Hochschule
Augsburg University of
Applied Sciences

Master Project Report

Linux for the ParaNut Processor

Nico Borgsmiiller (Mat.-Nr.: 2110949)

Faculty: Computer Science

Field of study: Master Computer Science

Workgroup: Efficient Embedded Systems
Submitted on: 03.07.2022
Supervisor: Prof. Dr.-Ing. Gundolf Kiefer

This work 1is licensed under a Creative Com-
mons Attribution-ShareAlike 4.0 International

License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/

Contents

List of Figures

Acronyms

1 Introduction
1.1 Motivation e e e e
1.2 Purpose of this Work
1.3 Structure of this Work

2 Background Information

2.1 RISC-V .
2.1.1 Overview e e e
2.1.2 The Base ISA and Extensions
2.1.3 Privilege Modes.
2.1.4 Control and Status Registers
2.1.5 Virtual Memory

2.2 The ParaNut e

2.3 Linuxo

2.4 OpenSBI e e

2.5 RISC-V Debugging

Linux on the ParaNut

3.1 Preparing the Kernel o o L
3.1.1 Configuration Options,
3.1.2 The Device Tree e

3.2 Preparing OpenSBI. L
3.2.1 Disabling CoPUs
3.2.2 Atomic Instructions
3.2.3 The Serial Interface
3.2.4 Time Registers oo
3.2.5 Configuration and Compilation

3.3 Adaptations of the ParaNut Hardware
3.3.1 Virtual Memory Management
3.3.2 Debugging
3.3.3 CSR Refactoring
3.3.4 Running onthe FPGA

Testing Linux on the ParaNut

4.1 Running on the Simulator and Hardware
4.2 Observed Output
4.3 Debugging Techniques L

10
13
15

19
19
20
21
23
23
23
25
25
25
27
27
29
30
31

5 Conclusion

5.1 SUMMATY o ot e e e e
5.2 Known Issues and Next Steps oL
References

ii

List of Figures

RISC-V privilege levels and interfaces (from [20, p. 2]) 5
2 Overview on the interfaces between software in different privilege modes

(from [17]) o o 13
3 RISC-V Debug Overview (Simplified version of figure 2.1 in [15, p. 6]) . . . 15

State diagram of the EXU states important for flushing 29

iii

Acronyms

ABI
BBL
BSS
CePU
CoPU
CPU
CSR
DM
DTC
DTM
ELF
EXU
FDT
FPU
GDB
GNU
GOT
HTIF
IFU
ISA
JTAG
LSU
MMU
OpenOCD
0S
PCI
PIC
PMP
QEMU
RAM
RISC
SBI
SEE
SIMD
TCL
UART
UEFI
USB

Application Binary Interface.
Berkeley Boot Loader.

Block Starting Symbol.

Central Processing Unit.
Co-Processing Unit.

Central Processing Unit.

Control and Status Register.
Debug Module.

Device Tree Compiler.

Debug Transport Module.
Executable and Linkable Format.
Execution Unit.

Flattened Device Tree.

Float Processing Unit.

GNU Debugger.

GNU’s Not Unix.

Global Offset Table.

Host Target Interface.

Instruction Fetch Unit.

Instruction Set Architecture.

Joint Test Action Group.
Load/Store Unit.

Memory Management Unit.

Open On-Chip Debugger.
Operating System.

Peripheral Component Interconnect.
Position Independent Code.
Physical Memory Protection.
Quick Emulator.

Random Access Memory.

Reduced Instruction Set Computer.
Supervisor Binary Interface.
Supervisor Execution Environment.
Single Instruction Multiple Data.
Tool Command Language.
Universal Asynchronous Receiver Transmitter.
Unified Extensible Firmware Interface.

Universal Serial Bus.

iv

1 Introduction
1.1 Motivation

Previous decades have shown a continuous increase in processing power requirements.
While until now the actual processing power per chip area has increased drastically ac-
cording to Amdahl’s Law, this increase is slowing down due to physical limitations. To
fight this, modern processors contain an increasing number of processor cores, thus mul-
tiplying their processing power by multiplying their resource requirements like area and
energy. Alternatives to this include the use of SIMD extensions present in many modern
CPUs. These Single Instruction Multiple Data units can execute the same instruction on
multiple different data locations. They require much less space and energy than a whole

processor core but are of course not as flexible. [8]

The goal of the ParaNut processor developed at the Augsburg University of Applied
Sciences is to combine both approaches into a single parallelization concept. It has a
configurable number of Co-Processing Units (CoPUs), where each core can combine both
approaches of parallelization introduced above. They either offer full thread support in the
fashion of simultaneous multithreading or they can run in linked mode, which means they
execute the same instruction as the main core, but on different data. Additionally to most
traditional SIMD extensions, the ParaNut does not need a specific instruction set for the
linked mode, but can run any non-branching instruction of the standard instruction set.
To save resources, every core except the main core can be configured to only support linked
mode or both modes. When both modes are present, this offers a high level of flexibility to
the user, as the ParaNut allows switching between the different parallelization strategies

at run time. [12]

When writing applications for the ParaNut, they have to be specifically written for this
bare metal target using a ParaNut support library. Existing applications and libraries
must possibly be adapted to run on the target. This includes general adaptations that are
required for every board as for example changes to the linker script, but also the possibility
to exploit the special parallelism on the ParaNut. As most software applications are only
available for operating systems, they would require much larger effort to be adapted to
the ParaNut. To simplify this process and reduce the adaptation process to the new

parallelization concept, an operating system should be used on the processor.

1.2 Purpose of this Work

As one of the most used operating system kernels, Linux was chosen to be ported to the
ParaNut. This operating system takes care of abstracting device internals like drivers,
it allows pseudo-parallel execution of tasks through scheduling and provides a simplified
programming interface for user space programs. To be able to run on specific piece of hard-
ware, Linux has a few requirements on the hardware as well as the software environment,

which will be explained in further chapters of this work.

The purpose of this project work was to be able to run a Linux operating system on the
ParaNut processor. As the goal of porting a full-fledged operating system would have

been too complex, it was reduced to the following aspects:

Identifying necessary features of the hardware for running the Linux kernel.

Correctly configuring the Linux kernel so it can possibly run on the ParaNut.

Testing the newly implemented Memory Management Unit of the ParaNut through

the Linux kernel.

Getting the Linux kernel to start and run as far as possible.

1.3 Structure of this Work

This work is structured as follows: The following chapters first provide background infor-
mation on the instruction set architecture as well as on the required components to run
Linux on the ParaNut processor. Afterwards, it is explained how the different components
need to be modified and configured to reach this goal. In the next chapter, different de-
bugging strategies are presented. Finally, a conclusion is drawn and missing steps for full

Linux support are discussed.

2 Background Information
2.1 RISC-V
2.1.1 Overview

As the RISC-V homepage states, "RISC-V is a free and open ISA” [1]. This means on
one hand that everyone can contribute to the different standards of this instruction set
architecture. On the other hand, everyone can also use the standard to build their own
processor core, commercial or not. The project was started in 2010 at the UC Berkeley
and is coordinated since 2015 through The RISC-V Foundation with now over 300 member
organizations [9]. It is called RISC-V as it is the fifth Reduced Instruction Set Computer
(RISC) architecture which was developed at the UC Berkeley [19, p. 1].

The ISA was designed modularly to allow for different levels of complexity when building
a RISC-V core. There are different address widths (32bit, 64bit or 128bit), different
extensions, like multiplication or floating point numbers or the addition of privilege modes
as required for the execution of more complex operating systems like Linux. Further, there
exists a separate debug as well as a trace specification that can optionally be implemented.
The following paragraphs will now present the most important aspects of the RISC-V ISA,

which are required for the understanding of the following chapters. [19]

2.1.2 The Base ISA and Extensions

The main parts of the specification are separated into two parts. The first considers all
unprivileged features and is thus called the ”Unprivileged Specification” [19], while the
second is called the ”Privileged Specification” [20], which takes care of all the different
features that require privilege levels in the processor. The unprivileged specification starts
with some basic information like instruction encoding or an overview of the available
registers. It also introduces the term ”"hart”. A hart is defined as any part of hardware
that can fetch and execute instructions. This definition both includes full cores as well
as some kind of threads. Further, the different base instruction sets, depending on the
address width, are explained. Most importantly, these are RV32I, RV64l and RV128I.
These base instruction sets can be extended with a large number of extensions, of which

the most important are as follows:

e M-extension: Integer multiplication. Provides multiplication and division opera-

tors.

o A-extension: Atomic instructions. Provides a set of instructions for atomic mem-

ory management.

o F-extension: Floating point support. Provides a set of floating point registers as

well as arithmetic instructions to modify them.

e C-extension: Compressed instructions. Extends the normal 32-bit instruction set
with some shorter 16-bit instructions that represent common operations which re-

quire fewer parameters.

The unprivileged specification document also contains the ” Assembly Programmer’s Hand-
book” which defines some pseudo-instructions for simpler programming. This includes for
example the 1i (load immediate) instruction, which is translated to some other se-
quence of instructions during assembling depending on the exact immediate value. [19,
pp. 137ff]

2.1.3 Privilege Modes

The next document is the privileged specification, which is the most important part for this

project [20]. It starts with defining different privilege levels for the processor’s execution:
e Machine mode (M-mode): This is the default mode where everything is allowed.

e Supervisor mode (S-mode): This mode is typically used for operating systems,
which need a bit fewer permissions. This mode can for example manage virtual

memory, which will be explained in more detail below.

e User mode (U-mode): Being the mode with the least privileges, it is normally used
to run applications under an operating system. It generally has no rights to modify

any settings related to the processor’s execution.

According to the specification, different combinations of supported privilege modes are
allowed. There can be only the M mode, the combination of M and U mode to run
low privilege applications or the full stack of M, S and U mode, which is the typical
setup for running an operating system like Linux. Additionally, a Hypervisor extension
is also defined, which leads to slight modifications and extensions of the given privilege
levels. Since it is not relevant for this work, it won’t be explained in more detail. The
specification also defines the basic principles on how the different modes interact with each
other. For the case of all three modes being supported, figure 1 shows the different layers
involved. The user application uses an Application Binary Interface (ABI) to interact with
the Supervisor, which are for example the Linux system calls. The Supervisor then also
has the ability to access the Machine level software, which can also be called Supervisor

Execution Environment (SEE). For that it uses a standardized Supervisor Binary Interface

Application| |Application

OS

SEE

Figure 1: RISC-V privilege levels and interfaces (from [20, p. 2])

(SBI). SBI calls can be used for example to access machine level CSRs (Control and Status
Registers) or to control the execution state of the available harts. More explanation on
this follows in chapter 2.4 about OpenSBI.

2.1.4 Control and Status Registers

Additionally, the specification defines sets of Control and Status Registers (CSRs) for the
different privilege levels. If the registers are only accessible by a specific privilege mode,
their names are prefixed by the first letter of this mode (e.g. mstatus for M-mode).

The most important registers for this work are the following:

e mstatus, sstatus: Contains a set of flags which control the current hart’s

state. Relevant fields will be explained when needed.

e mtvec, stvec: Trap vector address: Exceptions and interrupts jump to this

address.

e medeleg, mideleg : Exception/Interrupt delegation: Which interrupts should
be handled by S-Mode instead of the M-mode.

e mepc, sepc: Exception program counter: The PC value before an exception

occurred.
e mcause, scause : Exception/Interrupt cause.

e mtime : Real-time counter. Note that this is not a CSR but provided as a memory-

mapped register.

e time : Real-time counter CSR accessible by all modes. Should shadow the mtime

register.

e satp: Supervisor address translation and protection. Important for the virtual

memory support explained below.

Furthermore, the privileged specification adds some instructions related to the different

privilege modes. The most important instructions are:

e ecall: The ecall instruction (environment call) calls the higher-privilege-level

execution environment by producing an exception.

e mret, sret : Returns execution to the lower level privilege level by jumping to

mepc or sepc respectively.

e sfence.vma : This instruction needs to be executed to tell the processor to refresh
data structures that are located in memory, like for example page tables for virtual

memory.

2.1.5 Virtual Memory

The next important aspect of the specification is the virtual memory management. This
concept allows for separation of different sections in memory with different permissions, for
example to separate different processes. These sections are called pages. The permissions
include readability, writability or if the specific memory locations can be executed. It
additionally allows to map arbitrary address spaces to different parts of the physical,
contiguous memory. This allows that every process could possibly be located at the same
virtual memory address while the actual data is spread over different regions of the physical
memory. These features introduce the need of some kind of translation unit in hardware
which needs to translate a virtual address into a physical address, which is called the
MMU (Memory Management Unit). The RISC-V specification defines multiple types of
virtual memory, but only a single variant is applicable for RV32 implementations, so only

the Sv32 variant will be explained here:

The pages have a fixed size of 4 KB. Virtual addresses are made of a virtual page number
(VPN), which identifies the page and a page offset to point to the memory location inside
the page. The Supervisor level application now needs to provide a table (the page table)
to define the different existing pages and their mapping to physical memory. The address
where the table is located in memory must be written into the satp CSR register

mentioned above. If it was changed, the sfence.vma instruction needs to be executed

so that the processor knows that the table has to be refreshed. An entry of the page table
is identified by the first part of the virtual page number, which defines the offset from the
page table address. If the valid flag of the entry is not set, it should not be considered
and raises an exception. A valid entry is now either an actual entry or a pointer to a
next-level page table. The next-level page table then uses the next part of the virtual
page number to identify an entry. This concept allows to define different sizes of pages,
the page is largest if the top-level page tables already contains an actual entry. An entry
then consists of the higher bits of the physical address, which is combined with the page
offset from the virtual address to form the final address. It further contains the R, W,
X flags to define the actions that can be taken on the memory addresses of the specific
page. All these actions and checks must be performed transparently by the hardware so
that an access to a virtual address directly leads to the physical address being accessed,
with no additional action necessary by the software. Note that virtual memory can only
be active during U and S mode execution and is automatically turned off when switching
to M mode. More information can be found in the specification [20] or Christian Meyer’s

work on the Memory Management Unit for the ParaNut [13].

2.2 The ParaNut

The ParaNut is a RISC-V compatible processor developed by the Efficient Embedded
Systems group at the Augsburg University of Applied Sciences. It is FPGA-based, so the
developed hardware can be programmed onto an FPGA device. The main motivation is
its specialized parallelization concept as explained in the introduction. The ParaNut is
implemented in the SystemC language, which is used by a High Level Synthesis tool to
generate the necessary hardware. Additionally, this SystemC model can be used to run
a cycle-accurate simulation of the processor without the need of an actual FPGA device.
This simulator allows to generate different debug outputs that will be explained in chapter

4.3 Debugging Techniques.

The processor supports a subset of the RISC-V features, which will be presented in this
paragraph. Firstly, the ParaNut implements the RV32I base instruction set with the Mul-
tiplication (M) and Atomic (A) extensions. While the M extension is fully implemented,
the support for the A extension is only partial. The extension defines two types of in-
structions which can be considered redundant. The first consists of the two instructions
1r / sc (load reserved/store conditional). With 1r , a value is loaded from the given
address. When the sc instruction on the same address is executed, it can only succeed
when the memory at the given address was not changed since the 1lr instruction. If it
was changed, the value is not written and the software implementation can jump back
to the 1r instruction and try again. This is enough to implement any kind of atomic
instruction. Additionally, the specification provides the utility instructions amoswap ,
amoadd or amoand (and many more) to perform the three steps: Load, Operation,
Store in one instruction. This is, for example, in the case of amoadd : Load a value from
the given address, add a different value to it and finally store the modified value back to
the given address. For simplicity reasons of the hardware, only the 1r / sc instructions

were implemented in the ParaNut.

Furthermore, all privilege modes are supported in the ParaNut. A certain set of CSRs
is also implemented. This includes all of the CSRs introduced in the RISC-V chapter
above. Further information on those registers can be found in the ParaNut manual [12].
All instructions necessary for the privileged modes to function that were introduced above
are also implemented. The Sv32 virtual memory variant was implemented by Christian
Meyer prior to this work [13], although some changes to this implementation were still

necessary and are described later in this work.

Additionally to the standardized features, the ParaNut also provides some additional
features. First and foremost, this is of course the support for the cores that are switchable
between Linked and Threaded Mode. Since this feature was not relevant for the tasks

of this work, it will not be explained in further detail. To be able to output data to

the console, the ParaNut provides a simple "tohost” interface, which allows the software
implementation to print data over a serial interface both in the simulator and on the
FPGA. This interface is a 8 bit symbol at a specific address where the application can write
a character. This character is then read by the simulator or the firmware implementation
on the FPGA and printed out to the console. The character is then cleared to signal the

application that a new character can be written.

2.3 Linux

Linux was first released in 1991 by Linus Torvalds. It quickly developed from a small
personal project to an international free and open source software with support for a
large number of different processor architectures and hardware drivers. Linux is now
the state-of-the-art operating system for many applications, including mobile phones [14],
supercomputers [7] or embedded devices [6]. The term Linux generally only refers to the
kernel without any user space software. To build a full operating system, an additional set
of software is required. Often, GNU tools are used, which leads to the term GNU/Linux
to refer to the full operating system. In this case, this work will only talk about the kernel
itself, as the focus lies on the boot process before a user space process can even be created.
Most information in this chapter was collected manually using the Linux kernel release
5.18.

The RISC-V port of the Linux kernel contains different adaptations for this instruction
set architecture. Most importantly of course, the boot process must be adapted. Different
parts of the kernel have to be set up. The boot process starts with some architecture
specific assembly startup code in arch/riscv/kernel/head.S . This code estab-
lishes some expectations to the calling instance. The processor must be in S-mode and the
memory has to be ”identity mapped”, which is achieved by not enabling paging. The a0
register contains the current hart id and the al register contains a pointer to a device
tree binary located in memory. The device tree provides information on the hardware the
current system is running on. Typical general-purpose computers, like for example PCs
or servers, contain busses like PCI or USB. Those busses are enumerable, which means
the system can find attached devices and their settings automatically. On embedded or
smaller systems in general this is not always the case, so the developer needs to provide a
topology of attached devices and their configuration. This information is provided to the
Kernel by the standardized device tree format. Specifics on this topic will be provided

below when introducing the necessary steps to get Linux running. [3]

To start the boot process, the entry point of the Linux kernel jumps to the
_start_kernel symbolin arch/riscv/kernel/head.S. Asthe RISC-V harts
can start in arbitrary order, Linux needs to decide which hart is used for booting. For
this, the so-called ”"boot lottery” is used. The first hart to reach this point is selected as
the boot hart, others are parked in a wait loop until a specific point in the boot procedure.
The process continues with masking any interrupts and filling the BSS section with zeroes

so that any variable that expects to be zero-initialized actually contains zeroes.
Already in the next step, virtual memory is set up. The kernel relocates its own execution

from the initial address to 0xC0000000 by filling a page table with a linear mapping
and enabling the MMU through the SATP register. It is activated by setting the trap

10

vector to the virtual address of the following instruction and executing an sfence . vma
instruction. Once the paging was activated, the processor will produce a page fault excep-
tion as the current address space is not present in the page table. This leads to a jump to
the previously set trap vector. Afterwards, the execution continues in this virtual memory

space.

Afterwards, the trap vector is set again to a very simple exception handler that lets the
processor run in a loop when an exception has occurred. Further, the C environment is
initialized by constructing for example a stack frame and initializing the global and thread
pointers. After these steps are completed, execution jumps to a generic start_kernel

function in init/main.c , which is now architecture independent and written in C.

The start_kernel function performs a total number of around 90 setup function
calls in a specific order. Most of them won’t be explained in detail, but some general
information can be found in [10], [18] or the in-tree Linux documentation. After some
very basic initialization functions, there is again an architecture-specific setup_arch
function. It invokes 16 additional setup functions, which perform a few architecture-
dependent initialization steps. The device tree is parsed for further usage and a more
complex page table for 10, allocatable space and more is set up. Further, the Supervisor
Binary Interface is detected and configured. This interface to the Supervisor Execution
Environment will be explained further in the following chapter. Next, early logging is
initialized to provide the user with log output as early as possible. If available, the serial
output functionality of the SBI (Supervisor Binary Interface) is utilized. At this point, the
other harts of the system are started. They each get a very basic thread and stack context
and are then available to be assigned with tasks. Lastly, the setup_arch function sets

up the memory management sub system of the Linux kernel.

The architecture-independent code now continues with parsing the kernel command line
as well as setting up interrupts and the interrupt controller. As the RISC-V interrupt
controller is abstracted as a driver and identified by the device tree, the code doesn’t have
to be architecture-specific. With the same principle, the timer is initialized. This driver is
implemented by reading the RISC-V time CSR. Afterwards, many more initialization
functions follow, including file system setup, although they are not that relevant to the
goals of this project work. The setup process finishes by performing the first context

switch to the ”init” process.

In general, only a very small part of this boot process is architecture-specific to RISC-V,
most things are simply abstracted by the kernel. Further architecture-specific adaptions
in the Linux Kernel include the context switching itself, the handling of atomics and
synchronization primitives as well as the memory handling and interactions with the MMU.

Even though these topics are still relevant for porting Linux in general, they won’t be

11

explained in detail here as they did not need to be touched in the process of getting
Linux to run on the ParaNut. The context switch implementation is most likely going
to be adapted when trying to take advantage of the special parallelization concept of the
ParaNut in a future project.

12

2.4 OpenSBI

OpenSBI [16] is an implementation of the standardized Supervisor Binary Interface (SBI)
[17]. In this case, it acts as the SBI but also as a bootloader that loads the Linux Kernel.
OpenSBI could alternatively be used in combination with a different bootloader like ”Das
U-Boot” instead [5]. In this case, it would only provide the environment call interfaces and
some RISC-V specific library functions for the actual bootloader. Different alternatives
for OpenSBI also exist. The earliest official implementation of the SBI standard was the
Berkeley Boot Loader, or BBL for short. It was kept quite simple and was replaced by
OpenSBI. One alternative that claims to be feature-equivalent to OpenSBI is RustSBI,
fully written in the Rust programming language. In this work, the OpenSBI version 1.0

will be used, which was released in December 2021.

The following paragraphs will now present the RISC-V Supervisor Binary Interface spec-
ification itself. The SBI acts as the interface between the Supervisor Execution Environ-
ment (SEE), which is some kind of firmware or bootloader and is generally more specific
to the platform and an operating system running in S-mode, which can be kept more
general-purpose. It enables the supervisor (OS) to perform privileged operations through
the ecall instruction. This call is the equivalent of system calls, which are between U-
mode and S-mode. This setup is illustrated in figure 2. The SBI offers a variety of different
interfaces in the form of extensions, of which most are optional. The base extension allows
to retrieve information on the SBI itself, on the machine as well as on the list of available
extensions. Important interfaces include printing and reading characters to or from the
console, setting a timer, sending inter-process interrupts to other harts, executing fence
instructions on other harts or managing the hart state by starting, stopping or suspending
specific harts. It further provides the possibility of a system reset for performing a reboot
or shutdown as well as managing the performance monitoring registers (e.g. (m) cycle

for cycle counting) by changing relevant M-mode CSRs.

U-mode | Applications ‘ U-mode

i System Calls

S-mode | Operating System Kernel ‘ S-mode
iSBI
M-mode | Platform Runtime Firmware (SEE) ‘ M-mode

Figure 2: Overview on the interfaces between software in different privilege modes (from
[17])

13

In addition to these interfaces, OpenSBI performs some more tasks. It can emulate un-
supported instructions when they are detected through an ”Illegal Instruction Exception”

as well as handle unsupported CSRs by capturing reads and writes to them.

During the startup process, OpenSBI performs a number of setup steps. Execution starts
in firmware/fw_base.S at the _start assembly label. It first decides on a boot
hart to continue and afterwards initializes the global offset table when position independent
code (PIC) is enabled. This table contains pointers to functions and other symbols and
allows to run at an arbitrary address that is not known beforehand. The startup process
further resets all registers and fills its BSS section with zeroes just like the Linux kernel.
Afterwards, a temporary trap handler and well as a stack is set up. Next, the platform
specific code gets the chance for basic initialization by calling the fw_platform_init

function. This function will, in the general case, parse the device tree and try to detect
the actual platform. Lastly in this assembly script, the sbi_init C function is called.
In the case of the boot hart, this function calls a set of initialization functions for the
different features and extensions. It defines memory domain regions and detects which
feature are supported by the processor. These features include physical memory protection
(PMP), different performance counters and numerous CSRs that might or might not be
implemented. It further initializes the console output, which is supported by a set of
different drivers, as well as the interrupt controller as defined in the device tree. It also
sets up the PMP if available. Subsequently, OpenSBI cleans up the device tree by only
setting certain harts as active that have all necessary features and disabling all OpenSBI-
specific features. Finally, the privilege mode is switched to the configured target mode,
the registers a0 and al are filled with the hart id and a pointer to the device tree
respectively and the execution jumps to the entry point of the provided payload, the

Linux kernel in this case.

Different platforms have different prerequisites and hardware configurations. For this
reason, OpenSBI can be compiled for a variety of RISC-V targets. These can either be
configured at compile time, or the ”generic” platform target can be used. In the latter
case, OpenSBI detects the system configuration based on the provided flattened device
tree. Different drivers exist for different tasks, for example the serial console, the timer,
the interrupt controller, etc. Additionally, the ”generic” platform can still be extended
with specific callback functions for specific detected platforms. This detection takes place

through the compatible field of the device tree.

14

Debug Host

Debug Transport
Hardware
(e.g. JTAG debug probe)

A

Debugger .| Debug Translator
(e.g. GDB) | 7| (e.g. OpenOCD)

h

RISC-V Platform

Debug Module (DM) Y
P .| Debug Transport
reset/halt A “| Module (DTM)
control i
\ RISC-V Core
abstract |
commands | ———>»| Debug Mode

Figure 3: RISC-V Debug Overview (Simplified version of figure 2.1 in [15, p. 6])

2.5 RISC-V Debugging

Running freshly-build software for the first time often reveals unforeseen bugs and other
problems. This is even more the case when porting it onto a new platform. Even though
the Linux kernel was tested and run successfully on other RISC-V systems, there are still
numerous ways it can fail on a new target system. On the one hand, configuration needs
to be adapted and can have a large impact on behaviour. On the other hand, hardware
bugs or inconsistencies on the ParaNut side can cause unexpected behaviour. Especially
issues from the second category can often not be detected by the Linux kernel, so the log
output might not be useful in this case. That’s why debugging utilities play an important

role when porting new software to this platform.

The RISC-V debug specification [15] standardizes the hardware parts of a debugger im-
plementation and gives advice on how to implement the software parts that interact with
it. Figure 3 shows an overview of the different modules involved in a debugging progress.
The software part runs on the debug host in the form of a debugger and a debug transla-
tor. These parts need to communicate with the hardware through some kind of transport
hardware like a JTAG debug probe. The hardware side of this interface is the Debug
Transport Module (DTM) which passes the commands to a Debug Module (DM). This is
the most relevant, as well as implementation-specific item of the debugging architecture

as it takes care of controlling and modifying the actual processor core.

15

The RISC-V debug specification defines an additional privilege mode (the Debug Mode)
when the hart is halted for external debugging. During this time, the debugger can use
two different ways to access the processor, but only one needs to be implemented by the
hardware. The first one is ” Abstract Command Based”. In this case, the execution of
the processor is halted and registers or memory locations are accessed through specific
commands sent by the debugger. The alternative is ”Execution Based”, where the hart
jumps to a predefined memory location provided by the Debug Module when entering
Debug Mode. The hart then repeatedly polls for updates from the DM. This can either
be a command to resume execution or to jump to a program buffer. The program buffer
can be filled with arbitrary instructions from the debugger or the debug module and thus
allows to access all memory and registers from the view of the hart. Debug Mode can
be entered either by executing an ebreak instruction, which was placed at a certain
address by the debugger in the form of a breakpoint. Alternatively, the debugger can
activate single stepping where the Debug Mode is entered after every instruction that was
executed. To leave Debug Mode, the hart should execute the dret instruction, although
this is inserted by the Debug Module and not the debugger directly.

The debug specification adds additional CSRs that must be implemented:

e dcsr : Flags to control entering and the execution of the Debug Mode.

e dpc : The program counter before entering debug mode.

The Debug Module is required to implement a defined set of operations, but can also be
extended with some optional features. The debugger must be able to halt and resume
a hart, get information on the implementation as well as on the hart status, read and
write general purpose registers and be able to reset the hart for debugging from the first
instruction. The Debug Module has to provide at least one of the following three methods
to access the hart’s memory: The first is using the functionality to execute arbitrary
instructions from the program buffer as explained above, the second is to access memory
through the abstract commands and the third is direct access to the system bus. Further

features are defined, but not relevant for this work.

There are three abstract commands defined, although only the first one is mandatory to

implement:
e Access Register: Allows to read and write registers, most importantly, the program
buffer if supported. The command also contains a flag to start execution of the

program buffer.

e Quick Access: Halt the hart, execute a program buffer and then resume the hart.

16

e Access Memory: Allows to directly access memory.

The Debug Module provides over 30 registers to the debugger over the Debug Transport
Module. Those include locations for the abstract commands and their data, the program
buffer as well as information on the DM and hart states. Additional extensions like

authentication or the system bus access can also be controlled through these registers.

The Debug Transport Module (DTM) controls the debug interface of the system. It can
use USB or JTAG for example. The DTM then uses the Debug Module Interface to
command the Debug Module. The specification supports any number DTMs as well as
DMs to work together. For using JTAG, the specification further defines the exact set of
JTAG registers as well as the pinout of recommended connectors, although more detail is

not relevant for this work.

The next part of the debugging chain is the Debug Translator. It works closely together
with the Debugger and translates the commands to the underlying protocol (e.g. JTAG).
It also manages most of the platform-specific features like waiting for commands to finish,
catching errors or accessing memory through the supported method. The translator first
needs to probe for available functionality. This happens partly through executing abstract
commands and waiting for an error response or through writing into registers and reading
back if the modifications persisted. The general available commands include accessing
registers, reading memory and writing memory. Those actions should be enough for a

working debugging setup.

Lastly, the debugger provides some kind of user interface to allow for simpler interaction.
It can for example provide means to display the currently executed instructions or the
registers and it can provide actions for the user to place breakpoints and step through the

program.

In the case of the ParaNut, in accordance with figure 3 from above, the following compo-

nents for debugging are implemented or used:

e The Debug Module supports only the first Access Register abstract command. To
provide further access, the ” Execution Based” approach using the program buffer is
implemented.

e The DTM supports a JTAG-based interface. For the simulation, the

remote_bitbang driver is used on top to be able to send the JTAG data over a

network socket interface.

e As a Debug Translator, OpenOCD is used. OpenOCD is available for numerous

17

platforms and architectures and provides multiple interfaces like a TCL scripting

interface and a GDB server.

e For debugging, the well-known GDB client can be employed. It connects to OpenOCD
and supports a large amount of commands for debugging. To provide further infor-
mation on the program, it can load the ELF file of the executed binary to load its

debugging information.

18

3 Linux on the ParaNut

The different components that were introduced in the previous chapters must now be built,
integrated and potentially adapted to be able to run the Linux Kernel on the ParaNut

RISC-V processor. The Linux boot process on the ParaNut works as follows:
1. ParaNut loads the binary and starts executing OpenSBI.

2. OpenSBI sets up the hardware, checks for available features, prepares registers and

switches to S-mode.

3. It jumps to Linux, which further prepares the hardware, sets up available memory

and loads required device drivers.

4. Once Linux is fully prepared it can pass execution to a U-mode init process that

eventually forks all future processes that should run on the operating system.
During the OpenSBI and Linux boot stages, the debugger combination GDB 4+ OpenOCD

can be used to find issues in soft- and hardware.

3.1 Preparing the Kernel

This chapter will describe requirements for a working Linux Kernel binary to run on the
ParaNut. Taking the basic knowledge of the Linux boot process into account, the following
is a selection of features in addition to the base instruction set which must be available

on a RISC-V processor core to be able to boot Linux:

e Exceptions and interrupts must be supported. An interrupt controller must be

available.
e Virtual memory must be available to be able to separate the different user processes.
e A timer device has to be present. It is used for timekeeping and regular interrupts.
e Atomic instructions must be supported for providing synchronization primitives.
The first three bullet points are natively supported by the ParaNut processor, even though

there are some more steps necessary in OpenSBI to expose the timer as expected by the

kernel (see the chapter below). The fourth step is only partially supported as explained

19

in chapter 2.2 The ParaNut. The amo* instructions thus need to be emulated by the

machine level software (see OpenSBI chapter below).

3.1.1 Configuration Options

The following steps are necessary to prepare the Linux kernel for the ParaNut. First, the
kernel has to be downloaded from https://git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git. The latest version that was tested has the tag v5.18.9 . Addi-
tionally, a RISC-V Linux compiler toolchain has to be installed. A pre-built version can be
downloaded from [2]. For all of the following make commands, the environment variable

CROSS_COMPILE hastopointto <toolchain folder>/bin/riscv32-linux-.
Once the toolchain is installed, a minimal configuration can be created by running

make ARCH=riscv tinyconfig in the Linux folder. The following configuration

options then need to be adjusted (using make ARCH=riscv menuconfig):

Option Meaning State
MMU Enable MMU Enable
ARCH_RV32I Use RV32I ISA Select
RISCV_ISA_C Emit compressed instructions Disable
FPU FPU support Disable
RISCV_SBI_VO1 Legacy SBI support Enable
EFI UEFI support Disable
TTY Enable TTY Enable
HVC_RISCV_SBI SBI Console Support Enable
SERIAL_EARLYCON_RISCV_SBI Early console using SBI Enable
PRINTK printk support Enable
PRINTK_TIME Display time in log messages Enable

This enables the RV32I ISA and the MMU, disables the C extension and FPU which are
unsupported by the ParaNut. The legacy SBI, TTY and the two SBI console support
options are required to be able to print console messages over the SBI interface. The early
console is used to log messages at a time where drivers are normally not yet loaded. The
two printk options are used to configure the logging in general. An optional option
is DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT , which allows to use the resulting
ELF file in the debugger by providing additional information. After setting the different
options, the kernel can be built using make ARCH=riscv CROSS_COMPILE=... .
The resulting pure binary image can be found in arch/riscv/boot/Image , while

the ELF file with debugging data is in the main folder as vmlinux .

20

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

© 00 N O Ut = W NN -

e e e S ey e
N O Ut e W N = O

3.1.2 The Device Tree

To provide the kernel with a device tree, the device tree compiler at scripts/dtc/dtc
can be used. As explained above, the device tree is necessary to inform the kernel
and the bootloader of the different parts of the hardware it runs on. As the name
suggests, it is a tree-like structure. Most leaf nodes contain a compatible field,
which is used by the kernel to find the correct driver. The device tree is located at
sw/linux/paranut.dts . The following paragraphs will present its content step by

step:

#address-cells = <1>;

#size-cells = <1>;

At first, the two given variables are set to a default value of 1. This means that any register
definition of the device tree which doesn’t have those settings set, contains a single address

and a single size. The compatible string was set as ”"hsa-ees,paranut” to identify our

device.
cpus {
timebase-frequency = <25000>;
#address—-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "hsa-ees,paranut", "riscv';
device_type = "cpu";
reg = <0>;
riscv,isa = "rv32im";
mmu-type = "riscv,sv32";
cpuO_intc: interrupt-controller {
#interrupt-cells = <1>;
compatible = "riscv,cpu-intc";
interrupt-controller;
};
;
};

The CPU configuration first defines the frequency of the implemented timer, 25kHz in
this case. The address and size fields always need to be in the configuration for CPUs
as the reg field contains only the CPU id with no size. The CPU is again identified
by ”hsa-ees,paranut”, but also as "riscv” compatible. Furthermore, the implemented ISA

(rv32im), the MMU variant (sv32) as well the interrupt controller are defined.

21

N R

N O O W N

N O Ot s W N

memory@10000000 {

device_type = "memory";

reg = <0x10000000 0x10000000>;
s

The memory node contains the address and size of the configured memory, which in this
case is 256 MB of size.

chosen {
stdout-path = "/serialQ";

bootargs = "console=hvcO earlycon=sbi";
s
serial@0 {

compatible = "hsa-ees,pn-tohost";
s

The chosen node configures the standard output device, where serialQ is used.
serial0 is defined at the bottom as the ParaNut-specific output mechanism

hsa-ees,pn-tohost , which is the "tohost” interface already explained above. Note
that this is only used by the bootloader and not the Linux kernel. The address of the
output symbol resides in bootloader memory and the kernel should not access this section.
Additionally, the Linux boot arguments are provided here to instruct the kernel to use the
SBI driver for log output. This means that OpenSBI is called through an environment

call to print out text.

timer@20000000 {
compatible = "riscv,aclint-mtimer";
#address—-cells = <2>;
#size-cells = <2>;
reg = <0x20000000 0x8 0x20000008 0x8>;
interrupts-extended = <&cpu_intc 7>;
s

This section defines the timer, which is located at 0x20000000 . Two addresses and
two sizes of the memory mapped registers are given here. The first part of the reg
field points to the two register halves mtime and mtimeh which together form the full
64bit (8 byte) time value. The second part references the mtimecmp and mtimecmph
register halves used to define a time at which the mtimer module should fire an interrupt.
Lastly, the interrupt source is defined. The timer interrupt has the ID 7 and is handled
by the interrupt controller that was defined in the CPU section.

22

T = W NN =

3.2 Preparing OpenSBI

As identified by the previous sections, some kind of bootloader as well as an implementa-
tion of the SBI interface is required to successfully run Linux. The following features are

required by OpenSBI to reach this goal:
e Support for the RV32IMA ISA.
e Availability of S-mode on at least one hart.

e The trap vector CSR mtvec must support direct mode, which means that all

exceptions jump to the same address.

The first requirements is only partially supported as the atomic extension is not fully
implemented. The necessary steps to fix this are described below. The S-mode is available

and mtvec supports direct mode.

3.2.1 Disabling CoPUs

In OpenSBI, a much larger number of modifications is necessary than in the Linux kernel.
This is also caused by the fact that it was tried to keep changes away from the Linux kernel
and abstract them into the more platform-specific bootloader. The first necessary change
is caused by the CoPUs of the ParaNut. All cores of the ParaNut start their execution on
system reset. Although normal core execution would be no problem for the boot loader
as it would select a single core for booting automatically, in the case of the ParaNut, only
the main core has all CSRs implemented. This would lead to numerous problems during
the start process. That’s why the CoPUs are disabled in the first lines of the entry point

function, which is located in firmware/fw_base.S:

csrr t0, Oxcd4 // Read current hart id
_wait_copu:

bnez t0, _wait_copu

csrw 0x8cl, 0xl // Only enable the CePU

3.2.2 Atomic Instructions

As noted above, another problem was the missing support for the amo* instructions in
the ParaNut. All occurrences of those had to be replaced with the functionally equivalent

1r / sc instructions. Luckily, OpenSBI only contained a few spots that needed action

23

T = W N =

to be taken. The following is an example of an amoadd instruction that was replaced

(with changed register names):

amoadd.w al, a2, (a3)

This instruction loads a word from the memory address contained in a3, stores this
value into a1l adds the content of a2 to it and writes the new value back to the memory

address from a3 . The replacement code looks as follows (annotated with comments):

0:
lr.w al, (a3) // Load word into al
add tO, al, a2 // Store sum in tO
sc.w t0, t0, (a3) // Store word back into memory
bnez t0, Ob // Retry if not successful

As there are multiple instructions involved, the atomicity of the instructions might be
violated. The sc instruction returns a result for this reason. The bnez instruction
jumps back to the start as often as needed until the store is successful. To replace other
amo* instructions, the add instruction needs to be exchanged. Luckily, most of the
atomic instructions were contained in the riscv_atomic.c filein 1ib/sbi/ . All
helper functions in this file were extended with a 1r / sc variant. Additionally, a single
atomic instruction was located in the startup code (at firmware/fw_base.S) of
OpenSBI and had to be replaced similarly. Another occurrence was found and replaced

in 1ib/sbi/riscv_locks.c.

As explained above, the Linux kernel also requires support for those atomic instruc-
tions. This problem is solved by emulating them in OpenSBI. If an amo* instruc-
tion would be executed, the ParaNut throws an ”Illegal Instruction Exception”, which
is captured by the OpenSBI trap handler. OpenSBI already had support for emulating
missing instructions, so adding emulation for the atomic instructions was as simple as
adding a new function and putting it into an array. The new function can be found in
lib/sbi/sbi_illegal_insn.c . In this function, the expected operation and the
input registers are read. Then the value is loaded from memory. Afterwards, the operation
is executed before the value is stored back into memory. Even though this sounds quite
simple, a major problem arised once the virtual memory was enabled. The addresses of the
instruction and the memory location are virtual while the trap handler runs in M-mode
on physical addresses. To solve this, RISC-V provides the MPRV flag in the mstatus

register. If this flag is set, all load and store memory accesses should be performed as if
the current mode is equal to before the exception. This old mode is stored in the MPP

(previous privilege) field of mstatus . Instruction fetches are still to be performed with-

out virtual memory active. Details on the implementation are provided in the ParaNut

24

chapter below. Once this flag was supported, all memory accesses were performed in three
steps: Enable MPRV , access memory, disable MPRV . This allows the Linux kernel to use

all atomic instruction as if they were natively supported.

3.2.3 The Serial Interface

Next is the "tohost” interface. As explained it is used on the ParaNut to print to the
console. To support this, a serial driver was implemented into OpenSBI. This driver
is matched when a serial device with the compatible string of ”hsa-ees,pn-tohost”
was found. It implements the putc and getc functions, which are implemented by
writing to and reading from the symbols pn_tohost and pn_fromhost . Previously,
those symbols were just called "tohost” and ”fromhost”, although this led to a collision
with the more complicated HTIF (Host Target Interface) protocol, which is implemented
by for example the SPIKE RISC-V simulator or QEMU [11]. The solution of renaming
the symbols was deemed the simplest, although implementing the HTTF pseudo-standard

would also be a possibility.

3.2.4 Time Registers

The last aspect that needs to be managed by OpenSBI for the Linux kernel to function
properly is the time CSR. This CSR is available to all privilege modes and can be read
using the rdtime pseudo-instruction. The time is always 64bit long and thus needs to
implemented with two registers in 32-bit RISC-V implementations. Those two are called
time and timeh . These registers should shadow the memory-mapped mtime and
mtimeh registers. As per the implementation hints in the specification, two implemen-
tation variants are possible [20, p. 36]. Either the processor should translate an access
to a load of the memory-mapped registers, or the M-mode software, which is OpenSBI in
this case, should emulate the CSR read. When Linux tries to access the unimplemented
register, the ParaNut throws an "Illegal Instruction Exception”. This exception can be
caught just like the atomic instructions and emulated by OpenSBI. Luckily, OpenSBI al-
ready supports the emulation of the time registers by accessing mtime , so this variant
was chosen. The only configuration that was necessary was to define the timer module in

the device tree as explained above.

3.2.5 Configuration and Compilation

After OpenSBI now supports all necessary features to run itself and start the Linux kernel,
it must be configured and compiled correctly. For a running operating system, an image

consisting of multiple components must be created. These are the Bootloader, the Kernel,

25

the device tree as well as a root file system where the user space executables and other
files are located. Since the project is limited on the basic kernel booting, a file system
is not necessary at this point. The OpenSBI build infrastructure directly offers different

possibilities to pass execution to next booting stage (e.g. the kernel):

e Dynamic: A possible previous boot stage would give information to OpenSBI on the

next stage to boot.

e Jump: OpenSBI is configured with a fixed address where the execution jumps to
after the bootloader has completed its steps. The image has to be included with a
different mechanism beforehand.

e Payload: The image is included in the OpenSBI image. It is also possible to bundle
the device tree so that the result is a single combined binary to be executed by the

ParaNut.

All settings can be configured by using Makefile parameters. The following settings

were applied for this project:

e FW_DYNAMIC=n FW_JUMP=n FW_PAYLOAD=y : Enable the payload variant.

e FW_TEXT_ADDR : Address of the OpenSBI image at run time (0x10000000 in case
of the ParaNut)

FW_TEXT_START=0x10000000 : Start of the text section

FW_PIC=n: Position independent code would require some kind of loader to ini-
tialize the GOT for example. The GOT is the global offset table, which contains
information on where symbols are actually located. Since in the ParaNut case,

OpenSBI is the first loader, the addresses must be known at compile time.

FW_FDT_PATH : Path to the flattened device tree, which was compiled by the

device three compiler as explained above

FW_PAYLOAD_PATH : Path to the Linux image, which is located in the Linux

directory at arch/riscv/boot/Image

Additionally to these firmware settings, a few more settings regarding the platform are

necessary:

e PLATFORM=generic: Choose the generic platform variant (see the OpenSBI

26

background chapter for explanation)

e PLATFORM_RISCV_ABI=ilp32 PLATFORM_RISCV_ISA=rv32ima
PLATFORM_RISCV_XLEN=32: Used for setting the correct compiler options

Finally, the CROSS_COMPILE and ARCH=riscv variables have to be passed for com-
pilation just like for compiling the Linux kernel. After running make , the output can be

found in build/platform/generic/firmware/fw_payload.elf .

3.3 Adaptations of the ParaNut Hardware

In parallel to the efforts taken to configure Linux and OpenSBI correctly, numerous changes
were also necessary in the ParaNut hardware. A finished implementation of virtual mem-
ory as described in [13] is used as a basis here. There were four major categories which
needed tweaking. First, the Virtual Memory Management had some issues that needed to
be fixed and a new feature had to be implemented. Secondly, the Debugger needed to be
adapted to the new privilege modes and virtual memory. Additionally, some modifications
to the flashing process were necessary to run Linux on the FPGA with the ParaNut. As
a bit more unrelated topic, the CSR module was refactored to provide a cleaner interface
to the EXU.

3.3.1 Virtual Memory Management

The first set of issues happened on enabling virtual memory. This happens in the Linux
kernel by setting the satp CSR, running sfence.vma as well as setting the trap
vector to virtual address of the next instruction. When execution continues, the following
address is still physical and thus a " Page Fault Exception” is thrown. This exception jumps
to the trap vector where the execution continues with virtual addresses. The following
issues were discovered and fixed in cooperation with the project described in [13] while

testing the Linux kernel boot process:

e Issue: The ParaNut hangs after running the sfence.vma instruction, the Mem-
ory Management Unit (MMU) does not respond at all.
Cause: There were some issues with building physical addresses which led to a loop

in certain cases.
e Issue: Jumping from OpenSBI to Linux prevented the processor from continuing

its execution.

Cause: When enabling S-mode but not yet virtual memory, the default values of

27

the access control bits, which normally come from the page tables, were considered.

Further issues were discovered during the execution with virtual memory enabled:

e Issue: A store word instruction does not always work.
Cause: The bitselect signal, which defines the sise of the written data, was

not set correctly when the MMU was active.

e Issue: The load reserved/store conditional instructions never returned success.
Cause: On one hand, the 1r reservation was not set in all cases, on the other hand

sc didn’t write its result correctly even though the transaction was successful.

e Issue: Exceptions after the initial page fault were no longer handled correctly.
Cause: ParaNut had an ”inside exception” signal, which was never reset as the
”trap handler” did never return. This prevented nested exceptions from working

correctly.

As described in the OpenSBI chapter above, MPRV support had to be implemented.
When this bit is set, loads and stores should behave as if the old privilege mode from
the MPP field is active, while instruction fetches still depend on the current mode. The
MPP field is set to the previous privilege mode for example when entering an exception
handler. To implement this into the ParaNut, the paging mode was separated into two
signals instead of one. The Load Store Unit (LSU) and the Instruction Fetch Unit (IFU)

got each their own signals. The LSU signal is implemented as follows:

sc_uint<2> effective_mode =
csr_mstatus_MPRV.read() ? csr_mstatus_MPP.read() : priv_mode;

exu_lsu_paging_mode = csr_satp_mode.read () && effective_mode != Machine;

The effective mode now either is the current privilege mode or the contents of MPP .
Paging is enabled if satp is configured and the effective mode is not the M-mode. The

IFU then simply uses the current privilege mode instead of the effective mode:

exu_ifu_paging_mode = csr_satp_mode.read () && priv_mode != Machine;

This newly implemented features proved as a great stress test for the memory management
as the mode is constantly switched. Instruction fetches directly access physical addresses
while loads and stores require the translation of virtual addresses. Some minor bugs were

discovered like that, including an issue were signals were assigned too late to handle this.

28

Mem -
exception :‘ ExecuteInsn }—b{ XRet ‘
other reasons . vy -
i . _ . 1.Ir/sc

ExOrlrg ilegal instruction 2. flush instruction
cache_flush i)
exception XRetCsrwait ‘

b ¥

i cache_flush
MemWB — —{ ExWaitForCoPUs }— LSUFlush

1 o |

in DBG mode -' from exception CacheCont

‘ ExfumpTvec AND NOT Dbg made l
CacheCont2 from xret

‘ DbgEnter }47
Irfsc @R flush instruction ¥)
from exception AND in DEG mode

Offromenterdbg

XRetFinished ‘

cache_flush

|
|
Figure 4: State diagram of the EXU states important for flushing

3.3.2 Debugging

To still allow debugging, while a lower privilege mode or virtual memory is active, some
modifications were necessary. When entering debug mode, the processor should auto-
matically switch to M-mode and store its old privilege in the prv field of the dcsr
register. When leaving debug mode, the dret instruction is executed, switching the
privilege mode back to the stored value. As this switching of the privilege mode can also
change the state of virtual memory, flushing of IFU, LSU and the cache may be required
on entering and leaving debug mode. To improve performance, the EXU first probes the
CSR module, if a flush is actually necessary. This is decided by checking if the paging
mode actually changed. If necessary, the EXU performs the required flushes and sets an
acknowledge bit for the CSR module. Only if that is set, the CSR module updates all the
different CSRs to reflect the new state. As such paging mode changes can also happen
when entering or leaving an exception or interrupt handler, this logic was generalized.
The CSR module is called on entering an exception handler or debug mode as well as on
the different ret instructions (mret , sret, dret). It returns, if a flush must be
performed and only updates the different exception or debug CSRs once the acknowledge
signal is high. To handle these different situations properly, the EXU had to be adapted.

Figure 4 shows the EXU states involved in the different flushing variants. All instructions

start the ExecuteInsn state. When entering debug mode, it switches to DbgEnter .

29

This state requests entering the debug mode from the CSR module and either switches to
LSUFlush if a full flush is necessary (i.e. the paging mode has changed) or directly to
Dbg if it’s not. When an exception or interrupt occurs from any source, the Ex0OrIrq

state is entered. It waits for the CoPUs to halt in the ExWaitForCoPUs state and

then also requests from the CSR module if a flush is necessary. If yes, it switches to
LSUFlush , if no and the debug mode or single stepping is currently active, the Dbg
state is entered (and the debugger is invoked). Else, the ExJumpTvec state is entered
and passes execution to the current trap handler. When leaving debug mode or returning
from an exception, the XRet state is entered, which again probes the CSR module for the
need of a cache flush and moves on to XRetCsrWait , which either goes to LSUFlush
orto XretFinished depending on the response. All these three possibilities to enter
the flushing state depend on the CSR response. The final state of these chains then always
sets the acknowledge bit to actually perform the respective actions in the CSR module.

Two further reasons to enter the LSUF1lush state are the load reserved/store conditional
as well as the ParaNut specific cache flush instructions. Depending on their exact form,

those don’t necessarily require a full cache flush, but they can give parameters to the
respective modules. Once the LSUFlush state is active, it clears both the IFU and

LSU caches and then continues to CacheCont . This is a waiting state for one clock
cycle so the recent changes can fully propagate. CacheCont2 then finally commands
a potentially full cache flush. It waits for it to finish and then passes execution back to

the correct state depending on where it previously came from. Although this change was
initiated by the intention of debugging, it led to cleaner and more deterministic situation

for paging mode changes and flushing states.

There were also some smaller problems with debugging which could be fixed very quickly:
The simulator showed sudden non-deterministic crashes when connecting OpenOCD to
the simulator. This was caused by OpenOCD commanding a reset while the RAM was
still working on an action. The ParaNut tried to read a response and failed, which ended
the simulator. The solution was to ignore issues in that case and just print a warning, as
the value would not be used anyway. Additionally, OpenOCD started to crash regularly

at a certain point. An update to the newer 0.11 version solved this problem.

3.3.3 CSR Refactoring

Although not necessary for Linux to work, the CSR module of the ParaNut was refactored
to provide a simpler and cleaner implementation. Previously, the CSR module was sepa-
rate from the EXU module. Due to the EXU needing access to most of the CSR’s signals
(over 50), they had to be routed between EXU and CSR. When adding a new signal, it
needed to be added to the CSR header and source, to the EXU header and source as well

as to the connection parts of the nut.cpp and nut.h.

30

To improve on this architecture, the CSR methods are now technically part of the EXU
module. To still provide a cleaner development experience, they are placed in a sepa-
rate file called exu_csr.inc.cpp which is included at the bottom of the exu.cpp
file. All CSR signals that were previously in csr.h and most of them duplicated in
exu.h are now moved to exu_csr.inc.h which is included in the EXU header.
The CSRMethod of the EXU, which previously took care of outputting values to the
CSR module is no longer necessary. All EXU methods can now directly access the same
variables as the CSR methods. Additionally, all sensitivity lists were checked and missing
signals were filled in. As a side-effect, an issue was also found in the performance counter
support, were the wrong value was filled into a CSR due to a copy-paste error. Some
registers were readable, but not writable even though they should have been and some

registers were not initialized correctly. Those issues were also fixed.

The resulting CSR file is still separated into a few different methods. The
PerfcountMethod , if enabled by the config, takes care of increasing the different
implemented performance counters, like for example the cycle count mcycle .
HandleMethod , ReadMethod and WriteMethod form together the core of the
CSRs. On read, the combinatorial read method directly outputs the current value of the
selected CSR. On write, the value is either written directly or the read value is modified
according to the given bitmask and then written afterwards. The csrrs and csrrc
instructions allow to set or clear certain bits by providing this mentioned bitmask. The
bitmask handling itself as well as a privilege check is performed by the HandleMethod
before setting the respective signals to command a write. The WriteMethod , which
is clock-synchronous, then modifies the selected CSR as commanded. Both the read and
write methods first differentiate if they are part of the CePU or a CoPU. Different sets
of registers are available for each of them. They then each have a large switch-case
statement to select between the different registers. Those registers can either hold a
constant value, are represented by a single 32-bit register or are constructed through a
combination of constant bits and signals of smaller width. The write method has an
additional part for handling exceptions and privilege mode changes as explained in the
Debugging chapter above, which updates the necessary registers as requested by the EXU.
Finally, the OutputMethod takes care of setting different m3 signals used to interact
with the ParaNut CoPUs.

3.3.4 Running on the FPGA

Most tests and development efforts were performed using the ParaNut simulator. To
further test the boot process and to be able to demonstrate it in a reasonable time, it
was further tested on the FPGA hardware. Most hardware parts are covered by Christian

Meyer’s project work [13], although one aspect is going to be covered in the following

31

paragraphs. The output ELF binary of Linux has a size of around 5 MB. When producing
a binary blob that can be flashed, the size increases to around 25 MB due to empty space
between the different sections. Combining Linux with OpenSBI doesn’t change the size
much as it is quite small. An inconvenience that was discovered when trying to upload
the binary to the board over UART is that the upload of a binary of this size took around
half an hour, which is quite long when repeated testing is required. Different solutions

were possible:

e Increasing the UART Baud rate: This solution was not really possible as the firmware

couldn’t keep up with receiving data at a higher rate.

e Putting the binary on an SD card: Although this a possible solution and a great
addition for the future, is was not chosen due to the complexity of understanding

this interface in the scope of this project work.

e Compressing the binary: As this can speed up the upload process with manageable

effort, it was chosen.

As the binary contains large amounts of empty space and also other repetitive content,
including equal instructions and more it is compressed before uploading. The firmware
then takes care of decompressing it on the board. Through the compression with gzip,
the binary was shrunk to around 700 kB which now happens automatically through the
Makefile if necessary. When flashing with the pn-flash tool, if a gzip file is detected,
a new compressed flag is set before the data is transferred. The firmware then uses
the small uzlib library for decompression. It can handle stream decompression to
receive the data byte-by-byte and also output the decompressed data byte-by-byte. Once
a decompressed byte is produced it is directly send to the Xilinx memory region, where the
program should be stored. This means that almost no additional memory is used, except
for a smaller decompression dictionary. A problem that occurred after this features was
finished, was the decompression stopping at random points. As the binary contains a lot
of zeroes at fixed points of the data, the decompression had to produce a lot of output
while only consuming little input. This led to overflowing of the receive buffer of the
UART interface as it is only 64 byte in size. The solution was to implement some kind of
speed control. The pn-flash tool now only sends packets with 64 bytes and expects
an acknowledge response to continue. With this mechanism and the compression itself,
the upload speed could be improved from 30 minutes to around 3 minutes for this 25 MB

Linux + OpenSBI image.

32

4 Testing Linux on the ParaNut
4.1 Running on the Simulator and Hardware

A pre-configured setup for compiling and configuring Linux, OpenSBI as well as the device
tree can be found in sw/linux . The included Makefile automatically clones the Linux
Kernel version 5.18.9, OpenSBI version 1.0 and an additional compiler toolchain for Linux.
It then applies the prepared Linux configuration and patches OpenSBI with the necessary
changes that were introduced in previous chapters. To be able to easily adapt to the
current ParaNut config, some values like the memory address and size as well as the
timer address and frequency are computed based on the ParaNut’s config.mk file and
inserted into the device tree template. Once the device tree compiler of Linux is ready,
the ParaNut device tree is compiled. Finally, Linux and OpenSBI are both compiled and
integrated to form a resulting binary. The Makefile infrastructure also offers targets for
compressing the binary, running it in the simulator or flashing it to the FPGA board. In
addition to the production of the binary, the ParaNut needs to be configured correctly.

The following configuration options are relevant for the execution:

e CFG_NUT_RESET_ADDR has to be equal to the compilation variables of OpenSBI
(e.g. 0x10000000).

CFG_NUT_MEM_SIZE has to be equal to the memory size given in the device tree
(in this case 256MB).

CFG_NUT_MTIMER_ADDR has to be equal to the timer memory address given in

the device tree.

CFG_NUT_MTIMER_TIMEBASE_US has to be configured correctly in relation to
the given timer frequency in the device tree: Timer frequency = Clock frequency /

Timebase.

CFG_NUT_CPU_CORES_LD can be set to zero to remove all CoPUs and speed up

the simulation.

e CFG_EXU_M_EXTENSION and CFG_EXU_A_EXTENSION have to be set.

CFG_PRIV_LEVELS must be set to three.

CFG_MMU_TLB_ENABLE can be enabled to speed up the execution.

33

4.2 Observed Output

When running Linux in the ParaNut simulator or on the FPGA, the following can be ob-
served: First, OpenSBI starts with it’s boot logo, which confirms the functioning ”tohost”

interface:

OpenSBI v1.0-1-g401c59a

/ -\ /o1 N2
O I R G B FO R N
Lo 2o N7 NN NN C <]
(O 0 2 /200 T) DD B DO R I
AV [ORY/Z VY D) I D R V4 DY I
I
I_

Afterwards, it begins to detect features, setup drivers and prepare for jumping to the

Linux kernel. It prints a summary before doing so:

Platform Name : Generic
Platform Features : medeleg
Platform IPI Device 3 ===

Platform Timer Device : aclint-mtimer @ 25000Hz
Platform Console Device : paranut

[...]

Firmware Base : 0x10000000

Firmware Size : 232 KB

Runtime SBI Version : 0.3

DomainO Name : root

Domain0 Boot HART : 0

Domain0O HARTs : 0%

DomainO RegionO0 : 0x20000000-0x2000000£f (I)
DomainO RegionO1 : 0x10000000-0x1003ffff ()
Domain0 Region02 : 0x00000000-0xffffffff (R,W,X)
DomainO Next Address : 0x10400000

DomainO Next Argl : 0x12200000

Domain0O Next Mode : S-mode

DomainO SysReset : yes

Boot HART ID : 0

Boot HART Domain : root

Boot HART ISA : rv32imasux

Boot HART Features : none

34

Boot HART PMP Count : 0

[...]
Boot HART MIDELEG : 0x00000222
Boot HART MEDELEG : 0x0000b109

One can see numerous detected properties here: The timer as well as the output device
were identified. Different memory regions ("Domain0 RegionXX”) were separated. The
first are memory-mapped registers of the timer and the second is the region of OpenSBI.
The ”Next” settings contain the Linux entry point as well as a pointer to the device tree.

The section ends with some information on the boot hart.

After the execution jumped to the Linux kernel, it runs the first initialization functions

before logging can appear. The Linux output looks as follows:

[0.000000] Linux version 5.12.0-rc8+ (eeslabor@eesvm)
(riscv64-linux-gcc.br_real (Buildroot 2020.08-14-geb5a2a90) 10.2.0,
GNU 1d (GNU Binutils) 2.34) #1 Fri Jun 24 17:54:50 CEST 2022

[0.000000] OF: fdt: Ignoring memory range 0x10000000 - 0x10400000
[0.000000] Machine model: hsa-ees,paranut

[0.000000] earlycon: sbiO at I/0 port 0xO (optiomns ’°’)

[0.000000] printk: bootconsole [sbiO] enabled

These first initialization steps show that Linux is starting and the SBI serial driver was
enabled.

.000000] Zone ranges:

.000000] Normal [mem 0x0000000010400000-0x000000001fffffff]
.000000] Movable zone start for each node

.000000] Early memory node ranges

.000000] node 0: [mem 0x0000000010400000-0x000000001fffffff]
0.000000] Initmem setup node O [mem 0x0000000010400000-
0x000000001fffffff]

(o T e T e T e T e IO e |
o O O O O

An early memory setup phase takes place. Execution continues with probing the SBI

interface:

0.000000] SBI specification v0.3 detected

0.000000] SBI implementation ID=0x1 Version=0x10000
0.000000] SBI v0.2 TIME extension detected
0.000000] SBI v0.2 IPI extension detected

0.000000] SBI v0.2 RFENCE extension detected

e I p I s B e B |

35

.000000] riscv: ISA extensions im
.000000] riscv: ELF capabilities im

.000000] Kernel command line: console=hvcO earlycon=sbi

e IR e N s BN e B |

0
0
0.000000] Built 1 zonelists, mobility grouping on. Total pages: 64008
0
0

.000000] Dentry cache hash table entries: 32768 (order: 5,
131072 bytes, linear)

[0.000000] Inode-cache hash table entries: 16384 (order: 4,

65536 bytes, linear)

[0.000000] Sorting __ex_table...

[0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off
[0.000000] Memory: 234672K/258048K available (986K kernel code,
8638K rwdata, 4096K rodata, 4116K init, 174K bss, 23376K reserved,

OK cma-reserved)

The different messages show initialization of caches, exception tables as well as the ker-
nel memory allocator. In the following steps, interrupts as well as the timer device are

initialized:

[0.000000] NR_IRQS: 64, nr_irqgs: 64, preallocated irgs: O

[0.000000] riscv-intc: 32 local interrupts mapped

[0.000000] riscv_timer_init_dt: Registering clocksource cpuid [0]
hartid [0]

[0.000000] clocksource: riscv_clocksource: mask: Oxffffffffffffffff
max_cycles: 0x179dd7f66, max_idle_ns: 112843571735600 ns

[0.000120] sched_clock: 64 bits at 25kHz, resolution 40000ns,

wraps every 140737488340000ns

[0.005520] printk: console [hvc

As one can see, the last two lines have a timestamp at the beginning. This is a sign
that the timer could be read correctly. As the ”sched_clock” line shows, the scheduler
also was already initialized and is upgraded with a clock device here. Sadly, execution
stops in the middle of the ”printk” line, which is probably happening during the call
to the console_init function. The simulator shows accesses to invalid addresses at
this point. A possible cause could be problems with the timer interrupt, as interrupts
were enabled just before this function call. Further debugging at this point is left for the

future.
To summarize, around 50 of the 90 different initialization functions in start_kernel

in main.c were successfully executed, most architecture-specific steps are completed

and log output is shown. Furthermore, the SBI interface, the kernel memory allocator,

36

interrupts as well as the timer driver are already initialized at this point. Future steps
include support for forking processes, security mechanisms as well as general process man-
agement before forking the init process. To execute Linux until this point on the simulator
it takes around two hours while the FPGA hardware takes about ten seconds. Overall,
taking the frequency of 25 MHz into account, this gives a cycle count of around 250 million

cycles that were executed successfully.

4.3 Debugging Techniques

A large number of very different issues occurred during the development of this project.
A combination of multiple debugging techniques was required to identify and solve them
successfully. The simplest measure is of course the printing of debug messages. On one
hand they can be added to the hardware simulator, where state changes or the execution
of unexpected paths can be logged to the console and enriched with further information.
This proved useful for some cases of illegal instructions or illegal memory accesses. On the
other hand, debug messages can also be implemented into the executed software, although
the console mechanism must be already working. Linux output messages and kernel panics
for example are immensely useful when trying to find out the location of a problem. A
special case of these logging messages is the instruction trace which is implemented into
the simulator. It prints out every instruction that was executed as well as the registers
that changed during this time. It can be used to find out which branches are taken at a

certain point of the program if the exact variable values are not known.

The next debugging technique is the use of an actual debugger like GDB. It can be con-
nected with OpenOCD, which in turn connects to the ParaNut simulator as explained
before. Additionally, it can be given the elf file that is executed to load debug symbols.
Note that debugging symbols must be explicitly enabled in the Linux Kernel for exam-
ple. When those are active, GDB can show the current line of code, correct function
and parameter names and it allows to pretty-print structs and their fields with the sim-
ple print command. When debugging OpenSBI, the OpenSBI elf binary has to be
provided. When debugging Linux, the vmlinux elf file must be used as it correctly
contains the functions with their virtual addresses at run time. The most common ac-
tions taken in the debugger are setting a break point where the execution will halt with
e.g. break main , continuing execution or single stepping through the program. With
paging enabled, single stepping sometimes shows problems which are probably caused by
the too-long wait time due to two cache flushes at leaving and entering the debug mode.
For this reason, break points can be used more extensively. Addresses, variables or regis-
ters can also be printed out by GDB using the print or x commands (E.g. print id,
print $a0 or x 0x10040000).

37

The last, and most detailed method for finding issues in the hardware, is the generation
of the signal trace file. All signal changes are logged by the simulator and can be viewed
with for example GTKWave. As the simulator’s execution slows down largely and the
generated file grows quickly in size, it should only be used if other debugging techniques
did not lead to a reasonable result. If the resulting file is larger than the available memory
on the system, it must be compressed before opening using the gtkwave -o <file>
command. In the viewer, specific addresses can be searched or status signals relevant
to the observed problems should be inspected. For example dbg or priv_mode are
useful for finding the exact position of an issue. When the location was found, further

signals can be added to trace the execution step by step and find the problem.

Some of these techniques can also be combined. Execution can be manually interrupted
through the debugger after a certain log output was seen on the console or the debugger
can be used to identify addresses of possible problems, which can afterwards be searched

for in the signal trace.

5 Conclusion
5.1 Summary

This work has introduced a setup and configuration for running the Linux Kernel on
the ParaNut RISC-V processor. All necessary components were introduced and their
procedures were shown. The Linux Kernel needs a bootloader for basic hardware setup,
which is implemented by OpenSBI. Both require a device tree, which contains the structure
of the hardware they are running on. The processor hardware has to support numerous
features, which include privilege modes, atomic instructions as well as virtual memory.
Needed modifications as well as configuration changes were done and explained. Different
hardware issues were identified and solved and debugging was adapted to work with virtual
memory. The Linux Kernel together with OpenSBI was run in the simulator as well as
on an FPGA. The boot process has progressed to a stage where most processor-specific

features are initialized and working, but there is still some more work to do.

5.2 Known Issues and Next Steps

A few issues are still to be solved, the following are a few aspects that were not yet finished
in this project work. Firstly, the Linux boot process has to be debugged further to fix
the current problem mentioned above as well as future problems that may arise in the
following boot steps. Secondly, Linux has to be equipped with a file system to be able

to switch to a simple init process. Later, Linux can be adapted to the ParaNut specifics

38

including the CoPUs in threaded or linked mode. To implement this, the other harts must
be able to be started by the Kernel and the context switch has to be modified to save and
restore additional states. More information on that can be found in [4]. As mentioned in
the ”"Debugging Techniques” chapter, single stepping is causing some problems which are
probably caused by the processor being to slow with responding. If possible, the debug
mode entering and leaving must be accelerated. Another useful feature for debugging
would be the possibility for the signal trace to start at a certain address. This would
remove the large size and time requirements of this feature and allow for more targeted

debugging.

39

References

[1] About RISC-V. RISC-V International. URL: https://riscv.org/about/ (visited
on 07/03/2022).

[2] Cross-compilation toolchains for Linuz - riscv32-ilp32d toolchains. URL: https://
toolchains.bootlin.com/releases_riscv32-ilp32d.html (visited on 06/27/2022).

[3] Palmer Dabbelt. All Aboard, Part 6: Booting a RISC-V Linux Kernel. SiFive. Oct. 9,
2017. URL: https://www.sifive.com/blog/all-aboard-part-6-booting-a-
risc-v-linux-kernel (visited on 06/28/2022).

[4] Palmer Dabbelt. All Aboard, Part 7: Entering and Exiting the Linux Kernel on
RISC-V. SiFive. Oct. 23, 2017. URL: https://www.sifive.com/blog/all-aboard-
part-7-entering-and-exiting-the-1linux-kernel-on-risc-v (visited on
07/03/2022).

[5] Das U-Boot - the Universal Boot Loader. DENX Software Engineering GmbH. June 30,
2022. URL: https://www.denx.de/wiki/U-Boot (visited on 07/02/2022).

[6] Distribution of operating systems used for Internet-of-Things (IoT) devices, as of
2016. Statista. Apr. 2016. URL: https://www.statista.com/statistics/659581/
worldwide - internet - of - things - survey - operating - systems/ (visited on
07/02/2022).

[7] Distribution of the 500 most powerful supercomputers worldwide from 2017 to 2021,
by operating system. Statista. Oct. 2021. URL: https://www . statista . com/
statistics/565080/distribution-of -leading-supercomputers-worldwide-
by-operating-system-family/ (visited on 07/02/2022).

[8] Mark D. Hill and Michael R. Marty. “Amdahl’s Law in the Multicore Era”. In:
Computer 41.7 (2008), pp. 33-38. DOI: 10.1109/MC.2008.209.

[9] History of RISC-V. RISC-V International. URL: https://riscv . org/ about /
history (visited on 07/03/2022).

[10] Alan Holt and Chi-Yu Huang. “Overview of GNU/Linux”. In: Embedded Operating
Systems. Springer, 2018, pp. 11-40.

[11] How to tohost and fromhost work? URL: https://github.com/riscv-software-
src/riscv-isa-sim/issues/364 (visited on 07/03/2022).

[12] Gundolf Kiefer et al. The ParaNut Processor. Architecture Description and Reference
Manual. Version v1.0.0-gd3eb3c6*. University of Applied Sciences. Nov. 22, 2022.

[13] Christian H. Meyer. A Memory Management Unit for the ParaNut. July 2022.

[14] Mobile operating systems’ market share worldwide from January 2012 to January
2022. Statista. 2022. URL: https://www.statista.com/statistics/272698/
global -market - share -held-by-mobile - operating - systems - since - 2009/
(visited on 07/02/2022).

40

https://riscv.org/about/
https://toolchains.bootlin.com/releases_riscv32-ilp32d.html
https://toolchains.bootlin.com/releases_riscv32-ilp32d.html
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://www.sifive.com/blog/all-aboard-part-7-entering-and-exiting-the-linux-kernel-on-risc-v
https://www.sifive.com/blog/all-aboard-part-7-entering-and-exiting-the-linux-kernel-on-risc-v
https://www.denx.de/wiki/U-Boot
https://www.statista.com/statistics/659581/worldwide-internet-of-things-survey-operating-systems/
https://www.statista.com/statistics/659581/worldwide-internet-of-things-survey-operating-systems/
https://www.statista.com/statistics/565080/distribution-of-leading-supercomputers-worldwide-by-operating-system-family/
https://www.statista.com/statistics/565080/distribution-of-leading-supercomputers-worldwide-by-operating-system-family/
https://www.statista.com/statistics/565080/distribution-of-leading-supercomputers-worldwide-by-operating-system-family/
https://doi.org/10.1109/MC.2008.209
https://riscv.org/about/history
https://riscv.org/about/history
https://github.com/riscv-software-src/riscv-isa-sim/issues/364
https://github.com/riscv-software-src/riscv-isa-sim/issues/364
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

Tim Newsome and Megan Wachs, eds. RISC-V External Debug Support. Version 0.13.2.
RISC-V International. March 2019.

RISC-V Open Source Supervisor Binary Interface. URL: https://github. com/
riscv-software-src/opensbi (visited on 06/28/2022).

RISC-V Supervisor Binary Interface Specification. URL: https://github . com/
riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc (visited on

07/03/2022).

Chris Simmonds. Mastering Embedded Linux Programming. Packt Publishing Ltd,
2017.

Andrew Waterman and Krste Asanovié, eds. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA. Version 20191213. RISC-V Foundation. December 2019.

Andrew Waterman, Krste Asanovi¢, and John Hauser, eds. The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture. Version 20211203. RISC-V Interna-
tional. December 2021.

41

https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc

	List of Figures
	Acronyms
	Introduction
	Motivation
	Purpose of this Work
	Structure of this Work

	Background Information
	RISC-V
	Overview
	The Base ISA and Extensions
	Privilege Modes
	Control and Status Registers
	Virtual Memory

	The ParaNut
	Linux
	OpenSBI
	RISC-V Debugging

	Linux on the ParaNut
	Preparing the Kernel
	Configuration Options
	The Device Tree

	Preparing OpenSBI
	Disabling CoPUs
	Atomic Instructions
	The Serial Interface
	Time Registers
	Configuration and Compilation

	Adaptations of the ParaNut Hardware
	Virtual Memory Management
	Debugging
	CSR Refactoring
	Running on the FPGA

	Testing Linux on the ParaNut
	Running on the Simulator and Hardware
	Observed Output
	Debugging Techniques

	Conclusion
	Summary
	Known Issues and Next Steps

	References

