
Gustavo Duarte (/gustavo/blog/)
brain food for hackers

Anatomy of a Program in Memory
Jan 27th, 2009

Memory management is the heart of operating systems; it is crucial for both
programming and system administration. In the next few posts I’ll cover memory with an
eye towards practical aspects, but without shying away from internals. While the
concepts are generic, examples are mostly from Linux and Windows on 32-bit x86. This
�rst post describes how programs are laid out in memory.

Each process in a multi-tasking OS runs in its own memory sandbox. This sandbox is the
virtual address space, which in 32-bit mode is always a 4GB block of memory
addresses. These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by the processor.
Each process has its own set of page tables, but there is a catch. Once virtual addresses
are enabled, they apply to all software running in the machine, including the kernel itself.
Thus a portion of the virtual address space must be reserved to the kernel:

This does not mean the kernel uses that much physical memory, only that it has that
portion of address space available to map whatever physical memory it wishes. Kernel
space is �agged in the page tables as exclusive to privileged code (http://duartes.org
/gustavo/blog/post/cpu-rings-privilege-and-protection) (ring 2 or lower), hence a page
fault is triggered if user-mode programs try to touch it. In Linux, kernel space is
constantly present and maps the same physical memory in all processes. Kernel code
and data are always addressable, ready to handle interrupts or system calls at any time.
By contrast, the mapping for the user-mode portion of the address space changes
whenever a process switch happens:

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

1 of 7 12/07/2016 01:30 PM

Blue regions represent virtual addresses that are mapped to physical memory, whereas
white regions are unmapped. In the example above, Firefox has used far more of its
virtual address space due to its legendary memory hunger. The distinct bands in the
address space correspond to memory segments like the heap, stack, and so on. Keep in
mind these segments are simply a range of memory addresses and have nothing to do
with Intel-style segments (http://duartes.org/gustavo/blog/post/memory-translation-
and-segmentation). Anyway, here is the standard segment layout in a Linux process:

When computing was happy and safe and cuddly, the starting virtual addresses for the
segments shown above were exactly the same for nearly every process in a machine.
This made it easy to exploit security vulnerabilities remotely. An exploit often needs to
reference absolute memory locations: an address on the stack, the address for a library
function, etc. Remote attackers must choose this location blindly, counting on the fact

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

2 of 7 12/07/2016 01:30 PM

that address spaces are all the same. When they are, people get pwned. Thus address
space randomization has become popular. Linux randomizes the stack (http://lxr.linux.no
/linux+v2.6.28.1/fs/binfmt_elf.c#L542), memory mapping segment (http://lxr.linux.no
/linux+v2.6.28.1/arch/x86/mm/mmap.c#L84), and heap (http://lxr.linux.no
/linux+v2.6.28.1/arch/x86/kernel/process_32.c#L729) by adding o�sets to their starting
addresses. Unfortunately the 32-bit address space is pretty tight, leaving little room for
randomization and hampering its e�ectiveness (http://www.stanford.edu/~blp/papers
/asrandom.pdf).

The topmost segment in the process address space is the stack, which stores local
variables and function parameters in most programming languages. Calling a method or
function pushes a new stack frame onto the stack. The stack frame is destroyed when
the function returns. This simple design, possible because the data obeys strict LIFO
(http://en.wikipedia.org/wiki/Lifo) order, means that no complex data structure is needed
to track stack contents – a simple pointer to the top of the stack will do. Pushing and
popping are thus very fast and deterministic. Also, the constant reuse of stack regions
tends to keep active stack memory in the cpu caches (http://duartes.org/gustavo
/blog/post/intel-cpu-caches), speeding up access. Each thread in a process gets its own
stack.

It is possible to exhaust the area mapping the stack by pushing more data than it can �t.
This triggers a page fault that is handled in Linux by expand_stack() (http://lxr.linux.no
/linux+v2.6.28/mm/mmap.c#L1716), which in turn calls acct_stack_growth()
(http://lxr.linux.no/linux+v2.6.28/mm/mmap.c#L1544) to check whether it’s appropriate
to grow the stack. If the stack size is below RLIMIT_STACK (usually 8MB), then normally
the stack grows and the program continues merrily, unaware of what just happened. This
is the normal mechanism whereby stack size adjusts to demand. However, if the
maximum stack size has been reached, we have a stack over�ow and the program
receives a Segmentation Fault. While the mapped stack area expands to meet demand, it
does not shrink back when the stack gets smaller. Like the federal budget, it only
expands.

Dynamic stack growth is the only situation (http://lxr.linux.no/linux+v2.6.28.1/arch/x86
/mm/fault.c#L692) in which access to an unmapped memory region, shown in white
above, might be valid. Any other access to unmapped memory triggers a page fault that
results in a Segmentation Fault. Some mapped areas are read-only, hence write attempts
to these areas also lead to segfaults.

Below the stack, we have the memory mapping segment. Here the kernel maps contents
of �les directly to memory. Any application can ask for such a mapping via the Linux
mmap() (http://www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html)
system call (implementation (http://lxr.linux.no/linux+v2.6.28.1/arch/x86/kernel

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

3 of 7 12/07/2016 01:30 PM

/sys_i386_32.c#L27)) or CreateFileMapping() (http://msdn.microsoft.com/en-us/library
/aa366537(VS.85).aspx) / MapViewOfFile() (http://msdn.microsoft.com/en-us/library
/aa366761(VS.85).aspx) in Windows. Memory mapping is a convenient and
high-performance way to do �le I/O, so it is used for loading dynamic libraries. It is also
possible to create an anonymous memory mapping that does not correspond to any
�les, being used instead for program data. In Linux, if you request a large block of
memory via malloc() (http://www.kernel.org/doc/man-pages/online/pages
/man3/malloc.3.html), the C library will create such an anonymous mapping instead of
using heap memory. ‘Large’ means larger than MMAP_THRESHOLD bytes, 128 kB by
default and adjustable via mallopt() (http://www.kernel.org/doc/man-pages/online/pages
/man3/undocumented.3.html).

Speaking of the heap, it comes next in our plunge into address space. The heap provides
runtime memory allocation, like the stack, meant for data that must outlive the function
doing the allocation, unlike the stack. Most languages provide heap management to
programs. Satisfying memory requests is thus a joint a�air between the language
runtime and the kernel. In C, the interface to heap allocation is malloc()
(http://www.kernel.org/doc/man-pages/online/pages/man3/malloc.3.html) and friends,
whereas in a garbage-collected language like C# the interface is the new keyword.

If there is enough space in the heap to satisfy a memory request, it can be handled by
the language runtime without kernel involvement. Otherwise the heap is enlarged via the
brk() (http://www.kernel.org/doc/man-pages/online/pages/man2/brk.2.html) system call
(implementation (http://lxr.linux.no/linux+v2.6.28.1/mm/mmap.c#L248)) to make room
for the requested block. Heap management is complex (http://g.oswego.edu/dl/html
/malloc.html), requiring sophisticated algorithms that strive for speed and e�cient
memory usage in the face of our programs’ chaotic allocation patterns. The time needed
to service a heap request can vary substantially. Real-time systems have special-purpose
allocators (http://rtportal.upv.es/rtmalloc/) to deal with this problem. Heaps also become
fragmented, shown below:

Finally, we get to the lowest segments of memory: BSS, data, and program text. Both BSS
and data store contents for static (global) variables in C. The di�erence is that BSS stores
the contents of uninitialized static variables, whose values are not set by the programmer
in source code. The BSS memory area is anonymous: it does not map any �le. If you say
static int cntActiveUsers, the contents of cntActiveUsers live in the BSS.

The data segment, on the other hand, holds the contents for static variables initialized in

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

4 of 7 12/07/2016 01:30 PM

source code. This memory area is not anonymous. It maps the part of the program’s
binary image that contains the initial static values given in source code. So if you say
static int cntWorkerBees = 10, the contents of cntWorkerBees live in the data
segment and start out as 10. Even though the data segment maps a �le, it is a private
memory mapping, which means that updates to memory are not re�ected in the
underlying �le. This must be the case, otherwise assignments to global variables would
change your on-disk binary image. Inconceivable!

The data example in the diagram is trickier because it uses a pointer. In that case, the
contents of pointer gonzo – a 4-byte memory address – live in the data segment. The
actual string it points to does not, however. The string lives in the text segment, which is
read-only and stores all of your code in addition to tidbits like string literals. The text
segment also maps your binary �le in memory, but writes to this area earn your program
a Segmentation Fault. This helps prevent pointer bugs, though not as e�ectively as
avoiding C in the �rst place. Here’s a diagram showing these segments and our example
variables:

You can examine the memory areas in a Linux process by reading the �le
/proc/pid_of_process/maps. Keep in mind that a segment may contain many areas.
For example, each memory mapped �le normally has its own area in the mmap segment,
and dynamic libraries have extra areas similar to BSS and data. The next post will clarify
what ‘area’ really means. Also, sometimes people say “data segment” meaning all of data
+ bss + heap.

You can examine binary images using the nm (http://manpages.ubuntu.com/manpages
/intrepid/en/man1/nm.1.html) and objdump (http://manpages.ubuntu.com/manpages
/intrepid/en/man1/objdump.1.html) commands to display symbols, their addresses,
segments, and so on. Finally, the virtual address layout described above is the “�exible”
layout in Linux, which has been the default for a few years. It assumes that we have a
value for RLIMIT_STACK. When that’s not the case, Linux reverts back to the “classic”
layout shown below:

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

5 of 7 12/07/2016 01:30 PM

(//twitter.com
/food4hackers)

(mailto:food4hackers@duartes.org)

How The Kernel Manages Your Memory » (/gustavo/blog/post/how-the-kernel-manages-
your-memory/)

That’s it for virtual address space layout. The next post discusses how the kernel keeps
track of these memory areas. Coming up we’ll look at memory mapping, how �le reading
and writing ties into all this and what memory usage �gures mean.

189 Comments (/gustavo/blog/comments/anatomy.html)

(http://feeds.feedburner.com
/GustavoDuarte)

 Posted by Gustavo Duarte Jan 27th, 2009 Internals (/gustavo/blog/category/internals/), Linux

(/gustavo/blog/category/linux/), Software Illustrated (/gustavo/blog/category/software-illustrated/)

« Getting Physical With Memory (/gustavo/blog/post/getting-physical-with-memory/)

Recent Posts

Grokbit (/gustavo/blog/post/launching-grokbit/)

Home Row Computing on Macs (/gustavo/blog/post/home-row-computing-on-mac/)

System Calls Make the World Go Round (/gustavo/blog/post/system-calls/)

What Does an Idle CPU Do? (/gustavo/blog/post/what-does-an-idle-cpu-do/)

When Does Your OS Run? (/gustavo/blog/post/when-does-your-os-run/)

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

6 of 7 12/07/2016 01:30 PM

Copyright © 2008-2016 Gustavo Duarte - Powered by Octopress (http://octopress.org)

(//twitter.com
/food4hackers)

(mailto:food4hackers@duartes.org)

(/gustavo/blog/about/)

(http://feeds.feedburner.com
/GustavoDuarte)

Anatomy of a Program in Memory - Gustavo Duarte http://duartes.org/gustavo/blog/post/anatomy-of...

7 of 7 12/07/2016 01:30 PM

