

 321059

Ensuring
Development
Success by
Understanding and
Analyzing
Assembly
Language
For IA-32 and Intel® 64
Instruction Set
Architecture

 January 2009

White Paper
David Kreitzer

Compiler Engineer

Max Domeika

Technical Consultant

Intel Corporation

Ensuring Development Success By Understanding and Analyzing Assembly Language

2 321059

Executive Summary
The ability to understand assembly language is a difficult but essential

skill for developers of embedded applications. Even developers who write

their applications in a high level language like C will sometimes need to

examine assembly code for debugging or performance tuning. Assembly

language for the IA-32 and Intel® 64 architectures is especially

challenging to read and understand due to the size and variety of the

instruction sets. This paper will impart a basic understanding of assembly

language and the IA-32 and Intel® 64 instruction sets so that the reader

will feel comfortable diving down to the assembly level when necessary.

 Assembly language for the IA-32 and Intel® 64 architectures is

especially challenging to read and understand due to the size and

variety of the instruction sets.

Specifically, this paper provides:

• A basic overview of the architecture.

• Details on Intel® Streaming SIMD Extensions and Intel®

Advanced Vector Extensions.

• Practical guidelines on employing assembly language listings

and how to map instructions back to source code.

• Examples which show the effects of compiler optimizations on

generated assembly language.

• An example showing how analysis of the assembly language

leads to tuning improvements to the original source code.

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 3

Contents
Executive Summary ..2

Introduction...4

Basic Architecture ...4
Register Sets and Data Types ...4
Instruction Formats and Memory Addressing Modes7

Instruction Set Extensions ...9
Intel® Streaming SIMD Extensions...9
Intel® Advanced Vector Extensions (AVX) ...12

Effectively using Assembly Language Listings..14
Generating Assembly Language Listings ...14
Effects of compiler optimization...17

Code Sample Assembly Analysis ...22

Summary ..26

Ensuring Development Success By Understanding and Analyzing Assembly Language

4 321059

Introduction
Assembly Language is a representation of the machine language that
executes on a given architecture. Reading and understanding IA-32 and
Intel® 64 architecture assembly languages are difficult tasks. Embedded
software engineers are daunted by the sheer longevity of the instruction set
and breadth that includes:

• 8-bit, 16-bit, 32-bit, and 64-bit general purpose register sets

• Variable length instructions

• Multiple instructions that perform the same action

• Aggressive compiler optimization

• New instructions and register sets

• x87 floating point

Regardless, there are times when an embedded software engineer need to
look at the disassembly of an application binary or the source code compiled
into assembly to perform debugging or performance tuning. This paper
equips the reader with the competence necessary to perform these actions.
First, architecture basics are detailed with information on the register sets,
data types, and memory and instruction formats. Next, instruction set
extensions are detailed which include Intel® Streaming SIMD Extensions
(Intel® SSE) and Intel® Advanced Vector Extensions (Intel® AVX). The third
section shows how to effectively generate and read assembly language. The
final section provides an analysis of a small C program compiled to assembly
language.

Basic Architecture
The IA-32 and Intel® 64 architectures are described in terms of their register
sets, data types, memory addressing modes and instruction formats. The
next subsections summarize these aspects of the architectures.

Register Sets and Data Types

The original Intel® 8086 processor implemented a 16-bit architecture that
defined eight 16-bit general purpose registers named AX, BX, CX, DX, SP, BP,
SI, and DI. The upper and lower 8 bits of AX-DX could be accessed
independently as AL-DL and AH-DH respectively. The Intel386TM processor
extended the architecture to 32 bits, creating the general purpose register file
found in the modern IA-32 architecture. The registers grew to 32 bits but

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 5

retained their 8- and 16-bit aliases. The general purpose registers typically
hold integer data, and the architecture provides instructions to operate on 8-,
16-, 32-, and in some cases 64-bit signed and unsigned integers. Figure 1
illustrates the general purpose registers in the IA-32 architecture.

The x87 floating-point unit (FPU) was first implemented as an optional
coprocessor, but modern implementations of the IA-32 architecture integrate
the FPU into the processor. The x87 register set consists of eight 80-bit
values accessed as a stack as Figure 1 illustrates. A floating point value in an
x87 register is represented internally in a double extended precision format,
but the architecture provides instructions that can load and store single
precision data and double precision data as well. When loading single or
double precision data, there is an implicit conversion up to the internal 80-bit
format. Similarly, when storing data in single or double precision, there is an
implicit conversion from the internal 80-bit format to the smaller format. All
three data types conform to the IEEE standard for binary floating-point
arithmetic.

The MMXTM technology instruction set was introduced in some of the later
Intel® Pentium® processor models. It was the first of many single-instruction
multiple-data (SIMD) extensions. The MMXTM instructions operate on eight
64-bit MM registers, and these registers alias the lower 64 bits of the x87
registers as Figure 1 illustrates. Unlike the x87 registers, the MM registers
are accessed directly and not as a stack. (Note that Figure 1 shows MM0
aliasing ST(0), MM1 aliasing ST(1), etc. That is an approximation of reality,
because the numbering of the x87 registers changes as values are pushed to
the stack and popped from the stack.) The MM registers can hold packed
integer data of various sizes, and there are different instructions for operating
on data in different underlying types. For example, the PADDB, PADDW,
PADDD, and PADDQ instructions perform packed addition of 8-, 16-, 32-, and
64-bit integers, respectively.

The Intel® Pentium® III processor introduced the XMM register file as part of
the Intel® Streaming SIMD Extensions (Intel® SSE). As Figure 1 shows, there
are eight 128-bit direct access XMM registers, and these registers can hold
scalar or packed single precision floating-point data, scalar or packed double
precision floating-point data, or packed integer data of various sizes. As with
the MMXTM instruction set, the instruction determines the data type.

Ensuring Development Success By Understanding and Analyzing Assembly Language

6 321059

Figure 1. IA-32 Architecture Data Registers

The Intel® 64 architecture was introduced primarily to expand the
addressable memory space beyond the 32-bit limit, but it also significantly
expands the data registers of the IA-32 architecture. First, it extends the
size of the general purpose registers to 64 bits. It preserves all the existing
register names for accessing the lower 32 bits of the registers and adds the
names RAX-RDX, RSP, RBP, RSI, and RDI for accessing the full 64-bit
registers. Second, it adds the ability to independently reference the lower 8
bits of RSP, RBP, RSI, and RDI using the names SPL, BPL, SIL, and DIL.
Third, it adds eight new general purpose registers named R8-R15. The lower
32, 16, or 8 bits of these registers can be accessed using the names R8D-
R15D, R8W-R15W, and R8B-R15B, respectively. Finally, it adds eight new
XMM registers named XMM8-XMM15. Figure 2 illustrates the Intel® 64
architecture data registers. Note that the x87 and MM registers are identical
between the IA-32 and Intel® 64 architectures.

EAX AX
AH AL

EBX BX
BH BL

ECX CX
CH CL

EDX DX
DH DL

ESP SP

EBP BP

ESI SI

EDI DI

31 16 8 0

ST(0) MM0

ST(1) MM1

ST(2) MM2

ST(3) MM3

ST(4) MM4

ST(5) MM5

ST(6) MM6

ST(7) MM7

0 64 79 127

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

0

General Purpose Registers X87 FPU Data/MM Registers XMM
Registers

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 7

Figure 2. Intel® 64 Architecture Data Registers

Instruction Formats and Memory Addressing Modes
Assembly instructions begin with the mnemonic. A mnemonic is a short
string that is usually an abbreviation of the instruction’s function. For
example, MULPS is the mnemonic used to represent a MULtiply of Packed
Single precision floating-point values.

Following the mnemonic are zero or more operands. The legal number and
types of operands depend on the instruction, but by convention, in AT&T
syntax assembly the output operand is always the rightmost operand.

An operand may be a register, a memory reference, or a literal value, usually
called an immediate. Register operands can be used as input, output, or
both and are indicated in assembly by prefixing the register name with the %
character. Immediate operands are always used as input and are indicated in
assembly by prefixing the literal value with the $ character. Sometimes, the
literal value is something that is not known until link time such as the address
of a global variable. In assembly, a link-time constant is represented
symbolically as shown in the following instruction, which moves the address
of x into register EAX.

General Purpose Registers XMM Registers

127

XMM0

XMM1

XMM2

XMM3

XMM15

0

…

63 32 16 0

RAX AX
AH AL

EAX

8

RBX BX
BH BL

EBX

RCX CX
CH CL

ECX

RDX DX
DH DL

EDX

RSP SP ESP SPL

RBP BP EBP BPL

RSI SI ESI SIL

RDI DI EDI DIL

R8 R8W R8D R8B

R9 R9W R9D R9B

R15 R15W R15D R15B

…

Ensuring Development Success By Understanding and Analyzing Assembly Language

8 321059

 movl $x, %eax

Operands not prefixed by either % or $ are memory operands. Like register
operands, memory operands can be used as input, output, or both. In the
IA-32 and Intel® 64 architectures, instructions can use fairly complex
expressions to specify the address for a memory reference. The general form
of a memory expression appears as follows in assembly.

 offset(base register, index register, scale)

The effective address for this memory expression is computed by

 offset + base register + (index register * scale)

All components of the address expression are optional except that a scale
must accompany an index register. The offset can be either an 8-bit or 32-
bit immediate value and is often a link time constant. It is sign extended to
the address size. Scale is an immediate value and must be one of 1, 2, 4, or
8. In the IA-32 ISA, the base and index registers must be 32-bit registers.
Values stored in 8- or 16-bit registers must first be extended to 32 bits
before use in an address expression. Similarly, in the Intel® 64 ISA, the base
and index registers must be 64-bit registers. Smaller values must be
extended to 64 bits before use in address expressions.

In the Intel® 64 architecture, there is also a special RIP-relative addressing
mode. This mode always uses register RIP as the base register with a 32-bit
offset and no index register. Register RIP is the instruction pointer register.
It contains the address of the next instruction to be executed. This
addressing mode significantly improves the efficiency of position independent
code.

In the current IA-32 and Intel® 64 architectures, binary operations such as
MULPS use a 2-operand format. Conceptually, MULPS has two input
operands, the multiplicands, and one output operand, the result. But the
architecture requires that the output overwrites one of the inputs. So, for
example, the semantics of the instruction

 mulps %xmm1, %xmm2

are to multiply the contents of register XMM1 by the contents of register
XMM2 and store the result in register XMM2. If a program needs to preserve
the values of both multiplicands, it must use an extra copy instruction.

 movaps %xmm2, %xmm3

 mulps %xmm1, %xmm3

For many instructions, the types of operands can vary. Continuing with the
MULPS example, the first operand can either be a register or a memory
location. Suppose you wanted to multiply the contents of register XMM2 by 4
elements in an array of floats. One method is to use separate load and
multiply instructions.

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 9

movaps x(,%eax,4), %xmm1

mulps %xmm1, %xmm2

An alternative is to use a single multiply instruction with a memory operand.

mulps x(,%eax,4), %xmm2

The latter is more efficient in the number of instructions, code size, XMM
registers, and usually execution time.

Many integer instructions show even greater variety in the types of operands
they can handle. For example, the following are all valid forms of a 32-bit
integer addition.

addl %ebx, %edx

addl (%eax), %edx

addl $42, %edx

addl $42, (%eax)

addl %ebx, (%eax)

Instruction Set Extensions
Intel routinely enhances the instruction sets of the IA-32 and Intel® 64
architectures. MMXTM technology introduced a set of instructions that
process data in a single instruction, multiple data fashion. The instructions
were specifically designed to improve the performance of integer programs
with a high degree of data parallelism such as signal processing. Successive
generations of Intel architecture processors have added further instruction
set extensions including Intel® SSE, and Intel® AVX. Understanding these
instruction set extensions is crucial to taking full advantage of the processor’s
capabilities. In some cases, they can enable you to efficiently execute
applications on the Intel® architecture processor that have previously been
executed on special purpose hardware such as a graphics processing unit
(GPU).

Intel® Streaming SIMD Extensions

Intel® SSE provides SIMD processing of single precision floating-point values.
SIMD processing is also known as vector processing and allows the same
computation to be performed on multiple pieces of data (Multiple Data) using
only one instruction (Single Instruction). The Intel® SSE instruction set
features 70 instructions that perform vector and scalar floating-point
arithmetic, comparisons, type conversions between floating-point and integer
data, boolean logic, and data rearrangement. Figure 3 illustrates the kind of
computation that can benefit from Intel® SSE. The loop multiplies two 4-
element vectors together, and stores the result in a third vector. With Intel®

Ensuring Development Success By Understanding and Analyzing Assembly Language

10 321059

SSE, the entire computation can be performed using only three instructions.
The assembly code required to perform the same function using scalar x87
instructions is much longer and slower than what Intel® SSE provides.

Figure 3. Intel® SSE Vector Multiply Example

Intel® SSE also introduced a software prefetch instruction, a non-temporal
store instruction, and several MMXTM technology enhancements specifically
targeted at accelerating media encoding and decoding. Effective use of
Intel® SSE can increase performance tremendously for applications such as
3D graphics that use single-precision floating point and tend to employ
common operations on vast amounts of data.

Intel® SSE first introduced aligned loads and stores to the architecture. Most
128-bit memory references require the address to be 16-byte aligned. The
idea is that memory references that cross a cache line boundary are costly on
most processors, and enforcing 16-byte alignment avoids that potential
penalty. There are dedicated 128-bit unaligned load and store instructions
for when the data is known to be misaligned. For example, the following two
instructions both load 128 bits of data from the address in register EAX. The
only functional difference in behavior is that the MOVAPS instruction faults if
the address in EAX is not an even multiple of 16.

 movaps (%eax), %xmm0

 movups (%eax), %xmm0

Source Code
float x[4], y[4], z[4];
int i;
...
for (i = 0; i < 4; i++) {
 z[i] = x[i] * y[i];
}

Intel SSE Assembly
Implementation
movaps x, %xmm0
mulps y, %xmm0
movaps %xmm0, z

x87 Assembly Implementation
flds x
fmuls y
flds 4+x
fmuls 4+y
flds 8+x
fmuls 8+y
flds 12+x
fmuls 12+y
fxch %st(3)
fstps z
fxch %st(1)
fstps 4+z
fstps 8+z
fstps 12+z

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 11

Intel® SSE2 adds SIMD processing for double precision floating-point and also
128-bit SIMD processing for integer data. The capabilities Intel® SSE2
provides for double precision floating-point are similar to what Intel® SSE
provides for single precision. The vector width is smaller since a 128-bit
vector register can hold 4 single precision values but only two double
precision values. For integer data, Intel® SSE2 effectively doubles the vector
width over MMXTM technology. But otherwise the capabilities are similar.
Figure 4 illustrates a vector average of unsigned bytes that can be performed
efficiently using Intel® SSE2.

Figure 4. Intel® SSE2 Vector Average Example

Intel® Supplemental Streaming SIMD Extensions 3 (SSE3) provides a small
number of instructions primarily designed to improve the efficiency of single-
precision and double-precision complex multiplication and division.

Intel® SSSE3 provides additional instructions for operating on integer data.
For example, it provides horizontal addition and subtraction instructions for
operating on data elements within a single vector. It also provides packed
absolute value and conditional negation instructions.

Intel® Supplemental Streaming SIMD Extensions 4.1 (SSE4.1) provides a
variety of additional instructions for operating on vector data in the XMM
registers. Some of these instructions make it easier for a compiler to
automatically vectorize a scalar loop. For example, there are instructions for
vector sign and zero extension, vector and scalar floating-point rounding, and
vector integer max/min. The vector blend instructions expose new
opportunities to write vector code for loops containing conditionals. For
example, Figure 5 illustrates a simple 4-iteration loop with a conditional
select construct. With Intel® SSE4.1, the entire loop can be implemented
with just a few instructions. The XORPS and CMPLTPS instructions compare
the elements of the x vector to zero and produce a mask of the comparison
results in register XMM0. The BLENDVPS instruction uses the mask in

Source Code
unsigned char a[16], b[16], c[16];
int i;
...
for (i = 0; i < 16; i++) {
 c[i] = (a[i] + b[i] + 1) / 2;
}

Assembly Implementation
movdqa a, %xmm0
pavgb b, %xmm0
movdqa %xmm0, c

Ensuring Development Success By Understanding and Analyzing Assembly Language

12 321059

register XMM0 to select the corresponding element from either the y vector
(in memory) or the z vector (in register XMM1).

Figure 5. Intel® SSE4.1 Vector Blend Example

Intel® SSE4.2 adds four new string processing instructions that perform
advanced string comparison and search operations in a single instruction. It
also provides a 64-bit packed integer comparison instruction.

The Intel® CoreTM i7 processor added two application targeted accelerators,
POPCNT and CRC32. Strictly speaking, these are not part of Intel® SSE but
are instruction set extensions designed to boost the performance of specific
performance critical algorithms.

Intel® Advanced Vector Extensions (AVX)

The Intel® Advanced Vector Extensions (AVX) are instruction set
enhancements that further extend the processor’s SIMD capabilities. Intel
plans to ship processors that implement Intel® AVX starting in 2010.

Intel® AVX widens the XMM register file from 128 to 256 bits, doubling the
maximum SIMD vector length. The full 256-bit registers are referenced in
assembly using the names YMM0-YMM15, as illustrated in Figure 6. In 32-bit
mode, only registers YMM0-YMM7 are available.

Source Code
float x[4], y[4], z[4];
int i;
...
for (i = 0; i < 4; i++) {
 x[i] = (x[i] > 0) ? y[i] : z[i];
}

Assembly Implementation
movaps z, %xmm1
xorps %xmm0, %xmm0
cmpltps x, %xmm0
blendvps %xmm0, y, %xmm1
movaps %xmm1, x

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 13

Figure 6. Intel® AVX Register Extensions

The Intel® AVX instructions logically extend the 128-bit vector Intel® SSE
instructions to 256 bits. Simple operations like vector multiplies operate on
twice as many data elements. Data rearrangement operations like shuffles
usually operate “in-lane”, which means that the same data rearrangement
operation is applied to both 128-bit halves or “lanes” of a YMM register. New
128-bit permute, insertion, and extraction instructions enable a program to
move data across lanes. The Intel® AVX architecture also provides new
primitives like broadcasts and masked loads and stores. These primitives
make it easier to generate efficient vector code, and they make it easier for a
compiler to vectorize code automatically.

In addition to wider vectors, Intel® AVX provides 3-operand instruction forms
so that the destination operand is independent of the input operands. Intel®
AVX also provides alternate 3-operand forms for all existing 128-bit vector
and scalar operations. Using the MULPS example, even if the program needs
to preserve both multiplicands, it can implement the multiply using one
instruction.

vmulps %xmm1, %xmm2, %xmm3

AVX preserves the convention that the destination operand is the rightmost
one, so the operation being performed by this instruction is shown by the
following expression.

XMM3 XMM1 * XMM2

Finally, for most instructions Intel® AVX lifts the restriction that vector loads
and stores be aligned. Explicit “move aligned” instructions such as VMOVDQA
still require addresses to be aligned on vector size boundaries. But other
vector loads and stores can be unaligned. This is most useful in creating
opportunities to merge load and store instructions with other instructions.
Previously, loads could not be combined with subsequent instructions unless

0

YMM0 XMM0
128 255

YMM1 XMM1

YMM2 XMM2

YMM3 XMM3

YMM15 XMM15

…

YMM Registers

Ensuring Development Success By Understanding and Analyzing Assembly Language

14 321059

the load addresses were provably aligned, leading to multi-instruction
sequences like the following.

movups x(,%eax,4), %xmm1

mulps %xmm1, %xmm2

Intel® AVX enables these two instructions to be combined.

vmulps x(,%eax,4), %xmm2, %xmm2

Effectively using Assembly Language
Listings

This section provides useful tips for correlating assembly language to the
original source code. First, we explain the basics of assembly language
listings including how to generate and read them. Afterwards, several
examples are discussed which show how compiler optimizations can increase
the difficulty of correlating assembly code to source code and how you can
effectively understand the transformations made by the compiler to decipher
your assembly language listings.

Generating Assembly Language Listings

The first task in effective use of assembly language is to know how to easily
generate it. Two techniques for generating assembly for your application
code are:

• Disassemble the application binary

• Compile the source code to assembly language.

Disassembly of an application binary requires a tool called a disassembler
which maps the machine language contained in the binary to the equivalent
assembly language mnemonics. A disassembler is a common tool on modern
operating systems. On Linux* systems, the objdump -d command produces
a disassembly listing. For example, to disassemble the cat command, type:

 objdump -d ‘which cat‘

The disassemble command is not the same on all systems. On Windows*
and Mac* OS, the disassemble commands are dumpbin /disasm and otool -
t -V respectively. Many debuggers feature the option to view the code
under debug as assembly language and effectively call a disassembler to
display the instructions.

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 15

To produce an assembly file with a compiler, consult your compiler’s manual
to find the correct option. Using gcc and other compatible compilers on a
Linux* system, the option is -S. Using the Intel® C++ Compiler to compile
the code in Figure 7 produces an assembly listing, a portion of which is in
Figure 8. This resulting listing is an example using Intel® 64 ISA assembly
language.

Figure 7. Source Code for Function Simple_loop

Figure 8. Assembly Language for Function Simple_loop

The four components of an assembly listing are:

• Instructions

• Directives

• Comments

• Labels

simple_loop:
parameter 1: %rdi
..B1.1: # Preds ..B1.0
..___tag_value_simple_loop.1: #2.1
 xorl %eax, %eax #3.19
 xorl %edx, %edx #5.8
 testq %rdi, %rdi #5.16
 jle ..B1.5 # Prob 10% #5.16
 #LOE rax rdx rbx rbp rdi r12 r13 r14 r15
..B1.3: # Preds ..B1.1 ..B1.3
 addq %rdx, %rax #6.5
 addq $1, %rdx #5.19
 cmpq %rdi, %rdx #5.16
 jl ..B1.3 # Prob 82% #5.16
..B1.5: # Preds ..B1.3 ..B1.1
 ret #8.10
 .align 2,0x90

long simple_loop(long x)
{
 long i, ret_val = 0;
 #pragma novector
 for (i=0; i< x; i++) {
 ret_val += i;
 }
 return ret_val;
}

Ensuring Development Success By Understanding and Analyzing Assembly Language

16 321059

Instructions map 1-to-1 to the low level machine language instructions that
the processor executes. An example instruction is:

addq %rdx, %rax

This represents a 64-bit addition of register RDX and register RAX. The result
of the operation is stored in register RAX. Please refer to the section,
Instruction Formats and Memory Addressing Modes for a description of the
instruction format for the IA-32 and Intel® 64 architectures.

Directives are commands to the assembler that control its generation of
machine language code. The directive used in Figure 8, denoted “.align”
instructs the assembler to align the next instruction on a particular address
boundary. The assembler has the ability to know how many bytes previous
instructions have taken and can pad the address range with nops (no
operations) so a particular instruction is aligned. Code alignment is a
performance optimization for the instruction fetch unit and instruction cache.
It is often good to align the target of a branch or call to guarantee it is the
start of an instruction fetch line or cache line. Other directives include type,
size, data, and section.

Labels are generic identifiers for locations in the program that can either be
data or instructions. In Figure 8, the label denoted “..B1.3” is an identifier
for the location of the instruction that it immediately precedes. Labels
identify addresses that are not explicitly known until the assembly code is
assembled or until the machine language code is loaded for execution. For
example, a jump to a label requires either the absolute address of the target
location or a relative offset from the address of the instruction immediately
following the branch to the address of the target location. In some cases, the
absolute address is not known until the operating system assigns addresses
for the program. It is possible to compute the relative offset of a branch
during assembly. For example, the branch instruction JL in Figure 8 must use
a relative offset. The number of bytes between it and the target address is
something that can be computed during assembly.

Comments are denoted by the # symbol and indicate extra information that
is ignored by the assembler. In compiler generated assembly listings, the
comments often provide useful information about the program. In the case
of the assembly listing in Figure 8, the comments were generated by the
Intel® C++ Compiler Professional Edition for Linux* OS version 11.0. There
are many comments of the form “5.19” that follow instructions in the
assembly listing. These comments are particularly valuable, because they tell
you the line number of the source program that resulted in the assembly
language instruction. They use the form “line number.column number”. The
first comment, “# parameter 1: %rdi”, tells you the location used to pass
argument x to the function. There are several comments of the form “Prob
82%” that follow branch instructions and give the compiler’s estimate of how
likely the branch will be taken. The “Preds” comments provide information
about the control flow within the function. For example, the “# Preds

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 17

..B1.3 ..B1.1” comment indicates that basic block B1.5 can either be
reached by block B1.3 or B1.1. Finally, the LOE comment that appears at the
end of a basic block indicates the set of registers that hold meaningful values
on exit from the block.

Effects of compiler optimization

Aggressive compiler optimization can transform C or C++ code into very
difficult to read assembly language. The following are examples of common
optimizations that make the assembly code more difficult to correlate to the C
source code:

• Basic block placement

• Inlining

• Strength reduction

• Alternate entries

The examples in this section use Intel® 64 ISA assembly language unless
otherwise noted.

Basic block placement is an optimization for branch prediction and for the
instruction cache that attempts to place basic blocks that execute close
together in time as close together address-wise as possible. A basic block is
a set of instructions where if one instruction executes, then program flow
dictates all of the other instructions will execute. Typically a basic block
begins as the result of being a branch target and ends as a result of a branch
instruction. If basic block placement is performed over a large function, basic
blocks that make up a tiny portion of the function can be scattered
throughout the assembly language listing for the function. The key for
determining the logical flow of your program to identify such things as loops
is to create a graph of basic blocks. Figure 9 is C source code for a switch
statement where the comments indicate the frequency of execution for each
case. Figure 10 shows how a compiler may rearrange the order of the
assembly language for each of the case statements based upon measured
execution frequency. As you can see, the compiler placed the assembly
language code associated with the “case 4” code that occurs 25% of the
time to be the first case tested and if equal control branches to label
“..B1.8”. The code associated with the “case 8” is therefore closer address-
wise and can take advantage of the spatial locality of the cache. The
compiler can determine execution frequency by employing static heuristics or
profile-guided optimization.

Ensuring Development Success By Understanding and Analyzing Assembly Language

18 321059

Figure 9. Source Code for Basic Block Placement Example

Figure 10. Assembly Language for Basic Block Placement Example

Inlining is an optimization that reduces function call and return overhead by
replacing a call to a function with the instructions that make up the called
function. Once a function is inlined, other optimizations can modify the
assembly language to a larger degree resulting in difficult to understand
assembly code.

Figure 11 provides a sample implementation of the function check called in
the example from Figure 9. Line numbers are added to the listing for
convenience. Figure 12 is the assembly listing of function check compiled
separately and without being inlined into the code from Figure 9. The line
numbers in the assembly listing enable easy correlation to the source code:

..B1.3: # 100 # Preds ..B1.2
 cmpl $4, %eax #11.19
 je ..B1.8 # Prob 25% #11.19
 # LOE rbp r12 r13 r14 r15 eax ebx
..B1.4: # 75 # Preds ..B1.3
 movl $2, %edx #17.9
 xorl %esi, %esi #17.9
 cmpl $8, %eax #17.9
 cmove %edx, %esi #17.9
 # LOE rbp r12 r13 r14 r15 ebx esi
..B1.5: # 100 # Preds ..B1.4 ..B1.8
 movl $_2__STRING.0.0, %edi #19.5
 xorl %eax, %eax #19.5
 call printf
..B1.8: # 25 # Preds ..B1.3 # Infreq
 movl $5, %esi #13.9
 jmp ..B1.5 # Prob 100% #13.9

 for (i=0; i< NUM_BLOCKS; i++) {
 switch (check(i)) {
 case 4: /* 25% */
 ret = 5 ; break;
 case 8: /* 75% */
 ret = 2 ; break;
 default: /* 0% */
 ret = 0 ; break;
 }
 printf(“%d\n”, ret);
 }

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 19

• The increment of zee is represented by the first three assembly
instructions.

• The modulus operation is represented by the instruction “andl $3,
%eax”.

• The code at labels “..B1.2” and “..B1.3” represent the if and else
clause respectively.

Figure 11. Source Code for Function Check

Figure 12. Assembly Language for Function Check

Figure 13 is an assembly listing of a portion of the code example from Figure
9 after check has been inlined. It is more difficult to correlate the assembly
code with the source code. One technique is to use the source code and
separate assembly listing of check as a guide. It is easy to observe the
increment to zee in Figure 13 (first two instructions in the listing). The return
value of the function check which is either 4 or 8 has been optimized away by
the compiler since the value is used to control setting of another value, ret.
The compiler sets ret directly. This insight into compiler optimization and
elimination of code can only be gained from analyzing both the non-inlined
and inlined version of the assembly code.

 movl zee.2.0.0(%rip), %eax #6.5
 addl $1, %eax #6.5
 movl %eax, zee.2.0.0(%rip) #6.5
 andl $3, %eax #7.15
 jne ..B1.3 # Prob 50% #7.20
..B1.2: # Preds ..B1.1
 movl $4, %eax #7.30
 ret #7.30
 # LOE
..B1.3: # Preds ..B1.1
 movl $8, %eax #8.17
 ret #8.17

Line
3 int check(int i)
4 {

 5 static int zee = 0;
 6 zee++;
 7 if (zee % 4 == 0) return 4;
 8 else return 8;
 9 }

Ensuring Development Success By Understanding and Analyzing Assembly Language

20 321059

Figure 13. Assembly Language for Inlined Function Check

Strength reduction is the replacement of one type of operation with a
different set of operations that is faster to execute. Some examples of
strength reduction are:

• Replacing multiplication with a series of shifts and additions,

• Transforming exponentiation into multiplication,

• Replacing division with reciprocal multiplication, and

• Initialization using less expensive operations.

Figure 14 is a code example and the resulting assembly language that shows
several strength reduction optimizations. The compiler optimized the integer
multiplication by 4 into a shift left by two bits. It also optimized the floating
point division by computing (1.0 / d) outside the loop, storing the result in
register XMM1, and multiplying by this value inside the loop. This example
shows that you cannot always find the section of assembly that corresponds
to a piece of source code by searching for specific distinguishing operations.

..B1.2: # Preds ..B1.7 ..B1.3
 addl $1, %r12d #19.13
 movl %r12d, zee.119.0.0(%rip) #19.13
 movl %r12d, %ecx #19.13
 andl $3, %ecx #19.13
 movl $5, %r8d #23.9
 movl $2, %esi #23.9
 cmpl $0, %ecx #23.9
 cmove %r8d, %esi #23.9
 movl $_2__STRING.0.0, %edi #27.5
 xorl %eax, %eax #27.5
 call printf #27.5

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 21

Figure 14. Code for Strength Reduction Example

Alternate entries occur as a result of an optimization that reduces the call &
return overhead by allowing the calling routine to keep values in registers
and jumping to a point of a called function where the registers have the
expected values. The IA-32 ISA application binary interface specifies that
function call arguments are to be placed on the stack. The called function
would then move these items off of the stack into registers which essentially
costs multiple moves to and from memory. Figure 15 shows the assembly
language for a function that contains the normal function entry point and an
alternate entry. This resulting listing is an example using IA-32 ISA assembly
language. Notice at the normal function entry point (label “multiply_d”) the
first instructions move the values from the stack into registers whereas the
alternate entry (label “multiply_d.”) assumes the values are already there.

Figure 15. Assembly Code for Alternate Entry Code Example

There are many other compiler optimizations that affect source code position
and what is detailed here is just a small sample. Being aware of the issue

 multiply_d:
..B4.1: # 1 # Preds ..B4.0
 movl 4(%esp), %eax #11.1
 movl 8(%esp), %edx #11.1
 movl 12(%esp), %ecx #11.1

multiply_d.: #
 pushl %edi #11.1

Source Code
 int i, *f;
 double d, *g;

 for (i = 0; i < N; i++) {
 f[i] *= 4;
 g[i] = g[i] / d;
 }

Assembly Implementation
..B1.2: # Preds ..B1.2 ..B1.1
 shll $2, (%rdi) #8.9
 movsd (%rsi), %xmm0 #9.16
 mulsd %xmm1, %xmm0 #9.23
 movsd %xmm0, (%rsi) #9.9
 addq $4, %rdi #7.24
 addq $8, %rsi #7.24
 incq %rax #7.24
 cmpq $1024, %rax #7.21
 jl ..B1.2 # Prob 99% #7.21

Ensuring Development Success By Understanding and Analyzing Assembly Language

22 321059

and continued study on compiler optimization will improve your skills at
correlating assembly code with source code.

Code Sample Assembly Analysis
This section details an analysis of a code sample and its assembly language
listings and shows how insight gleamed from the assembly language aids
subsequent optimization. Figure 16 is a listing of the code sample whose
function is to compute a vector maximum. The listings in this section all use
Intel® 64 ISA assembly language. Due to space issues, it is impractical to
include the entire assembly list described at each step. Instead, we provide
the key portions of the assembly listing relevant to the discussion.

Figure 16. Source Code for Analysis Example (vector_max.c)

The first step in the analysis is to compile the code to assembly by issuing the
following compile command:

icc -xSSE4.2 -S vector_max.c

The –xSSE4.2 option tells the compiler to take full advantage of all ISA
extensions up to and including SSE4.2, and the #pragma vector always
directive instructs the compiler to always vectorize the loop.

Analyzing the generated assembly listing reveals a great amount about how
the compiler optimized the source code. The portion of the assembly listing
relevant to our analysis is listed in Figure 17. Analysis reveals these
observations:

• The parameters, *a, *b, and size are stored in registers RDI, RSI, and
EDX respectively.

• The ‘testq r8, r8’ instruction checks to see if size is equal to 0. The
function immediately returns if true.

• The code in blocks “..B1.3” and “..B1.4” is checking the memory
region spanned by *a and *b to determine if there is overlap.

void vector_max(__int64 *a, __int64 *b, int size)
{
 int i;
 #pragma vector always
 for (i=0;i<size;i++) {
 a[i] = (a[i] > b[i]) ? a[i] : b[i];
 }
}

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 23

The third observation above is critical. The compiler added this overlap
checking to ensure safe automatic vectorization. Unfortunately, performing
this runtime overlap test increases both runtime and code size overhead.
The code size overhead claim is substantiated later in this section.

Figure 17. Assembly Listing 1 for Analysis Example

Assume the programmer knows that the regions pointed to by *a and *b do
not overlap. It is possible to eliminate the overhead by using the restrict
type qualifier which instructs the compiler to assume that the specified
pointer does not point to the same memory as another pointer. Add the
restrict type qualifier by changing the parameter definition of function vector
to the following.

void vector_max(__int64 *restrict a, __int64 *b, int size)

Using the restrict type qualifier requires an additional option to turn on the
feature. Recompile the source file by issuing

icc -restrict -xSSE4.2 -S vector_max.c

A portion of the resulting assembly file is shown in Figure 18. We made the
following observations about the new assembly code:

vector_max:
parameter 1: %rdi
parameter 2: %rsi
parameter 3: %edx
..B1.1: # Preds ..B1.0
..___tag_value_vector.1: #2.1
 movslq %edx, %r8 #2.1
 movl %r8d, %eax #
 testq %r8, %r8 #5.14
 jle ..B1.38 # Prob 50% #5.14
 # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax
..B1.2: # Preds ..B1.1
 cmpl $6, %eax #5.3
 jle ..B1.32 # Prob 50% #5.3
 # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax
..B1.3: # Preds ..B1.2
 cmpq %rsi, %rdi #6.22
 jbe ..B1.5 # Prob 50% #6.22
 # LOE rbx rbp rsi rdi r8 r12 r13 r14 r15 eax
..B1.4: # Preds ..B1.3
 lea (,%r8,8), %rdx #6.22
 movq %rdi, %rcx #6.22
 subq %rsi, %rcx #6.22
 cmpq %rcx, %rdx #6.22
 jb ..B1.7 # Prob 50% #6.22

Ensuring Development Success By Understanding and Analyzing Assembly Language

24 321059

• The assembly code to check for overlap between *a and *b is not in the
listing.

• The code in blocks “B1.2” and “B1.13”checks the alignment of *a and
*b respectively and ultimately determines which of two vectorized loops
are used to perform the max operation: one that uses unaligned loads
(MOVDQU) or one that uses aligned loads (MOVDQA).

This runtime alignment check adds execution time and code size overhead.

Figure 18. Assembly Listing 2 for Analysis Example

If the programmer can guarantee that *a and *b point to 16-byte aligned
memory, providing this information to the compiler enables better
optimization.

Add the following #pragma to the source code before the for loop

#pragma vector aligned

Recompile the source file by issuing

icc -restrict -xSSE4.2 -S vector_max.c

Analysis of the resulting assembly file reveals the following.

• The assembly code to check the alignment of *a and *b is not in the
listing.

• Only one loop with vector instructions appears in the assembly listing,
and this loop only uses aligned forms of the vector instructions.

Figure 19 shows the aligned loop. Another interesting tidbit is that the loop
has been unrolled four times. Also note that the compiler makes effective
use of the SSE4.2 instruction PCMPGTQ. This instruction does a vector
compare of 64-bit integers for greater-than, and is followed by several logical
operations that blend the *a and *b vectors based on the result of the
compare to compute the vector max.

..B1.2: # Preds ..B1.1
 movslq %edx, %r8 #5.3
 movq %rdi, %rdx #5.3
 andq $15, %rdx #5.3
 testl %edx, %edx #5.3
 je ..B1.5 # Prob 50% #5.3

..B1.13: # Preds ..B1.11 ..B1.6
 movl %edx, %edx #6.22
 lea (%rsi,%rdx,8), %r9 #5.3
 testq $15, %r9 #5.3
 je ..B1.18 # Prob 60% #5.3

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 25

Figure 19. Assembly Listing 3 for Analysis Example

The last portion of this analysis summarizes the code size impact of these
optimizations. Table 1 shows the text section size of the object files for the
original code, the code with the restrict type qualifier, and the code with both
the restrict type qualifier and #pragma vector aligned. As you can see, the
text size shrinks from 688 bytes to 576 bytes with the restrict type qualifier.
With both the restrict type qualifier and the #pragma vector aligned, the
code size drops to 288 bytes, a significant savings.

Table 1. Code Size Comparison of Analysis Example

Version Text Section Size (in bytes)

Original 688

Original + restrict 576

Original + restrict + vector aligned 288

..B1.4: # Preds ..B1.4 ..B1.3
 movdqa (%rdi,%rax,8), %xmm0 #7.7
 movdqa 16(%rdi,%rax,8), %xmm3 #7.7
 movdqa 32(%rdi,%rax,8), %xmm6 #7.7
 movdqa 48(%rdi,%rax,8), %xmm9 #7.7
 movdqa %xmm0, %xmm2 #7.7
 movdqa %xmm3, %xmm5 #7.7
 movdqa %xmm6, %xmm8 #7.7
 movdqa (%rsi,%rax,8), %xmm1 #7.7
 movdqa 16(%rsi,%rax,8), %xmm4 #7.7
 movdqa 32(%rsi,%rax,8), %xmm7 #7.7
 movdqa 48(%rsi,%rax,8), %xmm10 #7.7
 pcmpgtq %xmm1, %xmm2 #7.7
 pxor %xmm1, %xmm0 #7.7
 pand %xmm0, %xmm2 #7.7
 pxor %xmm1, %xmm2 #7.7
 movdqa %xmm2, (%rdi,%rax,8) #7.7
 pcmpgtq %xmm4, %xmm5 #7.7
 pcmpgtq %xmm7, %xmm8 #7.7
 pxor %xmm4, %xmm3 #7.7
 pand %xmm3, %xmm5 #7.7
 pxor %xmm4, %xmm5 #7.7
 movdqa %xmm5, 16(%rdi,%rax,8) #7.7
 pxor %xmm7, %xmm6 #7.7
 pand %xmm6, %xmm8 #7.7
 pxor %xmm7, %xmm8 #7.7
 movdqa %xmm8, 32(%rdi,%rax,8) #7.7
 movdqa %xmm9, %xmm11 #7.7
 pcmpgtq %xmm10, %xmm11 #7.7
 pxor %xmm10, %xmm9 #7.7
 pand %xmm9, %xmm11 #7.7
 pxor %xmm10, %xmm11 #7.7
 movdqa %xmm11, 48(%rdi,%rax,8) #7.7
 addq $8, %rax #6.3
 cmpq %rdx, %rax #6.3
 jl ..B1.4 # Prob 82% #6.3

Ensuring Development Success By Understanding and Analyzing Assembly Language

26 321059

Summary
By investing the time to learn the basics of assembly language, you add a
valuable tool to your software development toolbox. Analyzing code at the
assembly level is often the best way to track down a tricky bug or to tune
application performance. Understanding IA-32 and Intel® 64 architecture
assembly language is challenging due to the sheer number of instructions,
instruction forms, and register sets. But by understanding the capabilities of
the architecture, learning how to read an assembly listing, and becoming
familiar with common compiler transformations, you will be less daunted by
the idea of diving down to the assembly level in your debug and performance
work.

Ensuring Development Success By Understanding and Analyzing Assembly Language

321059 27

Authors

David Kreitzer is a compiler engineer with Software & Services
Group at Intel Corporation.

Max Domeika is a technical consultant with Software & Services
Group at Intel Corporation.

Acronyms

FPU Floating-point Unit

Intel® AVX Intel Advanced Vector Extensions

Intel® SSE Intel® Streaming SIMD Extensions

ISA Instruction Set Architecture

SIMD Single Instruction, Multiple Data

SSSE3 Supplementation Streaming SIMD Extensions 3

References

Domeika, M., Software Development for Embedded Multi-core
Systems: A Practical Guide Using Embedded Intel® Architecture, ed.
Newnes. 2008, Boston, MA.

Ensuring Development Success By Understanding and Analyzing Assembly Language

28 321059

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

Intel, the Intel logo, Intel. leap ahead. and Intel. Leap ahead. Logo, Intel 64 architecture, Intel C++
Compiler, Intel Advanced Vector Extensions, Intel Streaming SIMD Extensions are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008 Intel Corporation. All rights reserved.

§

	Executive Summary
	Contents
	Introduction
	Basic Architecture
	Register Sets and Data Types
	Instruction Formats and Memory Addressing Modes

	Instruction Set Extensions
	Intel® Streaming SIMD Extensions
	Intel® Advanced Vector Extensions (AVX)

	Effectively using Assembly Language Listings
	Generating Assembly Language Listings
	Effects of compiler optimization

	Code Sample Assembly Analysis
	Summary

