
Fakultät für
Informatik

Masterarbeit

Studiengang

Master Informatik

Alexander Bahle

Matr.-Nr.: 955273

Optimization of the ParaNut softcore processor

for FPGA systems

Prüfer: Prof. Dr. Gundolf Kiefer

Abgabedatum: 02.11.2020

Hochschule für angewandte

Wissenschaften Augsburg

An der Hochschule 1

D-86161 Augsburg

Telefon +49 821 55 86-0

Fax +49 821 55 86-3222

www.hs-augsburg.de

info(at)hs-augsburg-de

Fakultät für Informatik

Telefon +49 821 55 86-3450

Fax +49 821 55 86-3499

Verfasser der Arbeit:

Alexander Bahle

Von-Osten-Straße 18

86199 Augsburg

alex.bahle@web.de

Copyright © 2020 Alexander Bahle.

This work is licensed under the Creative Commons Attribution + ShareAlike 3.0 DE. To view

a copy of this license, visit https://creativecommons.org/licenses/by-sa/3.0/de/legalcode or

send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

 Except where otherwise noted, this work is licensed under

 https://creativecommons.org/licenses/by-sa/3.0/de/

https://creativecommons.org/licenses/by-sa/3.0/de/legalcode

Contents
List of Figures III

List of Tables III

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose of this work . 1
1.3 Structure of This Work . 2

2 Fundamentals 2
2.1 The RISC-V Instruction Set Architecture 2
2.2 The ParaNut Processor Architecture 3

3 State of the Art 4
3.1 Timing Closure Techniques . 5
3.2 Bus Structures . 6

3.2.1 Crossbar . 6
3.2.2 Omega network . 7

4 Status Quo 9
4.1 Memory Unit (MemU) . 10

4.1.1 Cache Tagram . 10
4.1.2 Cache Bankram . 11
4.1.3 Port to Cache Interconnect 12
4.1.4 Arbiter . 12

4.2 Execution Unit (EXU) . 17

4.3 Load Store Unit (LSU) . 19

5 Optimization 19

5.1 Memory Unit (MemU) . 20

5.1.1 Cache Tagram - Write in one cylce 20
5.1.2 Cache Bankram - Use of byte enable signals 22
5.1.3 Port to Cache Interconnect 22
5.1.4 Arbiter . 24

5.2 Execution Unit (EXU) . 29

5.3 Load Store Unit (LSU) . 31

I

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis
LIST OF FIGURES

6 Evaluation 32
6.1 Resource Usage . 34
6.2 Timing Results . 34
6.3 Benchmark Results . 35

7 Conclusion 37

Bibliography 38

List of Figures
2.1 Block diagram of a ParaNut processor with four cores 4
2.2 Operating modes of a CPU in the ParaNut processor 4

3.1 Schematic of 4 input (grey) 4 output (yellow) Crossbar 7

3.2 A graph of an 8 PE omega network 8

4.1 Memory Unit blockdiagram for 2 cores and 2 Banks 10
4.2 Memory Unit Cache Tagram address and control flow for 2 cores.

Green: Address and Tagram control, Black: Arbiter signals 11
4.3 Memory Unit read write port to cache data flow for 2 cores and 2

banks. Green: Write data, Red: Read data, Black: Arbiter signals . . 13
4.4 Input address select for a dual port Bankram with 2 cores 17
4.5 MExtension multiplication path, Red: DSP slices, Orange: Add and

select function . 18
4.6 Schematic of the linked mode synchronization daisy chain for 4 EXUs 18

5.1 Address routing from 2 cores to 4 Bankrams through an Omega Network 23
5.2 Address routing from 2 cores to 4 Bankrams through an Omega Net-

work - simplified . 23
5.3 Address routing from 2 cores to 1 Bankram through an Omega Net-

work - simplified . 23
5.4 Write data routing from 4 cores to either 4 Bankrams or 1 Bankram

through an Omega Network . 24
5.5 Schematic of the selector used in the Arbiter 25
5.6 Schematic of the BusIf arbitration selector stages for 4 cores 26
5.7 Schematic of the Linelock arbitration selector stages for 4 cores . . . 27
5.8 Optimized input address select for dual port Bankrams with 2 cores 29

5.9 M-Extension with the added registers (red) 30

5.10 Schematic of the linked mode synchronization daisy chain for 4 EXUs
with added register . 31

Alexander Bahle II

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

LIST OF TABLES

6.1 Block diagram of the ParaNut system 33

List of Tables
2.1 List of all ratified RISC-V instruction sets and extensions 3

4.1 4-way associative Tagram line example with 84+n bit 11
4.2 Single port Bankram inputs for 2 cores - Select value is equal to index 16
4.3 Dual port Bankram inputs for 2 cores - Select value is notequal to index 17

5.1 4-way associative Tagram line example with 84 bit 21
5.2 Dual port Bankram inputs for 2 cores now - Select value is equal to

index . 28

6.1 The ParaNut Benchmark configuration 33
6.2 Zynq 7000 resource usage before . 34
6.3 Zynq 7000 resource usage after the optimization with saving compared

to table 6.2 . 34
6.4 Zynq 7000 maximum clock frequency 35
6.5 CoreMark benchmark results before 36
6.6 CoreMark benchmark results after the optimization with comparison

to table 6.5 . 36
6.7 Dhrystone benchmark results . 37

Alexander Bahle III

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

1 Introduction

1 Introduction

1.1 Motivation

For some time a trend towards application specific processors is noticeable in most
computing fields. Special architectures to accelerate Artificial Intelligences (AIs) or
cryptography in Internet of Things (IoT) systems are common and widely adopted.
Nonetheless general purpose processors are used in most of these systems as well
because they have mature toolchains and the ability to be easily software-pro-
grammable. Offering these advantages while still being able to be catered towards a
specific application is the aim of customizable processors. Modern field-programmable
gate arrays (FPGAs) provide the necessary flexibility to develop systems with a spe-
cialized hardware and customizable softcore processors with low cost even for low
volume production.

The ParaNut architecture describes a processor architecture that is open source, cus-
tomizable, and highly scalable using the RISC-V instruction set architecture (ISA).
Beyond the functions of other general purpose processor the ParaNut architecture
offers special implementations for data-level and thread-level parallelism in an effort
to gap the bridge between these forms of parallelism.

1.2 Purpose of this work

The goal of this work is the optimization of the ParaNut processor SystemC and
VHDLmodel in order to achieve higher clock speeds. A single core ParaNut should be
able to run at 100 MHz on the current generation of FPGAs used at the University of
Applied Sciences Augsburg (UASA). Using systematic optimization strategies, like
the implementation of constant paths, should be used to also improve the speed of
multi-core systems up to 100 MHz. The secondary target is reducing the FPGA re-
sources usage of the processor in all or some configurations. The timing and resource
report of the FPGA toolchain and a well-chosen set of software are used to validate
the goals on a theoretical and practical level. The results of selected benchmarks can
be compared to previous implementations and further confirm the optimizations.

Alexander Bahle 1

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

2 Fundamentals

1.3 Structure of This Work

The following chapter 2 ”Fundamentals” will first introduce the RISC-V instruction
set architecture and then describe the internal structure of the ParaNut architecture.
The chapter 3 ”State of the Art” gives an overview of techniques used in this work
to enhance the processors performance and resource usage. After that the chapter 4
”Status Quo” presents the status quo of the different components of the ParaNut im-
plementation at the beginning of this work that is ought to be improved upon. The
chapter 5 ”Optimization” then lists and describes the actions and changes applied
to the components. It is structured in the same manner as the chapter before to
easily reference and compare the improvements.
The chapter 6 ”Evaluation” presents the accumulated results of this work and eval-
uates them against previously collected findings. Lastly the chapter 7 ”Conclusion”
offers the summary of this work.

2 Fundamentals

2.1 The RISC-V Instruction Set Architecture

RISC-V (pronounced ”risk-five”) is a free and open instruction set architecture (ISA)
that is being developed since 2010. The RISC-V Foundation, an association of more
than 235 organizations from universities to well-known companies, has been respon-
sible for the continuous development of the RISC-V instruction set architecture. The
architecture uses a modular structure, which is based on a standard instruction set
with 32, 64 or 128 bit instruction and address width. In addition, any number and
combination of instruction set extensions can be supported by a RISC-V processor.
The detailed descriptions of the ISA and the open-source model allows to develop
processors using the common resources whilst the processor itself can use a differ-
ent licensing model. The table 2.1 shows all RISC-V instruction sets and extensions
ratified by the RISC-V Foundation to date [Waterman u. a. 2019].

Alexander Bahle 2

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

2 Fundamentals

Name Description
RV32I Base integer instruction set with 32 bit address & register size
RV64I Base integer instruction set with 64 bit address & register size
RV128I Base integer instruction set with 128 bit address & register size
Zicsr Instructions that operate on the control and status registers (CSRs)

”M” Extension Extension for integer multiplication and division
”A” Extension Extension for atomic instructions
”F” Extension Extension for single-precision floating point instructions
”D” Extension Extension for double-precision floating point instructions
”Q” Extension Extension for quad-precision floating point instructions

Table 2.1: List of all ratified RISC-V instruction sets and extensions

2.2 The ParaNut Processor Architecture

The ParaNut architecture is developed by the working group Efficient Embedded
Systems headed by Gundolf Kiefer at the University of Applied Sciences Augsburg.
The goal of the project is to develop an open source scalable softcore processor for
FPGAs. By focusing on parallelization on thread and data level, smaller and less
complex cores can be used. Starting with the OpenRISC instruction set for both, a
SystemC model and a VHDL implementation, of the architecture a change to the
RISC-V instruction set was carried out in 2019 [Kiefer u. a. 2015a]. The architecture
was presented at the Embedded World Conference in 2015 [Kiefer u. a. 2015b] and
in 2020 [Bahle u. a. 2020].
The structure of a ParaNut processor is shown in figure 2.1. The processor consists of
a Central Processing Unit (CePU) and an arbitrary number of Co-Processing Units
(CoPU), which are all connected to the central Memory Unit (MemU). The MemU
contains the cache shared by all CPUs and several measures for synchronization
between the processing units.

A CPU consists of the Execution Unit (ExU), which contains the registers (general
and special), the Arithmetic Logic Unit (ALU) and the control unit for the CPU.
Connected to this is the Instruction Fetch Unit (IFU), which reads instructions via
its own connection to the MemU and stores them in a small configurable buffer. The
Load Store Unit (LSU), also connected to the ExU, is responsible for read and write
data access and features a write buffer.
Another special feature of the ParaNut architecture are the operating modes of the
CPUs, which are shown in figure 2.2.

Mode 0: The CPU is inactive

Alexander Bahle 3

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

3 State of the Art

Figure 2.1: Block diagram of a ParaNut processor with four cores
source: [Kiefer u. a. 2015a]

Mode 1: The CPU itself does not load instructions via the IFU, but executes
the instruction stream of the CePU.

Mode 2: The CPU independently loads commands via the IFU and executes
them. Exceptions are handled by the CePU.

Mode 3: Only the CePU runs in this mode. Mode 2 with additional exception
handling and management functions

Figure 2.2: Operating modes of a CPU in the ParaNut processor
Source: [Kiefer u. a. 2015a]

A deeper look into the inner workings of the MemU with a focus on components
that are important for this work is following in chapter 4.

Alexander Bahle 4

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

3 State of the Art

3 State of the Art

This chapter contains the state of the art methods used to optimize the ParaNut ar-
chitecture implementation.

3.1 Timing Closure Techniques

The Timing Closure describes the process by that an FPGA or ASIC design is
changed to improve performance and meeting timing objectives. The brunt of the
work is often handled by the Electronic Design Automation (EDA) software used
(e.g. Xilinx Vivado) that can get beneficial input from the designer to further improve
timing behavior.

The possible clock speed in a hardware design can be formulated as seen in formula
3.1. tcycle represents the clock period, tcombDelay the combinatorial logics longest
path delay, tsetup the setup time of the receiving storage element, and tskew the time
offset between one storage element and another storage element because of routing
delays. [Kahng u. a. 2011]

tcycle ≥ tcombDelay + tsetup + tskew (3.1)

Modern EDA software for FPGAs contains the functionality to estimate the values
in formula 3.1 based on a Static Timing Analysis (STA) that propagates Actual
Arrival Times (AATs) and Required Arrival Times (RATs) to every cell, pin or net
inside the design to identify timing problems. So called timing violations are easily
diagnosed and the path or paths can be visualized to localize the parts of the design
that caused them. These paths violating the defined timing goals are called critical
paths. Modifying these is one way to improve the performance of a design. [Kahng
u. a. 2011]

In an FPGA or ASIC design the tcombDelay includes not only the logic delay by the
gates or cells themselves but also the routing delay between them. For slow designs
the routing delay may not play a big role but for high performance designs it can be
significant. The place and route step in the EDA design process will try to optimize

Alexander Bahle 5

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

3 State of the Art

this delay to a certain point and try to meet the timing requirements set by the
designer. The routing delays on an FPGA are also dependent on the amount of
logic cells used by the design, because of apparent dependencies when more cells are
used and less room for optimizations is available. For optimal timing results Xilinx
for example suggested for older generations of FPGAs a 60/40 rule where 60% of
the timing budget can be used up in logic and 40% should be saved to be used for
routing the design. [Whatcott u. Xilinx Inc. 2008]

If a path is too long because of its tcombDelay one can add registers at fitting points
in the combinatorial logic and thus cutting the path into two smaller paths. If the
cut is exactly in the middle the added delay through the registers may be mitigated
by enabling to run the logic at double the speed possible before. Although that
might not be feasible in every case because of dependencies to surrounding logic
or if additional routing delays are necessary. By cutting the path multiple times a
pipeline can be implemented which may improve the throughput while in ideal cases
the delay stays the same. [Patterson u. Hennessy 2014]

The easiest way to hit timing closure targets is to define timing targets as early as
possible in the design phase of the hardware and design every component to meet
the timing target. Using only Moore machines as finite-state machine (FSM) ensures
that paths will not grow in unexpected ways especially when connected and used in
combination with other Moore machines. The opposite can be said for using Mealy
machines which require great planning and foresight to ensure the timing targets in
combination with other FSMs can still be met and thus should be used only sparsely.
[Simpson 2015]

3.2 Bus Structures

There are different ways to connect multiple processing elements (PEs) with each
other and required resources like memory. Each have unique properties that deter-
mine the speed of the system and its scalability.

3.2.1 Crossbar

Originating from early telephony and circuit switching the term crossbar switch
describes a network of where every input M can be connected to each output N
resulting in a matrix of M ∗ N cross-points. Each cross-point switch connects one
of the inputs to one of the outputs. This enables a non-blocking operation where
one connection does not prevent another connection on different inputs and outputs

Alexander Bahle 6

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

3 State of the Art

in the network. This can lead to a situation where every input and every output
can be used concurrently if there are no overlapping connection pairs. [Scudder u.
Reynolds 1939] Figure 3.1 is a schematic of a Crossbar with 4 inputs (M) and 4
outputs (N) resulting in 16 cross-points. Every cross-point contains a switch which
can be implemented depending on the target system from physical switches to tri-
state buffers or FPGA logic. To automate the switching and arbitrate conflicting
accesses each of the switches is controlled by a signal generated by a switching logic
block that collects the requests of all inputs. The function of the switching block
is arbitrary, for example it could be fully blocking and only allow one access per
transmission or time slice.

0 1 2 3

3

2

1

0
S

0

S
4

S
8

S
12

S
13

S
14

S
15

S
9

S
10

S
11

S
5

S
6

S
7

S
1

S
2

S
3

Switch
Control

Switching
Logic

...

Requests

Figure 3.1: Schematic of 4 input (grey) 4 output (yellow) Crossbar

Transferred to a digital bus on a FPGA the crossbar offers an easy implementation
and arbitration strategy. Each output has a multiplexer with M inputs and the
arbitration can select one of the possible inputs based on given prioritization or
other strategies. The drawbacks of using this bus structure include the at least
linear growth of required resources for adding a participant. On FPGA systems a
crossbar can also quickly lead to long paths because of the amount of signal routes
between the inputs and outputs.

3.2.2 Omega network

The Omega network has, in contrast to the Crossbar, a multistage interconnection
network. A balanced network with N inputs and N outputs contains N/2 switches

Alexander Bahle 7

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

3 State of the Art

at each of the log2N stages. [Lawrie 1975] The switches themselves are as simple as
possible and feature 2 inputs and 2 outputs. They can either pass the inputs directly
to the outputs or cross them. By connecting them in a faro or perfect shuffle each
input can reach every output setting the switches in each stage to either pass or cross
the inputs. [Diaconis u. a. 1983] The necessary switch position to successfully route
through the network can be determined by defining a destination address for the
input and using either the Destination-tag or XOR-tag routing method described in
the following sections.

In a simple implementation where every switch in one stage has the same switching
state the Omega networks are highly blocking which means only one input can be
routed to one output per time slice. Considering the reduced amount of resources
((N/2) ∗ log2N) a sublinear growth should be possible with this bus structure.

Figure 3.2: A graph of an 8 PE omega network
Source: Wikimedia, ”Creative Commons” by Bjmyers17, License: CC BY-SA 3.0

Destination-tag routing

The routing is solely dependent on the destination output and can be defined as a
number with log2N bits. For example in the 8x8 network depicted in figure 3.2 to
get to output 5, in binary 101, at the A stage the lower output has to be selected, in
the B stage the upper output and in the C stage the lower output again regardless
of the input port the routing starts from. Therefore the output address can be used

Alexander Bahle 8

https://en.wikipedia.org/wiki/File:Omega_Network.jpg
https://en.wikipedia.org/wiki/User:Bjmyers17
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

for routing by taking the most significant bit for the first stage, the next bit for the
second stage and so on to select the output (0 meaning top output and 1 meaning
bottom output). However this method requires that each switch knows which input
requires routing and thus is more suitable for message based communication than
for a hardware bus.

XOR-tag routing

For the XOR-tag routing the input address and output address are XORed. The
resulting tag contains a specific bit combination coding the specific switch setting
for this communication pair. Looking at the example network in figure 3.2 input
3 (011 binary) to output 6 (110 binary) would yield the tag 011 ⊕ 110 = 101. As
with Destination-tag routing the most significant bit is used in stage A to either
pass through the inputs (0) or cross the inputs (1). Thus the XOR-tag 101 would
result in crossing stage A, passing through in stage B and lastly crossing stage C to
reach the selected output 6 from input 3. Assuming that the access to the outputs
is fully blocking and each switch in a stage is switching the same the hardware can
be simpler and is more suitable for the hardware bus communication.

4 Status Quo

In this chapter the status quo of the ParaNut processor before this work is described.
The focus is on parts that are changed and optimized in the following chapter 5. In
the first section the Memory Unit (MemU) and its many sub modules like the Arbiter
and inner workings are described, showing the bottlenecks and things that could be
improved. The next section covers the Execution Unit (EXU) and the opportunities
with the multiplication function and the linked mode synchronization. The Load
Store Unit (LSU) is covered in the last section, showing a critical path originating
from this module.

Before this work the system clock frequency for the ParaNut processor did not
scale well with the number of cores. Starting at 50MHz for a single core, the clock
frequency needed to be decreased roughly 20% down to 40MHz for 2 cores and
another 20% down to 33MHz for 4 cores and finally at 8 cores only 20MHz are
possible on a current generation FPGA board. One of the several reasons is the
combinatorial logic inside the Memory Unit (MemU) that arbitrates the accesses of
the CPUs to the shared cache. [Bahle u. a. 2020]

Alexander Bahle 9

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

4.1 Memory Unit (MemU)

The Memory Unit (MemU) plays a vital role in the performance of a ParaNut pro-
cessor, especially in multi core systems. The complex mechanisms to ensure high
performance during parallel execution (threaded and SIMD) are also responsible for
a large part (about 30%) of the FPGA resources the processor needs. Furthermore
most of the MemUs submodules are either Mealy machines (Readport/Writeport)
or combinatorial logic (Arbiter) which leads to critical timing paths and affects the
possible clock speed.
Figure 4.1 is a schematic of the MemU and its core components without any connec-
tion shown. This example features the Readports and Writeports for 2 cores with
a capability >= 2 and 2 Cache Banks. The Cache Tagram, Bus Interface and the
Arbiter are present regardless of configuration.

Cache
Bank

#0

Cache
Tagram

Readport
#0

Writeport
#0

Readport
#1

Bus Interface

Arbiter
Cache
Bank

#1

Readport
#2

Writeport
#1

Readport
#3

Memory Unit

Figure 4.1: Memory Unit blockdiagram for 2 cores and 2 Banks

4.1.1 Cache Tagram

The Cache Tagram is optimized to serve multiple cores in parallel. This is achieved
by replicating the Tagram and thus allowing independent access to the cache tag
information. Figure 4.2 depicts the address and control signal flow towards the Cache
Tagram distributed to the two internal Tagrams. Notice that the last Tagram also
has to serve the BusIf increasing the interconnects size. The memory is ought to be
fully mapped to block RAM cells but fails to do so prior to this work, resulting in a
much higher resource usage.

Cache tags are organized as shown in table 4.1 in a cache tag line for a cache
associativity of 4. The last few bits contain the least recently used information if
that feature is enabled.

Alexander Bahle 10

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

Cache
Tagram

Readport
#0

Writeport
#0

Readport
#1

Bus Interface

Arbiter

Tagram
#0

Tagram
#1

Readport
#2

Writeport
#1

Readport
#3

Memory Unit

Figure 4.2: Memory Unit Cache Tagram address and control flow for 2 cores. Green:
Address and Tagram control, Black: Arbiter signals

Bits 4 4 76 (n)
Desc. valid(0 to 3) dirty(0 to 3) taddr(19)(0 to 3) (lru)
Table 4.1: 4-way associative Tagram line example with 84+n bit

The output towards the Readports and Writeports is only a single tag entry. For an
associativity of 2 and 4 every entry inside the cache tag line output of the block RAM
needs to be checked for a hit and the output selected accordingly. Since the cache
entry information is used in the receiving machines to either request permission to
read or write the Bankram through the Arbiter the dependencies could be eliminated
to remove the possibility of creating long paths for higher associativity in multi core
systems because of growing routing delays.

4.1.2 Cache Bankram

The Bankram is fully mapped to block RAM and can be configured to use as many
concurrent ports as the FPGA hardware allows. For the current generation this
leads to two read and write ports. For a single core ParaNut one port pair is used
by the only EXU and the other by the BusIf. In multi core configurations the even
numbered EXUs share one port pair and the odd numbered EXUs together with the
BusIf the other one resulting in lower latencies and less resources overall.

Alexander Bahle 11

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

Reads are guaranteed to be handled in a single cycle. This guarantee can be utilized
in the arbitration logic. Writes on the other hand are only single cycle for full word
writes, half-word and byte writes require the Writeport to read the memory first and
then combine the data before writing a whole word. This significantly hampers the
performance of software operating on byte or half-word data. Furthermore this adds
unnecessary logic to the Writeport. A better solution would be to utilize the byte
enable inputs of the block RAM cells to select the bytes that need to be written.
[Xilinx 2019]

The challenges of routing address and write data to and read data from the Bankram
to the Readports, Writeports and BusIf in multi core systems will be described in
section 4.1.3 but should be mentioned here.

4.1.3 Port to Cache Interconnect

Figure 4.3 shows the data flow design of the MemU for 2 cores and 2 banks. Each
core requires a Readport and Writeport to read and write data from and to the cache
banks and one Readport to read instructions. Since the cache banks are connected
to these ports through 2 Crossbar switches (write and read). The write Crossbar has
N (number of cores) inputs and B (number of banks) outputs, resulting in N ∗ B

endpoints growing linearly with the amount of cores or amount of banks. The read
Crossbar on the other hand has B (number of banks) inputs and 3 ∗ N outputs,
leading to 3 ∗ N ∗ B endpoints and thus greater, but still linear, growth compared
to the write Crossbar. The data flow towards the Writeports is needed for writing
bytes and half-words to the cache, which requires to read the word from the bank
and then combining it with the bytes that are written inside the Writeport before
writing a full word to the bank.

The figure 4.3 only shows the data flow but the address flow is equally complex and
also requires crossbar switches to connect all components with each other. Also the
data flow to and from the BusIf was omitted. The BusIf has B data read inputs and
B data write outputs to parallelize the accesses to the cache as much as possible.

4.1.4 Arbiter

For the Arbiter one can divide it into smaller parts based on the subject that needs to
be protected from conflicting access. Each part has its unique set of inputs and out-
puts and a different arbitration strategy. Most of these strategies rely on a prioritiza-
tion on core level. The way the current core with the highest priority is determined is
configurable at compile or synthesis time by setting the CFG_MEMU_ARBITER_METHOD

Alexander Bahle 12

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

Cache
Bank

#0

Readport
#0

Writeport
#0

Readport
#1

Arbiter

Cache
Bank

#1

Readport
#2

Writeport
#1

Readport
#3

Memory Unit

Crossbar CrossbarCrossbar

Figure 4.3: Memory Unit read write port to cache data flow for 2 cores and 2 banks.
Green: Write data, Red: Read data, Black: Arbiter signals

configuration option. A round-robin option where each core has the priority for a
defined amount of clocks before switching to the next is the default. The other pos-
sible option is a pseudo-random selection based on a linear-feedback shift register
(LSFR).

To describe the arbitration its inputs and outputs variables are defined here and
then used in the following sections:

N Number of cores in the ParaNut processor.

R Number of Readports in the ParaNut processor. Increases by 1 for each Mode
1 capable core and by 2 for each Mode 2 capable core.

W Number of Writeports in ParaNut processor. Is the same as N.

C Is the current core with the highest priority. Determined by an arbitrary al-
gorithm.

Bus Interface (BusIf)

In the current implementation of the ParaNut architecture there is a single Bus
Interface (BusIf) that handles accesses to the main system bus. Every Readport or
Writeport can request and use it to either read or write single words or handle the

Alexander Bahle 13

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

cache related accesses to replace, flush or invalidate cache lines. Since these accesses
often take a multitude of clock cycles and only one access is possible at a time the
use of the BusIf needs to be arbitrated.

The arbitration function has R + W request inputs and R + W grant outputs one
from/to each Readport and Writeport. The BusIf arbiter first checks if there are
previous grants that are still needed (request and grant of the Readport or Writeport
are set) and does not change the grant signals until the request is no longer set. If
there is no grant set each core checks if there are any requests from its Readport or
Writeports based on the following fixed prioritization:

1. The data Readport connected to the cores LSU.

2. The instruction Readport connected to the cores IFU (not present for cores
with a capability of 1).

3. The data Writeport connected to the cores LSU.

Starting at the core C with highest priority the first core that has a request gets the
BusIf grant in the same cycle.

Cache Linelock

The Linelock implements a mutex for a single cache line (cache tag and all data
banks) between all writers to the cache. The writers include all Writeports and
the BusIf. This is necessary because the cache tags and banks are not necessarily
written in the same cycle, which could lead to unwanted behavior. Requests can
take an arbitrary amount of cycles to complete and only one access per cache line
is possible.

The arbitration function has W + 1 request and address inputs and W + 1 grant
outputs from/to each Writeport and the single BusIf. Previous grants that are still
requested remain granted until the request is released. During this time the address of
the requesting input is not allowed to change. The current policy excludes Writeports
from concurrent Linelocks even if the address is different to save area and reduce
path size (not every address input has to be checked against each other) but allows
the Writeports to acquire a Linelock concurrently with the BusIf if the addresses
don’t reference the same cache line. This means that the BusIf request is granted
if its addressed cache line is different from all other granted addressed cache lines.
Since the amount of inputs grows with the amount of cores this is a potentially
problematic path for higher numbers of cores. For the Writeports the request is

Alexander Bahle 14

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

granted, starting on core priority at the core C, if no other Writeport is granted and
its addressed cache line differs from the BusIf (only one address compare).

Cache Tag

The access to the cache tags is arbitrated differently for read an write accesses. Only
one writer is possible at a time and a write excludes all readers. Because of the per
core replicated tagram a read access on different cores are never conflicting and only
reads originating from the same core need to be arbitrated.

The arbitration function has R + W + 1 read request inputs and R + W + 1 read
grant outputs from/to each Readport, Writeport and the BusIf. Moreover there are
W + 1 write request inputs and W + 1 write grant outputs from/to each Writeport
and the BusIf. Previous grants that are still requested remain granted until the
request is released. A pending write request excludes new read requests from being
granted to give the writers priority and to prevent write starvation. For writers the
BusIf has the highest priority followed by all Writeports by current core priority C.
Read requests are handled on a per core basis and are ordered by following fixed
prioritization:

0. (The BusIf read, only necessary for the last core which shares the Tagram port
with the BusIf)

1. The data Readport connected to the cores LSU.

2. The instruction Readport connected to the cores IFU (not present for cores
with a capability of 1).

3. The data Writeport connected to the cores LSU.

The read arbitration is constant because of the constant amount of inputs per core
(either 3 or 4 for the last core). The write arbitration however is growing linearly with
the amount of cores and could possibly be critical for systems with many cores.

Bankram

The arbitration for the Bankram is completely independent per bank and will be
described as such in this section. As mentioned in section 4.1.2 the Bankram can
be configured to use multiple block RAM ports to increase performance which is
also reflected in the Bankram arbitration by allowing concurrent readers per port.
However only one writer is possible per bank regardless of the number of ports.

Alexander Bahle 15

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

The arbitration function has R + W + 1 read request inputs and R + W + 1 read
grant outputs from/to each Readport, Writeport and the BusIf per bank. Moreover
there are W + 1 write request inputs and W + 1 write grant outputs from/to each
Writeport and the BusIf per bank. Previous grants that are still requested remain
granted until the request is released. Read requests from the BusIf have the highest
priority the rest of the read requests are prioritized by core priority C and then on
the following fixed prioritization per core:

1. The data Readport connected to the cores LSU.

2. The instruction Readport connected to the cores IFU (not present for cores
with a capability of 1).

3. The data Writeport connected to the cores LSU.

Some more logic takes care of granting multiple read requests per port if the address
that is requested is the same for the read accesses. For the write requests again
the BusIf has the highest priority. The other write requests originating from the
Writeports are prioritized by core priority C.

Since these grants are also used as the select signals for the previously described port
to cache crossbar interconnect (section 4.1.3) the Bankram arbitration is part of the
critical path and grows quickly with the amount of cores in a ParaNut processor.

The usage of multiple block ram ports and splitting the possible inputs is also not
reflected properly in hardware. Table 4.2 shows the index used to for example select
the input address for a Bankram port correlates with the possible select values for
the Bankram with a single port. In a configuration with 2 Bankram ports, shown
in table 4.3, the Readport and Writeports are assigned to a Bankram port by their
suffix with the formula suffix mod 2. With that the port index does no longer
match the select values on both ports. This leads to the hardware shown in Figure
4.4 with wiadr[0]_i_1 being the multiplexer for the address to the first port of the
first bank and wiadr[0]_i_2 being the multiplexer for the address to the second
port of the first bank. Even though the select value going to wiadr[0]_i_1 can only
be 0, 2 or 4 it has 6 inputs. This wastes resources and can lead to longer paths.

Index 0 1 2 3 4 5 6
Port0 RP0 RP1 RP2 RP3 WP0 WP1 BusIf

(Select Value) (0) (1) (2) (3) (4) (5) (6)
Table 4.2: Single port Bankram inputs for 2 cores - Select value is equal to index

Alexander Bahle 16

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

Index 0 1 2 3
Port0 RP0 RP2 WP0

(Select Value) (0) (2) (4)
Port1 RP1 RP3 WP1 BusIf

(Select Value) (1) (3) (5) (6)
Table 4.3: Dual port Bankram inputs for 2 cores - Select value is not equal to index

Figure 4.4: Input address select for a dual port Bankram with 2 cores

4.2 Execution Unit (EXU)

The Execution Unit (EXU) was already pretty optimized from the previous change
to the RISC-V instruction set architecture and only needed a few improvements.
The MExtension submodule, responsible for hardware accelerated multiplication
and division operations, contained a long path in the multiplication function. The
High-level synthesis (HLS) of this SystemC module required a carefully catered and
structured module to get the correct 64bit multiplication results while still utiliz-
ing the performance of the FPGAs DSP slices. Figure 4.5 shows the multiplication
function. The two 32 bit operands are coming in from EXU registers into 4 DSP
(marked red) slices executing 16 bit multiplications each. The 4 32 bit results are
then combined by adding them in the orange marked section into a 64 bit multi-
plication result from which either the top or bottom 32 bit are saved in a register
before it will be written to a general purpose register (GPR) in the EXU. This of
course uses more resources than would be required if the full 25x18 bit multiplier

Alexander Bahle 17

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

4 Status Quo

and adders in the 7-series FPGAs DSP slices would be used by implementing the
MExtension in VHDL but is currently the only working solution for using the HLS.
[Xilinx 2018]

Figure 4.5: MExtension multiplication path, Red: DSP slices, Orange: Add and se-
lect function

In multi core systems another performance issue is the daisy chain used to syn-
chronize the instruction execution inside between the EXUs when running in linked
mode (Mode 1). Figure 4.6 shows the schematic of the daisy chain for 4 cores. The
last of the EXUs, EXU3 in this case, sync_i input is fixed to 1 and every other
EXU has the sync_o output of the previous EXU as input. Internally the EXUs
can either pass through their sync_i or a value of 0 using a multiplexer. The mul-
tiplexer is controlled by a small bit of logic and only break the chain if the EXU is
running in the linked mode. During linked execution the multiplexer will output 0
until the current instruction is finished and the EXU is ready for the next instruc-
tion. This means that until every EXU finished the EXU0 (CePU) will not instruct
its Instruction Fetch Unit (IFU) to supply the next instruction, even if itself has
already handled the current one. The signal from the EXU0 to every other EXU
is used to activate the EXUs again since they otherwise would not know when the
next instruction is ready.

EXU3

Logic

0

EXU2

Logic

0

EXU1

Logic

0

EXU0

Logic1

Figure 4.6: Schematic of the linked mode synchronization daisy chain for 4 EXUs

Alexander Bahle 18

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

4.3 Load Store Unit (LSU)

The Load Store Unit (LSU) plays an important role in the performance of the
ParaNut processor. It features a write buffer configurable in size. Each data access
requested by an EXU is first entering a LSU before it will be relayed to the Readport
or Writeport inside the MemU. Since some of the control signals going to the MemU
are combinatorial they are often part of the critical paths.

One of the problematic paths is linked to the write buffer hit detection. On a rd

signal coming registered from the EXU the LSU checks all entries in the write buffer
for a potential hit by comparing the incoming address with the address and the valid
bits saved in the entries of the buffer. On a hit the LSU only sends a read request
to the Readport if the valid bits do not match the requested bits (bsel). Since the
Readport itself is also a Mealy machine it will start requesting an access to either
the Cache Tagram or the BusIf depending on the address. If the request is granted
in the same cycle the state of the Readport is changed.

Another place for improvement is the implementation of the load reserved and store
conditional instructions. On a load reserved the address that is read needs to be
saved inside the Writeport to assess if a store conditional at a later point in time is
successful or not. To do that the write buffer needs to be flushed first and then the
current address is routed to the Writeport. Listing 1 shows the interface towards the
Writeport and the many outputs depending on input signals. For the special cache
invalidate, write back, and flush instructions another special case is needed. Again
the Writeport itself is also a Mealy machine and will send requests to the Arbiter or
act directly on inputs from the LSU and these outputs are thus problematic.

Lastly even though great care was taken in previous works to generate optimized
VHDL code through the HLS some parts of the LSU have still room for improve-
ments. The generation of the alignment error output (align_err) which is used in
the EXU to evaluate load and store address misalignment exceptions for example
or the generation of the half-word and byte read outputs which where unnecessarily
duplicated.

Alexander Bahle 19

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

1 // Generate MEMU write port signals ...
2 wp_adr = lres_scond & rd ? adr_var : wbuf_adr[0].read ();
3 wp_data = wbuf_data[0].read ();
4 wp_bsel = wbuf_valid[0].read ();
5 if (wbuf_new == 0 && ((cache_writeback == 1 || cache_invalidate == 1) ||

(lres_scond && !rd))) {↪→

6 wp_adr = adr_var; // set address
7 wp_data = wdata_var;
8 wp_bsel = bsel;
9 wp_wr = lres_scond.read (); // cannot write now

10 wp_writeback = cache_writeback.read ();
11 wp_invalidate = cache_invalidate.read ();
12 wp_direct = 0;
13 ack = wp_ack.read ();
14 } else {
15 wp_wr = wbuf_dirty0.read ();
16 wp_writeback = 0;
17 wp_invalidate = 0;
18 wp_direct = !dcache_enable | !AdrIsCached (wbuf_adr[0].read ());
19 }

Listing 1: lsu.cpp, LSU to Writeport interface before

5 Optimization

This chapter describes the measures and changes to the ParaNut processor model
and hardware to improve its performance and resource usage. It is structured in the
same way the previous chapter 4 starting with the Memory Unit (MemU) and all
of the sub modules that were optimized. The big updates to the arbitration logic
inside the Arbiter for example. The succeeding section focuses on the Execution
Unit (EXU) and the changes needed to remove long timing paths there. In the last
section the Load Store Unit (LSU) is completely refactored and presented.

5.1 Memory Unit (MemU)

5.1.1 Cache Tagram - Write in one cylce

After some investigation the block RAM used for the Tagram offers the possibility
to have asymmetric read and write widths. [Xilinx 2016] For caches with enabled
associativity this enables a writer to update a single cache tag, while still retaining
the ability to read a full cache tag line containing 2 or 4 tags. This removes the
necessity to read the cache tag line to first before updating the information of a
single tag. This saves a clock cycle from each cache write that requires to update the

Alexander Bahle 20

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

cache tag (validating, invalidating, setting the dirty bit) and simplifies the Writeport
and BusIf state machines.

To enable the write of a single tag entry the information is split into distinct entries
as seen in table 5.1. Each 21 bit tag entry featuring its valid and dirty bits and
the associated address are grouped together. The block RAM for this configuration
would be configured to have an 84 bit wide read port with a number of cache
sets (CS) bit address and a 21 bit wide write port with an CS + 2 bit address to
distinctively address the different cache ways. The least recently used information
can no longer be stored in the same block RAM and will therefore require more
block RAM cells.

Bits 21 21 21 21
Desc. v|d|taddr(19) v|d|taddr(19) v|d|taddr(19) v|d|taddr(19)

Table 5.1: 4-way associative Tagram line example with 84 bit

Implementing this structure required the implementation of a new inference archi-
tecture inside the mem_inferred.vhd. Listing 2 shows the entity declaration for the
new mem_sync_read_wider_dp_inferred having independent read and write ports
with configurable address and data width. The way it is set up the write port data
width (DWIDTHW) needs to be smaller or equal to the read port data width (DWIDTHR)
and should also be a divider of the width. If both data widths and address widths are
set equal the memory will be infered like a normal block RAM with symmetric read
and write ports. Thus no change is needed for configurations with no associativity.

1 entity mem_sync_read_wider_dp_inferred is
2 generic (
3 DWIDTHW : integer := 21;
4 AWIDTHW : integer := 10;
5 DWIDTHR : integer := 16;
6 AWIDTHR : integer := 84
7);
8 port (
9 clk : in std_logic;

10 we : in std_logic;
11 waddr : in std_logic_vector(AWIDTHW - 1 downto 0);
12 raddr : in std_logic_vector(AWIDTHR - 1 downto 0);
13 wdata : in std_logic_vector(DWIDTHW - 1 downto 0);
14 rdata : out std_logic_vector(DWIDTHR - 1 downto 0)
15);
16 end mem_sync_read_wider_dp_inferred;

Listing 2: mem_inferred.vhd, Entity for inference of block RAM with a wider read
than write port

Alexander Bahle 21

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

The SystemC model of the Tagram was also changed to represent this hardware be-
havior by simply reading and replacing the tag in one cycle instead of implementing
a similar asymmetrical memory.

5.1.2 Cache Bankram - Use of byte enable signals

As described in section 4.1.2 the Bankram is not able to write half-word or bytes
in a single cycle. The Writeport needs to read the current value from the bank and
combine the data before writing a full word back to the bank. This sequence can
be eliminated by utilizing the byte enable bits of the block RAM cells present in
the Xilinx FPGAs. ”The byte-write enable feature of the block RAM allows writing
eight-bit (one byte) portions of incoming data.” [Xilinx 2019]

The implementation of this feature is handled by adding a byte-write enable port
we to the mem_sync_sp_inferred and mem_sync_true_dp_inferred entities in the
mem_inferred.vhd. Since the Writeport already has the information which bytes are
being written through its byte_sel input from the LSU this information only needs
to be routed to the byte-write enable ports. This does not only lead to byte and half-
word writes needing less clock cycles and a simplified Writeport state machine, but
also eliminates the necessity of bank data to be routed to the Writeports. This data
path is visible in Figure 4.3 and upon removal reduces the read Crossbar endpoints
to 2 ∗ N ∗ B from 3 ∗ N ∗ B.

5.1.3 Port to Cache Interconnect

The port to memory interconnect was not changed for this work because of time
constraints. As mentioned in section 5.1.2 the improvements to the Bankram did
reduce the size of the data read Crossbar. A ParaNut with an implementation of an
Omega Network as described in section 3.2.2 could probably help with scalability
for systems with more cores.

Figure 5.1 shows a possible solution for using an Omega Network to route the ad-
dress output from all Readport and Writeports in a 2 core system to 4 Bankrams
with one port. Since this configuration is not symmetrical and there are more inputs
than outputs, some of the switches can be simplified (pass-through) or removed com-
pletely. This is represented by the red marked connections and switches. The figure
5.2 below displays the simplified Omega-Network with only 6 switches necessary to
route every input to every output. In contrast to the current Crossbar implemen-
tation this would be highly blocking and a different arbitration scheme would be
necessary to accommodate this change.

Alexander Bahle 22

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

RP0

RP2

 WP0

B0

B1

B2

B3RP1

RP3

WP1

000

001

010

011

100

101

000

001

010

011

A B C

Figure 5.1: Address routing from 2 cores to 4 Bankrams through an Omega Network

RP0

RP2

 WP0

B0

B1

B2

B3RP1

RP3

WP1

000

001

010

011

100

101

000

001

010

011

A B C

Figure 5.2: Address routing from 2 cores to 4 Bankrams through an Omega Network
- simplified

To keep the same amount of parallelism the Omega Network could only use one
output and be replicated per Bankram, the same way the Crossbar switches are
currently set up for each Bankram. Figure 5.3 shows the necessary paths and switches
for this setup.

RP0

RP2

 WP0

B0

RP1

RP3

WP1

000

001

010

011

100

101

000
A B C

Figure 5.3: Address routing from 2 cores to 1 Bankram through an Omega Network
- simplified

Alexander Bahle 23

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

In a same manner the data interconnects to and from the banks could be imple-
mented. The only difference being the amount of inputs and outputs. For the data
write interconnect for example at 4 cores and 4 Bankrams only 2 stages with 2
switches would be necessary to connect all Writeport data outputs to all bank data
inputs. Or for improved parallelism 2 stages and 3 switches if there is an Omega
Network per bank. Figure 5.4 shows the proposed write data architecture using an
Omega Network.

00

01

10

11

00

01

10

11

WP0

WP1

B0

B1

B2

B3

 WP2

WP3

00

01

10

11

00WP0

WP1

B0

 WP2

WP3

A B

A B

Figure 5.4: Write data routing from 4 cores to either 4 Bankrams or 1 Bankram
through an Omega Network

5.1.4 Arbiter

In an effort to generate constant paths inside the Arbiter a new entity was defined
called selector. This configurable component is designed to have a fast input and
a slow input. Listing 3 shows the interface of the selector and the configuration
options. The fast inputs are prefixed with a f_ and the slow inputs with a s_. The
data inputs are not necessary for all use cases and will be optimized out if DWIDTH

is set to 0 and the ports left unconnected. The select input is usually the index of
one of the Readports or Writeports and the select valid is equivalent to a request by
that Port. The prio input is the current core number with priority defined in 4.1.4.
It is used to determine if the fast input has priority if the prio is less than the fixed
configured FAST_INDEX or if in turn the slow input has priority.

Alexander Bahle 24

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

1 entity selector is
2 generic (
3 DWIDTH : integer := 1; -- Width of the data that gets arbitrated
4 SEL_MAX : integer := 1; -- Maximum value for sel (usually

RPORTS+WPORTS)↪→

5 FAST_INDEX : integer := 0 -- If prio < FAST_INDEX the fast inputs have
priority else the slow inputs↪→

6);
7 port (
8 clk : in std_logic;
9 reset : in std_logic;

10 f_dat_in : in std_logic_vector(DWIDTH-1 downto 0);
11 f_sel_in : in integer range 0 to SEL_MAX;
12 f_sel_valid_in : in std_logic;
13 s_dat_in : in std_logic_vector(DWIDTH-1 downto 0);
14 s_sel_in : in integer range 0 to SEL_MAX;
15 s_sel_valid_in : in std_logic;
16 prio : in unsigned(MAX(0, CFG_NUT_CPU_CORES_LD-1) downto 0);
17 dat_out : out std_logic_vector(DWIDTH-1 downto 0);
18 sel_out : out integer range 0 to SEL_MAX;
19 sel_valid_out : out std_logic
20);
21 end selector;

Listing 3: marbiter.vhd, selector entity for constant arbitration in the Arbiter

Selector

Logic

dat_out, sel_out,
sel_valid_out

f_dat, f_sel

s_data, s_sel,
s_sel_valid

f_sel_valid

prio

Figure 5.5: Schematic of the selector used in the Arbiter

Bus Interface (BusIf)

The BusIf Arbitration is changed to use the selector to determine the Readport or
Writeport that can use the BusIf to execute a command. Because a single command
is 72 Bits (3 Command + 1 Nolinelock + 4 Byte-Select + 32 Address + 32 Write
Data) the data ports of the selector are not used to save resources. To reduce the
amount of selector stages needed for each core one port is selected based on the
fixed priority defined in 4.1.4. The Figure 5.6 is a schematic of the selector stages
for 4 cores. The Readport and Writeports are sorted as follows:

Alexander Bahle 25

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

• N Data Readports with select index 0 to N − 1

• N Instruction Readports with select index N to (2 ∗ N) − 1

• N Data Writeports with select index (2 ∗ N) to (3 ∗ N) − 1

 Selector0
 4

0

8

CPU0

5
1

9

CPU1
 Selector1

6
2

10

CPU2

7
3

11

CPU3

 Selector2

requests

Figure 5.6: Schematic of the BusIf arbitration selector stages for 4 cores

The resulting output of Selector0 is used to set the BusIf grant signal and to select
the output in a multiplexer multiplexing the command inputs from all Readports
and Writeports. This configuration allows the CPU0 (CePU) to receive a grant in
the same cycle the request was set. Other CPUs have a delay of 1 to N-1 cycles
through the selector stages.

Cache Linelock

The Cache Linelock Arbitration also uses the selector component to determine the
Writeport that acquires the Linelock. The BusIf Linelock is arbitrated independent
of the selector stages and still depends on all address inputs of the Writeports.
For up to 8 cores this seems to be fine but could be problematic for systems with
more cores.

No data is required by this arbitration, so the data inputs of the selector are not
used. Before entering the selector the requested Writeport address is compared
to the BusIf address and the associated select valid input only set if different cache
lines are addressed. Other than that the same rules apply as defined in section
4.1.4. Figure 5.7 shows the schematic of the Linelock arbitration selector stages for
4 cores.

Alexander Bahle 26

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

 Selector0

Writeport0

 Selector1

Writeport1
1

Address /=
BusIf Address

 Selector2

request

0

Address /=
BusIf Address

Writeport2
2

Address /=
BusIf Address

Writeport3
3

Address /=
BusIf Address

Figure 5.7: Schematic of the Linelock arbitration selector stages for 4 cores

The option of removing the Linelock was explored but deemed not possible at this
stage. The snooping of write addresses for example is dependent on the Linelock and
important for implementing the load reserved and store conditional instructions for
synchronization between threads.

Another idea was to add a locking mechanism directly to the Tagram by expanding
a cache tag line to contain a single lock bit or id field. A writer would set this field
during its tag read and unset it after the data write. Since the Cache Tagram is
replicated for all CPUs the tag setting of this field would require a tag write lock.
This was not yet implemented and tested but could probably further improve the
scalability of a multi core ParaNut processor.

Cache Tagram

The Tagram arbitration was not changed directly in the Arbiter because of the
already independent read arbitration from replicated Tagrams. The write arbitration
on the other hand is still growing but was not deemed in need of a change for this
work. Nonetheless the way the Readport and Writeports react to the read grant
were changed. Both were waiting in their idle state until they got a grant. Making
this state transition independent and waiting in the following state does improve
the clock speed while not adding clock cycles to the overall read or write operations
the ports execute.

Alexander Bahle 27

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

Cache Bankram

The Bankram arbitration was changed to use the selector for determining the
entity that gets access to the bank. The other changes to the Bankram outlined in
section 5.1.2 together with the fact that every access to the Bankram now only takes
one cycle simplified the arbitration process. To further increase the performance the
inputs to the arbitration function are sorted differently to remove unnecessary paths
for selecting input addresses to the banks for configurations with more than one
Bankram port as described in section 4.1.4.

The Bankram arbitration uses the selector data inputs and outputs to select the
input address as a byproduct of the arbitration instead of the big Crossbar multiplex-
ers at the end as shown in figure 4.4. Nonetheless the inputs are sorted differently to
have the same correlation of index to select value. Table 5.2 shows that the index is
now equal to the possible select values. This is achieved by adding a port dimension
to the input arrays.

Index 0 1 2 3
Port0 RP0 RP2 WP0

(Select Value) (0) (1) (2)
Port1 RP1 RP3 WP1 BusIf

(Select Value) (0) (1) (2) (3)
Table 5.2: Dual port Bankram inputs for 2 cores now - Select value is equal to index

Looking at figure 5.8 the input address towards the Bankrams port is either coming
directly from one of the selectors (marked in red) or directly from a CPUs priority
selection (marked in orange). Since the amount of Readport and Writeports per CPU
is constant the path is constant for an arbitrary amount of cores. The blue marked
lines are the inputs for Bankram 0 port 0 coming from the fixed priority select of
CPU 0 (orange) and Bankram 0 port 1 coming from the selector to arbitrate the
BusIf and CPU 1 inputs (red).

Problems with the changes

All of the changes to the Arbiter above proved to be perfect for increasing the clock
frequency of the ParaNut in all configurations. The increased amount of clock cycles
is a trade of that should be addressed in future versions. But unfortunately the
tests performed for the evaluation in chapter 6 showed that this only worked for
up to 4 cores. At 8 cores the long propagation time through 7 stages at the BusIf
and Linelock arbitration for the last two cores lead to race condition errors where a
grant was dangling and could be granted to the same core with varying side effects

Alexander Bahle 28

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

Figure 5.8: Optimized input address select for dual port Bankrams with 2 cores

(exceptions, reads/writes to wrong addresses). These errors where hard to identify
and could not be fixed in time for this work.

One possible, but not yet tested or implemented, solution for this problem could be
to only use one selector with the CePU as fast input and all other CoPUs use the
shared slow input. This would remove the race conditions for more than 8 cores and
the long propagation time but would probably introduce dependencies between the
CoPUs that could lead to longer timing paths for systems with more than 8 cores.
Another idea would be to add a configuration option to the selector that disables
the registers. In a same way as the proposition above only the first selector for the
CePU would feature registers and all others would be combinatorial.

5.2 Execution Unit (EXU)

After some improvements in the MemU problems where showing with the RISC-V
M-Extension implementation for hardware multiplication and division of integers.

Alexander Bahle 29

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

As mentioned in 4.2 the path from the general purpose registers of the EXU through
the DSP slices and a 64 Bit adder up to the multiplication result register was too
long to reach 100 MHz, mainly for routing delays to and from the DSP slices. Since
the multiplication instructions already required a state change in the EXU they were
executing in 3 cycles, even though the result of the multiplication would be ready
after 2 cycles. An additional interim step in the M-Extension saving the results of the
DSP slices in registers and adding them in the next cycle to produce the final result
and saving it directly in the GPR did thus not lead to a slower execution of the in-
structions, but reduced the path length considerably. Figure 5.9 shows the elaborated
M-Extension after the HLS. The new registers between the MMExtension_MulMethod

and the MMExtension_MulAddMethod are marked in red.

Figure 5.9: M-Extension with the added registers (red)

The synchronization daisy chain mentioned in section 4.2 did not impact the perfor-
mance in the tested configurations for up to 8 cores where the paths in the MemU
had a greater impact. Nonetheless the issue persists and may affect the timing closure
for systems with more cores or after more optimizations to the MemU. A proposed
solution would be to either add a register before the input to the CePU (EXU0) or
inside the chain after a number of EXUs. Figure 5.10 shows the daisy chain for 4
cores with an added register between EXU2 and EXU1 to reduce the path length.
The added clock cycle would influence the clocks per instruction (CPI) metric when
running in linked mode but may be necessary to run multi core system at higher
clock frequencies.

Alexander Bahle 30

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

5 Optimization

EXU3

Logic

0

EXU2

Logic

0

EXU1

Logic

0

EXU0

Logic1
D

Q>

Figure 5.10: Schematic of the linked mode synchronization daisy chain for 4 EXUs
with added register

5.3 Load Store Unit (LSU)

To eliminate the problems presented in section 4.3 the LSU had to be changed
considerably. So a whole refactor of the LSU was started to not only increase the
performance, but also the readability and adaptability of the code. The write buffer
registers which where declared as independent arrays of signals are replaced with
a single array of a newly defined struct SWbufEntry displayed in Listing 4. The
struct shown in Listing 5 contains all the data for a single write buffer entry and
implements all the necessary functions for using it as a signal inside the SystemC
model. It was made sure that the structure would be fully synthesizable without any
side effects. The new data field special inside the write buffer entry contains two
bits for the special cache operations to invalidate, write back or flush a cache line.
This enables these instructions to be buffered alongside the normal write operations,
freeing up the processor to continue execution if the following code does not depend
on the cache operation. A fence instruction after the cache instruction can be used to
get back to strictly ordered execution by waiting for the write buffer to be emptied.

1 // Registers before - multiple arrays...
2 sc_signal<TWord> wbuf_adr[CFG_LSU_WBUF_SIZE];
3 sc_signal<TWord> wbuf_data[CFG_LSU_WBUF_SIZE];
4 sc_signal<sc_uint<4> > wbuf_valid[CFG_LSU_WBUF_SIZE];
5

6 // Registers after - only one array...
7 sc_signal<SWbufEntry> wbuf[CFG_LSU_WBUF_SIZE];

Listing 4: lsu.h, LSU write buffer registers before and after

The restructure also includes the change to make the outputs toward the Writeport
only dependent on registers or registered inputs. To achieve this the logic for reserv-
ing an address during a lres (Load Reserved) instruction had to be moved from
the Writeport to the Readport to eliminate the necessity to connect the current
input address of the LSU to the Writeport. Listing 6 shows the current interface to
the Writeport only using registers or registered inputs.

Alexander Bahle 31

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

6 Evaluation

1 struct SWbufEntry {
2 sc_uint<30> adr;
3 sc_uint<32> data;
4 sc_uint<4> valid;
5 sc_uint<2> special;
6

7 // Necessary operators for using this structure as signals...
8 bool operator== (const SWbufEntry &t) const {...}
9 SWbufEntry operator= (const SWbufEntry &t) {...}

10

11 // Displaying
12 friend ostream& operator << (ostream& os, const SWbufEntry &t) {...}
13

14 // Overload trace function
15 friend void sc_trace(sc_trace_file* f, const SWbufEntry& t, const

std::string& _s) {...}↪→

16 };

Listing 5: lsu.h, LSU synthesizable write buffer struct

1 // Generate MEMU write port signals ...
2 wp_adr = WbufToTWord(wbuf_var[0].adr);
3 wp_data = wbuf_var[0].data;
4 wp_bsel = wbuf_var[0].valid;
5 wp_writeback = wbuf_var[0].special[0] & !wp_ack_reg;
6 wp_invalidate = wbuf_var[0].special[1] & !wp_ack_reg;
7 wp_lres_scond = lres_scond.read ();
8 wp_wr = wbuf_var[0].valid != 0 & !wp_ack_reg;
9 wp_direct = !dcache_enable | !AdrIsCached (WbufToTWord(wbuf_var[0].adr));

Listing 6: lsu.cpp, LSU to Writeport interface

The Readport interface could not be changed in a similar way because of the de-
pendence on fast execution of data read instructions. The critical path being the
rd input from the EXU, checking for a hit in the write buffer and depending on
the hit starting a Readport read through the rp_rd output in the same cycle. The
Readport in turn tries to read the Tagram as fast as possible and tries to acquire a
tag read grant in the same cycle the rp_rd is set through the Arbiter triggering a
tag read in the connected Tagram. This dependency could may be removed in future
versions by starting a read in the Readport independently from the write buffer hit
detection. Only in case of a full write buffer hit the tag read in the Readport would
be wasted and a way to cancel a read access would be necessary inside the Readport
to stop the current read transaction.

Alexander Bahle 32

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

6 Evaluation

6 Evaluation

This chapter describes the tests and their results in order to evaluate the changes to
the ParaNut done in this work. Starting with the next section 6.1 ”Resource Usage”
where the used FPGA resources before and now are compared. The achieved timing
improvements are shown in section 6.2 ”Timing Results”. And lastly the section 6.3
”Benchmark Results” presents the industry standard benchmark and internal test
software results in relation to the findings of the Embedded World 2020 paper.

The evaluation configuration is outlined in table 6.1. The clock speed used for the
different benchmarks are defined in the respective section. These values were partly
chosen to ensure comparability to the results presented in the Embedded World 2020
paper. The rest of the system architecture is the same as described in the paper and
shown in figure 6.1. [Bahle u. a. 2020]

ParaNut
(AXI Master)

A
X

I B
u

s

APU
ARM Cortex A9

(AXI Master)

DDR3
Controller
(AXI Slave)

JTAG TAP

UART DDR3
Memory

Debug
Module

Zynq Processing System (PS)

Zynq Programmable Logic (PL)

Figure 6.1: Block diagram of the ParaNut system

Parameter Value
Clock Speed 20 ... 100MHz
CPU Cores 1 ... 8
M-Extension X
A-Extension (lr.w and sc.w) X
Performance Counter Enable 1
Cache size 32 kB
Cache sets 512
Cache line size 16 Bytes (4 Banks)
Cache associativity 4 ways
Cache replacement strategy LRU
Instruction buffer size (IFU) 4 words
Write buffer size (LSU) 4 words
MEMU arbitration 7 (256 cycles)
Table 6.1: The ParaNut Benchmark configuration

Alexander Bahle 33

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

6 Evaluation

6.1 Resource Usage

The resource usage of the ParaNut processor was positively influenced by the changes
made in every respect. Table 6.2 shows the resource usage of the ParaNut for dif-
ferent configurations of cores for the Embedded World Conference 2020 paper. One
capability 3 core and up to 7 cores with a capability of 2 are displayed. The Freedom
E310 processor based on a RocketChip was synthesized for the Artix-7 35T Arty
FGPA Evaluation Kit to have a comparable processor and its results for a single
core, called “tile“, are shown in the last row. [Bahle u. a. 2020] Table 6.3 displays the
results for the same configuration after the optimizations. The amount of used slices
is put in proportion with the slices used before and the percentage of saved resources
is listed in the last column. On average the ParaNut processor is 21% smaller now
and a single core ParaNut is using less slices than the Freedom E310.

Cores Slice LUTs Slice FFs Slices Increase
1 7,139 3,759 2,504 1.00
2 12,433 6,094 4,185 1.67
4 23,599 10,712 7,265 2.90
8 44,393 19,536 12,473 4.98

Freedom E310 (1 tile) 6,713 4,131 2,139

Table 6.2: Zynq 7000 resource usage before
Source: [Bahle u. a. 2020]

Cores Slice LUTs Slice FFs Slices Increase Ratio to 6.2
1 5,463 3,649 1,984 1.00 0.79
2 9,626 5,905 3,506 1.77 0.84
4 16,900 10,462 5,799 2.92 0.80
8 31,381 19,113 9,147 4.61 0.73

Table 6.3: Zynq 7000 resource usage after the optimization with saving compared to
table 6.2

6.2 Timing Results

The timing results are collected by setting the input clock frequency in the FPGA
settings to a value and checking the timing results after the implementation to see if
the timing requirements could be met. For all configurations the default Vivado im-
plementation strategy was chosen to produce fair results. The findings are displayed
in table 6.4 for the unoptimized and optimized ParaNut . The rows show the values

Alexander Bahle 34

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

6 Evaluation

for a growing number of up to 8 cores. The Ratio to single core column displays the
ratio compared to the single core configuration of the same optimization level. The
Ratio to Unopt. on the other hand shows the optimization improvement compared
to the same configuration of the unoptimized ParaNut .

Looking at the ratios one can see that the ParaNut before looses about 20% of
maximum clock speed from 1 to 2 and from 2 to 4 cores compared to the now
optimized one only loosing about 10% for each increase. At 8 cores the unoptimized
ParaNut drops around 40% clock speed from 4 cores. The optimized ParaNut still
drops around 44% clock speed from 4 to 8 cores indicating that there is still potential
to improve the scalability even though some increased delay can be attributed to
the higher resource usage of more cores, making it harder for the place and route
step to meet the timing targets.

Comparing the two generations of ParaNut the biggest improvement can be seen for
the 4 core configuration. The ParaNut it is now able to run at nearly two and a half
times the speed before. All the other configurations also could at least double their
clock frequency.

Cores MHz Ratio to
single core

Ratio to
before

Before

1 50 1.00
2 40 0.80
4 33 0.66
8 20 0.40

After

1 100 1.00 2.00
2 90 0.90 2.25
4 80 0.80 2.42
8 45 0.45 2.25

Table 6.4: Zynq 7000 maximum clock frequency

6.3 Benchmark Results

To evaluate the impact on real world software different industry standard bench-
marks and some test applications where executed on the ParaNut systems. Some of
these only measure the single core performance, for example the Dhrystone bench-
mark, whilst others like the CoreMark benchmark can be used to evaluate multi
core systems.

Alexander Bahle 35

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

6 Evaluation

All software was compiled using the GCC Version 8.3.0 (SiFive GCC 8.3.0-2019.08.0).
The optimization options -O2 or -O3 and the architecture -march=rv32im -mabi=ilp32
were used to match the underlying hardware.

Some optimization towards a higher base clock frequency did cost some performance
on a per MHz basis. Looking at the Embedded World Conference 2020 paper results
shown in table 6.5 the CoreMark benchmark was run at 20MHz and the number of
threads increased from 1 up to 8. [Bahle u. a. 2020] The list also features results from
the official EEMBC database for another softcore (MicroBlaze) and another RISC-V
core (HiFive Unleashed). [EEMBC 2019] The table 6.6 below shows the CoreMark
results after the optimization. The benchmark was also executed at 20MHz and with
growing number of used threads. The results for 8 cores are not shown because of
the problems with the new arbitration described in section 5.1.4 because of which
the benchmark could not execute properly.

For a single core only about 2% where lost on a per MHz basis which can easily be
salvaged by increasing the clock frequency to much higher values as shown in section
6.2. For multiple cores the hit may seem bigger (8% for 2 cores and 25% for 4 cores)
but mostly result from the strict arbitration policies described in section 5.1.4.

Processor Cores CoreMark/MHz Speedup

ParaNut

1 0.87 1.00
2 1.73 2.00
4 3.45 3.97
8 6.59 7.59

MicroBlaze [EEMBC 2019] 1 1.90
HiFive Unleashed [EEMBC 2019] 1 2.01

Table 6.5: CoreMark benchmark results before
Source: [Bahle u. a. 2020]

Processor Cores CoreMark/MHz Speedup Ratio to 6.5

ParaNut

1 0.85 1.00 0.98
2 1.35 1.58 0.92
4 2.21 2.60 0.75
8 - - -

Table 6.6: CoreMark benchmark results after the optimization with comparison to
table 6.5

Another industry standard is the Dhrystone benchmark. It can only evaluate the
single core performance of a processor and thus is run on the single core ParaNut con-
figurations. Once with the implementation at the time of the Embedded World 2020
paper and once with the changes of this work at their maximum possible clock speed.
The results for 1,000,000 iterations are shown in table 6.7. The 2% performance hit

Alexander Bahle 36

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

7 Conclusion

seen with the CoreMark benchmark running on a single core is not visible in the
Dhrystone benchmark, neither looking at the performance per MHz nor at the over-
all score. This can have many reasons but is probably a result of the imprecise time
measuring used in the benchmark that only uses full seconds.

Dhrystones/MHz Ratio Dhrystones Ratio
Before (50MHz) 909.09 1.00 45,454.5 1.00
After (100MHz) 909,09 1.00 90,909.1 2.00

Table 6.7: Dhrystone benchmark results

7 Conclusion

In the context of this work, the SystemC model and VHDL implementation of the
ParaNut processor were optimized using standard timing closure techniques and re-
design of core components. Some changes to further improve the scalability of the
ParaNut processor by implementing a different internal interconnect were described.
A set of industry standard benchmarks and special test software were used to val-
idate the functionality and effects of the changes. The target clock frequency of
100MHz for a single core ParaNut is now possible on a current generation Xilinx
FPGA. All while the resource usage could be reduced by 21% on average for differ-
ent configurations with 1 to 8 CPU cores and still having the same functionality as
implementations before. The performance of the single core ParaNut decreased by
only 2% while the changes allow the processor to run at twice the speed compared
to before. Although the systems with multiple cores do not yet reach 100MHz, the
possible clock frequency has been at least doubled by the optimizations and further
improvements in future works will benefit from the implemented changes.

Alexander Bahle 37

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

Bibliography

Bibliography

Bahle u. a. 2020
Bahle, Alexander ; Kiefer, Gundolf ; PfÃ¼tzner, Anna K. ; Vollbracht,
Lutz: ”The ParaNut/RISC-V Processor - An Open, Parallel, and Highly Scalable
Processor Architecture for FPGA-based Systems”, Proceedings of the embedded
world Conference, Nuernberg 2020, Feb. 25-27. 2020 [Seite 3, 9, 33, 34, 36]

Diaconis u. a. 1983
Diaconis, Persi ; Graham, R.L. ; Kantor, William M.: ”The Mathematics of
Perfect Shuffles”. In: Advances in Applied Mathematics (1983), Nr. 4, S. 175–196
[Seite 8]

EEMBC 2019
EEMBC, Embedded Microprocessor Benchmark Consortium: ”CoreMark
Benchmark Scores Database.”, December 2019. https://www.eembc.org/

coremark/scores.php. Version: 2019 [Seite 36]

Kahng u. a. 2011
Kahng, Andrew B. ; Lienig, Jens ; Markov, Igor L. ; Hu, Jin: ”VLSI Physical
Design: From Graph Partitioning to Timing Closure”. Springer, 2011 [Seite 5]

Kiefer u. a. 2015a
Kiefer, Gundolf ; Bahle, Alexander ; Meyer, Christian: The ParaNut Pro-
cessor - Architecture Description and Reference Manual, 2015 [Seite 3, 4]

Kiefer u. a. 2015b
Kiefer, Gundolf ; Seider, Michael ; Schaeferling, Michael: ”ParaNut –
An Open, Scalable, and Highly Parallel Processor Architecture for FPGA-based
Systems”, Proceedings of the embedded world Conference 2015, Nuernberg, Feb.
24-26. 2015 [Seite 3]

Lawrie 1975
Lawrie, Duncan H.: ”Access and Alignment of Data in an Array Processor”. In:
IEEE Transactions on Computers C-24 (1975), Nr. 12, S. 1145–1155 [Seite 8]

Patterson u. Hennessy 2014
Patterson, David A. ; Hennessy, John L.: ”Computer Organization and
Design - The Hardware/Software Interface”. Elsevier, 2014 [Seite 6]

Alexander Bahle 38

https://www.eembc.org/coremark/scores.php
https://www.eembc.org/coremark/scores.php

Optimization of the ParaNut softcore processor for FPGA systems
Master Thesis

Bibliography

Scudder u. Reynolds 1939
Scudder, F. J. ; Reynolds, J. N.: ”Crossbar dial telephone switching system”.
In: Electrical Engineering 58 (1939), Nr. 5, S. 179–192 [Seite 7]

Simpson 2015
Simpson, Philip A.: ”FPGA Design - Best Practices for Team-based Reuse”.
Springer, Cham, 2015 [Seite 6]

Waterman u. a. 2019
Waterman, Andrew ; Asanović, Krste ; RISC-V Foundation: The RISC-
V Instruction Set Manual, Volume I: User-Level ISA, Document Version
20191213, 2019 [Seite 2]

Whatcott u. Xilinx Inc. 2008
Whatcott, Rhett ; Xilinx Inc.: ”Timing Closure 6.1i”, WP331 (v1.0.2).
2008 [Seite 6]

Xilinx 2016
Xilinx: ”Vivado Design Suite User Guide Synthesis (UG901)”, 2016 [Seite 20]

Xilinx 2018
Xilinx: ”7 Series DSP48E1 Slice (UG479)”, 2018 [Seite 18]

Xilinx 2019
Xilinx: ”7 Series FPGAs Memory Resources (UG473)”, 2019 [Seite 12, 22]

Alexander Bahle i

