
P6 Programming Tips

©1995, Intel Corporation

The following slides define three key areas of programming for P6
performance, and will provide details on addressing them.

Three Tips for P6 Code

• In general the areas for code optimization
are potentially numerous

• The greatest improvement will be seen by
paying attention to three specific areas
– Branch Prediction

– Partial Stall Removal

– Data Alignment

l Improving Branch Prediction is one of the most
important optimizations
– Reduce the number of branches

– Follow static prediction algorithm

– Ensure that each CALL has a matching RETurn

– Identify and Reduce Unpredictable Branches

– Move Frequent Cases in Switch to If’s

– Don’t intermingle Data and Instructions

– Unroll very short loops

Branch Prediction Improvements

The mixing of data in the instruction stream causes the front end of the machine to be
sent off on a fruitless mission. Decoder bandwidth is consumed and in some cases data
may be speculatively executed. This is not damaging in the sense that the external world
is aware of this but it is damaging in the sense that BTB values may be corrupted and
ICache locations are polluted. There is also potential for CALL /RETurn
synchronization to be lost unnecessarily.

The flow diagram of static prediction demonstrates how decisions will be made up to the
Decoder stage. Matching this flow in software will enable the most optimum execution
speed. The example shown highlights the concept of having only error conditions
represented as forward conditional branches.

 i.e. IF (ERROR) Panic(); equates to: MOV EAX, ERROR
CMP EAX,TRUE
JE PANIC
Continuation Code

"

"

"

Panic: Error Code

The static prediction algorithm is depicted in the flow diagram above. It is best
exampled by following the decision tree down the center. That is, if there has
been no prediction from the BTB and the branch is relative to the current EIP
and the branch is conditional and the sense of the branch is backwards then
it will be predicted to be taken by the static algorithm. The BTB will be
updated so that the 5-6 clocks expended on this pass through the processor will
be reduced to one the next time this branch is seen.

● Make as much of software’s natural flow match static branch prediction direction
- forward conditional branches fall through (not taken)

for (...) {

}

If () Unconditional Branches taken

{ JMP

}

else error

- backward conditional branches taken

loop {

 }

Default Branch Prediction

Eliminate Partial Stalls

* stall is a delay in program execution, waiting for an OPCODE to complete execution

l Reading a register in 32 bit form after writing it in 8/16
bit form causes execution to stall*

Note: P6 is able to track upper registers if XOR or SUB are used. For
example, if

XOR EAX, EAX or
SUB EAX, EAX

were used instead of MOV EAX, O there would be no partial stall.

MOV EAX, 0
MOV AX, 10
ADD EAX, 5

MOV EAX, 0
MOV AL, 17
INC EAX

Register Renaming is enabled by P6 having numerous internal registers that can be
allocated for use when a general purpose register is written. These registers are
RETIRED into the real, general purpose, register file in. This allows the parallelism that
exists across multiple basic blocks to be exposed. The flags register itself in not
renamed, however each instruction carries with it the flag bits that the instruction will
modify when it is retired into the real flags register. There is no renaming of the segment
registers.

The implication of register renaming is that writing a register in it's 8/16 bit form which
causes it to be renamed and then referencing it in it's 32 bit form cause a "stall". A "stall"
is where code execution cannot proceed any further until all preceding instructions have
been retired i.e.. updated the real register file. The reason for this is fairly obvious. For
example the lower half of the EAX register is addressable as an independent register.
The writing of a value to the lower half of the register and then accessing all of the 32
bits of the register assumes that the previous instructions that modified the upper half of
the same register (that were also renamed) have completed through to retirement and
made the value of the upper half of the registeravailable. Many of the cases that would
cause this will be seen and special cased by the Decoder. However this practice should
be understood and wherever possible removed.

Data alignment is very important on P6. Misaligned data accesses are
completed at retirement and as such are expensive. All data should be aligned
on the data types natural boundary.

Code alignment is not so critical. Once the processor is executing in it’s
speculative mode and the pipeline is filled the small one clock impact caused
by a misaligned code reference will be absorbed.

Code alignment is important when the pipeline is empty as in the case of
Interrupts or a branch misprediction. It is not always possible to know if a
branch will mispredict frequently but if it is suspected then the branch target
address should be 16byte aligned.

P6 Alignment

● As with Intel486TM Processor DATA alignment significantly impacts
processor performance, CODE alignment also but to a much
lesser degree

• Align DATA: 16 bit variables on even boundaries

 32 bit variables on 4 byte boundaries

 64 bit variables on 8 byte boundaries

 80 bit variables on 16 byte boundaries

 128 bit variables on 16 byte boundaries

• Align CODE: Major Code block’s, Critical Loop Headers, Interrupt
Service Routine’s aligned as per the Intel486TM
Processor
(16 byte boundaries)

Where do I get more data?

Reference the “32-bit Optimization Guide”
document included on this CD

