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Executive Summary 
The ability to understand assembly language is a difficult but essential 

skill for developers of embedded applications.  Even developers who write 

their applications in a high level language like C will sometimes need to 

examine assembly code for debugging or performance tuning.  Assembly 

language for the IA-32 and Intel® 64 architectures is especially 

challenging to read and understand due to the size and variety of the 

instruction sets.  This paper will impart a basic understanding of assembly 

language and the IA-32 and Intel® 64 instruction sets so that the reader 

will feel comfortable diving down to the assembly level when necessary. 

 Assembly language for the IA-32 and Intel® 64 architectures is 

especially challenging to read and understand due to the size and 

variety of the instruction sets. 

Specifically, this paper provides: 

• A basic overview of the architecture. 

• Details on Intel® Streaming SIMD Extensions and Intel® 

Advanced Vector Extensions. 

• Practical guidelines on employing assembly language listings 

and how to map instructions back to source code.  

• Examples which show the effects of compiler optimizations on 

generated assembly language.   

• An example showing how analysis of the assembly language 

leads to tuning improvements to the original source code.  
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Introduction 
Assembly Language is a representation of the machine language that 
executes on a given architecture.  Reading and understanding IA-32 and 
Intel® 64 architecture assembly languages are difficult tasks.  Embedded 
software engineers are daunted by the sheer longevity of the instruction set 
and breadth that includes: 

• 8-bit, 16-bit, 32-bit, and 64-bit general purpose register sets 

• Variable length instructions 

• Multiple instructions that perform the same action 

• Aggressive compiler optimization 

• New instructions and register sets 

• x87 floating point 

Regardless, there are times when an embedded software engineer need to 
look at the disassembly of an application binary or the source code compiled 
into assembly to perform debugging or performance tuning.  This paper 
equips the reader with the competence necessary to perform these actions.  
First, architecture basics are detailed with information on the register sets, 
data types, and memory and instruction formats.  Next, instruction set 
extensions are detailed which include Intel® Streaming SIMD Extensions 
(Intel® SSE) and Intel® Advanced Vector Extensions (Intel® AVX).  The third 
section shows how to effectively generate and read assembly language.  The 
final section provides an analysis of a small C program compiled to assembly 
language.    

Basic Architecture 
The IA-32 and Intel® 64 architectures are described in terms of their register 
sets, data types, memory addressing modes and instruction formats.  The 
next subsections summarize these aspects of the architectures.   

Register Sets and Data Types 

The original Intel® 8086 processor implemented a 16-bit architecture that 
defined eight 16-bit general purpose registers named AX, BX, CX, DX, SP, BP, 
SI, and DI.  The upper and lower 8 bits of AX-DX could be accessed 
independently as AL-DL and AH-DH respectively.  The Intel386TM processor 
extended the architecture to 32 bits, creating the general purpose register file 
found in the modern IA-32 architecture.  The registers grew to 32 bits but 
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retained their 8- and 16-bit aliases.  The general purpose registers typically 
hold integer data, and the architecture provides instructions to operate on 8-, 
16-, 32-, and in some cases 64-bit signed and unsigned integers.  Figure 1 
illustrates the general purpose registers in the IA-32 architecture. 

The x87 floating-point unit (FPU) was first implemented as an optional 
coprocessor, but modern implementations of the IA-32 architecture integrate 
the FPU into the processor.  The x87 register set consists of eight 80-bit 
values accessed as a stack as Figure 1 illustrates.  A floating point value in an 
x87 register is represented internally in a double extended precision format, 
but the architecture provides instructions that can load and store single 
precision data and double precision data as well.  When loading single or 
double precision data, there is an implicit conversion up to the internal 80-bit 
format.  Similarly, when storing data in single or double precision, there is an 
implicit conversion from the internal 80-bit format to the smaller format.  All 
three data types conform to the IEEE standard for binary floating-point 
arithmetic. 

The MMXTM technology instruction set was introduced in some of the later 
Intel® Pentium® processor models.  It was the first of many single-instruction 
multiple-data (SIMD) extensions.  The MMXTM instructions operate on eight 
64-bit MM registers, and these registers alias the lower 64 bits of the x87 
registers as Figure 1 illustrates.  Unlike the x87 registers, the MM registers 
are accessed directly and not as a stack.  (Note that Figure 1 shows MM0 
aliasing ST(0), MM1 aliasing ST(1), etc.  That is an approximation of reality, 
because the numbering of the x87 registers changes as values are pushed to 
the stack and popped from the stack.)  The MM registers can hold packed 
integer data of various sizes, and there are different instructions for operating 
on data in different underlying types.  For example, the PADDB, PADDW, 
PADDD, and PADDQ instructions perform packed addition of 8-, 16-, 32-, and 
64-bit integers, respectively. 

The Intel® Pentium® III processor introduced the XMM register file as part of 
the Intel® Streaming SIMD Extensions (Intel® SSE).  As Figure 1 shows, there 
are eight 128-bit direct access XMM registers, and these registers can hold 
scalar or packed single precision floating-point data, scalar or packed double 
precision floating-point data, or packed integer data of various sizes.  As with 
the MMXTM instruction set, the instruction determines the data type.   
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Figure 1. IA-32 Architecture Data Registers 

 

The Intel® 64 architecture was introduced primarily to expand the 
addressable memory space beyond the 32-bit limit, but it also significantly 
expands the data registers of the IA-32 architecture.  First, it extends the 
size of the general purpose registers to 64 bits.  It preserves all the existing 
register names for accessing the lower 32 bits of the registers and adds the 
names RAX-RDX, RSP, RBP, RSI, and RDI for accessing the full 64-bit 
registers.  Second, it adds the ability to independently reference the lower 8 
bits of RSP, RBP, RSI, and RDI using the names SPL, BPL, SIL, and DIL.  
Third, it adds eight new general purpose registers named R8-R15.  The lower 
32, 16, or 8 bits of these registers can be accessed using the names R8D-
R15D, R8W-R15W, and R8B-R15B, respectively.  Finally, it adds eight new 
XMM registers named XMM8-XMM15.  Figure 2 illustrates the Intel® 64 
architecture data registers.  Note that the x87 and MM registers are identical 
between the IA-32 and Intel® 64 architectures. 
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Figure 2.  Intel® 64 Architecture Data Registers 

 

Instruction Formats and Memory Addressing Modes 
Assembly instructions begin with the mnemonic.  A mnemonic is a short 
string that is usually an abbreviation of the instruction’s function.  For 
example, MULPS is the mnemonic used to represent a MULtiply of Packed 
Single precision floating-point values. 

Following the mnemonic are zero or more operands.  The legal number and 
types of operands depend on the instruction, but by convention, in AT&T 
syntax assembly the output operand is always the rightmost operand. 

An operand may be a register, a memory reference, or a literal value, usually 
called an immediate.  Register operands can be used as input, output, or 
both and are indicated in assembly by prefixing the register name with the % 
character.  Immediate operands are always used as input and are indicated in 
assembly by prefixing the literal value with the $ character.  Sometimes, the 
literal value is something that is not known until link time such as the address 
of a global variable.  In assembly, a link-time constant is represented 
symbolically as shown in the following instruction, which moves the address 
of x into register EAX. 
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 movl  $x, %eax 

Operands not prefixed by either % or $ are memory operands.  Like register 
operands, memory operands can be used as input, output, or both.  In the 
IA-32 and Intel® 64 architectures, instructions can use fairly complex 
expressions to specify the address for a memory reference.  The general form 
of a memory expression appears as follows in assembly. 

 offset(base register, index register, scale) 

The effective address for this memory expression is computed by 

 offset + base register + (index register * scale) 

All components of the address expression are optional except that a scale 
must accompany an index register.  The offset can be either an 8-bit or 32-
bit immediate value and is often a link time constant.  It is sign extended to 
the address size.  Scale is an immediate value and must be one of 1, 2, 4, or 
8.  In the IA-32 ISA, the base and index registers must be 32-bit registers.  
Values stored in 8- or 16-bit registers must first be extended to 32 bits 
before use in an address expression.  Similarly, in the Intel® 64 ISA, the base 
and index registers must be 64-bit registers.  Smaller values must be 
extended to 64 bits before use in address expressions. 

In the Intel® 64 architecture, there is also a special RIP-relative addressing 
mode.  This mode always uses register RIP as the base register with a 32-bit 
offset and no index register.  Register RIP is the instruction pointer register.  
It contains the address of the next instruction to be executed.  This 
addressing mode significantly improves the efficiency of position independent 
code. 

In the current IA-32 and Intel® 64 architectures, binary operations such as 
MULPS use a 2-operand format.  Conceptually, MULPS has two input 
operands, the multiplicands, and one output operand, the result.  But the 
architecture requires that the output overwrites one of the inputs.  So, for 
example, the semantics of the instruction 

 mulps %xmm1, %xmm2 

are to multiply the contents of register XMM1 by the contents of register 
XMM2 and store the result in register XMM2.  If a program needs to preserve 
the values of both multiplicands, it must use an extra copy instruction. 

 movaps %xmm2, %xmm3 

 mulps %xmm1, %xmm3 

For many instructions, the types of operands can vary.  Continuing with the 
MULPS example, the first operand can either be a register or a memory 
location.  Suppose you wanted to multiply the contents of register XMM2 by 4 
elements in an array of floats.  One method is to use separate load and 
multiply instructions. 



Ensuring Development Success By Understanding and Analyzing Assembly Language 
 

321059 9 

movaps x(,%eax,4), %xmm1 

mulps %xmm1, %xmm2 

An alternative is to use a single multiply instruction with a memory operand. 

mulps  x(,%eax,4), %xmm2 

The latter is more efficient in the number of instructions, code size, XMM 
registers, and usually execution time. 

Many integer instructions show even greater variety in the types of operands 
they can handle.  For example, the following are all valid forms of a 32-bit 
integer addition. 

addl  %ebx, %edx 

addl    (%eax), %edx 

addl  $42, %edx 

addl  $42, (%eax) 

addl  %ebx, (%eax) 

Instruction Set Extensions 
Intel routinely enhances the instruction sets of the IA-32 and Intel® 64 
architectures.  MMXTM technology introduced a set of instructions that 
process data in a single instruction, multiple data fashion.  The instructions 
were specifically designed to improve the performance of integer programs 
with a high degree of data parallelism such as signal processing.  Successive 
generations of Intel architecture processors have added further instruction 
set extensions including Intel® SSE, and Intel® AVX.  Understanding these 
instruction set extensions is crucial to taking full advantage of the processor’s 
capabilities.  In some cases, they can enable you to efficiently execute 
applications on the Intel® architecture processor that have previously been 
executed on special purpose hardware such as a graphics processing unit 
(GPU). 

Intel® Streaming SIMD Extensions  

Intel® SSE provides SIMD processing of single precision floating-point values.  
SIMD processing is also known as vector processing and allows the same 
computation to be performed on multiple pieces of data (Multiple Data) using 
only one instruction (Single Instruction).  The Intel® SSE instruction set 
features 70 instructions that perform vector and scalar floating-point 
arithmetic, comparisons, type conversions between floating-point and integer 
data, boolean logic, and data rearrangement.  Figure 3 illustrates the kind of 
computation that can benefit from Intel® SSE.  The loop multiplies two 4-
element vectors together, and stores the result in a third vector.  With Intel® 
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SSE, the entire computation can be performed using only three instructions.  
The assembly code required to perform the same function using scalar x87 
instructions is much longer and slower than what Intel® SSE provides. 

Figure 3. Intel® SSE Vector Multiply Example 

Intel® SSE also introduced a software prefetch instruction, a non-temporal 
store instruction, and several MMXTM technology enhancements specifically 
targeted at accelerating media encoding and decoding.  Effective use of 
Intel® SSE can increase performance tremendously for applications such as 
3D graphics that use single-precision floating point and tend to employ 
common operations on vast amounts of data. 

Intel® SSE first introduced aligned loads and stores to the architecture.  Most 
128-bit memory references require the address to be 16-byte aligned.  The 
idea is that memory references that cross a cache line boundary are costly on 
most processors, and enforcing 16-byte alignment avoids that potential 
penalty.  There are dedicated 128-bit unaligned load and store instructions 
for when the data is known to be misaligned.  For example, the following two 
instructions both load 128 bits of data from the address in register EAX.  The 
only functional difference in behavior is that the MOVAPS instruction faults if 
the address in EAX is not an even multiple of 16. 

  movaps (%eax), %xmm0 

  movups (%eax), %xmm0 

Source Code 
float x[4], y[4], z[4];  
int i; 
... 
for (i = 0; i < 4; i++) { 
    z[i] = x[i] * y[i]; 
} 

Intel SSE Assembly 
Implementation 
movaps    x, %xmm0 
mulps     y, %xmm0 
movaps    %xmm0, z 

x87 Assembly Implementation 
flds      x 
fmuls     y 
flds      4+x 
fmuls     4+y 
flds      8+x 
fmuls     8+y 
flds      12+x 
fmuls     12+y 
fxch      %st(3) 
fstps     z 
fxch      %st(1) 
fstps     4+z 
fstps     8+z 
fstps     12+z 
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Intel® SSE2 adds SIMD processing for double precision floating-point and also 
128-bit SIMD processing for integer data.  The capabilities Intel® SSE2 
provides for double precision floating-point are similar to what Intel® SSE 
provides for single precision.  The vector width is smaller since a 128-bit 
vector register can hold 4 single precision values but only two double 
precision values.  For integer data, Intel® SSE2 effectively doubles the vector 
width over MMXTM technology.  But otherwise the capabilities are similar.  
Figure 4 illustrates a vector average of unsigned bytes that can be performed 
efficiently using Intel® SSE2. 

Figure 4. Intel® SSE2 Vector Average Example 

 

Intel® Supplemental Streaming SIMD Extensions 3 (SSE3) provides a small 
number of instructions primarily designed to improve the efficiency of single-
precision and double-precision complex multiplication and division. 

Intel® SSSE3 provides additional instructions for operating on integer data.  
For example, it provides horizontal addition and subtraction instructions for 
operating on data elements within a single vector.  It also provides packed 
absolute value and conditional negation instructions. 

Intel® Supplemental Streaming SIMD Extensions 4.1 (SSE4.1) provides a 
variety of additional instructions for operating on vector data in the XMM 
registers.  Some of these instructions make it easier for a compiler to 
automatically vectorize a scalar loop.  For example, there are instructions for 
vector sign and zero extension, vector and scalar floating-point rounding, and 
vector integer max/min.  The vector blend instructions expose new 
opportunities to write vector code for loops containing conditionals.  For 
example, Figure 5 illustrates a simple 4-iteration loop with a conditional 
select construct.  With Intel® SSE4.1, the entire loop can be implemented 
with just a few instructions.  The XORPS and CMPLTPS instructions compare 
the elements of the x vector to zero and produce a mask of the comparison 
results in register XMM0.  The BLENDVPS instruction uses the mask in 

Source Code 
unsigned char a[16], b[16], c[16];  
int i; 
... 
for (i = 0; i < 16; i++) { 
    c[i] = (a[i] + b[i] + 1) / 2; 
} 

Assembly Implementation 
movdqa    a, %xmm0 
pavgb     b, %xmm0 
movdqa    %xmm0, c 
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register XMM0 to select the corresponding element from either the y vector 
(in memory) or the z vector (in register XMM1). 

Figure 5. Intel® SSE4.1 Vector Blend Example 

 

Intel® SSE4.2 adds four new string processing instructions that perform 
advanced string comparison and search operations in a single instruction.  It 
also provides a 64-bit packed integer comparison instruction. 

The Intel® CoreTM i7 processor added two application targeted accelerators, 
POPCNT and CRC32.  Strictly speaking, these are not part of Intel® SSE but 
are instruction set extensions designed to boost the performance of specific 
performance critical algorithms. 

Intel® Advanced Vector Extensions (AVX) 

The Intel® Advanced Vector Extensions (AVX) are instruction set 
enhancements that further extend the processor’s SIMD capabilities.  Intel 
plans to ship processors that implement Intel® AVX starting in 2010. 

Intel® AVX widens the XMM register file from 128 to 256 bits, doubling the 
maximum SIMD vector length.  The full 256-bit registers are referenced in 
assembly using the names YMM0-YMM15, as illustrated in Figure 6.  In 32-bit 
mode, only registers YMM0-YMM7 are available. 

Source Code 
float x[4], y[4], z[4];  
int i; 
... 
for (i = 0; i < 4; i++) { 
    x[i] = (x[i] > 0) ? y[i] : z[i]; 
} 

Assembly Implementation 
movaps    z, %xmm1 
xorps     %xmm0, %xmm0 
cmpltps   x, %xmm0 
blendvps  %xmm0, y, %xmm1 
movaps    %xmm1, x 
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Figure 6. Intel® AVX Register Extensions 

 

The Intel® AVX instructions logically extend the 128-bit vector Intel® SSE 
instructions to 256 bits.  Simple operations like vector multiplies operate on 
twice as many data elements.  Data rearrangement operations like shuffles 
usually operate “in-lane”, which means that the same data rearrangement 
operation is applied to both 128-bit halves or “lanes” of a YMM register.  New 
128-bit permute, insertion, and extraction instructions enable a program to 
move data across lanes.  The Intel® AVX architecture also provides new 
primitives like broadcasts and masked loads and stores.  These primitives 
make it easier to generate efficient vector code, and they make it easier for a 
compiler to vectorize code automatically. 

In addition to wider vectors, Intel® AVX provides 3-operand instruction forms 
so that the destination operand is independent of the input operands.  Intel® 
AVX also provides alternate 3-operand forms for all existing 128-bit vector 
and scalar operations.  Using the MULPS example, even if the program needs 
to preserve both multiplicands, it can implement the multiply using one 
instruction.  

vmulps %xmm1, %xmm2, %xmm3 

AVX preserves the convention that the destination operand is the rightmost 
one, so the operation being performed by this instruction is shown by the 
following expression. 

XMM3  XMM1 * XMM2 

Finally, for most instructions Intel® AVX lifts the restriction that vector loads 
and stores be aligned.  Explicit “move aligned” instructions such as VMOVDQA 
still require addresses to be aligned on vector size boundaries.  But other 
vector loads and stores can be unaligned.  This is most useful in creating 
opportunities to merge load and store instructions with other instructions.  
Previously, loads could not be combined with subsequent instructions unless 
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the load addresses were provably aligned, leading to multi-instruction 
sequences like the following. 

movups x(,%eax,4), %xmm1 

mulps %xmm1, %xmm2 

Intel® AVX enables these two instructions to be combined. 

vmulps x(,%eax,4), %xmm2, %xmm2 

Effectively using Assembly Language 
Listings 

This section provides useful tips for correlating assembly language to the 
original source code.  First, we explain the basics of assembly language 
listings including how to generate and read them.  Afterwards, several 
examples are discussed which show how compiler optimizations can increase 
the difficulty of correlating assembly code to source code and how you can 
effectively understand the transformations made by the compiler to decipher 
your assembly language listings. 

Generating Assembly Language Listings 

The first task in effective use of assembly language is to know how to easily 
generate it.  Two techniques for generating assembly for your application 
code are: 

• Disassemble the application binary 

• Compile the source code to assembly language. 

Disassembly of an application binary requires a tool called a disassembler 
which maps the machine language contained in the binary to the equivalent 
assembly language mnemonics.  A disassembler is a common tool on modern 
operating systems.  On Linux* systems, the objdump -d command produces 
a disassembly listing.  For example, to disassemble the cat command, type: 

 objdump -d ‘which cat‘ 

The disassemble command is not the same on all systems.  On Windows* 
and Mac* OS, the disassemble commands are dumpbin /disasm and otool -
t -V respectively.  Many debuggers feature the option to view the code 
under debug as assembly language and effectively call a disassembler to 
display the instructions. 
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To produce an assembly file with a compiler, consult your compiler’s manual 
to find the correct option.  Using gcc and other compatible compilers on a 
Linux* system, the option is -S.  Using the Intel® C++ Compiler to compile 
the code in Figure 7 produces an assembly listing, a portion of which is in 
Figure 8.  This resulting listing is an example using Intel® 64 ISA assembly 
language. 

Figure 7. Source Code for Function Simple_loop 

 

Figure 8. Assembly Language for Function Simple_loop 

 

The four components of an assembly listing are: 

• Instructions 

• Directives 

• Comments 

• Labels 

simple_loop: 
# parameter 1: %rdi 
..B1.1:                         # Preds ..B1.0 
..___tag_value_simple_loop.1:   #2.1 
        xorl      %eax, %eax    #3.19 
        xorl      %edx, %edx    #5.8 
        testq     %rdi, %rdi    #5.16 
        jle       ..B1.5        # Prob 10% #5.16 
                   #LOE rax rdx rbx rbp rdi r12 r13 r14 r15 
..B1.3:                         # Preds ..B1.1 ..B1.3 
        addq      %rdx, %rax    #6.5 
        addq      $1, %rdx      #5.19 
        cmpq      %rdi, %rdx    #5.16 
        jl        ..B1.3        # Prob 82%   #5.16 
..B1.5:                         # Preds ..B1.3 ..B1.1 
        ret                     #8.10 
        .align    2,0x90 

long simple_loop(long x) 
{ 
    long i, ret_val = 0; 
    #pragma novector 
    for (i=0; i< x; i++) { 
        ret_val += i;  
    } 
    return ret_val; 
} 
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Instructions map 1-to-1 to the low level machine language instructions that 
the processor executes.  An example instruction is: 

addq %rdx, %rax 

This represents a 64-bit addition of register RDX and register RAX.  The result 
of the operation is stored in register RAX.  Please refer to the section, 
Instruction Formats and Memory Addressing Modes for a description of the 
instruction format for the IA-32 and Intel® 64 architectures. 

Directives are commands to the assembler that control its generation of 
machine language code.  The directive used in Figure 8, denoted “.align” 
instructs the assembler to align the next instruction on a particular address 
boundary.  The assembler has the ability to know how many bytes previous 
instructions have taken and can pad the address range with nops (no 
operations) so a particular instruction is aligned.  Code alignment is a 
performance optimization for the instruction fetch unit and instruction cache.  
It is often good to align the target of a branch or call to guarantee it is the 
start of an instruction fetch line or cache line.  Other directives include type, 
size, data, and section.   

Labels are generic identifiers for locations in the program that can either be 
data or instructions.  In Figure 8, the label denoted “..B1.3” is an identifier 
for the location of the instruction that it immediately precedes.  Labels 
identify addresses that are not explicitly known until the assembly code is 
assembled or until the machine language code is loaded for execution.  For 
example, a jump to a label requires either the absolute address of the target 
location or a relative offset from the address of the instruction immediately 
following the branch to the address of the target location.  In some cases, the 
absolute address is not known until the operating system assigns addresses 
for the program.  It is possible to compute the relative offset of a branch 
during assembly.  For example, the branch instruction JL in Figure 8 must use 
a relative offset.  The number of bytes between it and the target address is 
something that can be computed during assembly. 

Comments are denoted by the # symbol and indicate extra information that 
is ignored by the assembler.  In compiler generated assembly listings, the 
comments often provide useful information about the program.  In the case 
of the assembly listing in Figure 8, the comments were generated by the 
Intel® C++ Compiler Professional Edition for Linux* OS version 11.0.    There 
are many comments of the form “5.19” that follow instructions in the 
assembly listing.  These comments are particularly valuable, because they tell 
you the line number of the source program that resulted in the assembly 
language instruction.  They use the form “line number.column number”.  The 
first comment, “# parameter 1: %rdi”, tells you the location used to pass 
argument x to the function.  There are several comments of the form “Prob 
82%” that follow branch instructions and give the compiler’s estimate of how 
likely the branch will be taken.   The “Preds” comments provide information 
about the control flow within the function.  For example, the “# Preds 
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..B1.3 ..B1.1” comment indicates that basic block B1.5 can either be 
reached by block B1.3 or B1.1.  Finally, the LOE comment that appears at the 
end of a basic block indicates the set of registers that hold meaningful values 
on exit from the block. 

Effects of compiler optimization 

Aggressive compiler optimization can transform C or C++ code into very 
difficult to read assembly language.  The following are examples of common 
optimizations that make the assembly code more difficult to correlate to the C 
source code: 

• Basic block placement 

• Inlining 

• Strength reduction 

• Alternate entries 

The examples in this section use Intel® 64 ISA assembly language unless 
otherwise noted. 

Basic block placement is an optimization for branch prediction and for the 
instruction cache that attempts to place basic blocks that execute close 
together in time as close together address-wise as possible.  A basic block is 
a set of instructions where if one instruction executes, then program flow 
dictates all of the other instructions will execute.  Typically a basic block 
begins as the result of being a branch target and ends as a result of a branch 
instruction.  If basic block placement is performed over a large function, basic 
blocks that make up a tiny portion of the function can be scattered 
throughout the assembly language listing for the function.  The key for 
determining the logical flow of your program to identify such things as loops 
is to create a graph of basic blocks.  Figure 9 is C source code for a switch 
statement where the comments indicate the frequency of execution for each 
case.  Figure 10 shows how a compiler may rearrange the order of the 
assembly language for each of the case statements based upon measured 
execution frequency.  As you can see, the compiler placed the assembly 
language code associated with the “case 4” code that occurs 25% of the 
time to be the first case tested and if equal control branches to label 
“..B1.8”.  The code associated with the “case 8” is therefore closer address-
wise and can take advantage of the spatial locality of the cache.  The 
compiler can determine execution frequency by employing static heuristics or 
profile-guided optimization.         
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Figure 9. Source Code for Basic Block Placement Example 

    

Figure 10. Assembly Language for Basic Block Placement Example 

 

Inlining is an optimization that reduces function call and return overhead by 
replacing a call to a function with the instructions that make up the called 
function.  Once a function is inlined, other optimizations can modify the 
assembly language to a larger degree resulting in difficult to understand 
assembly code.   

Figure 11 provides a sample implementation of the function check called in 
the example from Figure 9.  Line numbers are added to the listing for 
convenience.  Figure 12 is the assembly listing of function check compiled 
separately and without being inlined into the code from Figure 9.  The line 
numbers in the assembly listing enable easy correlation to the source code: 

..B1.3:           # 100         # Preds ..B1.2 
        cmpl      $4, %eax                                  #11.19 
        je        ..B1.8        # Prob 25%                  #11.19 
                                # LOE rbp r12 r13 r14 r15 eax ebx 
..B1.4:           # 75          # Preds ..B1.3 
        movl      $2, %edx                                  #17.9 
        xorl      %esi, %esi                                #17.9 
        cmpl      $8, %eax                                  #17.9 
        cmove     %edx, %esi                                #17.9 
                                # LOE rbp r12 r13 r14 r15 ebx esi 
..B1.5:           # 100         # Preds ..B1.4 ..B1.8 
        movl      $_2__STRING.0.0, %edi                     #19.5 
        xorl      %eax, %eax                                #19.5 
        call      printf                    
..B1.8:           # 25          # Preds ..B1.3   # Infreq 
        movl      $5, %esi                                  #13.9 
        jmp       ..B1.5        # Prob 100%                 #13.9       

  for (i=0; i< NUM_BLOCKS; i++) { 
      switch (check(i)) { 
          case 4:     /* 25% */ 
              ret = 5 ; break; 
          case 8:     /* 75% */ 
              ret = 2 ; break; 
          default:    /* 0% */ 
              ret = 0 ; break; 
      } 
      printf(“%d\n”, ret); 
  } 
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• The increment of zee is represented by the first three assembly 
instructions. 

• The modulus operation is represented by the instruction “andl $3, 
%eax”. 

• The code at labels “..B1.2” and “..B1.3” represent the if and else 
clause respectively. 

Figure 11. Source Code for Function Check 

 

Figure 12. Assembly Language for Function Check 

 

Figure 13 is an assembly listing of a portion of the code example from Figure 
9 after check has been inlined.  It is more difficult to correlate the assembly 
code with the source code.  One technique is to use the source code and 
separate assembly listing of check as a guide.  It is easy to observe the 
increment to zee in Figure 13 (first two instructions in the listing).  The return 
value of the function check which is either 4 or 8 has been optimized away by 
the compiler since the value is used to control setting of another value, ret.  
The compiler sets ret directly.  This insight into compiler optimization and 
elimination of code can only be gained from analyzing both the non-inlined 
and inlined version of the assembly code. 

        movl      zee.2.0.0(%rip), %eax                     #6.5 
        addl      $1, %eax                                  #6.5 
        movl      %eax, zee.2.0.0(%rip)                     #6.5 
        andl      $3, %eax                                  #7.15 
        jne       ..B1.3        # Prob 50%                  #7.20   
..B1.2:                         # Preds ..B1.1 
        movl      $4, %eax                                  #7.30 
        ret                                                 #7.30 
                                # LOE 
..B1.3:                         # Preds ..B1.1 
        movl      $8, %eax                                  #8.17 
        ret                                                 #8.17 

Line         
3    int check(int i)  
4    { 

  5        static int zee = 0; 
  6        zee++; 
  7        if (zee % 4 == 0) return 4; 
  8        else return 8; 
  9    }    
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Figure 13. Assembly Language for Inlined Function Check 

  

Strength reduction is the replacement of one type of operation with a 
different set of operations that is faster to execute.  Some examples of 
strength reduction are: 

• Replacing multiplication with a series of shifts and additions, 

• Transforming exponentiation into multiplication, 

• Replacing division with reciprocal multiplication, and  

• Initialization using less expensive operations.   

Figure 14 is a code example and the resulting assembly language that shows 
several strength reduction optimizations.  The compiler optimized the integer 
multiplication by 4 into a shift left by two bits.  It also optimized the floating 
point division by computing (1.0 / d) outside the loop, storing the result in 
register XMM1, and multiplying by this value inside the loop.  This example 
shows that you cannot always find the section of assembly that corresponds 
to a piece of source code by searching for specific distinguishing operations. 

..B1.2:                         # Preds ..B1.7 ..B1.3 
        addl      $1, %r12d                                #19.13 
        movl      %r12d, zee.119.0.0(%rip)                 #19.13 
        movl      %r12d, %ecx                              #19.13 
        andl      $3, %ecx                                 #19.13 
        movl      $5, %r8d                                 #23.9 
        movl      $2, %esi                                 #23.9 
        cmpl      $0, %ecx                                 #23.9 
        cmove     %r8d, %esi                               #23.9 
        movl      $_2__STRING.0.0, %edi                    #27.5 
        xorl      %eax, %eax                               #27.5 
        call      printf                                   #27.5 
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Figure 14. Code for Strength Reduction Example 

Alternate entries occur as a result of an optimization that reduces the call & 
return overhead by allowing the calling routine to keep values in registers 
and jumping to a point of a called function where the registers have the 
expected values.  The IA-32 ISA application binary interface specifies that 
function call arguments are to be placed on the stack.  The called function 
would then move these items off of the stack into registers which essentially 
costs multiple moves to and from memory.  Figure 15 shows the assembly 
language for a function that contains the normal function entry point and an 
alternate entry.  This resulting listing is an example using IA-32 ISA assembly 
language.  Notice at the normal function entry point (label “multiply_d”) the 
first instructions move the values from the stack into registers whereas the 
alternate entry (label “multiply_d.”) assumes the values are already there. 

Figure 15. Assembly Code for Alternate Entry Code Example 

There are many other compiler optimizations that affect source code position 
and what is detailed here is just a small sample.  Being aware of the issue 

        multiply_d: 
..B4.1:           # 1           # Preds ..B4.0 
        movl      4(%esp), %eax                             #11.1 
        movl      8(%esp), %edx                             #11.1 
        movl      12(%esp), %ecx                            #11.1 
 
multiply_d.:                                                # 
        pushl     %edi                                      #11.1 

Source Code 
    int i, *f; 
    double d, *g; 
 
    for (i = 0; i < N; i++) { 
        f[i] *= 4; 
        g[i] = g[i] / d; 
    } 
 
Assembly Implementation 
..B1.2:                         # Preds ..B1.2 ..B1.1 
        shll      $2, (%rdi)                                 #8.9 
        movsd     (%rsi), %xmm0                              #9.16 
        mulsd     %xmm1, %xmm0                               #9.23 
        movsd     %xmm0, (%rsi)                              #9.9 
        addq      $4, %rdi                                   #7.24 
        addq      $8, %rsi                                   #7.24 
        incq      %rax                                       #7.24 
        cmpq      $1024, %rax                                #7.21 
        jl        ..B1.2        # Prob 99%                   #7.21 
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and continued study on compiler optimization will improve your skills at 
correlating assembly code with source code. 

Code Sample Assembly Analysis  
This section details an analysis of a code sample and its assembly language 
listings and shows how insight gleamed from the assembly language aids 
subsequent optimization.  Figure 16 is a listing of the code sample whose 
function is to compute a vector maximum.  The listings in this section all use 
Intel® 64 ISA assembly language.  Due to space issues, it is impractical to 
include the entire assembly list described at each step.  Instead, we provide 
the key portions of the assembly listing relevant to the discussion. 

Figure 16. Source Code for Analysis Example (vector_max.c) 

 

The first step in the analysis is to compile the code to assembly by issuing the 
following compile command: 

icc -xSSE4.2 -S vector_max.c 

The –xSSE4.2 option tells the compiler to take full advantage of all ISA 
extensions up to and including SSE4.2, and the #pragma vector always 
directive instructs the compiler to always vectorize the loop.  

Analyzing the generated assembly listing reveals a great amount about how 
the compiler optimized the source code.  The portion of the assembly listing 
relevant to our analysis is listed in Figure 17.  Analysis reveals these 
observations: 

• The parameters, *a, *b, and size are stored in registers RDI, RSI, and 
EDX respectively. 

• The ‘testq r8, r8’ instruction checks to see if size is equal to 0.  The 
function immediately returns if true. 

• The code in blocks “..B1.3” and “..B1.4” is checking the memory 
region spanned by *a and *b to determine if there is overlap. 

void vector_max(__int64 *a, __int64 *b, int size) 
{ 
    int i; 
    #pragma vector always 
    for (i=0;i<size;i++) { 
        a[i] = (a[i] > b[i]) ? a[i] : b[i]; 
    } 
} 
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The third observation above is critical.  The compiler added this overlap 
checking to ensure safe automatic vectorization.  Unfortunately, performing 
this runtime overlap test increases both runtime and code size overhead.  
The code size overhead claim is substantiated later in this section.   

Figure 17. Assembly Listing 1 for Analysis Example 

 

Assume the programmer knows that the regions pointed to by *a and *b do 
not overlap.  It is possible to eliminate the overhead by using the restrict 
type qualifier which instructs the compiler to assume that the specified 
pointer does not point to the same memory as another pointer.  Add the 
restrict type qualifier by changing the parameter definition of function vector 
to the following. 

void vector_max(__int64 *restrict a, __int64 *b, int size) 

Using the restrict type qualifier requires an additional option to turn on the 
feature.  Recompile the source file by issuing  

icc -restrict -xSSE4.2 -S vector_max.c 

A portion of the resulting assembly file is shown in Figure 18.  We made the 
following observations about the new assembly code: 

vector_max: 
# parameter 1: %rdi 
# parameter 2: %rsi 
# parameter 3: %edx 
..B1.1:                         # Preds ..B1.0 
..___tag_value_vector.1:                                     #2.1 
        movslq    %edx, %r8                                  #2.1 
        movl      %r8d, %eax                                 # 
        testq     %r8, %r8                                   #5.14 
        jle       ..B1.38       # Prob 50%                   #5.14 
                                # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax 
..B1.2:                         # Preds ..B1.1 
        cmpl      $6, %eax                                   #5.3 
        jle       ..B1.32       # Prob 50%                   #5.3 
                                # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax 
..B1.3:                         # Preds ..B1.2 
        cmpq      %rsi, %rdi                                 #6.22 
        jbe       ..B1.5        # Prob 50%                   #6.22 
                                # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax 
..B1.4:                         # Preds ..B1.3 
        lea       (,%r8,8), %rdx                             #6.22 
        movq      %rdi, %rcx                                 #6.22 
        subq      %rsi, %rcx                                 #6.22 
        cmpq      %rcx, %rdx                                 #6.22 
        jb        ..B1.7        # Prob 50%                   #6.22 
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• The assembly code to check for overlap between *a and *b is not in the 
listing. 

• The code in blocks “B1.2” and “B1.13”checks the alignment of *a and 
*b respectively and ultimately determines which of two vectorized loops 
are used to perform the max operation: one that uses unaligned loads 
(MOVDQU) or one that uses aligned loads (MOVDQA).  

This runtime alignment check adds execution time and code size overhead. 

Figure 18. Assembly Listing 2 for Analysis Example 

 

If the programmer can guarantee that *a and *b point to 16-byte aligned 
memory, providing this information to the compiler enables better 
optimization. 

Add the following #pragma to the source code before the for loop 

#pragma vector aligned 

Recompile the source file by issuing  

icc -restrict -xSSE4.2 -S vector_max.c 

Analysis of the resulting assembly file reveals the following. 

• The assembly code to check the alignment of *a and *b is not in the 
listing. 

• Only one loop with vector instructions appears in the assembly listing, 
and this loop only uses aligned forms of the vector instructions.  

Figure 19 shows the aligned loop.  Another interesting tidbit is that the loop 
has been unrolled four times.  Also note that the compiler makes effective 
use of the SSE4.2 instruction PCMPGTQ.  This instruction does a vector 
compare of 64-bit integers for greater-than, and is followed by several logical 
operations that blend the *a and *b vectors based on the result of the 
compare to compute the vector max. 

..B1.2:                         # Preds ..B1.1 
        movslq    %edx, %r8                                  #5.3 
        movq      %rdi, %rdx                                 #5.3 
        andq      $15, %rdx                                  #5.3 
        testl     %edx, %edx                                 #5.3 
        je        ..B1.5        # Prob 50%                   #5.3 

 

..B1.13:                        # Preds ..B1.11 ..B1.6 
        movl      %edx, %edx                                 #6.22 
        lea       (%rsi,%rdx,8), %r9                         #5.3 
        testq     $15, %r9                                   #5.3 
        je        ..B1.18       # Prob 60%                   #5.3 
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Figure 19. Assembly Listing 3 for Analysis Example 

 

The last portion of this analysis summarizes the code size impact of these 
optimizations.  Table 1 shows the text section size of the object files for the 
original code, the code with the restrict type qualifier, and the code with both 
the restrict type qualifier and #pragma vector aligned.  As you can see, the 
text size shrinks from 688 bytes to 576 bytes with the restrict type qualifier.  
With both the restrict type qualifier and the #pragma vector aligned, the 
code size drops to 288 bytes, a significant savings.  

Table 1. Code Size Comparison of Analysis Example 

Version Text Section Size (in bytes) 

Original 688 

Original + restrict 576 

Original + restrict + vector aligned 288 

..B1.4:                         # Preds ..B1.4 ..B1.3 
        movdqa    (%rdi,%rax,8), %xmm0                       #7.7 
        movdqa    16(%rdi,%rax,8), %xmm3                     #7.7 
        movdqa    32(%rdi,%rax,8), %xmm6                     #7.7 
        movdqa    48(%rdi,%rax,8), %xmm9                     #7.7 
        movdqa    %xmm0, %xmm2                               #7.7 
        movdqa    %xmm3, %xmm5                               #7.7 
        movdqa    %xmm6, %xmm8                               #7.7 
        movdqa    (%rsi,%rax,8), %xmm1                       #7.7 
        movdqa    16(%rsi,%rax,8), %xmm4                     #7.7 
        movdqa    32(%rsi,%rax,8), %xmm7                     #7.7 
        movdqa    48(%rsi,%rax,8), %xmm10                    #7.7 
        pcmpgtq   %xmm1, %xmm2                               #7.7 
        pxor      %xmm1, %xmm0                               #7.7 
        pand      %xmm0, %xmm2                               #7.7 
        pxor      %xmm1, %xmm2                               #7.7 
        movdqa    %xmm2, (%rdi,%rax,8)                       #7.7 
        pcmpgtq   %xmm4, %xmm5                               #7.7 
        pcmpgtq   %xmm7, %xmm8                               #7.7 
        pxor      %xmm4, %xmm3                               #7.7 
        pand      %xmm3, %xmm5                               #7.7 
        pxor      %xmm4, %xmm5                               #7.7 
        movdqa    %xmm5, 16(%rdi,%rax,8)                     #7.7 
        pxor      %xmm7, %xmm6                               #7.7 
        pand      %xmm6, %xmm8                               #7.7 
        pxor      %xmm7, %xmm8                               #7.7 
        movdqa    %xmm8, 32(%rdi,%rax,8)                     #7.7 
        movdqa    %xmm9, %xmm11                              #7.7 
        pcmpgtq   %xmm10, %xmm11                             #7.7 
        pxor      %xmm10, %xmm9                              #7.7 
        pand      %xmm9, %xmm11                              #7.7 
        pxor      %xmm10, %xmm11                             #7.7 
        movdqa    %xmm11, 48(%rdi,%rax,8)                    #7.7 
        addq      $8, %rax                                   #6.3 
        cmpq      %rdx, %rax                                 #6.3 
        jl        ..B1.4        # Prob 82%                   #6.3 
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Summary 
By investing the time to learn the basics of assembly language, you add a 
valuable tool to your software development toolbox.  Analyzing code at the 
assembly level is often the best way to track down a tricky bug or to tune 
application performance.  Understanding IA-32 and Intel® 64 architecture 
assembly language is challenging due to the sheer number of instructions, 
instruction forms, and register sets.  But by understanding the capabilities of 
the architecture, learning how to read an assembly listing, and becoming 
familiar with common compiler transformations, you will be less daunted by 
the idea of diving down to the assembly level in your debug and performance 
work.   
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