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 C Language
The C language is probably the most popular and successful language since it was 

born with the Unix operating system. It is a high-level language, but it can also do the 

low-level work such as modifying memory content or memory mapped I/O registers 

in a special address. It is the most suitable language in the firmware area because the 

firmware needs to access the hardware-related content such as memory or memory 

mapped I/O register directly, and the C language is good and powerful in this area. With 

the C language, the developer can fully control the machine’s hardware. We believe it is 

because of the nature of the C language – C was born to write the Unix operating system.

Now let’s take a look at the C language from the security perspective. According to 

the Microsoft research, memory safety contributes 70% of the security vulnerabilities 

in C and C++. We also observed similar data in that the buffer overflow and integer 

overflow caused 50% of security issues in the firmware area. The reason is that the 

firmware is also one type of software. Firmware also has the similar memory safety 

issue including the memory access error such as buffer overflow, use-after-free, and 

uninitialized data error such as wild pointer, null pointer reference, and so on.

In Chapter 14, we discussed the best practices and guidelines for C programming. 

In Chapter 15, we discussed the C compiler defensive technology. In Chapter 16, we 

discussed the firmware kernel enhancements. On the one hand, all of the industry has 

provided the guidance and tools to address those flaws. On the other hand, people are 

also looking for a better type-safe language that can help to prevent the developer from 

introducing the flaws in the first place.

 Rust
Rust is a new language. If we treat the C language as portable assembly, then Rust is 

a safe C language. The Rust language is designed to empower the developer to build 

reliable and efficient software. It offers

 1) Performance: Rust is blazingly fast and memory efficient. It 

does not have a runtime or garbage collector. It can power 

performance-critical services and run on embedded devices. 

Runtime performance and runtime memory consumption are 

extremely important to the firmware because a typical firmware 

runs in a resource-constrained environment. Even for the Intel 
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Architecture (IA) system firmware, it needs to run code in the 

system management mode (SMM) which only has limited system 

management RAM (SMRAM), such as 1 MB or 8 MB. Similar 

constraints are observed by embedded devices. Rust embedded 

offers flexible memory management, where the dynamic memory 

allocation is optional. You may choose to use a global allocator 

and dynamic data structures or statically allocate everything. This 

is required because the firmware code may run on the flash device 

without DRAM.

 2) Reliability: Rust introduces a rich type system and an ownership 

model that guarantees memory safety and thread safety, which 

enables you to eliminate many classes of bugs at compile time. 

This is probably the most attractive feature. Rust is not the first 

language to introduce the type safety concept. One big concern of 

the type-safe language is the performance degradation because 

of the runtime type check. The performance impact is hard to 

accept for embedded system or firmware. The advantage of Rust 

is that many checks have been done at compile time. As such, 

the final generated binary does not include such checks. With 

strict rules of syntax, Rust can trace the lifecycle of a data object. 

As such, no runtime garbage collection is required. This design 

not only reduces the binary size but also improves the runtime 

performance.

 3) Productivity: Rust has a friendly compiler with useful error 

messages. The compiler not only shows what is wrong but 

also gives suggestions on how to fix the error. It teaches you 

how to write the Rust language. Rust has provided a unit test 

framework. You can write a set of unit tests just after the function 

implementation. Rust also considers the interoperability with 

other languages with the foreign function interface (FFI). Rust can 

generate a C language–compatible application binary interface 

(ABI). You can let Rust call the C language or call Rust from the C 

language.
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 Rust Security Solution
Major classes of security issues in firmware development are the memory safety 

issue and the arithmetic issue. In Chapter 15, we discussed two compiler defensive 

strategies: to eliminate the vulnerability and to break the exploit. Rust does a great job on 

eliminating the vulnerability by introducing a strict rule at compile time. Any violation 

causes the build failure. Also Rust injects the runtime boundary check for the buffer 

overflow to break the exploit. The generated code calls a panic handler for the runtime 

violation. Table 20-1 shows the Rust solution to handle the safety issues. The two classic 

memory safety issues – the spatial safety issue and the temporal safety issue – are 

resolved separately. Let’s take a look at them one by one.

Table 20-1. Rust Security Solution

Type Subtype Rust Solution

access error (spatial) Buffer overflow (Write) use offset/index for Slice

runtime Boundary Check – [panic_handler].

Buffer over-read use offset/index for Slice

runtime Boundary Check – [panic_handler].

access error 

(temporal)

use-after-free(dangling 

pointer)

ownership – compile-time check.

Double free ownership – compile-time check.

uninitialized data uninitialized variable initialization – compile-time check.

Wild pointer initialization – compile-time check.

nuLL pointer deference use option<t> enum

allocation Check – [alloc_error_handler].

(continued)
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 Ownership

The gist of Rust memory safety is to isolate the aliasing and mutation. Aliasing means 

there can be multiple ways to access the same data. The data is sharable. Mutation 

means the owner has the right to update the data. The data can be changed. The danger 

arises from aliasing + mutation.

Let’s take a look at a C program in Listing 20-1. How many issues you can find?

Listing 20-1.

===========================

char *a1 = "hello world!";

char *b1 = "hello world!";

int main()

{

  char *a2 = strdup (a1);

  char *b2 = a2;

  char *b3 = strchr (a2, 'h');

  char *b4 = strchr (a2, 'w');

Type Subtype Rust Solution

arithmetic issue integer overflow DeBug: runtime check – [panic_handler].

reLeaSe: Discard overflow data.

Compiler flag: -C overflow-checks=on/off.

Function:

checked|overflowing|saturating|wrapping_

add|sub|mul|div|rem|shl|shr|pow().

type cast must be explicit – compile-time check.

(Dest Size == Source Size)  =>   no-op

(Dest Size < Source Size)   =>   truncate

(Dest Size > Source Size)   =>   {

(source is unsigned)  =>   zero-extend

(source is signed)    =>   sign-extend

}

Table 20-1. (continued)
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  *a1 = 'k';

  *a2 = 'l';

  *(a1 + 19) = 'm';

  *(a2 + 19) = 'n';

  printf("a1=%s (%p)\n", a1, a1);

  printf("a2=%s (%p)\n", a2, a2);

  printf("b1=%s (%p)\n", b1, b1);

  printf("b2=%s (%p)\n", b2, b2);

  printf("b3=%s (%p)\n", b3, b3);

  printf("b4=%s (%p)\n", b4, b4);

  free (a1);

  free (a2);

  free (b1);

  free (b2);

  free (b3);

  free (b4);

  printf("OK\n");

  return 0;

}

===========================

The memory layout in this program is shown in Figure 20-1. Both a1 and b1 are 

in the global data section. They point to a string “hello world!” in the read-only data 

section. With the optimization on, the a1 and b1 point to the same location. If we turn 

off the optimization, the a1 and b1 point to different locations. The a2, b2, b3, and b4 

are on the stack. a2, b2, and b3 point to a “hello world!” string in the heap, and b4 points 

to the middle of the “hello world!” Although the program updates the string pointed by 

a1 and a2, the string pointed by b1, b2, and b3 is also updated. It might be a side effect. 

Updating a1 may also cause a runtime crash because the read-only section is marked 

protected unless the program merges the read-only data section into the normal data 

section at link phase. The string update also has a buffer overflow access for m and n. 

Last of all, the free is only required for the data in the heap and only required once. b2, 

b3, and b4 point to same string as a2. As such, only free(a2) is required. See Listing 20-2 

for the comment of the program.
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Listing 20-2.

===========================

char *a1 = "hello world!";

char *b1 = "hello world!";

int main()

{

  char *a2 = strdup (a1);

  char *b2 = a2;

  char *b3 = strchr (a2, 'h');

  char *b4 = strchr (a2, 'w');

  //*a1 = 'k'; // crash in normal build. Need merge .rdata to .data section.

              // b1 update if optimization on, side effect?

              // b1 not update if optimization off

  *a2 = 'l'; // cause b2, b3 update, side effect?

  //*(a1 + 19) = 'm'; // illegal, but no crash most likely

  //*(a2 + 19) = 'n'; // illegal, crash at free() most likely
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Figure 20-1. Memory Layout of Listing 20-1
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  printf("a1=%s (%p)\n", a1, a1);

  printf("a2=%s (%p)\n", a2, a2);

  printf("b1=%s (%p)\n", b1, b1);

  printf("b2=%s (%p)\n", b2, b2);

  printf("b3=%s (%p)\n", b3, b3);

  printf("b4=%s (%p)\n", b4, b4);

  //free (a1); // illegal, crash

  free (a2); // legal, required otherwise memory leak

  //free (b1); // illegal, crash

  //free (b2); // maybe legal, only if a2 is not freed.

  //free (b3); // illegal, but works, if a2 is not freed

  //free (b4); // illegal, crash

  printf("OK\n");

  return 0;

}

===========================

Listing 20-1 can be compiled successfully because the C compiler does not perform 

any such check. It relies on the developer to do the right thing. With Rust, you cannot 

write code in such a way. If the data is mutable, it cannot be shared. On the other hand, 

if the data is shared, it must be mutable. Rust has three basic patterns for programming: 

ownership, shared borrow, and mutable borrow. Let’s look at them one by one.

First, Figure 20-2 shows the concept of ownership. In Listing 20-3, we initialize a 

string s1, assign s1 to s2, and then assign s1 to s3. It is legal in the C language, but illegal 

in Rust. The reason is that when s1 is assigned to s2, the ownership of the string “hello 

world!” is moved from s1 to s2. s1 is no longer valid. As such, when the code wants to 

assign s1 to s3, the compiler generates an error in Listing 20-4. What if we want to use 

both s2 and s1? We need to use borrow, also known as reference.

Listing 20-3.

===========================

fn test1() {

    // ownership

    let s1 = String::from ("hello world!");

    let mut s2 = s1;
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    let mut s3 = s1; // error because the ownership is moved to s2

    s2.make_ascii_lowercase();

    println!("s1={}", s1);

    println!("s2={}", s2);

    println!("s3={}", s3);

}

===========================

Listing 20-4.

===========================

error[E0382]: use of moved value: `s1`

 --> src\main.rs:6:14

  |

4 |     let s1 = String::from ("hello world!");

  |         --  move occurs because `s1` has type `std::string::String`, 

which does not implement the `Copy` trait

5 |     let mut s2 = s1;

  |                  -- value moved here

6 |     let mut s3 = s1; // error because the ownership is moved to s2

  |                  ^^ value used here after move

===========================
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Figure 20-2. Ownership in Rust
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Second, Figure 20-3 shows the concept of shared borrow. In Listing 20-5, we 

initialize s1 and assign s1 as a reference to s2 and s3 without any problem. However, if we 

want to update the string referenced by s2, the compiler generates error in Listing 20-6, 

because both s2 and s3 are immutable borrow. What if we want to update s2? We need to 

use mutable borrow.

Listing 20-5.

===========================

fn test2() {

    // immutable borrow

    let s1 = String::from ("hello world!");

    let s2 = &s1;

    let s3 = &s1;

    s2.make_ascii_lowercase(); // error because s2 is immutable borrow.

    println!("s1={}", s1);

    println!("s2={}", s2);

    println!("s3={}", s3);

}

===========================

Listing 20-6.

===========================

error[E0596]: cannot borrow `*s2` as mutable, as it is behind a `&` reference

  --> src\main.rs:18:5

   |

17 |     let s2 = &s1;

   |              ---  help: consider changing this to be a mutable 

reference: `&mut s1`

17 |     let s3 = &s1;

19 |     s2.make_ascii_lowercase();  // error because s2 is immutable 

borrow.

   |      ̂^ `s2` is a `&` reference, so the data it refers to cannot be 

borrowed as mutable

===========================
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Third, Figure 20-4 shows the concept of mutable borrow. In Listing 20-7, we initialize 

s1 and assign s1 as a mutable reference to s2 and s3 because we want to update the s2 

later. However, when we assign s1 as a mutable reference to s3, the compiler generates 

an error in Listing 20-8 because s3 is the second mutable borrow, which is illegal. At 

most, one mutable borrow is allowed in Rust.

Listing 20-7.

===========================

fn test3() {

    // mutable borrow

    let mut s1 = String::from ("hello world!");

    let s2 = &mut s1;

    let s3 = &mut s1; // error because this is second mutable borrow.

    s2.make_ascii_lowercase();

    println!("s1={}", s1);

    println!("s2={}", s2);

    println!("s3={}", s3);

}

===========================
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Figure 20-3. Shared Borrow in Rust
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Listing 20-8.

===========================

error[E0499]: cannot borrow `s1` as mutable more than once at a time

  --> src\main.rs:29:14

   |

29 |     let s2 = &mut s1;

   |              ------- first mutable borrow occurs here

30 |     let s3 = &mut s1; // error because this is second mutable borrow.

   |              ^^^^^^^ second mutable borrow occurs here

31 |     s2.make_ascii_lowercase();

   |     -- first borrow later used here

===========================

You may also find that no free() is called in those functions because free() is not 

required in the code. free() is injected by the compiler. Listing 20-9 shows the  

compiler-generated binary for the entry and exit of the test1() function in Listing 20-3. 

With the strict rule the developer must follow, the Rust compiler can manage the object’s 

lifecycle at build time. As such, the compiler injects __rust_alloc and __rust_dealloc in 

the code instead of using runtime garbage collection. Many optimizations can also be 

achieved at build time, and this is one reason that Rust can run fast.
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Figure 20-4. Mutable Borrow in Rust
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Listing 20-9.

===========================

  0000000140001140: 55                 push        rbp

  0000000140001141: 56                 push        rsi

  0000000140001142: 48 81 EC A8 00 00  sub         rsp,0A8h

                    00

  0000000140001149: 48 8D AC 24 80 00  lea         rbp,[rsp+80h]

                    00 00

  0000000140001151: 48 C7 45 20 FE FF  mov          qword ptr [rbp+20h], 

0FFFFFFFFFFFFFFFEh

                    FF FF

  0000000140001159: BE 0C 00 00 00     mov         esi,0Ch

  000000014000115E: B9 0C 00 00 00     mov         ecx,0Ch

  0000000140001163: BA 01 00 00 00     mov         edx,1

  0000000140001168: E8 93 08 00 00     call        __rust_alloc

  000000014000116D: 48 85 C0           test        rax,rax

  0000000140001170: 0F 84 D9 00 00 00  je          000000014000124F

  0000000140001176: 48 89 45 F0        mov         qword ptr [rbp-10h],rax

...

  00000001400011C4: 0F 10 45 F0        movups      xmm0,xmmword ptr [rbp-10h]

  00000001400011C8: 0F 29 45 A0        movaps      xmmword ptr [rbp-60h],xmm0

  00000001400011CC: 0F 28 45 A0        movaps      xmm0,xmmword ptr [rbp-60h]

  00000001400011D0: 0F 29 45 D0        movaps      xmmword ptr [rbp-30h],xmm0

...

  0000000140001235: 48 8B 4D D0        mov         rcx,qword ptr [rbp-30h]

  0000000140001239: 41 B8 01 00 00 00  mov         r8d,1

  000000014000123F: E8 CC 07 00 00     call        __rust_dealloc

  0000000140001244: 90                 nop

  0000000140001245: 48 81 C4 A8 00 00  add         rsp,0A8h

                    00

  000000014000124C: 5E                 pop         rsi

  000000014000124D: 5D                 pop         rbp

  000000014000124E: C3                 ret

===========================
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Finally, let’s see one more example to show how Rust catches an issue in Listing 

20-10. The purpose of str_find_char() is to locate the first occurrence of a character in 

a string, similar to strchr() in the C language. The s.clear() is followed by the means to 

truncate this string. Because the result of str_find_char() is a reference to the original 

string s, this truncation impacts the result. The next println cannot print the expected 

content. Fortunately, the Rust compiler does a great job to catch this issue and show the 

error message in Listing 20-11. It notices that there is an immutable reference for s, so 

the s cannot have a mutable borrow to truncate the content.

Listing 20-10.

===========================

fn str_find_char(s: &String, c: char) -> Option<&str> {

    let bytes = s.as_bytes();

    let len = s.len();

    for (i, &item) in bytes.iter().enumerate() {

        if item == c as u8 {

            return Some(&s[i..len]);

        }

    }

    None

}

fn test4() {

    let mut s = String::from("hello world");

    let result = str_find_char(&s, 'w');

    s.clear(); // error!

    match result  {

      Some(word) => println!("found: {}", word),

      None => println!("not found"),

    }

}

===========================
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Listing 20-11.

===========================

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as 

immutable

  --> src\main.rs:71:5

   |

69 |     let result = str_find_char(&s, 'w');

   |                                -- immutable borrow occurs here

70 |

71 |     s.clear(); // error!

   |     ^^^^^^^^^ mutable borrow occurs here

72 |

73 |     match result  {

   |           ------ immutable borrow later used here

===========================

 Option<T> Type

In Listing 20-10, there is a data type – Option<&str>. What is that for?

The C language has NULL pointer concept. Dereference of a NULL pointer causes an 

exception at runtime. Tony Hoare treated the NULL pointer as a “billion-dollar mistake.” 

It was invented in 1965 just because it was easy to implement. Eventually it has led to 

innumerable errors, vulnerabilities, and system crashes.

Rust uses Option<T> type to resolve the NULL pointer. The definition for Option<T> 

type is in Listing 20-12.

Listing 20-12.

===========================

pub enum Option<T> {

    /// No value

    None,

    /// Some value T

    Some(T)

}

===========================
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Listing 20-13 is the C program that might have a problem. If a developer forgets 

to check the NULL pointer in the check_optional() function, a NULL reference might 

happen in the C version. This will never happen in Rust. Listing 20-14 shows the Rust 

version. If a data might be NULL, the Option<T> must be used. In order to get data, the 

program must use Some(T) to get the data from the Option<T> parameter and include 

None pattern to handle the no-value case. The risk of NULL deference is eliminated.

Listing 20-13.

===========================

void print_ptr_data (int *optional) {

    if (optional == NULL) { // It might be missing.

        printf ("NULL pointer\n");

    } else {

        printf ("value is %d\n", *optional);

    }

}

void test() {

    int *optional = NULL;

    print_ptr_data (optional);

    optional = malloc (sizeof(int));

    *optional = 5;

    print_ptr_data (optional);

}

===========================

Listing 20-14.

===========================

fn print_ptr_data (optional: Option<Box<i32>>) {

    match optional {

        Some(p) => println!("value is {}", p),

        None => println!("Value is None"),

    }

}
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fn test5() {

    let optional = None;

    print_ptr_data (optional);

    let optional = Some(Box::new(5));

    print_ptr_data (optional);

}

===========================

 Boundary Check

In the C language, a buffer overflow is one of the most critical issues. In general, Rust 

recommends to use the iterator for the buffer access. For example, Listing 20-10 shows 

that the str_find_char() function uses bytes.iter().enumerate(). However, there are still 

chances that the developer needs to write the index of the buffer array and may make a 

mistake. For example, in Listing 20-15, the str_find_char() returns Some(&s[i..len+1]), 

while it should be Some(&s[i..len]). This skips the build-time check, but it can be caught 

by the runtime check in Listing 20-16.

Listing 20-15.

===========================

fn str_find_char(s: &String, c: char) -> Option<&str> {

    let bytes = s.as_bytes();

    let len = s.len();

    for (i, &item) in bytes.iter().enumerate() {

        if item == c as u8 {

            return Some(&s[i..len+1]); // bug

        }

    }

    None

}

===========================
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Listing 20-16.

===========================

thread 'main' panicked at 'byte index 12 is out of bounds of `hello 

world`', src\libcore\str\mod.rs:2017:9

note: Run with `RUST_BACKTRACE=1` environment variable to display a 

backtrace.

===========================

The Rust compiler inserts code to do boundary check for the buffer access at 

runtime. If there is a violation, the inserted checker will call a predefined function  

panic_handler(). The default panic_handler() is provided in the standard library. The firmware 

usually only links the Rust corelib and needs to define its own panic_handler(), such as 

Listing 20-17.

Listing 20-17.

===========================

#[panic_handler]

fn panic_handler(_info: &core::panic::PanicInfo) -> ! {

    // Add your own debug information

    loop {}

}

===========================

 Uninitialized Data Check

Rust eliminates the uninitialized data at build time. The compiler does the static analysis 

to ensure the data used must be initialized in any path, including conditional assignment 

such as if/else statement. Similar to the C language, there might be false positive, but it is 

better to eliminate any risk at build time.

 Arithmetic Check

In the C language, integer overflow is another big problem. In many cases, it causes 

a buffer overflow later. Rust makes some improvements on math operations. Take 

Listing 20-18 as an example. It shows five different ways to get the result from 

multiplication of two u32 integers.
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Listing 20-18.

===========================

fn test6(a: u32, b:u32) {

    let c : Option<u32> = a.checked_mul(b);

    match c {

      Some(v) => println!("checked multiple: {}", v),

      None => println!("checked multiple: overflow"),

    }

    let (c, o) : (u32, bool) = a.overflowing_mul(b);

    println!("overflowing multiple: {}, overflow: {}", c, o);

    let c : u32 = a.saturating_mul(b);

    println!("saturating multiple: {}", c);

    let c : u32 = a.wrapping_mul(b);

    println!("wrapping multiple: {}", c);

    let c : u32 = a * b;

    println!("direct multiple: {}", c);

}

fn main() {

    test6(0xFFFFFFFF, 0xFFFFFFFF);

}

===========================

Rust provides a set of methods for the primitive:

 1) checked_mul(): The result is Option<T>. If no overflow happens, 

the result is Some<T>. Otherwise, the result is None.

 2) overflowing_mul(): The result is a tuple (T, bool). The first element 

is a wrapped result. The second element is a bool to show if 

overflow happens or not.

 3) saturating_mul(): The result is T type. It is a saturated value.

 4) wrapping_mul(): The result is T type. It is a wrapped value.
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For the multiplication operator, the Rust compiler treats it as wrapping_mul() in the 

release build, but injects runtime check code in the debug build. If the violation occurs 

at runtime, the checker invokes the panic_handler in the debug build. The developer can 

also use the compiler flag “-C overflow-checks=on/off” to control the runtime overflow 

check on or off. See Table 20-2.

With release build, the result of Listing 20-18 is shown in Listing 20-19. With debug 

build, the result is shown in Listing 20-20.

Listing 20-19.

===========================

checked multiple: overflow

overflowing multiple: 1, overflow: true

saturating multiple: 4294967295

wrapping multiple: 1

direct multiple: 1

===========================

Listing 20-20.

===========================

checked multiple: overflow

overflowing multiple: 1, overflow: true

saturating multiple: 4294967295

wrapping multiple: 1

Table 20-2. Rust Math Operation – a: u32 * b: u32

Method Overflow Result

c : option<u32> = a.checked_mul(b) c is none.

(c, o) : (u32, bool) = a.overflowing_mul(b) c holds the wrapped value. o indicates if overflow happens.

c : u32 = a.saturating_mul(b) c holds the maximum u32.

c : u32 = a.wrapping_mul(b) c holds the wrapped value.

c = a * b c holds the wrapped value in release build.

runtime overflow check fails in debug build.
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thread 'main' panicked at 'attempt to multiply with overflow', src\main.

rs:90:19

note: Run with `RUST_BACKTRACE=1` environment variable to display a 

backtrace.

===========================

A firmware implementation may have external input, such as a Bitmap (BMP) file, a 

capsule file, a portable and executable (PE) image, a file system, and so on. If the parser 

needs to perform some math operation, using checked version methods might be a 

better idea than direct multiplication. It can guarantee the overflow case is well handled.

Besides math operations, type cast might also lead to the data truncation problem. 

Rust does the build-time check and requests a data type cast explicitly.

All in all, Rust defines a set of very strict rules on using an object and its reference 

to eliminate memory safety issues. That is one reason that many developers find it is 

hard to pass compilation, especially for those who are familiar with the C language 

and satisfied with the freedom brought from the C language. With the C language, the 

developer can control everything. That also means the developer needs to ensure the 

code has no memory safety issue. Rust takes another approach. It makes it very hard to 

write the code to pass the compilation on the first time. The compiler keeps telling you 

what is forbidden and that there might be a potential problem. But once the code passes 

the compilation, the Rust language guarantees there is no memory safety issue.

 Unsafe Code
So far, we have discussed lots of security solutions brought from Rust, and these 

solutions can help reduce the amount of security risks in the firmware development. 

However, this solution brings some limitations. For example, accessing NULL address 

actually is legal because the tradition Basic Input/Output System (BIOS) sets up the 

Interrupt Vector Table there. Sometimes, the firmware code needs to access a fixed 

region memory mapped I/O, such as Trusted Platform Module (TPM) at physical 

address 0xFED40000. In order to handle such cases, Rust introduces a keyword – unsafe. 

If the code is inside of an unsafe block, then the compiler does not perform any security 

check. This is a contract between the developer and the compiler. Unsafe means that the 

developer tells the Rust compiler “Please trust me.”
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According to the Rust language book, we can do the following superpower unsafe 

actions:

• Dereference a raw pointer

• Call an unsafe function or method.

• Access or modify a mutable global static variable.

• Implement an unsafe trait.

• Access fields of union.

In Listing 20-10 and Listing 20-14, we demonstrated a string and a Box<T> type. 

These are Rust-defined types. They can be used to point at a data in the heap. However, 

these types are not available in the C language. In order to interoperate with the C 

language, Rust has to define a raw pointer to be compatible with the pointer defined 

in C. Listing 20-21 shows the raw point usage. *mut u32 means a u32 pointer and the 

content is mutable. Because this code wants to dereference a raw pointer, it must be 

included in the unsafe block. The Rust language does not provide any guarantee on the 

memory safety here. At runtime, it might work because the developer may want to write 

the IVT. Or it might crash because of a mistake.

Listing 20-21.

===========================

fn test7() {

  unsafe {

    let p = 0 as *mut u32;

    *p = 4;

  }

}

===========================

Calling an external function, such as a C function, is also considered as unsafe 

because Rust loses control for the external function. Listing 20-22 shows how Rust calls 

the C abs() function.
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Listing 20-22.

===========================

extern "C" {

    fn abs(a: i32) -> i32;

}

fn test8(a: i32) -> i32 {

    unsafe {

        abs (a)

    }

}

===========================

Global static variables are considered as sharable by many functions. According to 

the aliasing/mutation rule, it should be immutable. However, there might be a case that 

we do need to modify the global static variable, such as a global count. Usually a mutable 

static variable is used for the interoperation with the C language. It is dangerous that 

Rust requires to use unsafe keyword. Listing 20-23 shows an example.

Listing 20-23.

===========================

static mut COUNTER: u32 = 0;

fn increment_counter() {

    unsafe {

        COUNTER += 1;

    }

}

fn test9() {

    increment_counter();

    unsafe {

        println!("COUNTER: {}", COUNTER);

    }

}

===========================
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Rust supports union type, with the same reason to interoperate with the C language. 

Union is dangerous because the type of data is undetermined. It violates type safety and 

may cause problems, such as partial initialization. See Listing 20-24. It outputs garbage 

at runtime.

Listing 20-24.

===========================

#[repr(C)]

union U {

  d8 : u8,

  d32: u32,

}

fn test10() {

  let dataU = U { d8 : 1 };

  unsafe {

    let data32 = dataU.d32;

    println!("get data {}", data32);

  }

}

===========================

 Current Project
Rust is still a young language. It was designed by Mozilla Graydon Hoare, and the first release 

is at 2014. Because of its security properties, more and more projects are adopting Rust. For 

example, c2rust can help you convert the C language to the unsafe Rust language. Then 

people can do refactoring for the unsafe version and turn it into a safe version. Mozilla uses 

rust for Firefox. Amazon Firecracker is a Rust-based hypervisor. Baidu released Rust-SGX-

SDK for the secure enclave and Rust OP-TEE TrustZone SDK as part of MesaTEE. Facebook 

uses Rust to develop Libra – a decentralized financial infrastructure. Google Fuchsia uses 

Rust in some components. The OpenTitan hardware root-of-trust uses the Tock OS, which is 

written in Rust. OpenSK – a Fast Identity Online 2 (FIDO2) authenticator is written in Rust as 

a Tock OS application. In 2019, Microsoft announced that they would adopt Rust as a systems 

programming language. In 2020, Microsoft has introduced open source project Verona, a 

new research language for safe infrastructure programming, which is inspired by Rust.
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Firmware projects are including Rust. A rust hypervisor firmware can boot the cloud 

hypervisor. oreboot is the downstream fork of coreboot – a coreboot without C. EDK II is 

also adding support to build Rust module in the full UEFI firmware.

Cryptographic algorithms are also being developed in Rust, such as RustCrypto, 

MesaLink, rusttls, ring, webpki, and so on. The rusttls project includes a security review 

and audit report by Cure53, which shows the high quality of the code. Hope they can 

be the replacement for openSSL or mbed TLS in the future. Currently, the ring/webpki 

depend upon the OS provided random number generation. In order to use the  

ring/webpki in the firmware, we need a firmware based random number library. For 

example, the efi-random crate uses the RDRAND and RDSEED instruction in the  

UEFI/EDK II environment.

 Limitation
Rust brings great enhancements to eliminate memory safety issues in the firmware, but 

there are still some non–language-specific firmware security issues that need to be taken 

care of, such as

 1) Silicon register lock: We need to use a vulnerability scan tool, such 

as CHIPSEC.

 2) Security policy: We need to perform a policy check to ensure the 

firmware is configured correctly.

 3) Time-of-check/time-of-use (TOC/TOU) issue: We need to 

carefully perform an architecture review and design review.

 4) X86 system management mode (SMM) callout: We need hardware 

restrictions, such as the SMM_CODE_CHECK feature.

Last but not of least importance, the unsafe code in Rust is always a risk. The Baidu 

Rust-SGX-SDK project has summarized the rules of Rust unsafe code:

• Unsafe components should be appropriately isolated and 

modularized, and the size should be small (or minimized).

• Unsafe components should not weaken the safety, especially of 

public APIs and data structures.

• Unsafe components should be clearly identified and easily upgraded
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Writing unsafe code in Rust is same as writing C code. There is no safety guarantee 

from Rust. Please isolate them, minimize them, and review them carefully.

 Others
Other languages are also used in firmware projects. For example, Forth is a language 

defined in IEEE 1275-1994. It is used for open firmware projects. Some embedded 

devices use Java Embedded, MicroPython, or the .NET Compact Framework. Those 

languages require a runtime interpreter. They might be a good candidate as an 

application language, but they are hard to use as a system language for the firmware 

development. We also observe that other type safety languages such as Ada or OCaml 

are used for embedded system, such as the Mirage OS, but they are not widely used.

 Summary
In this chapter, we introduced the languages used in firmware development. Because we 

already introduced a lot on C language in previous chapters, the focus in this chapter is 

to introduce a new promising language – Rust – including the benefit brought from Rust 

and its limitation in the firmware security area. This is the last chapter of Part III. In Part 

IV, we will introduce security testing.
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