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CHAPTER 20

Object-Oriented 
Programming
In this chapter, you will learn:

• How to implement destructors, that is, methods to run when an 

object is deallocated

• How to implement operator overloading, that is, methods that allow 

use of Rust operators with user-defined types

• How to implement infallible or fallible type converters

• Why Rust does not use data inheritance and how to do without it

• What are static dispatch and dynamic dispatch, how they are 

implemented, and when to use them

 Peculiarities of Rust Object-Orientation
In previous chapters, we have already seen that Rust supports some concepts of object- 

oriented programming, like methods, privacy, and trait inheritance.

In this chapter—addressed mainly to those who already know the object-oriented 

paradigm—for any concept of object-oriented programming, the corresponding Rust 

idiom will be introduced.
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 Destructors
We already saw that types can have constructors. Well, they also have destructors. For a 

type, a destructor is that method that is automatically invoked on an object of that type, 

when that object is deallocated.

Let’s see the purpose of destructors. If an object can reserve some system resources, 

like file handles or database connections, such resources should be automatically 

released when that object is destroyed, to avoid a bug named resource leak. Here is an 

example, in which actual reservation, use, and release of resources are replaced by prints 

on the console:

struct CommunicationChannel {

    address: String,

    port: u16,

}

impl Drop for CommunicationChannel {

    fn drop(&mut self) {

        println!("Closing port {}:{}", self.address, self.port);

    }

}

impl CommunicationChannel {

fn create(address: &str, port: u16) -> CommunicationChannel

    {

    println!("Opening port {}:{}", address, port);

        CommunicationChannel {

            address: address.to_string(),

            port: port,

        }

    }

    fn send(&self, msg: &str) {

        println!("Sent to {}:{} the message '{}'",

            self.address, self.port, msg);

    }

}
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let channel_a = CommunicationChannel::create("usb4", 879);

channel_a.send("Message 1");

{

    let channel_b = CommunicationChannel::create("eth1", 12000);

    channel_b.send("Message 2");

}

channel_a.send("Message 3");

This program will print:

Opening port usb4:879

Sent to usb4:879 the message 'Message 1'

Opening port eth1:12000

Sent to eth1:12000 the message 'Message 2'

Closing port eth1:12000

Sent to usb4:879 the message 'Message 3'

Closing port usb4:879

The second statement implements the trait Drop for the newly declared type 

CommunicationChannel. Such trait, defined by the Rust language, has the peculiar 

property that its only method, named drop, is automatically invoked exactly when the 

object is deallocated, and therefore it is a destructor. In general, to create a destructor 

for a type, it is enough to implement the Drop trait for such type. You can implement 

the Drop trait only for the types declared inside your program, because that trait is not 

declared by your own code.

The third statement of the previous program is a block that defines two methods for 

our struct: the create constructor and the send operation.

At last, there is the application code, which uses the CommunicationChannel type.  

A communication channel is created, and such creation prints the first line of output. 

A message is sent, and that operation prints the second line. Then there is a nested 

block, in which another communication channel is created, printing the third line, and a 

message is sent through such channel, printing the fourth line.

So far, there is nothing new. But now, the nested block ends. That causes the 

channel_b variable to be destroyed, so its drop method is invoked, and that prints the 

fifth line.

Chapter 20  ObjeCt-Oriented prOgramming



312

Now, after the nested block has ended, another message is sent to the channel_a 

variable, causing it to print the last-but-one line. At last, the channel_a variable is 

destroyed, and that prints the last line.

As it will be seen in Chapter 22, in Rust, memory is already released by the language, 

and therefore there is no need to invoke functions similar to the free function of 

C language, or to the delete operator of C++ language. But other resources are not 

automatically released. Therefore destructors are most useful to release resources 

like file handles, communication handles, GUI windows, graphical resources, and 

synchronization primitives. If you use a library to handle such resources, that library 

should already contain a proper implementation of the Drop trait for any of its types that 

handle a resource.

Another use of destructors is to better understand how memory is managed, like this 

code shows:

struct S ( i32 );

impl Drop for S {

    fn drop(&mut self) {

        println!("Dropped {}", self.0);

    }

}

let _a = S (1);

let _b = S (2);

let _c = S (3);

{

    let _d = S (4);

    let _e = S (5);

    let _f = S (6);

    println!("INNER");

}

println!("OUTER");

It will print:

INNER

Dropped 6

Dropped 5

Dropped 4
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OUTER

Dropped 3

Dropped 2

Dropped 1

Notice that objects are destroyed in exactly the opposite order than their declaration 

order, and just when they get out of their block.

This program is similar to the previous one, but its variables have been replaced by 

variable placeholders:

struct S ( i32 );

impl Drop for S {

    fn drop(&mut self) {

        println!("Dropped {}", self.0);

    }

}

let _ = S (1);

let _ = S (2);

let _ = S (3);

{

    let _ = S (4);

    let _ = S (5);

    let _ = S (6);

    println!("INNER");

}

println!("OUTER");

It will print:

Dropped 1

Dropped 2

Dropped 3

Dropped 4

Dropped 5

Dropped 6

INNER

OUTER
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Variable placeholders do not allocate objects lasting for the entire block; they 

allocate temporary objects. Temporary objects are destroyed at the end of their 

statements, that is, when a semicolon in encountered. Therefore, all the objects are 

dropped in the same statement in which they are allocated.

This program is equivalent to the following one:

struct S ( i32 );

impl Drop for S {

    fn drop(&mut self) {

        println!("Dropped {}", self.0);

    }

}

S (1); S (2); S (3);

{

    S (4); S (5); S (6);

    println!("INNER");

}

println!("OUTER");

 Operator Overloading
In many object-oriented languages, it is possible to redefine the language operators for 

the user-defined types. Also Rust allows us to redefine most of its operators. Though, 

differing from C++, some operators are not redefinable.

A typical use of operator overloading is for creating new numeric types not defined 

by the language, like the complex numbers of higher mathematics. Here, some features 

of these types of numbers will be implemented using stepwise refinement. The first draft 

is the following program:

struct Complex {

    re: f64,

    im: f64,

}

fn add_complex(lhs: Complex, rhs: Complex) -> Complex {

    Complex { re: lhs.re + rhs.re, im: lhs.im + rhs.im }

}
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let z1 = Complex { re: 3.8, im: -2.1 };

let z2 = Complex { re: -1.5, im: 8.6 };

let z3 = add_complex(z1, z2);

print!("{} + {}i", z3.re, z3.im);

It will print: 2.3 + 6.5i.

Complex numbers are actually a pair of real numbers: one item of the couple is 

named real part, re for short, and the other item is named imaginary part, im for short. 

The addition between any two complex numbers is defined to be a number whose real 

part is the sum of the real parts of the addends, and whose imaginary part is the sum of 

the imaginary parts of the addends. The words lhs and rhs stand, respectively, for left- 

hand side and right-hand side for the addition operation.

Now we want to replace the expression add_complex(z1, z2) with the expression 

z1 + z2. In Rust, the expression a + b is just syntax sugar for the call a.add(b), where 

add is a function belonging to the Add trait, declared in the standard library. Here is the 

declaration of that trait:

trait Add<Rhs = Self> {

    type Output;

    fn add(self, rhs: Rhs) -> Self::Output;

}

Let’s explain it. When you add two numbers, there may be three distinct types 

around: the type of the first addend, the type of the second addend, and the type of the 

result. They may be the same type, as is reasonable when we add two real numbers or 

two complex numbers, but in general there may be cases in which you want to write the 

expression c = a + b, where a, b, and c have three different types.

The first addend, that is, the left-hand side of the operation, is the current object, or 

self. Its type is Self.

The type of the second addend, that is, the right-hand side of the operation, is 

specified using a type parameter named Rhs (for right-hand side). Usually, when we 

monomorphize a generic function or a generic type, we must specify all its generic 

parameters. So, as we want to implement an addition of a Complex object with another 

Complex object, we should implement the Add<Complex> trait.

Though, Rust allows us to specify a default value for generic parameters. In the 

preceding definition, the default value for the Rhs generic parameter is Self. So, if we are 

implementing the Add trait, without specifying a generic parameter, it means that we are 
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actually implementing the Add<Self> trait. And in particular, if we are implementing the 

Add trait for the Complex type, it means that we are implementing the Add<Complex> trait 

for the Complex type.

The type of the operation result is specified as the Output associated type. Such type 

alias is used as the return value type of the add method.

So, in our code, it is enough to implement the Add trait for the Complex type, with 

Self implicitly specified as the Rhs generic parameter, and again Self explicitly specified 

as the Output associated type. It is what this program does:

struct Complex {

    re: f64,

    im: f64,

}

impl std::ops::Add for Complex {

    type Output = Self;

    fn add(self, rhs: Self) -> Self {

        Self { re: self.re + rhs.re, im: self.im + rhs.im }

    }

}

let z1 = Complex { re: 3.8, im: -2.1 };

let z2 = Complex { re: -1.5, im: 8.6 };

use std::ops::Add;

let z3 = z1.add(z2);

print!("{} + {}i", z3.re, z3.im);

You can obtain an equivalent program if you replace the last-but-two and last-but- 

one statements with this statement:

let z3 = z1 + z2;

So, we got our operator overloaded. Now, to make a somewhat more realistic 

example, let’s encapsulate the Complex type in a module. There are two possibilities: to 

let any user freely access the fields re and im, with no data hiding; or to make those fields 

private, forcing the use of public functions to access them. For the Complex type, there 

is no invariant to keep, so we can keep the fields public, like in this complete example. 
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Notice that, in the following examples in this section, the complex module is outside of 

the main function:

mod complex {

    pub struct Complex {

        pub re: f64,

        pub im: f64,

    }

    impl std::ops::Add for Complex {

        type Output = Self;

        fn add(self, rhs: Self) -> Self {

            Self { re: self.re + rhs.re, im: self.im + rhs.im }

        }

    }

}

fn main () {

    use complex::Complex;

    let z1 = Complex { re: 3.8, im: -2.1 };

    let z2 = Complex { re: -1.5, im: 8.6 };

    let z3 = z1 + z2;

    print!("{} + {}i", z3.re, z3.im);

}

Here, we see the Complex type has been encapsulated in the complex module, so 

it would have become implicitly private, were it not for the pub keyword in the second 

line. Its two fields also would have become implicitly private, were it not for their pub 

keyword.

Then, the use directive is specified to avoid having to explicitly write 

complex::Complex every time that type name is to be specified.

Notice that the trait implementation has no pub keywords (and they are even 

forbidden there), because the implementations of a trait are implicitly public as long as 

that trait is accessible.
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Now, let’s apply data hiding, making private the fields of Complex, with this code:

mod complex {

    pub struct Complex {

        re: f64,

        im: f64,

    }

    impl Complex {

        pub fn from_re_im(re: f64, im: f64) -> Self {

            Self { re, im }

        }

        pub fn re(&self) -> &f64 { &self.re }

        pub fn im(&self) -> &f64 { &self.im }

    }

    impl std::ops::Add for Complex {

        type Output = Self;

        fn add(self, rhs: Self) -> Self::Output {

            Self { re: self.re + rhs.re, im: self.im + rhs.im }

        }

    }

}

fn main() {

    use complex::Complex;

    let z1 = Complex::from_re_im(3.8, -2.1);

    let z2 = Complex::from_re_im(-1.5, 8.6);

    let z3 = z1 + z2;

    print!("{} + {}i", z3.re(), z3.im());

}

Notice that the structure itself has remained public, but its fields are private now, so 

we need some additional functions to access them: the constructor from_re_im, and the 

getter methods re and im. They must be marked as public.
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At last, let’s consider the case that we want to generalize our type to use other 

numeric types for its components: not only f64, but also f32 or even some user-defined 

numeric type. We must declare a generic type Complex<Num> with Num, a type that can be 

added to another Num object, returning a Num value. Here is the code:

mod complex {

    pub struct Complex<Num> {

        re: Num,

        im: Num,

    }

    impl<Num> Complex<Num> {

            pub fn from_re_im(re: Num, im: Num) -> Self {

            Self { re, im }

        }

        pub fn re(&self) -> &Num { &self.re }

        pub fn im(&self) -> &Num { &self.im }

    }

    impl<Num> std::ops::Add for Complex<Num>

    where Num: std::ops::Add<Output = Num> {

        type Output = Self;

        fn add(self, rhs: Self) -> Self::Output {

            Self { re: self.re + rhs.re, im: self.im + rhs.im }

        }

    }

}

fn main() {

    use complex::Complex;

    let z1 = Complex::from_re_im(3.8, -2.1);

    let z2 = Complex::from_re_im(-1.5, 8.6);

    let z3 = z1 + z2;

    print!("{} + {}i", z3.re(), z3.im());

}
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Notice the following changes, with respect to the previous version:

• The six occurrences of f64 have been replaced by Num.

• The two occurrences of impl have been replaced by impl<Num>.

• The three occurrences of Complex in the complex module have been 

replaced by Complex<Num>.

• In the implementation of the Add trait, a type parameter bound has 

been added: where Num: std::ops::Add<Output = Num>. It means 

that to implement this trait, we require knowing how to add an 

object of type Num with an object of type Num (implicitly specified), 

generating a result of type Num.

We have seen how to overload only the addition operator, though many other Rust 

operators can be overloaded. Each of them has its own trait, with its own method. The 

main ones are listed in the following table:

Operator Trait Method

+ (addition) Add add

- (subtraction) Sub sub

- (unary negation) Neg neg

* (multiplication) Mul mul

/ (division) Div div

% (remainder) Rem rem

+= (addition assignment) AddAssign add_assign

-= (subtraction assignment) SubAssign sub_assign

*= (multiplication assignment) MulAssign mul_assign

/= (division assignment) DivAssign div_assign

%= (remainder assignment) RemAssign rem_assign

Other operators that can be overloaded are the bit-twiddling operators: !, &, |, ^, <<, 

>>, &=, |=, ^=, <<=, >>=.
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The Index trait and the IndexMut trait allow us to define the indexing operations with 

square brackets, for immutable objects and mutable objects, respectively.

The function call itself also can be overloaded, to implement smart pointers, using 

three traits: Fn, which takes the argument by immutable reference; FnMut, which takes 

the argument by mutable reference; and FnOnce, which takes the argument by value.

Rust does not allow redefining the following operators: =, ==, != , <, <=, >, >=. Actually, 

the behavior of such operators can be changed too, but using different mechanisms.

 Infallible Type Converters
In many object-oriented languages, it is possible to declare type converters. Let’s see an 

example that shows the need of such converters.

Using primitive types, we can write:

let ln = 1_f64 / 3_f64;

let sn = ln as f32;

print!("{}", sn);

It will print: 0.33333334. This is possible because the as keyword allows converting 

between primitive types. Though, if we define custom types:

struct LargeNumber (f64);

struct SmallNumber (f32);

let ln = LargeNumber (1. / 3.);

let sn = ln as SmallNumber;

print!("{}", sn.0);

This generates the compilation error: non-primitive cast: `LargeNumber` 

as `SmallNumber`. This is caused by the use of the as keyword to convert between 

nonprimitive types. This notation is not allowed, and anyway the compiler doesn’t know 

how to perform such a conversion.

To allow conversions between arbitrary types, Rust provides four different 

techniques, which make use of the standard library traits Into, From, TryInto, and 

TryFrom. Let’s see an example of the first one:
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struct LargeNumber (f64);

struct SmallNumber (f32);

impl Into<SmallNumber> for LargeNumber {

    fn into(self) -> SmallNumber {

        SmallNumber (self.0 as f32)

    }

}

let ln = LargeNumber (1. / 3.);

let sn: SmallNumber = ln.into();

print!("{}", sn.0);

It will print: 0.33333334. In the last-but-one line, the into method is applied to the 

value of the ln variable, and it returns the conversion of that value into a value assigned 

to the sn variable. Notice that the type of the value returned by into must be inferred 

from the context.

To be able to write this statement, the previous impl statement is required. It 

implements the generic Into trait for the LargeNumber type, which is the source type 

of the conversion. Such implementation monomorphizes the implementation for the 

SmallNumber type, which is the destination of the conversion.

Here, both the source type and the destination type are user-defined types. This 

solution can also be applied if the source type or the destination type is an external type, 

that is, a primitive type or a type defined in another crate. However, it is not allowed to 

convert from an external type to an external type.

This solution works, but it has the drawback of requiring us to call the into function 

in a context in which the destination type can be inferred.

The other allowed solution uses the From standard library trait, as this example 

shows:

struct LargeNumber (f64);

struct SmallNumber (f32);

impl From<LargeNumber> for SmallNumber {

    fn from(source: LargeNumber) -> Self {

        Self (source.0 as f32)

    }

}
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let ln = LargeNumber (1. / 3.);

let sn = SmallNumber::from(ln);

print!("{}", sn.0);

Here, in the last-but-one statement, the function from, associated with the 

SmallNumber type is called to convert its argument ln. Type inference is not required, 

because the destination type is specified anyway.

To be able to write this statement, the previous impl statement implements 

the generic From trait for the SmallNumber type, which is the destination type of the 

conversion. Such implementation monomorphizes the implementation for the 

LargeNumber type, which is the source of the conversion. Notice that the source and 

destination types have been swapped, with respect to the implementation of Into.

Also this solution allows that the source or destination type is external, but not both.

The From solution has an additional advantage, with respect to the Into solution. In 

the previous example, try to replace the last-but-one statement with this one:

let sn: SmallNumber = ln.into();

You will get a valid, equivalent program. Actually, when you implement the From 

trait, a default implementation of the Into trait is implicitly declared. Therefore, it is 

recommended to implement only the From trait, and then freely use the from or into 

functions. You should implement the Into trait only when, for some reason, you require 

that the From trait is not implemented, or when you are not satisfied by the default 

implementation of Into.

These solutions have a possible drawback, though. They are not fallible. Whenever 

a conversion of such kind is called, it must always return a value. But, in some cases you 

may want a conversion to succeed for some values and fail for some other values.

 Fallible Type Converters
To support fallible type conversions, the standard library declares the TryInto and the 

TryFrom traits are available. Let’s see an example using the last one:

struct LargeNumber (f64);

struct SmallNumber (f32);
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impl TryFrom<LargeNumber> for SmallNumber {

    type Error = String;

    fn try_from(source: LargeNumber) -> Result<Self, Self::Error> {

        if source.0.abs() > f32::MAX as f64 {

            Err("too large number".to_string())

        }

        else if source.0 != 0.

        && source.0.abs() < f32::MIN_POSITIVE as f64 {

            Err("too small number".to_string())

        }

        else {

            let result = source.0 as f32;

            if result as f64 == source.0 {

                Ok(Self (result))

            }

            else {

                Err("precision loss".to_string())

            }

        }

    }

}

fn show_result(n: Result<SmallNumber, String>) {

    match n {

        Ok(x) => println!("Converted to {}", x.0),

        Err(msg) => println!("Conversion error: {}", msg),

    }

}

let ln = LargeNumber (1.5);

show_result(SmallNumber::try_from(ln));

let ln = LargeNumber (1. / 3.);

show_result(SmallNumber::try_from(ln));

let ln = LargeNumber (1e50);

show_result(SmallNumber::try_from(ln));

let ln = LargeNumber (1e-50);

show_result(SmallNumber::try_from(ln));
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It will print:

Converted to 1.5

Conversion error: precision loss

Conversion error: too large number

Conversion error: too small number

In the last eight lines, four objects of type LargeNumber are created, all named ln. For 

each of them, the try_from function is called; the result of that conversion attempt is 

passed to the show_result function, which prints a result message.

The first variable contains the 64-bit number 1.5, which can be translated to a 32-bit 

number without loss of precision. Therefore, it is converted successfully.

The second variable contains the 64-bit number obtained dividing one by three. 

That number cannot be represented exactly in a binary representation; therefore it 

is represented in an approximate way. However, a 64-bit representation has more 

significant digits than a 32-bit representation, so the two approximate representations 

are different. So, the conversion fails with the error message: precision loss.

The third variable contains a 64-bit number larger than the maximum value that can 

be represented by a 32-bit number. So, the conversion fails with an error message: too 

large number.

The fourth variable contains a 64-bit number that is nearer to zero than the 

minimum positive value that can be represented by a 32-bit number. So, the conversion 

fails with an error message: too small number.

To get such behavior, the try_from method, instead of returning a value of type Self, 

returns a value of type Result<Self, Self::Error>. In case that routine succeeds in the 

conversion, an Ok variant is returned. In case it fails, an Err variant is returned. The type 

of that error must be specified as the Error associated type of the trait implementation. 

In our example, such error type was String.

 Composition Instead of Inheritance
At the beginning of the object-oriented programming era, inheritance appeared as a 

panacea, a technique that could be applied to any problem. In fact, there are three kinds 

of inheritance: data inheritance, method implementation inheritance, and method 

interface inheritance. As years went by, it was realized that data inheritance created 
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more problems than it solved, so Rust does not support it. In place of data inheritance, 

Rust uses composition.

Let's consider an example. Assume we already have a type representing a text 

to draw on the graphical screen, and we want to create a type representing a text 

surrounded by a rectangle. For simplicity, instead of drawing the text, we will print it on 

the console; and instead of drawing the rectangle, we will surround the text in brackets. 

Here is our code:

struct Text { characters: String }

impl Text {

    fn from(text: &str) -> Text {

        Text { characters: text.to_string() }

    }

    fn draw(&self) {

        print!("{}", self.characters);

    }

}

let greeting = Text::from("Hello");

greeting.draw();

struct BoxedText {

    text: Text,

    first: char,

    last: char,

}

impl BoxedText {

    fn with_text_and_borders(

        text: &str, first: char, last: char)

        -> BoxedText

    {

        BoxedText {

            text: Text::from(text),

            first: first,

            last: last,

        }

    }
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    fn draw(&self) {

        print!("{}", self.first);

        self.text.draw();

        print!("{}", self.last);

    }

}

let boxed_greeting =

    BoxedText::with_text_and_borders("Hi", '[', ']');

print!(", ");

boxed_greeting.draw();

It will print: Hello, [Hi].

The first statement defines a struct representing a text, characterized only by the 

string that contains its characters.

The second statement defines two methods for this struct: from, which is a 

constructor; and draw, which prints the string contained in the object. So, we can create 

a Text object, and we can draw it using such a method.

Now assume that you want to capitalize on this struct and its associated methods to 

create a text enclosed in a box, represented by a struct named BoxedText. That is what 

inheritance usually is touted for.

In Rust, instead of using inheritance, you create a BoxedText struct that contains 

an object of Text type and some additional fields. In this case, there are two fields 

representing the character to print before and after the base text.

Then, you declare the implementation of the methods you want to encapsulate in 

the BoxedText type, that is, to apply to objects of BoxedText type. They are a constructor, 

named with_text_and_borders, and a function to draw the current object, named draw.

The constructor gets all the information it needs and initializes a new object with 

that information. In particular, the field having type Text is initialized by invoking the 

Text::from constructor.

The method to draw the current object has the same signature as the similar method 

associated with Text objects, but this is just a coincidence, due to the fact that such 

methods do similar things. They could have different names, different argument types, 

or different return value types. The body of this draw method, though, contains an 

invocation of the draw method of Text.

Finally, an object having type BoxedText is created, and its method draw is invoked, 

having as a result that the string [Hi] is printed.
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In this program, reuse happens in the following places:

• The first field of struct BoxedText is text: Text. It reuses that data 

structure.

• The constructor of BoxedText contains the expression 

Text::from(text). It reuses the constructor of the Text type.

• The body of the draw method of the BoxedText type contains the 

statement self.text.draw();. It reuses the draw method associated 

with the Text type.

 Static Dispatch
In the previous section, we have seen how to define the Text and BoxedText types so that 

the latter reuses some data and code written for the former.

Now assume you need to write a function capable of drawing several kinds of text 

objects. In particular, if it receives as an argument an object of Text type, it should invoke 

the draw method associated with the Text type; while, if it receives as argument an object 

of BoxedText type, it should invoke the draw method associated to the BoxedText type.

If Rust were a dynamically typed language, this function would be:

fn draw_text(txt) {

    txt.draw();

}

Of course, this is not allowed in Rust, because the type of the txt argument must be 

specified explicitly.

Rust allows two nonequivalent solutions for this problem. One is this:

trait Draw {

    fn draw(&self);

}

struct Text { characters: String }

impl Text {

    fn from(text: &str) -> Text {

        Text { characters: text.to_string() }

    }

}
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impl Draw for Text {

    fn draw(&self) {

        print!("{}", self.characters);

    }

}

struct BoxedText {

    text: Text,

    first: char,

    last: char,

}

impl BoxedText {

    fn with_text_and_borders(

        text: &str, first: char, last: char)

        -> BoxedText

    {

        BoxedText {

            text: Text::from(text),

            first: first,

            last: last,

        }

    }

}

impl Draw for BoxedText {

    fn draw(&self) {

        print!("{}", self.first);

        self.text.draw();

        print!("{}", self.last);

    }

}

let greeting = Text::from("Hello");

let boxed_greeting =

    BoxedText::with_text_and_borders("Hi", '[', ']');

// SOLUTION 1 //

fn draw_text<T>(txt: T) where T: Draw {

    txt.draw();

}
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draw_text(greeting);

print!(", ");

draw_text(boxed_greeting);

It will print: Hello, [Hi].

The last three lines are the ones that print the resulting text. The draw_

text(greeting) statement receives an object having type Text and prints Hello; and 

the draw_text(boxed_greeting) statement receives an object having type BoxedText 

and prints [Hi]. Such a generic function is defined just before. These last six lines are the 

first solution to the problem. The preceding part of the program is in common with the 

second solution.

But let’s start to examine this program from the beginning.

First, the Draw trait is declared, as the capability of an object to be drawn.

Then the Text and BoxedText types are declared, with their associated methods, 

similarly to the example of the previous section. Though, only the two constructors 

Text::from and BoxedText::with_text_and_borders are kept as inherent 

implementations; the two draw functions, instead, now are implementations of the Draw 

trait.

Regarding the previous example, we said that the two draw methods had the same 

signature by coincidence, and they could have different signatures just as well. In this 

last example, instead, this equality is no more a coincidence; such functions are now 

used to implement the Draw trait, so they must have the same signature of the function 

declared in such trait.

After having declared the two types, their associated functions, and their 

implementations of the Draw trait, the two variables greeting and boxed_greeting are 

created and initialized, one for each of those types.

Then there is the first solution. The draw_text generic function receives an 

argument of T type, where T is any type that implements the Draw trait. Because of this, it 

is allowed to invoke the draw function on that argument.

So, whenever the compiler encounters an invocation of the draw_text function, 

it determines the type of the argument, and checks if such type implements the Draw 

trait. In case that trait is not implemented, a compilation error is generated. Otherwise, 

a monomorphized version of the draw_text function is generated. In this concrete 

function, the T type is replaced by the type of the argument, and the invocation of the 

draw generic method in the body of the function is replaced by an invocation of the 

implementation of draw for the type of the argument.
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This technique is named static dispatch. In programming language theory, 

dispatch means choosing which function to invoke when there are several functions 

with the same name. In this program there are two functions named draw, so a dispatch 

is required to choose between them. In this program, this choice is performed by the 

compiler, at compile time, so this dispatch is static.

 Dynamic Dispatch
The previous program can be changed a little, by replacing the last seven lines with the 

following ones:

// SOLUTION 1/bis //

fn draw_text<T>(txt: &T) where T: Draw {

    txt.draw();

}

draw_text(&greeting);

print!(", ");

draw_text(&boxed_greeting);

This version has substantially the same behavior of the previous version. Now, the 

draw function receives its argument by reference, and so an “&” character has been 

added in its signature, and other “&” characters have been added at the two invocations 

of this function.

This solution is still a case of static dispatch. So, we see that static dispatch can work 

both with pass-by-value and with pass-by-reference.

The previous program can be changed further, by replacing the last seven lines with 

the following ones:

// SOLUTION 2 //

fn draw_text(txt: &dyn Draw) {

    txt.draw();

}

draw_text(&greeting);

print!(", ");

draw_text(&boxed_greeting);
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Also this program has the same external behavior as before, but it uses another 

kind of technique. Now only the draw_text signature has been changed. The T generic 

parameter and the where clause have been removed, and the argument has type &dyn 

Draw instead of &T.

Here, the new dyn keyword is used. It means that this type is not a usual reference, 

but it is something new. It is a dynamic-dispatch reference. So now, instead of a generic 

function, we have a concrete function, which gets as argument a dynamic-dispatch 

reference. Though, the calls to this function haven’t changed: one passes as argument 

a reference to a Text, and the other a reference to a BoxedText. So such references are 

automatically converted to dynamic-dispatch references.

Let’s see the purpose of this dynamic-dispatch reference argument. When the draw_

text method is called using the &greeting argument, the method receives a pointer 

to the greeting object, but it also receives some indication that the type of this object 

has implemented the Draw trait for the Text type. Instead, when the &boxed_greeting 

argument is used, the draw_text method, in addition to the pointer to the boxed_

greeting object, receives some indication that the type of this object has implemented 

the Draw trait for the BoxedText type. Having such additional information, the draw_text 

method is able to invoke the appropriate draw method at runtime.

So, &dyn Draw is a kind of pointer capable of choosing the right draw method to 

invoke, according to the type of the referenced object. This is a kind of dispatch, but it 

happens at runtime, so it is a dynamic dispatch.

Dynamic dispatch is handled in C++ by using the virtual keyword, albeit with a 

slightly different mechanism.

 Implementation of Dynamic-Dispatch References
Get back to the program showing the last solution to the dispatch problem, and replace 

the last seven lines (from the one starting with // SOLUTION) with the following code:

// PRINTING OBJECT SIZES

use std::mem::size_of_val;

print!("{} {} {}, {} {} {}, ",

    size_of_val(&greeting),

    size_of_val(&&greeting),

    size_of_val(&&&greeting),
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    size_of_val(&boxed_greeting),

    size_of_val(&&boxed_greeting),

    size_of_val(&&&boxed_greeting));

fn draw_text(txt: &dyn Draw) {

    print!("{} {} {} ",

        size_of_val(txt),

        size_of_val(&txt),

        size_of_val(&&txt));

    txt.draw();

}

draw_text(&greeting);

print!(", ");

draw_text(&boxed_greeting);

The resulting program, in a 64-bit target, will print: 24 8 8, 32 8 8, 24 16 8 

Hello, 32 16 8 [Hi].

Remember that the size_of_val standard library generic function gets a reference 

to an object of any type, and returns the size in bytes of that object.

First, the greeting variable is processed. Its type is Text, which contains only a 

String object. We already discovered that String objects occupy 24 bytes in the stack, 

plus a variable buffer in the heap. That buffer is not taken into account by the size_of_

val function. The size_of_val function requires a reference, so the expression size_of_

val(greeting) would be illegal.

The size of a reference to a Text is printed, and then the size of a reference to a 

reference to a Text. They are ordinary references, so they occupy 8 bytes.

Then, the boxed_greeting variable is processed in the same way. This struct 

contains a Text and two char objects. Each char occupies 4 bytes, and so it is 24 + 4 + 4 = 

32 bytes. Its references are normal references too.

Then, near the end of the program, the expression &greeting, having type &Text, 

is passed as an argument to the draw_text function, where it is used to initialize the 

argument txt, having type &dyn Draw.

The txt argument is a kind of reference, so it is possible to evaluate the expression 

size_of_val(txt). It will return the size of the referenced object. But which type has the 

object referenced to by an object of type &dyn Draw? Of course, it is not Draw, because 

Draw is not a type. Actually, this cannot be said at compile time. It depends on the object 

referenced at runtime by the expression used to initialize the txt argument. The first 
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time that the draw_text function is invoked, the txt argument receives a reference to a 

Text object, so 24 is printed.

If you jump forward in the output, going after the comma, you see that the second 

time that the draw_text function is invoked, the txt argument receives a reference to a 

BoxedText object, so 32 is printed.

Going back to the invocation using greeting, we see that the value of the expression 

size_of_val(&txt) is 16. This may be surprising. This expression is the size of an object 

having type &dyn Draw, initialized by an object having type &Text. So we use a normal 

8-byte reference to initialize a 16-byte dynamic-dispatch reference. Why is a dynamic- 

dispatch reference so large? The mechanism of dynamic dispatch lies in how it is 

initialized.

Actually any dynamic-dispatch reference has two fields. The first one is a copy of 

the reference used to initialize it, and the second one is a pointer used to choose the 

proper version of the draw function, or any other function needing dynamic dispatch. It 

is named virtual table pointer. This name comes from C++.

At last, the size of a reference to a dynamic-dispatch reference is printed. This is a 

normal reference, occupying eight bytes.

The same numbers are printed for the references to the boxed_greeting variable.

 Static vs. Dynamic Dispatch
So you can use static or dynamic dispatch. Which should you use?

Like any instance of static-versus-dynamic dilemma, where static means compile- 

time, and dynamic means runtime, static requires a somewhat longer compilation time, 

and generates somewhat faster code; but if not enough information is available to the 

compiler, the dynamic solution is the only possible one.

Assume that, for the example programs shown before, there is the following 

requirement. The user is asked to enter a string. If that string is b, a boxed text should be 

printed; and for any other input, a nonboxed text should be printed.

Using the static dispatch, the final part of the program (replacing the lines from  

// PRINTING OBJECT SIZES) becomes:

// SOLUTION 1/ter //

fn draw_text<T>(txt: T) where T: Draw {

    txt.draw();

}
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let mut input = String::new();

std::io::stdin().read_line(&mut input).unwrap();

let to_box = input.trim() == "b";

if to_box {

    draw_text(boxed_greeting);

} else {

    draw_text(greeting);

}

If you run it and then you press b and Enter, the text [Hi] will be printed. If instead 

you type nothing or any other text and then Enter, the text Hello will be printed.

Instead, using the dynamic dispatch, you have this equivalent code:

// SOLUTION 2/bis //

fn draw_text(txt: &dyn Draw) {

    txt.draw();

}

let mut input = String::new();

std::io::stdin().read_line(&mut input).unwrap();

let to_box = input.trim() == "b";

draw_text(if to_box { &boxed_greeting } else { &greeting });

The static dispatch forces you to write several function invocations, one for each type 

to use for the argument to pass to draw_text. Instead, the dynamic dispatch allows you 

to write just one call to draw_text, and let the dynamic dispatch mechanism perform the 

choice.

In addition, static dispatch uses generic functions, and this technique may create 

code bloat, so it may end up being slower.
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