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1 Introduction

1.1 Motivation

Since the RISC-V ISA was introduced, a lot of cores using its architecture were in-
truduced[1]. The ParaNut is a RISC-V compatible and highly scalable soft-core for
field-programmable gate arrays (FPGAs), which is developed at the Augsburg Uni-
versity of Applied Sciences and is publicly available with a permissive open source
license [2]. Similar to many other RISC-V cores, the ParaNut was only capable of
running bare-metal and real-time operating systems like FreeRTOS1 code prior to
this work. This required a huge effort from software developers, e.g. for driving
Input/Output (IO) devices or managing memory. Apart from the required imple-
mentation time, writing a lot of code is error-prone and might introduce security
flaws.

To simplify work, software developers can use modern operating systems, which
often come with a full set of drivers for different peripherals and security features.
However, many operating systems require dedicated hardware to support virtual
memory management like the Linux kernel.

1.2 Purpose of This Work

To serve as a hardware basis for the Linux kernel, in the ParaNut, this work shows
how a memory management unit (MMU) was implemented into the ParaNut and
how the architecture was prepared to support virtual memory. It introduces RISC-
V’s privilege modes, which enables separate software layers, and the new hardware
modules page table walker (PTW) and translation lookaside buffer (TLB). Focus
was set to enable synthesis configurability for all new features, especially that the
MMU can be disabled completely to save chip area.

1.3 Structure of This Work

Section “Basics” introduces the ParaNut architecture, gives an overview of virtual
memory management with special focus on paging and also discloses relevant parts
of the RISC-V privileged architecture. This will lay a theoretical foundation for
the subsequent chapters, which give more detail about the implementations done
in this work. In section 3 “Implementing RISC-V’s Privilege Modes”, the details
of implementing privilege levels in the ParaNut are summarized. Afterwards, the

1Information about this project is going to be published soon
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virtual memory model of the ParaNut is shown, i.e. how the new components are
integrated into the ParaNut architecture. Next, two new modules, namely the PTW
and the TLB, are introduced in the subsequent chapters “5” and “6”. Finally, the
process and tools of design validation are presented in section “7” together with
details on how the Linux kernel was run for the very first time on hardware.

2
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2 Basics

2.1 The ParaNut Architecture

2.1.1 Concept

The ParaNut is a new generation of soft-cores for FPGAs with focus on little area
requirements in favor of few clocks per instruction. While formerly developed with
the OpenRISC instruction set architecture (ISA), it was later moved to RISC-V.
Furthermore, it is highly customizable and open source, allowing any individual to
adapt it further. Though some performance-critical components are implemented
with VHDL, its key components are implemented in the SystemC Synthesizable
Subset. This allows to simulate with good speed and cycle-accuracy, while still
being able to synthesize it to hardware.

In order to achieve parallelism while keeping area requirements small, it implements
a special concept of data-level parallelism (DLP) and thread-level parallelism (TLP),
which abstracts vector and thread programming to simple standard ISA compatible
control and status register (CSR) instructions (more on CSRs and CSR modifica-
tion instructions in section 2.3.3 and 2.3.4). More details on the ParaNut and its
parallelism concept can be found in [2] and [3].

2.1.2 Structure

A block diagram of the ParaNut with 4 cores configured is shown in figure 1. At
the bottom of the picture are four full-featured cores, each containing an ALU,
a Register File, Control Logic, CSRs as well as exception and interrupt (in the
RISC-V ecosystem together known as traps) handling logic1. The combination of
all these components is called an execution unit (ExU). Each is connected to the
memory unit (MemU) two times: First via the IFU, witch fetches instructions and
stores some prefetched instructions in a small size-configurable buffer; second via
a load-store unit (LSU), which handles data reads and writes and contains a little
size-configurable write buffer as well.

The LSU and IFU are connected to the MemU via read ports (RPs) and write
ports (WPs). The MemU itself interacts with the system bus (AXI or WishBone)
via a single bus interface (BusIf) and contains a configurable number of cache banks

1The picture also shows an instruction register (IR) and a program counter (PC), which are
actually routed from the instruction fetch unit (IFU) and do not require additional registers. There-
fore, they can be seen as virtual registers.
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which are formed by a configurable number of sets. These caches are shared between
all cores, are 1/2/4-way set associative and have a configurable replacement strategy,
e.g. least-recently-used or pseudo-random. Cache tag data is stored in a single tag
RAM for all cache banks. Concurrent accesses from different ports are possible when
their addresses either map to different banks or the same memory word in the same
bank. To do so, cache tag data is replicated. [2]

Figure 1: Block diagram showing a ParaNut with 4 full-featured cores [3, p. 3,
extended by the cache tagram and read/write ports]

2.2 (Virtual) Memory Management

2.2.1 Requirements

In [4], Stallings describes several requirements to a system’s memory management.

Relocation

Modern operating systems have multiple processes running, which share the same
memory. The programmer is unaware of the other processes and where they are
located in memory.

4
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Due to system’s ability to swap data from and to main memory, e.g. to an HDD,
putting it back at the exact same place as before would be inefficient and limiting.
Therefore, it should be possible to relocate it anywhere in the memory. Again, the
programmer is unaware of where this will be.

Protection

The operating system (OS) and processes need protection against unwanted inter-
ference from other processes, whether accidental or intentional. Therefore, it is
important that all memory accesses are checked during run time for their validity.

Sharing

While in some cases it must be avoided that processes are able to access memory of
other processes, in other cases it is desired that two processes may share the same
memory region. Example: two processes execute the same program, so both may
use the same copy of the program rather than having two identical copies of it.

Physical organization

Memory can be divided into two types: main memory (random access memory
(RAM)) and secondary memory, e.g. a hard drive disc (HDD). While RAM is fast
and volatile, the costs per capacity are comparably high. In contrast, secondary
memory is much cheaper, but slow and not volatile. Managing these two levels is a
major system concern. [4]

Logical organization

Programs are organized in modules, for example the main program and several
libraries. However, this does not reflect how main and secondary memory in a
computer system is organized. Therefore, it would be good to segment memory into
several areas of variable size with the capability of specifying access permissions like
read-only or execute-only to it.

5
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2.2.2 Paging

According to [4], a widely used approach of managing memory in modern operating
systems is paging. Processes are divided into pages, which are small, fixed-size pieces
of equal size. Furthermore, the main memory is also divided into pieces of equal
size called (page) frames and the pages are assigned to it. In addition, each virtual
address is mapped to a physical address. The mapping of each process is maintained
in an individual page table by the OS. Each virtual address consists of a page number
and an offset within that page. Each time a virtual address is accessed in memory,
the system needs to translate the virtual address first into a physical address by the
help of the MMU.

The MMU also checks if the requested access is permitted. A system can addition-
ally swap pages to secondary memory and relocate them afterwards. If mapping a
physical address to a virtual address or any access checks fail, a page fault is raised.

The exact procedure of paging are platform dependent, but can be stylized this
way: A virtual address is split into two parts: The most significant part of a virtual
address forms a page number, while the least significant part marks an offset in the
memory. When a virtual address is going to be translated, a page table entry (PTE)
is first being looked up in the page table. This is done by adding the page number
to the page table pointer, which is stored in a dedicated register. In particular, this
means that the page number represents an offset in the page table. This results in a
PTE containing access bits (Read, Write, Execute, etc.) and a frame number. The
latter is prefixed to the offset of the virtual address to form a physical address.

Since having only a single page table would require a huge page table and therefore
a lot of memory, engineers came up with multi-level paging. In case of a two-level
paging system, the root page table contains pointers to a second level page table.
Not every entry in a page table must be flagged valid. Instead, when they are flagged
invalid, no second level page table has to be allocated, allowing to reduce memory
costs.

In a two-level paging system, a virtual address consists of three parts: a memory
offset and two page numbers or page table offset. First, the most significant part,
which forms a page number, is combined with the root page table pointer in order to
look up a PTE in the root page table. The result of the first page table lookup gives
the address to a secondary page table, which is again combined with the next page
number. This second lookup finally reveals the frame number, forming the physical
address together with the memory offset of the virtual address.

6
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However, looking up page tables has a big disadvantage: It requires memory accesses
before the actually addressed data can be retrieved, because the page tables need to
be walked. Therefore, many systems speed up address translation by using a TLB,
which is a small cache for PTEs. On every translation, the page number is first
looked up in the TLB, and in case of a TLB hit, the physical address can already
be assembled. In contrast, in case of a TLB miss, the frame number needs to be
retrieved from a page table stored in main memory.

2.3 RISC-V

2.3.1 An Open and Free Instruction Set Architecture

The ParaNut uses the RISC-V instruction set architecture (ISA) RV32IMA, part
of the RISC-V ISA family. As stated in [5], this family was originally designed for
computer architecture research and education. Over the years, RISC-V became an
open and free standard and is not only used in different academical, but in several
industry implementations, e.g. SweRV (EH1/EH2/EL2) by Western Digital[6][7][8]
or several cores by SiFive[9], to just name a few from [1]. Primarily, RISC-V defines
two base integer variants, RV32I and RV64I for 32-bit and 64-bit address space
variants respectively. It further defines RV32I’s subset variant RV32E for small
microcontrollers and sketches a future RV128I variant for an 128-bit address space.[5]

The RISC-V families were designed to avoid specific implementation as much as
possible, e.g. no microarchitecture style (in-order, decoupled, out-of-order, etc.) was
defined, but each of them is allowed. It further defines several ISA extensions like
the "M" extension for integer multiplication and division, "A" for atomic instructions
or "F" for floating point operations. Besides these "standard" extensions, it also
supports specialized and custom extensions. [5, p. 1f, 4f]

2.3.2 Privilege Modes

As specified in [3, p. 2ff], a RISC-V processor is always running in a privilege level
encoded as a mode, all possibilities being displayed in table 1. Privilege levels protect
different components of the software stack.

Two possibilities for software stacks are shown in fig 2. The white boxes represent
an execution environment and the black boxes an abstract interface. On the left-
hand side is an illustration of a simple system with a single application running
on a application execution environment (AEE). The application uses an application
binary interface (ABI) to interact with the AEE. The ABI hides details of AEE from

7
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application, allowing greater flexibility on implementing the AEE. On the right-
hand side, a configuration with a conventional OS is shown. It supports running
multiple applications, each communicating with the OS over an ABI. Similarly, the
OS communicates with a supervisor execution environment (SEE) (e.g. a simple
bootloader or a BIOS-style IO system) via a supervisor binary interface (SBI).

Application

ABI
AEE

Application

ABI
OS
SBI
SEE

Application

ABI

SBI
Hypervisor

Application

ABI
OS

Application

ABI

Application

ABI
OS

Application

ABI

SBI

HBI
HEEFigure 2: Different implementation stacks supporting various forms of privileged ex-

ecution. [10, p. 2] (Removed Hypervisor execution context of original
image)

This means, combined with the knowledge from section 2.2, that the different appli-
cations must be protected from interfering with each other or the OS. In practice,
this can be achieved by providing memory protection with a paging system as de-
scribed in section 2.2 or an optional physical memory protection unit, though the
latter not being available for the ParaNut yet and also not being part of this project.
Furthermore, some CSRs may not be accessible from each application context, as
well as some instructions.

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

Table 1: RISC-V privilege levels. [10, p. 3]

The highest level, machine-mode (M-mode), has full and low-level access on the
machine, meaning all available peripherals, memory, CSRs or instructions can be
accessed/executed. Therefore, it is mandatory on every RISC-V implementation.
With user-mode (U-mode), a privilege mode with restricted machine access was
added, providing an additional protection layer and enabling secure embedded sys-
tems. It may only access/execute instructions, CSR, memory or peripherals which
are intended for it. To run Unix-like operating systems, supervisor-mode (S-mode)
was introduced with dedicated CSRs and instructions for address translation and
protection schemes. It is further able to access U-mode’s peripherals, memory, CSRs
or instructions, but not M-mode’s.
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Applications usually run in U-mode mode until some trap (exception or interrupt)
occurs and makes the system jump into a trap handler by changing the current PC
to x tvec and the current and storing it in x epc (x represents the target mode in
which the trap is handled). Traps are either horizontal (the trap is delegated to a
handler in the same mode) or vertical (the trap is handled in a higher mode). See
table 2 for an overview of all possible privilege mode combinations.

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 2: Supported combinations of privilege modes.[10, p. 3]

2.3.3 Control and Status Registers

RISC-V implementations contain control and status registers (CSRs), which are
read/modified/written atomically by specialized CSR instructions. They are des-
tined for a specific privilege level, which can be identified by the first letter of its
name, e.g. mcause belongs to M-mode, while scause belongs to S-mode. However,
a CSR may also be accessed by higher privilege levels.

CSRs are identified by 12-bit wide addresses (csr[11:0]), leading to a maximum of
4,096 registers. The encoding of the addresses uses two conventions:

• The 2 most significant bits (csr[11:10]) encode the read-only (00, 01, or 10) or
read/write(11)) capabilities.

• The next 2 bits (csr[9:8]) encode the lowest privilege mode which is allowed to
access the CSR.

Any access to a CSR which contradicts these two conventions results in an illegal
instruction exception.

Though a basic set of CSRs was already implemented prior to this project, several
standard CSRs from [10] and one non-standard register were required to be added in
order to implement a MMU. In this chapter, all CSRs which were newly implemented
or modified are listed and explained. Table 3 gives an overview of these registers.
In the register’s content listings below, fields which are either marked as reserved by
[10] or not (yet) being implemented by the ParaNut are marked here as Reserved.
Where not mentioned differently, Reserved fields are fixed to 0. If any field is written
with bold letters, it means that the CSR existed before, but was extended with the

9
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boldly written fields during this project. If none is written bold, the whole CSR
was implemented from scratch. For each register, a brief summary of [10] and [3]1

is given.

CSR Name Change
Standard Machine CSRs

mstatus New fields introduced
medeleg Completely new
mideleg Completely new
mcause New values introduced

Standard Supervisor CSRs
sstatus Completely new
scause Completely new

sscratch Completely new
sepc Completely new
stvec Completely new
stval Completely new
satp Completely new

ParaNut-specific CSRs
pnece Completely new

Table 3: Overview of the newly implemented or altered CSRs

Machine Status Register (mstatus)

The mstatus register is used to keep track and control the current operating state
of a core.

31 23 22 21 20 19 18 17 13 12 11
Reserved TSR Reserved TVM Reserved SUM Reserved MPP[1:0]

9 1 1 1 1 1 5 2

10 9 8 7 6 5 4 3 2 1 0
Reserved SPP MPIE Reserved SPIE Reserved MIE Reserved SIE Reserved

2 1 1 1 1 1 1 1 1 1

Figure 3: Machine-mode status register (mstatus) of the ParaNut.

If TSR (Trap SRET) is set to 1, executing an SRET traps if not running in S-mode.
If set to 0, executing an SRET in S-mode is permitted.

When the current mode is S-mode, modifying satp or executing a SFENCE.VMA
instruction raises an illegal instruction exception if TVM (Trap Virtual Memory) is
set to 1. If set to 0, virtual memory operations are permitted in S-mode.

1Will be updated soon after this paper’s release.
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Accessing a page marked to be accessible by U-mode traps if SUM (permit Supervisor
User Memory access) is set to 0 and currently running in S-mode. If set to 1, S-mode
is permitted to access user pages.

When a trap occurs in mode x and results in the new mode being y, x is written
into yPP and the current mode is set to y. Further, yPIE is set to the current value
of yIE and yIE is set to 0.

If xIE is 0, external interrupts are disabled in mode x, or enabled if xIE is 1,
respectively.

When a xRET is executed, the privilege mode is changed to the current value of
xPP , and xPP is set to 0. Similarly, xIE is set to xPIE.

Machine Trap Delegation Registers (medeleg and mideleg)

Usually, a trap is always handled in M-mode. However, a RISC-V system can be
configured to delegate trap handling to S-mode. To do so, the bit at the position
mentioned in table 4 must be set to 0 in medeleg for exceptions or mideleg for
interrupts. Note that traps are only delegated when they occur in modes lower than
M-mode. In M-mode, medeleg and mideleg are simply ignored.

31 0
Synchronous Exceptions

32

Figure 4: Machine Exception Delegation Register medeleg.

31 0
Interrupts

32

Figure 5: Machine Interrupt Delegation Register mideleg.

Machine Cause Register (mcause)

When a trap is taken into machine mode, mcause is written with a value from
table 4. Although this register was previously available, the boldly marked values
from table 4 were newly implemented in this work.

11
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31 30 0
Interrupt Exception Code

1 31

Figure 6: Machine Cause register mcause.

Interrupt Exception Code Description
1 0–7 Reserved
1 8 User external interrupt
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 ≥11 Reserved
0 0 Instruction address misaligned
0 1 Reserved
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Reserved
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Environment call from M-mode
0 11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 ≥16 Reserved

Table 4: Trap causes on the ParaNut.[10, p. 37, adapted for the ParaNut]

Supervisor Status Register (sstatus)

The CSR sstatus represents a subset of mstatus, containing only the fields shown
in fig 7. For details on the field’s meaning, refer to mstatus.

31 19 18 17 9 8 7 6 5 4 2 1 0
Reserved SUM Reserved SPP Reserved SPIE Reserved SIE Reserved

13 1 8 1 2 1 3 1 2

Figure 7: Supervisor-mode status register (sstatus) of the ParaNut.
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Supervisor Cause Register (scause)

When an trap occurs and the interrupt is delegated to S-mode, the cause of the
trap is written into scause instead of mcause. Similarly to mcause, the values
from table 4 may be written into scause, except of machine external interrupt and
Environment call from M-mode.

31 30 0
Interrupt Exception Code

1 31

Figure 8: Supervisor Cause register scause.

Supervisor Scratch Register (sscratch)

Usually, sscratch holds a pointer to the core-local supervisor context. On a trap,
its content is swapped with a user register and acts as a initial working register.

31 0
sscratch

32

Figure 9: Supervisor Scratch Register.

Supervisor Exception Program Counter (sepc)

When a trap is taken into S-mode, the current program counter is written into sepc.
Furthermore, when a SRET is executed, the current value of sepc becomes the new
PC.

31 0
sepc
32

Figure 10: Supervisor exception program counter register.

Supervisor Trap Vector Base Address Register (stvec)

When a trap is delegated to S-mode, the current program counter is set to the
current value of stvec. The least significant two bits are always fixed to 0 to assure
proper alignment to a 4 byte boundary.

13
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31 0
stvec
32

Figure 11: Supervisor trap vector base address register (stvec).

Supervisor Trap Value (stval) Register

When a trap occurs, stval contains trap-specific information, helping the software to
handle the trap. In particular, stval is written with the faulting virtual address on a
hardware breakpoint, a faulty instruction-fetch, load or store address-misaligned, or
a page-fault. On illegal instructions, stval is written with the faulting instruction.

31 0
stval
32

Figure 12: Supervisor Trap Value register.

Supervisor Address Translation and Protection (satp) Register

A key CSR for the MMU is satp. It contains a pointer to the current root page table
in the 20 bits wide field PPN1 as well as an address translation enable bit in MODE

field. When MODE is set to 0, virtual address translation is disabled, while setting it
to 1 enables the translation scheme described in section 4.

31 30 20 19 0
MODE Reserved PPN

1 11 20

Figure 13: RV32 Supervisor address translation and protection register satp.

ParaNut Core Enable (pnce) and ParaNut Exception Core Enable (pnece) Reg-
ister

To enable coprocessing unit (CoPU) x, the central processing unit (CePU) sets the
bit at position x in pnce. Similar, setting bit at position x + 1 to 0 disables CoPU
x. Bit 0 represents the CePU and must always be set.

1Although the field PPN is 22 bits wide in [10], which enables system bus widths of 34 bits, the
ParaNut reserves only 20 bits for PPN due to its limited bus width of 32 bits.
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When an exception occurs, the current pnce is written to pnece and pnce is set to
1, disabling all CoPUs.

31 0
pnce
32

Figure 14: ParaNut Core Enable (pnce).

31 0
pnece
32

Figure 15: ParaNut Exception Core Enable (pnece).

2.3.4 "SYSTEM" Instructions

Implementing privilege modes together with a MMU and still complying with [10]
requires adding some new instructions and updating some already existing. Table 5
lists these instructions, all of them being assigned to the instruction type SYSTEM
by RISC-V.

The MRET instruction was already implemented prior to this work. However, since
new privilege levels were introduces in this project, it was necessary to check the
current privilege mode to be M-mode and raise an illegal instruction exception oth-
erwise.

The SRET instruction has the exact same encoding as MRET with a single excep-
tion: the bit range [29:28] in SRET does not equal the encoding of M-mode but
rather S-mode. Therefore, once the execution of an xRET was detected, checking
that bit range [29:28] is at x or higher is required. Furthermore, SRET may only
be executed in S-mode if the TSR bit in mstatus is not set (see mstatus in section
2.3.3); therefore, when executing in S-mode checking TSR is also required.

CSR modification instructions were already implemented on the ParaNut. For com-
pleteness, they are also listed in table 5, but refer to [5] for more detailed explana-
tions on them. Since there were only M-mode CSRs available at the beginning of this
work, privilege mode checks need to be implemented to make sure that they are not
accessed from lower privileged levels. Furthermore, the ParaNut had a significant
limitation which differed from RISC-V specification: Rather than raising an illegal
instruction exception when accessing non-existent CSRs, the instruction completed
successfully and returned a value of 0. This is also adjusted in this work.

Already implemented was the ECALL instruction, which causes a planned trap by
software. At beginning of this work, only M-mode was available on the ParaNut,
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ECALL made mcause always contain an Environment Call from M-mode exception.
Therefore, when executing an ECALL, it is necessary to check for the current priv-
ilege mode first and set the exception cause to the appropriate mode in order to
comply with the causes listed in table 4.

A completely new instruction is SFENCE.VMA. In its simplest form, it just flushes
any caches related to address translation, i.e. the TLB of the ParaNut. In more
sophisticated RISC-V implementations, rs2 and rs1 may be used to flush only par-
ticular entries meeting defined conditions. Though this is omitted in the ParaNut
for simplicity.

Trap-Return Instructions
31 25 24 20 19 15 14 12 11 7 6 0

0001000 00010 00000 000 00000 1110011 SRET
0011000 00010 00000 000 00000 1110011 MRET

Supervisor Memory-Management Instructions
31 25 24 20 19 15 14 12 11 7 6 0

0001001 rs2 rs1 000 00000 1110011 SFENCE.VMA

Environment Call
31 20 19 15 14 12 11 7 6 0

000000000000 00000 000 00000 1110011 ECALL

CSR Instructions
31 20 19 15 14 12 11 7 6 0

csr rs1 001 rd 1110011 CSRRW
csr rs1 010 rd 1110011 CSRRS
csr rs1 011 rd 1110011 CSRRC
csr uimm 101 rd 1110011 CSRRWI
csr uimm 110 rd 1110011 CSRRSI
csr uimm 111 rd 1110011 CSRRCI

Table 5: New or altered RISC-V SYSTEM instructions of the ParaNut. Sources:
[10, p. 76][5, p. 130] adapted to match the ParaNut

2.3.5 Virtual Address Translation

RISC-V defines several translation schemes, on the one hand to support different
address space types (32-bit, 64-bit), on the other hand to provide a trade-off between
the size of address space and minimizing address-translation cost. All schemes enable
support for modern Unix-based operating systems by translate a virtual into physical
addresses. To do so, the schemes involve traversing a page table made up by a radix-
tree, which is explained in [11] as a tree with two types of node: leaf nodes, which
store the values in correspondance to their keys, and inner nodes, mapping partial
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keys to other nodes. On tree traversal, a portion of the key is used as an index
into an array, which determines the next child node. For page tables, RISC-V calls
leaf nodes leaf (page table) entries, and all the other nodes pointer to (page table)
entries.

For 32-bit implementations like the ParaNut, only a single translation scheme exists,
which is named Sv32. It divides the virtual address space into 4KiB pages and
4MiB superpages/megapages and is explained in section 4. Address translation for
S-mode and U-mode can be enabled in the CSR satp. For M-mode, paging is always
disabled.

A virtual address is structured as in figure 16, and is translated into a physical ad-
dress, illustrated in fig. 17, by traversing a two-level page table, similar as explained
in section 2.2. When translating, only the upper 20-bit forming a physical page
number (VPN) are translated into 20-bit physical page number (PPN)1, the page
offset remains untranslated.

A page table consists of 210 page table entrys (PTEs), each 4 byte long, i.e. a page
table is exactly 4KiB big and fits exactly into a page. A PTE (pte[31:0]) consists of
the fields illustrated in fig. 18: Range pte[31:10] comprises two PPNs, which are used
to form either a physical address or point to another page table. The PPN of the
root page table is stored in satp. pte[9:8] is named RSW, which means "reserved for
software" and should be ignored by implementations. pte[7:0] consists of the fields
listed below.

• V: valid; if 0, all other bits are don’t-cares and are freely usable by software
• R,W,X: read,write,execute permissions. When all three equal 0, this PTE is a

pointer to the next level page table. Otherwise, it is a leaf PTE. It is obligatory
that writable pages are also marked readable, any combination differing from
this is reserved for future use by [10]. Table 6 lists all possible combinations
and their meaning. If any memory access fails due to missing permission, a
page fault exception is raised corresponding to its access type.

• U: page is accessible by U-mode or not. In case SUM in mstatus/sstatus is
set, pages with the U bit set may also be accessed by S-mode.

• G: global mapping, i.e. the mapping exists in all address spaces. For non-leaf
PTEs it means that all mappings in subsequent levels are global. The G bit is
ignored by the ParaNut in order to keep the hardware simple, though it might
reduce performance a bit.

• A (accessed) and D (dirty). RISC-V allows two schemes, of which currently
this one is implemented in the ParaNut: Accesses when A is clear or writes

1Though Sv32 also supports translating 20-bit VPNs into 22-bit PPNs, this is not implemented
on the ParaNut, as it does not support 34-bit physical addresses.
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when D is clear raise a page fault according to the current access type. For
the other scheme, refer to [10, p. 69]

The fields A, D, and U are currently only relevant for leaf PTE; for non-leaf PTEs,
they are reserved for future use. As the fields R,W,X,U control the access types to
their corresponding addresses, they are later on called access control bits. Addition-
ally, the fields A,D are simply called status bits.

31 22 21 12 11 0
VPN[1] VPN[0] page offset

10 10 12

Figure 16: Virtual address[10, p. 68].

31 22 21 12 11 0
PPN[1] PPN[0] page offset

10 10 12

Figure 17: Physical address[10, p. 68]

31 20 19 10 9 8 7 6 5 4 3 2 1 0
PPN[1] PPN[0] RSW D A G U X W R V

12 10 2 1 1 1 1 1 1 1 1

Figure 18: page table entry[10, p. 68].

X W R Meaning
0 0 0 Pointer to next level of page table.
0 0 1 Read-only page.
0 1 0 Reserved for future use.
0 1 1 Read-write page.
1 0 0 Execute-only page.
1 0 1 Read-execute page.
1 1 0 Reserved for future use.
1 1 1 Read-write-execute page.

Table 6: Encoding of the PTE’s fields R,W,X fields. Source: [10, p. 68]
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3 Implementing RISC-V’s Privilege Modes

RISC-V’s privilege modes are highly correlated to the control and status registers
(CSRs) and are therefore strongly coupled to the CSR module.1 An overview on
how the privilege modes were implemented is given in this section.

As stated in section 2.3.2, there exist several privilege modes on RISC-V. On the
ParaNut, the number of supported modes is configurable in the global ParaNut
configuration file to the following options: 1 (only M-mode, only available mode prior
to this work), 2 (M-mode and U-mode) or 3 modes (M-mode, S-mode, U-mode), as
shown in section 2.3.2. The mode in which the privilege mode is currently running
is stored in a register of two bits width2 in the CSR module. In contrast to the
CSRs, the privilege mode is a hidden register and not visible to software. The only
way to change to a lower mode in software is by setting the MPP or SPP fields in
mstatus and execute a MRET or SRET respectively. It is also possible to run into
an exception or on interrupts, which will result in the same or a higher privilege
mode. As the name CoPU intends, they are only meant to be used as coprocessors
and will mostly be used in U-mode. However, the CoPU’s registers can only be
accessed by themselves. Thus, to enable saving the register’s content on context
switches into pages owned by S-mode’s, they must be able to execute in S-mode as
well. Therefore, the decision was made that they are always running in the same
mode as the CePU.

By configuring more modes, more CSRs are added to the CePU. When S-mode is
configured, the registers listed in fig. 3 in section 2.3.3 are added to the CSR module,
adding the functionalities stated there. Whether a CSR is accessible in a specific
mode is determined by comparing the bit field [9:8] of the CSR address, as shown
in section 2.3.3, to the current value stored in the privilege mode register. If the
address’ bit field [9:8] is lower than the current mode, an illegal instruction exception
is raised.

The same behavior applies to system return instructions (MRET and SRET): If
field [29:28] in the instruction encoding is lower than the current privilege mode,
an illegal instruction exception is raised. The URET instruction also raises an
exception, because the ParaNut does not support user mode traps. When running
in S-mode, an SRET also raises an illegal instruction exception if TSR is set

1CSR functionalities were moved from the ExU to a separate CSR module in order to reduce
size and complexity of the ExU. However, they are still highly correlated to each other and many
signals are routed between each other.

2[10] allows to use only a single bit if only two modes are implemented, but for simplicity the
choice to do so is let to the synthesis tool.
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When an exception occurs in S-mode and U-mode, the ParaNut checks on trap entry
if the exception/interrupt is set in mideleg/medeleg, and if so, sets the new privilege
mode to S-mode and fills S-mode’s trap register, otherwise changes to M-mode and
M-mode’s trap registers are filled. If M-mode was the privilege mode when the trap
occured, the delegation registers are not checked, leading to the trap being handled
in M-mode.

In addition, trap handling was also required to be adapted: Previously, all cores of
the ParaNut finished their current instruction on traps and changed into a dedicated
exception state. This state halted all CoPUs until the exception state was left,
i.e. when execution a MRET/SRET/DRET instruction. However, when running
software implementing context switches, this didn’t allow to run the CoPUs in trap
handlers, preventing the CoPUs from being able to safe their current context and
switch to another one.

In the new implementation, the exception state was omitted and CoPUs are sim-
ply halted instead. Furthermore, the state of the CSR pnce prior to the trap is
stored in the register pnece (ParaNut exception core enable). When executing a
MRET/SRET/DRET instruction, pnce is set to pnece, similar to the behavior of
the privilege mode register and MPP described above.
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4 Virtual Memory Model for the ParaNut

When designing the virtual memory model of the ParaNut, strong focus was set
on supporting the Linux kernel. Hence, the ParaNut implements the Sv32 model
proposed in [10], since this is the memory model which was introduced in the offi-
cial Linux kernel sources. While still remaining compatibility, the Sv32 model was
slightly adjusted. Figure 19 illustrates the address translation process of virtual
address va to physical address pa. To do so, the two virtual page numbers vpn[1 : 0]
are translated to the physical page numbers ppn[1 : 0] by combining them with the
physical page number ppn[1 : 0] and the fields read (r), write (w), execute (x), user
(u) and valid (v) in the page table entry pte as follows:

1. Get the address of the first pte by combining the root page table pointer stored
in ppn in the CSR satp with the first virtual page number vpn: (satp.ppn �
12) + (va.vpn[1] � 2).

2. If the pte’s fields pte.r = 0 and pte.w = 1, or pte.v = 0, a page fault corre-
sponding to the access type (read, write, execute) is raised.

3. If the pte is valid, check if pte.r = 1 or pte.x = 1 to determine if it is a
megapage. If so, go to step 6. Otherwise, it is a pointer to another page table.

4. Get the secondary page table entry at the address (pte.ppn � 12) +
(va.vpn[0] � 2).

5. Check again if pte.r = 0 and pte.w = 1, or pte.v = 0 and raise a page fault
corresponding to the access type (read, write, execute) if so. Otherwise, go on
with the next step.

6. A leaf pte was found, which gives the mapping of va to pa depending on the
following cases:

• If superpage: Check for proper superpage alignment by comparing
pte.ppn[0] = 0. Raise a page fault corresponding to the access type (read,
write, execute) if it fails. Otherwise, pa = pte.ppn[1] � 22 + va.offset

• If page: pa = pte.ppn � 12 + va.offset

Though Sv32 would allow any RISC-V implementation to translate a 32 bit wide
virtual address into a 34 bit wide physical address, the ParaNut simply ignores the
two most significant bits in the PTEs. Hence, 32 bit wide virtual addresses are
always translated into 32 bit wide physical addresses, because the ParaNut uses an
address bus of 32 bit length.

In order to perform address translation, the ParaNut introduces a MMU, which
represents a collection of two modules. As visible in the light purple box in fig 20,
it consists of the page table walker (PTW), described in section 5, and a translation
lookaside buffer (TLB), explained in section 6.
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Figure 19: Illustration of the ParaNut’s address translation process for regular pages.
For superpages, PTE lookup in secondary page table is omitted.

Figure 20: The MMU and their components

When paging is enabled by setting MODE in the satp CSR, the BusIf invokes the
PTW to translate the address as soon as possible, and waits for it to complete the
translation. Since step 1 and 4 in the listing above each require a memory access,
the PTW implements a simple WishBone bus interface, only capable of reading
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accesses. Simple multiplexers forward the bus signals of the PTW and the BusIf to
the system bus. This is sufficient because the BusIf waits for the PTW to return a
translated address before doing an access if paging is enabled. If paging is disabled
or the translation completed, there is no need for the PTW to do any memory access.
Hence, the hardware design guarantees that there will be no concurrent accesses by
these two bus masters.

As already mentioned in section 4, reading one or two memory addresses before
doing the actual memory request, is very expensive. Therefore, to speed up address
translation, the ParaNut integrates a translation lookaside buffer (TLB) serving as
a cache for PTEs inside the MMU. Before the PTW requests the first PTE from
the BusIf, it sends a request to the TLB and waits for a hit or a miss. See section
6 for more details on the TLB.

Fig. 21 illustrates the flow of address translation: First, the TLB checks if it already
stores the PTE. In case of a hit, all information required for superpage or page
physical address generation are handed over to the PTW. On a TLB miss, the
PTW reads the PTE from main memory and checks the flags as well as proper
alignment. At this step, there exist three possibilities on how to move on:

1. Invalid flag combinations or invalid superpage alignment: A page fault is in-
dicated to the BusIf. Any pending memory access is omitted.

2. On detected superpages: The superpage physical address is generated
3. If a pointer to the next level is found: A second memory access is performed,

followed by another flag check. Again, if this check fails, the memory access is
skipped, otherwise the page physical address is generated.

Once the PTW or the TLB succeeds with a hit, the requested virtual address trans-
lated to physical address is ready to be read or written from system bus by the
BusIf.

To maintain good processing speed, the caches of the ParaNut are virtually ad-
dressed, which means that all cache tags are considered as virtual addresses as soon
as the paging was enabled. When paging is disabled, all virtual addresses = phys-
ical addresses. This requires the tag RAM to store the access control flags Read,
Write, Execute, User (RWXU) in the cache tag. When paging is disabled, RWXU
bits are always filled with 1, which means that no page faults will occur. This per-
formance improvement is incidental with the danger of inconsistencies on virtual
address aliasing: When different virtual addresses reference the same physical ad-
dress, they might be stored several times at different locations in cache. When one
of them is altered, the other one is not.
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Figure 21: Abstract illustration of the address translation process.

The access control flags are always routed from the cache tag RAM or the BusIf via
the read/write port to the LSU and the IFU as shown in fig. 22, and raise a page
fault corresponding to their access type when set to 0 in the ExU.

On reads, the U bit is routed together with the data to the ExU, which then chooses
to raise a page fault if set or not. However, on writes the data is forwarded the
other way from the ExU as a sender to either the BusIf or the cache as a receiver.
As a result, a signal is routed together with the data to the receiver, indicating if
a page fault should be raised, depending on the status of the U bit. The receiver
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Figure 22: Overview of the ParaNut’s memory model

then decides (after translating the address in case of the BusIf) if the write will be
performed or not and indicates a page fault by setting the W bit to 0 if applicable.

Since the IFU and the LSU have got a little instruction buffer and a little write buffer
respectively, slight changes to them were required: The IFU pre-fetches instructions
and stores them in an instruction buffer, therefore the U and X bit are also stored
next to the encoded instruction data and handed over together to the ExU.

Furthermore, to guarantee that a store page fault is raised no later than the instruc-
tion which triggers the write, the LSU’s write buffer accepts only one single item
when paging is enabled. The write is not acknowledged to the ExU prior to the
write being completed, in order to be able to guarantee access control to the ExU.

As described in 2.3.3, paging is only enabled when the MODE field in the satp CSR
is 1. Furthermore, paging is always disabled in M-mode. Changes from U-mode or
S-mode into M-mode and vice versa while MODE = 1 therefore disable and enable pag-
ing respectively. Since this changes the addressing mode (virtual or physical) in the
caches and buffers, they are flushed by hardware to avoid data loss or misbehavior1.

1This was also found while using the debugging module, as the debugging ROM code is always
executed in M-mode.
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5 Implementing a Page Table Walker

As soon as paging is enabled, each address which the ExU processes is considered
a virtual address inside the MemU. Therefore, the BusIf can not simply write and
fetch addresses from the system bus as before. Instead, the virtual addresses are
translated to physical addresses inside the MMU by walking the page tables. This
process is performed by a newly implemented and high-level-synthesizable SystemC
module called page table walker (PTW).

As already explained in section 2.2, the PTW is coupled and invoked by the BusIf.
All read and write ports route a paging signal to the BusIf to indicate if the requested
address is to be considered a virtual address, i.e. if it must be converted from
virtual address space to physical, or can already be considered to be physical. In
case it is physical, the BusIf directly accesses the system bus, similar to before any
project related changes were done. In contrast, if it is to be considered virtual, for
direct writes and reads on the system bus, the BusIf starts the PTW and waits for
it to acknowledge and return a physical address as well as the access control bits
(R,W,X,U) and the status bits (A,D). In case of the access type not being permitted,
the access to the resulting physical address is omitted and an access control bit of
0 is returned to the port. Otherwise, the data is read or written from the data bus
and the corresponding access control bits are returned to the port.

If S-mode is disabled in the ParaNut hardware configuration, it is impossible to
change the CSR satp, effectively setting all paging signals to 0. Thus, the PTW
is never invoked, which allows the synthesis tool to remove it from the system and
save chip area.

If an address is to be translated, the page tables need to be walked by the PTW.
The process of translation, namely Sv32, was already explained in section 2.2, and
is performed by a Moore machine. Since all PTEs are stored in main memory, the
PTW implements a simple Wishbone bus interface, only capable of ‘Classic Cycle‘
reading operations. That means that there is no indication to the slave about what
is to be done in the next cycle by the bus master, as described in [12, p. 75]. The
bus input emitted by the PTW is multiplexed as visualized in fig. 20 as soon as the
PTW indicates a bus cycle.

To make sure that ParaNut’s BusIf is capable of working both with physical and
virtual address spaces, it was slightly adjusted: Before project start, it consisted
of a Moore-type machine, processing system bus (reads and writes) and cache data
management (loading, invalidating and writing back) requests of the read and write
ports. The requested bus address was stored in a single register, which was filled
in the moment of the request. On direct reads and writes, this address was simply
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read or written; on cache operations, the address was read and modified to read
data from subsequent addresses. Furthermore, on cache writebacks the address was
exchanged with the address stored in the cache tag.

In the new implementation, two registers are used: one for the virtual address,
the other for physical addresses. Actual bus cycles are always performed with the
address stored in the physical address register. However, the virtual address register
is still required to indicate the ports which address was written.

When a port requests an operation from the bus interface, both registers are first
filled with the same value. In the next states, the bus interface requests address
translation from the PTW and stores the result in the physical address register.
Furthermore, there are dedicated registers in the BusIf for the access control bits,
one for each of R,W,X,U. Once the PTW successfully completes address translation,
it returns the access control bits. The R and X bits are then ANDed with the A bit
and the W bit is ANDed with both the A and D bit, in order to match A’s and D’s
access scheme described in section 2.3.5.

For virtually addressed cache operations, when the cache is filled, the virtual address
is first converted to a physical address, and the access control bits are stored together
with the virtual address in the cache tag. Afterwards, the bank is filled with a bus
burst operation on the incrementing physical address. Similar, when the cache is
written back, the virtual address is read from the cache tag, translated to a physical
address, and used for the incrementing cache bank write back. The access control
bits are simply ignored, as access control is already guaranteed by the ports and the
cache tag.

The process of address translation is performed as follows: When the BusIf leaves
the idle state due to a write/read port request, it saves the routed paging signal in a
register and changes the state as usual. In the following states, it decides as soon as
possible if the address is to be translated and requests address translation from the
PTW if required. Before the BusIf performs any request to the system bus, it waits
for the PTW to successfully complete with a physical address and access control
bits. A page fault is indicated by setting all access control bits to 0, otherwise the
PTE’s access control bits are forwarded. On read operations, the memory access is
omitted when both R and X are 0. On write operations, W must be set or U must
match the current active privilege mode. Read ports are then acknowledged with
data of value zero and all the access control bits set to 0, write ports simply with
the W bit set to 0. If a cache fill operation is to be performed, the cache is filled,
invalidated or written back regardless of the access control bits’ state. The ports
accessing the cache make sure that that all data accesses are valid by reading the
access control bits stored in the tag RAM.
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6 Implementing a Translation Lookaside Buffer

Loading a leaf PTEs from main memory is very time-critical: A superpages requires
at least one memory request, regular pages even two. Many modern processors with
a MMU therefore include a cache for PTEs called translation lookaside buffer (TLB),
and so does the ParaNut.

It is a high-level-synthesizable SystemC implementation of a fully-associative cache
for leaf PTEs with a latency of 1 clock cycle, i.e. the result is available after a single
clock cycle. Similar to the PTW, the TLB is never invoked if no supervisor mode
is configured, thus the synthesis tool may remove the TLB from the hardware and
save chip area.

Furthermore, there exist two parameters the TLB: First, it is possible to disable
it completely to save chip area though S-mode is enabled. Second, the number of
entries is configurable to a number to the power of two, though the size is currently
limited to 8 entries.1 Each entry is capable of storing either a page descriptor or a
superpage descriptor and contains:

1. a valid bit,
2. a tag,
3. a superpage bit,
4. status bits: A, D,
5. access control bits: R, W, X, U,
6. and a PPN.

For simplicity, above items 1-3 are later simply called TLB Tag and items 4-6 TLB
Data.

The superpage bit is required to determine if only the most significant half of the
tag address is to be compared, or also the lower. This is required because there is
no way to differentiate physical addresses of pages with the lower ten bits set to zero
by pure chance from superpages, where the lower 10 bits are always set to 0 (see
section 2.3.5 and 2.2 for more details on pages and superpages).

To determine where a new entry is to be stored, a tree-based Pseudo Least Recently
Used (PLRU) strategy, described by Abel in [13, p. 82f], was implemented, which
approximates a Least Recently Used (LRU) strategy but with lower hardware re-
quirements. Each node is represented by a single bit which indicates the direction
of the search. The total number of bits required is x − 1, where x is the number

1When Vivado is used to high-level-synthesize the SystemC module with more than 8 TLB
entries, Vivado crashes the developers machine by filling the RAM completely.
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of entries. Fig. 23 illustrates a PLRU tree for a cache with eight entries. As it is
visible, the tree currently points to Entry3. The binary tree is not updated on reads
as long as it is not completely full in order to make sure that every entry is filled. As
soon as each entry is valid, both reads and writes update the tree by setting each bit
on the path to point away from the accessed entry. If a write were to be performed
and the binary tree were like in fig. 23, Entry3 would be written and bits 0, 1 and
4 would be flipped, which makes the tree point to Entry6 afterwards.

When a new entry is to be writte into the TLB, it does not check if the new address
is already available or not. This is not required, as the PTW does not fill the TLB
with new entries after TLB hits, but only after TLB misses.

In the TLB implementation, the PLRU register is written a single clock cycle later
than the resulting data is available, as this decreases the longest path significantly
and allows higher system clock rates. To do so, the TLB stores the ID of the accessed
entry in a dedicated register, as well as another register used to indicate that the
PLRU is to be updated.

Figure 23: Illustration of a tree-based PLRU for a cache with eight entries.

Originally, it was intended to store the TLB Data in a Block RAM (BRAM) and
only the TLB Tag in (flip-flop) registers. However, High-Level-Synthesis (HLS) did
not allow the BRAM to be accessible immediately. Instead, it added two more clocks
delay, resulting in a access latency of 3 cycles, which is very slow compared to other
modern implementations of TLBs, e.g. the Inter Core i7 6700 with an access latency
of 1 as stated in [14, p. 134]. Therefore, the TLB Data is also stored in (flip-flop)
registers like the TLB Tag.
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7 Validation

While the project was progressing, many changes were made in different components
of the ParaNut. Therefore, it was necessary to ensure that all prior features of the
ParaNut still work and no functionalities are broken. Furthermore, all new features
need to be validated. To do so, some tools were developed, and also some other
projects were used to do so: A test bench was developed for the TLB, as well as a
little MMU / privilege mode testing program. Additionally, the official Linux kernel
was compiled and ran in the ParaNut simulator and on hardware, and successfully
printed approx. 30 lines of the boot output.

7.1 TLB Test Bench

To validate the TLB, which was implemented in SystemC, the test bench was also
developed in SystemC. At the very beginning, the test bench creates a list of test
cases with pseudo-random virtual address, physical address, page table bits and the
superpage bit. Then the actual validation is done: The TLB is reset, and for each
address, the following tests are performed:

At first, it is checked if requesting the virtual addresses leads to the expected miss.
Afterwards, the TLB is filled with this virtual addresses, physical addresses, the page
table bits and the superpage bit. Next, the virtual addresses is requested again, but
this time a hit is expected and the resulted physical addresses, page table bits and
the superpage bit are checked if they match the previously written ones. Then it
is checked if all previously inserted addresses are still available, with respect to the
maximum available entry count.

Once all test cases were written and checked, the TLB is flushed and the operation
is repeated in order to validate the successful flush.

7.2 MMU Test program

In order to test the MMU in total, an in-system test bench in the form of a RISC-V
program was developed for the ParaNut. Basically, it validates two features:

1. Privilege mode: The tool performs different instructions requiring different
privilege levels, which should invoke exceptions under certain conditions. Fur-
thermore, it tests interrupt delegation with M-mode’s hardware timer mtimer.
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2. Virtual memory: A set of page tables are created and filled to allow load
and store operations on the same physical addresses from different virtual
addresses.

To validate the privilege mode’s functionality, there exist two arrays, one which was
manually filled with the expected results in form of cause IDs, separate for each
privilege mode; the other one is initialized at execution time with zeroes (as this
exception code can never occur at execution time). When a trap occurs, the entry
of the test case is filled with the trap ID.

As the ParaNut can be configured at compile/synthesis time, the results slightly
differ depending on the selected configuration. First of all, the privilege modes
which are not included by the configuration can be omitted. Second, some CSR
(fields) do not exist and can therefore be omitted, too. Therefore, the test program
determines the privilege levels which are currently configured into the ParaNut by
writing and immediately reading the MPP of mstatus. Afterwards, the array with
the expected results is adjusted.

The privilege mode tests which are executed are:

1. Reading non-existent CSR: should fail always
2. Writing non-existent CSR: should fail always
3. Reading M-Mode RO CSR: only allowed in M-mode
4. Writing M-Mode RO CSR: never allowed
5. Reading M-Mode RW CSR: only allowed in M-mode
6. Writing M-Mode RW CSR: only allowed in M-mode
7. Reading S-Mode RW CSR1: only allowed in S-mode and M-mode
8. Writing S-Mode RW CSR: only allowen in S-mode and M-mode
9. Reading U-Mode RO CSR: always allowed

10. Writing U-Mode RO CSR: never allowed
11. Reading U-Mode RW CSR: always allowed
12. Writing U-Mode RW CSR: always allowed
13. Executing a MRET: only allowed in M-mode
14. Executing a SRET with TSR=0: allowed in S-mode and M-mode
15. Executing a SRET with TSR=1: only allowed in S-mode
16. Executing an URET: never allowed because the N-Extension is not imple-

mented
17. Receiving an interrupt from the mtimer with MIE=0 and SIE=0: interrupt

occurs only in U-mode

1Note that reading and writing S-mode RO registers are omitted because the ParaNutdoes not
implement any.
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18. Receiving an interrupt from the mtimer with MIE=0 and SIE=1: interrupt
occurs in U-mode and S-mode

19. Receiving an interrupt from the mtimer with MIE=1 and SIE=0: interrupt
occurs in M-mode and U-mode

20. Receiving an interrupt from the mtimer with MIE=1 and SIE=1: interrupt
occurs always

21. Receive an interrupt and set it to be delegated to S-mode with MIE=0 and
SIE=0: interrupt only in U-mode and handled by S-mode

22. Receive an interrupt and set it to be delegated to S-mode with MIE=0 and
SIE=1: interrupt handled in S-mode, but in M-mode no interrupt

23. Receive an interrupt and set it to be delegated to S-mode with MIE=1 and
SIE=0: no interrupt in S-mode, in U-mode handled by S-mode

24. Receive an interrupt and set it to be delegated to S-mode with MIE=1 and
SIE=1: handled by M-mode if in M-mode, otherwise handled in S-mode

25. ECALL from current Mode: raises an ECALL from current mode exception

To test the MMU, three separate arrays are declared, which were aligned to a bound-
ary of 212 with GCC variables attributes (see [15]) and initially filled with values of
0 to generate invalid PTEs. One array is meant as the root page table, the other
two as second level page tables. Some entries are then filled to make the completely
different virtual addresses 0x42344000 and 0x87354000 point to the exact same page
frame with a size of 4 KB; Furthermore, three different superpage entries are gen-
erated in the root page table so that the stack, .text and .data segment’s virtual
addresses equals their physical address.

Then satp.MODE is set to 1 and satp.PPN is set to point to the root page table.
Afterwards, the paging is activated by changing into U-mode. The paging example
code then simply fills the page frame with data and compares if both addresses point
to the same data when both virtual addresses do share the same page offset. The
validation succeeds if both arrays do have the completely same content though their
addresses are completely different, as their physical addresses are in fact similar.

7.3 Booting Linux

Writing testbenches and validation programs does only provide a simulated way to
validate the reliability of the ParaNut’s MMU. Misunderstanding and misinterpreta-
tion of the standard [10] led to errors which were introduced in the hardware as well
as the software. Therefore, it was inevitable to use a sophisticated program which
makes use of the Sv32 address translation scheme introduced in [10] and which was
developed by a third party: the Linux kernel.
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This provided many benefits: It is a sophisticated program with sophisticated paging
facilities and was already validated on other RISC-V processors. Besides that, it is a
professionally used software without contrived test cases. In conjunction with [16],
many bugs were found:

• Wrong combinations of physical page numbers and with virtual page numbers
or offsets, thus resulting in invalid physical addresses.

• Exception flag: the ParaNut set a flag when it entered a trap handler and
resetting it when leaving the trap handler with a trap return instruction. This
was used to stall the CoPUs while the CePU handles the trap. However, The
Linux provokes a page fault to change the virtual addresses, but does not
leave it with a trap return instruction. This flag was removed and the CoPUs
now halt completely on traps once their enable and mode status was stored in
separate CSRs.

• The cache was not flushed when the privilege mode was changed from S-mode
to M-mode and vice versa while paging was enabled. This led to an invalid
mix of virtual and physical addresses. The CSR module was changed to detect
this condition on trap or debug entry as well as on trap and debug return
instructions and flush the cache if required.

• Some timing errors were investigated, including the PTW bus output address
changing too early.

• When paging was enabled, the LSU’s write buffer was disabled completely
without flushing it.

• Similar, the access control bit R was not transmitted from the read port cor-
rectly in the LSU and IFU.

After all mentioned bugs were fixed, the ParaNut was able to print about 30 lines
of Linux’ boot output in the simulator, and a reference design was created for the
Zybo Z7[17] to run it on FPGA hardware as well. More details about Linux on the
ParaNut are available in [16].
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8 Conclusion

8.1 Summary

The results of this project show, how a fully functional RISC-V compatible MMU
was developed and integrated into the RISC-V compatible processor ParaNut. In
this particular case, the MMU was implemented with two modules implemented
in SystemC: The first being a PTW, which translates virtual addresses to physical
addresses completely in hardware by accessing PTEs stored in page tables located
inside the main memory, and second a TLB, which is used as a cache for PTEs
and helps to reduce the number of memory accesses, hence speeding up the address
translation. The latter is, similar to the ParaNut’s regular cache, configurable in its
size and can be disabled completely to reduce the required chip area at synthesis.

Furthermore, privilege modes (machine, supervisor and user) were implemented
which enable software to provide different layers of abstraction, thus allowing to
embed further security in the software. At synthesis time, the number of available
privilege modes is configurable to either one, two or three modes, where only the
presence of supervisor mode makes the MMU available in hardware, hence allowing
to save chip area if not required. If configured, virtual addressing is enabled by
writing into a CSR, which sets the regular cache of the ParaNut to be virtually
addressed to provide a reasonable performance.

All results of this work were tested and validated with simple and fully functional
RISC-V bare-metal applications or test benches. Furthermore, the capabilities of the
implemented design were proved when the Linux kernel was booted in the simulator
and on FPGA hardware, having the kernel print about 30 lines of boot output.

8.2 Future work

The presence of the MMU enables a full set of new projects: With the ability to
use virtual address spaces and translating them, a typical requirement of operating
systems is provided. Therefore, focus can be set on various RISC-V compatible
operating systems, especially on improving the Linux support.

Also, the current implementation of the MMU can be optimized for smaller area or
timing requirements, e.g. the TLB may be optimized to use BRAM to store PTEs
instead of flip-flop registers.
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Furthermore, thanks to the ParaNut being publicly available with a permissive li-
cense, this implementation can serve as a reference implementation for other RISC-V
cores.
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