MEXC - The Menu Executor

Petr Novotnik

December 19, 2005

Abstract

This document describesexc the “Menu Executor”. Beside explaining the functionality
of the library and how it interacts with the user, an explamats given about how to bind
mexc to one’s own programs. A description of the interpreted logtge is not given here, but
can be found in the documentation of timex compiler.

Contents

1 License

2 Introduction

3 Display layout

4 Surfing around

5 Entering a password

6 Editing menu lines

7 Programming with mexc
8 Simulator

9 Known issues

11

24

25

1 License

The mexc library is Free Software provided under the terms of the GNU Lesserr&leRablic
License (LGPL). The file©I NG, that is distributed withmexc, contains a copy of the GNU
LGPL. It can be also retrieved from the weblat [p: / / www. gnu. org/ | i censes/ | gpl .
ht m].

2 Introduction

The idea for a menu executor was born in the late nineties by Hubert Héiighg the development
of an embedded system with a small alphanumeric display connected to it. Wirélegiag some
programs for his system, he realized that it would be useful to have a litmagysplaying menus
on small 20x4 or 16x2 character based displays and has begun to impkunchrd library called
“MEX”. mexcis a complete rewrite of Mr. Hogl's work with a lot of changes and improvements

mexc is there to display menus, navigate through them, and provide a way to let editsgrede-
fined input elements. Developers of embedded applications don’t neatitecsuch functionality
over and over again. Together with thakx compiler, which generates the byte code whiaxc
will interpret, all the developer has to do, is to describe the menu and provaiem callback han-
dlers. However, the executor is not a self containing program and tredoger needs to provide
mexc with a few things about the environment to make it work.

Typically, a user interface for an embedded system consists of a liqusthtdisplay (LCD) and

a small keyboard connected to mexc was written for such a configuration and assumes that the
display has at least 2 lines. Typical LCDs have sizes of 16x2, 16x®,2hd 20x4.mexc can
control such displays, but other sizes with at least two lines and 14 colamngossible, too.
With respect to the keyboarthexc expects it to have at least 5 keys. Four of them are interpreted
as direction keys and one as ENTER (TABJexc can also interpret ten additional keys with the
meaning of numbers ranging from 0 to 9, and an eleventh POINT key. @&higrdof such a
keyboard has been much in vogue on modern mobile phones for some Vkardirection keys,
including ENTER, are often implemented with a small joystick on those devicesrd-igshows

a 16x4 display with the expected keyboard and the additional eleven keys.

The executor does not know anything about the hardware. It ddesmiv what display or key-
board controller is attached to the system, and it doesn’t wanteéxc was designed to be general
purpose as much as possible. It is entirely written in C and needs to be lirkted predefined
set of functions to make it display things and react to key presses. Betondhis later.

First we will explain howmexc actually displays a menu and how it navigates the user through it.
After defining how to enter passwords and edit input fields, therebydatiog each, we will look
at the library from a programmer’s point of view.

'Have a look atliit t p: / / www. hhoegl . comi mel / el . ht m].

| cd: keyboar d:

Figure 1: A 16x4 LCD and keyboard design
3 Display layout

mexc uses a fixed layout on the screen. The first line is cdileatler line and displays various
information about the current state of the user interface. The rest bfdseis used to display the
data of the currently opened menu table.

e +
| TTTTTTTTTTTTNLLK|] <- Header |ine
|Coo S| <- Menu line 1
[Coo S| <- Menu line 2
[Co S| <- Menu line 3
o e e e oo +

Figure 2: Display layout

Figure 2 shows how a four line displdyis used. Comparing the display layouts, there have been
no changes from Mr. Hogl's original MEX. As indicated by the letters, ttresn is divided into
various fields:

T This field displays the title of the currently opened menu table. It has no spletifth, but it
gets as much columns assigned as possible. That is the width of the LCD mifoughe(
‘NLLK fields). The title is displayed left-aligned and cut if it's too long to fit into the field
completely.

N This field holds the so-calleghvigation character and tells the user whether the current menu
line is editable or not. Either a colon: (), when there is at least one editable component,
or an asterisk ¢), in the case of aead-only menu line, is displayed.

L The L-field shows the line number of the current menu line.

K The K-field displays either a blank (*), or a plus sigr-{), or an exclamation mark {(*).

2The original sketch and documentation to it can be foundhat p: / / www. hhoegl . cont nel / doc/ mex_
2.htnm].

e The blank is displayed when all available menu lines of the currently openad me
table are visible on the screen. On a four line display this would be the caseena
table with only 3 or less lines.

e A plus sign says that there are more menu lines than those currently dispiayee
screen. They can be made visible by scrolling the menu table up or down.

e An exclamation mark indicates that there are more menu lines than those oretre, scr
but that the cursor is on the last possible line in the current menu tablee Thesether
menu lines the user needs to scroll upwards.

C By default, the first column of each menu line is reserved for the cursdrs hot empty, it
indicates that the appropriate menu line is currently actimexc can be configured to use
this column for menu data and draw the current menu line with inverted colars,ttie
C-field is actually optional.

S The last column of each menu line is also reserved. It displays the subntkcatar. Typically,
if there is a submenu it will show a “greater than” sign’{: However, there can be &*
instead, which has to be interpreted as “there is a password protectadrauib

The rest, marked with dots in figure 2, is used for displaying menu data. uBea# the
reservation of the first and last column, the menu data has fewer spaitabbe/ than a
display may offer.

In the exampl@&shown in figure 3, the title of the currently opened menu table reads ‘Brefes’.
Following the title there is an asterisk which indicates that the current menu liret editable.
The current line is marked with the tilde character’)‘in the first column. It's the 5th line in
the menu table as noted by the number following the asterisk. On the right ofttierebis an
exclamation mark telling us that no more menu lines follow the current line. Thissibahthe
user will have to scroll upwards to see the other menu lines.

S +
| Preferences * 5!|
| Sensors... >|
| Paraneter... >
| ~System .. P|
o e ek +

Figure 3: A display example

The >’s and ‘P's at the end of the menu lines show that for each there is a submenu. Ghersu
from the last line is protected by a password. The user will have to entefatdimexc will grant
access to the submenu.

3The original example which was introduced by Mr. Hégl originates from dbocumentation of MEX, it was
slightly modified here. It can be found dtt[t p: / / www. hhoegl . conmi nel / doc/ mex_2. htm].

4 Surfing around

Using the four direction keys of the keyboard, it is possible to move freélyimthe menu hi-
erarchy. By pressing UP or DOWN the cursor can be moved to the prewionext menu line
respectively. If the current menu line has a submenu indicator, preR$BigT will causemexc

to step into the submenmexc will of course ask for the password, if any, and then open the menu
table only if the input was correct. The LEFT key brings the user backfoasubmenu to where

he was before.

With a numerical keyboarthexc can provide a very fast way of moving through a menu. Pressing
a NUMBER key, while not editing a component, causezc to jump directly to theith menu line

of the currently opened menu table; in this context zero has a value of tH& target menu line
has a submenumexc will immediately enter it, optionally a password may be requested. If there
is no submenu but editable components in the target g will prepare everything to let the
user change the first editable component. Pressing the POINT key, wh#eliting a component,
will always drop the user to the first line of the top-level menu table. Bexatithe limitation

of 10 lines to be directly addressed, the menu programmer should puefrigjaccessed menu
lines at the beginning of the menu table.

It should be noted thamexc can return to the top level menu table by itself if the user doesn't press
any key for a specified number of seconds. This number is specifiedelhyrtlygrammer of the
menu and can be up to 255 seconds, which is a little bit more than 4 minutes.

5 Entering a password

Whenever the user is required to enter a passwoed; will open an input field in the header line
of an appropriate length. For a five characters long passwiendl:. " will be displayed in
the header line, the rest of it cleared, and the cursor, a blinking blackdtexced on the first dot.
On any subsequent key press, a dot)(‘is changed into an asterisk (‘**") and the cursor shifted
by one to the right, thus indicating how many password characters haaealeen entered. For
passwords being longer than the width of the display the user can still eatpagisword, but the
cursor will stay at the right edge if it's already there.

While the cursor is in the password input field, the direction keys plus EN-

3 TER of the attached keyboard get the following meaning. The LEFT key
10 2 is mapped to a 1, the RIGHT key to a 2, the UP key to a 3, the DOWN

4 key to a 4, and the ENTER key to a 0 as shown in figure 4. Additionally,
the NUMBER keys from a numerical keyboard can be interpreted, toe. Th
POINT key gets not interpreted, and pressing it will insert the ‘invalidcha
acter’ into the password buffer. A programmer of a menu should consider
that passwords should consist only of digits. Otherwissc will never
successfully validate it.

Figure 4. Numeric
values on direction
keys

When all characters have been correctly entered, then immediately after
pressing the last character the actual action happens. In the othemdesethe user entered

5

a bad password, the header line will flash for a second and the attemptfaonp@n action is
aborted.

6 Editing menu lines

Every menu line is built up of so-calldthe components. Some of these components can be edited
and provide input elements to a program. In this section we will look at the ai@mgwithin a
single menu line and at each component. We will see how the various contpanerisplayed,
what values they can hold, and how they are edited.

6.1 Navigating within a line

The navigation within a menu line happens via the ENTER key. When the ¢urmemnu line
doesn’t contain editable components, the N-field in the header line is s&t, tthéen pressing
the ENTER key has no effect. On the other hand, when there are editabfgoents, pressing
ENTER causes the so-callégdrizontal cursor, a blinking blackbox, to appear and jump to the
first editable field. Pressing ENTER again will move the cursor to the netalde component
and so on, until the horizotal cursor disappears.

While the cursor is visiblemexc is in the so-calleadit state. In this case, the other keys beside
ENTER are specially interpreted and cannot be used to navigate throighetiu. How these
keys are interpreted depends on the component being edited.

6.2 Number fields

A number field can contain a float, a signed, or an unsigned integer nurithé&.number is
displayed right aligned within a fixed width on a screen. A specification oatadlable number
types currently supported is given in the following list.

|dd-int.......... 42| This is an unsigned one-byte integer with a value range of 0 .. 99.
There is no sign in front of the number. The component consumes exactlgharacters
on the screen even for numbers with only one digit.

|[ddd-int........ 123] Thisis an unsigned one-byte integer with a value range of 0 .. 255.
There is no sign in front of the number. The component consumes examly ¢haracters
on the screen even for numbers with only one or two digits.

| hh-int.......... E6| This is an unsigned one-byte integer with a value range of O ..
255 (OxFF) displayed in hexadecimal format. There is no sign in frontehtimber. The
component consumes two characters on the screen. For values le4$ thaero is put in
front of it.

| sdd-int........ - 42| This is a signed one-byte integer with a value range of -99 .. +99.
The sign is always displayed, however, this can be configured at cdiopitime. The
component consumes three characters of a menu line.

| sddd-int...... -123| This is a signed one-byte integer with a value range of -128 ..
+127. The sign is always displayed, however, this can be configureghgtilation time.
The component consumes four characters of a menu line.

|DDD-int........ 567| Thisis an unsigned two-byte integer with a value range of 0 .. 999.
The component consumes three characters of a menu line. The sign li®wot s

| DDDD-int...... 5243| This is an unsigned two-byte integer with a value range of O ..
9999. The component consumes four characters of a menu line. This sigindisplayed.

| DDDDD-i nt 12345| This is an unsigned two-byte integer with a value range of O ..
65535. The component consumes five characters of a menu line. This sigrdisplayed.

| HHHHint...... FDE9| This is an unsigned two-byte integer with a value range of O ..
65535 (OxFFFF). The value is displayed in hexadecimal format andiomesfour charac-
ters of a menu line with optional leading zeros. The sign is not shown.

| SDDD-int...... -576| This is a signed two-byte integer with a value range of -999 ..
+999. The sign is always displayed, however, this can be configureahgtilation time.
The component consumes four characters of a menu line.

| SDDDD-int-5243| This is a signed two-byte integer with a value range of -9999 ..
+9999. The sign is always displayed, however, this can be configtiemhgilation time.
The component consumes five characters of a menu line.

|siif-float...+12. 4| ThisisalEEE 754 float with a value range of -99.9 .. +99.9. Note
that there is always only one fraction digit displayed. The sign is alwisypdayed, however,
this can be configured at compilation time. The component consumes fivactdrarof a
menu line. The float value to be displayed is rounded to one fraction digitacye

|siiif-float.+123. 4| Thisis a IEEE 754 float with a value range of -999.9 .. +999.9.
Note that there is always only one fraction digit shown. The sign is alwisjisle, but this
is configurable at compilation time. The component consumes six charaicéarsemu line.
The float value to be displayed is rounded to one fraction digit accuracy.

Editing one of the above specified numbers can be done with all four dindatigs. Initially, the
horizontal cursor is placed at the first character of the number. Thibea digit or the sign.
By pressing LEFT or RIGHT the horizontal cursor is shifted in the appatpdirection to the
previous or next character of the number. Editing a float, the cursor jorgrghe decimal point.
When the cursor is on a sign, pressing UP or DOWN toggles the sign eith€rdptb ‘-’. When
the cursor is on a digit, pressing UP or DOWN will in- or decrease the digit'ser Thereby,
pressing UP on & will change it to ‘0’, and pressing DOWN on &° will change it to ‘9’.

Optionally, numbers can be edited using the NUMBER keys. Pressing skehwill input the
appropriate digit at the current cursor position and move the cursor toetttecharacter. While
editing float values, pressing the POINT key will cause the cursor immediataly behind the
decimal point and set the digits in front of it to zero if the cursor actually bedsre the decimal
point.

Pressing the ENTER key causes the cursor to leave the component.

6.3 Counter fields

A counter field displays either a float or a signed two-byte integer. The auislbendered right-
aligned within a fixed width on the screen. The value range of a counter is litmyjtélde menu
programmer who defines the range. What counters makes really diffevennormal numbers is
the way they are edited.

While editing, the horizontal cursor is placed and kept on the last chadtee displayed num-
ber. The value of the counter is increased with the UP key and decregtbethe DOWN key.

By which value the counter is altered is defined in the provided menu byte bomementing or
decrementing outside the specified range is not possible by the usainBreEFT, RIGHT, the
NUMBER keys or the POINT has no effect.

6.4 Time fields

A time component can occur in two different formats. The short formahbaseconds’. Editing
time components is done in two steps for the short format and in
three steps for the long format. Each part of a time component

|long:..... 19: 42: 03| is edited like an integer counter with special ranges. Initially

| short:....... 19: 42| the ‘hours’ are edited using the UP and DOWN keys. It can be
in- or decreased in the range of 0 .. 23. Pressing ENTER will
move the horizontal cursor to the ‘minutes’ . Pressing there

UP or DOWN will in- or decrease the minutes in the value range of 0 .. 59. Hon@time

component pressing ENTER again will move the cursor to the ‘secondshveine equally edited

as the ‘minutes’. For a short time component pressing enter while editing that&sirwill stop

editing the component.

As can be seen in the example, time is displayed in ‘24H’ format. Numbers smalfed thare
prefixed with a zero, so each part has exactly two digiexc puts colon ! ' between each part of
the time. Thus, a short time consumes 5 characters, while a long time needsa@etsa

6.5 Date fields

The date field is very similar to the time component. It consists of three partsnyeath, and day.

Each part is an integer counter and each is edited on its
|long:..... 2005- 10- 17| own. Initially, the horizontal cursor is placed on the year
| short:...... 05-10- 17| part which can be increased by one with the UP key and de-
creased with the DOWN key. The value range for the year
begins with 0 and ends with 9999 for the long and 99 for the
short date type. After pressing ENTER, the cursor jumps to the month pathwan also be in-
and decreased by one. A month counts from 1 up to 12. Pressing ENJ&tfRraoves the cursor
to the day part which is edited the same way as the other parts. The valgefoarsgday starts
with 1 and ends with 31. Pressing LEFT, RIGHT, the NUMBER keys or PDIile editing a
date field has no effect.

A date is displayed in the ‘YYYY-MM-DD’ format, optionally with the year partibg shortened
to two digits. Thus, this line component takes 10 or 8 characters of a linediggeon the format.
mexc uses a dash{") to separate the parts of a date. It should be notedrleat itself does not
check for invalid dates, e.g. 2005-02-31. It is on the programmer tleatthss library to do so.

6.6 Switch fields

A switch displays a bit field of length and consumes an equal number of characters in a line. It
represents bits which can be toggled upon editing. The horizontal cursor is initially placgtie

first bit. Using the UP and DOWN keys, the bit under the cursor can bedgdgg or off. Using

the LEFT and RIGHT keys, the cursor can be positioned at the previalisext bit respectively.
Pressing one of the NUMBER keys or the POINT has no effect, exoegihfy the help string to

be displayed. Here are two examples for switch fields:

| PORT-1: %% % %]
| Mask: 101011101101

The characters representing thre or off state can differ from switch to switch. They are not
hardcoded imrmexc, but are specified by the programmer of the menu and stored in the byte code
separately for each switch.

There is something special about the switch field. Whenever a key pregssgnexc will display
a help string, which is associated with the bit under the cursor, in the hiaglet his help string
will disappear after a certain number of seconds. This number is defindtelprogrammer of
the menu.

6.7 Option fields

An option field displays a string from a string list which is defined in the byteecdithe string
is rendered right-aligned in a width which is defined by the longest string itighePressing
the UP or DOWN key will cause the component to browse through the stringricstlisplay the
previous or next string. Thereby, the list is treated like a ring. When thedfiring is displayed,

the previous one is the last in the list. And if the last string is currently disp|ajyednext one
becomes the list’s first. Pressing LEFT, RIGHT, the NUMBER keys or PIChis no effect.

6.8 Strings

Beside displaying constant stringmexc also provides a way to let the user edit a string. It should
be noted that the length of a string cannot be altered. All the user mayelaaaghe characters
within the string.

Having only the small 5 key keyboard, changing a character is done lthe/ifog way. Pressing
UP or DOWN changes the character at the current cursor position. BT land RIGHT the
cursor can be shifted by one character into the appropriate directieasiRg ENTER will leave
the component and stop editing the string.

S S Fonnnn S DI +
0->.,?21""0-()@: _ | v | 2 | *3 |
1-> 1 | _1 | ABC| DEF |
2 -> ABC2abc Fome - - SR - +
3 -> DEF3def | “4 | ‘5 | ‘6 |
4 -> CH 4ghi | GH | JKL | MO |
5 -> JKL5j ki ommm - oo R +
6 -> MNO6mo | *77 | ‘8 | 9 |
7 -> PQRS7pqrs | PORS | TW | WKYZ |
8 -> TuV8t uv R D R +
9 -> WKYZ9wxyz | 0 | | O
-> L H]{}<>="3 [.2 |
Foamm - + oo oo - +

Figure 5: Input string lists and suggested layout for the numeric keglboar

Having the additional numeric keyboard available, editing a string is much noondoctable.
mexc tries to imitate the way strings are entered on mobile phones. Each key on theimume
keyboard has an associated list of characters which can be browsedtitby repeatedly pressing
the same key in a small period of time. At the current cursor position, the strimgsigned the
currently selected character. Waiting for a short while or pressing ankdy will make the cursor
jump to the next position. This way a skilled user can insert a new text in aviastvith only

one finger. To help the user learning the keyboard layoetc will display the current character
list in the header line. While repeatedly pressing a key, and thus choosimgexih character, the
displayed help string in the header line will rotate, so the currently selecteddabr is always at
the beginning.

Figure 5 shows what character lists are assigned to each key fromnierinal keyboard. The
grid sketch on the right is a suggestion for a layout of the numerical leegheith possible labels.

10

6.9 Triggers

A trigger is nothing more than a “soft-button” on the screen. To activateutterbthe user needs
to press any key except ENTER. Pressing ENTER will leave this companenwill not activate
the soft-button. Triggers occur in two manners, normal and passwotdgied. When entering
the edit state, the horizontal cursor is placed at ¥i®f ‘ P'.

| Reset System Values: [X]| <-- normal trigger
| Reboot Whole System [P]| <-- password protected trigger

As shown in the example, password protected triggers are displayed B% 'aActivating them
requires the user to enter a correct password before the action isdcaut. How to enter a
password is described in section 5.

7 Programming with mexc

This part of the documentation is directed to programmers who want tenesefor their own
applications. Firstly, we will take a look at what has to be done to get theyilrarking properly.
Then we will explain the compilation and configuration details. After introdutiegpublic API,
we will finally have a look at how a simple program that usesc can be written.

7.1 What mexc needs

When usingmexc, the first thing to understand is what the library needs to be provided. Asit h
been concepted to work with many kinds of hardware, the developer implErgenprogram for

a specific system has to write a set of hardware dependent routindsmdxicwill use. Providing
the library with such routines, the programmer has great power at handtmneize the look and
feel of the final application. The functions can be split into four categodesplay accessing, key
press fetching, waiting and C string utilities.

micd_* mexc requires routines that start with the prefid“cd_" and provide access to the con-
nected display. They provide functionality for writing a string at a specjjiesltion, clear-
ing parts of the display, controlling visiblity and position of the cursor and tettiagt, how
many lines and columns of the display it may use.

mfpkey_get This routine providesnexc with an inteface to the attached keyboard. The keyboard
is completely unknown to the library and can be some virtual buttons on a wreelns for
example. All the details of the hardware are hidden to the library in the implementtio
this function.

msleep In many situationsmexc needs to wait for a little time. To be sure this is done efficiently
and accurately the library relies on the programmer to implement a sleepingerpataibly
using hardware dependent features.

11

str* There are two string utility functions, namedy r cpy andst r | en, which mexc uses to
deal with C style strings. The implementation of them is trivial and they are mdiaae
dependent at all, but there are optimizations that we should consider.

Of course mexc needs to be fed with the menu byte code it should interpret, but we will look at
this later. Now let’s dive into the details of the required functions.

7.1.1 Display accessing

Having the source code afiexc at hand, a glance into the file calledl cd. h will reveal what
display accessing routin@sexc exactly needs. Let’s look at each and define what effects they are
expected to perform.

void mcd_cu_off (void)
Calling this routine should immediatelly hide the horizontal (LCD) cursor — it isnoéte
blinking blackbox when visible. Upon entering the main loagxc hides the cursor and
shows it only when the user is about to edit a component.

void mcd_cu _on (void)
This routine should make the horizontal cursor visible again. It is the crparteto the
previous function.

void m cd_cu_gotoxy (unsigned char x, unsigned char y)
While the previous functions control the visibility of the cursor, this routinetas the
cursor’'s position. The andy parameters specify the column and the line the cursor should
be positioned at.

void mcd_clrchr (unsigned char n)
This routine is expected to cleacolumns to the right starting at the current cursor position.
Actually, mexc could implement this by writingn space characters, however, a hardware
dependent implementation of this routine can be much more efficient. This rondper
may not change the current cursor positimexc doesn’t require a specific behaviour.

void mcd_clrin (unsigned char n)
This routine should clear a whole line on the display. The line is indexed -byero is
assumed to be the index of the first line. As with the previous function, alsortbisnay or
may not change the current cursor position.

unsi gned char get_mcd_lines (void)
This routine is called upomexc's initialization and supposed to return the number of lines
the library will use. An example given below will explain this in more detail.

unsi gned char get_m cd_cols (void)
This is the counterpart to the previous routine and should return the nurhloceiumns
mexc will use on the display. An example given below will explain this in more detail.

12

void mcd_wstrxy (unsigned char x, unsigned char y, char * str)
mexc uses this function to print zero terminated strings on the displayndy specify where
on the display the string should be printed. The cursor is expected to Ibekeftd the writ-
ten string.

void m cd_wrstrxymax (unsigned char x, unsigned char vy,
char *str, unsigned char n)
This function is similar to the previous one, but the passed string doestt toebe zero
terminated necessarily. It should print at mostharacters but respect a zero terminator, if
there is one. The function is expected to leave the cursor behind the wtiitem s

void m cd_wrchrxy (unsigned char x, unsigned char vy,
unsi gned char c)
This function is used bynexc to put a single character on the display at the specified posi-
tion. It is expected to leave the cursor behind the written character.

void mcd_invertln (unsigned char n)
The “invert-line” function is actually optional and, when available, usethexc to highlight
the currently selected menu line. All the routine is expected to do, is to redeaspttified
line with inverted colors. When the same line is inverted twice, it should displapalty.
Inverting is meant to be temporarily only. Whenewsxc writes to an inverted line the new
characters are expected to be displayed normally, not inverted.

Being able to use this functiomexc won't reserve the first column for the current line in-
dicator as described in section 3. Thus, there is one more column for thedatnuAs
mentioned, this routine is optional and the programmer must decide whether toriemtle
it or not. Mainly, this decision depends on the display being used and itbitiipa. The
library needs to be compiled with tl@ONFI G_ENABLE_| NVERTLN preprocessor defini-
tion to make it use the function.

40
e m e e e e oo +
| screen |
| |
| |
20 | 20 |
| R R +
| 5] nmexc |
oo - Fom e e e oo +

Figure 6: Display arrangement for an example application

mexc ensures that all printed strings fit within the rectangle defineddty m cd_| i nes and

get _m cd_col s. This rectangle can be smaller than the actual screen. Due to the factethat th
cursor positioning happens completely viathed_* functions, the application programmer has
the possibility to position the display rectangle occupiedriac anywhere on the screen.

13

Of course the library can occupy the whole screen, but let’s discudsitbering more compli-
cated scenario. Let’s say we have a 40x20 display, but we mextt to use only a 20x5 area in
the right corner at the bottom as shown in figure 6. To nmakec address the proper screen area
all we need to do, is to provide a suitable implementation ohthed _* functions.

get_mcd_lines andget _m cd_col s will simply return the constants 5 and 20 respec-
tively. The other routines, which position the cursor, need to add a curdfaet to the passed
coordinates before moving the cursor. In our scenario they will simplyl&dd eacly argument
and 20 to eaclk argument.

There is one more thing that should be pointed at. As mentioned, the outpinesare assumed
to leave the cursor behind the written character or string. Whexe writes a string which ends
exactly on the last column of the screen area assigned to the library, thieeegisestion “What to
do with the cursor?”. In this situatiomexc doesn’t require any specific behaviour and it is on the
implementation of thed cd_* routines to put the cursor somewhere.

7.1.2 Keyboard interface

To get access to the keyboamixc uses only one function. This routine is declared in the file
nf pkey. h as follows.

unsi gned char nfpkey_get (void);

The advantage of using this routine is tinaxc itself has no idea about the keyboard hardware.

It could be even a small joystick attached to the system. This routine is reSigoiasfetch a key
press and supplyexc with a constant defined in the same header file as the function’s declaration.
The important thing to note here is, thdtpkey _get is called by the library whenever it needs

a key press to interpret, but there is no way into the other direction. The @athot send any
key press event to the library. Fortunatatyxc calls this function quite often. So with a small
keyboard buffer no key press should get lost.

nf pkey_get is expected not to block the library by waiting for a key press. If there ibing

to servemexc with, it should immediatelly return wittMFPKEY _NONE. The library will idle for a
short while and try againmexc may perform a specific action upon idling for a defined interval,
therefore it is important not to block it.

The header file defines quite a few constants. These are understanekbynd have to be
returned bynf pkey_get . The first six defintions are required to let the user interact with the
menu. ServingWFPKEY_NUMPAD * definitions is optional. They allow the user to navigate
through a menu more quickly and edit a component with more comfort, but theyanecessary.
When the user isn't editing a component and the library getd/ERKEY QUI T_MEXC LOOP
definition, it will jump out of its main looprfexc_| oop) and return to the caller.

14

7.1.3 Sleeping

Beside the already discussed routines one more needs to be linked with ding [Hris function
will allow mexc to put itself into sleep mode for a specified number of milliseconds.

voi d sl eep (unsigned short nsec);

A simple implementation would just loop until the time is over. On systems which alreagidp
a task sleeping service the code could call such a system function. A bleveore complicated
code could perform some background task whiéxc is idling. It could for example look whether
a key press occured and put it into a keyboard buffer queue.

7.1.4 String utilities

Further onmexc uses the two routinest r cpy andst r | en which are notincluded in the library.
These are often included in the development environment libraries ofrestaded as built-ins by
the compiler.

For examplegcc, when not passed the no- bui | ti n option, replaces calls tet r | en on
constant strings with the actual length of the strings at compilation time. Thikg@san opti-
mazation of speed and code size. If this function is used only in conjuncttbrcenstant strings,
this case is true famexc, then there will be no call tet r | en at runtime and the function’s code
needs not to be linked to the library.

However, if the development environment doesn’t bring the two functboesneeds to implement
and link them to the library.

7.2 Memory requirements

Using thesi ze program, we can examine the size of thexc library. However, this size is greatly
dependent on the utilized compiler, the optimization options of it and the useepfqumessor
definitions being discussed in section 7.3. Using the GNU C compiler, the sizexoffor a
32-bit Intel platform should vary between 10KBnd 20KE with asser t s disabled.

The other question is, how much statkxc needs. The required stack size is dependent on the
target architecture, the used compiler, and its optimization options. Furthdreorequired stack
size also depends on the number of colummasc will use on the screen and the depth of the menu
structure itself, too. Using the GNU debugger, tests widikc on a 32-bit Intel platform with a 20
columns display and a menu structure of depth 3 have shown, that the Iiflmadg around 550
bytes of stack.

“The exact compilation command to produce the result was:

gcc -Gs -fomit-frane-pointer -DHAVE STRI NG H - DCONFI G DI SABLE_FLOAT -c *.c
The exact compilation command to produce the result was:

gcc - DHAVE_STRI NG _H - DCONFI G_NUMPAD_KEYBOARD -c *.cC

15

It also needs to be considered, that the binary menu description needspace, too. To quickly
find out how much memory a concrete menu consumes,the nar y option of themlx compiler
can be used. It will produce the menu as a binary file which size can lilg datermined by
system services.

7.3 Compiling the interpreter

mexc is known to compile smoothly with GC&and was successfully tested on Intel architectures
as well as on a Motorola DragonBall VZ processor. Using the OpenWatctC++ compiler
tools’, mexc was successfully run on the Intel 8088 processor. There are decolihings that
can be configured at compilation time and we will look at them in this section.

The providedvakef i | e can be used to builthexc. The following listing shows how the library
can be built by hand.

~mexc%ls *.c

cnf.c nexc.c mutils.c pstring.c
~mexc% gcc -c *.c

~mexc%ls *.o0

cnf.o nexc.o nutils.o pstring.o
~mexc% ar rcs libnmexc.a *.o
~mexc% | s |ibnmexc. a

i bmexc. a

Listing 1: Creating the library

Of course, optimization options can be passedda or the compiler of choice. For example,
using thegcc options-f oni t - f r ane- poi nt er and- Gs at the same time, it is known to
reduce the needed stack sizemkc by almost a half on modern desktop computers.

There are various preprocessor definitions that configure the libtaefpaviour. They don’'t have
any substitution value and can be defined on the command line gsiog - D option. In the
following list we will introduce each and also explain the effects.

HAVE_ASSERT_H The source code famexc is studded with calls tassert to quickly find
bugs during development. The function itself is declared in the systemtdadessert . h.
However, some development environments don't provide such a hébgdéhus causing
problems at compilation time. Therefore, whediVE_ASSERT _His not defined at compi-
lation time, the header file is not included by the code and all calls tags@r t function
get removed on the fly. Actually, they get substituted with nothing by the pcegsor.

HAVE_STRI NG_H mexc uses two functions of the standard C librast:r cpy andstr | en.
They are declared through the system headesfilei ng. h. On some systems this file may
not be available, and therefore including this file is protected withHH&¢E_STRI NG _H

5The official web page for the GCC project can be foundhat[p: / / gcc. gnu. or g/].
"The official web presentation of Open Watcom can be fountitat p: / / www. openwat com or g/].

16

definition. Only if it is defined at compilation time the code will include the systendéea
However, not defining it doesn't prohihitexc from using the two string functions. In this
case, the programmer needs to provide and link themeka.

CONFI G_NUMPAD_KEYBOARD As already mentioned in the introductiomexc is capable of
interpreting an additional numerical keyboard. If such a keyboardtiswveilable on the
target system, the code responsible for handling those key presshe d@sabled at com-
pilation time. This results in a smaller size of the library.

CONFI G_ENABLE_M_CD_I NVERLN See description aff cd_i nvert| nin section 7.1.1.

CONFI G_DI SABLE_FLQAT Defining this flag at compilation time will disable all code dealing
with thef | oat data type. This flag comes from a test on an Intel 8088 processor. If the
target platform doesn’t support floating-point operations this flagilshbe defined. Of

course it will reduce the size of the library at the cost of not being ableabwlithf | oat
numbers.

To compilemexc with support for the numerical keyboard but not for floats the followiognmand
line would be used:

~mexc% gce - ¢ - DHAVE_STRI NG H - DCONFI G_NUMPAD_KEYBOARD \
- DCONFI G_DI SABLE_FLOAT *. ¢

Listing 2: Compiling the library with customization options

While the definitions shown above control whether some features will bededlor excluded
from the code, the following definitions provide customization of featurelsidiea in it. These

are defined in the fileconf i g. h and must not be removed, but can be changed to reflect the
requirements.

MEXC MAX LI NE_LEN is used only whemmexc is *not* compiled withgcc. The GNU C
compiler has a very nice feature called “Arrays of Variable Length” whkitables the library
to allocate such arrays on the stack. When this feature is not availablepdeentust
assume a fixed length for its buffers. It is important th&XC _MAX LI NE_LEN s equal
to or greater than the value returneddst _m cd_col s, otherwise buffer overflows will
make the code run incorrectly, and possibly cause endless loops.

MEXC MAX PWD LEN has the same background as the previous option and is used only when
compiling *not* with gcc. It defines the length of the password buffer and must not be
smaller than the longest password in the menu definition to avoid buffer awsrfl

VEXC _MAX DI SP_CONTEXT_DEPTHSs value is important not to be smaller than the maxi-
mum depth of the menu hierarchy. When entering a submemex; stores the current
display context in a table and increases the current context level. Véhaming from the
submenu, the library restores the last display context and decreasegahd he value of

17

VEXC_MAX_DI SP_CONTEXT_DEPTH gives the number of possible entries in the context
table. One entry stores three pointers, so on a 32-bit platform an entakélup 12 bytes.

If this value is too smallmexc will display the error message “err. menu too deep” and
refuse to enter the submenu when the user reaches the table space limit.

MEXC_LC PASSWORD STRI NGdefines the string to be displayed as a password protected trig-
ger line component. The length of the string should be non-evenesstries to position
the horizontal cursor upon activating the component into the mid of the desplajel.

MEXC LC TRI GGER_STRI NG has the same meaning as the previous item with the exception
that it is displayed for normal triggers — triggers that are not passwoteqgied.

With MEXC_FORCE_SI GN_ON_SI GNED_NUMBERS being defined as non-zenmexc will al-
ways display a sign on signed numbers. Thus a posivite signed numbeceeped with a
plus #). This behaviour can be turned off by specifying a zero.

MEXC FI RST_PRI NTABLE CHARandMEXC LAST PRI NTABLE CHARdefine an interval
in the character code table. Characters in this interval, including both ezmife entered
when editing a string with the UP and DOWN keys.

MEXC _BLI NK_|I NTERVAL defines the number of seconds after which a blinkable component
should be erased on the screen and after the same interval redrawntlgs, letting the
component visually blink.

MEXC_ASK_PWD_PROWVPT is the string thatnexc will display as a prompt in front of the pass-
word input field. See section 5.

VEXC _FLASH DELAY is the number in milliseconds a flash will last. Sometimes the user
presses a key which is not suitable in the current situatioexc warns the user about it
with a short flash in the header line.

MEXC_GET_KEY_DELAY; As described in section 7.1.hexc calls nf pkey_get to fetch a
key press. However, when there is nothinrPKEY _NONE gets returned anchexc will
sleep forMEXC_GET_KEY_DELAY milliseconds before trying to fetch again. The smaller
the value of the definition the quickerexc will response to key presses. The current imple-
mentation ofmexc restricts the value not to be smaller than 4.

MEXC SHOW ERRMSG DELAY is another interval in milliseconds. It defines how long an error
message will be displayed.

MEXC_BLACK_ BOX_CHAR should be the character code of a black box character. It is used to
produce the flash in the header line. If no such character is availablatlagrycan be used,
too.

MEXC_CUR LI NE_| NDI CATOR CHARis used only ifCONFI G_ENABLE_M_CD | NVERLN
is *not* defined. It defines the cursor character displayed in the filsihen of a menu line
as described in section 3.

18

MEXC_SUBMENU_| NDI CATOR_CHAR defines the character to be displayed at the right border
of a menu line if there is a submenu.

VEXC_SUBMENU _PWD | NDI CATOR_CHAR defines the character to be displayed at the right
border of a menu line if there is a password protected submenu.

MEXC LAST LI NE | NDI CATOR_CHAR defines the character to be displayed in the K-field
as described in section 3 when the cursor is on the last line of a menu table.

MEXC_MORE_LI NES_| NDI CATOR_CHAR defines the character to be displayed in the K-field
as described in section 3 when there are more lines in the menu table than vidide in
screen area.

MEXC _M.I NE_EDI TABLE CHAR defines the character to be displayed in the N-field when the
current menu line contains editable components.

MEXC_M.I NE_READ ONLY_CHARdefines the caracter to be displayed in the N-field when the
current menu line has no editable component.

MEXC_TI ME_SEPARATOR_CHAR is the character to be put between the hours, minutes, and
the seconds of a time component.

VEXC DATE_ SEPARATOR _CHAR s the character to be put between the year, month, and the
day of a date component.

MEXC FI LLER CHAR s the character to be put where something is missing. It should be the
blank character to interact smoothly with tiiecd_cl r chr function.

MEXC_PASSWORD CHARdefines the character that should be echoed when entering a password
Creating different applications for different platforms will probablyuig to configure the library

for each platform and application. Because of this and the fact that iheyeite a lot to be
configured there is no complete building and installation system.

7.4 Writing a program

From a programmer’s point of view, usimgexc is quite simple. However, there are several steps
that need to be done.

e First of all themexc interpreter needs to be compiled and possibly customized. This is
discussed in section 7.3.

e As mexc is expected to be linked with a predefined set of functions, the secondsdizp
create these routines.

19

e Next, the binary menu image whiahexc will interpret is needed. For this step thax
compiler has been written. It takes an XML document and creates the bimage, also
referred to as byte code. The output of the compiler are two files,anda. h. In the C file
there is the byte code as an array. The header file contains a declafaigoiater to the
byte code and definitions which originate from the input document. For méyamation
read themlx documentation.

¢ Finally, everything is prepared to write a complete program.

We will now give an overview of thenexc APl and look at an example a little bit later.

7.4.1 Datatypes

The APl is exported through the header fiexc. h which includes the declaration of four public
functions. The used data types are definedtigpes. h. Here are the appropriate excerpts:

28 |typedef unsigned char uchar;

typedef char schar;
30 |[typedef unsigned short uint?2;
t ypedef short sint2;

32 |typedef unsigned char * addr_t;

Listing 3: mtypes.h / 28-32

37 [typedef void (*fcncbp) (uchar, addr_t);

Listing 4: mtypes.h / 37

While all data types are just synonyms for those already existing in the Cdgegii cncbp
needs a short explanation. It is a pointer to a function with two parametdrsareturn value.
The first argument of the function has to be of typesi gned char and the second a pointer
to anunsi gned char.

7.4.2 mexc_init

uchar mexc_init (addr_t nctode, addr_t ram fcncbp def _cb_handl er);

Initialization of the library happens with a call t.eexc_i ni t . Beside initializing the library’s
globals, it will verify the passed menu byte code and intialize all menu varialR&M. With

an exception to thget _m cd_* functions, none of the display accessing routines gets called at
this moment.

mexc_i ni t will return zero to indicate that everything went alright. Otherwise, it will retone
of the following constants which are defineddnf . h.

20

CMF_I NI T_BAD | Dindicates that the byte code to interpret isn’t in CMF format.

CVF_I NI T_UNSUPPORTED_VERSI ONindicates that the byte code version isn’'t supported by
the library. CM-_ MAJOR_VERSI ONandCM-_M NOR_VERSI ONdefined incnf . h show
the supported version.

CMF_I NI T_BAD BYTE_ORDER indicates thatmexc and the byte code don’t match the same
endianness. Often, this error comes from specifying the wrong argumte- - endi an
option of themlx compiler or not using the option at all.

The three expected argumentstexc_i ni t have the following meaning:

ncode must be a pointer to the menu binary image. This parameter must iilke

r ammust be the address of a writable memory area. This parameter midyLibeif there are
only constant strings in the whole menu.

def aul t _cb_handl er After a line component has been edited by the usexc will notify
the application by calling a handler function. By default, it will invoke the fiorcpassed
as the third argument twexc_i ni t . This parameter may d€ULL.

7.4.3 mexc_loop

voi d nexc_l oop (void);

A call to this function will start the main loop. It will display the top-level menu tablait for
key presses, and interpret them. It is necessarynbat _i ni t has already been called before.
mexc_| oop will not return as long as it hasn't fetched tMePKEY_QUI T_MEXC _LOOP key
press.

7.4.4 mexc_set_callback_handler

fcncbp nmexc_set _cal | back_handl er (fcncbp * fo, fcncbp fn);

As already mentioned in section 7.4.2, the third parametaretoc_i ni t is the address of a
function to be called whenever any component has been edited. Howallback handlers for
individual components can be installed by usimrexc_set _cal | back _handl er . Its param-
eters are:

f o; the addresses of the memory block holding the address of the handlerctiléd Usu-
ally one will pass &CALL_* definition for the appropriate component from the header file
outputted by thenlx compiler.

f n; the address of the function to call when the appropriate component asdied.

21

Usually, callstarexc_set _cal | back_handl er occur after initializingmexc and before run-
ning its main loop. The installed handler is called with two arguments, the first baingerical
value representing the type of the edited component, and the second lmingea to the com-
ponent’s current value. Definitions for each type thmekc understands can be found in the file
cnf. h.

The returned value is the address of the previously installed callbackenan®lUL L if there was
none before.

7.4.5 mexc_enable_line

void mexc_enabl e _mine (unsigned char *addr, uchar val);

This routine provides a convenient way of enabling and disabling dynammu rirees. mexc
simply hides disabled menu lines. Currently, calling this routine will cause theneter to return
to the top-level menu table and hide the appropriate line if the user is not editimgonent.

addr specifies the address of the boolean ‘enable’ value declaretMin the generated menu
header file. It is associated with a concrete menu line.

val is the new state of the menu line and will be stored where the first argumens pmirny
other value than zero will enable a menu line.

mexc assumes there is always at least one visible line in a displayed menu tablexdarople,
entering a submenu with all menu lines disabled will crash the interpreter!

7.4.6 mexc_redraw

voi d nexc_redraw (void);

Having thenmexc_| oop started and the user currently not being editing a component, invoking
this function will simply redraw the screen area occupied by the library.

7.4.7 Anexample

Figure 5 provides a skeleton for an application usimgc. At first, mnexc. h must be included. It
makes the public API available. Includimgnu. h, the generated menu header file, imports the
declarations ofj_m x_nmenu and__M_LX RAM BASE _ which are used upon initialization of
mexc. If the initialization fails the program simply aborts. Otherwise, it starts the mamwiach

will display the top-level menu table and react upon key presses.

22

#i ncl ude <nexc. h>
#i ncl ude "nenu. h"
int min ()
{
if (mexc_init (g_mx_nenu, _ M. X RAM BASE _, NULL))
return 1; /* error occured */
/* ... mexc callback installation */
nmexc_|l oop ();
return O;
}

Listing 5: Skeleton of an application

Following the initialization ofmexc, there is room to install custom functions which are to be
called after components were edited. Let's assume the following code sbigipg inmenu. h.

#define dd_integer ((unsigned char *)(__M.X RAM BASE _ + 0x00))
#define CALL_dd_integer ((fcncbp *)(__MX RAM BASE _ + 0x04))

With the following statement betweaerexc_i nit andnexc_| oop a custom function, here
namedon_edi t ed_cb, would be called after the user edited the i nt eger component.

mexc_set cal | back_handl er (CALL_dd_integer, on_edited cbh);

The custom callback needs to be of tyfjpencbp as explained in section 7.4.1. In our example,
the first argument can be ignored as we connect exactly one componieatallback. The second
argument is a pointer to the current value of the component and optionaiisrie be casted to
the proper data type pointer. Read thix documentation to learn more about data types of the
individual components. Here is a demonstration:

void on_edited_cb (unsigned char type, unsigned char * val ue)

{

assert (value == dd_integer); /* fromnenu.h */
assert (type == 0); /* or LC TYPE UCHAR DD fromcnf.h */
printf ("current value changed to %\ n", *value);

}

Listing 6: Accessing menu variables in callbacks

23

8 Simulator

During the development afiexc, a simulator was needed to test and debug the cgdemis a
GTK+-2.08 based program which implements the requiretid_* , sl eep, andnf pkey_get
routines. The program runs on MS Windows, various GNU/Linux distrilmstiand FreeBSD;
other operating systems have not been tested yet. It has proven thahth&ter is very useful
when writing menu definitions. One can immediately see, on the developmentplatibat the
menu will look like.

8.1 Compiling it

To compile the simulator, the providédhkef i | e or Makefi |l e. wi n32 should be used. Of
course, the appropriate makefile should be checked for valid paths ar@FLAGS makefile
variable.

~gsi 6 make

usage: make [gsim ggsi nf menu| cl ean]
~gsi n% nmake gsim

[...]

~gsimols -F gsim

gsi nr

Listing 7: Creating the simulator

There are four targets, two of themgsi mandggsi m— are actually simulatorsgsi mis the
character based LCD simulator, whidgsi mis graphics based. The latter one is an experiment
to showmexc with the CONFI G_ENABLE M_CD | NVERTLN configuration.

Under MS Windows the simulator amdexc are known to compile smoothly with tools available
by the MinGW? project. The GTK+ library 2.0 or higher is required. When usivckef i | e
also thepkg- conf i g program will be needed.

8.2 Usingit

To start the simulator, a filename containing the binary menu image must be specifibe
command line. Invokingsi mwithout this parameter will make it return with an error.

~gsints./gsim
Usage: ./gsim[-z zoom| -c colums | -I lines | -i | -K] <menu>

Listing 8: Command line arguments of the simulator

8To learn more about GTK+ visit its home pagelat f p: / / www. gt k. or g].
%The home page of the MinGW project can be foundchatt[p: / / www. nmi ngw. or g].

24

The binary menu image to be passedjgd mneeds to be in a binary file. Thalx compiler can
generate such a file when passed-théi nar y option. Let’s examine the other parameters.

- z awaits a numeric argument, the zoom factor, and causes the simulated LClOigplaged
as many times larger as specified. Default: 1.

- ¢ awaits a numeric argument and sets the number of characters to fit into arliediagilt: 20.
- | awaits a numeric argument and sets the number of lines on the LCD. Default: 4.

- i will popup the ‘inspector’ window which disassembles the binary menu imagjesgmesents
it in tree view. It allows to change the current value of line components. lditells have
a red background.

- k will popup a virtual keyboard.

The simulated LCD itself is a small green window withc” columns and - | ’ lines. To navi-
gate through the displayed menu the virtual keyboard window or the diredteys can be used.
MFPKEY_RTAB is mapped on ENTER of the real keyboard.

9 Known issues

Currently, there are the following restrictions:

e mexc doesn’t support a password for the top-level menu table. If theredstbe library
will simply ignore it and dislay the menu table as if there was no password gimtec

e Mmexc is written in a manner that assumes there is always at least one menu line te be dis
played. Having dynamic menu lines can lead to a situation where all lines of a taigeu
are disabled. This must be avoided. The simplest way to do so is to put@ynamic line
into the menu table.

e When rendering line components there arises the question what to do wioenp@nent
doesn't fit completely on the screemexc is very strict in this respect and won't render
such a component at all.

25

