menu hierarchy and b) the contents of each menu line. The menu line contents can be
constructed by using many different building blocks, e.g. strings, integeri/o-fields,
switches, options, soft functions keys flexible horizontal whitespace and many more.
ML ML was designed to fit the needs for embedded system design. A compilerfor
ML written in Python generates a block of tagged binary data which is self-containing
and can easily be included into ones own embedded application.”1

With melxthe M-Language’s intention doesn’t change in any way. In fact,melxand its compiler,
mlx, is just a rewrite with some improvements of Mr. Högl’s work. The main change isthe format
of the language. While the M-Language looks a little bit like a Lisp program, amelxfile is an
XML document which must validate against themelx.dtd – this DTD is listed later in section
10. Looking closely at both languages, we will notice that there is little difference between them
in structure.

3 Bird’s-eye view

As first, let’s look at whatmlx is for and how we can use it.

1. Firstly, we will create a description of a menu interface which is intended to be displayed
on some small LCD-panels connected to an embedded system. To define the menu hierar-
chy we can use our favorite editor. Then we can use programs likexmlproc_val2 for
validation to be sure the structure of the input document tomlx is valid.

2. Having the menu description, we will usemlx to compile it into a compact binary format.
By defaultmlx produces two filesa.h anda.c.

1Hubert Högl; [http://www.fh-augsburg.de/~hhoegl/da/da-22/mel.html]
2This program comes with thepython-xml package found at [http://pyxml.sourceforge.net/].

2

3. Now the generated C file can be compiled and linked to an interpreter and/ora menu display-
ing program.Together with themlx compiler an interpreter library has been written which
can navigate through the menu and invoke callback functions. More information aboutmexc
can be found in its documentation.

To understand whymlx can be so useful in conjunction with an interpreter, imagine we have an
embedded system with an LCD connected to it and want to present a menu to theuser. Not
usingmlx, we would probably write a not trivial assembler or C program which woulddo the
displaying and navigation through the menu. When we create another systemwith a completely
different menu structure but the same look and feel . . . why should we write another assembler or
C program, why not use one library with a defined set of functionality and only implement the
system dependent functions? Exactly this is the idea behind the concept ofmlx and a byte code
interpreter. As indicated in the above listed points, all we have to define is the menu structure and
the rest is more or less already done.

There is one thing to note. The design of the byte code, the compiler, and the providedmexc
interpreter is driven by the idea that the byte code itself is placed in a read-only accessible memory
region. Another read-write accessible memory region must be available where the current state of
the menu is stored. However, both regions are separated from each other.

4 Requirements

mlx requires a standard Python distribution of version 2.3 or higher. If we’dlike mlx to validate the
source files, thexmlproc modules, which are part of thepython-xml3 package, are needed.

5 Introduction to melx

melxis the language which themlxcompiler understands, it describes a menu in its full hierarchy.
Simply spoken, the language is a predefined set of elements and attributes organized in XML
format. The exact structure of a validmexcfile is defined by the Data Type Definition (DTD)
listed in section 10.

Let’s step through a minimal menu definition to show what the basic elements are and what amelx
file looks like.

1 <?xml version=’1.0’ encoding=’US-ASCII’?>
2 <!DOCTYPE melx SYSTEM ’melx.dtd’>

As in each XML document, the first line must always be given.encoding can of course have an-
other value. But bothmlx andmexccurrently do not support multibyte characters. Thedoctype
declaration in the second line is optional, but important for the validation which isstrongly rec-
ommended to help finding errors. The system identifier, that comes after the keywordSYSTEM,

3The home page of this project is at [http://pyxml.sourceforge.net/].

3

must be the path of a file holding the DTD definition. If this path is relative it is dissolved of
the directory themelxdocument is located at. Thus, in this example,melx.dtd and themelx
document must be in the same directory.

As stated by thedoctype declaration, the top level element has to bemelx. The DTD says that
a melx element must have one child element calleddescription, at least one child element
with the namemenu, and zero or more children calledline-format in this order.

3 <melx>
4 <description>
5 <delay-to-top value=’120’/>
6 <delay-password value=’10’/>
7 <delay-help value=’2’/>
8 <top-menu ref=’m-top’/>
9 </description>

10 <menu id=’m-top’ title=’First Menu’>
11 <line ref=’l-line-01’/>
12 </menu>
13 <line-format id=’l-line-01’>
14 <string value=’This is a string.’/>
15 </line-format>
16 </melx>

The above shown code satisfies the requirements. First there comes thedescription, then all
themenus, and finally all theline-formats. Let’s look at each component in more detail and
explain their meanings.

Note: If not otherwise mentioned the following restrictions apply.

• Most elements are empty. This means that they don’t contain character data or other ele-
ments, and thus, can be shortly written as<element ... /> instead of<element ...></element>.

• Strings and passwords cannot be longer than 255 characters. Multibytecharacters are cur-
rently not supported.

• Values ofid attributes must be unique within the document. No otherid attribute can have
an already used identifier.

• All values which are expected to be numbers must be in decimal or in hexadecimal notation.
Numbers in hex format must begin with “0x”.

• The characters ‘&’, ‘<’ and ‘>’ cannot be entered directly, but must be coded with their
predefined entities which are ‘&’, ‘<’, and ‘>’. Further,mlxdoes not parse strings
for ‘\x’ sequences like the C compiler. Nevertheless, a similar construct already exists in
XML and is called “notation for character reference” (e.g. ‘ÿ’).

4

5.1 Description element

Thedescription element consists of four child elements which must be defined in the order
shown in the example above. The following list explains their meanings.

delay-to-top . . . must be empty. It must have exactly one attribute with the namevalue that
holds numbers within the range of 0 to 255. Any other content for this attributeis considered
as an error. The intention of this information is to give the number of seconds after which
the menu displaying program should return to the top-level menu table if the system idles.
A zero defines the infinity, in other words, the program should never return to the top-level
menu table automatically.

delay-password . . . must be empty and have exactly one attribute namedvalue. That attribute’s
content must be a number in the range of 0 to 255. It declares the number ofseconds to
wait, while the system idles, before aborting a password request. In otherwords, when the
user is about to enter a password, but waits for more thanx seconds, the interpreter should
abort the input.

delay-help . . . has the same format as both previous elements. Its meaning is to define a number
of seconds after which a displayed help string has to disappear.

top-menu . . . is also an empty element with one required attribute namedref which references
a menu table to be displayed at the top level. The value ofref must be the same as anid
value of amenu element.

5.2 Menu element

menu elements define collections of lines which are to be displayed as a menu table. Here is a list
of valid attributes of amenu element.

id must be defined for each menu element and is a unique identifier so a menu tablecan be
referenced.

title is an optional attribute and defaults to the empty string. It is the title of the menu table which
the interpreter may display somewhere on the screen.

password can be given to protect the menu table. A user should be allowed to view this menu
table only if he knows the correct password.

Eachmenu element must have at least one child. There are two elements which can be arbitrary
mixed.

line This element simply references the definition of an advanced menu line. Theref attribute
must therefore be identical with theid of aline-format element. The optionalsubmenu

5

attribute can reference a menu table to be entered when the user tells the interpreter to do
so.

Dynamic menu lines can be implemented through the optional attributeenable-vname.
It takes a valid C identifier which will be available in the generated header file and is a
synonym for the address of an allocated byte in RAM. This byte denotes whether the menu
line is currently enabled or not. Enabled menu lines behave normal, while disabled menu
lines should be grayed out and should not respond to user events.mexc, for example, doesn’t
display disabled menu lines at all.

const-string-line This element was introduced to be a handy shortcut for:

...
<line ref=’some-id’/>
...

</menu> <!-- end of a menu -->
...
<line-format id=’some-id’>
<string value=’some-string’/>

</line>

Thus, aconst-string-line does not have aref attribute, butvalue instead. The
string defined throughvalue will be the only thing to be displayed in the menu line, and
it will be constant. Read about the string line component to learn more about constant
strings. Aconst-string-line element has the same optional attributessubmenu
andenable-vname with the same meanings as aline element. Additionally, ablink
attribute is understood and causes the displayed string to blink.

5.3 Line-format element

The elementline-format is the description of the structure of a single menu line. A menu
line consists of at least one line component – the components are discussedin a moment. The
order of the components in which they appear in a line is defined by the orderthey are defined in
aline-format element. There is nothing exciting about the element. All it must have is anid
attribute with a unique identifier so the line descriptor can be referenced.

5.4 Line components

Finally, let’s turn to the small entities called ‘line components’. There can be as much line com-
ponents in each menu line as we want, however, we have to consider that they need to fit into a
single line on the LCD. Each line component needs some space on the display.How much space it
actually consumes, is finally determined by the interpreter or the program which does the drawing
on the device. Nevertheless, we will give a length for each line component that the interpreter is
encouraged to reserve. Fortunately, themexcinterpreter does respect our proposals.

6

5.4.1 Common attributes

There are optional attributes which are supported by almost all currently implemented line com-
ponent elements, so let’s discuss them first. If not otherwise stated , eachline component element
has the following attributes with an appropriate meaning and default value.

blink This attribute must be either 1 or 0. Any other value is considered to be an error. If it is set
to 1, then the line component is assumed to blink with a fixed interval on the display. The
interval is defined by the interpreter and cannot be set by themlx compiler. Default: 0.

edit Also this attribute can hold either 1 or 0. If set to 1, the interpreter should provide a way of
allowing the user to change the value of the line component. Themexclibrary, for example,
provides editing of all components with a 5-button keyboard. Additionally, theinterpreter
library is assumed to call a custom callback handler to notify the application of achange
when the user finished editing the component. For some line components it doesn’t make
sense to declare them non-editable. Default: 0.

update If a user changes the value of a component, then the library will update the display. But
what happens if a program code (e.g. a callback or a parallel thread) changes the value?
The program code doesn’t have to know about a display at all, but the change needs to be
reflected on it. Therefore, we can tell the library whether it should updatea component
periodically and how often it should do so. This attribute holds a number whichdefines the
seconds to wait before the current value of the component should be redrawn. The number
must be between 0 and 255, both values including. A zero cancels this feature, and in simple
words, it means ‘don’t periodically update’. Default: 0.

Note: It doesn’t make sense to define anupdate value other than zero without specifying
the vname attribute. Withoutvname, an application won’t know where a component’s
current value in RAM is and, thus, won’t be able to access and change the current value.
Themlx compiler checks for that and prints a warning.

vname The current value of a line component is always stored somewhere in RAM. The location
of the memory block is computed during compilation of themelxsource. To make these
memory blocks accessible to an application which maybe linked to an interpreter library
and which does not know about the byte code (the addresses are stored there),mlx writes
the addresses to a generated header file as ‘#definename address’ wherenameis substituted
with the value of thevname attribute andaddresswith the computed address. In addition,
mlx allocates a memory block where the address of a callback handler is stored.The in-
terpreter library is assumed to call this handler after the user has edited a component. The
address of the memory block where the routine’s address is stored gets defined in the header
file under the name’CALL_’ + vname, so an application is able to register custom callbacks.
As vnameis used in a C header file, its value must be a proper C identifier.mlx checks for
that. Default: the empty string.

7

5.4.2 Integer

An integer element defines a component that displays several types of integer numbers. De-
pending on thetype attribute, the data type, the value range, and the displaying width differ.

<integer type=’dd’ value=’42’ edit=’1’/>

type The requiredtype attribute of this element determines some further details about the com-
ponent. Thebytescolumn in the following table shows the number of bytes the integer
is stored in (this is the memory block available undervname). The charscolumn gives
the number of characters needed to display the component. The other columns should be
self-explanatory.

type bytes interpretation value-range chars comment
dd 1 unsigned 0 .. 99 2
ddd 1 unsigned 0 .. 255 3
hh 1 unsigned 0 .. 0xFF 2 hex
sdd 1 signed -99 .. +99 3 sign

sddd 1 signed -128 .. +127 4 sign
DDD 2 unsigned 0 .. 999 3

DDDD 2 unsigned 0 .. 9999 4
DDDDD 2 unsigned 0 .. 65535 5
HHHH 2 unsigned 0 .. 0xFFFF 4 hex
SDDD 2 signed -999 .. +999 4 sign
SDDDD 2 signed -9999 .. +9999 5 sign

value This is the default value of the integer component. It must be in the correct range which
depends on the value oftype. This attribute is required.

blink, edit, update, vname See 5.4.1.

5.4.3 Float

The line component introduced with thefloat element is meant to present a number as a float.
Currently there are two types which differ only in the format they are meant tobe displayed.

<float type=’siif’ value=’12.4’/>
<float type=’siiif’ value=’-123.4’/>

type This is an optional attribute which defaults tosiif, beside this it can also be set tosiiif.
The type says nothing about the value itself, but about how to display it: ‘s’is meant to
be the sign, ‘i’ digits and ‘f’ the fraction digit. An interpreter should display the float as
specified with a dot or a comma between the last digit and the first fraction digit.

8

value This specifies the component’s initial value and is required. It has to be a float.

blink, edit, update, vname See 5.4.1.

Depending on thetype attribute this component should take up 5 or 6 characters on the display.

5.4.4 String

The string component is probably the most frequently used component at all. Very often it is used
to display static information that will never change during the execution of a program. Therefore,
this component is somewhat special.

If the component is not declared to be editable, the attributesupdate andvname have no effect.
In this case, the current value of the string will never be copied to RAM. Thus, a program which
links to an interpreter library will not be able to access the string. Only the library will extract the
string out of the byte code and display it.

Strings are always stored the Pascal way. This means they are not zeroterminated, but their length
is stored in the first byte. The string itself begins in the second byte. The fact that the length is
saved in a one-byte cell is limiting a string’s length to 255 characters.

<string value=’a constant string’/>
<string value=’an editable string’ edit=’1’ blink=’1’/>

value This is the string to be displayed. If the string is editable, this is the string’s default value.
This attribute is required.

blink, edit, update, vname See 5.4.1.

The length of the string determines how much space is needed on the display.

5.4.5 Counter

The counter component is a number on the display which, when edited, can be increased or de-
creased by a defined value. Depending on the type, the counter handlessigned two-byte integers
or floats.

<counter type=’integer’ edit=’1’
value=’42’ min=’-100’ max=’100’ step=’2’/>

<counter type=’float’ edit=’1’
value=’12.4’ min=’10.0’ max=’15.0’ step=’0.5’/>

type This attribute is required and determines the data type to use. It can beintegeror float.

9

value This attribute is required and sets the initial value of the counter. It must be betweenmin
andmax, including both values.

min This attribute is required and sets the lower boundary of the counter. It must be smaller than
max.

max This attribute is required and sets the upper boundary of the counter. It must be greater than
min.

step This attribute is required and is the value by which to increase or decrease the counter.

blink, edit, update, vname See 5.4.1.

How much space is needed on the LCD to display the component is determined bythe attributes
min andmax. The longest of those two sets the width of the component. For example, the first
counter in the code shown above would need 4 characters as the countercan take up a value of
-100.

5.4.6 Switch

A switch component is a binary field whose bits can be seton or off. By defining ‘*’ for the
on-state and ‘.’ for theoff-state, a switch would typically be drawn as*..**.** on an LCD.

To define such a component, we will use theswitch element withswitch-items as children.
The number of the children is limited to 32 but must be at least 1. Theswitch is one of few
elements that is not empty. The example given below defines the above discussed field.

<switch on-char=’*’ off-char=’.’ edit=’1’>
<switch-item info=’Budweiser’ value=’1’/>
<switch-item info=’Dobrovar’ value=’0’/>
<switch-item info=’Steiger’ value=’0’/>
<switch-item info=’Eger’ value=’1’/>
<switch-item info=’Plzen’ value=’1’/>
<switch-item info=’Martiner’ value=’0’/>
<switch-item info=’Gambrinus’ value=’1’/>
<switch-item info=’Smaedny Mnich’ value=’1’/>

</switch>

Attributes of aswitch are . . .

on-char This attribute is optional and defines the character to use for theon-state. Default: ‘*’

off-char This attribute is optional and defines the character to use for theoff-state. Default: ‘.’

blink, edit, update, vname See 5.4.1.

Attributes of aswitch-item are . . .

10

info This attribute is required and defines an help string to be displayed when user edits the ap-
propriate bit.

value This attribute is required and defines the initial state of a bit. It can either be 1 (on) or 0
(off).

How much space on the LCD this component needs depends on the number ofspecified bits. For
each bit it should take up one character.

5.4.7 Option

An option is a component to let the user choose one item out of a fixed list of alternatives. The
code shown below, for example, defines an option to let the user choose aname of a month.

<option edit=’1’ default=’o-03’/>
<option-item value=’Jan’ id=’o-01’/>
<option-item value=’Feb’ id=’o-02’/>
<option-item value=’Mar’ id=’o-03’/>
<option-item value=’Apr’ id=’o-04’/>
...

</option>

As shown, theoption element is not empty and must contain at least oneoption-item ele-
ment, but no more than 255.option elements have the following attributes:

default This attribute is required and is a reference to an item which should be displayed by
default. The value must be the same as the value of anid attribute of oneoption-item
within the appropriateoption.

blink, edit, update, vname See 5.4.1.

Theoption-item has two required attributes:

value This string is to be displayed when the item is selected.

id A unique identifier.

The length of anoption on the display is determined by the longestoption-item’s value.

5.4.8 Time

The time component is there to display a time with or without seconds and may look like12:42
in the ‘short’ format or like12:42:37 in the ‘long’ format. The delimiter character printed
between the single time parts is not set bymlx but provided by the interpreter.

11

<time type=’long’ hours=’12’ minutes=’42’ seconds=’37’
vname=’CURRENT_TIME_ADDR’ update=’1’/>

<time type=’short’ hours=’12’ minutes=’42’ seconds=’0’
edit=’1’ vname=’ALARM_ADDR’/>

Beside the time specific attributes, this example also shows the usage of the two attributesupdate
andvname. With the first time component, a program can periodically update the variable at the
address CURRENT_TIME_ADDR and the interpreter will update/redraw thecomponent every
second, when it is on the screen. The second time component, for instance, can serve as an input
field to let the user define an alarm.

The data type for the time value is a three or two bytes structure respectively.The first byte holding
the hours, the second byte holding the minutes and for the long time format the third byte holding
the seconds.

The following attributes are defined for the time element:

hours This attribute is required and is the ‘hours’ component of the time. It must be anumber
between 0 and 23, including both.

minutes This attribute is required and is the ‘minutes’ component of the time. It must be a number
in the range of 0 to 59.

secondsThis attribute is required and is the ‘seconds’ component of the time. It must be a number
in the range of 0 to 59.

type This attribute is optional and defaults to ‘short’. It can also be set to ‘long’and indicates
whether the time component will have seconds or not.

blink, edit, update, vname See 5.4.1.

The length in characters of a short time should be 5, of a long time it should be 8.

5.4.9 Date

A date is similar to the time component. It could be displayed as2005-10-24 in the long format
or 05-10-24 in the short one. In the end, it depends on the interpreter. The main difference is
that a ‘short’ date cannot hold values greater than 255 for a year, whilein the long format, it can
be up to 9999. As with the time component, also for dates,mlx has no influence on the delimiter
character between the year, month, and day parts.

<date type=’short’ year=’2005’ month=’10’ day=’24’/>
<date type=’long’ day=’1’ month=’1’ year=’2004’/>

The following attributes of adate element are defined:

day This attribute is required and must be a number between 1 and 31, including both values.

12

month This attribute is required and must be a number in the range of 1 to 12.

year This attribute is required and must be a number in the range of 0 to 9999. Specifying 1999
for a short date is possible, however the compiler assumes 99 is meant.

type This attribute is optional and defaults to ‘short’. Beside its default value, it can be set to
‘long’. This attribute denotes the size of the year.

blink, edit, update, vname See 5.4.1.

The length of the displayed date component should be 10 characters for along type and 8 for a
short type.

5.4.10 Trigger

A trigger differs from all the components mentioned above. It actually doesn’t display any infor-
mation at all, but is meant to be a “soft-button” which, when activated, calls a routine to perform
some action.

<string value=’Reset: ’/>
<trigger vname=’reset_system’/>

The shown code snippet would probably be displayed as ‘Reset: [X]’ in a line. The interpreter
is responsible for providing a way to activate the trigger, when the user wants to do so. The
following attributes of atrigger element are defined:

vname This required attribute has the same meaning as described in 5.4.1 with the exception that
only theCALL_ definition will result in the generated header file.

password With this optional attribute set, an interpreter should request for this password before
calling the installed handler routine.

blink This attribute is optional and has the same meaning as described in 5.4.1

It depends on the interpreter how many characters a trigger takes up. The mexcinterpreter li-
brary displays a trigger as ‘[X]’, password protected triggers as ‘[P]’. Thus, it takes up three
characters.

5.4.11 Horizontal fill

An hfill element is actually a fictional component and resolves into a constant string.Its pur-
pose is to provide a way to put fixed or variable sized gaps between the other components. For
example, if we want to have a line with right-aligned components, we would use an hfill.

13

<line-format id=’foo’>
<string value=’temp:’/>
<hfill char=’.’/>
<integer type=’dd’ value=’20’ update=’10’

vname=’cur_temperature’/>
</line-format>

In the example above,mlx would compute how many characters to put between the given string
and the integer, so that the integer is aligned at the right edge of the display.An interpreter would
draw the line as ‘temp:........20’ on a 16 characters wide LCD.

We can even specify more than onehfill element in aline-format. In this configuration,
mlx tries to distribute the free (character) space to the specified gaps equally.

<line-format id=’bar’>
<string value=’X’/>
<hfill char=’-’/>
<string value=’Y’/>
<hfill char=’.’/>
<string value=’Z’/>

</line-format>

On a 16 character wide LCD the given example would produce a ‘X------Y.......Z’ printed
line. If we carefully count the characters, we will notice that the dashes count one more than the
dots. This is because the 13 remaining characters, which are to be equally distributed, cannot be
divided without a remainder.mlx prefers the last gap and assigns the rest of the free characters to
it.

Thehfill element understands two optional attributes.

char This attribute defines the character to fill the gaps with. Default: a blank (‘ ’)

count With thecount attribute the number of characters to be put into a gap can be defined. The
default value, zero, causes the gap to grow as much as possible.

The width of this element is variable or fixed (viacount attribute), but it can also be zero if there
is no space to distribute, so it is not guaranteed that there will be a gap between two components.

6 Command line options

Before we can use themlx compiler, we need to understand its command line options. The com-
mandpython mlx.py --help at the shell prompt will print a list of options recognized by
the program. We should get a listing as show in figure 1.

Only long format options are supported, and two arguments are required tothe compiler. Let’s
step through the command line parameters to define their meanings.

14

~mlx% python mlx.py --help
usage: mlx.py: [options] mem-origin <filename>
options are:

--align do align addresses
--endian={little|big} use specified byte-order (def: big)
--awidth=n address bus width in bytes (def: 2)
--mem-optimization do optimize memory layout

--no-header do not produce the header a.h file
--binary produce a.bin file instead of a.c
--output base ‘base’ as name for output filenames

--max-line-width=n num characters in one line (def: 18)
--max-title-width=n num characters for title (def: 16)

--dont-validate do not validate the source file
xmlproc required for validating

--help print this text, then exit
--version print the version, then exit

Figure 1: Command line parameters ofmlx

--help This option prints a listing as shown in figure 1.

--version This option prints the version number of the compiler and exits the program.

--dont-validate This option causes the compiler not to validate the source file. Given this option,
the compiler will not use thexmlprocmodules from the “python-xml” package, but mod-
ules from the standard library that are installed with the default Python distribution. This
enables the use of the compiler on machines without the “python-xml” package installed.
However, if the source file isn’t properly structured the compiler’s result is undefined.

--max-line-width This option takes a numerical argument and tells the compiler to print warnings
about menu lines which are longer than the given number. As we learned about thehfill
element, the compiler can right-align components or stretch them from each other. This
requires a line width to be given. By default it is 184.

--max-title-width As with the previous option, also this one takes a numerical argument and tells
the compiler to print warnings about menu titles which are longer than the givenvalue. By
default it is 165.

--output This option requires an argument. By default, themlx compiler will output two files

4mexcuses 18 characters of a 20 character wide display for menu data. The remaining two columns are reserved,
one for the current line indicator and the other for the submenu indicator.

5mexcuses 16 characters for the title on a 20 column display. The remaining 4 columns are reserved to display some
other information.

15

named ‘a.h’ and ‘a.c’. With the-output option the ‘a’ of the filenames can be changed
to a custom name.

--binary By default, the compiler will output the generated byte code as an array in a Cfile. Using
this option, the compiler will generate a binary file instead of the C file. The binary file will
be appended the ‘.bin’ suffix and contains the raw bytes of the binary menu image. It is
useful for applications that want to the load byte code dynamically. Thegsim simulator,
which was written as a part of this project, can run different byte codes without the need of
being recompiled.

--no-header This option suppresses the generation of the header file.

--align For each line component, with the exception of constant strings, the compiler allocates
a memory block of an appropriate size somewhere abovemem-origin. We can tell the
compiler to align memory blocks with a size of two bytes on even addresses and memory
blocks with a size of 3 or more bytes on addresses divisible by 4. Some hardware may
require this.

--mem-optimization This option has only an effect if it’s used together with the--align op-
tion. When optimizing, the gaps, that originates from aligning memory blocks, get filled
by other memory blocks. This option can cause a considerable reduction ofmemory con-
sumption at the cost of the fact that a single line’s components don’t have tohave increasing
addresses for their current values. In most cases this should be no problem.

--awidth This option is important to be properly set and defines the width of an address. It is the
size of a pointer and can be determined with the Csizeof operator, which depends on the
compiler and the target platform the produced byte code will be used at.

--endian This option causes the compiler to output values, which are stored in more thanone
byte (e.g. short or floats), either in little- or big-endian. It is important to know on which
platform the byte code will be interpreted.

mem-origin This is a required command line parameter and has to be a numerical value (must
begin with ‘0x’ for hexadecimal format) and tells the compiler to allocate memory blocks
above this address. This will often be the address of the beginning of RAM on the target
system.

filename This is the path to themelxsource file.

7 CMF - Compact Menu Format

The “Compact Menu Format” is a definition of the byte code thatmlxproduces. Its current version
is 0.4. It is a compact binary representation of a menu hierarchy specifiedby anmelxsource. The
binary format is very similar to Mr. Högl’s PMF (Portable Menu Format), however, CMF differs
to make the code more compact and efficient.

16

The following sections reflect many things already discussed in section 5 and will be interesting
to programmers who want to implement a CMF parsing program.

7.1 Notation

In the following description we will use the convention to enclose terminal symbols in braces
< .. >. Within these braces a terminal symbol is separated by a colon followed by a number
which denotes the size in bytes of the symbol. With<foo:2>, for example, we have a terminal
symbol which takes up two bytes. Sometimes we will have brackets with an interval or a single
number behind a terminal definition. A<foo:2>[3,0], for instance, denotes that we refer to
the bits 3, 2, 1 and 0 of the terminal symbol ‘foo’ which has a size of two bytes. All other symbols,
namely those not enclosed in< .. > braces, are non-terminal symbols. To indicate zero or more
repetitions of a symbol, it is enclosed in curly braces{ .. }.

Some terminal elements (e.g. strings or passwords) are noted as<element:n+1>. The ‘+1’
indicates that the element is a string, and strings are stored the Pascal way inCMF. They are not
zero terminated, but their first byte, referred to as the ‘length byte’, which holds the valuen as an
one-byte unsigned integer, is followed byn bytes holding the string’s characters. Thus a string
actually takes upn+1 bytes in CMF.

7.2 Overall structure

byte-code ::=
prolog menu-table { menu-table }

prolog ::=
<pmf-id:3>
<major-version:1>
<minor-version:1>
<delay-to-top:1>
<delay-clr-help:1>
<delay-password:1>
<byte-order-mark:2>

menu-table ::=
<menu-title-string:n+1> (*) menu-line { (*) menu-line }

menu-line ::=
<ldtag:1> line-opts (*) line-comp { (*) line-comp }

line-comp ::=
<lctag:1> line-comp-opts

Figure 2: Overall structure of CMF

17

The definition in figure 2 shows the structure of a CMF formated menu description. A ‘(*)’ in the
definition is an indicator for an optional padding zero byte. Sometimes such bytes are necessary
to make the following structures specially aligned. Currently, there are two alignment rules that
apply to the byte code.

• A menu-line is always aligned on a non-even offset within the byte code. Padding zero
bytes are put in front of it to make the offset of a<ldtag:1> not divisible by 2.

• A line-comp is always aligned on an even offset within the byte code. A padding zero
byte may precede the structure to make the offset of a<lctag:1> divisible by 2.

There is no indication which menu table is actually the first to be displayed. By convention,
the first menu table – the top-level menu table – to be displayed is themenu-table following
immediately theprolog.

7.3 prolog

pmf-id . . . is an array of 3 characters. This array is filled with ‘C’, ‘M’, and ‘F’ (or in numbers
0x43, 0x4D, and 0x46) in this order. A parsing program must check for this to ensure it has
the right binary data.

major-version . . . denotes the major version number of the byte code.

minor-version . . . denotes the minor version number of the byte code.

delay-to-top . . . is an unsigned-byte integer and gives the number of seconds an interpreter should
wait before it is supposed to return to the top-level menu table. A value of zero indicates the
interpreter should never return to the top-level menu table automatically.

delay-clr-help . . . is an unsigned-byte integer and gives the number of seconds for how long a
help string should be displayed. A value of zero indicates a help string should not be cleared
automatically.

delay-password . . . is an unsigned-byte integer and gives the number of seconds after which a
password query should be aborted when the user makes no input. A valueof zero indicates
an interpreter should infinitely wait for the password.

byte-order-mark . . . is an unsigned two-byte integer with the fixed value of 0xFEFF. However,
accessing it via an array of bytes it can have two values: 0xFFFE in casethe number was
stored in big-endian, or 0xFEFF in case it was stored in little-endian. A parsing program
can easily determine whether it supports the proper byte-order with the following code:

unsigned short * p = (unsigned short *)&byte_code[8];
if (*p != 0xFEFF)
; /* wrong byte order determined */

Listing 1: Checking the byte–order mark

18

if <ldtag:1>[1,0] == 00 # not first and not last line
line-opts ::= <next-line-ofs:2> <prev-line-ofs:2>

if <ldtag:1>[1,0] == 01 # first line but not last
line-opts ::= <next-line-ofs:2>

if <ldtag:1>[1,0] == 10 # last line but not first
line-opts ::= <prev-line-ofs:2>

if <ldtag:1>[1,0] == 11 # is last and is first line
nothing for line-opts in this case (maybe submenu)
line-opts ::=

if <ldtag:1>[2] == 1 # dyn-enable feature
line-opts ::= ... <var-addr:2>
var-addr is appended to the previous options

if <ldtag:1>[3] == 1 # has submenu
line-opts ::= ... <smenu-abs-ofs:2>
submenu-abs-ofs is appended to previous options

if <ldtag:1>[3,4] == 11 # submenu password
line-opts ::= ... <password-str:n+1>
password is appended to the previous options

Figure 3: Definition ofline-opts in CMF

7.4 menu-line

A menu line begins with an unsigned one-byte integer (<ldtag:1>) which decides what fields
are available from the line options. Following theline-opts there is always at least one line
component. Let’s look at the bits of anldtag.

bitmask meaning if the appropriate bit is set in<ldtag:1>
0x01 is first menu line (no preceding menu lines)
0x02 is last menu line (no following menu lines)
0x04 menu line can be dynamically enable/disabled
0x08 menu line points to a submenu
0x10 submenu is password protected

Depending on these bits the structure of aline-opts must be dynamically assembled. Access-
ing values following this structure can be a little bit problematic because it has not a fixed size.
However, this can be efficiently implemented with a lookup table holding the sizes for each case.
The exact definition of the dynamic structure depending on the shown flagsis shown in figure 3.

The ‘. . .-ofs’ fields, namelynext-line-ofs andprev-line-ofs, are offsets to the pre-
vious or the next menu line respectively. They count from including theldtag and contain the
optional padding zero byte. This means, in the case of a next menu line, we need to add the
next-line-ofs to the address of the currentldtag to obtain the address of the next.

The optionalvar-addr field is an offset into RAM and points to an unsigned one-byte integer
that should be used as a boolean value. This byte is often referred to as the ‘enable byte’ and

19

its value as the ‘enable value’. The interpreter has to initialize this byte and interpret its value
accordingly.mexc, for example, doesn’t draw menu lines which the enable value is zero. Another
way would be to gray out these lines.

smenu-abs-ofs holds an absolute offset to the submenu. An absolute offset is counted from
including the first byte of the first menu table. This is the first menu table locateddirectly behind
theprolog. Thus, to access a submenu we need to add tosmenu-abs-ofs the address of the
prolog and its size.

To access the first line of amenu-table we need to look at the absolute offset of the byte
immediately following the menu title. Because all menu lines are aligned on non-evenoffsets, we
must increase the offset of the byte following the menu title by one if it is even, and thus, jump
over a padding zero byte. When accessing menu lines on the base of ‘. . .-ofs’ fields, there is no
need to worry about the padding zero byte.

7.5 line-comp

A line component is the actual entity that is displayed in a menu line. Currently thereare 23
different types of line-components which are to be implemented by an interpreter and there is still
place for another eight components. The type of a component is defined by the first five bits of
thelctag and determines the actual byte code structure. The following table gives anoverview
of the available components which are explained in more detail later, each on itsown. Themask
column suggests how to display the components.

20

<lctag:1>[4,0] type mask comment
0x00 uchar dd unsigned one-byte integer
0x01 uchar ddd -
0x02 uchar hh hex
0x03 char sdd signed one-byte integer
0x04 char sddd -
0x05 uint2 DDD unsigned two-byte integer
0x06 uint2 DDDD -
0x07 uint2 DDDDD -
0x08 uint2 HHHH hex
0x09 int2 SDDD signed two-byte integer
0x0a int2 SDDDD -
0x0b float SII.F ieee-754 float
0x0c float SIII.F -
0x0d counter DD..D signed two-byte int counter
0x0e fcounter SII.F ieee-754 float counter
0x0f time-long HH:MM:SS -
0x10 time-short HH:MM -
0x11 date-long YYYY-MM-DD -
0x12 date-short YY-MM-DD -
0x13 switch “.*..**.” max. 32 items
0x14 option “...” opt1, opt2, ...
0x15 string “...” pascal strings
0x16 password “[P]” -
0x17 trigger “[X]” -

0x18 - 0x1f - - -

There are three further flags in<lctag:1>. The following table explains their meanings.

<lctag:1>[5] description
0 (read-only) component should not be editable by the user
1 (read-write) component should be editable by the user

<lctag:1>[6] description
0 (dont-blink) component should not blink on the display
1 (do-blink) component should blink on the display

<lctag:1>[7] description
0 (not-last) after this component there is another one
1 (last) this component is the last in the menu line

In the following sections each line component’s byte code structure is givenwith some hints.
Nearly all structures begin with the following fields:

21

<update:1> A one-byte unsigned integer to define an interval in seconds in which an inter-
preter should redisplay the current value of the component. Of course,an interpreter can
update it only if it is currently displayed. An interval of zero disables the automatic updates.

<call-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
a handler’s address is installed. This handler should be called after the user edited a compo-
nent. The pointer being relative is explained in a moment.

<var-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
the current value of the component is stored. How large the memory block is and how it has
to be interpreted is determined by a component’s type.

A relative pointeris just like a relative path. An interpreter will be given a base address andit is
supposed to add this address to all relative pointers to actually access memory at the right location.

As mentioned, aline-comp structure is always stored on an even offset within the byte code.
When accessing aline-comp we must jump over optional padding zero bytes. We’ll just fetch
a component’s offset as usual but increment it by one, in case it is not even.

7.5.1 uchar ‘dd’

if <lctag:1>[4,0] == 0x00
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block, which is accessible by thevar-addr relative
pointer, are unsigned one-byte integers.default is the component’s initial value. An interpreter
is supposed to display this component as a two-digit decimal number without a sign (‘+’). The
size of the code for this component including thelctag is 7 bytes.

7.5.2 uchar ‘ddd’

if <lctag:1>[4,0] == 0x01
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is supposed to be displayed
as a three-digit decimal number.

7.5.3 uchar ‘hh’

if <lctag:1>[4,0] == 0x02
<update:1>
<call-addr:2>

22

<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is supposed to be displayed
as a two-digit hexadecimal number.

7.5.4 char ‘sdd’

if <lctag:1>[4,0] == 0x03
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block are signed one-byte integers.default is the
components initial value. An interpreter is supposed to display the componentas a two-digit
decimal number with a sign in front of it (‘+/-’). The size of the code for thiscomponent including
thelctag is 7 bytes.

7.5.5 char ‘sddd’

if <lctag:1>[4,0] == 0x04
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “char sdd” with the exception that it is supposed to be displayed as
a three digit number with a sign.

7.5.6 uint2 ‘DDD’

if <lctag:1>[4,0] == 0x05
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

default, which is the component’s initial value, and the corresponding memory block are un-
signed two-byte integers. An interpreter is supposed to display the component as a three-digit dec-
imal number without a sign (‘+’). The size of the code for this component including thelctag
is 8 bytes.

7.5.7 uint2 ‘DDDD’

if <lctag:1>[4,0] == 0x06
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

23

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a four-digit decimal number.

7.5.8 uint2 ‘DDDDD’

if <lctag:1>[4,0] == 0x07
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a five-digit decimal number.

7.5.9 uint2 ‘HHHH’

if <lctag:1>[4,0] == 0x08
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a four-digit hexadecimal number.

7.5.10 int2 ‘SDDD’

if <lctag:1>[4,0] == 0x09
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

default, which is the component’s initial value, and the corresponding memory block are signed
two-byte integers that should be displayed as three-digit decimal numbers with a sign in front of
it. The size of the code for this component including thelctag is 8 bytes.

7.5.11 int2 ‘SDDDD’

if <lctag:1>[4,0] == 0x0a
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This is the same as the “int2 SDDD” component with the exception that it should bedisplayed as
a four-digit number with a sign.

7.5.12 float ‘SII.F’

24

if <lctag:1>[4,0] == 0x0b
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

default, the initial value, and the corresponding memory block are IEEE-754 singleprecision
(32-bit) floating point numbers. They should be displayed with a sign followed by two digits
before the decimal point and one digit after the decimal point. The size of thecode for this
component including thelctag is 10 bytes.

7.5.13 float ‘SIII.F’

if <lctag:1>[4,0] == 0x0c
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

This component is the same as ‘float SII.F’ with the exception that it should bedisplayed with one
more digit before the decimal point.

7.5.14 counter

if <lctag:1>[4,0] == 0x0d
<update:1>
<call-addr:2>
<var-addr:2>
<min:2>
<max:2>
<step:2>
<default:2>
<field-width:1>

default, the counter’s initial value, the corresponding memory block,min, max, andstep are
signed two-byte integers. A counter should be in-/decremented bystep within the range [min;
max]. field-width is an unsigned one-byte integer and gives the width in characters needed
to display the counter within the specified value range. The size of the code for this component
including thelctag is 15 bytes.

7.5.15 fcounter

if <lctag:1>[4,0] == 0x0e
<update:1>
<call-addr:2>
<var-addr:2>
<min:4>
<max:4>
<step:4>

25

<default:4>
<field-width:1>

This is essentially the same as a ‘counter’ with the exception thatdefault, the correspond-
ing memory block,min, max, andstep are IEEE-754 single precision (32-bits) floating point
numbers to be displayed as a ‘float SII.F’ component. The size of the codefor this component
including thelctag is 23 bytes.

7.5.16 time-long

if <lctag:1>[4,0] == 0x0f
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>
<seconds:1>

hours, minutes andseconds are unsigned one-byte integers. The memory block, which
holds the current value, is a data type of three bytes with the first byte beingthe hours, the second
byte being the minutes and the third byte being the seconds of the time. In C we would describe
the data type with a structcmf_time_t as shown in listing 2.

struct cmf_time_t {
unsigned char hours;
unsigned char minutes;
unsigned char seconds;

};

Listing 2: Definition of cmf_time_t

The size of the code for this component including thelctag is 9 bytes.

7.5.17 time-short

if <lctag:1>[4,0] == 0x10
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>

This component is the same as “time-long” but without seconds. The size of the code for this
component including thelctag is 8 bytes.

7.5.18 date-long

if <lctag:1>[4,0] == 0x11
<update:1>

26

<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:2>

day andmonth are unsigned one-byte integers, whileyear is an unsigned two-byte integer.
The corresponding memory block, which holds the current value, has a size of 4 bytes and the C
structure definition as shown in listing 3.

struct cmf_date_t {
unsigned char day;
unsigned char month;
unsigned short year;

};

Listing 3: Definition of cmf_date_t

The size of the code for this component including thelctag is 10 bytes.

7.5.19 date-short

if <lctag:1>[4,0] == 0x12
<update:1>
<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:1>

This is the same as a “date-long” with the exception that the year is an unsignedone-byte integer.
The size of the code for this component including thelctag is 9 bytes.

7.5.20 switch

if <lctag:1>[4,0] == 0x13
<update:1>
<call-addr:2>
<var-addr:2>
<length:1>
<nswitch:1>
<on-char:1>
<off-char:1>
<default:4>
<string:n+1>
...
<string:n+1>

length is an unsigned one-byte integer that gives the size in number of bytes of thiscomponent
including thelctag. nswitch is also an unsigned one-byte integer and defines the number of

27

valid switches/bits and help strings. The maximum can be 32.on-char andoff-char are both
characters to be displayed for a bit in the appropriate state. The string array at the end of the struct
defines a help string (Pascal style) for each bit.default, which is the switch’s initial value, and
the corresponding memory block are 4-byte arrays with the first 8 switches/bits in the first byte,
the next 8 switches/bits in the second byte and so on. Due to the fact that someplatforms don’t
support 32-bit data types, this component has not been implemented as an unsigned four-byte
integer. Nevertheless, we can easily access each bit with the C code given in listing 4.

unsigned char * mask = &mem_block_of_switch[0];
for (i = 0; i < 32; i++)
{

byte_index = i / 8
bit_index = i % 8
if (mask[byte_index] & (1<<bit_index))

; /* bit is set */
else

; /* bit is not set */
}

Listing 4: Accessing each bit of a switch component

The size of the code for this component including thelctag is variable and defined in the
length field.

7.5.21 option

if <lctag:1>[4,0] == 0x14
<update:1>
<call-addr:2>
<var-addr:2>
<length:1>
<nopts:1>
<field-width:1>
<default:1>
<string:n+1>
...
<string:n+1>

length and the string array at the end of the component’s code have the same meaning as within
a “switch”. nopts is an unsigned one-byte integer giving the number of options.default, the
initial value, and the corresponding memory block are unsigned one-byte integers being indexes
into the string array.field-width, an unsigned one-byte integer, gives the width in characters
of the longest string. The size of the code for this component including thelctag is variable and
defined in thelength field.

7.5.22 string

if <lctag:1>[4,0] == 0x15

28

if <lctag:1>[5] == 0 # line-comp is read-only
constant string
<string:n+1>

else # line-comp is read-write
<update:1>
<call-addr:2>
<var-addr:2>
<string:n+1>

The string component is somewhat special. If the component is not editable,then the value, a
Pascal string, is following immediately thelctag, and the size of the component’s code is the
length of the string plus two (length byte of the string +lctag). In this case, there is no relative
pointer and no corresponding memory block.

If the string is editable, the corresponding memory block has the length of the string plus one (the
length byte). The size of this component in this case is also variable and computed as ‘length-of-
the-string + 7’.

7.5.23 password

if <lctag:1>[4,0] == 0x16
<unused:1>
<call-addr:2>
<string:n+1>

This component is a password protected trigger. The ‘is-editable’ flag in<lcdtag:1> is always
set. But instead of changing the appearance of the component, an interpreter should ask for a
password, verify it, and if it was correct, call the installed callback handler which address is stored
at the location the relative pointercall-addr points to.

It is assumed that this component will be displayed as a ‘[P]’. Its code size in bytes including the
lctag is the length of the password plus 5.

7.5.24 trigger

if <lctag:1>[4,0] == 0x17
<unused:1>
<call-addr:2>

This component is essentially the same as a “password” with the exception thatthere is no pass-
word to be requested. It is assumed to be displayed as a ‘[X]’. This component’s code size in
bytes including thelctag is 4.

7.6 CMF parser

With themexcinterpreter library, C code has been implemented to navigate through the CMF and
provide the programmer with structure definitions for each line component. This code is released
under a free license and can be used for new projects. The parser is written in the filescmf.c and
cmf.h of themexcsources.

29

8 m2melx.py

For programmers, who are already familiar with the M-Language and who want to switch tomelx,
this section may be of interest. Asmelxwas introduced to replace the M-Language, a script has
been written to convert M-Language documents tomelxdocuments, and thus, allow developers a
quick movement towards themlx compiler.

The converter script namedm2melx.py takes an M-file and creates an semantically equal menu
definition in themelxlanguage. Them2melx script can be started with or without parameters. In
the later configuration, the converter expects its input from stdin and printsthe result to stdout. If
started with the ‘-h’ option, the message shown in listing 5 will be printed. As listed there, it is
possible to specify an input file and a filename where to write the result.

~mlx% python m2melx.py -h
usage: python m2melx.py [-h] [-o <output-filename>] [<input-filename>]

Listing 5: Command line options of m2melx

Note: The converter does no error checking, and assumes that the menu description given in the
M-Language is correct. If it isn’t, the result of the converter is undefined.

9 Writing extensions

In this section we will look at howmlx can be extended with custom line components. The
compiler was written in a manner that makes it not too hard to integrate a programmer’s own
components. However, some experience with DTDs, SAX, and Python programming is required.
An understanding of CMF, which is described in section 7, is essential.

Due to the compactness of the output format, there is place for only eight newline components.
However, this should be enough. Before starting to make changes tomlx, we should investigate
whether it’s worth the trouble at all. We should try to realize our idea with an already implemented
component, because we need to consider that, besidemlx, also the byte code interpreter needs to
be extended, too.

Throughout this section we will introduce an example component called “checkbox” that actually
could be realized with anoption. However, ourcheckbox will produce fewer bytes. It will
have the four attributesblink, edit, update, andvnameas described in section 5.4.1. Of course it
will have a defaultvalue. We will assume that an interpreter will display the component as ‘(x)’
(checked) or ‘(o)’ (unchecked), and thus use only three characters for it on the screen. When
used a lot in a menu definition, the new component will save a considerable amount of memory in
comparison with anoption. The byte code for acheckbox will be the same as for “uchar dd”
which is described in section 7.5.1.

30

9.1 Extending the language

At first we need to extend themelxlanguage which is defined throughmelx.dtd. A copy of this
DTD is given in section 10. The XML parser, precisely spoken the eventhandler, used bymlx is
written in a manner that makes it simple to handle empty elements, however, nesting them is also
possible. To introduce a new component inmelxwe need to add an element definition to the DTD.
Listing 6 shows what we would append tomelx.dtd.

<!ELEMENT checkbox EMPTY>
<!ATTLIST checkbox %common-lcomp-attrs; value CDATA (1|0) "0" >

Listing 6: Definition of a checkbox element

The trick with the shown definition is that it uses the%common-lcomp-attrs; attribute entity
already defined inmelx.dtd. By using this entity, the new element gets attributes that are
common to almost all components. Additionaly, avalueattribute that can hold either ‘1’ or ‘0’
was introduced to thecheckbox. It has a default value, and thus the menu programmer will not
need to explicitly specify this attribute.

To use the new element, it must be made available as a child ofline-format. The element’s
name must be put into the list of valid children of the container. In our example,the definition of
line-format, after insertingcheckbox, would look like in listing 7.

<!ELEMENT line-format
(hfill|integer|string|counter|option|switch|
time|float|date|trigger|checkbox)+ >

<!ATTLIST line-format id ID #REQUIRED >

Listing 7: Extended line–format with checkbox

Now we are allowed to writemelxdocuments withcheckboxes. The compiler will not complain
about the new element when validating, however, it will still do nothing with it, but quietly ignore
it. The next step is to write a byte code generator forcheckboxes and then couple it with the
parser.

9.2 Writing a byte code generator

The source code ofmlx has a file calledcmf.py which implements the byte code generators for
all components. In this file we can find the classLcwhich is the parent of all generators and which
we will use to inherit our new class from.

Before we begin to implement the inherited class, we should make the following change toLc.
It holds a dictionary calledident_id_map which represents a mapping between logical names
and IDs. These IDs are thelctag’s first five bits as described in section 7.5. In our example, we
will add a ‘checkbox’ to the dictionary with the next free ID as shown in listing 8.

31

ident_id_map = {’uchar-dd’ : 0x00,
...

’trigger’ : 0x17,
’checkbox’ : 0x18 } # new

Listing 8: Extended ident_id_map with checkbox

Now we need to subclassLc. We will call the new classLcCheckbox, its implementation is
show in listing 9, but let’s first take a look at the meaning of the methods to be implemented:

__init__ In the constructor of the subclass the first thing to do is to call the constructor of the
base class with appropriate parameters.

alloc_addrs As the documentation ofLc says, this method gets called before the byte code
generation and provides a chance to the component to letmlxknow that it needs some mem-
ory space in RAM. When this method is called, a component only registers an allocation
request. After all components have registered their requests,mlx begins to compute the ad-
dresses, and then they can be retrieved. In ourcheckbox example, the component will
register a one-byte data type for the current value and a function-address data type for the
address of a handler which is to be called after the component has been edited.

bc When this method gets called, the byte code generation process is active. This method is
assumed to return a list of bytes that represents the byte code for a component. The imple-
mentation should always use the passedemitter object to output the byte list. Addresses
of memory blocks, which were registered in thealloc_addrs method, can now be re-
trieved via the passedallocator object.

str_len This method is intended to answer the following question: “How many characters
does this component consume in one line at most?”. Having this information,mlxcan warn
the user if a line contains to many components which will not completely fit into it. In the
checkbox example, this method will simply return the constant3.

class LcCheckbox (Lc):
def __init__ (self, value, blink, writable, update, vname):
‘value’: the default value of the component
‘writable’: should the user edit the component?
Lc.__init__ (self, blink, writable, update, vname)
self.default = value

def alloc_addrs (self, allocator):
self.reg_vname = \

self.vname or allocator.generate_new_name ()
put_into_header = self.vname and True or False
register a one byte block for the current value
allocator.reg_var (self.reg_vname, ’unsigned char’, \

1, None, put_into_header)

32

allocator.reg_cb (self.reg_vname, None, put_into_header)

def bc (self, emitter, allocator):
return emitter.uchar (self.lctag (’checkbox’)) + \

emitter.uchar (self.update) + \
emitter.uint2 (allocator.cbaddr (self.reg_vname)) + \
emitter.uint2 (allocator.varaddr (self.reg_vname)) + \
emitter.uchar (self.default)

def str_len (self):
return 3

Listing 9: Implementation of class LcCheckbox

There are some things which appear to be magic but simply happen in the base class. The call
of the base class constructor makes certain member variables available, namely self.vname,
self.writable, self.update, andself.blink. They are set to its equivalent construc-
tor parameters. There is one special member variable calledself.last which is set toFalse
by default and indicates whether a component is the last one in a menu line. Generally, we don’t
need to access this variable. The call to theself.lctag method returns thelctag with the
proper component ID and flags. This works because we have insertedthe string ’checkbox’ to-
gether with the ID into theident_id_map dictionary and the flag variables are available to the
base class.

9.3 Extending the parser

Finally, the parser needs to be extended and everything is done. In the filehandler.py we will
find the classMelxHandler that handles SAX events upon parsing the XML input file. For
our example, we need to handle the beginningcheckbox tag. WhenMelxHandler is called
to handle this start tag, it passes the request to thedo_start_checkbox method if it can be
found. Looking at the already implementeddo_start_integer method, we can use it as a
template for the new component and end up with something like shown in listing 10.

def do_start_checkbox (self, rname, attrs):
lc = cmf.LcCheckbox (atoi (attrs[’value’]), \

*self.def_lc_attrs (attrs))
self.__cur_lf.append (lc)

Listing 10: Implementation of do_start_checkbox method

That’s all! We only need to create an instance of the new line component class and append it to
the component list of the current menu line which is represented through theself.__cur_lf
variable.

33

9.4 Summary

Now, that we havemlx working with our own extension, let’s summarize the steps.

1. Extend the language by inserting an element definition intomelx.dtd and extending the
line-format element.

2. Write a component class incmf.py which subclassesLc and generates the byte code for
the new component.

3. Extend theMelxHandler class inhandler.py with ado_start_element-name
method which creates an instance of the new component and inserts the object into the
component list of the current menu line (line-format).

So far so good. Now we will probably want to extend the interpreter libraryor implement a
program that can handle the new component beside the others.

10 melx.dtd

Here is the content ofmelx.dtd which defines the input language tomlx.

<!ENTITY % blink-attr "blink (1|0) ’0’">
4 <!ENTITY % edit-attr "edit (1|0) ’0’">

<!ENTITY % update-attr "update CDATA ’0’">
<!ENTITY % vname-attr "vname CDATA #IMPLIED">
<!ENTITY % common-lcomp-attrs

8 "%blink-attr; %edit-attr; %update-attr; %vname-attr;">
<!ENTITY % enable-vname-attr "enable-vname CDATA #IMPLIED">

<!ELEMENT melx
12 (description, menu+, line-format*) >

<!ELEMENT description
(delay-to-top, delay-password, delay-help, top-menu) >

16

<!ELEMENT delay-help EMPTY >
<!ATTLIST delay-help value CDATA #REQUIRED>

20 <!ELEMENT delay-password EMPTY >
<!ATTLIST delay-password value CDATA #REQUIRED >

<!ELEMENT delay-to-top EMPTY >
24 <!ATTLIST delay-to-top value CDATA #REQUIRED >

<!ELEMENT top-menu EMPTY >
<!ATTLIST top-menu ref IDREF #REQUIRED >

34

28

<!ELEMENT menu (const-string-line | line)+ >
<!ATTLIST menu id ID #REQUIRED

title CDATA #IMPLIED
32 password CDATA #IMPLIED >

<!ELEMENT line EMPTY >
<!ATTLIST line ref IDREF #REQUIRED

36 submenu IDREF #IMPLIED
%enable-vname-attr; >

<!ELEMENT const-string-line EMPTY >
40 <!ATTLIST const-string-line value CDATA #REQUIRED

submenu IDREF #IMPLIED
%blink-attr;
%enable-vname-attr; >

44

<!ELEMENT line-format
(hfill|integer|string|counter|option|switch|
time|float|date|trigger)+ >

48 <!ATTLIST line-format id ID #REQUIRED >

<!ELEMENT integer EMPTY >
<!ATTLIST integer

52 %common-lcomp-attrs;
type (dd|ddd|hh|sdd|sddd|

DDD|DDDD|DDDDD|HHHH|SDDD|SDDDD) #REQUIRED
value CDATA #REQUIRED >

56

<!ELEMENT string EMPTY >
<!ATTLIST string

%common-lcomp-attrs;
60 value CDATA #REQUIRED>

<!ELEMENT counter EMPTY >
<!ATTLIST counter

64 %common-lcomp-attrs;
type (integer|float) #REQUIRED
value CDATA #REQUIRED
min CDATA #REQUIRED

68 max CDATA #REQUIRED
step CDATA #REQUIRED >

<!ELEMENT switch (switch-item+) >
72 <!ATTLIST switch

%common-lcomp-attrs;
on-char CDATA "*"
off-char CDATA "." >

76

35

<!ELEMENT switch-item EMPTY >
<!ATTLIST switch-item

info CDATA #REQUIRED
80 value (1|0) #REQUIRED >

<!ELEMENT option (option-item+) >
<!ATTLIST option

84 %common-lcomp-attrs;
default IDREF #REQUIRED >

<!ELEMENT option-item EMPTY >
88 <!ATTLIST option-item value CDATA #REQUIRED

id ID #REQUIRED >

<!ELEMENT time EMPTY >
92 <!ATTLIST time

%common-lcomp-attrs;
hours CDATA #REQUIRED
minutes CDATA #REQUIRED

96 seconds CDATA #REQUIRED
type (short|long) "short" >

<!ELEMENT float EMPTY >
100 <!ATTLIST float

%common-lcomp-attrs;
value CDATA #REQUIRED
type (siif|siiif) "siif" >

104

<!ELEMENT date EMPTY >
<!ATTLIST date

%common-lcomp-attrs;
108 day CDATA #REQUIRED

month CDATA #REQUIRED
year CDATA #REQUIRED
type (short|long) "short" >

112

<!ELEMENT trigger EMPTY >
<!ATTLIST trigger vname CDATA #REQUIRED

password CDATA #IMPLIED
116 %blink-attr; >

<!ELEMENT hfill EMPTY >
<!ATTLIST hfill char CDATA " "

120 count CDATA "0" >

Listing 11: The Melx Data Type Definition

36

