
12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 1/61

8 Networking

175



This chapter covers

Implementing a networking stack

Handling multiple error types within local scope

When to use trait objects

Implementing state machines in Rust

This chapter describes how to make HTTP requests multiple times,
stripping away a layer of abstraction each time. We start by using a
user-friendly library, then boil that away until we’re left with
manipulating raw TCP packets. When we’re finished, you’ll be able to
distinguish an IP address from a MAC address. And you’ll learn why
we went straight from IPv4 to IPv6.

You’ll also learn lots of Rust in this chapter, most of it related to
advanced error handling techniques that become essential for
incorporating upstream crates. Several pages are devoted to error
handling. This includes a thorough introduction to trait objects.

Networking is a difficult subject to cover in a single chapter. Each
layer is a fractal of complexity. Networking experts will hopefully
overlook my lack of depth in treating such a diverse topic.

Figure 8.1 provides an overview of the topics that the chapter covers.
Some of the projects that we cover include implementing DNS
resolution and generating standards-compliant MAC addresses,
including multiple examples of generating HTTP requests. A bit of a
role-playing game is added for light relief.

Go to next chapter 

https://livebook.manning.com/book/rust-in-action/chapter-9

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 2/61

livebook features:
 
 
 

Figure 8.1 Networking chapter map. The chapter incorporates a
healthy mix of theory and practical exercises.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 3/61

highlight, annotate, and bookmark

Select a piece of text and click the appropriate icon to comment, bookmark, or highlight

view how

8.1 All of networking in seven paragraphs

Rather than trying to learn the whole networking stack, let’s focus on
something that’s of practical use. Most readers of this book will have
encountered web programming. Most web programming involves
interacting with some sort of framework. Let’s look there.

HTTP is the protocol that web frameworks understand. Learning
more about HTTP enables us to extract the most performance out of
our web frameworks. It can also help us to more easily diagnose any
problems that occur. Figure 8.2 shows networking protocols for
content delivery over the internet.

Figure 8.2 Several layers of networking protocols involved with

delivering content over the internet. The figure compares some
common models, including the seven-layer OSI model and the
four-layer TCP/IP model.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 4/61

Networking is comprised of layers. If you’re new to the field, don’t be
intimidated by a flood of acronyms. The most important thing to
remember is that lower levels are unaware of what’s happening
above them, and higher levels are agnostic to what’s happening
below them. Lower levels receive a stream of bytes and pass it on.
Higher levels don’t care how messages are sent; they just want them
sent.

Let’s consider one example: HTTP. HTTP is known as an application-
level protocol. Its job is to transport content like HTML, CSS,
JavaScript, WebAssembly modules, images, video, and other formats.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 5/61

livebook features:

discuss


 
 

Ask a question, share an example, or respond to another reader. Start a thread by
selecting any piece of text and clicking the discussion icon.

view how open discussions

These formats often include other embedded formats via
compression and encoding standards. HTTP itself often redundantly
includes information provided by one of the layers below it, TCP.
Between HTTP and TCP sits TLS. TLS (Transport Layer Security),
which has replaced SSL (Secure Sockets Layer), adds the S to HTTPS.

TLS provides encrypted messaging over an unencrypted connection.
TLS is implemented on top of TCP. TCP sits upon many other
protocols. These go all the way down to specifying how voltages
should be interpreted as 0s and 1s. And yet, as complicated as this
story is so far, it gets worse. These layers, as you have probably seen
in your dealings with those as a computer user, bleed together like
watercolor paint.

HTML includes a mechanism to supplement or overwrite directives
omitted or specified within HTTP: the <meta> tag’s http-equiv

attribute. HTTP can make adjustments downwards to TCP. The
“Connection: keep-alive” HTTP header instructs TCP to maintain its
connection after this HTTP message has been received. These sorts of
interactions occur all through the stack. Figure 8.2 provides one view
of the networking stack. It is more complicated than most attempts.
And even that complicated picture is highly simplified.

Despite all of that, we’re going to try to implement as many layers as
possible within a single chapter. By the end of it, you will be sending
HTTP requests with a virtual networking device and a minimal TCP
implementation that you created yourself, using a DNS resolver that
you also created yourself.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 6/61

8.2 Generating an HTTP GET request with

reqwest

Our first implementation will be with a high-level library that is
focused on HTTP. We’ll use the reqwest library because its focus is
primarily on making it easy for Rust programmers to create an HTTP
request.

Although it’s the shortest, the reqwest implementation is the most
feature-complete. As well as being able to correctly interpret HTTP
headers, it also handles cases like content redirects. Most
importantly, it understands how to handle TLS properly.

In addition to expanded networking capabilities, reqwest also
validates the content’s encoding and ensures that it is sent to your
application as a valid String . None of our lower-level

implementations do any of that. The following shows the project
structure for listing 8.2:

The following listing shows the metadata for listing 8.2. The source
code for this listing is in ch8/ch8-simple/Cargo.toml.



ch8-simple/

├── src

│ └── main.rs

└── Cargo.toml

copy 

Listing 8.1 Crate metadata for listing 8.2

[package]

name = "ch8-simple"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

[dependencies]

reqwest = "0.9"

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 7/61

The following listing illustrates how to make an HTTP request with
the reqwest library. You’ll find the source in ch8/ch8-
simple/src/main.rs.

If you’ve ever done any web programming, listing 8.2 should be
straightforward. reqwest::get() issues an HTTP GET request to

the URL represented by url . The response variable holds a struct

representing the server’s response. The response .text() method

returns a Result that provides access to the HTTP body after

validating that the contents are a legal String .

One question, though: What on earth is the error side of the Result

return type Box<dyn std::error::Error> ? This is an example of

a trait object that enables Rust to support polymorphism at runtime.
Trait objects are proxies for concrete types. The syntax Box<dyn

std::error::Error> means a Box (a pointer) to any type that

implements std::error:Error ’s.

copy 

Listing 8.2 Making an HTTP request with reqwest
1
2
3
4
5
6
7
8
9
10
11
12
13

1 use std::error::Error;

2

3 use reqwest;

4

5 fn main() -> Result<(), Box<dyn Error>> {

6 let url = "http:/ /www.rustinaction.com/";

7 let mut response = reqwest::get(url)?;

8

9 let content = response.text()?;

10 print!("{}", content);

11

12 Ok(())

13 }

copy 

1

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 8/61

livebook features:

settings


 
 

Update your profile, view your dashboard, tweak the text size, or turn on dark mode.

view how

You missed out on some activities - why not try them now?

Using a library that knows about HTTP allows our programs to omit
many details. For example

Knowing when to close the connection. HTTP has rules for
telling each of the parties when the connection ends. This
isn’t available to us when manually making requests.
Instead, we keep the connection open for as long as possible
and hope that the server will close.
Converting the byte stream to content. Rules for translating
the message body from [u8] to String (or perhaps an

image, video, or some other content) are handled as part of
the protocol. This can be tedious to handle manually as
HTTP allows content to be compressed into several
methods and encoded into several plain text formats.
Inserting or omitting port numbers. HTTP defaults to port 80.
A library that is tailored for HTTP, such as reqwest, allows
you to omit port numbers. When we’re building requests by
hand with generic TCP crates, however, we need to be
explicit.
Resolving the IP addresses. The TCP protocol doesn’t actually
know about domain names like www.rustinaction.com, for
example. The library resolves the IP address for
www.rustinaction.com on our behalf.

8.3 Trait objects

This section describes trait objects in detail. You will also develop the
world’s next best-selling fantasy role-playing game—the rpg

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 9/61

You missed out on some activities - why not try them now?

project. If you would like to focus on networking, feel free to skip
ahead to section 8.4.

There is a reasonable amount of jargon in the next several
paragraphs. Brace yourself. You’ll do fine. Let’s start by introducing
trait objects by what they achieve and what they do, rather than
focusing on what they are.

8.3.1 What do trait objects enable?

While trait objects have several uses, they are immediately helpful by
allowing you to create containers of multiple types. Although players
of our role-playing game can choose different races, and each race is
defined in its own struct , you’ll want to treat those as a single

type. A Vec<T> won’t work here because we can’t easily have types

T , U , and V wedged into Vec<T> without introducing some type

of wrapper object.

8.3.2 What is a trait object?

Trait objects add a form of polymorphism—the ability to share an
interface between types—to Rust via dynamic dispatch. Trait objects
are similar to generic objects. Generics offer polymorphism via static
dispatch. Choosing between generics and type objects typically
involves a trade off between disk space and time:

Generics use more disk space with faster runtimes.
Trait objects use less disk space but incur a small runtime
overhead caused by pointer indirection.

Trait objects are dynamically-sized types, which means that these are
always seen in the wild behind a pointer. Trait objects appear in three

forms: &dyn Trait , &mut dyn Trait , and Box<dyn Trait> .1

The primary difference between the three forms is that Box<dyn

Trait> is an owned trait object, whereas the other two are

borrowed.

https://livebook.manning.com/book/rust-in-action/chapter-8/pgfId-1012877

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 10/61

1.In old Rust code, you may see &Trait , and Box<Trait> . While

legal syntax, these are officially deprecated. Adding dyn keyword is

strongly encouraged.

8.3.3 Creating a tiny role-playing game: The rpg project

Listing 8.4 is the start of our game. Characters in the game can be one
of three races: humans, elves, and dwarves. These are represented by
the Human , Elf , and Dwarf structs, respectively.

Characters interact with things. Things are represented by the

Thing type.2 Thing is an enum that currently represents swords

and trinkets. There’s only one form of interaction right now:
enchantment. Enchanting a thing involves calling the enchant()

method:

2.Naming is hard.

When enchantment is successful, thing glows brightly. When a

mistake occurs, thing is transformed into a trinket. Within listing

8.4, we create a party of characters with the following syntax:

character.enchant(&mut thing)

copy 

58 let d = Dwarf {};

59 let e = Elf {};

60 let h = Human {};

61

62 let party: Vec<&dyn Enchanter> = vec![&d, &h, &e]; #1

copy 

https://livebook.manning.com/book/rust-in-action/chapter-8/pgfId-1012995
javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 11/61

Casting the spell involves choosing a spellcaster. We make use of the
rand crate for that:

The choose() method originates from the

rand::seq::SliceRandom trait that is brought into scope in listing

8.4. One of the party is chosen at random. The party then attempts to
enchant the object it . Compiling and running listing 8.4 results in a

variation of this:

The following listing shows the metadata for our fantasy role-
playing game. The source code for the rpg project is in ch8/ch8-
rpg/Cargo.toml.

58 let spellcaster = party.choose(&mut rand::thread_rng()).unwrap

59 spellcaster.enchant(&mut it)

copy 

$ cargo run

...

 Compiling rpg v0.1.0 (/rust-in-action/code/ch8/ch8-rpg)

 Finished dev [unoptimized + debuginfo] target(s) in 2.13s

 Running `target/debug/rpg`

Human mutters incoherently. The Sword glows brightly.

$ target/debug/rpg

Elf mutters incoherently. The Sword fizzes, then turns into a wort

copy 

Listing 8.3 Crate metadata for the rpg project

[package]

name = "rpg"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 12/61

Listing 8.4 provides an example of using a trait object to enable a
container to hold several types. You’ll find its source in ch8/ch8-
rpg/src/main.rs.

[dependencies]

rand = "0.7"

copy 

Listing 8.4 Using the trait object &dyn Enchanter
1 use rand;

 2 use rand::seq::SliceRandom;

 3 use rand::Rng;

 4

 5 #[derive(Debug)]

 6 struct Dwarf {}

 7

 8 #[derive(Debug)]

 9 struct Elf {}

10

11 #[derive(Debug)]

12 struct Human {}

13

14 #[derive(Debug)]

15 enum Thing {

16 Sword,

17 Trinket,

18 }

19

20 trait Enchanter: std::fmt::Debug {

21 fn competency(&self) -> f64;

22

23 fn enchant(&self, thing: &mut Thing) {

24 let probability_of_success = self.competency();

25 let spell_is_successful = rand::thread_rng()

26 .gen_bool(probability_of_success);

27

28 print!("{:?} mutters incoherently. ", self);

29 if spell_is_successful {

30 println!("The {:?} glows brightly.", thing);

31 } else {

32 println!("The {:?} fizzes, \

33 then turns into a worthless trinket.", thing);

34 *thing = Thing::Trinket {};

35 }

36 }

37 }

38

39 impl Enchanter for Dwarf {

40 fn competency(&self) -> f64 {

41 0.5

42 }

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 13/61

Trait objects are a powerful construct in the language. In a sense,
they provide a way to navigate Rust’s rigid type system. As you learn
about this feature in more detail, you will encounter some jargon. For
example, trait objects are a form of type erasure. The compiler does
not have access to the original type during the call to enchant() .

TRAIT VS. TYPE

One of the frustrating things about Rust’s syntax for beginners is
that trait objects and type parameters look similar. But types and
traits are used in different places. For example, consider these
two lines:

43 }

44 impl Enchanter for Elf {

45 fn competency(&self) -> f64 {

46 0.95

47 }

48 }

49 impl Enchanter for Human {

50 fn competency(&self) -> f64 {

51 0.8

52 }

53 }

54

55 fn main() {

56 let mut it = Thing::Sword;

57

58 let d = Dwarf {};

59 let e = Elf {};

60 let h = Human {};

61

62 let party: Vec<&dyn Enchanter> = vec![&d, &h, &e];

63 let spellcaster = party.choose(&mut rand::thread_rng()).unwra

64

65 spellcaster.enchant(&mut it);

66 }

copy 

use rand::Rng;

use rand::rngs::ThreadRng;

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 14/61

livebook features:

highlight, annotate, and bookmark


 
 

Select a piece of text and click the appropriate icon to comment, bookmark, or highlight

Although these both have something to do with random number
generators, they’re quite different. rand::Rng is a trait;

rand::rngs::ThreadRng is a struct. Trait objects make this

distinction harder.

When used as a function argument and in similar places, the
form &dyn Rng is a reference to something that implements the

Rng trait, whereas &ThreadRng is a reference to a value of

ThreadRng . With time, the distinction between traits and types

becomes easier to grasp. Here’s some common use cases for trait
objects:

Creating collections of heterogeneous objects.
Returning a value. Trait objects enable functions to
return multiple concrete types.
Supporting dynamic dispatch, whereby the function
that is called is determined at runtime rather than at
compile time.

Before the Rust 2018 edition, the situation was even more
confusing. The dyn keyword did not exist. This meant that

context was needed to decide between &Rng and &ThreadRng .

Trait objects are not objects in the sense that an object-oriented
programmer would understand. They’re perhaps closer to a
mixin class. Trait objects don’t exist on their own; they are
agents of some other type.

An alternative analogy would be a singleton object that is
delegated with some authority by another concrete type. In
listing 8.4, the &Enchanter is delegated to act on behalf of three

concrete types.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 15/61

view how

You missed out on some activities - why not try them now?

8.4 TCP

Dropping down from HTTP, we encounter TCP (Transmission
Control Protocol). Rust’s standard library provides us with cross-
platform tools for making TCP requests. Let’s use those. The file
structure for listing 8.6, which creates an HTTP GET request, is
provided here:

The following listing shows the metadata for listing 8.6. You’ll find
the source for this listing in ch8/ch8-stdlib/Cargo.toml.

The next listing shows how to use the Rust standard library to
construct an HTTP GET request with std::net::TcpStream . The

ch8-stdlib

├── src

│ └── main.rs

└── Cargo.toml

copy 

Listing 8.5 Project metadata for listing 8.6

1
2
3
4
5
6
7

[package]
name = "ch8-stdlib"
version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

[dependencies]

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 16/61

source for this listing is in ch8/ch8-stdlib/src/main.rs.

Some remarks about listing 8.6:

On line 10, we specify HTTP 1.0. Using this version of HTTP
ensures that the connection is closed when the server sends
its response. HTTP 1.0, however, does not support “keep
alive” requests. Specifying HTTP 1.1 actually confuses this
code as the server will refuse to close the connection until it
has received another request, and the client will never send
one.
On line 13, we include the hostname. This may feel
redundant given that we used that exact hostname when we
connected on lines 7–8. However, one should remembers
that the connection is established over IP, which does not
have host names. When TcpStream::connect() connects

to the server, it only uses an IP address. Adding the Host

Listing 8.6 Constructing an HTTP GET request

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1 use std::io::prelude::*;

2 use std::net::TcpStream;

3

4 fn main() -> std::io::Result<()> {

5 let host = "www.rustinaction.com:80";

6

7 let mut conn =

8 TcpStream::connect(host)?;

9

10 conn.write_all(b"GET / HTTP/1.0")?;

11 conn.write_all(b"\r\n")?;

12

13 conn.write_all(b"Host: www.rustinaction.com")?;

14 conn.write_all(b"\r\n\r\n")?;

15

16 std::io::copy(

17 &mut conn,

18 &mut std::io::stdout()

19)?;

20

21 Ok(())

22 }

copy 

1

2

3

4

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 17/61

You missed out on some activities - why not try them now?

HTTP header allows us to inject that information back into
the context.

8.4.1 What is a port number?

Port numbers are purely virtual. They are simply u16 values. Port

numbers allow a single IP address to host multiple services.

8.4.2 Converting a hostname to an IP address

So far, we’ve provided the hostname www.rustinaction.com to Rust.
But to send messages over the internet, the IP (internet protocol)
address is required. TCP knows nothing about domain names. To
convert a domain name to an IP address, we rely on the Domain
Name System (DNS) and its process called domain name resolution.

We’re able to resolve names by asking a server, which can recursively
ask other servers. DNS requests can be made over TCP, including
encryption with TLS, but are also sent over UDP (User Datagram
Protocol). We’ll use DNS here because it’s more useful for learning
purposes.

To explain how the translation from a domain name to an IP address
works, we’ll create a small application that does the translation.
We’ll call the application resolve. You’ll find its source code in listing
8.9. The application makes use of public DNS services, but you can
easily add your own with the -s argument.

PUBLIC DNS PROVIDERS

At the time of writing, several companies provide DNS servers for
public use. Any of the IP addresses listed here should offer
roughly equivalent service:

1.1.1.1 and 1.0.0.1 by Cloudflare
8.8.8.8 and 8.8.4.4. by Google

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 18/61

9.9.9.9 by Quad9 (founded by IBM)
.6.64.6 and 64.6.65.6 by VeriSign

Our resolve application only understands a small portion of DNS
protocol, but that portion is sufficient for our purposes. The project
makes use of an external crate, trust-dns, to perform the hard work.
The trust-dns crate implements RFC 1035, which defines DNS and
several later RFCs quite faithfully using terminology derived from it.
Table 8.1 outlines some of the terms that are useful to understand.

Table 8.1 Terms that are used in RFC 1035, the trust_dns crate,
and listing 8.9, and how these interlink (view table figure)

Term Definition Representation in code

Domain
name

A domain name
is almost what
you probably
think of when
you use the
term domain
name in your
everyday
language.

The technical
definition
includes some
special cases
such as the root
domain, which
is encoded as a
single dot, and
domain names
that need to be
case-
insensitive.

Defined in trust_dns::domain::Name

pub struct Name {

 is_fqdn: bool, ①

 labels: Vec<Label>,

}

① fqdn stands for fully-qualified
domain name.

Message A message is a
container for
both requests

Defined in trust_dns::domain::Name

struct Message {

 header: Header,

 queries: Vec<Query>,

 answers: Vec<Record>,

 name_servers: Vec<Record>,

https://drek4537l1klr.cloudfront.net/mcnamara/HighResolutionFigures/table_8-1.png

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 19/61

to DNS servers
(called queries)
and responses
back to clients
(called
answers).

Messages must
contain a
header, but
other fields are
not required. A
Message

struct
represents this
and includes
several
Vec<T> fields.

These do not
need to be
wrapped in
Option to

represent
missing values
as their length
can be 0.

 additionals: Vec<Record>,

 sig0: Vec<Record>, ①

 edns: Option<Edns>, ②

}

① sig0, a cryptographically signed
record, verifies the message’s
integrity. It is defined in RFC 2535.

② edns indicates whether the message
includes extended DNS.

Message
type

A message type
identifies the
message as a
query or as an
answer. Queries
can also be
updates, which
are
functionality
that our code
ignores.

Defined in trust_dns::op::MessageType

pub enum MessageType {

 Query,

 Response,

}

Message A number that u16

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 20/61

ID is used for
senders to link
queries and
answers.

Resource
record
type

The resource
record type
refers to the
DNS codes that
you’ve probably
encountered if
you’ve ever
configured a
domain name.

Of note is how
trust_dns
handles invalid
codes. The
RecordType

enum contains
an
Unknown(u16)

variant that can
be used for
codes that it
doesn’t
understand.

Defined in trust_dns::rr::record_type::RecordType

pub enum RecordType {

 A,

 AAAA,

 ANAME,

 ANY,

 // ...

 Unknown(u16),

 ZERO,

}

Query A Query struct

holds the
domain name
and the record
type that we’re
seeking the
DNS details for.

These traits
also describe
the DNS class
and allow

Defined in trust_dns::op::Query

pub struct Query {

 name: Name,

 query_type: RecordType,

 query_class: DNSClass,

}

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 21/61

queries to
distinguish
between
messages sent
over the
internet from
other transport
protocols.

Opcode

An OpCode

enum is, in
some sense, a
subtype of
MessageType .

This is an
extensibility
mechanism
that allows
future
functionality.
For example,
RFC 1035
defines the
Query and

Status

opcodes but
others were
defined later.
The Notify

and Update

opcodes are
defined by RFC
1996 and RFC
2136,
respectively.

Defined in trust_dns::op::OpCode

pub enum OpCode {

 Query,

 Status,

 Notify,

 Update,

}

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 22/61

An unfortunate consequence of the protocol, which I suppose is a
consequence of reality, is that there are many options, types, and
subtypes involved. Listing 8.7, an excerpt from listing 8.9, shows the
process of constructing a message that asks, “Dear DNS server, what
is the IPv4 address for domain_name ?” The listing constructs the

DNS message, whereas the trust-dns crate requests an IPv4 address
for domain_name .

We’re now in a position where we can meaningfully inspect the code.
It has the following structure:

Parses command-line arguments
Builds a DNS message using trust_dns types
Converts the structured data into a stream of bytes
Sends those bytes across the wire

After that, we need to accept the response from the server, decode
the incoming bytes, and print the result. Error handling remains
relatively ugly, with many calls to unwrap() and expect() . We’ll

address that problem shortly in section 8.5. The end process is a
command-line application that’s quite simple.

Running our resolve application involves little ceremony. Given a
domain name, it provides an IP address:

Listing 8.7 Constructing a DNS message in Rust

35 let mut msg = Message::new(); #1

36 msg

37 .set_id(rand::random::<u16>()) #2

38 .set_message_type(MessageType::Query)

39 .add_query(#3

40 Query::query(domain_name, RecordType::A) #4

41)

42 .set_op_code(OpCode::Query)

43 .set_recursion_desired(true); #5

copy 

$ resolve www.rustinaction.com 35.185.44.232

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 23/61

Listings 8.8 and 8.9 are the project’s source code. While you are
experimenting with the project, you may want to use some features
of cargo run to speed up your process:

To compile the resolve application from the official source code
repository, execute these commands in the console:

To compile and build from scratch, follow these instructions to
establish the project structure:

1. At the command-line, enter these commands:

copy 

$ cargo run -q -- www.rustinaction.com #1

.185.44.232

copy 

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

Cloning into 'rust-in-action'...

$ cd rust-in-action/ch8/ch8-resolve

$ cargo run -q -- www.rustinaction.com #1

.185.44.232

copy 

$ cargo new resolve

 Created binary (application) `resolve` package

$ cargo install cargo-edit

...

$ cd resolve

javascript:void(0)
javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 24/61

2. Once the structure has been established, you check that
your Cargo.toml matches listing 8.8, available in ch8/ch8-
resolve/Cargo.toml.

3. Replace the contents of src/main.rs with listing 8.9. It is
available from ch8/ch8-resolve/src/main.rs.

The following snippet provides a view of how the files of the project
and the listings are interlinked:

$ cargo add rand@0.6

 Updating 'https:/ /github.com/rust-lang/crates.io-index' index

 Adding rand v0.6 to dependencies

$ cargo add clap@2

 Updating 'https:/ /github.com/rust-lang/crates.io-index' index

 Adding rand v2 to dependencies

$ cargo add trust-dns@0.16 --no-default-features

 Updating 'https:/ /github.com/rust-lang/crates.io-index' index

 Adding trust-dns v0.16 to dependencies

copy 

ch8-resolve

├── Cargo.toml #1

└── src

 └── main.rs #2

copy 

Listing 8.8 Crate metadata for the resolve app

[package]

name = "resolve"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

[dependencies]

rand = "0.6"

clap = "2.33"

trust-dns = { version = "0.16", default-features = false }

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 25/61

copy 

Listing 8.9 A command-line utility to resolve IP addresses from
hostnames

1 use std::net::{SocketAddr, UdpSocket};

 2 use std::time::Duration;

 3

 4 use clap::{App, Arg};

 5 use rand;

 6 use trust_dns::op::{Message, MessageType, OpCode, Query};

 7 use trust_dns::rr::domain::Name;

 8 use trust_dns::rr::record_type::RecordType;

 9 use trust_dns::serialize::binary::*;

10

11 fn main() {

12 let app = App::new("resolve")

13 .about("A simple to use DNS resolver")

14 .arg(Arg::with_name("dns-server").short("s").default_value

15 .arg(Arg::with_name("domain-name").required(true))

16 .get_matches();

17

18 let domain_name_raw = app #1

19 .value_of("domain-name").unwrap(); #1

20 let domain_name = #1

21 Name::from_ascii(&domain_name_raw).unwrap(); #1

22

23 let dns_server_raw = app #2

24 .value_of("dns-server").unwrap(); #2

25 let dns_server: SocketAddr = #2

26 format!("{}:53", dns_server_raw) #2

27 .parse() #2

28 .expect("invalid address"); #2

29

30 let mut request_as_bytes: Vec<u8> = #3

31 Vec::with_capacity(512); #3

32 let mut response_as_bytes: Vec<u8> = #3

33 vec![0; 512]; #3

34

35 let mut msg = Message::new(); #4

36 msg

37 .set_id(rand::random::<u16>())

38 .set_message_type(MessageType::Query) #5

39 .add_query(Query::query(domain_name, RecordType::A))

40 .set_op_code(OpCode::Query)

41 .set_recursion_desired(true);

42

43 let mut encoder =

44 BinEncoder::new(&mut request_as_bytes); #6

45 msg.emit(&mut encoder).unwrap();

46

47 let localhost = UdpSocket::bind("0.0.0.0:0") #7

48 .expect("cannot bind to local socket");

49 let timeout = Duration::from_secs(3);

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 26/61

Listing 8.9 includes some business logic that deserves explaining.
Lines 30–33, repeated here, use two forms of initializing a Vec<u8> .

Why?

Each form creates a subtly different outcome:

Vec::with_capacity(512) creates a Vec<T> with

length 0 and capacity 512.
vec![0; 512] creates a Vec<T> with length 512 and

capacity 512.

50 localhost.set_read_timeout(Some(timeout)).unwrap();

51 localhost.set_nonblocking(false).unwrap();

52

53 let _amt = localhost

54 .send_to(&request_as_bytes, dns_server)

55 .expect("socket misconfigured");

56

57 let (_amt, _remote) = localhost

58 .recv_from(&mut response_as_bytes)

59 .expect("timeout reached");

60

61 let dns_message = Message::from_vec(&response_as_bytes)

62 .expect("unable to parse response");

63

64 for answer in dns_message.answers() {

65 if answer.record_type() == RecordType::A {

66 let resource = answer.rdata();

67 let ip = resource

68 .to_ip_addr()

69 .expect("invalid IP address received");

70 println!("{}", ip.to_string());

71 }

72 }

73 }

copy 

let mut request_as_bytes: Vec<u8> =

 Vec::with_capacity(512);

 let mut response_as_bytes: Vec<u8> =

 vec![0; 512];

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 27/61

livebook features:

discuss


 
 

The underlying array looks the same, but the difference in length is
significant. Within the call to recv_from() at line 58, the trust-dns

crate includes a check that response_as_bytes has sufficient

space. That check uses the length field, which results in a crash.
Knowing how to wriggle around with initialization can be handy for
satisfying an APIs’ expectations.

HOW DNS SUPPORTS CONNECTIONS WITHIN UDP

UDP does not have a notion of long-lived connections. Unlike
TCP, all messages are short-lived and one-way. Put another way,
UDP does not support two-way (duplex) communications. But
DNS requires a response to be sent from the DNS server back to
the client.

To enable two-way communications within UDP, both parties
must act as clients and servers, depending on context. That
context is defined by the protocol built on top of UDP. Within
DNS, the client becomes a DNS server to receive the server’s
reply. The following table provides a flow chart of the process.

It’s time to recap. Our overall task in this section was to make HTTP
requests. HTTP is built on TCP. Because we only had a domain name
(www.rustinaction.com) when we made the request, we needed to
use DNS. DNS is primarily delivered over UDP, so we needed to take a
diversion and learn about UDP.

Now it’s almost time to return to TCP. Before we’re able to do that,
though, we need to learn how to combine error types that emerge
from multiple dependencies.

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 28/61

Ask a question, share an example, or respond to another reader. Start a thread by
selecting any piece of text and clicking the discussion icon.

view how open discussions

You missed out on some activities - why not try them now?

8.5 Ergonomic error handling for libraries

Rust’s error handling is safe and sophisticated. However, it offers a
few challenges. When a function incorporates Result types from

two upstream crates, the ? operator no longer works because it only

understands a single type. This proves to be important when we
refactor our domain resolution code to work alongside our TCP code.
This section discusses some of those challenges as well as strategies
for managing them.

8.5.1 Issue: Unable to return multiple error types

Returning a Result<T, E> works great when there is a single error

type E . But things become more complicated when we want to work

with multiple error types.

TIP 

For single files, compile the code with rustc <filename>

rather than using cargo build . For example, if a file is named

io-error.rs, then the shell command is rustc io-error.rs &&

./io-error[.exe] .

To start, let’s look at a small example that covers the easy case of a
single error type. We’ll try to open a file that does not exist. When
run, listing 8.10 prints a short message in Rust syntax:

$ rustc ch8/misc/io-error.rs && ./io-error

Error: Os { code: 2, kind: NotFound, message: "No such file or di

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 29/61

We won’t win any awards for user experience here, but we get a
chance to learn a new language feature. The following listing
provides the code that produces a single error type. You’ll find its
source in ch8/misc/io-error.rs.

Now, let’s introduce another error type into main() . The next

listing produces a compiler error, but we’ll work through some
options to get the code to compile. The code for this listing is in
ch8/misc/multierror.rs.

copy 

Listing 8.10 A Rust program that always produces an I/O error

1 use std::fs::File;

2

3 fn main() -> Result<(), std::io::Error> {

4 let _f = File::open("invisible.txt")?;

5

6 Ok(())

7 }

copy 

Listing 8.11 A function that attempts to return multiple Result
types

1 use std::fs::File;

 2 use std::net::Ipv6Addr;

 3

 4 fn main() -> Result<(), std::io::Error> {

 5 let _f = File::open("invisible.txt")?; #1

 6

 7 let _localhost = "::1" #2

 8 .parse::<Ipv6Addr>()?; #2

 9

10 Ok(())

11 }

copy 

javascript:void(0)
javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 30/61

To compile listing 8.11, enter the ch8/misc directory and use rustc.
This produces quite a stern, yet helpful, error message:

The error message can be difficult to interpret if you don’t know what
the question mark operator (?) is doing. Why are there multiple

messages about std::convert::From ? Well, the ? operator is

syntactic sugar for the try! macro. try! performs two functions:

When it detects Ok(value) , the expression evaluates to

value .

When Err(err) occurs, try! / ? returns early after

attempting to convert err to the error type defined in the

calling function.

In Rust-like pseudocode, the try! macro could be defined as

$ rustc multierror.rs

error[E0277]: `?` couldn't convert the error to `std::io::Error`

 --> multierror.rs:8:25

 |

4 | fn main() -> Result<(), std::io::Error> {

 | -------------------------- expected `std::io::Er

 because of this

...

8 | .parse::<Ipv6Addr>()?;

 | ^ the trait `From<AddrParseError>`

 is not implemented for `std::io::Er

 |

 = note: the question mark operation (`?`) implicitly performs a

 conversion on the error value using the `From` trait

 = help: the following implementations were found:

 <std::io::Error as From<ErrorKind>>

 <std::io::Error as From<IntoInnerError<W>>>

 <std::io::Error as From<NulError>>

 = note: required by `from`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0277`

copy 

javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 31/61

Looking at listing 8.11 again, we can see the try! macro in action as

? :

In addition to saving you from needing to use explicit pattern
matching to extract the value or return an error, the ? operator also

attempts to convert its argument into an error type if required.
Because the signature of main is main() → Result<(), std::io

::Error> , Rust attempts to convert the

std::net::AddrParseError produced by parse::<Ipv6Addr>()

into a std::io::Error . Don’t worry, though; we can fix this!

Earlier, in section 8.3, we introduced trait objects. Now we’ll be able
to put those to good use.

Using Box<dyn Error> as the error variant in the main() function

allows us to progress. The dyn keyword is short for dynamic,

implying that there is a runtime cost for this flexibility. Running
listing 8.12 produces this output:

macro try {

 match expression {

 Result::Ok(val) => val, #1

 Result::Err(err) => {

 let converted = convert::From::from(err); #2

 return Result::Err(converted); #3

 }

 });

}

copy 

4 fn main() -> Result<(), std::io::Error> {

 5 let _f = File::open("invisible.txt")?; #1

 6

 7 let _localhost = "::1" #2

 8 .parse::<Ipv6Addr>()?; #2

 9

10 Ok(())

11 }

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:30 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 32/61

I suppose it’s a limited form of progress, but progress nonetheless.
We’ve circled back to the error we started with. But we’ve passed
through the compiler error, which is what we wanted.

Going forward, let’s look at listing 8.12. It implements a trait object in
a return value to simplify error handling when errors originate from
multiple upstream crates. You can find the source for this listing in
ch8/misc/traiterror.rs.

Wrapping trait objects in Box is necessary because their size (in

bytes on the stack) is unknown at compile time. In the case of listing
8.12, the trait object might originate from either File::open() or

"::1".parse() . What actually happens depends on the

circumstances encountered at runtime. A Box has a known size on

the stack. Its raison d’être is to point to things that don’t, such as
trait objects.

$ rustc ch8/misc/traiterror.rs && ./traiterror

Error: Os { code: 2, kind: NotFound, message: "No such file or di

copy 

Listing 8.12 Using a trait object in a return value

1 use std::fs::File;

 2 use std::error::Error;

 3 use std::net::Ipv6Addr;

 4

 5 fn main() -> Result<(), Box<dyn Error>> { #1

 6

 7 let _f = File::open("invisible.txt")?; #2

 8

 9 let _localhost = "::1"

10 .parse::<Ipv6Addr>()? #3

11

12 Ok(())

13 }

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 33/61

You missed out on some activities - why not try them now?

8.5.2 Wrapping downstream errors by defining our own

error type

The problem that we are attempting to solve is that each of our
dependencies defines its own error type. Multiple error types in one
function prevent returning Result . The first strategy we looked at

was to use trait objects, but trait objects have a potentially significant
downside.

Using trait objects is also known as type erasure. Rust is no longer
aware that an error has originated upstream. Using Box<dyn

Error> as the error variant of a Result means that the upstream

error types are, in a sense, lost. The original errors are now converted
to exactly the same type.

It is possible to retain the upstream errors, but this requires more
work on our behalf. We need to bundle upstream errors in our own
type. When the upstream errors are needed later (say, for reporting
errors to the user), it’s possible to extract these with pattern
matching. Here is the process:

1. Define an enum that includes the upstream errors as
variants.

2. Annotate the enum with #[derive(Debug)] .

3. Implement Display .

4. Implement Error , which almost comes for free because

we have implemented Debug and Display .

5. Use map_err()map_err in your code to convert the upstream error

to your omnibus error type.

NOTE

You haven’t previously encountered the map_err()map_err function.

We’ll explain what it does when we get there later in this section.

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 34/61

It’s possible to stop with the previous steps, but there’s an optional
extra step that improves the ergonomics. We need to implement
std::convert::From to remove the need to call map_err()map_err . To

begin, let’s start back with listing 8.11, where we know that the code
fails:

This code fails because "".parse::<Ipv6Addr>() does not return a

std::io::Error . What we want to end up with is code that looks a

little more like the following listing.

1
2
3
4
5
6
7
8
9
10
11

use std::fs::File;

use std::net::Ipv6Addr;

fn main() -> Result<(), std::io::Error> {

 let _f = File::open("invisible.txt")?;

 let _localhost = "::1"

 .parse::<Ipv6Addr>()?;

 Ok(())

}

copy 

Listing 8.13 Hypothetical example of the kind of code we want to
write

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 use std::fs::File;

2 use std::io::Error;

3 use std::net::AddrParseError;

4 use std::net::Ipv6Addr;

5

6 enum UpstreamError{

7 IO(std::io::Error),

8 Parsing(AddrParseError),

9 }

10

11 fn main() -> Result<(), UpstreamError> {

12 let _f = File::open("invisible.txt")?

13 .maybe_convert_to(UpstreamError);

14

15 let _localhost = "::1"

16 .parse::<Ipv6Addr>()?
17 .maybe_convert_to(UpstreamError);

18

19 Ok(())

20 }

1

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 35/61

You missed out on some activities - why not try them now?

Define an enum that includes the upstream errors as variants

The first thing to do is to return a type that can hold the upstream
error types. In Rust, an enum works well. Listing 8.13 does not
compile, but does do this step. We’ll tidy up the imports slightly,
though:

Annotate the enum with #[derive(Debug)]

The next change is easy. It’s a single-line change—the best kind of
change. To annotate the enum, we’ll add #[derive(Debug)] , as the

following shows:

copy 

1
2
3
4
5
6
7

use std::io;

use std::net;

enum UpstreamError{

 IO(io::Error),

 Parsing(net::AddrParseError),

}

copy 

1
2
3
4
5
6
7
8

use std::io;

use std::net;

#[derive(Debug)]

enum UpstreamError{

 IO(io::Error),

 Parsing(net::AddrParseError),

}

copy 

javascript:void(0)
javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 36/61

You missed out on some activities - why not try them now?

Implement std::fmt::Display

We’ll cheat slightly and implement Display by simply using

Debug . We know that this is available to us because errors must

define Debug . Here’s the updated code:

Implement std::error::Error

Here’s another easy change. To end up with the kind of code that
we’d like to write, let’s make the following change:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use std::fmt;

use std::io;

use std::net;

#[derive(Debug)]

enum UpstreamError{

 IO(io::Error),

 Parsing(net::AddrParseError),

}

impl fmt::Display for UpstreamError {

 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

 write!(f, "{:?}", self)

 }

}

copy 

1

1
2
3
4
5
6
7
8
9
10
11
12

use std::error;

use std::fmt;

use std::io;

use std::net;

#[derive(Debug)]

enum UpstreamError{

 IO(io::Error),

 Parsing(net::AddrParseError),

}

impl fmt::Display for UpstreamError {

1

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 37/61

You missed out on some activities - why not try them now?

The impl block is—well, we can rely on default implementations

provided by the compiler—especially terse. Because there are default
implementations of every method defined by std::error::Error ,

we can ask the compiler to do all of the work for us.

Use map_err()map_err

The next fix is to add map_err()map_err to our code to convert the

upstream error to the omnibus error type. Back at listing 8.13, we
wanted to have a main() that looks like this:

I can’t offer you that. I can, however, give you this:

13
14
15
16
17
18

 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

 write!(f, "{:?}", self)

 }

}

impl error::Error for UpstreamError { }

copy 

2

1
2
3
4
5
6
7
8
9
10

fn main() -> Result<(), UpstreamError> {

 let _f = File::open("invisible.txt")?

 .maybe_convert_to(UpstreamError);

 let _localhost = "::1"

 .parse::<Ipv6Addr>()?

 .maybe_convert_to(UpstreamError);

 Ok(())

}

copy 

1
2

fn main() -> Result<(), UpstreamError> {

 let _f = File::open("invisible.txt")

javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 38/61

This new code works! Here’s how. The map_err()map_err function maps an

error to a function. (Variants of our UpstreamError enum can be

used as functions here.) Note that the ? operator needs to be at the

end. Otherwise, the function can return before the code has a chance
to convert the error.

Listing 8.14 provides the new code. When run, it produces this
message to the console:

To retain type safety, we can use the new code in the following
listing. You’ll find its source in ch8/misc/wraperror.rs.

3
4
5
6
7
8
9
10

 .map_err(UpstreamError::IO)?;map_err

 let _localhost = "::1"

 .parse::<Ipv6Addr>()

 .map_err(UpstreamError::Parsing)?;map_err

 Ok(())

}

copy 

1
2
$ rustc ch8/misc/wraperror.rs && ./wraperror

Error: IO(Os { code: 2, kind: NotFound, message: "No such file o



copy 

Listing 8.14 Wrapping upstream errors in our own type

1
2
3
4
5
6
7
8
9
10
11
12

1 use std::io;

2 use std::fmt;

3 use std::net;

4 use std::fs::File;

5 use std::net::Ipv6Addr;

6

7 #[derive(Debug)]

8 enum UpstreamError{

9 IO(io::Error),

10 Parsing(net::AddrParseError),

11 }

12

javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 39/61

You missed out on some activities - why not try them now?

It’s also possible to remove the calls to map_err()map_err . But to enable

that, we need to implement From .

Implement std::convert::From to remove the need to call map_err()map_err

The std::convert::From trait has a single required method,

from() . We need two impl blocks to enable our two upstream

error types to be convertible. The following snippet shows how:

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

13 impl fmt::Display for UpstreamError {

14 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
15 write!(f, "{:?}", self)

16 }

17 }

18

19 impl error::Error for UpstreamError { }

20

21 fn main() -> Result<(), UpstreamError> {

22 let _f = File::open("invisible.txt")

23 .map_err(UpstreamError::IO)?;map_err

24

25 let _localhost = "::1"

26 .parse::<Ipv6Addr>()

27 .map_err(UpstreamError::Parsing)?;map_err

28

29 Ok(())

30 }

copy 

1
2
3
4
5
6
7
8
9
10
11

impl From<io::Error> for UpstreamError {

 fn from(error: io::Error) -> Self {

 UpstreamError::IO(error)

 }

}

impl From<net::AddrParseError> for UpstreamError {

 fn from(error: net::AddrParseError) -> Self {

 UpstreamError::Parsing(error)

 }

}

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 40/61

Now the main() function returns to a simple form of itself:

The full code listing is provided in listing 8.15. Implementing From

places the burden of extra syntax on the library writer. It results in a
much easier experience when using your crate, simplifying its use by
downstream programmers. You’ll find the source for this listing in
ch8/misc/wraperror2.rs.

1
2
3
4
5
6

fn main() -> Result<(), UpstreamError> {

 let _f = File::open("invisible.txt")?;

 let _localhost = "::1".parse::<Ipv6Addr>()?;

 Ok(())

}

copy 

Listing 8.15 Implementing std::convert::From for our

wrapper error type

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 use std::io;

2 use std::fmt;

3 use std::net;

4 use std::fs::File;

5 use std::net::Ipv6Addr;

6

7 #[derive(Debug)]

8 enum UpstreamError{

9 IO(io::Error),

10 Parsing(net::AddrParseError),

11 }

12

13 impl fmt::Display for UpstreamError {

14 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
15 write!(f, "{:?}", self)
16 }

17 }

18

19 impl error::Error for UpstreamError { }

20

21 impl From<io::Error> for UpstreamError {

22 fn from(error: io::Error) -> Self {

23 UpstreamError::IO(error)

24 }

25 }

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 41/61

You missed out on some activities - why not try them now?

livebook features:

settings


 
 

Update your profile, view your dashboard, tweak the text size, or turn on dark mode.

view how

8.5.3 Cheating with unwrap() and expect()

The final approach for dealing with multiple error types is to use
unwrap() and expect() . Now that we have the tools to handle

multiple error types in a function, we can continue our journey.

NOTE

This is a reasonable approach when writing a main() function,

but it isn’t recommended for library authors. Your users don’t
want their programs to crash because of things outside of their
control.

26
27
28
29
30
31
32
33
34
35
36
37
38

26

27 impl From<net::AddrParseError> for UpstreamError {

28 fn from(error: net::AddrParseError) -> Self {

29 UpstreamError::Parsing(error)

30 }

31 }

32

33 fn main() -> Result<(), UpstreamError> {

34 let _f = File::open("invisible.txt")?;

35 let _localhost = "::1".parse::<Ipv6Addr>()?;

36

37 Ok(())

38 }

copy 

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 42/61

8.6 MAC addresses

Several pages ago in listing 8.9, you implemented a DNS resolver.
That enabled conversions from a host name such as
www.rustinaction.com to an IP address. Now we have an IP address
to connect to.

The internet protocol enables devices to contact each other via their
IP addresses. But that’s not all. Every hardware device also includes a
unique identifier that’s independent of the network it’s connected to.
Why a second number? The answer is partially technical and partially
historical.

Ethernet networking and the internet started life independently.
Ethernet’s focus was on local area networks (LANs). The internet was
developed to enable communication between networks, and Ethernet
is the addressing system understood by devices that share a physical
link (or a radio link in the case of WiFi, Bluetooth, and other wireless
technologies).

Perhaps a better way to express this is that MAC (short for media
access control) addresses are used by devices that share electrons
(figure 8.3). But there are a few differences:

IP addresses are hierarchical, but MAC addresses are not.
Addresses appearing close together numerically are not
close together physically, or organizationally.
MAC addresses are 48 bits (6 bytes) wide. IP addresses are 32
bits (4 bytes) wide for IPv4 and 128 bits (16 bytes) for IPv6.

Figure 8.3 In-memory layout for MAC addresses

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 43/61

There are two forms of MAC addresses:

Universally administered (or universal) addresses are set when
devices are manufactured. Manufacturers use a prefix
assigned by the IEEE Registration Authority and a scheme
of their choosing for the remaining bits.
Locally administered (or local) addresses allow devices to
create their own MAC addresses without registration. When
setting a device’s MAC address yourself in software, you
should make sure that your address is set to the local form.

MAC addresses have two modes: unicast and multicast. The
transmission behavior for these forms is identical. The distinction is
made when a device makes a decision about whether to accept a
frame. A frame is a term used by the Ethernet protocol for a byte slice
at this level. Analogies to frame include a packet, wrapper, and
envelope. Figure 8.4 shows this distinction.

Figure 8.4 The differences between multicast and unicast MAC
addresses

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 44/61

Unicast addresses are intended to transport information between two
points that are in direct contact (say, between a laptop and a router).
Wireless access points complicate matters somewhat but don’t
change the fundamentals. A multicast address can be accepted by
multiple recipients, whereas unicast has a single recipient. The term
unicast is somewhat misleading, though. Sending an Ethernet packet
involves more than two devices. Using a unicast address alters what
devices do when they receive packets but not which data is
transmitted over the wire (or through the radio waves).

8.6.1 Generating MAC addresses

When we begin talking about raw TCP in section 8.8, we’ll create a
virtual hardware device in listing 8.22. To convince anything to talk
to us, we need to learn how to assign our virtual device a MAC
address. The macgen project in listing 8.17 generates the MAC
addresses for us. The following listing shows the metadata for that
project. You can find its source in ch8/ch8-mac/Cargo.toml.

Listing 8.16 Crate metadata for the macgen project

[package]

name = "ch8-macgen"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 45/61

The following listing shows the macgen project, our MAC address
generator. The source code for this project is in the ch8/ch8-
mac/src/main.rs file.

[dependencies]

rand = "0.7"

copy 

Listing 8.17 Creating macgen, a MAC address generator

1 extern crate rand;

 2

 3 use rand::RngCore;

 4 use std::fmt;

 5 use std::fmt::Display;

 6

 7 #[derive(Debug)]

 8 struct MacAddress([u8; 6]); #1

 9

10 impl Display for MacAddress {

11 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

12 let octet = &self.0;

13 write!(

14 f,

15 "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}", #2

16 octet[0], octet[1], octet[2], #2

17 octet[3], octet[4], octet[5] #2

18)

19 }

20 }

21

22 impl MacAddress {

23 fn new() -> MacAddress {

24 let mut octets: [u8; 6] = [0; 6];

25 rand::thread_rng().fill_bytes(&mut octets);

26 octets[0] |= 0b_0000_0011; #3

27 MacAddress { 0: octets }

28 }

29

30 fn is_local(&self) -> bool {

31 (self.0[0] & 0b_0000_0010) == 0b_0000_0010

32 }

33

34 fn is_unicast(&self) -> bool {

35 (self.0[0] & 0b_0000_0001) == 0b_0000_0001

36 }

37 }

38

39 fn main() {

40 let mac = MacAddress::new();

41 assert!(mac.is_local());

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 46/61

livebook features:

highlight, annotate, and bookmark


 
 

Select a piece of text and click the appropriate icon to comment, bookmark, or highlight

view how

The code from listing 8.17 should feel legible. Line 25 contains some
relatively obscure syntax, though. octets[0] |= 0b_0000_0011

coerces the two flag bits described at figure 8.3 to a state of 1 . That

designates every MAC address we generate as locally assigned and
unicast.

8.7 Implementing state machines with Rust’s

enums

Another prerequisite for handling network messages is being able to
define a state machine. Our code needs to adapt to changes in
connectivity.

Listing 8.22 contains a state machine, implemented with a loop , a

match , and a Rust enum. Because of Rust’s expression-based

nature, control flow operators also return values. Every time around
the loop, the state is mutated in place. The following listing shows
the pseudocode for how a repeated match on a enum works

together.

42 assert!(mac.is_unicast());

43 println!("mac: {}", mac);

44 }

copy 

Listing 8.18 Pseudocode for a state machine implementation

enum HttpState {

 Connect,

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 47/61

livebook features:

discuss


 
 

Ask a question, share an example, or respond to another reader. Start a thread by
selecting any piece of text and clicking the discussion icon.

view how open discussions

More advanced methods to implement finite state machines do exist.
This is the simplest, however. We’ll make use of it in listing 8.22.
Making use of an enum embeds the state machine’s transitions into
the type system itself.

But we’re still at a level that is far too high! To dig deeper, we’re
going to need to get some assistance from the OS.

 Request,

 Response,

}

loop {

 state = match state {

 HttpState::Connect if !socket.is_active() => {

 socket.connect();

 HttpState::Request

 }

 HttpState::Request if socket.may_send() => {

 socket.send(data);

 HttpState::Response

 }

 HttpState::Response if socket.can_recv() => {

 received = socket.recv();

 HttpState::Response

 }

 HttpState::Response if !socket.may_recv() => {

 break;

 }

 _ => state,

 }

}

copy 

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 48/61

livebook features:

settings


 
 

Update your profile, view your dashboard, tweak the text size, or turn on dark mode.

view how

8.8 Raw TCP

Integrating with the raw TCP packets typically requires
root/superuser access. The OS starts to get quite grumpy when an
unauthorized user asks to make raw network requests. We can get
around this (on Linux) by creating a proxy device that non-super
users are allowed to communicate with directly.

DON’T HAVE LINUX?

If you’re running another OS, there are many virtualization
options available. Here are a few:

The Multipass project (https://multipass.run/)
provides fast Ubuntu virtual machines on macOS and
Windows hosts.
WSL, the Windows Subsystem for Linux
(https://docs.microsoft.com/en-
us/windows/wsl/about), is another option to look into.
Oracle VirtualBox (https://www.virtualbox.org/) is an
open source project with excellent support for many
host operating systems.

8.9 Creating a virtual networking device

To proceed with this section, you will need to create virtual
networking hardware. Using virtual hardware provides more control
to freely assign IP and MAC addresses. It also avoids changing your
hardware settings, which could affect its ability to connect to the
network. To create a TAP device called tap-rust, execute the
following command in your Linux console:

https://multipass.run/
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.virtualbox.org/

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 49/61

When successful, ip prints no output. To confirm that our tap-rust

device was added, we can use the ip tuntap list subcommand as

in the following snippet. When executed, you should see the tap-rust
device in the list of devices in the output:

Now that we have created a networking device, we also need to
allocate an IP address for it and tell our system to forward packets to
it. The following shows the commands to enable this functionality:



$ sudo \ #1

> ip tuntap \ #2

> add \ #3

> mode tap \ #4

> name tap-rust \ #5

> user $USER #6

copy 

$ ip tuntap list

tap-rust: tap persist user

copy 

$ sudo ip link set tap-rust up #1

$ sudo ip addr add 192.168.42.100/24 dev tap-rust #2

$ sudo iptables \ #3

> -t nat\ #3

> -A POSTROUTING \ #3

> -s 192.168.42.0/24 \ #3

> -j MASQUERADE #3

$ sudo sysctl net.ipv4.ip_forward=1 #4

copy 

javascript:void(0)
javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 50/61

livebook features:

highlight, annotate, and bookmark


 
 

Select a piece of text and click the appropriate icon to comment, bookmark, or highlight

view how

You missed out on some activities - why not try them now?

The following shows how to remove the device (once you have
completed this chapter) by using del rather than add :

8.10 “Raw” HTTP

We should now have all the knowledge we need to take on the
challenge of using HTTP at the TCP level. The mget project (mget is
short for manually get) spans listings 8.20–8.23. It is a large project,
but you’ll find it immensely satisfying to understand and build. Each
file provides a different role:

main.rs (listing 8.20)—Handles command-line parsing and
weaves together the functionality provided by its peer files.
This is where we combine the error types using the process
outlined in section 8.5.2.
ethernet.rs (listing 8.21)—Generates a MAC address using the
logic from listing 8.17 and converts between MAC address
types (defined by the smoltcp crate) and our own.
http.rs (listing 8.22)—Carries out the work of interacting
with the server to make the HTTP request.
dns.rs (listing 8.23)—Performs DNS resolution, which
converts a domain name to an IP address.

$ sudo ip tuntap del mode tap name tap-rust

copy 

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 51/61

NOTE

The source code for these listings (and every code listing in the
book) is available from https://github.com/rust-in-action/code
or https://www .manning.com/books/rust-in-action.

It’s important to acknowledge that listing 8.22 was derived from the
HTTP client example within the smoltcp crate itself. whitequark
(https://whitequark.org/) has built an absolutely fantastic
networking library. Here’s the file structure for the mget project:

To download and run the mget project from source control, execute
these commands at the command line:

Here are the project setup instructions for those readers who enjoy
doing things step by step (with the output omitted).

1. Enter these commands at the command-line:

ch8-mget

├── Cargo.toml #1

└── src

 ├── main.rs #2

 ├── ethernet.rs #3

 ├── http.rs #4

 └── dns.rs #5

copy 

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

Cloning into 'rust-in-action'...

$ cd rust-in-action/ch8/ch8-mget

copy 

https://github.com/rust-in-action/code
https://www.manning.com/books/rust-in-action
https://whitequark.org/
javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 52/61

2. Check that your project’s Cargo.toml matches listing 8.19.
3. Within the src directory, listing 8.20 becomes main.rs,

listing 8.21 becomes ethernet.rs, listing 8.22 becomes
http.rs, and listing 8.23 becomes dns.rs.

The following listing shows the metadata for mget. You’ll find its
source code in the ch8/ch8-mget/Cargo.toml file.



$ cargo new mget

$ cd mget

$ cargo install cargo-edit

$ cargo add clap@2

$ cargo add url@02

$ cargo add rand@0.7

$ cargo add trust-dns@0.16 --no-default-features

$ cargo add smoltcp@0.6 --features='proto-igmp proto-ipv4 verbose

copy 

Listing 8.19 Crate metadata for mget

[package]

name = "mget"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

[dependencies]

clap = "2" #1

rand = "0.7" #2

smoltcp = { #3

 version = "0.6",

 features = ["proto-igmp", "proto-ipv4", "verbose", "log"]

}

trust-dns = { #4

 version = "0.16",

 default-features = false

}

url = "2" #5

copy 

javascript:void(0)
javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 53/61

The following listing shows the command-line parsing for our
project. You’ll find this source in ch8/ch8-mget/src/main.rs.

Listing 8.20 mget command-line parsing and overall coordination

1 use clap::{App, Arg};

 2 use smoltcp::phy::TapInterface;

 3 use url::Url;

 4

 5 mod dns;

 6 mod ethernet;

 7 mod http;

 8

 9 fn main() {

10 let app = App::new("mget")

11 .about("GET a webpage, manually")

12 .arg(Arg::with_name("url").required(true)) #1

13 .arg(Arg::with_name("tap-device").required(true)) #2

14 .arg(

15 Arg::with_name("dns-server")

16 .default_value("1.1.1.1"), #3

17)

18 .get_matches(); #4

19

20 let url_text = app.value_of("url").unwrap();

21 let dns_server_text =

22 app.value_of("dns-server").unwrap();

23 let tap_text = app.value_of("tap-device").unwrap();

24

25 let url = Url::parse(url_text) #5

26 .expect("error: unable to parse <url> as a URL");

27

28 if url.scheme() != "http" { #5

29 eprintln!("error: only HTTP protocol supported");

30 return;

31 }

32

33 let tap = TapInterface::new(&tap_text) #5

34 .expect(

35 "error: unable to use <tap-device> as a \

36 network interface",

37);

38

39 let domain_name =

40 url.host_str() #5

41 .expect("domain name required");

42

43 let _dns_server: std::net::Ipv4Addr =

44 dns_server_text

45 .parse() #5

46 .expect(

47 "error: unable to parse <dns-server> as an \

48 IPv4 address",

49);

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 54/61

The following listing generates our MAC address and converts
between MAC address types defined by the smoltcp crate and our
own. The code for this listing is in ch8/ch8-mget/src/ethernet.rs.

50

51 let addr =

52 dns::resolve(dns_server_text, domain_name) #6

53 .unwrap()

54 .unwrap();

55

56 let mac = ethernet::MacAddress::new().into(); #7

57

58 http::get(tap, mac, addr, url).unwrap(); #8

59

60 }

copy 

Listing 8.21 Ethernet type conversion and MAC address
generation

1 use rand;

 2 use std::fmt;

 3 use std::fmt::Display;

 4

 5 use rand::RngCore;

 6 use smoltcp::wire;

 7

 8 #[derive(Debug)]

 9 pub struct MacAddress([u8; 6]);

10

11 impl Display for MacAddress {

12 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

13 let octet = self.0;

14 write!(

15 f,

16 "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",

17 octet[0], octet[1], octet[2],

18 octet[3], octet[4], octet[5]

19)

20 }

21 }

22

23 impl MacAddress {

24 pub fn new() -> MacAddress {

25 let mut octets: [u8; 6] = [0; 6];

26 rand::thread_rng().fill_bytes(&mut octets); #1

27 octets[0] |= 0b_0000_0010; #2

28 octets[0] &= 0b_1111_1110; #3

29 MacAddress { 0: octets }

30 }

31 }

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 55/61

The following listing shows how to interact with the server to make
the HTTP request. The code for this listing is in ch8/ch8-
mget/src/http.rs.

32

33 impl Into<wire::EthernetAddress> for MacAddress {

34 fn into(self) -> wire::EthernetAddress {

35 wire::EthernetAddress { 0: self.0 }

36 }

37 }

copy 

Listing 8.22 Manually creating an HTTP request using TCP
primitives

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1 use std::collections::BTreeMap;

 2 use std::fmt;

 3 use std::net::IpAddr;

 4 use std::os::unix::io::AsRawFd;

 5

 6 use smoltcp::iface::{EthernetInterfaceBuilder, NeighborCac
 7 use smoltcp::phy::{wait as phy_wait, TapInterface};

 8 use smoltcp::socket::{SocketSet, TcpSocket, TcpSocketBuffe
 9 use smoltcp::time::Instant;

 10 use smoltcp::wire::{EthernetAddress, IpAddress, IpCidr, Ip
 11 use url::Url;

 12

 13 #[derive(Debug)]

 14 enum HttpState {

 15 Connect,

 16 Request,

 17 Response,

 18 }

 19

 20 #[derive(Debug)]

 21 pub enum UpstreamError {

 22 Network(smoltcp::Error),

 23 InvalidUrl,

 24 Content(std::str::Utf8Error),

 25 }

 26

 27 impl fmt::Display for UpstreamError {

 28 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
 29 write!(f, "{:?}", self)

 30 }

 31 }

 32

 33 impl From<smoltcp::Error> for UpstreamError {

 34 fn from(error: smoltcp::Error) -> Self {

 35 UpstreamError::Network(error)

 36 }

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 56/61

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

 37 }

 38

 39 impl From<std::str::Utf8Error> for UpstreamError {

 40 fn from(error: std::str::Utf8Error) -> Self {

 41 UpstreamError::Content(error)

 42 }

 43 }

 44

 45 fn random_port() -> u16 {

 46 49152 + rand::random::<u16>() % 16384

 47 }

 48

 49 pub fn get(

 50 tap: TapInterface,

 51 mac: EthernetAddress,

 52 addr: IpAddr,

 53 url: Url,

 54) -> Result<(), UpstreamError> {

 55 let domain_name = url.host_str().ok_or(UpstreamError::In
 56

 57 let neighbor_cache = NeighborCache::new(BTreeMap::new())
 58

 59 let tcp_rx_buffer = TcpSocketBuffer::new(vec![0; 1024]);
 60 let tcp_tx_buffer = TcpSocketBuffer::new(vec![0; 1024]);
 61 let tcp_socket = TcpSocket::new(tcp_rx_buffer, tcp_tx_bu
 62

 63 let ip_addrs = [IpCidr::new(IpAddress::v4(192, 168, 42,
 64

 65 let fd = tap.as_raw_fd();

 66 let mut routes = Routes::new(BTreeMap::new());

 67 let default_gateway = Ipv4Address::new(192, 168, 42, 100
 68 routes.add_default_ipv4_route(default_gateway).unwrap();
 69 let mut iface = EthernetInterfaceBuilder::new(tap)

 70 .ethernet_addr(mac)
 71 .neighbor_cache(neighbor_cache)

 72 .ip_addrs(ip_addrs)
 73 .routes(routes)

 74 .finalize();

 75

 76 let mut sockets = SocketSet::new(vec![]);

 77 let tcp_handle = sockets.add(tcp_socket);

 78

 79 let http_header = format!(
 80 "GET {} HTTP/1.0\r\nHost: {}\r\nConnection: close\r\n\
 81 url.path(),

 82 domain_name,

 83);

 84

 85 let mut state = HttpState::Connect;

 86 'http: loop {

 87 let timestamp = Instant::now();

 88 match iface.poll(&mut sockets, timestamp) {

 89 Ok(_) => {}

 90 Err(smoltcp::Error::Unrecognized) => {}

 91 Err(e) => {

 92 eprintln!("error: {:?}", e);

 93 }

 94 }

 95

 96 {

 97 let mut socket = sockets.get::<TcpSocket>(tcp_handle

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 57/61

And finally, the following listing performs the DNS resolution. The
source for this listing is in ch8/ch8-mget/src/dns.rs.



98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

 98

 99 state = match state {

100 HttpState::Connect if !socket.is_active() => {

101 eprintln!("connecting");

102 socket.connect((addr, 80), random_port())?;

103 HttpState::Request

104 }

105

106 HttpState::Request if socket.may_send() => {

107 eprintln!("sending request");

108 socket.send_slice(http_header.as_ref())?;

109 HttpState::Response

110 }

111

112 HttpState::Response if socket.can_recv() => {

113 socket.recv(|raw_data| {

114 let output = String::from_utf8_lossy(raw_data)
115 println!("{}", output);

116 (raw_data.len(), ())

117 })?;

118 HttpState::Response

119 }

120

121 HttpState::Response if !socket.may_recv() => {

122 eprintln!("received complete response");

123 break 'http;

124 }

125 _ => state,

126 }

127 }

128

129 phy_wait(fd, iface.poll_delay(&sockets, timestamp))

130 .expect("wait error");
131 }

132

133 Ok(())

134 }

copy 

Listing 8.23 Creating DNS queries to translate domain names to

IP addresses

1
2
3
4
5
6

1 use std::error::Error;

 2 use std::net::{SocketAddr, UdpSocket};

 3 use std::time::Duration;

 4

 5 use trust_dns::op::{Message, MessageType, OpCode, Query};

 6 use trust_dns::proto::error::ProtoError;

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 58/61

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

 7 use trust_dns::rr::domain::Name;

 8 use trust_dns::rr::record_type::RecordType;

 9 use trust_dns::serialize::binary::*;

 10

 11 fn message_id() -> u16 {

 12 let candidate = rand::random();
 13 if candidate == 0 {

 14 return message_id();

 15 }

 16 candidate

 17 }

 18

 19 #[derive(Debug)]

 20 pub enum DnsError {

 21 ParseDomainName(ProtoError),

 22 ParseDnsServerAddress(std::net::AddrParseError),

 23 Encoding(ProtoError),

 24 Decoding(ProtoError),

 25 Network(std::io::Error),

 26 Sending(std::io::Error),

 27 Receving(std::io::Error),

 28 }

 29

 30 impl std::fmt::Display for DnsError {

 31 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::
 32 write!(f, "{:#?}", self)
 33 }

 34 }

 35

 36 impl std::error::Error for DnsError {}

 37

 38 pub fn resolve(

 39 dns_server_address: &str,

 40 domain_name: &str,

 41) -> Result<Option<std::net::IpAddr>, Box<dyn Error>> {

 42 let domain_name =

 43 Name::from_ascii(domain_name)

 44 .map_err(DnsError::ParseDomainName)?;map_err

 45

 46 let dns_server_address =

 47 format!("{}:53", dns_server_address);

 48 let dns_server: SocketAddr = dns_server_address

 49 .parse()

 50 .map_err(DnsError::ParseDnsServerAddress)?;map_err

 51

 52 let mut request_buffer: Vec<u8> =

 53 Vec::with_capacity(64);

 54 let mut response_buffer: Vec<u8> =

 55 vec![0; 512];

 56

 57 let mut request = Message::new();

 58 request.add_query(

 59 Query::query(domain_name, RecordType::A)

 60);

 61

 62 request

 63 .set_id(message_id())

 64 .set_message_type(MessageType::Query)

 65 .set_op_code(OpCode::Query)

 66 .set_recursion_desired(true);

 67

1

2

3

4

5

6

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 59/61

mget is an ambitious project. It brings together all the threads from
the chapter, is dozens of lines long, and yet is less capable than the
request::get(url) call we made in listing 8.2. Hopefully it’s

revealed several interesting avenues for you to explore. Perhaps,
surprisingly, there are several more networking layers to unwrap.

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

 68 let localhost =

 69 UdpSocket::bind("0.0.0.0:0").map_err(DnsError::Networkmap_err
 70

 71 let timeout = Duration::from_secs(5);

 72 localhost

 73 .set_read_timeout(Some(timeout))

 74 .map_err(DnsError::Network)?;map_err

 75

 76 localhost

 77 .set_nonblocking(false)

 78 .map_err(DnsError::Network)?;map_err

 79

 80 let mut encoder = BinEncoder::new(&mut request_buffer);

 81 request.emit(&mut encoder).map_err(DnsError::Encoding)?;map_err
 82

 83 let _n_bytes_sent = localhost

 84 .send_to(&request_buffer, dns_server)

 85 .map_err(DnsError::Sending)?;map_err

 86

 87 loop {

 88 let (_b_bytes_recv, remote_port) = localhost

 89 .recv_from(&mut response_buffer)

 90 .map_err(DnsError::Receving)?;map_err

 91

 92 if remote_port == dns_server {

 93 break;

 94 }

 95 }

 96

 97 let response =

 98 Message::from_vec(&response_buffer)

 99 .map_err(DnsError::Decoding)?;map_err

100

101 for answer in response.answers() {

102 if answer.record_type() == RecordType::A {

103 let resource = answer.rdata();

104 let server_ip =

105 resource.to_ip_addr().expect("invalid IP address r
106 return Ok(Some(server_ip));
107 }

108 }

109

110 Ok(None)

111 }

copy 

7

8

javascript:void(0)

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 60/61

Up next...

9 Time and timekeeping

You missed out on some activities - why not try them now?

Well done for making your way through a lengthy and challenging
chapter.

Summary

Networking is complicated. Standard models such as OSIs
are only partially accurate.
Trait objects allow for runtime polymorphism. Typically,
programmers prefer generics because trait objects incur a
small runtime cost. However, this situation is not always
clear-cut. Using trait objects can reduce space because only
a single version of each function needs to be compiled.
Fewer functions also benefits cache coherence.
Networking protocols are particular about which bytes are
used. In general, you should prefer using &[u8] literals

(b"...") over &str literals ("...") to ensure that you

retain full control.
There are three main strategies for handling multiple
upstream error types within a single scope:

Create an internal wrapper type and
implement From for each of the upstream

types
Change the return type to make use of a trait
object that implements std::

error:Error

Use .unwrap() and its cousin .expect()

Finite state machines can be elegantly modeled in Rust with
an enum and a loop. At each iteration, indicate the next
state by returning the appropriate enum variant.
To enable two-way communications in UDP, each side of
the conversation must be able to act as a client and a server.

sitemap

https://livebook.manning.com/book/rust-in-action/chapter-9
https://livebook.manning.com/book/rust-in-action/chapter-8/sitemap.html

12/5/22, 10:31 PM 8 Networking - Rust in Action: Systems programming concepts and techniques

https://livebook.manning.com/book/rust-in-action/chapter-8/3 61/61

Understanding how a computer keeps time

How operating systems represent timestamps

Synchronizing atomic clocks with the Network Time Protocol (NTP)

© 2022 Manning Publications Co.

