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Abstract

The ParaNut project provides a scalable, and fully RISC-V compatible soft core processor for

FPGA based systems. Having been under continuous development for more than a decade, the

project has grown signi�cantly in functionality and complexity. The general aim of the mas-

ter thesis presented in this document is to research and implement methodologies to improve

on the existing architecture and technology stack, to enhance maintainability and development

work�ow. This is achieved through restructuring the project directory and providing a new, cen-

tralized build automation based on GNU Make, the SystemC library and the Intel Compiler for

SystemC, including verbose targets for building, installing and testing. This work documents the

structure of the processor's hardware modules and the dependencies between them. Addition-

ally, it describes the development of a synthesizable memory unit written in SystemC, developed

as part of the process of unifying simulation and synthesis sources by providing all modules in

synthesizable SystemC.
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1 Introduction

1.1 Motivation

The ParaNut project provides a con�gurable, scalable, and fully RISC-V compatible soft core

processor for FPGAs (Field Programmable Gate Arrays) [1]. It is being developed by the E�-

cient Embedded Systems Group at the Technical University of Applied Sciences Augsburg and is

currently in use in research and education. The Open Source project was created by Prof. Dr.

Gundolf Kiefer in 2010 and has since been advanced by students at the university. Most of the

ParaNut's hardware is written in SystemC. A complete SystemC model of the hardware can be

used to simulate the hardware behavior on a PC. When synthesizing for FPGA systems, some

components are described in VHDL (Very High Speed Integrated Circuit Hardware Description

Language).

This mix of multiple hardware description languages/methods led to a divergence between sim-

ulated hardware and synthesized hardware. A major motivation for transitioning to a SystemC

only hardware description is a bug present in the synthesized hardware, that is not reproducible

in the simulator and thus hard to analyze and resolve.

Being in development for more than thirteen years, the project has undergone major growth.

Most development was focussed on improving or adding single components to the project which

led to a diverse and distributed build system. This resulted in diverging coding styles and a lack

of detailed documentation for many of the more complex modules included in the project. Many

of the older module's test benches have not been updated to include updated features and are

partially broken.

In the summer of 2022 developers started transitioning the hardware build process from the

Xilinx Vivado HLS (High-Level Synthesis) to the Open Source tool ICSC (Intel Compiler for

SystemC). Accordingly, most of the previous build process are obsolete, and the SystemC code

must be updated to the tool's requirements. This presents an opportunity to refactor the code

to current SystemC and project conventions and document the current hardware architecture

and interfaces.

1.2 Purpose of this Thesis

The work presented in this document aims to improve the development and deployment process

of the ParaNut project while simultaneously enabling developers to provide specialized hard-

ware modules for improved simulation performance and an inherently modular hardware build

procedure.

These improvements are achieved by designing a more centralized build system and restructuring

the project's folder architecture to accommodate the components that have been developed so

far, as well as components that will be developed in the future.

Whilst describing the design process and concepts behind the changes to the build system and
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repository, this work also provides documentation for future developers to reference when up-

dating and extending the system.

Besides the structural and organizational changes brie�y described so far, a number of adapta-

tions and improvements in the ParaNut hardware itself have been implemented. These changes

are mainly concerned with providing a fully synthesizable memory management unit in Sys-

temC as well as optimizing the ParaNut con�gurability to provide a more versatile and e�cient

hardware platform in simulation and on hardware.

1.3 Structure of this Document

This document presents its contents in four chapters. The �rst, Section 2 "Basics" describes the

foundational concepts of the ParaNut processor, its unique attributes, features and structure.

The second chapter, Section 3 "ParaNut Hard- and Software Development", describes work

conducted on the hardware architecture and functionality of the processor itself, optimizations

and refactoring done in order to improve its performance and synthesizability. The third chapter,

Section 4 "Automated Building and Testing", explains the process and result of restructuring the

project's build system. A fourth chapter covers validating and analyzing the results produced.

1.4 Terms and De�nitions

Table 1 lists terms used throughout this document.
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Term De�nition

Version 1.1

v1.1

Previous Version

The state of the project repository before the changes

described in this document were made.

Version 1.6

v1.6

Current Version

The state of the project repository after the changes described

in this document were made.

Developer
Someone who develops the ParaNut project,

i.e. is modifying the source �les inside the ParaNut repository.

User

Someone who uses a ParaNut project installation,

i.e. develops soft- and hardware for a custom

ParaNut System without altering the project's sources �les

ParaNut System

A speci�c hardware con�guration of a ParaNut Processor

and libraries to utilize the hardware in software.

May include custom hardware components

developed speci�cally for this system.

Source Tree The �les and their organization, as provided by the ParaNut git repository.

Installation Tree
The �les and their organization of a ParaNut installation

(created through "make install").

System Tree

The �les and their organization of a ParaNut System.

This may either be located inside the source tree or

in a directory de�ned by the user.

Project Tree

The �les and their organization of ParaNut Project.

This can be located anywhere on the user's system and

is created using the pn-newproject binary

Table 1: De�nition of Terms

A note on the availability of the ParaNut Project

The repository is accessible either on the public GitHub repository: https://github.com/

hsa-ees/paranut or internally on the university's GitLab server: https://ti-build.

informatik.hs-augsburg.de:8443/paranut_developers/paranut Version 1.1 is

only available on the internal server. Only Version 1.0 and 1.5 have been made public. v1.0 lacks

major development included in Version 1.1, like a Memory Management Unit and FreeRTOS

support. Version 1.6 adds the synthesizable memory unit, bug �xes and single core option. Git

Hashes for reference:

GitLab (internal): v1.6 (30cfbfc6), v1.5 (4665bea0), v1.1 (2a094e4f), v1.0 (d3eb3c67)

GitHub: v1.6 N/A, v1.5 (86a072a), v1.1 N/A, v1.0 (65f1057)
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2 Basics

2.1 The ParaNut Processor

The ParaNut hard- and software unique among currently available RISC-V soft core processors

due to its special concept of parallelization. A detailed description of the concept and design

approach used by the developers is published under [4].

Developers and users are able to switch between SMT (Simultaneous Multi Threading) and SIMD

(Single Instruction Multiple Data) parallelization during runtime, code sections describing either

form of parallelization do not need speci�c syntax or compiler but may consist of standard

RISC-V instructions.

In order to access these and other unique hardware capabilities, a software library called lib-

paranut is provided. This library can be used to enable and disable both parallelization modes,

to synchronize memory access and to read and write custom CSRs (Control and Status Regis-

ters).

2.2 Processor Architecture

The ParaNut hardware is built around the concept of a single CePU (Central Processing Unit)

and multiple CoPUs (Co Processing Units). The CePU in this design provides a central, con-

trolling unit. It is composed of an ALU (Arithmetic Logic Unit), a register �le, control logic for

fetching data and instructions from the central memory bus and interrupt and exception logic.

In order to facilitate fast and prioritized memory access, the CePU includes as two ports for

communicating with the central memory unit. One read-only port for fetching instructions and

a second read/write port for data access. As the design concept of the ParaNut aims at using as

little hardware and energy resources as possible, CoPUs are designed to be signi�cantly smaller

and less complex than the central CePU. A ParaNut System can be con�gured to contain one

or more CoPUs, each of which may either be of Capability Level 1 or Capability Level 2. The

Capability Levels di�er in their respective hardware size and the parallelization abilities they

o�er.

Capability Level 1 can only be used for SIMD parallelization. A CoPU of this mode does not

feature a dedicated IFU (Instruction Fetch Unit). Instead, when a Capability Level 1 CoPU is

active, it shares the CePU's IFU, e�ectively running the respective instructions in a vectorized

manner. As cores of this Capability Level do not need to access the system memory for fetching

instructions, they only provide a read/write port for data access and omit the read port for

instructions featured by the CePU.

Capability Level 2 CoPUs o�er both, support for SIMD and SMT code execution. Compared

to a CePU, they lack exception and interrupt hardware, they do however provide a dedicated

IFU, enabling them to execute instructions largely independent of the CePU. The hardware

responsible for fetching and providing the instructions in a Capability Level 2 CoPU can be

turned o�, in which case the CoPU is connected to the IFU of the CePU, resulting in the same
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hardware behavior exhibited by a Capability Level 1 CoPU.

Capability Level 3 describes a full CPU core, it is used to control cores of lesser Capability Level.

Accordingly, it's IFU can not be turned o� and is used to provide instructions to cores running

in SIMD mode. It contains full interrupt and exception logic and handles exceptions caused by

a CoPU. The CoPU is halted until the incidence is resolved.

Figure 1 illustrates a ParaNut System with two Capability Level 1 and one Capability Level 2

CoPUs.

Figure 1: ParaNut Hardware Capability Levels [4]

The following sections describe logical components of the ParaNut processor. As a scalable and

highly con�gurable processor it is key, that some of its components may be activated or deacti-

vated in any given implementation. The following description can only encompass components

that are currently present in the ParaNut project, the list is likely to be extended in the future.

Fig. 2 illustrates a top level module representation of a ParaNut System. Each block represents

a processor module. Dotted lines indicate, that the modules may be con�gured to be excluded

or included in a given con�guration. Blocks in orange are partially written in VHDL as of

version 1.1. Red blocks indicate modules that contain implementations in which simulation and

hardware di�er signi�cantly.

2.2.1 CPU

The CPU module's main task is executing instructions from memory. It contains logic to provide

an arithmetic unit as well as a control unit. Any ParaNut System must contain one core of

Capability Level 3. All others can be con�gured to be either of Capability Level 2 or Capability

Level 1. Thus, this module is present in three expansion levels. Additionally, the arithmetic logic

unit of each core may be con�gured to provide the ISA (Instruction Set Architecture) extensions

M and/or A. Note that this is a global con�guration and e�ects all cores.
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Figure 2: ParaNut Module Architecture

A core is composed of multiple submodules. Figure 1 depicts a schematic representation of

CPU's of all three capability levels. Fig. 3 shows a more detailed documentation of the SystemC

modules present under the CPU module. The oval "CPU" node represents all the top level

module's functions and their connections. A more detailed analysis of a CPU's structure can be

found in Section A1.

The CPUs access the Wishbone Bus through the two submodules LSU (Load/Store Unit) and

IFU. The access itself is controlled externally by the Memory Unit. Both, the Memory Unit

and the Interconnect module may cause exceptions and have appropriate signals connected to

the CPU. Additionally, the CePU can send and receive speci�c signals to and from the CoPUs.

These signals are mainly concerned with exception and interrupt handling, as well as controlling

the CoPU's execution mode.

Every CPU contains a set of CSR. Depending on the Capability Level of a given CPU, the exact

number and set of CSRs di�ers.

1The original �le contains meta information to each directed connection between the submodules about the
precise signals that are shared. The diagram was created to improve the state of documentation on the central
CPU component, the EXU (Execution Unit).
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The MExtension module, used to add support for the RISC-V �M� Standard Extension for

Integer Multiplication and Division, can be activated in a system con�guration and is otherwise

not present.

There are two state machines implemented in the CPU, one for arithmetic operations and one

for controlling the CPU execution.

The EXU state machine is believed to be a possible culprit for the diverging behavior of hardware

and software. The state machine too has been analyzed and documented in the form of a diagram

(Section B).

Figure 3: CPU Module Architecture

2.2.2 Memory Unit

The Memory Unit is responsible for granting access to the shared Wishbone Bus and features

caching functionalities to accelerate read and write operations on the memory. In order to support

Linux on the ParaNut processor, it was extended by a MMU (Memory Management Unit) to

support paging. A detailed description of this implementation and the necessary changes and

applied concepts can be found in [3].

This module di�ers in synthesis and simulation. When synthesized for the Zynq platform, the

main memory is accessed through the platform's AXI Bus and DDR3 Controller. The MMU,

is connected to that AXI Bus through a Wishbone to AXI bridge. In simulation, a memory is
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simulated in software that is directly connected to the AXI Bus through the interconnect module.

The simulated memory can be con�gured to exhibit the same behavior as the DDR3 Memory

on the Zynq development board.

Figure 4: Memory Module Architecture

Fig. 4 illustrates the submodules comprising the ParaNut Memory Module. The number of

read and write ports is dependent on the number of CPUs in the system. The two modules

Translation Lookaside Bu�er and Page Table Walker form a MMU and are only present when

the system is speci�cally con�gured to contain this feature. Both, the Page Table Walker and

the Bus interface provide a complete Wishbone interface. Which of these can access the main

system bus is controlled by the Bus Controller. Memory access requests from read and write

ports are arbitrated by the Arbiter. When operating in cached mode, the Arbiter delegates the

request to the Tag and Bank Ram. If the requested address is not cached, the memory unit will

access it throgh the Bus interface directly. In direct access mode, the requests are arbitrated and
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routed to the Bus Interface.

Both, the Bank and tag RAM are written in VHDL as of version 1.1, as they have to contain

speci�c syntax for the contained registers to be implemented in block RAM at hardware synthesis.

The memory unit contains a Tag and block RAM module for each CPU.

2.2.3 Interconnect

In order ro grant di�erent modules, that internally use the same address space, access to the

Wishbone Bus, the hardware includes an interconnect module. It is used to route Wishbone

access to the di�erent connected modules and remove the address o�set indicating which module

is addressed. The memory does not necessitate address translation and is thus directly con-

nected to the bus. The module contains a function call to add peripherals to the system and

setting routing rules accordingly. Besides routing Wishbone access, the interconnect module is

responsible for prioritizing and routing interrupts.

2.2.4 UART

The UART module, if included in a system, is accessible through a register based interface over

the Wishbone Bus. It is currently not available for simulation, as the ParaNut simulator does

not provide means to connect virtual or external devices to a wire interface. Besides enabling

communication with external UART devices, it is intended to be used for �ashing programs to

the system memory. The implementation of this is currently in progress. Users can access the

UART functionalities through a custom library called libuart.

2.2.5 GPIO

Like the UARTmodule, the GPIO module interfaces with the processor logic through its registers,

which are accessible over the Wishbone Bus. The widths of its digital in- and output busses is

con�gurable. Reading and writing through software is accomplished with the appropriate, custom

library libgpio. The module is not available in simulation.

2.2.6 MTimer

In order to provide timer interrupts to the ParaNut, the MTimer module was introduced. It

is con�gurable by writing to its registers through the Wishbone Bus. Currently, no library

for abstracting access to the timer in software is implemented. The two registers mtime and

mtimecmp have to be written manually. It is directly connected to the CePU through an interrupt

signal. Users must implement a custom interrupt handler to process the interrupt. For the

ParaNut, the main motivation to add this module was supporting the real time operating system

FreeRTOS and Linux.
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2.3 Toolchain

The project's build system relies on several third party tools to compile, synthesize and build its

components. The default compiler for compiling SystemC sources is the G++ compiler from the

GNU Compiler Collection. The SystemC library used for building the simulator is provided by

the Accellera Systems Initiative2 For FPGA development, currently either the Zybo Z7 or Zybo

Z7020 development board are used, both of which feature an FPGA from the Zynq-7000 family.

The Vivado toolchain provided by Xilinx is used to run high level synthesis for translating the

SystemC code to VHDL as well as for hardware synthesis from the mix of generated and written

VHDL sources.

To compile software for a ParaNut processor, the SiFive Freedom RISC-V Tools for Embedded

Development3 in version 8.3 is used.

The project includes a number of scripts, some of which are using the Linux shell, others depend

on Python 3.

3 ParaNut Hard- and Software Development

3.1 Eliminating VHDL Hardware Sources

The ParaNut's hardware description was written in a mix of VHDL and SystemC mainly because

not all structures de�ned in the SystemC standard [5] are supported in the toolchain used for the

project's development so far. One major omission from the subset is the ability to dynamically

create arrays of modules at elaboration time. This feature is necessary to provide a �exible

number of module instances, for example CPUs. For design, veri�cation and simulation purposes,

SystemC modules using this concept could be used, as the Accellera SystemC library does support

the construct. VHDL sources were necessary to enable these features in hardware.

After Vivado 2020.1 the support for SystemC was discontinued [11].4 The equivalency of VHDL

and SystemC code had to be manually maintained by developers. While uni�ed test benches

would have been possible, the project so far did not feature any system to methodically ensure

the identical behavior of hardware and simulation sources. At the time of writing, the processor

exhibits faulty behavior when using the debugging interface on hardware, while working without

issues in simulation. This misbehavior may or may not be caused by di�ering sources for simula-

tion and synthesis. In any case, it is not yet solved, partly because it is impossible to reproduce

the error in the simulator for debugging.

This mix and duplication of modules present in simulation and hardware is signi�cantly harder to

maintain, debug and extend, than a project written using a single hardware description language.

2The latest release may be found at: https://www.accellera.org/downloads/standards/systemc
(last accessed 10.07.2023)

3Releases of the SiFive Freedom RISC-V toolchain can be found at https://github.com/sifive/
freedom-tools/releases/ (last accessed Jul 12th 2023)

4The latest description of the SystemC subset supported by the toolchain is documented in [12].
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The o�cial Xilinx statement concerning the discontinuation of SystemC High-Level Synthesis

suggests using a third party tool [11]. As major parts of the project are already written in

SystemC and the project bene�ts from the fast, cycle accurate simulator generated from those

�les, we aim to eliminate all VHDL code from the ParaNut sources.

In order to work towards the goal of setting up a synthesis process based on open source tools,

the ICSC5 was chosen for High-Level Synthesis. The Open Source tool was introduced in 2019

and is intended to synthesize SystemVerilog �les from SystemC sources. Its SystemC subset

supports more constructs from the SystemC standard [5], including dynamically initialized arrays

of modules at elaboration time. Details on how the ICSC is included and used in the build system

are discussed in Section 4.3.4.

Due to special syntax present in the project, that was originally required to produce a working

model when using Vivado HLS, as well as syntax required by ICSC, all SystemC sources must be

revised. Major parts of this work, as well as additional resources and �ndings, are documented in

[7]. The modules marked in Fig. 2 required removing any non-synthesizable code and appropriate

logic in order to replace it. This work describes the revision of the memory management module,

as this was done by the author and the synthesis of large memory has to be treated specially.

Many constructs used in the SystemC sources of version 1.1 are technically synthesizable, however

they do not comply with the project's coding conventions. As such, any occurance of the custom

types TWord, THalfWord and TByte were replaced with the corresponding sc_uint<> type.

Methods containing combinational logic are pre�xed with proc_cmb and implemented registered

with the macro SC_METHOD. Clocked processes are pre�xed with proc_clk and registered

using the SC_CTHREAD macro.

3.2 Memory Unit in SystemC

The Memory Unit has been extended multiple times since it was �rst introduced in the ParaNut

processor. Most recently, support for RISC-V privilege level was added to enable Linux support

on the ParaNut processor [3]. To facilitate all of the ParaNut's parallelism options, the Memory

Unit was designed to serve simultaneous memory access requests using two read and one write

port per processor core of Capability Level 2 or higher. Capability Level 1 cores only require

one read and one write port. One of the read ports is connected to the core's IFU, exclusively

used to retrieve instructions from the memory, while the combination of another read port and

a write port is connected to it's LSU. The accesses for each core are prioritized in the following

order:

1. LSU Read Port

2. IFU Read Port

3. LSU Write Port

5https://github.com/intel/systemc-compiler, accessed June 15, 2023
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Requested memory can either be served from a con�gurable tag RAM cache, or from the memory

connected to the AXI Bus.

Parts of the Memory Unit have been written in VHDL as well as SystemC, where the SystemC

was not synthesizable. The respective modules are marked in Fig. 4.

In general, the Memory Unit is one of the most complex modules in the ParaNut hardware.

It's original SystemC source consisted of ten modules distributed over three .cpp/.h source �les

(mmemu, ptw and tlb). The modules are now arrangend in more speci�c �les, to improve

readability:

� memory

� memu_arbiter

� block_ram

� memu_bankram

� memu_blockram

� memu_busif

� memu_common

� memu_readport

� memu_tag RAM

� memu_writeport

� memu

� ptw

� tlb

Each �le is named after the module it provides.

The original SystemC implantation of the ParaNut processor relies heavily on structs to de�ne

interfaces between its components. This improves readability and reduces lines of code. Using

structs as sc_signals was originally deemed impossible when using either Vivado or ICSC, with

the release January 2023 of the ICSC, this feature was added. The feature description however

excludes nested structs from being used as records. On requesting this feature on the ICSC

github page, the developers stated, that implementing such a mechanism was not planned and

an excessive e�ort. The memory unit originally featured such nested structs, which have been

replaced by single layer structs on the basis of the following scheme: All signals present in a

nested struct are pre�xed with the sub-struct's name and directly added to the main record.

Methods and functions accessing these values need to be reviewed to ensure functionality. To

maintain readability many of these formerly nested structs now contain functions to retrieve data

in the original sub struct data type.

The memory unit's cache logic relies on the use of block RAM cells when synthesized for FPGA

systems to avoid excessive use of look up tables. The Vivado Design Suite User Guide: Synthe-

sis[10] provides information on how to describe various block RAM con�gurations using VHDL

and Verilog. Generating an appropriate Verilog block RAM model from SystemC, when using

ICSC for high level synthesis, was unsuccessful. The resulting Verilog models are interpreted as

registers and synthesized using look up tables. The ICSC provides a functionality for including
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Verilog snippets to replace SystemC modules when synthesizing. Accordingly, block RAM was

modeled in SystemC for simulation and Verilog for synthesis with Vivado. Future implementa-

tions may contain more implementations for other synthesis tools or modules.

The SystemC implementation of the tag RAM and Bankram modules now use these SystemC

and Verilog block RAM models. In v1.1, both modules did not provide the same logic in SystemC

and VHDL. Instead, the simulation code used simple arrays to model memory, supposedly to

improve simulation performance, while VHDL made speci�c use of the block RAM modules as

described by the Vivado documentation.

Additionally to the memory unit discussed so far, members of the ParaNut team developed an

alternative memory unit to be used for simulation only. This module can be used to signi�cantly

speed up simulation time.

3.3 ParaNut Single Core

Prior to this work, a ParaNut System could contain a minimum of two cores. Parts of the

project code already included sections and conditional statements to allow for a single core

implementation. When trying to con�gure a single core system, a major issue was presented

by registers and signals that were de�ned to have a width of CFG_NUT_CPU_CORES_-

LD, i.e. the binary logarithm of the total number of cores. Examples of such occurrences are

ParaNut CPU enable register (pnce) or Hart ID Register (mhartid) [6]. Some of these signals

did not need to be included in the synthesis of a single core system, as they are used to enable

communication between cores. Others signals needed to be �xed to a minimal width of 1 bit. To

improve readability of a�ected code sections, the boolean preprocessor variable CFG_NUT_-

SINGLECORE was introduced.

3.4 GCC Compatibility

The SiFive Freedom RISC-V toolchain release recommended for compiling software for the

ParaNut platform contains the GCC (GNU Compiler Collection) 8.3.0. The most recent release

of the toolchain provides GCC 10.26. When building the toolchain from the o�cial freedom-tools

git 7, the provided GCC version is 12.2.0. Users should be able to use any of these versions to

compile software for the ParaNut.

The �les syscalls.c (providing ParaNut speci�c system call implementations) and paranut.ld (the

default linker script for ParaNut software) required changes. Previously, the beginning of the

heap was located through the _tbss_end symbol provided by gcc. With newer GCC versions

this symbol is zero per default. Version 1.6 now uses the linker script to locate the heap through

a symbol called __heap_start, which is both more verbose and robust against changes to the

TLS (Thread Local Storage) through GCC.

6Freedom Tools Releases: https://github.com/sifive/freedom-tools/releases (online, last vis-
ited 19.07.2023)

7Freedom Tools Repository: https://github.com/sifive/freedom-tools (online, last visited
19.07.2023)
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This heap location mechanism is used only inside the _sbrk function, which is responsible for

allocating memory on the heap. The previous version was not able to allocate any heap when

using newer GCC versions. Additionally, its exception handling was �awed. While trying to

inform users about the error encountered when trying to allocate heap memory, printf was used

to print the error. printf itself uses sbrk to allocate bu�er memory, resulting in a recursive

exception loop. This issue is solved by replacing printf with the more basic _write function.

4 Automated Building and Testing

4.1 The Build System

Build systems are an essential part of any software project, as they enable users and developers to

easily compile software sources, generate documentation, execute tests and install the generated

binaries. They also make up a large portion of all code present in any software project. Up to

31% of code �les in a project, according to [9]. Apart from the number of �les used to create

a build system, maintaining and developing these build automation processes presents a large

and complex part of software projects. Any build system should aim to provide the following

bene�ts to a project [8]:

� E�ciency: Repetitive and complex tasks should be reduced to simple invocations. These

tasks may encompass: Compiling and Linking software sources, building documentation,

installing artifacts to a users system and executing tests.

� Scalability: In o�ering simple handles for complex, repetitive tasks, a build system should

enable developers to maintain and develop large, complex projects without being knowl-

edgeable in every single component contained in the project. Moreover, it should be easy

to add components to an existing project and leverage its existing build system in order to

build and integrate them easily.

� Reproducibility: As a major concept for software development in general, a build system

should enable reproducible and reliable builds on di�ering systems.

� Maintainability: As discussed above, maintaining a build system is often a big part of

software project development. It should thus forgo unnecessary complexity and be built

with future maintenance work in mind.

� Minimal dependencies: Most build systems depend on third party tools and resources

like compilers, binaries and libraries. The number of external dependencies should be

minimal, improving usability, reducing maintenance e�ort and error sources.

Make�les are one way to create and manage a build system. A Make�le is a build script most

often used to automate compiling and linking in software projects. It is a script that is based on

targets and prerequisites, where each target usually represents a �le that is created by executing

the commands (most often shell commands) associated with it.
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Each target can have a number of prerequisites, which are either �les or targets themselves.

Upon invoking a target, its prerequisites are analyzed. Before executing the target itself, its

prerequisites must be ful�lled. This is the case, if the named �le's timestamp is more recent than

all its prerequisite's timestamps. This working principle for example ensures, that object �les

are updated, when their corresponding c �les have been modi�ed.8

4.2 The ParaNut Build System

Users will mainly interact with the build system to install the ParaNut development environment

to their system, de�ne a custom ParaNut con�guration, develop software for it and possibly

extend it by some hardware component. Most of this interaction is achieved through central

Make targets. Users may also make use of the "external" components, FreeRTOS and Linux, to

base their software on.

Developers frequently need to interact with single hard or software components for debugging

and development purposes. As such, these components must feature targets to selectively build

and test them.

Therefore, the Make system must feature targets for a number of di�erent tasks:

� Libraries

� Building and Linking custom C libraries for the RISC-V architecture

� Applications

� Cross compiling C applications from C and Assembly sources for the RISC-V archi-

tecture

� Cross compiling Rust applications for the RISC-V architecture

� Hardware

� Building and running test benches for SystemC hardware modules

� Generating a SystemC based, cycle accurate hardware simulation

� Running High-Level Synthesis on SystemC sources

� Synthesizing for di�erent FPGA platforms

� Flashing a hardware con�guration on to an FPGA

� Running compiled software in the simulator

� Running compiled software on hardware

� Documentation

8For more in depth information on the principles and functionalities of Make�les, see https://www.gnu.
org/software/make/manual/make.html
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� Generate documentation from LaTeX sources

� Generate Doxygen documentation from C sources

In v1.1 of the ParaNut, almost every folder contains a Make�le to manage building and testing

sources present in that folder and its subfolders. This results in more than 13% of the project's

sources constituting Make�le code. Many of these Make�les depend on artifacts created by other

Make�les in the directory tree.

# Configuration options
CROSS_COMPILE ?= r i scv64=unknown=e l f

CC := $ (CROSS_COMPILE)=gcc
GXX := $ (CROSS_COMPILE)=g++
OBJDUMP := $ (CROSS_COMPILE)=objdump
OBJCOPY := $ (CROSS_COMPILE)=objcopy
GDB := $ (CROSS_COMPILE)=gdb
AR := $ (CROSS_COMPILE)=ar
SIZE := $ (CROSS_COMPILE)=s i z e

ELF = hel lo_newl ib
SOURCES = $ (wildcard * . c )
OBJECTS = $ (patsubst %.c ,%.o , $ (SOURCES) )
HEADERS = $ (wildcard * . h )

CFG_MARCH ?= rv32 i

CFLAGS = =O2 =march=$ (CFG_MARCH) =mabi=i l p 32 =I$ (RISCV_COMMON_DIR)
LDFLAGS = $(CFLAGS) =s t a t i c =n o s t a r t f i l e s = l c $ (RISCV_COMMON_DIR) / star tup . S \
$ (RISCV_COMMON_DIR) / s y s c a l l s . c =T $ (RISCV_COMMON_DIR) /paranut . ld

# Software Targets
a l l : $ (ELF) dump
$ (ELF) : $ (OBJECTS)

$ (CC) =o $@ $^ $ (LDFLAGS)

%.o : %.c $ (HEADERS)
$ (CC) =c $ (CFLAGS) $<

# ParaNut Targets
.PHONY: sim
sim : $ (ELF)

+$ (MAKE) =C $ (PARANUT)/hw/sim
$ (PARANUT)/hw/sim/pn=sim =t0 $<

Figure 5: v1.1 Make�le Script for Simulating a c Program

Figure 5 shows an excerpt from the "hello-newlib" example application inside the sw directory.

It showcases multiple issues present in the original build automation:

1. It de�nes all compiler and linker �ags and the targets for compiling and linking a binary,

although the ones present in this particular software are needed by every software compi-

lation for the ParaNut processor. Put inversely, every Make�le contains identical sections

that need to be maintained seperatly

2. Multiple folders are referenced from the project root, which is held in an environment vari-

able $(PARANUT), acquired by sourcing settings.sh. This too decreases maintainability

as these paths have to be separately updated in every Make�le.

3. The simulation target depends on the pn-sim binary being built. This is not as-

sured through a prerequisite, but rather through invoking its build target per de-

fault. (additionally, the order in which "+$(MAKE) -C $(PARANUT)/hw/sim" and

"$(PARANUT)/hw/sim/pn-sim -t0 $<" are executed is not assured by Make)

4. The �le in general could contain more detailed documentation
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The complexity of the build process is further increased, as the project's sources at version 1.1

contained unique Make�les for each application, hardware component, test bench and library.

This approach of a distributed build system led to a major maintenance cost. Small changes

in architecture, variable naming or tooling necessitated manual changes to many independent

�les. This could easily result in the neglect of a number of components, resulting in the breakage

of their build process. The implementation of a server side CI/CD (Continuous Integration

/ Continuous Delivery) pipeline could help to intercept such errors. However, this would not

resolve the issue of an increased maintenance e�ort compared to a centralized build approach,

that would incidentally update all build processes.

4.3 Designing a New Build System

The existing build system was redesigned based on the target list in 4.2. The list is grouped

into libraries, applications, hardware and documentation targets. Each of these groups may be

treated as an independent subproject whose build system produces distinct artifacts.

One of the most complex targets in the ParaNut project is running an application, that needs to

be linked with a ParaNut speci�c library and compiled for RISC-V, in the hardware simulator

(pn-sim), as was already outlined by the old Make�le shown in Figure 5.

As suggested by [2], the build process was analyzed from a top-down perspective. The resulting

dependency graph, containing intermediate artifacts is shown in Figure 6. Note that this graph

is a schematic representation, as listing all actual sources and artifacts would result in a large,

unintelligible graph. It is split into three columns, that visualize the boarders between the three

main groupings Libraries, Application and Hardware.

As before, most of the build system's processes can be executed from the main Make�le located

in the project root. For example, running make hello will trigger the process shown in 6. Aside

from basic build and clean targets, it contains test-targets that can be used to test speci�c project

components like the simulator or high level synthesis.

The new system is based on centralized information, thus a single resource containing relevant in-

formation is provided to enable sharing information between the subprojects: directory-base.mk.

4.3.1 Directory Base

The �le directory-base.mk contains information on where the subprojects, their components,

tools and �les used by multiple Make�les are located within the directory. Additionally, it is

used to provide information on the structure and location of the currently selected ParaNut

System (ParaNut Systems and their function are discussed later in this chapter).

All the paths provided by the �le are calculated from the environment variable $PARANUT_HOME9

9Appending "_HOME" to the project name when de�ning an environment variable that points to the project
installation seems to be an established naming convention (e.g. ICSC_HOME, VIVADO_HOME, ANDROID_-
HOME)
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Figure 6: Schematic Dependency Tree for Running an Application in the Simulator

that points to the currently active ParaNut directory. Usually users and developers will source

the settings.sh in the directory root. Apart from setting PARANUT_HOME, sourcing settings.sh

adds the binaries located in $(PARANUT_HOME)/tools/bin to the user's $PATH environment

variable. When the ParaNut is installed on a system, $PARANUT_HOME will point to the

installation directory (see Section 4.5).

When making changes to the project architecture, developers should aim to adapt this �le �rst

before adapting other build tools to ensure synchronicity between all tools.

Some shell based tools inside the ParaNut project require information on the location of artifacts

and components (e.g. pn-newproject, see Section 4.5). The dedicated target get-variables can

be utilized to provide these to such scripts.

Targets often used within each subproject are centralized as well. The three main subprojects:

Libraries, Applications and Hardware each provide a dedicated base-Make�le that contains tar-

gets that almost all components inside the subproject need.
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Figure 7: Make�le Inclusion/Inheritance Scheme

Figure 7 shows where each of the four base-Make�les are included. Thanks to this centralized

approach, top level Make�les almost exclusively contain variable de�nitions to set source �les

and con�guration. The Make�les of the components inside a given subproject are structured

identically. For example, the Make�le for the hello_newlib only contains source and build con-
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�guration and the base-Make�le includes directives, as shown in Fig. 8.

################# Software Configuration #########################################

# SOFTWARE_SRC: Sources that are used for Simulation as we l l as

# synthesis . ( including the testbench/sc_main f i l e )

SOFTWARE_SRC ?= hel lo_newl ib . c

# LIBRARY_DEPENDENCIES: Paranut spec i f i c l i b rar i e s , t h i s software

# depends on . Mainly used to make shure the respect ive

# f i l e s are bu i l t

LIBRARY_DEPENDENCIES ?=

# SOFTWARE_CFLAGS: Additional compiler f l a g s th i s software needs

SOFTWARE_CFLAGS ?=

# SOFTWARE_LDFLAGS: Additional l inker f l a g s th i s software needs

SOFTWARE_LDFLAGS ?=

# SYSTEM: Defines the system the software i s run on

# in simulation as we l l as on hardware

PN_SYSTEM ?= r e f d e s i g n

################################################################################

##### DO NOT EDIT FROM HERE ON#################################################

################################################################################

################# Module Makefile ##############################################

APPLICATION_DIR:= $ ( abspath $ (CURDIR) )

PARANUT_HOME ?= $ (CURDIR) / . . / . . / . .

################# Automatic Name Generation ####################################

# Get Module name from fo lder name

SOFTWARE_NAME = $( lastword $ ( subst / , , $ (APPLICATION_DIR) ) )

################# Directory Makefile Include ###################################

include $ (PARANUT_HOME)/ d i r e c to ry=base .mk

################# Master Makefile Include ######################################

include $ (APPLICATION_BASE_MK)

Figure 8: v1.6 Make�le Script for Simulating a c Program

In special cases these �les can be extended with unique build targets. The three base-Make�les

for subprojects are discussed in the following sections. All of these Make�les must de�ne the

basic targets:

� build

� clean

� help

4.3.2 Libraries - hal-base.mk

Especially in the past year, the number of custom libraries for the ParaNut architecture has

increased signi�cantly. While the project originally featured only the libparanut, multiple hard-

ware abstraction libraries were added, e.g. for accessing the UART (Universal Asynchronous

Receiver / Transmitter) module. Some of these libraries include others, this interdependence

was not ensured by the previous build system. The centralized approach allows for easy con�g-

uration of a librarie's sources, dependencies and special compiler options. This is accomplished

by designing a single Make�le named hal-base.mk, that features all commonly used targets for
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creating a library artifact. Each library can provide this information in a simple Make�le with

verbose variable names for the build information data. The new folder architecture discussed in

Section 4.4 enables interdependencies between the di�erent library builds without declaring full

paths in each library Make�le. Libraries are built recursively, as one library depends on another

library �le, its existence and up-to-dateness is checked and built if necessary. The library build

process is only dependent on the presence of the riscv-toolchain and a single target from the

hardware build process, as this build process creates a paranut-con�g.h that is needed by some

libraries. More information on this particular target may be found in Section 4.3.4.

4.3.3 Applications - application-base.mk

To unify the targets for compiling, linking and running applications, a central Make�le named

application-base.mk was designed. Most applications can be build by de�ning only the software

source �les. This Make�le mainly aims to streamline and unify the development process. While

most applications originally only supported a single simulation target: "make sim", this base

Make�le de�nes multiple simulation targets for simulating with instruction log, signal trace or

in debug mode. It has two interfaces to other build systems, one for ensuring the presence of

necessary ParaNut libraries and one for building the hardware simulator. It relies on the riscv-

toolchain, which needs to be installed. The build process per default uses the riscv64-unknown-

elf-* binaries. Should another toolchain be required, it can be set by appending CROSS_-

COMPILE=<toolchain> to the make call. In future revisions, a target for loading the compiled

binary to a hardware implementation of the ParaNut processor will be added.

4.3.4 Hardware - sysc-base.mk

At its core, the ParaNut project provides a highly scalable soft core processor. Accordingly,

synthesizing, simulating and testing the project's hardware design are its core features. As with

the subprojects discussed so far, the hardware too was extended signi�cantly since the last release.

This part of the build system was subject to the biggest changes. Partly this is due to the project

architecture decisions described in Section 4.4. Mainly, the build system adaptations regarding

the hardware subproject are founded on the aim of eliminating VHDL sources as discussed in

Section 3.1. This change included the introduction of the ICSC for High-Level Synthesis. The

process of which is detailed in Section 4.6. In version 1.1, all hardware sources were kept in

two folders one for VHDL and one for SystemC sources. With a growing number of hardware

modules, this architecture was becoming hard to read, therefore hardware sources were grouped

into processor modules similar to the modules described in Section 2.2. The modules currently

present in the ParaNut project are listed in Figure 9.
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sysc

module_cache

module_common

module_cpu

module_debug

module_gpio

module_mmemu

module_mtimer

module_system

module_uart

Figure 9: ParaNut SystemC Modules

Similar to HAL (Hardware Abstraction Layer) and software, each hardware module provides a

simple Make�le, that contains build information. Each module can be considered an autonomous

hardware build, as it is intended to provide one or more test benches for assuring function and

building a simulator, a top module for building and providing a SystemC library to be included

in external modules and a target for High-Level Synthesis. At the time of writing, no target

for synthesizing for hardware is implemented, as this feature necessitates working High-Level

Synthesis using the ICSC for all modules. This transition is still in progress as discussed in [7].

The module common contains sources for con�guration, helper functions, macros and functions

for simulation. Moreover, it contains a template class for peripherals. Its interface can be used by

developers to build additional Wishbone modules for a ParaNut System. Because of its function

as a repository for helper classes and functions it also includes sources for simulating the SystemC

code when using the Accellera SystemC library instead of the one provided by ICSC. Details on

this can be found in Section 4.6

The �le sysc-base.mk contains two distinct sections one for High-Level Synthesis and one for

compiling a simulator. In order to build a simulator for a hardware module, potential dependen-

cies must be resolved. This is done by using a variable de�ned in the module's Make�le. The

variable contains all modules the module depends on in order to be simulated correctly. These

interdependencies are resolved recursively, meaning the build process resolves all interdependen-

cies and builds the modules that have no dependencies �rst, incrementally building libraries for

all modules until resolving the prerequisites of the module whose build target was invoked.

The targets and steps to create a test bench binary are the exact same as for creating a simulator,

since a test bench in SystemC is a simple simulation with prede�ned signal states to test the

hardware functionality. In order to prevent confusion when being used by users not acquainted

with the SystemC simulation principle, two Phony targets are provided for running and building

the simulation/test bench: build-sim, run-sim and build-tb, run-tb. Both targets build and run

the same binary. Depending on the intent of the user one may be more intuitive than the other.
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Besides the main targets build-sim (building a simulator/test bench) and build-syn (running

High-Level Synthesis to build a Verilog source), the sysc-base.mk contains a target for creating

the paranut-con�g.h. This target refers to the module_common, which provides the functionality

to parse the con�g.mk (see 4.3.5) �les present in the project root and systems directories into a

header �le to be used by the hardware build and some libraries and applications.

The modules listed in 9 do not include a central instance intended to build a simulator of the

whole ParaNut. module_system does contain the logic to connect the various modules and could

theoretically be used to simulate a complete ParaNut System. However, it is intended to simplify

Systems that use default components and reduce the number of �les required to describe them.

Systems using non-default components must omit this module and provide their own logic for

connecting them.10

4.3.5 ParaNut Systems

A ParaNut System is the collection of a speci�c hardware con�guration, potentially additional

hardware modules and the artifacts resulting from building this con�guration, needed to simulate

or synthesize a respective ParaNut processor. The default ParaNut con�guration (number of

cores, capability levels, cache size, etc.) is contained in a con�g.mk �le in the root directory. A

ParaNut System can alter this base con�guration by providing a seperate con�g.mk that contains

all con�guration options that di�er from the default. This adaption is a change in comparison

to the previous release, where each system contained a custom Make�le and a custom con�g.mk

that rede�ned all con�g options. Developers experienced, that some systems were neglected

when updating the main con�g.mk, accidentally breaking these systems' build processes.

Logically, a ParaNut System is a container for at least one hardware module itself, which at

its minimum contains the sc_main needed to provide a full processor simulation. This design

enables reusing the sysc-base.mk for the simulator build from any desired directory and allows

users and developers to design additional hardware for a speci�c system.

The concept of ParaNut Systems is central to the new build process, as it simpli�es simulta-

neously working with di�erent hardware con�gurations. A ParaNut System folder provides all

artifacts created by the build process, as well as access to its hardware abstraction libraries.

The default system to be used when running an application using the make sim target inside

an application folder is de�ned in the directory-base.mk. It may however be overwritten inside

the application's Make�le, as is necessary for some applications (e.g. Linux) or by the user by

adding PN_SYSTEM=<system name> to the call. The concept of ParaNut Systems is again

reused when using the ParaNut project's software development work�ow, which will be discussed

in Section 4.5.

A ParaNut System's folder structure is displayed in Fig. 10. Most importantly it provides the

custom con�g.mk. The sw directory contains artifacts from building ParaNut libraries, such as

10An example is the System for Linux simulation, which needs to include and connect the simulation-only
memory module.
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headers and library �les split into lib and include folders. The hw folder contains a directory for

board speci�c �les that will be needed for synthesizing for di�erent platforms. It also contains a

sysc folder that contains a SystemC top level module and may hold additional SystemC sources.

When the simulator for the System is built the binary is placed into this folder. Moreover, the sysc

folder contains an include directory, that contains the libraries created by building all hardware

modules referenced in the Make�le. As these libraries need to be built for each con�guration,

this allows for retaining preliminary build artifacts for di�erent system con�guration, which was

not possible with the old build system.

refdesign

hw

boards

zybo

zybo_z7020

sysc

build

include

sw

include

lib

Figure 10: ParaNut System Directory

4.3.6 Continuous Integration/Continuous Delivery

In parallel to the structural improvements described in this document, the ParaNut developer

team introduced a Jenkins11 automation server. It is used to test the ParaNut project on two

levels. The top level perspective tests targets contained in the main Make�le. In order to quickly

locate an error encountered within this process, each component can be tested separately. Aside

from providing information on the project's health, the CI/CD regularly runs the benchmarks

used to gage the processor's performance. This allows developers to monitor the impact of

changes on the ParaNut's performance.

4.4 Project Architecture

The ParaNut Project was and is largely maintained as a single, repository containing sources for

hardware, software, documentation and tools. It's directory structure now mirrors the subproject

approach. As of now, the project could easily be split into multiple repositories.

Figure 11 shows the �rst three levels of the new directory structure of the ParaNut Project.

The fourth layer contains the software or hardware modules and components and is not listed

for intelligibility. Only sw, hw and systems are deeper than three levels. The structure beneath

11urlhttps://www.jenkins.io/, last visited 25.07.2023
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hw->sysc can be seen in Fig. 9 and is discussed in Section 4.3.4. sw was redesigned from a

monolithic design to contain seperate folders for applications, libraries (hal), operating systems

(os) and benchmarks/tests (test-applications). The speci�c applications and libraries are not

relevant to this work and will not be listed.

As explained in Section 4.3.4, ParaNut Systems have a special role in the ParaNut project, their

basic working principle, as well as their folder structure was already discussed and displayed in

Fig. 10.
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tools

sw

applications

hal

os
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linux
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lib
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Figure 11: ParaNut Root Directory

In general, the changes to the repository structure can be considered minor, as another level for

sorting hardware and software sources into more general modules or categories was added for the

most part. These changes would not have been easily possible with the old build system in place.

Especially the introduction of the directory-base.mk enables a much more �exible structure and
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a build process that can easily be adopted to changes. This allows for future improvements to

be easily implemented if necessary.

4.5 Installation

The ParaNut's installation feature aims to provide a development environment for users of the

project. The installation should provide resources necessary for developing software, like libraries,

a simulation environment, as well as tooling for �ashing the con�gured hardware and software

to a development board. Therefore, the main Make�le o�ers a make install target. Per default,

this target installs necessary sources and artifacts to /opt/paranut. The target directory may

be con�gured by providing INSTALL_PREFIX to the installation call. If the target directory

is not owned by the user, the call must be made with sudo. Fig. 12 shows the structure of

the installation directory, essentially mirroring the structure of the repository, while omitting

unnecessary sources.
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doc
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hw
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systems

tools

Figure 12: ParaNut Root Directory

Besides already discussed subdirectories, the installed sources contain a folder named external.

This folder may contain sources from external repositories for use by software components, e.g.

the FreeRTOS-Kernel. Users can decide to add these sources to the installation. Currently two

software components use external repositories, Linux and FreeRTOS. They can be included by

adding OS_INSTALL="freertos linux" to the installation call.

Binaries important for the usage are located in tools/bin. This folder is added to the $PATH

environment variable when sourcing the settings.sh contained in the installation root. These

binaries include the pn-con�g-creator (used for easily creating ParaNut con�gurations), pn-�ash

(for �ashing hardware) and pn-newproject.

pn-newproject is the main access point for users to interact with the installed ParaNut project. It

creates a folder containing a copy of the default ParaNut System as de�ned in 4.3.4. In addition

to the sources present in the default ParaNut System, a write protected con�g.reference.mk is

added that contains a copy of the main con�g.mk. It is present in the installation directory for

users to reference what the current default con�guration encompasses. It also contains a copy of

the version.env from the installation directory to track the version of the ParaNut project with

which the project directory was created and a special README containing information for the
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users.

Having sourced settings.sh, the users are enabled to edit the contained con�g.mk to con�gure

their ParaNut System. All artifacts from building this system are automatically stored inside

this folder's structure.

4.6 Synthesis with SystemC

Part of the reason for re-organizing the build system and architecture of the project was the

need to incorporate High-Level Synthesis using the ICSC (Intel Compiler for SystemC). The

build process provided by ICSC is designed around the tool CMake. Adopting the �rst hardware

modules for synthesis using this build chain, prooved its complexity. In order to create the �nal

synthesis target, a SystemVerilog �le, three shell instructions need to be executed. make for

creating the cmake script, cmake for creating the binary used to generate the SystemVerilog

target and ./sc_tool to generate the �nal result. In order to streamline the development and

deployment process, this procedure needed to be simpli�ed. The build system present in the

ParaNut project is centered around Make. As this is already part of the build process intended

by the developers of the ICSC, it was deemed rational to reduce the toolchain and make cmake

obsolete. The steps accomplished by the cmake invocation in the ICSC repository are easily

reproduced using Make. Two separate cases had to be considered:

� Compiling the sources to produce a simulator

� Synthesizing a single Verilog �le

The �rst case is easily accomplished by compiling a binary from all SystemC sources, where

exactly one test bench �le is included in the sources, containing a sc_main. When linked with

a SystemC library, this produces a hardware simulation. The new build system is intended

to provide �exibility regarding the SystemC library used. Developers may either use a library

installed from their system's package management system, compiled from the Accellera SystemC

sources or the library provided with the ICSC. In order to simplify selecting and con�guring

the desired library, the systemc_con�g.mk �le was added to the ParaNut root directory. The

build system is setup to use the system library, if no environment variable SYSTEMC_HOME is

provided. SYSTEMC_HOME may either point to an Accelera12 or ICSC installation directory.

If it points to the ICSC directory, USE_ICSC=1 must be set for the right con�guration to be

used.

When using the SystemC library fork contained in the ICSC repository, two functions important

to the synthesis and simulation of a ParaNut System are available: sc_new and sc_newarray.

Both functions are needed to dynamically create module instances in SystemC. These functions

however are not present in the Accelera implementation of SystemC. An alternative implemen-

tation of these is contained in the module_common that provides these function calls and im-

12Releases and documentation reguarding this library can be found at https://www.accellera.org/
downloads/standards/systemc
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plements their behavior for builds using the Accelera SystemC. An include guard protects the

functions from being rede�ned when using the ICSC library. Some modules, such as the memory

management module contain sources that are only used when generating a simulator binary and

can not be synthesized for hardware, as the contained functionalities are either unnecessary or

already implemented otherwise in hardware. Such sources must be indicated by being provided in

the module Make�le's SIM_SRC variable. All other sources are provided with MODULE_SRC

and TESTBENCH_SRC. TESTBENCH_SRC must contain the name of the �le containing the

sc_main function. This way multiple test benches can be compiled and executed for a single

module by either creating distinct Make�les or overwriting this variable when calling make.

Reproducing the synthesis process accomplished by the original cmake process necessitates the

dynamic generation of a C-�le that includes all source �les and a compiler con�guration string.

This is accomplished by utilizing the source information in the hardware module's Make�le and

a template �le that is parsed using the command line text editor sed. In addition, the cmake

process creates a folder that contains copies of all involved source �les. This is reproduced by

creating a "sc_build" folder and recursively copying the module's and its dependencies' sources

to that folder. The sc_tool �le is compiled using gcc and generates a SystemVerilog �le when run.

The Xilinx Vivado toolchain used for hardware synthesis supports SystemVerilog, its High-Level

Synthesis however produces a Verilog output and the general support for special constructs

(like block RAM) is better in Verilog. Respectively, a third party tool for transforming the

SystemVerilog output to Verilog is used. The tool is called sv2v (SystemVerilog to Verilog)

and provided by https://github.com/zachjs/sv2v. It needs to be manually installed by

developers and is a simple command line application. Utilizing Make's prerequisite logic, the full

process for generating a Verilog �le from SystemC sources can be accomplished by running make

build-verilog

5 Evaluation

5.1 Build System

The complexity of a build system can be measured in a number of ways. In using Make�les for

automated building and testing, measures such as number of lines, targets, dependencies and

indirections13 can be used. All with the aim of measuring the system's tangibility. [8]

To verify the basic functionality, a peer review was conducted, the �ndings of which were incorpo-

rated into the �nal design. Users and developers were not provided with additional information,

as the review was intended to test the build system's documentation and legibility. With the

ParaNut Project, the build system must be evaluated from two points of view, the developer's as

well as the user's perspective. Some participants do not work with or on the ParaNut project or

have just recently started to, allowing for feedback from a user perspective. The user's interaction

with the build system did not change signi�cantly in comparison to v1.1. The steps to install

the installation tree, create a new project, and compile and simulate software on it are largely

13i.e. instances of features that require the reader to look somewhere else" [8]
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identical. The main di�erence regarding the user perspective being, that artifacts from building

and con�guring the simulator are now placed in the project tree, rather than the installation

tree. A change not noted by test users. Feedback regarding the usability were incorporated into

the �nal release.

The developer's perspective was continuously reviewed, as some developers adopted the build

system changes in an early state and gave constant feedback, greatly improving the system's

reliability.

Using the CI/CD to run all the project's tests and applications using the new build system

enabled fast validation of functionality and reliability.

Concerning build system complexity, the main improvement is the consolidation in base-

Make�les, reducing indirections. When working on a subproject's component, exactly three

Make�les are relevant: The component con�guration �le, the respective base Make�le and

directory-base.mk. To change or extend the build process of all components in a subproject, only

the subproject's base �le must be modi�ed (With v1.1, all the component's Make�les needed to

be changed). Additionally, the Make�le documentation was improved.

5.2 Processor Optimizations

5.2.1 Memory Unit

The memory unit's performance in read/write operations per cycle has remained the same, as

can be seen in the performance test results in Table 2.

Memory Unit v1.1 Memory Unit v1.6

sequentially accessing 2048 words

writing, �rst run 923,10 933,64

writing, second run 300,00 300,00

reading 200,00 200,00

parallel write and read 2048 words, 4 ports

writing (adjacent words) 2461,33 2437,7

reading (adjacent words) 300,00 300,00

writing (di�erent sets and banks) 1829,88 1828,52

reading (same words) 501,95 501,90

reading (random words) 350,29 350,29

all �gures in clocks per operation

Table 2: Memory performance comparison

Memory simulation complexity is increased through the introduction of multiple block RAM

simulations. This a�ects simulation performance. The runtime of the test bench used to generate

the results in Table 2 increased from 11,7s to 19,8s (Average of �ve runs, using the time shell
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tool and accumulating system and user �gures). A loss in performance was expected and is

acceptable, since this module is primarily intended for synthesis and debugging. Developers

recently produced a memory module intended for fast simulation, that can not be synthesised14.

In simulation, it outperforms both memory units signi�cantly, only taking 1,1s.

Using the default cache/memory con�guration for the ParaNut, the memory unit was synthesized.

Table 3 shows the default con�guration options from con�g.mk. Table 4 lists the resulting

parameters for the di�erent block RAMs generated by the memory unit.

Parameter Default Value

CFG_MEMU_CACHE_BANKS_LD 2

CFG_MEMU_CACHE_SETS_LD 9

CFG_MEMU_CACHE_WAYS_LD 2

Table 3: Default Cache Parameters

Module Description
Port A

Size
Width Depth Write Read

Cache
Port A 32 Bit 2048 Bit YES YES

8192 Byte
Port B 32 Bit 2048 Bit YES YES

tag RAM
Port A 25 Bit 2048 Bit YES NO

6400 Byte
Port B 100 Bit 512 Bit NO YES

LruRam
Port A 6 Bit 512 Bit YES NO

384 Byte
Port B 6 Bit 512 Bit NO YES

Table 4: Memory Unit block RAM Usage

The synthesis usage report from Vivado con�rms that the block RAMs are generated as predicted.

Note, that each of the memories is generated once for each core. The default four core system

thus contains four of each. When synthesized for the Xilinx ZYNQ 7020 platform, the memory

unit itself uses 5720 look up tables. A comparison to the look up table usage from v1.1 can be

found in Table 5. The di�erence between both versions seems to be mainly caused by the Arbiter

and tag RAM modules. Both synthesized designs use 14 block RAM tiles and between 1050 and

1090 register.

5.2.2 Single Core

Aside from a reduction in hardware size, the single core ParaNut System is intended for increasing

simulation performance in single threaded applications. Table 6 shows simulation times for two

such applications. In comparison to the previously smallest system (two cores), the single core

system simulation is 47% faster . All tests were conducted on v1.6 of the ParaNut project, other

14This memory unit is not part of the v1.6 release and still under development, hence results are preliminary.
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Component VHDL Memory Unit SystemC Memory Unit

overall 3583 5720

Arbiter 701 1726

tag RAM 243 1052

Bus Interface 783 437

Table 5: Look Up Table Usage Comparison

Single Core Dual Core

Time until �aiure 59,47 min 86,48 min

Clock cycles until failure 240 · 10−9 (equivalent to 9,6s at 25Mhz)

Lines of Linux boot messages 29

Table 7: Linux boot process on di�erent ParaNut Systems

than the number of cores, no parameters were altered. The simulated CoPUs are of capability

level 2. Fig. 13 visualizes the measurements from Table 6. The in�uence of the number of cores

on simulation time is approximately linear. The increase of simulation time based on the number

of cores can be approximated as a factor, using the following formula:

T (c) = 0, 24 ∗ c+ 1

T: Simulation time factor in comparison to a single core system, c: number of cores

Application 1 CPU 2 CPUs 4 CPUs 8 CPUs

hello_newlib 2,44s 3,35s 4,99s 7,62s

dhrystone (10000 runs) 343,8s 506,1s 663,9s 1123,8s

Table 6: Simulation times of single threaded applications.

Figure 13: Simulation Performance in Comparison to Number of CPUs

Faster simulation times allow developers to more e�ciently debug persistent hard- and software

errors. This is especially useful for debugging sophisticated software such as Linux. Table 7
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shows a comparison between simulating the Linux boot process on a single and a dual core

ParaNut System. Note, that at the time of writing the ParaNut is not capable of running Linux.

Developers are working on supporting the operating system. As of now, the boot process aborts

due to an unknown error. The single core should help debug this issue.

As a full ParaNut System can not yet be synthesized, the impact of a single core system on the

look up table count can not be measured.

6 Conclusion

The work presented in this document is key to enabling the usage of open source tools for

synthesizing the ParaNut processor. It successfully implemented a high level synthesis build

automation using the Intel Compiler for SystemC and modularized the project architecture.

The created build automation is already in use by ParaNut developers and the CI/CD build

chain. The interaction between build chain and CI/CD enables fast and continuous validation of

development changes, while the centralized build tools reduce maintenance cost for developers.

The project repository was restructured to be more user-friendly and allow future developers

to extend the project by placing newly developed components in meaningful and well-de�ned

directories.

The modular architecture can be used by future developers to provide alternative implemen-

tations of ParaNut modules. These modules may include simulation models that signi�cantly

improve simulation performance, such as a cache-less memory unit, which is already under devel-

opment. While such modules can speed up simulation signi�cantly, non synthesizable modules

may lead to diverging behavior of hardware and simulation. Using a single core ParaNut and

default modules for simulating complex, single threaded software is a viable mean for verifying

correct behavior in hardware and simulation.

Working towards the goal of synthesizing the system from SystemC only, the memory module

was revised to be synthesizable, unfortunately, the Vivado synthesis process still requires ram

modules to be written in Verilog to be synthesized correctly from block RAM cells.

In conclusion, the ParaNut project's build system was updated to be more maintainable and

incorporate the high level synthesis using the ICSC. Future developers will be able to extend the

system with targets for hardware synthesis and hardware �ashing and develop alternative module

implementations for improved performance and/or additional features. The uni�ed codebase and

test bench targets on a module base, together with the CI/CD build chain, will make the project

more reliable and simplify hardware debugging. Providing a synthesizable memory unit is an

essential contribution towards a fully synthesizable ParaNut processor from SystemC.
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A EXU Block Diagram

Figure 14: ParaNut Module Architecture
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B EXU State Machine

Figure 15: ParaNut EXU State Machine
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