
DEEP
DIVE

98 | October 2018 | http://www.linuxjournal.com

Getting Started
with Rust: Working
with Files and Doing
File I/O
How to develop command-line utilities in Rust.

By Mihalis Tsoukalos

This article demonstrates how to
perform basic file and file I /O operations
in Rust, and also introduces Rust’s
ownership concept and the Cargo tool.
If you are seeing Rust code for the first
time, this article should provide a pretty
good idea of how Rust deals with files and
file I /O, and if you’ve used Rust before, you
still will appreciate the code examples in
this article.

Ownership
It would be unfair to start talking about Rust without first discussing ownership.
Ownership is the Rust way of the developer having control over the lifetime of a
variable and the language in order to be safe. Ownership means that the passing
of a variable also passes the ownership of the value to the new variable.

99 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Another Rust feature related to ownership is borrowing. Borrowing is about taking
control over a variable for a while and then returning that ownership of the variable
back. Although borrowing allows you to have multiple references to a variable, only
one reference can be mutable at any given time.

Instead of continuing to talk theoretically about ownership and borrowing, let’s look
at a code example called ownership.rs:

fn main() {

 // Part 1

 let integer = 321;

 let mut _my_integer = integer;

 println!("integer is {}", integer);

 println!("_my_integer is {}", _my_integer);

 _my_integer = 124;

 println!("_my_integer is {}", _my_integer);

 // Part 2

 let a_vector = vec![1, 2, 3, 4, 5];

 let ref _a_correct_vector = a_vector;

 println!("_a_correct_vector is {:?}", _a_correct_vector);

 // Part 3

 let mut a_var = 3.14;

 {

 let b_var = &mut a_var;

 *b_var = 3.14159;

 }

 println!("a_var is now {}", a_var);

}

So, what’s happening here? In the first part, you define an integer variable
(integer) and create a mutable variable based on integer. Rust performs a

100 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

full copy for primitive data types because they are cheaper, so in this case, the
integer and _my_integer variables are independent from each other.

However, for other types, such as a vector, you aren’t allowed to change a variable
after you have assigned it to another variable. Additionally, you should use a reference
for the _a_correct_vector variable of Part 2 in the above example, because Rust
won’t make a copy of a_vector.

The last part of the program is an example of borrowing. If you remove the
curly braces, the code won’t compile because you’ll have two mutable variables
(a_var and b_var) that point to the same memory location. The curly braces
make b_var a local variable that references a_var, changes its value and returns
the ownership back to a_var as soon as the end of the block is reached. As both
a_var and b_var share the same memory address, any changes to b_var will
affect a_var as well.

Executing ownership.rs creates the following output:

$./ownership

integer is 321

_my_integer is 321

_my_integer is 124

my_vector is [1, 2, 3, 4, 5]

a_var is now 3.14159

Notice that Rust catches mistakes related to ownership at compile time—it uses
ownership to provide code safety.

The remaining Rust code shown in this article is pretty simple; you won’t need to
know about ownership to understand it, but it’s good to have an idea of how Rust
works and thinks.

101 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The Cargo Tool
Cargo is the Rust package and compilation manager, and it’s a useful tool for
creating projects in Rust. In this section, I cover the basics of Cargo using a small
example Rust project. The command for creating a Rust project named LJ with
Cargo is cargo new LJ --bin.

The --bin command-line parameter tells Cargo that the outcome of the project will

Figure 1. Using Cargo to Create Rust Projects

102 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

be an executable file, not a library. After that, you’ll have a directory named LJ with
the following contents:

$ cd LJ

$ ls -l

total 8

-rw-r--r-- 1 mtsouk staff 117 Jul 14 21:58 Cargo.toml

drwxr-xr-x 3 mtsouk staff 96 Jul 14 21:58 src

$ ls -l src/

total 8

-rw-r--r-- 1 mtsouk staff 45 Jul 14 21:58 main.rs

Next, you’ll typically want to edit one or both of the following files:

$ vi Cargo.toml

$ vi ./src/main.rs

Figure 1 shows all the files and directories of that minimal Cargo project as well as the
contents of Cargo.toml.

Note that the Cargo.toml configuration file is where you declare the dependencies
of your project as well as other metadata that Cargo needs in order to compile your
project. To build your Rust project, issue the following command:

$ cargo build

You can find the debug version of the executable file in the following path:

$ ls -l target/debug/LJ

-rwxr-xr-x 2 mtsouk staff 491316 Jul 14 22:02

 ↪target/debug/LJ

Clean up a Cargo project by executing cargo clean.

103 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Readers and Writers
Rust uses readers and writers for reading and writing to files, respectively. A
Rust reader is a value that you can read from; whereas a Rust writer is a value
that you can write data to. There are various traits for readers and writers, but
the standard ones are std::io::Read and std::io::Write, respectively.
Similarly, the most common and generic ways for creating readers and writers are
with the help of std::fs::File::open() and std::fs::File::create(),
respectively. Note: std::fs::File::open() opens a file in read-only mode.

The following code, which is saved as readWrite.rs, showcases the use of Rust
readers and writers:

use std::fs::File;

use std::io::prelude::*;

fn main() -> std::io::Result<()> {

 let mut file = File::create("/tmp/LJ.txt")?;

 let buffer = "Hello Linux Journal!\n";

 file.write_all(buffer.as_bytes())?;

 println!("Finish writing...");

 let mut input = File::open("/tmp/LJ.txt")?;

 let mut input_buffer = String::new();

 input.read_to_string(&mut input_buffer)?;

 print!("Read: {}", input_buffer);

 Ok(())

}

So, readWrite.rs first uses a writer to write a string to a file and then a reader to read
the data from that file. Therefore, executing readWrite.rs creates the following output:

$ rustc readWrite.rs

$./readWrite

104 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Finish writing...

Read: Hello Linux Journal!

$ cat /tmp/LJ.txt

Hello Linux Journal!

File Operations
Now let’s look at how to delete and rename files in Rust using the code of
operations.rs:

use std::fs;

use std::fs::File;

use std::io::prelude::*;

fn main() -> std::io::Result<()> {

 let mut file = File::create("/tmp/test.txt")?;

 let buffer = "Hello Linux Journal!\n";

 file.write_all(buffer.as_bytes())?;

 println!("Finish writing...");

 fs::rename("/tmp/test.txt", "/tmp/LJ.txt")?;

 fs::remove_file("/tmp/LJ.txt")?;

 println!("Finish deleting...");

 Ok(())

}

The Rust way to rename and delete files is straightforward, as each task requires
the execution of a single function. Additionally, you can see that /tmp/test.txt is
created using the technique found in readWrite.rs. Compiling and executing
operations.rs generates the following kind of output:

$./operations

Finish writing...

Finish deleting...

105 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

The code of operations.rs is far from complete, as there is no error-handling
code in it. Please feel free to improve it!

Working with Command-Line Arguments
This section explains how to access and process the command-line arguments of a
Rust program. The Rust code of cla.rs is the following:

use std::env;

fn main()

{

 let mut counter = 0;

 for argument in env::args()

 {

 counter = counter + 1;

 println!("{}: {}", counter, argument);

 }

}

Let’s look at what’s happening in this example. First, it’s using the env module
of the std crate, because this is how to get the command-line arguments of
your program, which will be kept in env::args(), which is an iterator over
the arguments of the process. Then you iterate over those arguments using a
for loop.

Say you want to add the command-line arguments of a program, the ones that
are valid integers, in order to find their total. You can use the next for loop,
which is included in the final version of cla.rs:

let mut sum = 0;

for input in env::args()

{

 let _i = match input.parse::<i32>() {

106 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 Ok(_i) => {

 sum = sum + _i

 },

 Err(_e) => {

 println!("{}: Not a valid integer!", input)

 }

 };

}

println!("Sum: {}", sum);

Here you iterate over the env::args() iterator, but this time with a different purpose,
which is finding the command-line arguments that are valid integers and summing them up.

If you are used to programming languages like C, Python or Go, you most likely will
find the aforementioned code over-complicated for such a simple task, but that’s the
way Rust works. Additionally, cla.rs contains Rust code related to error-handling.

Note that you should compile cla.rs and create an executable file before running
it, which means that Rust can’t easily be used as a scripting programming language.
So in this case, compiling and executing cla.rs with some command-line arguments
creates this kind of output:

$ rustc cla.rs

$./cla 12 a -1 10

1: ./cla

2: 12

3: a

4: -1

5: 10

./cla: Not a valid integer!

a: Not a valid integer!

Sum: 21

107 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Anyway, that’s enough for now about the command-line arguments of a program. The
next section describes using the three standard UNIX files.

Standard Input, Output and Error
This section shows how to use stdin, stdout and stderr in Rust. Every
UNIX operating system has three files open all the time for its processes. Those
three files are /dev/stdin, /dev/stdout and /dev/stderr, which you also can access
using file descriptors 0, 1 and 2, respectively. UNIX programs write regular data
to standard output and error messages to standard error while reading from
standard input.

The following Rust code, which is saved as std.rs, reads data from standard
input and writes to standard output and standard error:

use std::io::Write;

use std::io;

fn main() {

 println!("Please give me your name:");

 let mut input = String::new();

 match io::stdin().read_line(&mut input) {

 Ok(n) => {

 println!("{} bytes read", n);

 print!("Your name is {}", input);

 }

 Err(error) => println!("error: {}", error),

 }

 let mut stderr = std::io::stderr();

 writeln!(&mut stderr, "This is an error message!").unwrap();

 eprintln!("That is another error message!")

}

108 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Rust uses the eprint and eprintln macros for writing to standard error,
which is a pretty handy approach. Alternatively, you can write your text to
std::io::stderr(). Both techniques are illustrated in std.rs.

As you might expect, you can use the print and println macros for writing
to standard output. Finally, you can read from standard input with the help of
the io::stdin().read_line() function. Compiling and executing std.rs
creates the following output:

$ rustc std.rs

$./std

Please give me your name:

Mihalis

8 bytes read

Your name is Mihalis

This is an error message!

That is another error message!

If you’re using the Bash shell on your Linux machine, you can discard standard output
or standard error data by redirecting them to /dev/null:

$./std 2>/dev/null

Please give me your name:

Mihalis

8 bytes read

Your name is Mihalis

$./std 2>/dev/null 1>/dev/null

Mihalis

The previous commands depend on the UNIX shell you are using and have nothing to
do with Rust. Note that various other techniques exist for working with UNIX stdin,
stdout and stderr in Rust.

109 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

Working with Plain-Text Files
Now let’s look at how to read a plain-text file line by line, which is the most frequent
way of processing plain-text files. At the end of the program, the total number of
characters as well as the number of lines read will be printed on the screen—consider
this as a simplified version of the wc(1) command-line utility.

The name of the Rust utility is lineByLine.rs, and its code is the following:

use std::env;

use std::io::{BufReader,BufRead};

use std::fs::File;

fn main() {

 let mut total_lines = 0;

 let mut total_chars = 0;

 let mut total_uni_chars = 0;

 let args: Vec<_> = env::args().collect();

 if args.len() != 2 {

 println!("Usage: {} text_file", args[0]);

 return;

 }

 let input_path = ::std::env::args().nth(1).unwrap();

 let file = BufReader::new(File::open(&input_path).unwrap());

 for line in file.lines() {

 total_lines = total_lines + 1;

 let my_line = line.unwrap();

 total_chars = total_chars + my_line.len();

 total_uni_chars = total_uni_chars + my_line.chars().count();

 }

110 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 println!("Lines processed:\t\t{}", total_lines);

 println!("Characters read:\t\t{}", total_chars);

 println!("Unicode Characters read:\t{}", total_uni_chars);

}

The lineByLine.rs utility uses buffered reading as suggested by the use
of std::io::{BufReader,BufRead}. The input file is opened using
BufReader::new() and File::open(), and it’s read using a for loop that
keeps going as long as there is something to read from the input file.

Additionally, notice that the output of the len() function and the output of the
chars().count() function might not be the same when dealing with text files
that contain Unicode characters, which is the main reason for including both of
them in lineByLine.rs. For an ASCII file, their output should be the same.
Keep in mind that if what you want is to allocate a buffer to store a string, the
len() function is the correct choice.

Compiling and executing lineByLine.rs using a plain-text file as input will
generate this kind of output:

$./lineByLine lineByLine.rs

Lines processed: 28

Characters read: 756

Unicode Characters read: 756

Note that if you rename total_lines to totalLines, you’ll most likely get
the following warning message from the Rust compiler when trying to compile
your code:

warning: variable 'totalLines' should have a snake case name

such as 'total_lines'

 --> lineByLine.rs:7:6

 |

111 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

7 | let mut totalLines = 0;

 | ^^^^^^^^^^^^^^

 |

 = note: #[warn(non_snake_case)] on by default

You can turn off that warning message, but following the Rust way of defining
variable names should be considered a good practice. (In a future Rust article, I’ll
cover more about text processing in Rust, so stay tuned.)

File Copy
Next let’s look at how to copy a file in Rust. The copy.rs utility requires
two command-line arguments, which are the filename of the source and the
destination, respectively. The Rust code of copy.rs is the following:

use std::env;

use std::fs;

fn main()

{

 let args: Vec<_> = env::args().collect();

 if args.len() >= 3

 {

 let input = ::std::env::args().nth(1).unwrap();

 println!("input: {}", input);

 let output = ::std::env::args().nth(2).unwrap();

 println!("output: {}", output);

 match fs::copy(input, output)

 {

 Ok(n) => println!("{}", n),

 Err(err) => println!("Error: {}", err),

 };

 } else {

112 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 println!("Not enough command line arguments")

 }

}

All the dirty work is done by the fs::copy() function, which is versatile, as you
do not have to deal with opening a file for reading or writing, but it gives you no
control over the process, which is a little bit like cheating. Other ways exist to
copy a file, such as using a buffer for reading and writing in small byte chunks. If
you execute copy.rs, you’ll see output like this:

$./copy copy.rs /tmp/output

input: copy.rs

output: /tmp/output

515

You can use the handy diff(1) command-line utility for verifying that the
copy of the file is identical to the original. (Using diff(1) is left as an exercise
for the reader.)

UNIX File Permissions
This section describes how to find and print the UNIX file permissions of a
file, which will be given as a command-line argument to the program using the
permissions.rs Rust code:

use std::env;

use std::os::unix::fs::PermissionsExt;

fn main() -> std::io::Result<()> {

 let args: Vec<_> = env::args().collect();

 if args.len() < 2 {

 panic!("Usage: {} file", args[0]);

 }

 let f = ::std::env::args().nth(1).unwrap();

113 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

 let metadata = try!(std::fs::metadata(f));

 let perm = metadata.permissions();

 println!("{:o}", perm.mode());

 Ok(())

}

All the work is done by the permissions() function that’s applied to the
return value of std::fs::metadata(). Notice the {:o} format code in the
println() macro, which indicates that the output should be printed in the
octal system. Once again, the Rust code looks ugly at first, but you’ll definitely
get used to it after a while.

Executing permissions.rs produces the output like the following—the last
three digits of the output is the data you want, where the remaining values have
to do with the file type and the sticky bits of a file or directory:

$./permissions permissions

100755

$./permissions permissions.rs

100644

$./permissions /tmp/

41777

Note that permissions.rs works only on UNIX machines.

Conclusion
This article describes performing file input and output operations in Rust, as
well as working with command-line arguments, UNIX permissions and using
standard input, output and error. Due to space limitations, I couldn’t present
every technique for dealing with files and file I /O in Rust, but it should be clear
that Rust is a great choice for creating system utilities of any kind, including tools
that deal with files, directories and permissions, provided you have the time to
learn its idiosyncrasies. At the end of the day though, developers should decide

114 | October 2018 | http://www.linuxjournal.com

DEEP
DIVE

for themselves whether they should use Rust or another systems programming
language for creating UNIX command-line tools. ◾

Mihalis Tsoukalos is a UNIX administrator and developer, a DBA and mathematician who enjoys technical writing. He is the author of
Go Systems Programming and Mastering Go. You can reach him at http://www.mtsoukalos.eu and @mactsouk.

Resources
• The Rust Programming Language

• Rust Documentation

• The Cargo Book

• Rust Crates

• Programming Rust by Jim Blandy and Jason Orendorff, O’Reilly, 2017

• The Rust Programming Language by Steve Klabnik and Carol Nichols, No
Starch Press, 2018

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

