
This section includes advice for writing software optimized for the whole Intel
Architecture (IA) family of processors, from Intel486 processors, to
Pentium processors, to P6 processors. We classify this type of IA software
as BLENDED.

‘C’ Coding Techniques for
Intel Architecture Processors

©1995, Intel Corporation

Compiler techniques are improving all of the time and it is recommended that
the latest version of a compiler is always used. Even if you don’t change your
code at all, a new compiler can improve the performance of your software.

The 386 processor introduced 32-bit registers and newer generations of IA
processors have focussed upon improving this 32-bit software. While 8 and 16
bit software will not run slower on newer CPU generations, it may not speed
up as dramatically as 32-bit software. Use 32-bit memory/operations pointers
wherever possible.

Intel Architecture Code Optimization

• Use a new technology compiler in application
development
– Blended code: A single binary that executes “very well” on all Intel

Architecture processors

– We have seen 25+% performance gain in blended code over the past 2
years

– See section on ‘Compiler Information’ for more details

• Use 32-bit application software where possible

• Aggressive code optimization may force you to re-
optimize for the next version
– Blended Intel Architecture code will provide scaleable performance

across processor families i.e. i486™, Pentium® & P6 Processors

– (See section on ‘Tuning Trade-offs’ in this CD for more details.)

There are some general optimizations that can improve the execution speed of
processors with branch prediction -- important for the Pentium processor and
vital for the P6. Try to make the general flow of the software as a straight path
-- divert the flow for exception conditions or other rarely executed code.

Subroutines, or other functions, should have a return statement, not a JMP
instruction. This will make them more predictable.

Some instruction pairing can improve the Pentium processors performance.
While this doesn’t particularly help the P6 (instruction re-scheduling is done in
hardware), it doesn’t hurt P6 performance either. The Intel 486 processor
also is not negatively impacted by Pentium processor pairing.

Intel Architecture Optimizations
• Pentium Processor-Specific Optimizations

– Branch Prediction (i.e. always select fall through code)

– Instruction scheduling (i.e. instruction pairing)

– Use FXCG to optimize floating point performance

• For the P6:
– Use Pentium Processor branch prediction algorithm as a baseline, with

better prediction algorithms imminent

– Remove Self Modifying Code

– Remove Partial Stalls

• Next generation processors will implement register renaming

• Register renaming predicates a performance issue with intermixed 8,
16 and 32 bit registers (i.e. writing AL followed by reading EAX is a
stall)

– Align Data References

• Ensure data alignment rules are followed

– Pentium processor instruction paving doesn’t hurt, but it’s not necessary

In a 32-bit applications, using a short as a part of a loop will cause size
override prefixes to be incorporated. These overrides take longer to fetch,
decode and execute.

ALWAYS use 32 bit integers as loop variables -- your software will run faster.

Short To Integer

• Short variables shouldn’t be loop index variables in a 32 bit
program

• Data Size Override Prefixes Will be Generated

• Prefixes Limit Pairing and Take Longer to Execute

Example for previous page.

Short To Integer

• Original Code

void this_routine(

float *a, float **b, int n)

{

short i;

short k = n;

 for (i=0; i<k; i++){

a[i] += b[0][i];

 }

}

• Improved Code

void this_routine(

 float *a, float **b, int n)

{

int i;

int k = n;

for (i=0; i<k; i++){

a[i] += b[0][i];

}

}

Multiple lilnes of ‘C’ code that have the same variables used as pointer
references cause the code/data dependency tree to be extended, reduce
parallelism and lower performance.

Reorder instructions and introduce temporary pointers where possible.

Temp Variables To Clarify
Pointer Dependences

• Compiler optimizations can be limited by potential
dependence conflicts with pointers

• Instruction reordering, or scheduling, for better
pairing and address generation is often affected

Example for previous page.

Temps To Clarify Pointers
• Original Code

void this_routine(

float *a, float **b, int n)

{

*a++ += b[0][n];

*a += b[0][n-1];

}

• Improved Code

void this_routine(

float *a, float **b, int n)

{

register float temp_1;

register float temp_2;

temp_1 = *a + b[0][n];

temp_2 = *(a+1) + b[0][n-1];

*a++ = temp_1;

*a = temp_2;

}

(a == &b[0][n-1] ??)

Note: Calculations of temp1 & temp2 may be interleaved.

Loop invariant pointer dereferences that are using/accessing normal stack
based variables may generate inefficient/slow code. The movement of this
code to temporary variables and possibly a register based implementation will
improve performance.

Loop Invariant Motion

• Loop Invariant Pointer Dereferences can generate
unnecessary code

• Pointer dereference may be done outside the loop
to a temp variable

Example for previous page.

Loop Invariant Motion
• Original Code

void test_post (int n, int *a, int b)

{

int lim;

lim = n;

while (lim--)

{

*a += b;

}

}

• Optimized Code

void test_post (int n, int *a, int b)

{

int lim;

register int temp_a;

lim = n;

temp_a = *a;

while (lim--)

{

temp_a += b;

}

*a = temp_a;

}

Loop unrolling is a standard compiler technique that provides the opportunity
for higher performance by providing the compiler with a larger basic block to
optimize and thus more opportunity. This unrolling also allows turning based
on cache/memory architecture to be more controllable. Basic rule: the smaller
the size of the loop, the higher the priority for unrolling. Consideration: loop
unrolling will likely help the Pentium processor more than the P6.

Loop Unrolling

• Loop Unrolling

– Can save in loop overhead

– Provides the compiler more opportunity to optimize by
interleaving instructions

• Unroll the loop by doing the following:

1. Replicate the body of the loop.

2. Adjust the index expression if needed.

3. Adjust the loop iteration’s control statements.

Example for previous page. (While this does not hurt P6 execution time, it is
not always necessary since the P6 does many aspects of this operation
automatically via its Dynamic Execution core.)

Loop Unrolling

• Original Code
void test_it(

int *a, int* c, int n)

{

int i;

for (i=0; i<99; i++)

{

a[i] = c[i] ;

}

}

• Optimized Code
void test_it(

int *a, int* c, int n)

{

int i;

for (i=0; i<99; i+=3)

{

a[i] = c[i];

a[i+1] = c[i+1];

a[i+2] = c[i+2];

}

}

The movement of loop invariants outside the loop core will reduce the
unnecessarily repetitive execution of those instructions. This may result in
loop repetition or duplication and the resultant larger code size, but execution
performance will improve.

Loop Invariant If Statements

• Moving If statements out of loops can save
execution time

• Replicate the loop to produce desired effect

Example for previous page.

Loop Invariant Ifs
• Original Code
void test_if(

int *a, int *p, int *q, int n)

{ int i;

for(i=0; i<n; i++)

{

if (putp==1)

a[i]=p[i]+q[i];

else

a[i]=p[i]-q[i];

}

}

• Optimized Code
void test_if(

int *a, int *p, int *q, int n)

{ int i;

if(putp==1)

for(i=0; i<n; i++)

{

 a[i]=p[i]+q[i];

}

else

for(i=0; i<n; i++)

{

 a[i]=p[i]-q[i];

}

}

Libraries are a very good place for optimization, allowing tuning to be
implemented without a complete recompile of the application. Relinking is
only necessary for regeneration. The libraries provide a potential isolation of
the application from processor/architecture-specific requirements.

Libraries should be scanned for optimal routines that may be incorporated into
the normal function required by an application (i.e., memset for array
initialization).

Loop Initialization

• Use a well-tuned library routine like memset to
initialize arrays.

• May Improve performance of the application significantly.

“Memset” is much faster mechanism for replicating a value through memory.

Loop Initialization

• Original Code

void test_it(

char *a, char c, int n)

{

int i;

for (i=0; i<n; i++)

{

 a[i] = c;

}

}

• Optimized Code

void test_it(

char *a, char c, int n)

{

memset(a, c, n);

}

Another good tip to speed execution: If possible, move any loop-based
division to a multiply by reciprocal implementation.

Loop Invariant Division

• Division is Much Slower than Multiplication

• Calculate Reciprocal outside of loop and use
Multiply inside

Example for previous page.

Loop Invariant Division

• Original Code
void test_it(

float *a, float* c, int n)

{

int i;

float denom = *c;

for (i=0; i<n; i++)

{

 a[i] = a[i] / denom;

}

}

• Optimized Code
void test_it(

float *a, float* c, int n)

{

int i; float denom;

denom = 1.0 / (*c);

for (i=0; i<n; i++)

{

 a[i] = a[i] * denom;

}

}

Another useful suggestion.

Logical OR Conversion

• Testing for equality with small
integers using OR (||)

• Table lookup can avoid several
branches

Example for previous page.

Logical OR Conversion

• Original Code
void sub(int *, int*);

void test_it(int * a, int *b, int signif)

{

if (signif == 1 || signif == 4 ||

 signif == 7 || signif == 10 ||

 signif == 13)

{

 sub(a,b);

}else

 sub(b,a);

}

• Optimized Code
void sub(int *, int*);

int test_table[16]={0,1,0,0,1,0,0,1,

 0,0,1,0,0,1,0,0};

void test_it(

int * a, int *b, int signif)

{

if (test_table[signif])

sub(a,b);

else

sub(b,a);

}

A final suggestion: All IA processors perform best when they are allowed to
prefetch decode or execute in a straight line with no branches to break the
pipeline.

The movement of infrequently executed code (e.g., exception/error handlilng
code) will allow the maximum prefetch/decode/execute bandwidth to be
exposed.

Call to Error

• Infrequently executed code can take up instruction
cache space and bus bandwidth needlessly

• Moving infrequently used code out of line can improve
performance

Example for previous page.

For more information, see the ‘32-bit Optimization Guide’ in this CD.

Call to Error

• Original Code
void test_it(char *mem, int flag)

{

if (flag < 0) error ("flag is negative");

dummy (flag, &status);

if (status != OK)

 error (“dummy failed.”);

return;

}

• Optimized Code
void test_it(char *mem, int flag)

{

if (flag < 0) goto flag_err;

dummy (flag, &status);

if (status != Ok)

 goto dummy_err;

return;

flag_err:

error ("flag is negative"); return;

dummy_err:

error (“dummy failed.”); return;}

