35.1

PROCESS PRIORITIES
AND SCHEDULING

This chapter discusses various system calls and process attributes that determine
when and which processes obtain access to the CPU(s). We begin by describing the
nice value, a process characteristic that influences the amount of CPU time that a
process is allocated by the kernel scheduler. We follow this with a description of the
POSIX realtime scheduling API. This API allows us to define the policy and priority
used for scheduling processes, giving us much tighter control over how processes
are allocated to the CPU. We conclude with a discussion of the system calls for set-
ting a process’s CPU affinity mask, which determines the set of CPUs on which a
process running on a multiprocessor system will run.

Process Priorities (Nice Values)

On Linux, as with most other UNIX implementations, the default model for sched-
uling processes for use of the CPU is round-robin time-sharing. Under this model,
each process in turn is permitted to use the CPU for a brief period of time, known
as a time slice or quantum. Round-robin time-sharing satisfies two important require-
ments of an interactive multitasking system:

e Fairness: Each process gets a share of the CPU.

e Responsiveness: A process doesn’t need to wait for long periods before it
receives use of the CPU.

734

Under the round-robin time-sharing algorithm, processes can’t exercise direct control
over when and for how long they will be able to use the CPU. By default, each process
in turn receives use of the CPU until its time slice runs out or it voluntarily gives up the
CPU (for example, by putting itself to sleep or performing a disk read). If all processes
attempt to use the CPU as much as possible (i.e., no process ever sleeps or blocks on an
1/0 operation), then they will receive a roughly equal share of the CPU.

However, one process attribute, the nice value, allows a process to indirectly
influence the kernel’s scheduling algorithm. Each process has a nice value in the
range —20 (high priority) to +19 (low priority); the default is 0 (refer to Figure 35-1).
In traditional UNIX implementations, only privileged processes can assign themselves
(or other processes) a negative (high) priority. (We’'ll explain some Linux differ-
ences in Section 35.3.2.) Unprivileged processes can only lower their priority, by
assuming a nice value greater than the default of 0. By doing this, they are being
“nice” to other processes, and this fact gives the attribute its name.

The nice value is inherited by a child created via fork() and preserved across
an exec().

Rather than returning the actual nice value, the getpriority() system call service
routine returns a number in the range 1 (low priority) to 40 (high priority), calcu-
lated according to the formula unice = 20 — knice. This is done to avoid having a
negative return value from a system call service routine, which is used to indicate
an error. (See the description of system call service routines in Section 3.1.)
Applications are unaware of the manipulated value returned by the system call
service routine, since the C library getpriority() wrapper function reverses the
calculation, returning the value 20 - unice to the calling program.

nice
value

(high priority) -20 —
(traditionally) only available

lo privileged processes

(default) 0 —

(low priority) +19 —-

Figure 35-1: Range and inferpretation of the process nice value

Effect of the nice value

Processes are not scheduled in a strict hierarchy by nice value; rather, the nice
value acts as weighting factor that causes the kernel scheduler to favor processes
with higher priorities. Giving a process a low priority (i.e., high nice value) won’t
cause it to be completely starved of the CPU, but causes it to receive relatively less
CPU time. The extent to which the nice value influences the scheduling of a pro-
cess has varied across Linux kernel versions, as well as across UNIX systems.

Starting in kernel 2.6.23, a new kernel scheduling algorithm means that relative
differences in nice values have a much stronger effect than in previous kernels.
As aresult, processes with low nice values receive less CPU than before, and pro-
cesses with high nice values obtain a greater proportion of the CPU.

Chapter 35

Retrieving and modifying priorities

The getpriority() and setpriority() system calls allow a process to retrieve and change
its own nice value or that of another process.

#include <sys/resource.h>

int getpriority(int which, id_t who);

Returns (possibly negative) nice value of specified process on success,
or -1 on error

int setpriority(int which, id_t who, int prio);

Returns 0 on success, or -1 on error

Both system calls take the arguments which and who, identifying the process(es)
whose priority is to be retrieved or modified. The which argument determines how
who is interpreted. This argument takes one of the following values:

PRIO_PROCESS
Operate on the process whose process ID equals who. If who is 0, use the
caller’s process ID.

PRIO_PGRP
Operate on all of the members of the process group whose process group
ID equals who. If who is 0, use the caller’s process group.

PRIO_USER
Operate on all processes whose real user ID equals who. If who is 0, use the
caller’s real user ID.

The id_t data type, used for the who argument, is an integer type of sufficient size to
accommodate a process ID or a user ID.

The getpriority() system call returns the nice value of the process specified by
which and who. If multiple processes match the criteria specified (which may occur
if which is PRIO_PGRP or PRIO_USER), then the nice value of the process with the highest
priority (i.e., lowest numerical value) is returned. Since getpriority() may legitimately
return a value of —1 on a successful call, we must test for an error by setting errno to 0
prior to the call, and then checking for a -1 return status and a nonzero errno value
after the call.

The setpriority() system call sets the nice value of the process(es) specified by
which and who to the value specified in prio. Attempts to set a nice value to a number
outside the permitted range (20 to +19) are silently bounded to this range.

Historically, the nice value was changed using the call nice(incr), which added
incr to the calling process’s nice value. This function is still available, but it is
superseded by the more general setpriority() system call.

The command-line analogs of setpriority() are nice(1), which can be used by
unprivileged users to run a command with a lower priority or by privileged
users to run a command with a raised priority, and renice(8), which can be used
by the superuser to change the nice value of an existing process.

Process Priorities and Scheduling 735

736

A privileged (CAP_SYS_NICE) process can change the priority of any process. An
unprivileged process may change its own priority (by specifying which as
PRIO_PROCESS, and who as 0) or the priority of another (target) process, if its effective
user ID matches the real or effective user ID of the target process. The Linux permis-
sion rules for setpriority() differ from SUSv3, which specifies that an unprivileged
process can change the priority of another process if its real or effective user ID
matches the effective user ID of the target process. UNIX implementations show
some variation on this point. Some follow the SUSv3 rules, but others—notably the
BSDs—behave in the same way as Linux.

In Linux kernels before 2.6.12, the permission rules for calls to setpriority() by
unprivileged processes are different from later kernels (and also deviate from
SUSv3). An unprivileged process can change the priority of another process if
its real or effective user ID matches the real user ID of the target process. From
Linux 2.6.12 onward, the permissions checks were changed to be consistent
with other similar APIs available on Linux, such as sched_setscheduler() and
sched_setaffinity().

In Linux kernels before 2.6.12, an unprivileged process may use setpriority() only to
(irreversibly) lower its own or another process’s nice value. A privileged (CAP_SYS_NICE)
process can use setpriority() to raise nice values.

Since kernel 2.6.12, Linux provides the RLIMIT_NICE resource limit, which permits
unprivileged processes to increase nice values. An unprivileged process can raise
its own nice value to the maximum specified by the formula 20 - rlim_cur, where
rlim_cur is the current RLIMIT_NICE soft resource limit. As an example, if a process’s
RLIMIT NICE soft limit is 25, then its nice value can be raised to —5. From this formula,
and the knowledge that the nice value has the range +19 (low) to —20 (high), we can
deduce that the effectively useful range of the RLIMIT_NICE limit is 1 (low) to 40 (high).
(RLIMIT_NICE doesn’t use the number range +19 to -20 because some negative
resource-limit values have special meanings—for example, RLIM_INFINITY has the
same representation as —1.)

An unprivileged process can make a setpriority() call to change the nice value of
another (target) process, if the effective user ID of the process calling setpriority()
matches the real or effective user ID of the target process, and the change to the
nice value is consistent with the target process’s RLIMIT_NICE limit.

The program in Listing 35-1 uses setpriority() to change the nice value of the
process(es) specified by its command-line arguments (which correspond to the argu-
ments of setpriority()), and then calls getpriority() to verify the change.

Listing 35-1: Modifying and retrieving a process’s nice value

procpri/t_setpriority.c
#include <sys/time.h>

#include <sys/resource.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{

int which, prio;

id_t who;

Chapter 35

35.2

if (argc !'= 4 || strchr("pgu", argv[1][0]) == NULL)
usageErr("%s {p|g|u} who priority\n"
" set priority of: p=process; g=process group;
"u=processes for user\n", argv[0]);

/* Set nice value according to command-line arguments */

which = (argv[1][0] == 'p') ? PRIO_PROCESS :

(argv[1][0] == 'g"') ? PRIO_PGRP : PRIO_USER;
who = getLong(argv[2], 0, "who");
prio = getInt(argv[3], 0, "prio");

if (setpriority(which, who, prio) == -1)
errExit("getpriority");

/* Retrieve nice value to check the change */

errno = 0; /* Because successful call may return -1 */
prio = getpriority(which, who);
if (prio == -1 & errno != 0)

errExit("getpriority");
printf("Nice value = %d\n", prio);

exit(EXIT_SUCCESS);

procpri/t_setpriority.c

Overview of Realtime Process Scheduling

The standard kernel scheduling algorithm usually provides adequate performance
and responsiveness for the mixture of interactive and background processes typically
run on a system. However, realtime applications have more stringent requirements
of a scheduler, including the following:

A realtime application must provide a guaranteed maximum response time for
external inputs. In many cases, these guaranteed maximum response times
must be quite small (e.g., of the order of a fraction of a second). For example, a
slow response by a vehicle navigation system could be catastrophic. To satisfy
this requirement, the kernel must provide the facility for a high-priority process
to obtain control of the CPU in a timely fashion, preempting any process that
may currently be running.

A time-critical application may need to take other steps to avoid unacceptable
delays. For example, to avoid being delayed by a page fault, an application can
lock all of its virtual memory into RAM using mlock() or mlockall() (described in
Section 50.2).

A high-priority process should be able to maintain exclusive access to the CPU
until it completes or voluntarily relinquishes the CPU.

Process Priorities and Scheduling 737

738

e A realtime application should be able to control the precise order in which its
component processes are scheduled.

SUSv3 specifies a realtime process scheduling API (originally defined in POSIX.1b)
that partly addresses these requirements. This API provides two realtime scheduling
policies: SCHED_RR and SCHED_FIFO. Processes operating under either of these policies
always have priority over processes scheduled using the standard round-robin time-
sharing policy described in Section 35.1, which the realtime scheduling API identi-
fies using the constant SCHED_OTHER.

Each of the realtime policies allows for a range of priority levels. SUSv3
requires that an implementation provide at least 32 discrete priorities for the real-
time policies. In each scheduling policy, runnable processes with higher priority
always have precedence over lower-priority processes when seeking access to the CPU.

The statement that runnable processes with higher priority always have prece-
dence over lower-priority processes needs to be qualified for multiprocessor
Linux systems (including hyperthreaded systems). On a multiprocessor sys-
tem, each CPU has a separate run queue (this provides better performance
than a single system-wide run queue), and processes are prioritized only per
CPU run queue. For example, on a dual-processor system with three pro-
cesses, process A with realtime priority 20 could be queued waiting for CPU 0,
which is currently running process B with priority 30, even though CPU 1 is
running process C with a priority of 10.

Realtime applications that employ multiple processes (or threads) can use
the CPU affinity API described in Section 35.4 to avoid any problems that
might result from this scheduling behavior. For example, on a four-processor
system, all noncritical processes could be isolated onto a single CPU, leaving
the other three CPUs available for use by the application.

Linux provides 99 realtime priority levels, numbered 1 (lowest) to 99 (highest), and
this range applies in both realtime scheduling policies. The priorities in each policy
are equivalent. This means that, given two processes with the same priority, one
operating under the SCHED_RR policy and the other under SCHED_FIFO, either may be
the next one eligible for execution, depending on the order in which they were
scheduled. In effect, each priority level maintains a queue of runnable processes,
and the next process to run is selected from the front of the highest-priority non-
empty queue.

POSIX realtime versus hard realtime

Applications with all of the requirements listed at the start of this section are some-
times referred to as hard realtime applications. However, the POSIX realtime pro-
cess scheduling API doesn’t satisfy all of these requirements. In particular, it
provides no way for an application to guarantee response times for handling input.
To make such guarantees requires operating system features that are not part of
the mainline Linux kernel (nor most other standard operating systems). The
POSIX API merely provides us with so-called soft realtime, allowing us to control
which processes are scheduled for use of the CPU.

Chapter 35

35.2.1

Adding support for hard realtime applications is difficult to achieve without
imposing an overhead on the system that conflicts with the performance require-
ments of the time-sharing applications that form the majority of applications on
typical desktop and server systems. This is why most UNIX kernels—including,
historically, Linux—have not natively supported realtime applications. Nevertheless,
starting from around version 2.6.18, various features have been added to the Linux
kernel with the eventual aim of allowing Linux to natively provide full support for
hard realtime applications, without imposing the aforementioned overhead for
time-sharing operation.

The SCHED_RR Policy

Under the SCHED_RR (round-robin) policy, processes of equal priority are executed in
a round-robin time-sharing fashion. A process receives a fixed-length time slice
each time it uses the CPU. Once scheduled, a process employing the SCHED_RR policy
maintains control of the CPU until either:

e it reaches the end of its time slice;

e it voluntarily relinquishes the CPU, either by performing a blocking system call
or by calling the sched_yield() system call (described in Section 35.3.3);

e it terminates; or

e itis preempted by a higher-priority process.

For the first two events above, when a process running under the SCHED_RR policy
loses access to the CPU, it is placed at the back of the queue for its priority level. In
the final case, when the higher-priority process has ceased execution, the pre-
empted process continues execution, consuming the remainder of its time slice
(i.e., the preempted process remains at the head of the queue for its priority level).

In both the SCHED_RR and the SCHED_FIFO policies, the currently running process
may be preempted for one of the following reasons:

e 2 higher-priority process that was blocked became unblocked (e.g., an 1/O
operation on which it was waiting completed);

e the priority of another process was raised to a higher level than the currently
running process; or

e the priority of the currently running process was decreased to a lower value
than that of some other runnable process.

The SCHED_RR policy is similar to the standard round-robin time-sharing scheduling
algorithm (SCHED_OTHER), in that it allows a group of processes with the same priority
to share access to the CPU. The most notable difference is the existence of strictly
distinct priority levels, with higher-priority processes always taking precedence
over lower-priority processes. By contrast, a low nice value (i.e., high priority)
doesn’t give a process exclusive access to the CPU; it merely gives the process a
favorable weighting in scheduling decisions. As noted in Section 35.1, a process
with a low priority (i.e., high nice value) always receives at least some CPU time.
The other important difference is that the SCHED_RR policy allows us to precisely
control the order in which processes are scheduled.

Process Priorities and Scheduling 739

35.2.2

35.2.3

35.3

35.3.1

The SCHED_FIFO Policy

The SCHED_FIFO (first-in, first-out) policy is similar to the SCHED_RR policy. The major
difference is that there is no time slice. Once a SCHED_FIFO process gains access to the
CPU, it executes until either:

e it voluntarily relinquishes the CPU (in the same manner as described for the
SCHED_FIFO policy above);

e it terminates; or

e it is preempted by a higher-priority process (in the same circumstances as
described for the SCHED_FIFO policy above).

In the first case, the process is placed at the back of the queue for its priority level. In
the last case, when the higher-priority process has ceased execution (by blocking or
terminating), the preempted process continues execution (i.e., the preempted process
remains at the head of the queue for its priority level).

The SCHED_BATCH and SCHED_IDLE Policies

The Linux 2.6 kernel series added two nonstandard scheduling policies: SCHED_BATCH
and SCHED_IDLE. Although these policies are set via the POSIX realtime scheduling
API, they are not actually realtime policies.

The SCHED_BATCH policy, added in kernel 2.6.16, is similar to the default
SCHED_OTHER policy. The difference is that the SCHED_BATCH policy causes jobs that fre-
quently wake up to be scheduled less often. This policy is intended for batch-style
execution of processes.

The SCHED_IDLE policy, added in kernel 2.6.23, is also similar to SCHED_OTHER,
but provides functionality equivalent to a very low nice value (i.e., lower than +19).
The process nice value has no meaning for this policy. It is intended for running
low-priority jobs that will receive a significant proportion of the CPU only if no
other job on the system requires the CPU.

Realtime Process Scheduling API

We now look at the various system calls constituting the realtime process scheduling
API. These system calls allow us to control process scheduling policies and priorities.

Although realtime scheduling has been a part of Linux since version 2.0 of the
kernel, several problems persisted for a long time in the implementation. A
number of features of the implementation remained broken in the 2.2 kernel,
and even in early 2.4 kernels. Most of these problems were rectified by about
kernel 2.4.20.

Realtime Priority Ranges

The sched_get_priority_min() and sched_get_priority_max() system calls return the
available priority range for a scheduling policy.

740 Chapter 35

35.3.2

#include <sched.h>

int sched_get_priority min(int policy);
int sched_get_priority max(int policy);

Both return nonnegative integer priority on success, or —1 on error

For both system calls, policy specifies the scheduling policy about which we wish to
obtain information. For this argument, we specify either SCHED_RR or SCHED_FIF0. The
sched_get_priority_min() system call returns the minimum priority for the specified
policy, and sched_get_priority_max() returns the maximum priority. On Linux, these
system calls return the numbers 1 and 99, respectively, for both the SCHED_RR and
SCHED_FIFO policies. In other words, the priority ranges of the two realtime policies
completely coincide, and SCHED_RR and SCHED_FIFO processes with the same priority
are equally eligible for scheduling. (Which one is scheduled first depends on their
order in the queue for that priority level.)

The range of realtime priorities differs from one UNIX implementation to
another. Therefore, instead of hard-coding priority values into an application, we
should specify priorities relative to the return value from one of these functions. Thus,
the lowest SCHED_RR priority would be specified as sched_get_priority_min(SCHED_FIFO),
the next higher priority as sched_get_priority_ min(SCHED_FIFO) + 1, and so on.

SUSv3 doesn’t require that the SCHED_RR and SCHED_FIFO policies use the same
priority ranges, but they do so on most UNIX implementations. For example,
on Solaris 8, the priority range for both policies is 0 to 59, and on FreeBSD 6.1,
itis 0 to 31.

Modifying and Retrieving Policies and Priorities

In this section, we look at the system calls that modify and retrieve scheduling
policies and priorities.

Modifying scheduling policies and priorities

The sched_setscheduler() system call changes both the scheduling policy and the pri-
ority of the process whose process ID is specified in pid. If pid is specified as 0, the
attributes of the calling process are changed.

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);

Returns 0 on success, or —1 on error

The param argument is a pointer to a structure of the following form:

struct sched param {
int sched_priority; /* Scheduling priority */
1

Process Priorities and Scheduling M

742

SUSv3 defines the param argument as a structure to allow an implementation to
include additional implementation-specific fields, which may be useful if an imple-
mentation provides additional scheduling policies. However, like most UNIX
implementations, Linux provides just the sched_priority field, which specifies the
scheduling priority. For the SCHED_RR and SCHED_FIFO policies, this must be a value in
the range indicated by sched_get_priority_min() and sched_get_priority_max(); for
other policies, the priority must be 0.

The policy argument determines the scheduling policy for the process. It is
specified as one of the policies shown in Table 35-1.

Table 35-1: Linux realtime and nonrealtime scheduling policies

Policy Description SUSv3
SCHED_FIFO | Realtime first-in first-out .
SCHED_RR Realtime round-robin .
SCHED_OTHER | Standard round-robin time-sharing .

SCHED_BATCH | Similar to SCHED_OTHER, but intended for batch execution (since
Linux 2.6.16)

SCHED_IDLE | Similar to SCHED_OTHER, but with priority even lower than nice value
+19 (since Linux 2.6.23)

A successful sched_setscheduler() call moves the process specified by pid to the back
of the queue for its priority level.

SUSv3 specifies that the return value of a successful sched_setscheduler() call
should be the previous scheduling policy. However, Linux deviates from the stan-
dard in that a successful call returns 0. A portable application should test for suc-
cess by checking that the return status is not —1.

The scheduling policy and priority are inherited by a child created via fork(),
and they are preserved across an exec().

The sched_setparam() system call provides a subset of the functionality of
sched_setscheduler(). It modifies the scheduling priority of a process while leaving the
policy unchanged.

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

Returns 0 on success, or —1 on error

The pid and param arguments are the same as for sched_setscheduler().

A successful sched_setparam() call moves the process specified by pid to the back
of the queue for its priority level.

The program in Listing 35-2 uses sched_setscheduler() to set the policy and prior-
ity of the processes specified by its command-line arguments. The first argument is
a letter specifying a scheduling policy, the second is an integer priority, and the
remaining arguments are the process IDs of the processes whose scheduling
attributes are to be changed.

Chapter 35

Listing 35-2: Modifying process scheduling policies and priorities

procpri/sched_set.c

#include <sched.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{

int j, pol;

struct sched_param sp;

if (argc < 3 || strchr("rfo", argv[1][0]) == NULL)
usageErr("%s policy priority [pid...]J\n"
" policy is 'r' (RR), 'f' (FIFO), "

#ifdef SCHED_BATCH /* Linux-specific */
"'b' (BATCH), "

#endif

#ifdef SCHED_IDLE /* Linux-specific */
"'i' (IDLE), "

#endif

"or 'o' (OTHER)\n",
argv[0]);

pol = (argv[1][0] == 'Tr
(argv[1][0]

#ifdef SCHED BATCH
(argv[1][0] == 'b") ? SCHED BATCH :

") ? SCHED RR :
== 'f') ? SCHED_FIFO :

#endif
#ifdef SCHED_ IDLE
(argv[1][0] == 'i") ? SCHED_IDLE :
#endif
SCHED_OTHER;
sp.sched_priority = getInt(argv[2], 0, "priority");

for (j = 3; j < argc; j++)
if (sched_setscheduler(getLong(argv[j], 0, "pid"), pol, &sp) == -1)

errkxit("sched_setscheduler");

exit(EXIT_SUCCESS);

procpri/sched_set.c

Privileges and resource limits affecting changes to scheduling parameters

In kernels before 2.6.12, a process generally must be privileged (CAP_SYS_NICE) to
make changes to scheduling policies and priorities. The one exception to this
requirement is that an unprivileged process can change the scheduling policy of a
process to SCHED_OTHER if the effective user ID of the caller matches either the real or
effective user ID of the target process.

Since kernel 2.6.12, the rules about setting realtime scheduling policies and
priorities have changed with the introduction of a new, nonstandard resource
limit, RLIMIT_RTPRIO. As with older kernels, privileged (CAP_SYS_NICE) processes can

Process Priorities and Scheduling 743

744

make arbitrary changes to the scheduling policy and priority of any process. How-
ever, an unprivileged process can also change scheduling policies and priorities,
according to the following rules:

If the process has a nonzero RLIMIT_RTPRIO soft limit, then it can make arbitrary
changes to its scheduling policy and priority, subject to the constraint that the
upper limit on the realtime priority that it may set is the maximum of its current
realtime priority (if the process is currently operating under a realtime policy)
and the value of its RLIMIT_RTPRIO soft limit.

If the value of a process’s RLIMIT_RTPRIO soft limit is 0, then the only change that
it can make is to lower its realtime scheduling priority or to switch from a real-
time policy to a nonrealtime policy.

The SCHED_IDLE policy is special. A process that is operating under this policy
can’t make any changes to its policy, regardless of the value of the RLIMIT_RTPRIO
resource limit.

Policy and priority changes can also be performed from another unprivileged
process, as long as the effective user ID of that process matches either the real
or effective user ID of the target process.

A process’s soft RLIMIT_RTPRIO limit determines only what changes can be made
to its own scheduling policy and priority, either by the process itself or by
another unprivileged process. A nonzero limit doesn’t give an unprivileged
process the ability to change the scheduling policy and priority of other processes.

Starting with kernel 2.6.25, Linux adds the concept of realtime scheduling
groups, configurable via the CONFIG_RT_GROUP_SCHED kernel option, which also
affect the changes that can be made when setting realtime scheduling policies.
See the kernel source file Documentation/scheduler/sched-rt-group.txt for details.

Retrieving scheduling policies and priorities

The sched_getscheduler() and sched_getparam() system calls retrieve the scheduling
policy and priority of a process.

#include <sched.h>

int sched_getscheduler(pid_t pid);

int sched_getparam(pid_t pid, struct sched_param *param);

Returns scheduling policy, or -1 on error

Returns 0 on success, or —1 on error

For

both of these system calls, pid specifies the ID of the process about which infor-

mation is to be retrieved. If pid is 0, information is retrieved about the calling process.
Both system calls can be used by an unprivileged process to retrieve information
about any process, regardless of credentials.

The sched_getparam() system call returns the realtime priority of the specified

process in the sched_priority field of the sched_param structure pointed to by param.

Chapter 35

Upon successful execution, sched_getscheduler() returns one of the policies
shown earlier in Table 35-1.

The program in Listing 35-3 uses sched_getscheduler() and sched_getparam() to
retrieve the policy and priority of all of the processes whose process IDs are given
as command-line arguments. The following shell session demonstrates the use of
this program, as well as the program in Listing 35-2:

$ su Assume privilege so we can set realtime policies
Password:

sleep 100 & Create a process

[1] 2006

./sched_view 2006 View initial policy and priority of sleep process
2006: OTHER O

./sched_set f 25 2006 Switch process to SCHED_FIFO policy, priority 25
./sched_view 2006 Verify change

2006: FIFO 25

Listing 35-3: Retrieving process scheduling policies and priorities

procpri/sched_view.c

#include <sched.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{

int j, pol;

struct sched_param sp;

for (j = 1; j < argc; j++) {
pol = sched_getscheduler(getLong(argv[j], 0, "pid"));
if (pol == -1)
errExit("sched_getscheduler");

if (sched_getparam(getLong(argv[j], 0, "pid"), &sp) == -1)
errkExit("sched_getparam");

printf("%s: %-5s %2d\n", argv[j],
(pol == SCHED_OTHER) ? "OTHER" :
(pol == SCHED RR) ? "RR" :
(pol == SCHED FIFO) ? "FIFQ" :
#ifdef SCHED_BATCH /* Linux-specific */
(pol == SCHED_BATCH) ? "BATCH" :

#endif
#ifdef SCHED_IDLE /* Linux-specific */
(pol == SCHED_IDLE) ? "IDLE" :
#endif
"2?22", sp.sched_priority);
}

exit(EXIT_SUCCESS);

procpri/sched_view.c

Process Priorities and Scheduling 745

746

Preventing realtime processes from locking up the system

Since SCHED_RR and SCHED_FIFO processes preempt any lower-priority processes (e.g.,
the shell under which the program is run), when developing applications that use
these policies, we need to be aware of the possibility that a runaway realtime pro-
cess could lock up the system by hogging the CPU. Programmatically, there are a
few of ways to avoid this possibility:

o Establish a suitably low soft CPU time resource limit (RLIMIT_CPU, described in
Section 36.3) using setrlimit(). If the process consumes too much CPU time, it
will be sent a SIGXCPU signal, which kills the process by default.

e Set an alarm timer using alarm(). If the process continues running for a wall
clock time that exceeds the number of seconds specified in the alarm() call,
then it will be killed by a SIGALRM signal.

e Create a watchdog process that runs with a high realtime priority. This process
can loop repeatedly, sleeping for a specified interval, and then waking and
monitoring the status of other processes. Such monitoring could include mea-
suring the value of the CPU time clock for each process (see the discussion of
the clock_getcpuclockid() function in Section 23.5.3) and checking its scheduling
policy and priority using sched_getscheduler() and sched_getparam(). If a process is
deemed to be misbehaving, the watchdog thread could lower the process’s
priority, or stop or terminate it by sending an appropriate signal.

e Since kernel 2.6.25, Linux provides a nonstandard resource limit, RLIMIT_RTTIME, for
controlling the amount of CPU time that can be consumed in a single burst by a
process running under a realtime scheduling policy. Specified in microseconds,
RLIMIT_RTTIME limits the amount of CPU time that the process may consume with-
out performing a system call that blocks. When the process does perform such a
call, the count of consumed CPU time is reset to 0. The count of consumed CPU
time is not reset if the process is preempted by a higher-priority process, is sched-
uled off the CPU because its time slice expired (for a SCHED_RR process), or calls
sched_yield() (Section 35.3.3). If the process reaches its limit of CPU time, then, as
with RLIMIT_CPU, it will be sent a SIGXCPU signal, which kills the process by default.

The changes in kernel 2.6.25 can also help prevent runaway realtime processes
from locking up the system. For details, see the kernel source file Documentation/
scheduler/sched-rt-group.txt.

Preventing child processes from inheriting privileged scheduling policies

Linux 2.6.32 added SCHED_RESET_ON_FORK as a value that can be specified in policy
when calling sched_setscheduler(). This is a flag value that is ORed with one of the
policies in Table 35-1. If this flag is set, then children that are created by this pro-
cess using fork() do not inherit privileged scheduling policies and priorities. The
rules are as follows:

e If the calling process has a realtime scheduling policy (SCHED_RR or SCHED_FIFO),
then the policy in child processes is reset to the standard round-robin time-
sharing policy, SCHED_OTHER.

e If the process has a negative (i.e., high) nice value, then the nice value in child
processes is reset to 0.

Chapter 35

35.3.3

35.34

The SCHED_RESET_ON_FORK flag was designed to be used in media-playback applica-
tions. It permits the creation of single processes that have realtime scheduling poli-
cies that can’t be passed to child processes. Using the SCHED_RESET_ON_FORK flag
prevents the creation of fork bombs that try to evade the ceiling set by the
RLIMIT_RTTIME resource limit by creating multiple children running under realtime
scheduling policies.

Once the SCHED_RESET_ON_FORK flag has been enabled for a process, only a privileged
process (CAP_SYS_NICE) can disable it. When a child process is created, its reset-on-
fork flag is disabled.

Relinquishing the CPU

A realtime process may voluntarily relinquish the CPU in two ways: by invoking a sys-
tem call that blocks the process (e.g., a read() from a terminal) or by calling sched_yield]).

#include <sched.h>

int sched_yield(void);

Returns 0 on success, or —1 on error

The operation of sched_yield() is simple. If there are any other queued runnable
processes at the same priority level as the calling process, then the calling process is
placed at the back of the queue, and the process at the head of the queue is sched-
uled to use the CPU. If no other runnable processes are queued at this priority,
then sched_yield() does nothing; the calling process simply continues using the CPU.

Although SUSv3 permits a possible error return from sched_yield(), this system
call always succeeds on Linux, as well as on many other UNIX implementations.
Portable applications should nevertheless always check for an error return.

The use of sched_yield() for nonrealtime processes is undefined.

The SCHED_RR Time Slice

The sched_rr_get_interval() system call enables us to find out the length of the time
slice allocated to a SCHED_RR process each time it is granted use of the CPU.

#include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *#p);

Returns 0 on success, or -1 on error

As with the other process scheduling system calls, pid identifies the process about
which we want to obtain information, and specifying pid as 0 means the calling pro-
cess. The time slice is returned in the timespec structure pointed to by #p:
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */

};

On recent 2.6 kernels, the realtime round-robin time slice is 0.1 seconds.

Process Priorities and Scheduling 747

35.4

CPU Affinity

When a process is rescheduled to run on a multiprocessor system, it doesn’t neces-
sarily run on the same CPU on which it last executed. The usual reason it may run
on another CPU is that the original CPU is already busy.

When a process changes CPUs, there is a performance impact: in order for a
line of the process’s data to be loaded into the cache of the new CPU, it must first
be invalidated (i.e., either discarded if it is unmodified, or flushed to main memory
if it was modified), if present in the cache of the old CPU. (To prevent cache incon-
sistencies, multiprocessor architectures allow data to be kept in only one CPU cache
at a time.) This invalidation costs execution time. Because of this performance impact,
the Linux (2.6) kernel tries to ensure soft CPU affinity for a process—wherever
possible, the process is rescheduled to run on the same CPU.

A cache line is the cache analog of a page in a virtual memory management system.
It is the size of the unit used for transfers between the CPU cache and main
memory. Typical line sizes range from 32 to 128 bytes. For further informa-
tion, see [Schimmel, 1994] and [Drepper, 2007].

One of the fields in the Linux-specific /proc/PID/stat file displays the
number of the CPU on which a process is currently executing or last executed.
See the proc(5) manual page for details.

Sometimes, it is desirable to set hard CPU affinity for a process, so that it is explic-
itly restricted to always running on one, or a subset, of the available CPUs. Among
the reasons we may want to do this are the following:

e We can avoid the performance impacts caused by invalidation of cached data.

e If multiple threads (or processes) are accessing the same data, then we may obtain
performance benefits by confining them all to the same CPU, so that they
don’t contend for the data and thus cause cache misses.

e For a time-critical application, it may be desirable to confine most processes on
the system to other CPUs, while reserving one or more CPUs for the time-critical
application.

The isolcpus kernel boot option can be used to isolate one or more CPUs from
the normal kernel scheduling algorithms. The only way to move a process on or
off a CPU that has been isolated is via the CPU affinity system calls described in
this section. The isolcpus boot option is the preferred method of implementing
the last of the scenarios listed above. For details, see the kernel source file
Documentation/kernel-parameters.txt.

Linux also provides a cpuset kernel option, which can be used on systems
containing large numbers of CPUs to achieve more sophisticated control over
how the CPUs and memory are allocated to processes. For details, see the ker-
nel source file Documentation/cpusets.txt.

Linux 2.6 provides a pair of nonstandard system calls to modify and retrieve the
hard CPU affinity of a process: sched_setaffinity() and sched_getaffinity().

Many other UNIX implementations provide interfaces for controlling CPU
affinity. For example, HP-UX and Solaris provide a pset_bind() system call.

748 Chapter 35

The sched_setaffinity() system call sets the CPU affinity of the process specified by
pid. If pid is 0, the CPU affinity of the calling process is changed.

#define _GNU_SOURCE
#include <sched.h>

int sched_setaffinity(pid_t pid, size_t len, cpu_set_t *set);

Returns 0 on success, or —1 on error

The CPU affinity to be assigned to the process is specified in the ¢cpu_set_t structure
pointed to by set.

CPU affinity is actually a per-thread attribute that can be adjusted indepen-
dently for each of the threads in a thread group. If we want to change the CPU
affinity of a specific thread in a multithreaded process, we can specify pid as the
value returned by a call to gettid() in that thread. Specifying pid as 0 means the
calling thread.

Although the cpu_set_t data type is implemented as a bit mask, we should treat it as
an opaque structure. All manipulations of the structure should be done using the
macros CPU_ZERO(), CPU_SET(), CPU_CLR(), and CPU_ISSET().

#define GNU_SOURCE
#include <sched.h>

void CPU_ZERO(cpu_set t *set);
void CPU_SET(int cpu, cpu_set_t *set);
void CPU_CLR(int cpu, cpu_set_t *set);

int CPU_ISSET(int cpu, cpu_set_t *set);

Returns true (1) if ¢pu is in set, or false (0) otherwise

These macros operate on the CPU set pointed to by set as follows:

e CPU_ZERO() initializes set to be empty.

e CPU_SET() adds the CPU cpu to set.

e CPU_CLR() removes the CPU cpu from set.

e CPU_ISSET() returns true if the CPU c¢pu is a member of set.

The GNU C library also provides a number of other macros for working with
CPU sets. See the CPU_SET(3) manual page for details.

The CPUs in a CPU set are numbered starting at 0. The <sched.h> header file
defines the constant CPU_SETSIZE to be one greater than the maximum CPU number
that can be represented in a ¢pu_set_t variable. CPU_SETSIZE has the value 1024.

The len argument given to sched_setaffinity() should specify the number of bytes
in the set argument (i.e., sizeof{cpu_set_t)).

Process Priorities and Scheduling 749

750

The following code confines the process identified by pid to running on any
CPU other than the first CPU of a four-processor system:

cpu_set_t set;

CPU_ZERO(&set);

CPU_SET(1, &set);
CPU_SET(2, 8&set);
CPU_SET(3, 8&set);

sched_setaffinity(pid, CPU_SETSIZE, &set);

If the CPUs specified in set don’t correspond to any CPUs on the system, then
sched_setaffinity() fails with the error EINVAL.

If set doesn’t include the CPU on which the calling process is currently run-
ning, then the process is migrated to one of the CPUs in set.

An unprivileged process may set the CPU affinity of another process only if its
effective user ID matches the real or effective user ID of the target process. A privi-
leged (CAP_SYS_NICE) process may set the CPU affinity of any process.

The sched_getaffinity() system call retrieves the CPU affinity mask of the process
specified by pid. If pid is 0, the CPU affinity mask of the calling process is returned.

#define GNU_SOURCE
#include <sched.h>

int sched_getaffinity(pid_t pid, size_t len, cpu_set_t *set);

Returns 0 on success, or -1 on error

The CPU affinity mask is returned in the cpu_set_t structure pointed to by set. The
len argument should be set to indicate the number of bytes in this structure (i.e.,
sizeof(cpu_set_t)). We can use the CPU_ISSET() macro to determine which CPUs are in
the returned sez.

If the CPU affinity mask of the target process has not otherwise been modified,
sched_getaffinity() returns a set containing all of the CPUs on the system.

No permission checking is performed by sched_getaffinity(); an unprivileged
process can retrieve the CPU affinity mask of any process on the system.

A child process created by fork() inherits its parent’s CPU affinity mask, and
this mask is preserved across an exec().

The sched_setaffinity() and sched_getaffinity() system calls are Linux-specific.

The t_sched_setaffinity.c and t_sched_getaffinity.c programs in the procpri
subdirectory in the source code distribution for this book demonstrate the use
of sched_setaffinity() and sched_getaffinity().

Chapter 35

35.5

35.6

35-1.
35-2.

Summary

The default kernel scheduling algorithm employs a round-robin time-sharing policy.
By default, all processes have equal access to the CPU under this policy, but we can
set a process’s nice value to a number in the range -20 (high priority) to +19 (low
priority) to cause the scheduler to favor or disfavor that process. However, even if
we give a process the lowest priority, it is not completely starved of the CPU.

Linux also implements the POSIX realtime scheduling extensions. These allow
an application to precisely control the allocation of the CPU to processes. Processes
operating under the two realtime scheduling policies, SCHED_RR (round-robin) and
SCHED_FIFO (first-in, first-out), always have priority over processes operating under
nonrealtime policies. Realtime processes have priorities in the range 1 (low) to 99
(high). As long as it is runnable, a higher-priority process completely excludes
lower-priority processes from the CPU. A process operating under the SCHED_FIFO
policy maintains exclusive access to the CPU until either it terminates, it voluntarily
relinquishes the CPU, or it is preempted because a higher-priority process became
runnable. Similar rules apply to the SCHED_RR policy, with the addition that if multiple
processes are running at the same priority, then the CPU is shared among these
processes in a round-robin fashion.

A process’s CPU affinity mask can be used to restrict the process to running on
a subset of the CPUs available on a multiprocessor system. This can improve the
performance of certain types of applications.

Further information

[Love, 2010] provides background detail on process priorities and scheduling on
Linux. [Gallmeister, 1995] provides further information about the POSIX realtime
scheduling API. Although targeted at POSIX threads, much of the discussion of
the realtime scheduling API in [Butenhof, 1996] is useful background to the real-
time scheduling discussion in this chapter.

For further information about CPU affinity and controlling the allocation of
threads to CPUs and memory nodes on multiprocessor systems, see the kernel
source file Documentation/cpusets.txt, and the mbind(2), set_mempolicy(2), and cpuset(7)
manual pages.

Exercises

Implement the nice(1) command.

Write a set-user-ID-root program that is the realtime scheduling analog of nice(1).
The command-line interface of this program should be as follows:

./rtsched policy priority command arg...

In the above command, policy is r for SCHED_RR or f for SCHED_FIF0. This program
should drop its privileged ID before execing the command, for the reasons
described in Sections 9.7.1 and 38.3.

Process Priorities and Scheduling 751

35-3.

35-4.

Write a program that places itself under the SCHED_FIFO scheduling policy and then
creates a child process. Both processes should execute a function that causes the
process to consume a maximum of 3 seconds of CPU time. (This can be done by
using a loop in which the times() system call is repeatedly called to determine the
amount of CPU time so far consumed.) After each quarter of a second of
consumed CPU time, the function should print a message that displays the process
ID and the amount of CPU time so far consumed. After each second of consumed
CPU time, the function should call sched_yield() to yield the CPU to the other
process. (Alternatively, the processes could raise each other’s scheduling priority
using sched_setparam().) The program’s output should demonstrate that the two
processes alternately execute for 1 second of CPU time. (Note carefully the advice
given in Section 35.3.2 about preventing a runaway realtime process from hogging
the CPU.)

If two processes use a pipe to exchange a large amount of data on a multiprocessor
system, the communication should be faster if the processes run on the same CPU
than if they run on different CPUs. The reason is that when the two processes run
on the same CPU, the pipe data will be more quickly accessed because it can
remain in that CPU’s cache. By contrast, when the processes run on separate CPUs,
the benefits of the CPU cache are lost. If you have access to a multiprocessor
system, write a program that uses sched_setaffinity() to demonstrate this effect,
by forcing the processes either onto the same CPUs or onto different CPUs.
(Chapter 44 describes the use of pipes.)

The advantage in favor of processes running on the same CPU won’t hold true
on hyperthreaded systems and on some modern multiprocessor architectures
where the CPUs do share the cache. In these cases, the advantage will be in
favor of processes running on different CPUs. Information about the CPU
topology of a multiprocessor system can be obtained by inspecting the contents
of the Linux-specific /proc/cpuinfo file.

752 Chapter 35

