
The Vim Tutorial and Reference

The Vim

Tutorial and
Reference
By Steve Oualline

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 1

The Vim Tutorial and Reference

Table of Contents
Introduction..26
Chapter 1:Basic Editing..28
Chapter 2:Editing a Little Faster..42
Chapter 3:Searching...59
Chapter 4:Text Blocks and Multiple Files...69
Chapter 5:Windows and Tabs..83
Chapter 6:Basic Visual Mode..99
Chapter 7:Commands for Programmers...111
Chapter 8:Basic Abbreviations, Keyboard Mapping, and Initialization
Files...148
Chapter 9:Basic Command-Mode Commands...159
Chapter 10:Basic GUI Usage...168
Chapter 11:Dealing with Text Files...175
Chapter 12:Automatic Completion...192
Chapter 13:Autocommands...202
Chapter 14:File Recovery and Command-Line Arguments.....................211
Chapter 15:Miscellaneous Commands..226
Chapter 16:Cookbook..232
Chapter 17:Topics Not Covered..247
Chapter 18:Complete Basic Editing..260
Chapter 19:Advanced Searching Using Regular Expressions.................290
Chapter 20:Advanced Text Blocks and Multiple Files.............................309
Chapter 21:All About Windows, Tabs, and Sessions...............................335
Chapter 22:Advanced Visual Mode...351
Chapter 23:Advanced Commands for Programmers...............................363
Chapter 24:All About Abbreviations and Keyboard Mapping.................418
Chapter 25:Complete Command-Mode (:) Commands...........................427
Chapter 26:Advanced GUI Commands..453
Chapter 27:Expressions and Functions...487
Chapter 28:Customizing the Editor..533
Chapter 29:Language-Dependent Syntax Options..................................563
Chapter 30:How to Write a Syntax File...586
Appendix A: Installing Vim...598
Appendix B: The <> Key Names...605
Appendix C: Normal-Mode Commands...608
Appendix D: Command-Mode Commands...633
Appendix E: Visual-Mode Commands...734
Appendix F: Insert Mode Commands..738
Appendix G: Option List..742

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 2

The Vim Tutorial and Reference

Appendix H: Vim License Agreement..770
Appendix I: Basic Vim Quick Reference...772
Appendix J: Vim Quick Reference...773

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 3

The Vim Tutorial and Reference

Detail Table of Contents

Introduction...26
Copyright and License Information...26

Part I Tutorial...27

Chapter 1:Basic Editing...28
Before You Start...28
Running Vim for the First Time...29

The vim Command...29
Modes...30

Editing for the First Time..30
Inserting Text...30
Getting Out of Trouble...31
Moving Around...31
Aliases..32

Deleting Characters...33
Undo and Redo...34

Getting Out...35
Discarding Changes...35

Other editing Commands...36
Inserting Characters at the End of a Line...36
Deleting a Line...36
Opening Up New Lines..37

Help..37
Help Language...40
Other Ways to Get Help...40

Using a Count to Edit Faster...41
The Vim Tutorial..41
Summary..41

Chapter 2:Editing a Little Faster...42
Word Movement...42
Moving to the Start or End of a Line...43
Searching Along a Single Line...44
Moving to a Specific Line..45
Telling Where You Are in a File...46

Where Am I?...47

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 4

The Vim Tutorial and Reference

Scrolling Up and Down..48
Deleting Text..49

Deleting Text Without Visual Mode..49
Where to Put the Count (3dw or d3w)...50
Visual vs. Normal Mode Delete..51

Changing Text..51
The . Command..53
Joining Lines..53
Replacing Characters..54
Changing Case...55
Keyboard Macros...55
Digraphs...57

Chapter 3:Searching..59
Simple Searches..59
Search History...60

History Window..61
Searching Options..61

Highlighting...61
Incremental Searches..62
Searching Backward..64
Reverse Search History..64

Changing Direction..65
Basic Regular Expressions...66

The Beginning (^) and End ($) of a Line...66
Match Any Single Character (.)..67
Matching Special Characters...68
Regular Expression Summary..68

Chapter 4:Text Blocks and Multiple Files...69
Cut, Paste, and Copy..69
Character Twiddling..70

More on "Putting"..71
Moving Large Blocks of Text...71
Marks...72

Where Are the Marks?...73
Yanking...74

Normal Mode Yanking..74
Yanking Lines...76

Filtering...76
Normal Mode Filtering...76

Editing Another File...77
The :view Command...77
Dealing with Multiple Files..78

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 5

The Vim Tutorial and Reference

Which File Am I On?..79
Going Back a File...80
Editing the First or Last File..80
Editing Two Files..81

Matching..81

Chapter 5:Windows and Tabs..83
Opening a New Window...83

Vertical Windows..84
Opening Another Window with Another File...86
Quick Split..86
Controlling Window Size..87
Split Summary..87

The :new Command...88
Split and View..88
Changing Window Size..88
Buffers..90

Selecting a Buffer...92
Buffer Types...94
Buffer Options..94
Basic Tabbed Editing...96

Selecting a tab...97
Finding Files with Tabs..98

Editing Multiple Files From the Command Line...98

Chapter 6:Basic Visual Mode..99
Entering Visual Mode..99
The Three Visual Modes..100
Leaving Visual Mode..101
Editing with Visual Mode...102

Deleting Text in Visual Mode...102
Yanking Text...103

Switching Modes..103
Changing Text..103
Joining Lines...103

Commands for Programmers...104
Keyword Lookup...104

Visual Block Mode..105
Inserting Text...105
Changing Text..106
Replacing...108
Shifting...109

Visual Block Help...110

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 6

The Vim Tutorial and Reference

Chapter 7:Commands for Programmers..111
Syntax Coloring..111

Syntax Coloring Problems..112
Matching Pairs...113
Shift Commands...115
Automatic Indentation...116

C Indentation..116
Smartindent...118
Autoindent..118

The = Command..119
Diff Mode...120
Folding...122
Locating Items in a Program...125

Instant Word Searches Including #include Files ([CTRL-I,]CTRL-I)......126
Jumping to a Variable Definition (gd, gD)..126
Jump to Macro Definition ([CTRL-D,]CTRL-D)..127
Displaying Macro Definitions ([d,]d, [D,]D)...127

Shifting a Block of Text Enclosed in {}...129
Indenting a Block Using Visual Mode..130
Finding the man Pages..130
Tags..131

Help and Tags...134
Windows and Tags..134
Finding a Procedure When You Only Know Part of the Name.................135
Shorthand Commands..138

The Care and Feeding of Makefiles...138
Sorting a List of Files...139
Sorting a List in Visual Mode...140

Making the Program..141
The :make command..141
The 'errorfile' Option..145

Searching for a Given String...145
Vim and outside edits...146
Other Interesting Commands..147

Chapter 8:Basic Abbreviations, Keyboard Mapping, and Initialization Files..148
Abbreviations...148

Listing Your Abbreviations...149
Mapping...149
Listing Your Mappings...150
Fixing the Way Delete Works...151
Controlling What the Backspace Key Does..151
Saving Your Setting...152
My .vimrc File..155

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 7

The Vim Tutorial and Reference

Script Files...157

Chapter 9:Basic Command-Mode Commands...159
Entering Command-Line Mode..159
The Print Command...160

Ranges..160
Marks...161
Visual-Mode Range Specification...162

Substitute Command...162
How to Change Last, First to First, Last..164

Reading and Writing Files...165
Saving the file under a new name...165
The :shell Command..165
Printing the file..166

Chapter 10:Basic GUI Usage...168
Starting Vim in GUI Mode...168
Mouse Usage..169

X Mouse Behavior..170
Microsoft Windows Mouse Behavior..170
Special Mouse Usage...170

Tear-Off Menus..171
Toolbar...172
Showing the cursor..173

Chapter 11:Dealing with Text Files...175
Automatic Text Wrapping..175
Text Formatting Commands...177
Justifying Text..179
Fine-Tuning the Formatting...179

The joinspaces Option..179
The formatoptions Option..180
Formatting and numbered list...183

Using an External Formatting Program..183
Basic Spelling..184

Finding Spelling Errors..185
Spelling Language..185
Word Lists..186
Mulitple word lists...187

File Formats...187
Changing How the Last Line Ends..188
Troff-Related Movement..189
Section Moving..190

Defining Sections...191

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 8

The Vim Tutorial and Reference

Encrypting with rot13..191

Chapter 12:Automatic Completion..192
Automatic Completion...192
How Vim Searches for Words..193
Searching Forward..193
Automatic Completion Details...193
Automatic Completion Details...194

The Include Path..194
Specifying a Dictionary..194

Controlling What Is Searched For...195
Tag Search..197
Finding Filenames..199
Line Mode..200
Dictionary and Thesaurus..200
Guessing...200
User and Omni completion...201
Adjusting the Screen..201

Chapter 13:Autocommands...202
Basic Autocommands...202
Groups..203
Events..204
File Patterns...207
Nesting...208
Listing Autocommands..208
Removing Commands..209
Ignoring Events..209

Chapter 14:File Recovery and Command-Line Arguments.............................211
Command-Line Arguments..211
Encryption..212

Switching Between Encrypted and Unencrypted Modes.........................213
Limits on Encryption..213

Executing Vim in a Script or Batch File..214
Additional Command-Line Arguments...214
Foreign Languages..216
Backup Files...217

Skipping the backup..218
Controlling How the File Is Written...218
Basic File Recovery..219
Recovering from the Command Line...221

Advanced Swap File Management...222
Controlling When the Swap File Is Written...222

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 9

The Vim Tutorial and Reference

Controlling Where the Swap File Is Written..223
Advanced File Writing..223
Saving Your Work...224
The :recover Command..224

MS-DOS Filenames..225
readonly and modified Options..225

Chapter 15:Miscellaneous Commands..226
Printing the Character...226
Going to a Specific Character in the File..226
Screen Redraw...227
Sleep..227
Terminal Control..227
Suspending the Editor...227
General Help..227

Other Help Commands...228
Nvi Compatibility Commands..228

Window Size...228
Executing commands without changing things...228
Signs..228
Viewing the Introduction Screen...230
Open Mode...231

Chapter 16:Cookbook..232
Character Twiddling..232
Replacing One Word with Another Using One Command...........................232
Interactively Replacing One Word with Another...233

Alternate Method...234
Moving Text...234
Copying a Block of Text from One File to Another......................................235

Method 1: Two Windows with Traditional Vi-Style Commands...............235
Method 2: Two Windows Using Visual Mode...236
Method 3: Two Different Vim Programs..236

Sorting a Section...237
Sorting the old Vi way:...239

Finding a Procedure in a C Program...239
Drawing Comment Boxes...240
Reading a UNIX man Page...241
Trimming the Blanks off an End-of-Line..242
Oops, I Left the File Write-Protected...243
Changing Last, First to First Last..243
How to Edit All the Files that Contain a Given Word..................................245
Finding All Occurrences of a Word Using the Built-in Search Commands. 246

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 10

The Vim Tutorial and Reference

Chapter 17:Topics Not Covered..247
Interfaces to Other Applications..247

Cscope..247
MzScheme..248
Netbeans..249
OLE...249
Perl...249
Python..250
Python Interface Command Reference..250
Ruby...250
Sniff+...250
Sun Visual WorkShop...251
Tcl...251

Foreign Languages..252
Input Method..254
Arabic...254
Chinese...255
Farsi..255
Hebrew...256
Japanese...257
Korean..257

Binary Files..257
Modeless (Almost) Editing...258
Operating System File Modes..258

Part II Reference...259

Chapter 18:Complete Basic Editing..260
Word Movement...260

Move to the End of a Word...260
Defining What a Word Is..261
Special Characters for the iskeyword Option..262
Other Types of Words...263
There Are "words," and Then There Are "WORDS".................................263

Beginning of a Line..264
Repeating Single-Character Searches...264
Moving Lines Up and Down...265
Cursor-Movement Commands...266
Jumping Around...266

Using the Change List..267
Controlling Some Commands..268
Where Am I, in Detail...268
Scrolling Up...269

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 11

The Vim Tutorial and Reference

Scrolling Up Summary...270
Scrolling Down...271
Define How Much to Scroll..272
Adjusting the View...272
Delete to the End of the Line...275
The C Command...275
The s Command...275
The S Command...276
Deleting Text..276
Insert Text at the Beginning or End of the Line..277
Arithmetic..277
Joining Lines with Spaces..278
Replace Mode..279
Virtual Editing..280

Replace Mode...281
Digraphs...282
Changing Case...282
Other Case-Changing Commands..283
Advanced Undo..284

Undo Time Machine...284
Undo Level...284
Change Sets and Branching...285

Getting Out..288

Chapter 19:Advanced Searching Using Regular Expressions.........................290
Searching Options..290

Case Sensitivity..290
Wrapping..293
Turning Off Search Wrapping..293

Interrupting Searches..294
Instant Word Searches...294
Search Offsets..295

Specifying Offsets..297
Complete Regular Expressions..298

Beginning (\<) and End (\>) of a Word..298
Modifiers and Grouping...299
Special Atoms...300
Character Ranges..301
Character Classes..302
Repeat Modifiers..302
Repeating as Little as Possible...302
Grouping (\(\))..303
The Or Operator (\|)...303
Putting It All Together..304

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 12

The Vim Tutorial and Reference

The 'magic' Option...304
Offset Specification Reference..305
Regular Expressions Reference...305

Simple Atoms...305
Range Atoms..306
Character Classes..306
Patterns (Used for Substitutions)...306
Special Character Atoms..306
Modifiers..307

Chapter 20:Advanced Text Blocks and Multiple Files.....................................309
Additional Put Commands...309
Special Marks..310

Manipulating Marks...311
Multiple Registers..311
Appending Text..313
Special Registers...313

The Black Hole Register (_)...314
The Expression Register (=)..314
The Clipboard Register (*)...315

How to Edit All the Files That Contain a Given Word.................................315
Editing a Specific File..316
Changing the File List..316
The +cmd Argument..317
Defining the file list (arguments)...317

Local and Global argument Lists...319
Global Marks..319
Advanced Text Entry..321

Movement...321
Inserting Text...321
Inserting a Register...323
Leaving Insert Mode..324

The .viminfo File..324
Dealing with Long Lines..327

Wrapping..331
Spelling Dictionaries..332

Dumping dictionaries...333
Customizing the spelling system..333

Chapter 21:All About Windows, Tabs, and Sessions.......................................335
Moving Between Windows...335
Moving Windows Up and Down...336
Performing Operations on All Windows...338
Other Window Commands...339

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 13

The Vim Tutorial and Reference

Editing the Alternate File..340
Split Search..341
Shorthand Commands..341
Other Window Commands...342
Advanced Buffers...342

Adding a Buffer..342
Deleting a Buffer..343
Unloading a Buffer...343
Opening a Window for Each Buffer..343

Windowing Options..344
Controling a split..345

Tabs..346
Executing a command for all tabs..346
Other tab commands..346
Customzing tabs...347
Tabs without the GUI...348

Sessions...348
Specifying What Is Saved in a Session..349

Views..350

Chapter 22:Advanced Visual Mode...351
Visual Mode and Registers..351
The $ Command...351
Repeating a Visual Selection...352
Selecting Objects...353
Moving to the Other End of a Selection..355
Case Changes...357
Joining Lines..357
Formatting a Block...358
The Encode (g?) Command..358
The Colon (:) Commands..359
Pipe (!) Command..359
Select Mode...360

Deleting the Selection..360
Replacing Text..361
Switching Modes..362

Avoiding Automatic Reselection..362

Chapter 23:Advanced Commands for Programmers.......................................363
Removing an Automatic Indentation...364
Inserting Indent...365
Inserting Registers..365
To Tab or Not to Tab..367

Spaces and Tabs...368

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 14

The Vim Tutorial and Reference

Smart Tabs...368
Using a Different Tab Stop...370
No Tabs..370
The 'copyindent' and 'preserveindent' Options..371
The :retab Command..371
Modelines...372

Shift Details...372
Specifying a Formatting Program..373
Formatting Comments...373
Defining a Comment..374
Customizing the C Indentation..376

The 'cinoptions' Options...377
The 'cinwords' Option..383

Advanced Diff Mode...383
Moving from difference to difference..384
Moving Differences Around...384
Customizing Diff...385

Comparing Two Files The Old Fashioned Way...385
Advanced Folding...387

Additional fold commands..389
Toggling folds...390
Enabling and disabling folding..390
Moving around folds..390
Executing a command for all folds...390
Customizing folds...390
Controlling what opens and closes folds..391
Fold Methods..391

The Preview Window...392
Match Options..394
Showing Matches...394
Finding Unmatched Characters...395
Method Location..396
Movement..396

Comment Moves...396
Dealing with Multiple Directories..397

The include Path...399
Checking the Path..400
Defining a Definition..402
Locating include Files..402

Multiple Error Lists...403
Manipulating the quick fix list...403

Local error lists..404
Customizing the :make Command...406

The Error Format...407

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 15

The Vim Tutorial and Reference

The 'switchbuf' Option...410
Customizing :grep..411
Defining How a Tag Search Is Done..411
Customizing the Syntax Highlighting..412

Black-and-White Terminals...412
Color Terminals..413
GUI Definition..414
Combining Definitions..415
Syntax Elements...415
Color Chart...416

The 'syntax' Option..417

Chapter 24:All About Abbreviations and Keyboard Mapping.........................418
Removing an Abbreviation...418

Abbreviations for Certain Modes...419
Listing Abbreviations...419

Forcing Abbreviation Completion..420
Mapping and Modes..420

Other :map Commands..422
Undoing a Mapping..422
Clearing Out a Map..423
Listing the Mappings...423
Recursive Mapping..424

Remapping Abbreviations..424
Language Dependent Mappings..425
The usual suite of commands applies. :map Mode Table.........................425

Chapter 25:Complete Command-Mode (:) Commands....................................427
Advanced Command Entry..427
Editing Commands...427

Other Ways to Specify Ranges...429
Deleting with a Count..430

Copy and Move..431
Inserting Text...432
Printing with Line Numbers..433
Printing with list Enabled..433
Print the Text and Then Some...434
Substitute...434

Substitute flags..437
Making g the Default...437
Global Changes..438
Commands for Programs...438

Include File Searches...438
Jumping to Macro Definitions..439

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 16

The Vim Tutorial and Reference

Split the Window and Go to a Macro Definition......................................440
Listing the Macros...440
Listing the First Definition...440
Override Option (!)...440

Directory Manipulation..441
Current File..442
Advanced :write Commands..443
Updating Files..444
Reading Files...444
Register Execution...444
Simple Edits...445

Shifting...445
Changing Text..445
Entering Insert Mode...445
Joining Lines...445
Yanking Text...445
Putting Text..445
Undo/Redo..446
Marks...446

Miscellaneous Commands..446
The :preserve Command..446
The Shell Commands..446
Shell Configuration..447
Command History..447
Setting the Number of Remembered Commands....................................449
Viewing Previous Error Messages...449
Redirecting the Output..449
Executing a :normal Command..450

Getting Out..450
Write and Quit..450
Advanced Hardcopy...451

Chapter 26:Advanced GUI Commands..453
Switching to the GUI Mode...453
Window Size and Position..453

Microsoft Windows Size and Position Command-Line Specification.......455
Moving the Window...455
Window Size...455
The :winsize Command..455

The 'guioptions'..456
Changing the Toolbar...461
Customizing the Icon...462

Mouse Customization...464
Mouse Focus...464

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 17

The Vim Tutorial and Reference

The 'mousemodel' Option...464
Mouse Configuration..465
Mouse Mapping..465
Double-Click Time..466
Hiding the Mouse Cursor...466

Select Mode...466
Custom Menus...467

Special Menu Names...469
Limiting the Maximum Number of Generated Items...............................469
Toolbar Icons..469
Toolbar Tips..471
Listing Menu Mappings...471
Executing a Menu Item..473
No Remapping Menus..473
Removing Menu Items...473
Tearing Off a Menu..474
Translating A Menu..474

Special GUI Commands...475
The File Browsers..475
Finding a String...477
Replace Dialog Box..477
Finding Help...478
Confirmation..478
Browsing the Options...479

Using the Clipboard...481
Coloring...482
Selecting the Font..482
Customizing Select Mode..483
Mouse Usage in Insert Mode...483
Microsoft Windows - Specific Commands..483
Changing the Appearance of the Cursor...484
Line spacing...485
X Windows System - Specific Commands..486
Selecting the Connection with :shell Commands..486
MS-DOS-Specific Commands...486

Chapter 27:Expressions and Functions...487
Basic Variables and Expressions..487

Special Variable Names...488
Constants...489
Expressions..490
Deleting a Variable...491
Locking and unlocking a variable..491
Locking Arrays and Dictionaries..492

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 18

The Vim Tutorial and Reference

Entering Commands..492
How to Experiment..493

The :echo Statement..493
Echoing in Color...494

Printing error messages using :echoerr..494
Echoing message...495
Control Statements..495

The :if Statement..495
Looping...496
The :for Loop..496
The :execute Command..497

Exceptions..497
Defining Your Own Function..499

Using a Function..500
Function Options..500
Listing Functions..501
Deleting a Function..502

Running Functions in a Sandbox...502
Debugging a Function..502

Other debugging commands..505
Redrawing the screen..506

Profiling a function..506
Other Profile Commands..508
Deleting Profile Items..508

User-Defined Commands...508
The Operator Function..510
Built-In Functions..511
Obsolete Functions..531
Plugins and other scripts...531

Chapter 28:Customizing the Editor...533
Setting..533

Boolean Options...533
Numeric Options..534
String-Related Commands...535

Another Set Command...536
Other :set Arguments...536
Chaining Commands..537
Automatically Setting Options in a File...537

Local .vimrc Files...538
Customizing Keyboard Usage..539

Microsoft Windows...539
Customizing Keyboard Mappings..540

Confirmation..541

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 19

The Vim Tutorial and Reference

Customizing Messages...541
Showing the Mode...542
Showing Partial Commands...542
Short Messages..543
The 'terse' Option...544
The "File Modified" Warning..544
Error Bells..544
Status Line Format..545
Rulers...548
Reporting Changes..548
Help Window Height..549
Preview Window Height...549
Defining How 'list' Mode Works...549
Changing the line number size..550
Changing the Highlighting..550
The 'more' Option..552
Number Format...552
Restoring the Screen...552
Pasting Text..552
Wildcards...553
Customizing Behavior of the Screen Movement Commands.......................557
File Writing Options...557
Memory Options...557
Function Execution Options...557
Terminal Options..558

Terminal Name...558
Lazy Redraw...558
Internal Termcap..558
Fast Terminals..558
Mouse Usage Inside a Terminal...558
How Much to Scroll..559

Some More Obscure Options...559
Compatibility..559
Weirdinvert...560
Debugging..560

Production..561
Keyboard Mapping...561
Encoding..562
Macintosh Silliness..562
Obsolete Options..562
Legacy Options..562

Chapter 29:Language-Dependent Syntax Options..563
Abel..563

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 20

The Vim Tutorial and Reference

Ada...563
Ant..564
Apache...565
Assembly Language...565
ASP...566
BaaN..566
Basic...566
C and C++...566

Doxygen..569
CH..569
Chill..569
Changelog..570
COBOL...570
Cold Fusion..570
CSH / TCSH...570
CYNLIB..570
CWEB...570
Desktop..570
Dircolors..571
DocBook...571
DosBatch..571
Doxygen...571
DTD..571
Eiffel...572
ERLANG...572
FlexWiki...573
Form...573
Fortran...573
FVWM..573
Haskell...574
HTML...574
Inform..574
IDL (Interface Definition Language)..575
Java..575
Lace..576
Lex...576
Lisp..576
Lite...576
LPC...577
LUA..577
Mail..577
Make..577
Maple...577
Mathematica..578

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 21

The Vim Tutorial and Reference

Moo..578
MSQL...578
NCF..578
Nroff...579
OCAML...579
Papp...579
Pascal...579
Perl...580
Php3/ Php4...580
PlainTex..581
PPWizard..581
Phtml..581
PostScript...581
Printcap and Termcap..582
Progress...582
Python..582
Quake...582
ReadLine..582
Rexx...583
Ruby...583
Scheme...583
SDL..583
Sed...583
SGML...584
Shell...584
Speedup...584
TCsh...584
TeX...584
TinyFugue..585
Vim...585
XF86Config..585
Xml...585

Chapter 30:How to Write a Syntax File...586
Basic Syntax Commands..586
Defining Matches...587
Defining Regions..587
Nested Regions..588
Multiple Group Options...589

Transparent Matches...590
Other Matches...591
Match Groups..591
Match Offsets...592
Clusters..593

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 22

The Vim Tutorial and Reference

Including Other Syntax Files...593
Listing Syntax Groups..594
Synchronization...594
Adding Your Syntax File to the System..596
Option Summary..596

Appendix A: Installing Vim..598
UNIX..598

Unpacking the sources...598
Running configure..598
Dealing with common installation problems..601
Installation for Each UNIX User..603

Installing on Microsoft Windows...603
Common Installation Problems and Questions..603

I Do Not Have Root Privileges. How Do I Install Vim? (UNIX)................603
The Colors Are Not Right on My Screen. (UNIX)....................................604
I Am Using RedHat Linux. Can I Use the Vim That Comes with the
System?..604
How Do I Turn Syntax Coloring On? (All)..604
What Is a Good vimrc File to Use? (All)...604

Appendix B: The <> Key Names...605
The Function Keys...605
Line Endings..605
Editing Keys...605
Arrow Keys...605
Keypad Keys...605
VT100 Special Keys..605
Printable Characters..606
Other Keys...606
Termcap Entries...606
Mouse Actions..606
Modifiers..606
Mouse Modifiers..606

Appendix C: Normal-Mode Commands...608
Motion Commands...631

Appendix D: Command-Mode Commands...633
:map Mode Table..732

Modes...733

Appendix E: Visual-Mode Commands..734
Visual Block Commands...736

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 23

The Vim Tutorial and Reference

Starting Select Mode...736
Select Mode Commands..736

Appendix F: Insert Mode Commands..738

Appendix G: Option List...742
- A -...742
- B -...743
- C -...744
- D -...746
- E -...747
- F-..748
- G -...750
- H -..751
- I -..751
- J -..753
- K -...753
- L -...753
- M -..754
- N -..756
- O -...756
- P -...757
- Q -...758
- R -...758
- S -...759
- T -...763
- U -..766
- V -...766
- W -..767

Appendix H: Vim License Agreement..770
Author's Note...771

Appendix I: Basic Vim Quick Reference..772

Appendix J: Vim Quick Reference..773
Minimum Command Set. Learn This First...773

Editing Commands...773
Getting Out...773
Note: On Linux and Unix you must enable the Vim command set...........773

Vertical Movement / Scrolling...774
Screen Location...775
Screen Redrawing..776
Virtual movement...777

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 24

The Vim Tutorial and Reference

Commands for English Text...778
Text Movement...778

Horizontal Movement..779
Changing text...781
Windows...784

Others...787
Multiple Files...788
Searching...789
Search Pattern Reference..790

Simple atoms..790
Character Classes..790
Modifiers..791
Grouping and Repeats..791
Sets of Characters..791
Anchors..792
Repeats and Wildcards...792
Choices...793
Zero Width Conditionals..793

For programmers...794
Program searches..795
Text selection...797
Display options...799
Diff mode..800
Folding...801
Misc commands...802

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 25

The Vim Tutorial and Reference

Introduction

I'm not sure this book is a labor of love or a love of labor. It certainly is the
longest book I've written. When I first started using Vim I noticed that there
were a “few” commands that Vim had that it's the old Vi editor didn't have. So I
decided to write a book which would serve as documentation to this wonderful
editor.

As part of my preparation I checked existing books for the Vi editor. They
were about 150-200 pages long, so I figured that my book would turn out about
250-300 pages. Turns out that Vim has a lot more features than expected and as
you can see the book is over 800 pages.

The goal of this book is to provide a tutorial to show the reader how to use
the power of Vim to solve common problems. Also the book attempts to show
you visually the operation of very major command and option, and to fully
document the rest.

Unfortunately, I've had to impose some limits on the book. This book does
not cover editing in any language but English mostly due to the fact that English
is the only language I know. Also it does not cover the interfaces to external
tools which I do not posses.

Copyright and License Information

This book makes use of material from The Vim (Vim Improved) Book
published by Newriders and copyright 2001 which was published under the
Open Publication License. (http://www.opencontent.org/openpub/).

This book is copyrighted by Steve Oualline and published under the same
license. Basically what license states is that you can use the material in this book
for your own use as long as you give credit to the sources (this book and the
orginal Vim (Vi Improved) Book.)

A downloadable version of this book is available from the author's web site
(http://www.oualline.org.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 26

http://www.oualline.org/

The Vim Tutorial and Reference

Part I
Tutorial

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 27

1

2

The Vim Tutorial and Reference

Chapter 1: Basic Editing

The Vim editor is on of the most powerful text editors around. It is also
extremely efficient, enabling the user to edit files with a minimum of keystrokes.
This power and functionality comes at a cost, however: when getting started,
users face a steep learning curve. This chapter teaches you the basic set of 10
Vim commands you need to get started editing. In this chapter, you learn the
following:

● The four basic movement commands

● How to insert and delete text

● How to get help (very important)

● Exiting the editor

After you get these commands down pat, you can learn the more advanced
editing commands.

Before You Start

If you have not installed Vim, you need to read Appendix A: Installing Vim
and install the editor. (If Vim came with your Linux system, read Appendix A:
Installing Vim because you may not get the full editor by default.)

If you are running on UNIX or Linux, execute the following command:

$ touch ~/.vimrc

By creating a ~/.vimrc, you tell Vim that you want to use it in Vim mode. If
this file is not present, Vim runs in Vi-compatibility mode and you lose access to
many of the advanced Vim features. (Most Linux distributions now come with
system initialization files that turn on Vim's advanced features. However, you
can't count on this.)

You also can enable the advanced features from within Vim at any time
with this command:

:set nocompatible

You can also use the command:

:set nocp

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 28

The Vim Tutorial and Reference

Note: Both these commands have an implied <enter> at the end. Also the
'compatible' option like most Vim options has a long form
('compatible') and a short form ('cp'). For clarity the long form is used in
the examples in this book.

If you are running on Microsoft Windows, the installation process creates
the Microsoft Windows version of this file, _vimrc, for you.

Running Vim for the First Time

To start Vim, enter this command:

$ gvim file.txt

Note that the $ is the default UNIX command prompt. Your prompt might
differ. If you are running Microsoft Windows, open an MS-DOS prompt window
and enter this command:

C:> gvim file.txt

(Again, your prompt may differ.) In either case, Vim starts editing a file
called file.txt. Because this is a new file, you get a blank window. Figure 1-1
shows what your screen will look like. The tilde (~) lines indicate lines not in the
file. In other words, when Vim runs out of file to display, it displays tilde lines. At
the bottom of a screen, a message line indicates the file is named file.txt and
shows that you are creating a new file. The message information is temporary
and other information overwrites it when you type the first character.

~
~
~
~
~
"file.txt" [New File]

Figure 1-1: Initial Vim window.

The vim Command

The gvim command causes the editor to create a new window for editing.
If you use the command vim, the editing occurs inside your command window. In
other words, if you are running inside an xterm, the editor uses your xterm
window. If you are using an MS-DOS command prompt window under Microsoft
Windows, the editing occurs inside the window. Figure 1-2 shows a typical
MS-DOS command prompt window.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 29

The Vim Tutorial and Reference

Figure 1-2:Editing with the vim command in an MS-DOS window.

Modes

The Vim editor is a modal editor. That means that the editor behaves
differently, depending on which mode you are in. If the bottom of the screen
displays the filename or is blank, you are in normal mode. If you are in insert
mode, the indicator displays INSERT; and if you are in visual mode, the
indicator shows VISUAL.

Editing for the First Time

The next few sections show you how to edit your first file. During this
process, you learn the basic commands that you have to know to use Vim. At the
end of this lesson, you will know how to edit--not fast, not efficiently, but enough
to get the job done.

Inserting Text

To enter text, you need to be in insert mode. Type i, and notice that the
lower left of the screen changes to INSERT (meaning that you are in insert
mode).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 30

The Vim Tutorial and Reference

Now type some text. It will be inserted into the file. Do not worry if you
make mistakes; you can correct them later. Enter the following programmer's
limerick:

A very intelligent turtle
Found programming UNIX a hurdle

The system, you see,
Ran as slow as did he,

And that's not saying much for the turtle.

After you have finished inserting, press the <Esc> key. The INSERT
indicator goes away and you return to normal mode. (The indicator for this
mode is a blank indicator.) Your screen should now look something like Figure
1-3.

A very intelligent turtle
Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying much for the turtle.
~
~
~
~

Figure 1-3: Screen after the text has been inserted.

Getting Out of Trouble

One of the problems for Vim novices is mode confusion, which is caused by
forgetting which mode you are in or by accidentally typing a command that
switches modes. To get back to normal mode, no matter what mode you are in,
press the <Esc> key.

Moving Around

After you return to normal mode, you can move around by using these
keys: h (left), j (down), k (up), and l (right). At first, it may appear that these
commands were chosen at random. After all, who ever heard of using l for
right? But actually, there is a very good reason for these choices: Moving the
cursor is the most common thing you do in an editor, and these keys are on the
home row of your right hand. In other words, these commands are placed where
you can type them the fastest.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 31

The Vim Tutorial and Reference

Note You can also move the cursor by using the arrow keys. If you do,
however, you greatly slow down your editing--because to press the arrow
keys, you must move your hand from the text keys to the arrow keys.
Considering that you might be doing it hundreds of times an hour, this can
take a significant amount of time. If you want to edit efficiently, use h, j, k,
and l.

Also, there are keyboards which do not have arrow keys, or which locate
them in unusual places; therefore, knowing the use of these keys helps in
those situations.

One way to remember these commands is that h is on the left, l is on the
right, j is a hook down, and k points up. Another good way to remember the

commands is to copy this information on a Post-It Note and put it on the edge of
your monitor until you get used to these commands. (A quick reference for
novices can be found in Appendix I: Basic Vim Quick Reference.)

Is there some way of doing the reference above automatically?

Aliases

The alias for the h command include <Left>, <BS>, CTRLH and CTRLK.
The aliases for j are <Down>, <NL>, CTRLJ, and CTRLN. For k we have <Up>
and CTRLP. Finally for l we can also use <Right> and <Space>.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 32

h

k

j

l

The Vim Tutorial and Reference

Deleting Characters

To delete a character, move the cursor over it and type x. (This is a
throwback to the old days of the typewriter, when you deleted things by typing
xxxx over them.) Move the cursor to the beginning of the first line, for example,
and type xxxxxxx (seven x's) to delete the first seven characters on the line.
Figure 1-4 shows the result. To enter a correction, type iA young <Esc>. This
begins an insert (the i), inserts the words A young, and then exits insert mode
(the final <Esc>). Figure 1-5 shows the results.

 intelligent turtle
Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying much for the turtle.
~
~
~
~

Figure 1-4: Screen after delete (xxxxxxx).

A young intelligent turtle
Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying much for the turtle.
~
~
~
~

Figure 1-5: Note Result of the insert.

Note: Vim is a text editor. By default, it does not wrap text. If you type
past the edge of the screen, the line will appear to wrap, but what you
really have is a long line wrapped so that Vim can display it. If you want
multiple lines you must end each line by pressing the <Enter> key. If you
don't and just keep typing when you reach the right margin, all you will do
is insert a very long line into the editor. You will not automatically go to
the next line. To do so, you need to press the <Enter> key. (This is the
default mode of operation. You can configure the Vim editor to word wrap,
however, as discussed in Chapter 11: Dealing with Text Files)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 33

The Vim Tutorial and Reference

Undo and Redo

Suppose you delete too much. Well, you could type it in again, but an
easier way exists. The u command undoes the last edit. Take a look at this in
action. Move the cursor to the A in the first line. Now type xxxxxxx to delete
A young. The result is as follows:

intelligent turtle

Type u to undo the last delete. That delete removed the g, so the undo
restores the character.

g intelligent turtle

The next u command restores the next-to-last character deleted:

ng intelligent turtle

The next u command gives you the u, and so on:

ung intelligent turtle
oung intelligent turtle
young intelligent turtle
 young intelligent turtle
A young intelligent turtle

If you undo too many times, you can press CTRLR (redo) to reverse the
preceding command. In other words, it undoes the undo. To see this in action,
press CTRLR twice. The character A and the space after it disappear.

 young intelligent turtle

There's a special version of the undo command, the U (undo line) command.
The undo line command undoes all the changes made on the last line that was
edited. Typing this command twice cancels the preceding U.

Note: If you are an old Vi user, note that the multilevel undo of Vim differs
significantly from the single level available to a Vi user.

Note: Throughout this book we assume that you have turned off Vi
compatibility. See the first section of this chapter for more information. If
compatibility is turned on the u command provides one level of undo.

Lets see how the U command works. We'll start with the line:

A very intelligent turtle

Type xxxxx to delete “very<space>”.

A intelligent turtle

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 34

The Vim Tutorial and Reference

Move over to the “t” in “turtle and delete “turtle” with the command xxxxx.

A intelligent

Restore line with the U command.

A very intelligent turtle

Second U undoes the preceding U.

A intelligent

Getting Out

To exit, use the ZZ command. This command writes the file (if modified)
and exits. Unlike many other editors, Vim does not automatically make a backup
file. If you type ZZ, your changes are committed and there's no turning back.
(You can configure the Vim editor to produce backup files, as discussed in
Chapter 14: File Recovery and Command-Line Arguments)

Discarding Changes

Sometimes you will make a set of changes and suddenly realize you were better
off before you started. Don't worry; Vim has a "quit-and-throw-things-away"
command. It is :q!. For those of you interested in the details, the three parts of
this command are the colon (:), which enters command mode; the q command,
which tells the editor to quit; and the override command modifier (!). The
override command modifier is needed because Vim is reluctant to throw away
changes. Because this is a command mode command, you need to type <Enter>
to finish it. (All command mode commands have <Enter> at the end. This is not
shown in the text.) If you were to just type :q, Vim would display an error
message and refuse to exit:

No write since last change (use ! to override)

By specifying the override, you are in effect telling Vim, "I know that what
I'm doing looks stupid, but I'm a big boy and really want to do this."

Note: The :q command can also be written as :quit. From on when we
have a command with more than one spelling we will show the alternate
spellings in parenthesis after the first mention of the command. For
example: “To quit use the :q (:quit) command. I say again use :q to get
out.”

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 35

The Vim Tutorial and Reference

Other editing Commands

Now that you have gone through a few simple commands, it is time to
move on to some slightly more complex operations.

Inserting Characters at the End of a Line

The i command inserts a character before the character under the cursor.
That works fine; but what happens if you want to add stuff to the end of the line?
For that you need to insert text after the cursor. This is done with the a (append)
command.

For example, to change the line

and that's not saying much for the turtle.

to

and that's not saying much for the turtle!!!

move the cursor over to the dot at the end of the line. Then type x to delete
the period. The cursor is now positioned at the end of the line on the e in turtle:

and that's not saying much for the turtle

Now type a!!!<Esc> to append three exclamation points after the e in
turtle:

and that's not saying much for the turtle!!!

Deleting a Line

To delete a line, use the dd command, which deletes the line on which the
cursor is positioned. To delete the middle line of this example, for instance,
position the cursor anywhere on the line The system, you see, as shown in
Figure 1-6. Now type dd. Figure 1-7 shows the results.

A very intelligent turtle
Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying much for the turtle!!!
~
~
~

Figure 1-6: Screen before dd command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 36

The Vim Tutorial and Reference

A very intelligent turtle
Found programming UNIX a hurdle
 Ran as slow as did he,
And that's not saying much for the turtle!!!
~
~
~
~

Figure 1-7 Screen after dd command.

Opening Up New Lines

To add a new line, use the o (lower case)command to open up a new line
below the cursor. The editor is then placed in insert mode.

Suppose, for example, that you want to add a line to the sample text just
below the third line. Start by leaving the cursor on the Ran as slow. . . line,
as seen in Figure 1-7. Now type o to open up a new line. Enter the text for the
line and then press <Esc> to end insert mode. Figure 1-8 shows the results. If
you want to open a line above the cursor, use the O (uppercase) command.

A very intelligent turtle
Found programming UNIX a hurdle
 Ran as slow as did he,

And that's not saying much for the turtle!!!
~
~
~
 INSERT

Figure 1-8: Screen after using the o command.

Help

Finally, there's one more important command, the :help (:h, <F1>, <Help>)
command. To get help, enter the following:

:help

(Remember the implied <Enter> for command-mode commands.) This
displays a general help window, as seen in Figure 1-9.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 37

The Vim Tutorial and Reference

help.txt For Vim version 6.3. Last change: 2004 May 04

 VIM main help file
 k
 Move around: Use the cursor keys, or "h" to go left, h l
 "j" to go down, "k" to go up, "l" to go right. j
Close this window: Use ":q<Enter>".
 Get out of Vim: Use ":qa!<Enter>" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag between |bars| and hit CTRL].
 With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
 Doubleclick the left mouse button on a tag between |bars|.
 Jump back: Type CTRLT or CTRLO (repeat to go further back).

Get specific help: It is possible to go directly to whatever you want help
 on, by giving an argument to the ":help" command |:help|.
 It is possible to further specify the context:
 helpcontext
 WHAT PREPEND EXAMPLE ~
 Normal mode commands (nothing) :help x
help.txt [help][RO]

[No File] [+]

Figure 1-9: Help screen.

If you don't supply a subject, :help displays the general help window. The
creators of Vim did something very clever (or very lazy) with the help system.
They made the help window a normal editing window. You can use all the normal
Vim commands to move through the help information. Therefore h, k, j, and l
move left, up, down, right, and so on.

To get out of the help system, use the same command you use to get out of
the editor: ZZ.

As you read the help text, you will notice some text enclosed in vertical
bars (for example, |:help|). If you are using the GUI this text is colored cyan.1
This indicates a hyperlink. If you position the cursor anywhere between the bars
and press CTRL] (jump to tag), the help system takes you to the indicated
subject. (For reasons not discussed here, the Vim terminology for a hyperlink is
tag. So CTRL] jumps to the location of the tag given by the word under the
cursor.)

1 It's still enclosed in vertical bars but they are colored white, the same color as the background
which makes them very hard to see.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 38

The Vim Tutorial and Reference

After a few jumps, you might want to go back. CTRLT (pop tag) takes you
back to the preceding screen. Or in Vim terms, it "pops a tag off the tag stack."
At the top of this screen, there is the notation *help.txt*. This is used by the
help system to define a tag (hyperlink destination). Chapter 7: Commands for
Programmers explains tags in detail. To get help on a given subject, use the
following command:

:help subject

To get help on the x command, for example, enter the following:

:help x

To find out how to delete text, use this command:

:help deleting

To get a complete index of what is available, use the following command:

:help index

When you need to get help for a control character command (for example,
CTRLA), you need to spell it with the prefix CTRL.

:help CTRLA

The Vim editor has many different modes. By default, the help system
displays the normal-mode commands. For example, the following command
displays help for the normal-mode CTRLH command:

:help CTRLH

To identify other modes, use a mode prefix. If you want the help for the
insert-mode version of this command, prefix the key with i_.This gives you the
following command:

:help i_CTRLH

The table below lists several other mode prefixes.

When you start the Vim editor, you can use several command-line options.
These all begin with a dash (-).To find what the t command-line option does, for
example, use the command

:help t

The Vim editor has a number of options that enable you to configure and
customize the editor. If you want help for an option, you need to enclose it in
single quotation marks. To find out what the number option does, for example,
use the following command:

:help 'number'

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 39

The Vim Tutorial and Reference

The following table summarizes the special prefixes.

What Prefix Example

Normal-mode commands (nothing) :help x

Control Character CTRL :help CTRLu

Visual-mode commands v_ :help v_d

Insert-mode commands i_ :help i_<Esc>

ex-mode commands : :help :quit

Command-line edit c_ :help c_

Vim command arguments :help r

Options ' (both ends) :help 'nowrap'

Special keys are enclosed in angle brackets. To find help on the up-arrow
key, for instance, use this command:

:help <Up>

Appendix B: The <> Key Names provides a complete list of the key names.

Help Language

By default Vim will set the language for the help file to the current
language of your system. (From the locale settings.) If you wish to use another
language, use the 'helplang' ('hlg') option. This option contains a series of
languages to search for help text.

Note: Vim always searches English as a last resort.

So to search for help in German, Italian, and then English use the
command:

:set helplang=de,it

Other Ways to Get Help

You can get to the help screen by pressing the <F1> key. This displays the
general help screen, and you can navigate from there. If your keyboard has a
<Help> key, you can use it as well.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 40

The Vim Tutorial and Reference

Using a Count to Edit Faster

Suppose you want to move up nine lines. You can type kkkkkkkkk or you
can enter the command 9k. In fact, you can precede almost all the movement
commands with a number. Earlier in this chapter, for instance, you added three
exclamation points to the end of a line by typing a!!!<Esc>. Another way to do
this is to use the command 3a!<Esc>. The count of 3 tells the a command to
insert what follows (!) three times. Similarly, to delete three characters, use the
command 3x.

The Vim Tutorial

The UNIX version of the Vim editor comes with an interactive tutorial.
Lesson 1 covers many of the commands described in this chapter. To invoke the
tutorial on UNIX, use the following command:

$ vimtutor

The tutorial starts by explaining the movement commands so that you can
move through the tutorial. After that it gradually introduces more complex
commands. If you are on a non-Unix system, execute the command

:help tutor

for information on how to get the Vim tutorial working on your system (it
isn't difficult) .

Summary

You now know enough to edit with Vim. Not well or fast, but you can edit.
Take some time to practice with these commands before moving on to the next
chapter. After you absorb these commands, you can move on to the more
advanced commands that enable you to edit faster and easier.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 41

The Vim Tutorial and Reference

Chapter 2: Editing a Little Faster

The basic commands covered in Chapter 1: Basic Editing enable you to edit
text. This chapter covers some additional commands that enable you to edit
more efficiently. These commands include the following:

● Additional movement commands

● Quick searches along a single line

● Additional delete and change commands

● The repeat command

● Keyboard macros (how to record and play back commands)

● Digraphs

One of the things I noticed as I wrote this chapter is the amazing number
of different ways you can move through a file. Although I have been using Vi and
now Vim as my main editor for the past 15 years, I have never bothered to learn
all of them. I get by with the 10% I like.

There are lots of different ways of doing things in Vim. This chapter
discusses one useful selection of all the possible commands.

Word Movement

Let's start with movement. To move the cursor forward one word, use the w
command. The b command moves backward one word. Like most Vim
commands, you can use a numeric prefix to move past multiple words. For
example, 4b moves back four words. Figure 2-1 shows how these commands
work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 42

The Vim Tutorial and Reference

Figure 2-1: Word movement.

Moving to the Start or End of a Line

The $ command moves the cursor to the end of a line. Actually, a bunch of
keys map to the "end-of-line" command. The Vim names for these keys are $,
<End>, and <kEnd>. (The <kEnd> key is Vim's name for the keypad End key.)

The $ command takes a numeric argument as well. If present, it causes
the editor to move to the end of the next line. For example, 1$ moves you to the
end of the first line (the one you're on), 2$ to the end of the next line, and so on.
Figure 2-2 illustrates how this command works.

Figure 2-2 The $ command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 43

Now is the time for all good men to come to

b4b

w w w 2w 3w

ACHTUNG1 ALLES LOOKENSPEEPERS!
Das computermachine ist nicht fuer gefingerpoken
und mittengrabben. Ist easy schnappen der
springenwerk, blowenfusen und poppencorken mit
spitzensparken. Ist nicht fuer gewerken bei das
dumpkopfen. Das rubbernecken sichtseeren keepen
das cotten-pickenen hans in das pockets muss;
relaxen und watchen das blinkenlichten.

$

2$

3$

4$

The Vim Tutorial and Reference

The ^ command moves to the first nonblank character of the line. The
<Home> or <kHome> key moves to the first character of the line, as seen in Figure
2-3. (The 0 [zero] command does the same thing.) Like every other command
previously discussed, these commands (except 0 [zero]) can take a numeric
argument. They do not do anything with it, but you can specify it if you want to.

Figure 2-3: The ^ and <Home> commands.

Searching Along a Single Line

Moving is the most common editing activity you do. One of the most useful
movement commands is the single-character search command. The command fx
(forward search) searches the line for the single character x. Suppose, for
example, that you are at the beginning of the following line:

To err is human. To really foul up you need a computer.

Suppose you want to go to the h of human. Just execute the command fh
and the cursor will be positioned over the h:

To err is human. To really foul up you need a computer.

To go to the end of the word “really”, use the command fy. You can specify
a count; therefore, you can space forward five words by using the command
5f<Space>. Note: this only moves five space characters, not five words. If there
are multiple spaces between words, this will not move five words!

To err is human. To really foul up you need a computer.

The F command searches to the left. Figure 2-4 shows the effect of the f
and F commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 44

ACHTUNG1 ALLES LOOKENSPEEPERS! command

^

<Home>
<kHome>

The Vim Tutorial and Reference

Figure 2-4: Operation of the f and F commands

The tx (search `til) command works like the fx command, except it stops
one character before the indicated character. The backward version of this
command is Tx. Figure 2-5 shows how these commands work.

Figure 2-5:Operations of the f and F commands.

Sometimes you will start a search, only to realize that you have typed the
wrong command. You type f to search backward, for example, only to realize
that you really meant F. To abort a search, press <Esc> as the search key. So
f<Esc> is an aborted forward search. (Note: <Esc> cancels most operations, not
just searches.)

Moving to a Specific Line

If you are a C or C++ programmer, you are familiar with error messages
such as the following:

prog.c:3: 'j' undeclared (first use in this function)

This tells you that you might want to fix something on line 3. So how do
you find line 3?

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 45

To err is human, To really foul up you need a computer.

2fofl

2Fa

3fe

Fy

fi

To err is human, To really foul up you need a computer.

ti tl 2to 3te

Ty2Ta

The Vim Tutorial and Reference

One way is to do a 9999k to go to the top of the file and a 2j to go down
two lines. It is not a good way, but it works. A much better way of doing things
is to use the G command. With an argument, this command positions you at the
given line number. For example, 3G puts you on line 3. (Likewise, use the 1G
command to go to the top of the file rather than 9999k.) With no argument, it
positions you at the end of the file. (For a better way of going through a
compiler's error list, see Chapter 7: Commands for Programmers, for information
on the :make and :clist related commands.)

Another way to move through the file is with the % command. The 50%
command moves you through the file, 25% a quarter, 90% ninety percent, etc. (%
by itself finds the matching {} which is a different command.)

Telling Where You Are in a File

How do you really know where you are in a file? You can do so in several
ways. The first is to turn on line numbering with the following command (see
Figure 2-6):

:set number

This causes line numbers to appear at the beginning of each line.

1176 Ode to a maintenance programmer
1177 ===============================
1178
1179 Once more I travel that lone dark road
1180 into someone else's impossible code
1181 Through "if" and "switch" and "do" and "while"
1182 that twist and turn for mile and mile
1183 Clever code full of traps and tricks
1184 and you must discover how it ticks
1185 And then I emerge to ask anew,
1186 "What the heck does this program do?"
1187
1188 ****

Figure 2-6: Window with numbering turned on.

Note: These line numbers are for your information only; they are not
written into the file when you exit.

The Vim editor is highly configurable and has a huge number of options.
You can use the :set command in many different ways, which are described in
Chapter 28: Customizing the Editor. The 'number' option is a boolean option,
meaning that it can be on or off. To turn it on, use this command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 46

The Vim Tutorial and Reference

:set number

To turn it off, use this command:

:set nonumber

The numbers disappear from your screen. Figure 2-7 shows what happens
we you do a :set nonumber.

Ode to a maintenance programmer
===============================

Once more I travel that lone dark road
into someone else's impossible code
Through "if" and "switch" and "do" and "while"
that twist and turn for mile and mile
Clever code full of traps and tricks
and you must discover how it ticks
And then I emerge to ask anew,
"What the heck does this program do?"

Figure 2-7 Results of :set nonumber.

Where Am I?

The CTRLG command displays a status line that indicates where you are in
the file. For example:

"c2.txt" [Modified] line 81 of 153 52% col 1

This indicates that you are editing a file called c2.txt, and that it has been
modified since the editing started. The cursor is positioned on line 81 out of a
total of 153, or about 52% of the way through the file. The cursor is currently
sitting in column 1.

Sometimes you will see a split column number (for example, col 29).This
indicates that the cursor is positioned on character 2. But because character
one is a tab, the screen column is 9. Figure 2-8 shows the results of a typical
CTRLG command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 47

The Vim Tutorial and Reference

to open up the packing crate and find
the manual. (What did they think we were
reading anyway?)

(Head)Dumb programmer stories

 Ode to a maintenance programmer

Once more I travel that lone dark road
into someone else's impossible code
Through "if" and "switch" and "do" and "while"
that twist and turn for mile and mile

"j.txt" [Modified] line 186 of 11916%col 29

Figure 2-8 The CTRL-G command.

Scrolling Up and Down

The CTRLU command scrolls up half a screen of text. (Up in this case is
backward in the file; the text moves down on the screen. Don't worry if you have
a little trouble remembering which end is up. Most programmers have the same
problem.) The CTRLD command scrolls you down half a screen. Figure 2-9
shows how these two commands work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 48

 A dozen, a gross, and a score,
 Plus three times the square root of four,
 Divided by seven,
 Plus five time eleven,
 Equals nine squared plus zero, no more.

 I really hate this damned machine

 Equals nine squared plus zero, no more.

 I really hate this damned machine
 I wish that they would sell it.
 It never does quite what I want

 But only what I tell it.

 A dozen, a gross, and a score,
 Plus three times the square root of four,
 Divided by seven,
 Plus five time eleven,
 Equals nine squared plus zero, no more.

 I really hate this damned machine

 101 blocks of crud on the disk! ...

 A dozen, a gross, and a score,
 Plus three times the square root of four,
 Divided by seven,
 Plus five time eleven,
 Equals nine squared plus zero, no more.

CTRLU

CTRLD

3

The Vim Tutorial and Reference

Figure 2-9: Results of the CTRLU and CTRLD commands.

Deleting Text

As you learned in Chapter 1: Basic Editing, the dd command deletes a line.
But suppose you want to delete part of a line, say a word. The way to do that is
to start visual mode with the v command. You can now highlight the text you
want to delete with the cursor movement commands. We want to delete a word,
so we pass over it with the w command. Unfortunately this leaves us with the
cursor positioned on the first character of the next word. We don't want to
delete that so we backup with the left (h) command.

Finally we need to tell Vim what to do with the text, so we enter the d
command to delete it. Figure 2-10 shows the steps we used:

This is a test

This is a test

This a test.

Figure 2-10: Visual mode and delete

Note: To get help about what the delete (d) command does in visual mode
use the command:

:help v_d

As we will see in future sections the visual mode gives you a very powerful
way of dealing with large blocks of text.

Deleting Text Without Visual Mode

It is possible to delete sections of text without using the visual mode. The
advantage of doing things non-visually is that you save a single keystroke. The
disadvantage is that you really have to know what you are doing as there is no
visual feedback to show you what's going on.

To delete a word in normal mode you use the command dw. You may
recognize the w command as the move word command. In fact, the d command
may be followed by any motion command, and it deletes from the current
location to the place where the cursor winds up. (Therefore, we say the syntax
of the d command is dmotion.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 49

Type v to start visual.

Move over word with w.
Backup one character with h

Press d to delete

The Vim Tutorial and Reference

The 3w command, for example, moves the cursor over three words. The
d3w command deletes three words, as seen in Figure 2-11. (You can write it as
d3w or 3dw; both versions work the same.)

Figure 2-11: The d3w command.

The $ command moves to the end of a line. The d$ command deletes from
the cursor to the end of the line, as seen in Figure 2-12. A shortcut for this is the
D command.

Figure 2-12: The d$ command.

Where to Put the Count (3dw or d3w)

The commands 3dw and d3w delete three words. If you want to get really
picky about things, the first command, 3dw, deletes one word three times; the
command d3w deletes three words once. This is a difference without a
distinction. You can actually put in two counts, however (for example, 3d2w).
This command deletes two words, repeated three times, for a total of six words.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 50

To err is human, to really fowl up you need a computer

To err is human, to realyou need a computer

3dw

To err is human, to realyou need a computer

To err is human, to real

d$

($ - Go to the end of the line)

The Vim Tutorial and Reference

Visual vs. Normal Mode Delete

The visual method of deleting things lets you see exactly what you are
going to delete before you delete it. You can also make adjustments before you
delete the text. This makes things much easier for large complex deletes.

On the other hand, the normal mode delete provides no feedback. You type
d and a motion command and hope you did the right thing. (If you didn't there's
always the undo command.) The advantage of the normal mode method of doing
things is that it's quicker for small amounts of text, especially when you know
where the motion command is going to send the cursor. In other words if you
have to delete three words, d3w is probably what you want to use. But if you
have to delete 57 words (maybe 57 you're not sure) the v<move>d is better.

Changing Text

The c command changes text. It acts just like the d command, except it
leaves you in insert mode. For example, if you go into visual mode (v) highlight a
word (w) and then press c, the word will disappear and you'll be left in insert
mode.

In the example in Figure 2-13 we change boss to idiot:

The boss said ...

The boss said ...

The said

The idiot said ...

Figure 2-13: The visual c command.

The normal mode version of the c command acts like the d command
except that it leaves you in insert mode. For example, cw changes a word. Or
more specifically, it deletes a word and then puts you in insert mode. Figure
2-14 illustrates how this command works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 51

The Vim Tutorial and Reference

There is a saying that for every problem there is an answer that's simple,
clear, and wrong. That is the case with the example used here for the cw
command. The cmotion command works just like the dmotion command, with
one exception: the cw and dw commands. Whereas cw deletes the text up to the
space following the word (and then enters insert mode), the dw command deletes
the word and the space following it.

Figure 2-14: How cw works.

The cc command works on the entire line. That is, it deletes the line and
then goes into insert mode. In other words, cc works on the current line just like
dd. Likewise, c$ or C change from the cursor to the end of the line.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 52

To err is human, To really foul up you need a computer.

a word (w)

To err is human, To really screw up you need a computer.

Change Word: screw

cwscrew <Esc>
c – Change
w – Word (the motion)
screw<blank> (text)
<Esc> - End insert

The Vim Tutorial and Reference

The . Command

The . command is one of the most simple yet powerful commands in Vim. It
repeats the last delete or change command. For instance, suppose you are
editing an HTML file and want to delete all the tags. You position the cursor
on the first < and delete the with the command df>. You then go to the < of
the next and kill it using the . command. The . command executes the
last change command (in this case, df>). To delete another tag, position the
cursor on the < and press the . command. Figure 2-15 illustrates how this can
work.

Figure 2-15 Using the . command.

Joining Lines

To join a set of lines in visual mode, start visual mode (v) highlight the lines
you wish to join, and press J. All the highlighted lines will be put together in
one big line. A space is placed between the pieces that are joined as seen in
Figure 2-16. (If there is no space it is added. If there is one space, it is
preserved. If there are multiple spaces, they are turned into on.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 53

<P>
To generate a table of contents
all the C program files in your
current working directory, use the
command:
<PRE>
 $ ctags *.c
</PRE>

1. Start here
2. f< --find "<" of
3. df>-- delete to ">" 5. f< --find "<" of ""

6. . --repeat last change (df>)

7. j -- Next line
8. ^ -- Start of line
9. f< --find "<" of ""
10. . --repeat last change (df>)
11. f< --find "<" of
912 . --repeat last change (df>)

The Vim Tutorial and Reference

Now is
the time
for all
good men

Now is the time for all good men

Figure 2-16 Visual J command.

In normal mode, the J command joins the current line with the next one. ,
as illustrated by Figure 2-17. If a count is specified, then count lines are joined
(minimum of two).

Figure 2-17: The J command.

Replacing Characters

The r{char} command replaces the character under the cursor with
{char}. Figure 2-18 shows how you can use the r command to replace a z with
an s. The r command can be preceded with a count, indicating the number of
characters to be replaced. In Figure 2-19, we go to the beginning of line (the ^
command) and execute 5ra to replace the first five characters with a.

This iz a test.

rs

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 54

JThis is
a test

This is a test

3JThis is
a test
with
many
line

This is a test with
many
lines

J

The Vim Tutorial and Reference

This is a test.

Figure 2-18: The replace (r) command.

This is a test.

5ra

aaaaais a test.

Figure 2-19: Replace (r) command with count.

Note: The r command treats <Enter> in a special way. No matter how big
the count is, only one <Enter> is inserted. Therefore, 5ra inserts five a
characters, whereas 5r<Enter> replaces five characters with one <Enter>.

Be careful where you place the count. The 5rx command replaces five
characters with the character x, whereas r5x replaces the character under the
cursor with 5 (r5) and then deletes a character (x).

Changing Case

The ~ command changes a character's case. It changes uppercase to
lowercase and vice versa. If a count is specified, the count characters are
changed. Figure 2-20 contains examples.

now is the time. . . . now is the time . .
.

~ 6~

Now is the time. . . . NOW IS the time . .
.

Figure 2-20: Use of the ~ command.

Keyboard Macros

The . command repeats the preceding change. But what if you want to do
something more complex than a single change? That's where the keyboard
macros come in. The q{character} command records keystrokes into the
register named character. (The character must be between a and z.) To finish
recording, just type a q command. You can now execute the macro by typing the
@{character} command. (This can be preceded by a count, which will cause the
macro to be executed that number of times.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 55

The Vim Tutorial and Reference

Take a look at how to use these commands in practice. You have a list of
filenames that look like this:

stdio.h
fcntl.h
unistd.h
stdlib.h

And what you want is the following:

#include "stdio.h"
#include "fcntl.h "
#include "unistd.h"
#include "stdlib.h"

You start by moving to the first character of the first line. Next you execute
the following commands:

Command Description

qa Start recording a macro in register a

^ Go to beginning of the line

i#include “<Esc> Insert the text #include “

$ Go to the end of line

a”<Esc> Append the character “ after the cursor.

j Go to the next line

q Quit recording

Now that you have done the work once, you can repeat the change by
typing the command @a. Alternatively, because you have three lines to go, you
can change them using the command 3@a. Figure 2-21 shows how to define and
then execute a macro.

stdio.h
fcntl.h
unistd.h
stdlib.h

Start

#include "stdio.h"
fcntl.h
unistd.h
stdlib.h

qa - Record into register a
^ -Go to the geginning of a line
i#include “<Esc> - Insert text
$ Go to the end of the line

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 56

The Vim Tutorial and Reference

a"<Esc> - Insert more text
j - Go to the next line
q - Stop macro

#include "stdio.h"
#include "fcntl.h"
unistd.h
stdlib.h

@a - Execute macro "a"

#include "stdio.h"
#include "fcntl.h"
#include "unistd.h"
#include "stdlib.h"

2@a - Execute macro "a" twice

Figure 2-21: Keyboard Macros

Digraphs

Some characters are not on the keyboard--for example, the copyright
character (©). To type these letters in Vim, you use digraphs, where two
characters represent one. To enter a ©, for example, you type CTRLKcO (Capital
letter “O”). To find out what digraphs are available, use the following command:

:digraphs

Note: :dig is the same as :digraphs

The Vim editor will display the digraph-mapping table, as seen in Figure
2-22. This shows, for example, that the digraph you get by typing CTRLKCt is
the character (¢).This is character number 162.

Warning: The digraphs are set up assuming that you have a standard
ISO-646 character set. Although this is an international standard, your
particular display or printing system might not use it.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 57

The Vim Tutorial and Reference

:digraphs
NU ^@ 10 SH ^A 1 SX ^B 2 EX ^C 3 ET ^D 4 EQ ^E 5 AK ^F 6
BL ^G 7 BS ^H 8 HT ^I 9 LF ^@ 10 VT ^K 11 FF ^L 12 CR ^M 13
SO ^N 14 SI ^O 15 DL ^P 16 D1 ^Q 17 D2 ^R 18 D3 ^S 19 D4 ^T 20
NK ^U 21 SY ^V 22 EB ^W 23 CN ^X 24 EM ^Y 25 SB ^Z 26 EC ^[27
FS ^\ 28 GS ^] 29 RS ^^ 30 US ^_ 31 SP 32 Nb # 35 DO $ 36
At @ 64 <([91 // \ 92)>] 93 '> ^ 94 '! ` 96 (! { 123
!! | 124 !) } 125 '? ~ 126 DT ^? 127 PA ~@ 128 HO ~A 129 BH ~B 130
NH ~C 131 IN ~D 132 NL ~E 133 SA ~F 134 ES ~G 135 HS ~H 136 HJ ~I 137
VS ~J 138 PD ~K 139 PU ~L 140 RI ~M 141 S2 ~N 142 S3 ~O 143 DC ~P 144
P1 ~Q 145 P2 ~R 146 TS ~S 147 CC ~T 148 MW ~U 149 SG ~V 150 EG ~W 151
SS ~X 152 GC ~Y 153 SC ~Z 154 CI ~[155 ST ~\ 156 OC ~] 157 PM ~^ 158
AC ~_ 159 NS | 160 !I ¡ 161 Ct ¢ 162 Pd £ 163 Cu ¤ 164 Ye ¥ 165
BB ¦ 166 SE § 167 ': ¨ 168 Co © 169 a ª 170 << « 171 NO ¬ 172
 173 Rg ® 174 'm ˉ 175 DG ° 176 + ± 177 2S ² 178 3S ³ 179
'' ´ 180 My µ 181 PI ¶ 182 .M ∙ 183 ', ¸ 184 1S ¹ 185 o º 186
>> » 187 14 ¼ 188 12 ½ 189 34 ¾ 190 ?I ¿ 191 A! À 192 A' Á 193
A> Â 194 A? Ã 195 A: Ä 196 AA Å 197 AE Æ 198 C, Ç 199 E! È 200
E' É 201 E> Ê 202 E: Ë 203 I! Ì 204 I' Í 205 I> Î 206 I: Ï 207
D Ð 208 N? Ñ 209 O! Ò 210 O' Ó 211 O> Ô 212 O? Õ 213 O: Ö 214
*X × 215 O/ Ø 216 U! Ù 217 U' Ú 218 U> Û 219 U: Ü 220 Y' Ý 221
TH Þ 222 ss ß 223 a! à 224 a' á 225 a> â 226 a? ã 227 a: ä 228
aa å 229 ae æ 230 c, ç 231 e! è 232 e' é 233 e> ê 234 e: ë 235
 More

Figure 2-22: Digraph-mapping table.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 58

The Vim Tutorial and Reference

Chapter 3: Searching

This chapter introduces you to the various Vim search commands. The
basic search commands in Vim are rather simple, which means that you can get
started with searching fairly easily. In this chapter, you learn about the
following:

● Simple forward searches

● Search options

● Incremental searches

● Changing directions

● Basic regular expressions

Simple Searches

To search for a string, use the /string command. To find the word
include, for example, use the command /include. An <Enter> is implied at the
end of this command. (Any time the cursor jumps to the bottom of the screen
and you type something, you must end it with <Enter>.)

Note:The characters .*[]^%/\?~$ have special meaning. If you want to use
them in a search you must put a \ in front of them. Example: to find $10
use the search command /\$10

In this example, we searched for include (/include). The cursor now
moves to the i of include, as seen in Figure 3-1.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 59

The Vim Tutorial and Reference

/**
 * cdspeed *
 * Report the speed of a cdrom *
 * (Also works on hard drives and other *
 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
/include

Figure 3-1: Searching for include.

To find the next include, use the command /<Enter>.The cursor now
moves to the next occurrence of the string, as shown by Figure 3-2.

/**
 * cdspeed *
 * Report the speed of a cdrom *
 * (Also works on hard drives and other *
 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
/include

Figure 3-2: Search again, forward (/<Enter>).

Another way to find the next match is with the n command. This command
does the same thing as /<Enter>, but does it with one less keystroke.

Both the /<Enter> and n commands can have a count specified. If there is
a count, the command searches for the count number of matches from the
current location.

Search History

The search command has a history feature. Suppose, for example, that you
do three searches:

/one
/two
/three

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 60

The Vim Tutorial and Reference

Now let's start searching by typing a simple / without pressing <Enter>. If
you press <Up>,Vim puts /three on the prompt line. Pressing <Enter> at this
point searches for three.

If you do not press <Enter>, but press <Up> instead, Vim changes the
prompt to /two. Another <Up> command moves you to /one. In other words,
after you do a number of searches, you can use the <Up> and <Down> keys to
select one of your recent searches.

History Window

If you execute the command q/, Vim will open up a search history window.
See Figure 3-3.

~
~
~
[No Name] [+] 1,2 All
/one
/two
/three
commandline 51,01 Bot
/

Figure 3-3: Search History Window

 Most of the normal editing commands work within this window. When you
find the search you want (or create it in the editor), press <Enter> to execute the
search. If you wish to abort the search and return to command mode, use the ZZ
or :q commands.

If you wish to abort everything :qall will close both the search history
window and everything else.

Searching Options

Many different options control the way you perform a search. This section
discusses a few of them.

Highlighting

The following command causes Vim to highlight any strings found
matching the search pattern:

:set hlsearch

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 61

The Vim Tutorial and Reference

If you turn on this option and then search for include, for example, all the
include strings are highlighted, as seen in Figure 3-4. To turn off search
highlighting, use this command:

:set nohlsearch

To clear the current highlighting, use the following command:

:nohlsearch

Search highlighting is now turned off; matched text will not be highlighted.
However, the highlighting will return when you use a search command.

 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>

Figure 3-4 The 'hlsearch' option.

Incremental Searches

By default, Vim uses the traditional search method: You specify the string,
and then Vim performs the search. When you use the following command, the
editor performs incremental searches:

:set incsearch

The editor starts searching as soon as you type the first character of the
string. Each additional character further refines the search.

Suppose, for example, that you want to search for ioctl.h, but this time
you want to use an incremental search. First, you turn on incremental
searching. Next, you start the search by typing the /i command. Figure 3-5
shows how the editor searches for the first i and positions the cursor on it.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 62

The Vim Tutorial and Reference

 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>

Figure 3-5: Results after /i.

You continue the search by typing an o. Your search now is /io, so the
editor finds the first io, as seen in Figure 3-6. This is still not the place you
want, so you add a c to the search, resulting in the /ioc command. The Vim
editor advances, as illustrated in Figure 3-7, to the first match of ioc. This is
what you want to find, so you press <Enter>, and you're there.

 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>

Figure 3-6: Incremental search after /io.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 63

The Vim Tutorial and Reference

 * devices) *
 * *
 * Usage: *
 * cdspeed <device> *
 * *
 **/
#include <iostream.h>
#include <iomanip.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>

Figure 3-7: Incremental search after /ioc.

To turn off incremental searches, use the following command:

:set noincsearch

Searching Backward

The reverse search command (?) searches backward. The n command
repeats the last search. If a reverse search was the last one used, the n
command searches in the reverse direction. If the last search was a forward
search, the n command searches forward. Figure 3-8 shows how the ? and n
commands can work together.

#include <sys/fcntl.h>
#include <sys/time.h>
#include <errno.h>
// Read at most 10MB
const unsigned int MAX_READ = (10 * 1024 * 1
// Size of a buffer
const unsigned int BUF_SIZE = (62 * 1024);
// Buffer to be written
static unsigned char buffer [BUF_SIZE];

Figure 3-8: ? and n commands.

Reverse Search History

Like forward search (?) you can use the <Up> and <Down> keys to go
through the search history. You can also open a search history for reverse
searches with the command q?.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 64

Start
?unsigned
n
n

(wrap)

The Vim Tutorial and Reference

Changing Direction

Suppose you start a forward search for unsigned using the /unsigned
command. You can turn around and search in the reverse direction by using the
? Command. The n command repeats the search in the same direction. The N
command reverses the direction on the search and repeats it. To make things a
little clearer, line numbering has been turned on using the following command:

:set number

In this example, we use the following search commands:

Command Meaning Result

/unsigned Meaning Forward search for unsigned. Line 24

n Repeat search in the same (forward) direction. Line 26

n Search again. Line 29

? Reverse search Line 26

N Change search direction (reverse -> forward) and
repeat search.

Line 29

Figure 3-9 shows the /unsigned command used to perform a search. The n
command was used twice to go the next occurrences of the string. Then we
reversed course with a ? command (which always goes backward.) Finally, we
reverse course again with the N command. Figure 3-9 shows this tortured path.

 19 #include <sys/fcntl.h>
 20 #include <sys/time.h>
 21 #include <errno.h>
 22
 23 // Read at most 10MB
 24 const unsigned int MAX_READ = 10
 25 // Size of a buffer
 26 const unsigned int BUF_SIZE = 62
 27
 28 // Buffer to be written
 29 static unsigned char buffer[BUF_SIZE];
:set number

Figure 3-9: Different kinds of search commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 65

/unsigned
n
n
?
N

The Vim Tutorial and Reference

Basic Regular Expressions

The Vim editor uses regular expressions to specify what to search for.
Regular expressions are an extremely powerful and compact way to specify a
search pattern. Unfortunately, this power comes at a price because regular
expressions are a bit tricky to specify. Let's start with the simple stuff. In a
regular expression, the normal letters match themselves. So the regular
expression Steve will match Steve.

The Beginning (^) and End ($) of a Line

The ^ character matches the beginning of a line. (It is no coincidence that
this is also the command to move to the beginning of the line.) The expression
include matches the word include anywhere on the line. But the expression
^include matches the word include only if it is at the beginning of a line.

The $ character matches the end of a line. Therefore, was$ finds the word
was only if it is at the end of a line. Figure 3-10, for example, shows a search for
the pattern the with highlighting enabled.

<Hl> Dumb user tricks
At one university the computer center was experience
trouble with a new type of computer terminal. Seems
that the professors loved to put papers on top of
the equipment, covering the ventilation holes. Many
terminals broke down because they became so hot that
the solder holding one of the chips melted and the
chip fell out.
The student technicians were used to this problem. One
day a technician took the back off a terminal
/the

Figure 3-10: Searching for the.

Next you see what happens when searching for the regular expression
^the. The results, as seen in Figure 3-11, show that only two occurrences, both
of which begin lines, are highlighted. Finally a search for the$. As you can see
from Figure 3-12, only one the ends a line. If you want to search for a line
consisting of just the word the, use the regular expression ^the$. To search for
empty lines, use the regular expression ^$.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 66

The Vim Tutorial and Reference

<Hl> Dumb user tricks
At one university the computer center was experience
trouble with a new type of computer terminal. Seems
that the professors loved to put papers on top of
the equipment, covering the ventilation holes. Many
terminals broke down because they became so hot that
the solder holding one of the chips melted and the
chip fell out.
The student technicians were used to this problem. One
day a technician took the back off a terminal
/^the

Figure 3-11: Searching for ^the.

<Hl> Dumb user tricks
At one university the computer center was experience
trouble with a new type of computer terminal. Seems
that the professors loved to put papers on top of
the equipment, covering the ventilation holes. Many
terminals broke down because they became so hot that
the solder holding one of the chips melted and the
chip fell out.
The student technicians were used to this problem. One
day a technician took the back off a terminal
/the$

Figure 3-12: Searching for the$.

Match Any Single Character (.)

The character . matches any single character. For example, the expression
c.m matches a string whose first character is a c, whose second character is
anything, and whose third character is m. Figure 3-13 shows that the pattern
matched the com of computer and the cam of became.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 67

The Vim Tutorial and Reference

<Hl> Dumb user tricks
At one university the computer center was experience
trouble with a new type of computer terminal. Seems
that the professors loved to put papers on top of
the equipment, covering the ventilation holes. Many
terminals broke down because they became so hot that
the solder holding one of the chips melted and the
chip fell out.
The student technicians were used to this problem. One
day a technician took the back off a terminal
/c.m

Figure 3-13: Special character ..

Matching Special Characters

Most symbols have a special meaning inside a regular expression. To
match these special symbols, you need to precede them with a backslash (\). To
find the] , for example, use the string the\].

Regular Expression Summary

Note: The following list assumes that the 'magic' option is on (the
default). (See The 'magic' Option on page 304 for information on this
option.)

Character Meaning

x The literal character x

^ Start of line

$ End of line

, A single character

\x Turns off the special meaning of many characters, gives special
meaning to a few others

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 68

The Vim Tutorial and Reference

Chapter 4: Text Blocks and Multiple Files

This chapter shows you how to deal with larger text blocks. This includes
the commands that enable you to define a large text block as well as perform cut,
paste, and copy operations.

With most editors, you can just cut and paste. However, the Vim editor has
the concept of a register. This enables you to hold data for multiple cut, copy, or
paste operations. Most other editors are limited to a single cut/paste clipboard.
With the Vim registers you get more than 26 clipboards.

One of the strengths of UNIX is the number of text manipulation
commands it provides. This chapter shows you how to use the filter command to
take advantage of this power to use UNIX filters to edit text from within Vim.

Up until now, you have worked with single files in this book. You will now
start using multiple files. This will enable you to perform the same edits on a
series of files, and to cut and paste between files.

This chapter discusses the following topics:

● Simple cut-and-paste operations (in Vim terms, delete and put)

● Marking locations within the text

● Copying text into a register using the yank commands

● Filtering text Editing multiple files

Cut, Paste, and Copy

When you delete something with the d, x, or another command, the text is
saved. You can paste it back by using the p command. (The Vim name for this is
a put, but everyone else calls it “paste”).

Take a look at how this works. First you will delete an entire line by
putting the cursor on the line you want to delete and pressing dd. Now you move
the cursor to where you want to place the line and use the p (put) command. The
line is inserted on the line following the cursor. Figure 4-1 shows the operation
of these commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 69

The Vim Tutorial and Reference

Line 1
Line 2
Line 3

dd

Deletes line

Line 1
Line 3

p

puts
(pastes)
line after
cursor

Line 1
Line 3
Line 2

Figure 4-1: Deleting (cutting) and putting (pasting).

Because you deleted an entire line, the p command placed the text on the
line after the cursor. If you delete part of a line (a word with the dw command,
for instance), the p command puts it just after the character under the cursor
(see Figure 4-2).

We will delete the word in the middle.

 dw (delete the word and the space after it)

We will the word in the middle.

 p (text is put (pasted) after cursor)

We will tdelete he word in the middle.

Figure 4-2: Deleting a word and putting back again.

Character Twiddling

Frequently when you are typing, your fingers get ahead of your brain. The
result is a typo such as teh for the. The Vim editor makes it easy to correct such
problems. Just put the cursor on the e of teh and execute the command xp.
Figure 4-3 illustrates this command. This works as follows:

x Deletes the character e and places it in a register.

p Puts the text after the cursor, which is on the h.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 70

The Vim Tutorial and Reference

teh

 x – delete character

th

 p – paste character after cursor

the

Figure 4-3: Character twiddling with xp.

More on "Putting"

You can execute the p command multiple times. Each time, it inserts
another copy of the text into the file. The p command places the text after the
cursor. The P command places the text before the cursor. A {count} can be
used with both commands and, if specified, the text will be inserted {count}
times.

Moving Large Blocks of Text

Let's say you wish to move 57 line block of text from one place to another.
One solution is to perform the following commands:

1. Put the cursor on the first line of the block

2. Type 57dd to delete the block.

3. Move the line just before where you want to insert the block.

4. Execute p to “put” the block on the line after the one the cursor is on.

This works great if you know the exact number of lines you wish to move.
However for me, any text block larger than three lines confuses me. This
method of moving text is impractical for such large text blocks.

Fortunately we have visual mode. We can start line visual mode with the V
(upper case) command. This is like the simple visual mode (v) we've used before,
only it works only on entire lines.

So to move a block using line visual mode, we execute the following
commands:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 71

The Vim Tutorial and Reference

1. Put the cursor on the first line of the block.

2. Start line visual mode with the V command.

3. Put the cursor on the last line of the block.

4. Delete the text with the d command (visual delete).

5. Move the line just before where you want to insert the block.

6. Execute p to “put” the block on the line after the one the cursor is on.

Figure 4-4 shows how this works. The major advantage of moving text
using this method is that you don't have to count and you can tell exactly what
text is going to be moved before you move it.

Line 1
Line 2
Line 3
Line 4
Line 5

V
Visual
Line

Line 1
Line 2
Line 3
Line 4
Line 5

j
Down
One

Line 1
Line 4
Line 5

d
Delete

Line 1
Line 4
Line 5

j
Down
Line

Line 1
Line 4
Line 5
Line 2
Line 3

p
Put

Figure 4-4: Moving a block of text visually.

Marks

The Vim editor enables you to place marks in your text. The command ma
marks the place under the cursor as mark a. You can place 26 marks (a through
z) in your text. (You can use a number of other special marks as well.)

To go to a mark, use the command `{mark}, where {mark} is the mark
letter (and ` is the backtick or open single-quote character).

The command '{mark} (single quotation mark, or apostrophe) moves you
to the beginning of the line containing the mark. This differs from the `{mark}
command, which moves you to the marked line and column.

The `{mark} command can be very useful when deleting a long series of
lines. To delete a long series of lines, follow these steps:

1. Move the cursor to the beginning of the text you want to delete.

2. Mark it using the command ma. (This marks it with mark a.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 72

4

The Vim Tutorial and Reference

3. Go to the end of the text to be removed. Delete to mark a using the
command d'a. (Entire lines will be deleted since 'a is a line type move.)

Note:There is nothing special about using the a mark. Any mark from a to
z may be used.

There is nothing special about doing the beginning first followed by the
end. You could just as easily have marked the end, moved the cursor to the
beginning, and deleted to the mark.

One nice thing about marks is that they stay with the text even if the text
moves (because you inserted or deleted text above the mark. Of course, if you
delete the text containing the mark, the mark disappears.

Where Are the Marks?

To list all the marks, use the following command:

:marks

Figure 4-5 shows the typical results of such a command.

* the data from an input
* (.c) file.
*/
struct in_file_struct {
:marks
mark line col file/text
´ 67 0 *^I^I^I into the "bad" list^I^I*
a 1 0 #undef USE_CC^I/* Use Sun's CC com
b 8 1 * Usage:^I^I^I^I^I^I*
c 14 1 *^I^I^I (default = proto_db)^I^I
d 25 1 *^Iquote^I^I^I^I^I^I*
" 1 0 #undef USE_CC^I/* Use Sun's CC com
[128 42 * in_file_struct structure that
] 129 12 * the data from an input
Press RETURN or enter command to continue

Figure 4-5: :marks.

The display shows the location of the marks a through d as well as the
special marks: `, ", [, and]. Marks a through d are located at lines 1, 8, 14, and
25 in the file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 73

The Vim Tutorial and Reference

The special marks are as follows:

Mark Description Location in this example

' The last place the cursor was at. Line 67 of the current file

“ The position of the cursor when we last
left this buffer. Since we have only been
editing this file, it defaults to the first
character.

Line 1 (the default)

[The start of the last insert Line 128

] The end of the insert Line 129

To view specific marks, use this command:

:marks args

Replace args with the characters representing the marks you want to view.

Yanking

For years, I used a simple method for copying a block of text from one
place to another. I deleted it using the d command, restored the deleted text
with the p command, and then went to where I wanted the copy and used the p
to put it into the text.

There is a better way. The y command "yanks" text into a register (without
removing it from the file). (Every other editor calls this a “copy”.)

To yank visually you start visual mode with v, highlight the text you wish to yank
and yank it with y. Figure 4-6 shows how this works.

To error is human.
To really foul up you
need a computer.
To keep things fouled up
you need government.

y moves text into
the default register

Default register:

To really foul up you
need a computer.
To keep things fouled up

Figure 4-6: Yanking text.

Normal Mode Yanking

The general form of the normal mode y command is y{motion}. It works
just like the delete (d) command except the text is not deleted. And the
shorthand yy yanks the current line into the buffer.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 74

The Vim Tutorial and Reference

Take a look at how you can use the yank (y) command along with the mark
command (m) to duplicate a block of text. First go to the top of the text to be
copied and mark it with ma. Then go to the bottom and do a y'a (yank to mark
a). Now go to where the copied text is to be inserted and put it there using the p
command. Figure 4-7 shows these commands in action.

Figure 4-7: Yank (copy) and put (paste).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 75

Line 1
Line 2 (ma line)
Line 3
Line 4 (y'a done here)
Line 5
Line 6
Line 7
~
~
~
~
~

2) Go to line 4

Line 1
Line 2 (ma line)
Line 3
Line 4 (y'a done here)
Line 5
Line 6
Line 7
~
~
~
~
~
3 lines yanked

1) Place mark a (ma) 3) Yank to mark a (y'a)

Line 1
Line 2 (ma line)
Line 3
Line 4 (y'a done here)
Line 5
Line 6
Line 7
~
~
~
~
~

Line 1
Line 2 (ma line)
Line 3
Line 4 (y'a done here)
Line 5
Line 6
Line 2 (ma line)
Line 3
Line 4 (y'a done here)
Line 7
~
~
3 more lines

4) Move to line 6 5) Put text in using
the p command

The Vim Tutorial and Reference

Yanking Lines

The Y command yanks a single line. If preceded by a count, it yanks that
number of lines into the register. You might have expected Y to yank until the
end of the line, like D and C, but it really yanks the whole line.

Filtering

The visual ! command takes a block of text and filters it through another
program. In other words, it runs the system command represented by command,
giving it the block of text represented by motion as input. The output of this
command then replaces the selected block.

Because this summarizes badly if you are unfamiliar with UNIX filters, take
a look at an example. The sort command sorts a file. If you execute the
following command, the unsorted file input.txt will be sorted and written to
output.txt. (This works on both UNIX and Microsoft Windows.)

$ sort <input.txt >output.txt

Now do the same thing in Vim. You want to sort lines 1 through 10 of a file.
First start visual mode (v) and highlight the first 10 lines. Then press !.

In anticipation of the filtering, the cursor drops to the bottom of the screen
and a ! prompt displays. You can now type in the name of the filter program, in
this case sort. Therefore, your full command is as follows:

!sort<Enter>

The result is that the sort program is run on the first 10 lines. The output
of the program replaces these lines.

Normal Mode Filtering

Like normal mode delete (d) and normal mode yank (y), the filter command
has a normal mode version as well. The command !{motion} processes the
block of text starting at the current line and going to whatever line {motion}
takes you through a filter.

The !! command runs the current line through a filter. (I have found this a
good way to get the output of system commands into a file.) I'm editing a
readme.txt file, for example, and want to include in it a list of the files in the
current directory. I position the cursor on a blank line and type the following:

!!ls

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 76

The Vim Tutorial and Reference

This puts the output of the ls command into my file. (Microsoft Windows
users would use dir.) Another trick is to time stamp a change. To get the
current date time (on UNIX), I use the following command:

!!date

This proves extremely useful for change histories and such.

Note: Using !! like this is technically not filtering because commands like
ls and date don't read standard input.

Editing Another File

Suppose that you have finished editing one file and want to edit another
file. The simple way to switch to the other file is to exit Vim and start it up again
on the other file. Another way to do so is to execute the following command:

:e file

Note: :e is an abbreviation for :edit.

This command automatically closes the current file and opens the new one.
If the current file has unsaved changes, however, Vim displays a warning
message and aborts the command:

No write since last change (use ! to override)

At this point, you have a number of options. You can write the file using
this command:

:write

Note: :w may be used instead of :write.

Or you can force Vim to discard your changes and edit the new file using
the force (!) option, as follows:

:e! file

To edit a new,unnamed buffer use the :enew (:ene) command. It works just
like :edit only the new buffer is unnamed.

The :view Command

The following command works just like the :vi command, except the new
file is opened in read-only mode:

:view file

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 77

The Vim Tutorial and Reference

Note: :vie may be used instead of :view.

If you attempt to change a read-only file, you receive a warning. You can
still make the changes; you just can't save them. When you attempt to save a
changed read-only file, Vim issues an error message and refuses to save the file.
(You can force the write with the :write! command, as described later in this
chapter.)

Dealing with Multiple Files

So far the examples in this book have dealt with commands that edit a
single file. This section introduces you to some commands that can edit multiple
files. Consider the initial Vim command, for example. You can specify multiple
files on the command line, as follows:

$ gvim one.c two.c three.c

This command starts Vim and tells it that you will be editing three files. By
default, Vim displays just the first file (see Figure 4-8).

/* File one.c */
~
~
~
~

Figure 4-8: Editing the first of multiple files.

To edit the next file, you need to change files using the :next command
(:n). Figure 4-10 shows the results.

/* File two.c */
~
~
~
~
"two.c" 1L, 17C

Figure 4-9: :next.

 Note that if you have unsaved changes in the current file and you try to do
a :next, you will get a warning message and the :next will not work. You can
solve this problem in many different ways. The first is to save the file using the
following command:

:write

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 78

The Vim Tutorial and Reference

In other words, you can perform a :write followed by a :next. The Vim
editor has a shorthand command for this. The following command performs both
operations:

:wnext

Note: :wn is the same as :wnext.

Or, you can force Vim to go the next file using the force (!) option. If you
use the following command and your current file has changes, you will lose those
changes:

:next!

Finally, there is the 'autowrite' ('aw') option. If this option is set, Vim
will not issue any No write... Instead, it just writes the file for you and goes
on. To turn this option on, use the following command:

:set autowrite

To turn it off, use this command:

:set noautowrite
You can continue to go through the file list using the following command until
you reach the last file:

:next

Also, the :next command can take a repeat count. For example, if you
execute the command

:2 next

(or :2next), Vim acts like you issued a :next twice.

Note: Some commands like :quit will fail if any open file has been
modified. The 'autowrite' option only works for the current file. If you want
something that works on all files you need the 'autowriteall' ('awa') option.

Which File Am I On?

Suppose you are editing a number of files and want to see which one you
are on. The following command displays the list of the files currently being
edited:

:args

The one that you are working on now is enclosed in square brackets.
Figure 4-10 shows the output of the command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 79

5
6

The Vim Tutorial and Reference

/* File two.c */
~
~
~
~
one.c [two.c] three.c

Figure 4-10: Output of :args

This figure shows three files being edited: one.c, two.c, and three.c. The
file currently being editing is two.c.

Going Back a File

To go back a file, you can execute any of the following commands (all are
equivalent):

:previous
:prev
:Next
:N

These commands act just like the :next command, except that they go
backward rather than forward. If you want to write the current file and go to the
previous one, use any of the following commands:

:wprevious
:wp
:wNext
:wN

Editing the First or Last File

To start editing from the first file, no matter which file you are on, execute
the following command:

:first

(You can also use the commands :rewind, :rew, and :fir to do the same
thing.)

To edit the last file, use this command:

:last

Note: :la is the same as :last.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 80

The Vim Tutorial and Reference

Editing Two Files

Suppose that you edit two files by starting Vim with the following:

$ gvim one.c two.c

You edit a little on the first file, and then go to the next file with the
following:

:wnext

At this point, the previous file, one.c, is considered the alternate file. This
has special significance in Vim. For example, a special text register (#) contains
the name of this file.

By pressing CTRL^, you can switch editing from the current file to the
alternate file. Therefore, if you are editing two.c and press CTRL^, you will
switch to one.c (two.c becoming the alternate file). Pressing CTRL^ one more
time switches you back.

Suppose that you are editing a bunch of files, as follows:

$ gvim one.c two.c three.c

The command [count]CTRL^ goes to the count file on the command line.
The following list shows the results of several TRL^ commands:

1 CTRL^ one.c

2 CTRL^ two.c

3 CTRL^ three.c

CTRL^ two.c (previous file)

Note When you first start editing (file one.c) and press CTRL^, you will get
an error message: No alternate file. Remember the alternate file is the
last file you just edited before this one (in this editing session). Because
one.c is the only file edited, there is no previous file and therefore the error
message.

Matching

Though not exactly a search command, the :match (:maxx) command can
be very useful in finding test. It causes all text that matches a given pattern to
be highlighted on the screen. For example, to highlight all the word “TODO”
with the Error syntax highlighting, use the command:

:match Error /TOOD/

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 81

The Vim Tutorial and Reference

To find out what highlighting names are available use the :highlight (:hi)
command:

:highlight

To clear the match from the screen, use the command:

:match none

There are can be three matches active at one time. These are set by the
:match, :2match, and :3match commands. If some text is matched by more than
one command, the lowest one wins.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 82

The Vim Tutorial and Reference

Chapter 5: Windows and Tabs

So far you have been using a single window. In this chapter, you split the
screen into multiple windows and edit more than one file simultaneously. This
chapter also discusses the use of editing buffers. A buffer is a copy of a file that
you edit along with the setting and marks that go with it. The topics discussed in
this chapter include the following:

● How to open a new window

● Window selection

● Editing two files at once

● Controlling the size of a window

● Basic buffer usage

● Basic Tabs

Opening a New Window

The easiest way to open a new window is to use the following command:

:split

(:sp may be used instead of :split)

This command splits the screen into two windows (and leaves the cursor in
the top one), as seen in Figure 5-1.

/* File one.c */
~
~
one.c
/* File one.c */
~
one.c

Figure 5-1: Splitting a window.

Both are editing the same file, so you can view two different parts of a file
simultaneously.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 83

The Vim Tutorial and Reference

If you are at the bottom window, the CTRLWw command moves the cursor
to the top window (alternate command: CTRLW CTRLW). If you are at the top
window, the editor jumps to the bottom one on the screen.

To change windows, use CTRLWj (CTRLW CTRLJ, CTRLW<Down>) to go
down a window and CTRLWk (CTRLW CTRLK, CTRLW<Up>)to go up a window
(see Figure 5-2). Or if you are using Vim with a mouse, you can just click in the
window you want. (CTRLW CTRLJ is an alternate for CTRLWj and CTRLW
CTRLK is an alternate for CTRLWk)

/* File one.c */
~
~
one.c
/* File one.c */
~
one.c

Figure 5-2: Window navigation.

To close a window, use ZZ or the following command:

:q

CTRLWc, :close, :clo and :quit do the same thing.

Usually you would expect CTRLW CTRLC also to close a window. It would
if all the CTRLW commands were consistent. Because CTRLC cancels any
pending operation, however, CTRLW CTRLC does nothing.

Vertical Windows

The :split (:sp) commands divides the screen horizontally. To divide the
screen vertically use the :vsplit (:vs) command. Figure 5-3 shows the result of
this operation:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 84

CTRLWw

CTRLWw

CTRLWk

CTRLWj

The Vim Tutorial and Reference

/* one.c */ |/* one.c */
 |
~ |~
~ |~
~ |~
~ |~
~ |~
~ |~
one.c one.c

Figure 5-3: Result of the :vsplit command.

It should be noted anything that the :split command can do, the
:vsplit command can do vertically.

To move from the left window to the right use the CTRLWl
(CTRLW CTRLL, CTRLW<Right>) command. To go from the right to left use the
CTRLWh (CTRLW CTRLH, CTRLW<Left>) command. The CTRLWw
(CTRLW CTRLW) command moves you to to the next window to the right,
wrapping to the leftmost window if there is no window to the right. Figure 5-4
shows how these commands work:

/* one.c */ |/* one.c */
 |
~ |~
~ |~
~ |~
~ |~
~ |~
~ |~
one.c one.c

Figure 5-4: Result of the :vsplit command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 85

CTRLW l

CTRLW h

CTRLW w

CTRLW w

7
8
9

10
11

The Vim Tutorial and Reference

Opening Another Window with Another File

The following command opens a second window and starts editing the
given file:

:split file

Figure 5-5 shows what happens when you start editing one.c and then
execute the following command

:split two.c

/* File two.c */
~
~
two.c
/* File one.c */
~
one.c

Figure 5-5: Results of :split two.c.

The :split (:sp) command can also execute an initial command using the
+command convention. Figure 5-6 shows what happens when you are editing
one.c and execute the following command:

:split +/printf three.c

 {
 printf("%2d squared is %3d\n", i, i*i);
 }
three.c
/* File one.c */
~
one.c

Figure 5-6: Result of :split with a + command

Quick Split

The command CTRLWn (CTRLW CTRLN, :new) splits a window and starts
editing a new file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 86

The Vim Tutorial and Reference

Controlling Window Size

The :split (:sp) command can take a number argument. If specified,
this will be the number of lines in the new window. For example, the following
opens a new window three lines high and starts editing the file alpha.c:

:3 split alpha.c

A space appears here for clarity. You could have just as easily write the
following:

:3split alpha.c

Figure 5-7 shows the results.

/* This is alpha.c */
~
~
alpha.c
/* File alpha.c */
~
~
~
~
~
~
~
~
~
"alpha.c" 1L, 22C

Figure 5-7: :3split.

Split Summary

The general form of the :split (:sp) command is as follows:

:count split +command file

count The size of the new window in lines. (Default is to split the
current window into two equal sizes.)

+command An initial command.

file The name of the file to edit. (Default is the current file.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 87

The Vim Tutorial and Reference

The :new Command

The :new command works just like the :split command except that the
:split command splits the current window and displays the current file in both
windows while :new opens a window containing a new, empty file.

The following command splits the current window and starts a new file in
the other window:

:new

The :vnew (:vne) does the same thing vertically.

Split and View

The :sview (:sv) command acts like a combination of :split and :view.
This command proves useful if you want to look at, but not edit, a file in another
window.

There is no :vsview command. However if you wish to split the window
vertically and edit a file you can use the :vertical :sview (:vert :sview)
command. The :vertical command tells Vim to perform the command that
follows splitting the window vertically instead of horizontally.

Changing Window Size

Changing window size when you are using gvim is easy. To change the size
of a window, use the mouse to drag the separator up or down (see Figure 5-8). If
you are using the terminal version of Vim, you need to type in some commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 88

The Vim Tutorial and Reference

Figure 5-8: Adjusting the window size.

The command count CTRLW+ increases the window size by count (default
= 1). Similarly count CTRLW decreases the window's size by count (default =
1). The command CTRLW= makes all the windows the same size (or as close as
possible).

The command count CTRLW_ (CTRLW CTRL_) makes the current window
count lines high. If no count is specified, the window is increased to its maximum
size.

The :resize (:res) command can be used to change the height of the
window from the command line. The argument to this command can be an
simple number (i.e. 24) in which case the window is set to that size. If the
argument begins with a plus or minus, (i.e. +5, 7), then the window in increased
or decreased in size.

If no argument is given to the :resize command, the window is enlarged
to it's maximum height.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 89

/* File two.c */
~
~
~
~
~
two.c

/* File three.c */
#include <stdio.h>
int i;
int main ()
{
 i = 57;
three.c

/* File two.c */
~
~
~
~
~
~
~
~
two.c

/* File three.c */
#include <stdio.h>
int i;
three.c

Grab the bar with the mouse
Drag it to here

The Vim Tutorial and Reference

Buffers

The Vim editor uses the term buffer to describe a file being edited.
Actually, a buffer is a copy of the file that you edit. When you finish changing the
buffer and exit, the contents of the buffer are written to the file. Buffers not only
contain file contents, but also all the marks, settings, and other stuff that go with
it.

Normally it is pretty easy to tell what buffers you have: If it has a window
on the screen, it is a buffer; if it is not on the screen, it is not a buffer.

Now for a new concept thrown into the mix, that of the hidden buffer.
Suppose you are editing a file named one.c and you need to do some work on
two.c. You split the screen and create two windows, one for each file. But you do
not like split-screen mode; you want to see one file at a time.

One solution is to make the window for two.c as big as possible. This
works, but there still is an annoying little bit of one.c showing. Another solution
is to close the one.c window, but then you lose all the changes for that file.

The Vim editor has another solution for you: the :hide (:hid) command.
This causes the current buffer to become "hidden."This causes it to disappear
from the screen. But Vim still knows that you are editing this buffer, so it keeps
all the settings, marks, and other stuff around. Actually, a buffer can have three
states:

Active Appears onscreen.

Hidden A file is being edited, but does not appear onscreen.

Inactive The file is not being edited, but keep the information about it
anyway.

The inactive state takes a little explaining. When you edit another file, the
content of the current file is no longer needed, so Vim discards it. But
information about marks in the file and some other things are still useful and are
remembered along with the name of the file. Also, a file that was included in the
command with which you started Vim, but was not edited, will also be an inactive
buffer.

To find a list of buffers, use the following command:

:buffers

(:buffers can also be written as :ls, :files.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 90

The Vim Tutorial and Reference

Figure 5-9 shows the results of this command. The first column is the
buffer number. The second is a series of flags indicating the state of the buffer.
The third is the name of the file associated with the buffer. The state flags are:

- Inactive buffer.

h Buffer is hidden.

% Current buffer.

Alternate buffer.

+ File has been modified.

~
~
~
~
~
~
two.c
:buffers
 1 #h "one.c" line 1
 2% "two.c" line 1
 3 "three.c" line 1
 4 "four.c" line 0
 5 "help.txt" line 1
 6 "editing.txt" line 234
Press RETURN or enter command to continue

Figure 5-9: :buffers.

In this case, you see six buffers:

1. The next to last file you were working on, also known as the alternate
file (# flag).This buffer has been hidden (h flag).You were editing file one.c
and left the cursor on line 1.

2. The active buffer (% flag).This is the file you are editing.

3. An inactive buffer. You want to edit three.c, but you have made no
changes to it.

4. Another file on the argument list that has not been edited.

5. When you executed a :help command, the Vim editor opened two
files. The first one of these is called help.txt.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 91

The Vim Tutorial and Reference

6. This is another help file called editing.txt.

Selecting a Buffer

You can select which buffer to use by executing the following command:

:buffer number

(:b is the abbreviation for :buffer.)

The number parameter is the buffer number. If you do not know the
number of the buffer, but you do know the filename, you can use this command:

:buffer file

Figure 5-10 shows the results of a typical :buffer command.

/* File three.c */
#include <stdio.h>
int i;
int main()
{
 for (i = 1; i <= 10; ++i)
 {
 printf("%2d squared is %3d\n", i,
i*i);
 }
 return (0);
}
~
~
three.c

Figure 5-10: :3buffer or :buffer three.c.

The following command splits the window and starts editing the buffer:

:sbuffer number

(:sb is the abbreviation for :sbuffer.)

If a number is specified, the new window will contain that buffer number. If
no number is present, the current buffer is used.

To split the window vertically use the command:

:vertical sbuffer number

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 92

The Vim Tutorial and Reference

This also takes a filename as an argument. If you are editing the file
three.c and execute the following command

:sbuffer one.c

You get the results seen in Figure 5-11.

/* File one.c */
~
~
~
~
~
one.c
/* File three.c */
#include <stdio.h>
int i;
int main()
{
 for (i = 1; i <= 10; ++i)
"three.c" line 1 of 1 100% col 1 ((2) of 3)

Figure 5-11: Result of :sbuffer.

93Other buffer-related commands include the following:

:bnext Go to the next buffer. (Also known as :bn.)

:count bnext Go to the next buffer count times.

:count sbnext Shorthand for :split followed by :count bnext.
(Also known as :sbn.)

:count bprevious Go to previous buffer. If a count is specified, go to
the count previous buffer. (Also known as :bp,
:bNext, :bn.)

:count sbprevious Shorthand for :split and :bprevious. (Also
known as :sbp, :sbNext, :sbn.)

:blast Go to the last buffer in the list. (Also known as :bl.)

:sblast Shorthand for :split and :blast. (Same as :sbl.)

:brewind Go to the first buffer in the list. (Same as :bf,
:bfirst, :br.)

:sbrewind Shorthand for :split and :brewind. (Same as
:sbf, :sbfirst, :sbr.)

:bmodified count. Go to count modified buffer on the list. (Same as

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 93

The Vim Tutorial and Reference

:bm.)

:sbmodified count Shorthand for :split and :bmodified. (Same as
:sbm.)

Buffer Types

There are many different special buffers you'll encounter in the Vim editor.
To keep track of them Vim uses the 'buftype' ('bt') option. It can contain the
following values:

<emtpy> Normal buffer

acwrite A buffer which will always be written with an :autocmd.

help Help window

nofile A buffer that is not associated with a file and will not be written.

nowrite This buffer will not be written.

quickfix A quickfix list.

Buffer Options

Usually when the last window of a file is closed, the buffer associated with
the file becomes inactive. If the option 'hidden' ('hid') is set, files that leave
the screen do not become inactive; instead they automatically become hidden.
Therefore if you want to keep the contents of all your old buffers around while
editing, use the following command

:set hidden

Note: The :hide command always hides the current file no matter what
the 'hidden' option is set to.

The 'buflisted' ('bl') command tell Vim if a buffer is to be listed in
the :buffers or :ls command.

The 'bufhidden' ('bh') can be used to fine tune when a buffer appears
and hides. (Do not use this option unless you know what you are doing.) The
values for this option are:

<empty> The value of the 'hidden' option is used to decide whether or not to
hide the buffer.

delete Delete the buffer as if a :bdelete were performed on it. (Use caution

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 94

The Vim Tutorial and Reference

unsaved changes can easily be discarded.)

hide Hide, but do not unload the buffer. (As if 'hidden' where set.)

unload Unload the buffer. (Warning: Unsaved changes can easily be
discarded.)

wipe Wipeout the buffer as if the :bwipeout command were executed.
(Again, unsaved changes can easily be discarded.)

Normally, the split/buffer related commands split the current window. If the
'switchbuf' ('swb') option is set to useopen and there is a window displaying
the buffer you want to display already on the screen, the Vim will just make that
window the current one instead of performing the split (see Figure 5-12).

$ gvim t.c Makefile

:snext

int main()
{
 i = 5;
 printf("Hello World/n");
 return (0);
t.c
t: t.c
 gcc t.c
~
~
~
Makefile

:set switchbuf=""
:sbrewind

{
 i = 5;
 printf("Hello World/n");
t.c
 i = 5;
 printf("Hello World/n");
t.c
t: t.c
 gcc t.c
~
~
Makefile

:set switchfbuf=useopen
:sbrewind

#include <stdio.h>
int main()
{
 i = 5;
 printf("Hello World/n");
t.c
t: t.c
 gcc t.c
~
~
~
Makefile

Figure 5-12: The 'switchbuf' option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 95

The Vim Tutorial and Reference

Note the 'switchbuf' option is a list of the values: (nothing),split,
useopen and usetab. For a description of the split argument see Chapter 23:
Advanced Commands for Programmers.

Basic Tabbed Editing

The :tabnew (:tabe, :tabedit) command opens up a new tab. Figure
5-13 shows the result:

Figure 5-13: The :tabnew /tmp/tmp.txt command.

You can click on each tab to make that tab the current tab. If you wish to
edit a specific file use the command:

:tabedit {filename}

In general the :tab command will cause any command that would open a
new window to open a new tab instead. For example:

:tab :split test.txt

Tabs may be closed by the :quit (:q) command. Or you can write the file
and close the tab with ZZ. The :tabclose (:tabc) command acts just like :quit.
However, if you give :tabclose a numeric argument, that tab is close. For
example to close the second tab, use the command:

:tabclose 2

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 96

The Vim Tutorial and Reference

The :tabonly (:tabo) command closes all the other tabs. This will fail if
closing a tab would result in data loss, unless the override (!) is specified.

Selecting a tab

To make a particular tab the current one, click on it. Or you can use the
Vim command :tabnext (:tabn) to go to the next tab. This command wraps so if
you're on the last tab, you'll wind up on the first one.

If you specify a {count} as an argument to :tabnext, Vim will go to that
tab. For example, to go to the third tab:

:tabnext 3

The gt (<CPageDown>) command goes to the next tab. When a [count] is
specified such as 3gt, Vim goes to the specified tab.

The :tabprevous (:tabp, :tabNext,:tabN) command works like :tabnext
only in the other direction. Similarly gT (<CPageUp>) is like gt on to the left.

Finally :tabfirst (:tabf, :tabrewind, :tabr) goes the first tab and
:tablast (:tabl) goes to the last one.

Figure 5-14 shows the tab commands in action.

Figure 5-14: Tab navigation

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 97

:tabfirst

:tabnext

:tablast

:tabprevious

The Vim Tutorial and Reference

Finding Files with Tabs

The CTRLWgf command opens a new tab and starts to edit the file who's
name is under the cursor. Vim will search for the file using the same algorithm
as it uses for the :find command. The CTRLWgF command does the same thing,
only it goes a step farther. It not only starts editing the file in a new tab, but
jumps to the line number following the file name.

The :tabfind (:tabf) command performs a similar function. It's actually a
shorthand for :tabnew, :find.

Editing Multiple Files From the Command Line

There are lots of different ways of editing multiple files. One way is to edit
them one at a time as discussed in Chapter 4: Text Blocks and Multiple Files.
Another is to edit them all at the same time.

To edit each file in it's own window use the command:

$ gvim o file1 file2 file3 ...

You can limit the number of windows opened by Vim by giving o a
numeric arguments.

$ gvim o3 file1 file2 file3 file4

Note: If you have more windows that files, some windows will be empty.

The p command does the same thing except that it opens each file in it's
own tab. Like -o you can give it a numeric argument. Unlike -o there is an
option ('tabpagemax' aka 'tpm') which limits the number of tabs opened this
way.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 98

The Vim Tutorial and Reference

Chapter 6: Basic Visual Mode

One feature that sets Vim apart from its predecessor is something called
visual mode. This mode gives you the ability to highlight a block of text and then
execute a command on it. You can highlight a block of text, for example, and
then delete it with a d command. The nice thing about visual mode is that, unlike
other Vim commands where you operate blindly, with visual mode you can see
what text is going to be affected before you make a change. In this chapter, you
learn about the following:

● How to start visual mode

● Visual yanking

● Using visual mode to change text

● Visual commands for programmers

● Visual block mode

Entering Visual Mode

To enter visual mode, type the v command. Now when you move the
cursor, the text from the start position to the current cursor location is
highlighted (see Figure 6-1). After the text has been highlighted, you can do
something with it. For example, the d command deletes it. Figure 6-2 shows the
results.

#include <stdio.h>
int i;
int main()
{
 for (i = 1; i <= 10; ++i)
 {
 printf("%2d squared is %3d\n", i, i*i);
 }
 return (0);
three.c
 VISUAL

Figure 6-1: Visual mode.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 99

v – start
visual mode

Move cursor
to here

The Vim Tutorial and Reference

#include <stdio.h>
int i;
int main()
{
 for (i = 1; i <= 10; ++i)
 return (0);
~
~
~
three.c
3 fewer lines

Figure 6-2: Visual delete.

Note: Although the normal commands x, d, and do different things,
in visual mode, they all delete the highlighted text.

The Three Visual Modes

There are actually three different visual modes. The v (lower case v)
command starts a character-by character visual mode. All the characters from
the start to the cursor are highlighted. Figure 6-3 shows this mode in action.
The V (upper case V) command starts linewise visual mode. You can highlight
only full lines in this mode (see Figure 6-4).

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
~
~
[No File] [+]
 VISUAL

Figure 6-3: v (visual mode).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 100

d – delete
highlighted
text

Visual start
(Cursor is here
when v is
pressed.)

Visual end
(Cursor is moved
to here)

The Vim Tutorial and Reference

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
~
~
[No File] [+]
 VISUAL LINE

Figure 6-4: V (line visual mode).

Note: To get help on the commands that operate in visual mode, use the
prefix v_. Therefore

:help v_d

describes what the d command does in visual mode.

To highlight a rectangle on the screen, use CTRLV as shown in Figure 6-5.
This mode is extremely useful if you want to work with tables. You can highlight
a column and delete it using the d command.

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
~
~
[No File] [+]
 VISUAL BLOCK

Figure 6-5: CTRLV (block visual mode).

Leaving Visual Mode

Normally, you leave visual mode by typing a visual-mode command, such as
d to delete the highlighted text. But you can also cancel visual mode by pressing
the <Esc> key.

Remember, you can always type <Esc> to get back to normal mode so you
know where you are. Some people find <Esc> a little annoying because it beeps if
you type it twice. The first <Esc> goes from visual mode to normal mode. The
second <Esc> in normal mode is an error and generates the beep. (The
command CTRLC will do the same thing as well.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 101

Visual start
(Cursor is here
when V is
pressed.)

Visual end
(Cursor is moved
to here)

Visual start
(Cursor is here
when CTRLV is
pressed.)

Visual end
(Cursor is moved
to here)

The Vim Tutorial and Reference

If you want to make sure that you are in normal mode and do not want to
generate a beep, use the CTRL\CTRLN command. This acts just like <Esc> but
without the noise.

Editing with Visual Mode

Editing with visual mode is simple. Select the text using the visual
commands just discussed, and then type an editing command. This section
shows you how to perform simple edits using a visual selection.

Deleting Text in Visual Mode

The d command deletes the highlighted text, as shown in Figure 6-6. The D
command deletes the highlighted lines, even if only part of a line is highlighted
(see Figure 6-7). (X does the same thing.)

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
 VSUAL

d - deletes the
highlighted text

Line 1
2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt [+]

Figure 6-6: Deleting text in visual mode.

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
 VSUAL

D - deletes the
highlighted lines

Line 1
Line 3
Line 4
Line 5.
~
~
~
~
~
lines.txt [+]

Figure 6-7: The visual D command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 102

The Vim Tutorial and Reference

Yanking Text

The y command places the highlighted text into a register. The linewise
version of this command, Y, places each line of the highlighted text into a
register.

Switching Modes

Suppose you are in character mode (started by v) and you realize you want
to be in block mode. You can switch to block mode by just pressing CTRLV.

In fact, you can switch visual modes at any time by just selecting the new
mode. To cancel visual mode, press the <Esc> key; or you can switch to the
mode you are already in. (In other words, if you use v to start visual mode, you
can use another v to exit it.)

Changing Text

The c command deletes the highlighted text and starts insert mode. The C
does the same thing, but it works only on whole lines.

Note: r and s do the same thing as c in visual mode. The same thing goes
for R and S and the C command.

Joining Lines

The J command joins all the highlighted lines into one long line. Spaces
are used to separate the lines. If you want to join the lines without adding
spaces, use the gJ command. Figure 6-8 shows how the J and the gJ commands
work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 103

The Vim Tutorial and Reference

Line 1
Line 2
Line 3
Line 4
~
~
~
~
~
lines.txt
 VISUAL

J

 gJ

Line 1
Line 2 Line 3
Line 4
~
~
~
~
~
~
lines.txt [+]

Line 1
Line 2Line 3
Line 4
~
~
~
~
~
~
lines.txt [+]

Figure 6-8: The visual J and gJ command.

Commands for Programmers

The > command indents the selected lines by one "shift width." (The
amount of white space can be set with the 'shiftwidth' option.)

The < does the process in reverse. (Note that these commands have a
different meaning when using visual block mode.) The = command indents the
text the proper amount according to what Vim thinks is the proper information
for your program. The CTRL] command will jump to definition of the function
highlighted.

Keyword Lookup

The K command is designed to look up the selected text using the man
command. (Linux and UNIX only.) It works just like the normal-mode K
command except that it uses the highlighted text as the keyword.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 104

The Vim Tutorial and Reference

Visual Block Mode

Some commands work a little differently in visual block mode. Visual block
mode is started by pressing CTRLV and is used to define a rectangle on the
screen.

Inserting Text

The command Istring<Esc> inserts the text on each line starting at the
left side of the visual block, as seen in Figure 6-9.

You start by pressing CTRLV to enter visual block mode. Now you define
your block. Next you type I to enter insert mode followed by the text to insert.
As you type, the text appears on the first line. After you press <Esc> to end the
insert, the text will magically be inserted in the rest of the lines contained in the
visual selection. Figure 6-9 shows how this process works.

Do alpha.c
Do one.c
Do four.c
Do three.c
Do two.c
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the block
CTRLVjjjj

Do file alpha.c
Do file one.c
Do file four.c
Do file three.c
Do file two.c
~
~
~
test.txt [+]
 VISUAL BLOCK

Press <Esc> to end the
insert.

Do file alpha.c
Do one.c
Do four.c
Do three.c
Do two.c
~
~
~
test.txt [+]
 INSERT

Enter the text by
typing I<Space>file

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 105

The Vim Tutorial and Reference

Figure 6-9: Inserting text in visual block mode.

If the block spans short lines that do not extend into the block, the text is
not inserted in that line. Figure 6-10 illustrates what happens to short lines. If
the string contains a newline, the I acts just like a normal-mode insert (i)
command and affects only the first line of the block.

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Select a block.
Notice that the short line is
not part of the selection.

This is a very long line
short
This is a very long line
~
~
~
test.txt [+]

Insert "very" in the line.
Notice that "Short" is
unchanged.

Figure 6-10: Inserting with short lines.

Changing Text

The visual block c command deletes the block and then throws you into
insert mode to enable you to type in a string. The string will be inserted on each
line in the block (see Figure 6-11). The c command works only if you enter less
than one line of new text. If you enter something that contains a newline, only
the first line is changed. (In other words, visual block c acts just normal-mode c
if the text contains more than one line.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 106

The Vim Tutorial and Reference

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the block to be
changed.

This is a LONG
line
short
This is a LONG
line
~
~
~
test.txt [+]

Change the text to LONG.
The command is
cLONG<Esc>

Figure 6-11: Block visual c command.

Note: The string will not be inserted on lines that do not extend into the
block. Therefore if the block includes some short lines, the string will not
be inserted in the short lines.

The C command deletes text from the left edge of the block to the end of
line. It then puts you in insert mode so that you can type in a string, which is
added to the end of each line (see Figure 6-12). Again, short lines that do not
reach into the block are excluded. (R and S act just like the C command except
they replace the text with what's insert instead of replacing multiple lines.)

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the block.

This is changed
short
This is changed
~
~
~
test.txt [+]

Change to the end of line:
The command is
Cchanged<Esc>

Figure 6-12: Block visual C with short lines.

The visual block A throws Vim into insert mode to enable you to input a
string. The string is appended to the block (see Figure 6-13). If there are short
lines in the block, spaces are added to pad the line and then string is appended.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 107

The Vim Tutorial and Reference

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the block

This is a very laaaaong line
short aaaa
This is a very laaaaong line
~
~
~
test.txt [+]

Append some text with the
command Aaaaa<ESC>

Figure 6-13: Block visual A command.

You can define a right edge of a visual block in two ways. If you use just
motion keys, the right edge is the edge of the highlighted area. If you use the $
key to extend the visual block to the end of line, the inserted text will add the
text to the end of each line (see Figure 6-14).

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the visual block by
using the command
CTRLV$jj.
The $ moves the cursor to
the end of the line

This is a very long lineXXX
shortXXX
This is a very long lineXXX
~
~
~
test.txt [+]

Add "XXX" to the end of each line
with the AXXX<Esc> command.

Figure 6-14: Block visual $ and A commands.

Replacing

The rchar command applies all the selected characters with a single
character (see Figure 6-15). Short lines that do not extend into the block are not
affected.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 108

The Vim Tutorial and Reference

This is a long line
short
This is a long line
~
~
~
test.txt [+]
 VISUAL BLOCK

Define the block

This is a very xxxx line
short
This is a very xxxx line
~
~
~
test.txt [+]

The rx command replace all
characters in the block with x

Figure 6-15: Block visual-mode r command.

Shifting

The command > shifts the text to the right one shift width, opening
whitespace. The starting point for this shift is the left side of the visual block
(see Figure 6-16). The < command removes one shift width of whitespace at the
left side of the block (see Figure 6-17). This command is limited by the amount
of text that is there; so if there is less than a shift width of whitespace available,
it removes what it can.

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.

Oh woe t o Mertle the turtle
who foun d web surffing quite a hurtle.
 Th e system you see
 wa s slower than he.
And that 's not saying much for the turtle.

Figure 6-16: Block visual-mode > command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 109

The Vim Tutorial and Reference

aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
 VISUAL BLOCK

aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB
aaa BBBBBBBBBBB

Figure 6-17: Block visual < command.

Visual Block Help

Getting help for the commands that use visual block mode differs a little
from other commands. You need to prefix the command with v_b_.To get help on
the visual block r command, for example, type the following:

:help v_b_r

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 110

12

The Vim Tutorial and Reference

Chapter 7: Commands for Programmers

The Vim editor contains a large number of commands to make life easier
for programming. For example, Vim contains a number of commands to help you
obtain correct indentation, match parentheses, and jump around in source files.

One of the best features of Vim as far as a programmer is concerned are
the commands that enable you to build a program from within Vim and then go
through the error list and edit the files that caused trouble. In this chapter, you
learn about the following:

● Syntax coloring

● Automatic indentation

● Indentation commands

● Commands to navigate through the source code

● Getting information through the man command.

● The use of tags to go up and down a call stack

● Making programs with the :make command

● File searching with :vimgrep

Syntax Coloring

The following command turns on syntax coloring.

:syntax on

(:syntax on can be abbreviated :sy on.)

That means that things such as keywords, strings, comments, and other
syntax elements will have different colors. (If you have a black-and-white
terminal, they will have different attributes such as bold, underline, blink, and so
on.) You can customize the colors used for syntax highlighting as well as the
highlighting method itself.

To turn off syntax highlighting use the :syntax off (:sy off) command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 111

The Vim Tutorial and Reference

Syntax Coloring Problems

Most of the time syntax coloring works just fine. But sometimes it can be a
little tricky to set up. The following sections take a look at some common
problems and solutions.

Colors Look Bad When I Use Vim (UNIX only)

Ever try and read light yellow text on a white background? It is very hard
to do. If you see this on your screen, you have a problem. The Vim editor has
two sets of syntax colors. One is used when the background is light, and the
other when the background is dark. When Vim starts, it tries to guess whether
your terminal has a light or dark background and sets the option 'background'
to light or dark. It then decides which set of colors to use based on this option.
Be aware, however, that the editor can guess wrong.

To find out the value of the 'background' option, use the following
command:

:set background?

If Vim's guess is not correct, you can change it using a command such as
this:

:set background=light

You must use this command before executing the command:

:syntax on

I Turned on Syntax Colors, but All I Get Is Black and White (UNIX)

A common problem affects the xterm program used on many UNIX
systems. The problem is that although the xterm program understands colors,
the terminal description for xterm frequently omits colors. This cripples syntax
coloring. To correct this problem, you need to set your terminal type to the color
version. On many versions of Linux this is xterm-color, and on Solaris this is
xtermc.

To fix this problem you need to know what shell (command process) you
are using. If you use csh, put the following in your $HOME/.cshrc file:

if ($term == xterm) set term = xtermcolor

For bash put the following in your $HOME/.bashrc file:

if [$TERM = xterm]; then export TERM=xtermcolor; fi

Other systems and other shells require different changes.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 112

The Vim Tutorial and Reference

I'm Editing a C File with a Non-Standard Extension. How Do I Tell Vim About It?

The Vim editor uses a file's extension to determine the file type. For
example, files that end in .c or .h are considered C files. But what if you are
editing a C header file named settings.inc?

Because this is a non-standard extension, Vim will not know what to do
with it. So how do you tell Vim that this is a C file? The answer is to use the
option 'filetype'. This tells Vim which type of syntax highlighting to use. With
a C file, you use the following command:

:set filetype=c

Now Vim knows that this file is a C file and will highlight the text
appropriately. If you want to make this setting automatically, look in the help
files with this command:

:help newfiletype

Running the Color Test

If you are still having trouble with colors, run the Vim color test. This is a
short Vim program that displays all the colors on the screen so that you can
verify the correctness of the Vim colors. The color test can be started with these
two commands:

:edit $VIMRUNTIME/syntax/colortest.vim
:source %

Matching Pairs

The % command is designed to match pairs of (), {}, or []. Place the cursor
on one, type % and you will jump to the other. Figure 7-1 shows how the %
command works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 113

The Vim Tutorial and Reference

void foo ()
{
 /* Check the conditions */
 if (a | | b | | c)
 {
 printf ("Alpha\n");

 if (d | | e)
 {
 printf ("Beta");
 }
 }
 else
 {
 printf ("Gamma\n");
 }
}

Figure 7-1: % command.

The2% command will also match the ends of C comments (see Figure 7-2).
(For you non-C programmers, these begin with /* and end with */.)

/* A comment */

/*
 * A multiline comment.
 */

Figure 7-2: % and comments.

Also the % command will match #ifdef with the corresponding #endif.
(Same goes for #ifndef and #if.) For #if, #else, and #endif sets, the %
command will jump from the #if to the #else, and then to the #endif and back
to the #if. Figure 7-3 shows how % works with preprocesser directives.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 114

%

%

%
find matching
()

%

%

%
find matching
{}

The Vim Tutorial and Reference

#ifndef SIZE
#define SIZE 100
#endif /* SIZE */

#ifdef UNIX
#define EOL "\n";
#else /* UNIX */
#define EOL "\r\n";
#endif /* UNIX */

Figure 7-3:% and the #if/#else/#endif.

Note: The Vim editor is smart about matching pairs of operators. It knows
about strings, and {} or [] will be ignored inside a string.

Shift Commands

The Vim editor has lots of commands that help the programmer indent his
program correctly. The first ones discussed here merely shift the text to the left
(115115<<) or the right (>>).

The left shift command (<<) shifts the current line one shift width to the
left. The right shift command (>>) does the same in the other direction.

But what is a shift width? By default, it is 8. However, studies have shown
that an indentation of 4 spaces for each level of logic is the most readable. So a
shift width of 4 would be much nicer. To change the size of the shift width, use
the following command:

:set shiftwidth=4

Figure 7-4 shows how the shift width option affects the >> command.

printf ("Hello world! \n") ;

 printf ("Hello world! \n") ;

printf ("Hello world! \n") ;

 printf ("Hello world! \n");

Figure 7-4: 'shiftwidth' and >>.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 115

:set shiftwidth = 8
>>

:set shiftwidth = 4
>>

%

%

%

%

The Vim Tutorial and Reference

The << command shifts a single line. As usual you can prefix this command
with a count; for example, 5<< shifts 5 lines. The command <motion shifts each
line from the current cursor location to where motion carries you.

You can also highlight a set of lines in visual mode (v command) and then
shift them with < or >.

Automatic Indentation

The Vim editor has a variety of automatic indentation options. The major
indentation modes are the following:

cindent This works for C-style programs (C, C++, Java, and so
on).When this style of indentation is enabled, the Vim editor
automatically indents your program according to a
"standard" C style.

smartindent In this mode, Vim indents each line the same amount as the
preceding one, adding an extra level of indentation if the line
contains a left curly brace ({) and removing a indentation
level if the line contains a right curly brace (}). An extra
indent is also added for any of the keywords specified by the
'cinwords' option.

autoindent New lines are indented the same as the previous line.

The next few sections explore these indentation modes in detail.

C Indentation

The Vim editor knows something about how C, C++, Java, and other
structured language programs should be indented and can do a pretty good job
of indenting things properly for you. To enable C-style indentation, just execute
the following command:

:set cindent

With this option enabled, when you type something such as if (x), the
next line will automatically be indented an additional level. Figure 7-5 illustrates
how 'cindent' works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 116

The Vim Tutorial and Reference

if (flag)
 do_the_work();

if (other_flag) {
 do_file () ;
 process_file();
}

Figure 7-5: cindent.

When you type something in curly braces ({}), the text will be indented at
the start and unindented at the end.

Note: One side effect of automatic indentation is that it helps you catch
errors in your code early. I have frequently entered a } to finish a
procedure, only to find that the automatic indentation put it in column 4.

This told me that I had accidentally left out a } somewhere in my text.

Different people have different styles of indentation. By default Vim does a
pretty good job of indenting in a way that 90% of programmers do. There are
still people out there with different styles, however; so if you want to, you can
customize the indentation style through the use of several options.

You don't want to switch on the 'cindent' option manually every time you
edit a C file. This is how you make it work automatically: Put the following lines
in your .vimrc (UNIX) or _vimrc (Windows) file:

:filetype on
:autocmd FileType c,cpp :set cindent

(:filetype can be abbreviated :filet. :autocmd may be abbreviated
:au.)

The first command (:filetype on) turns on Vim's file type detection logic.
The second, performs the command :set cindent if the file type detected is c
or cpp. (This includes C, C++, and header files.)

You can use an autocommand to set the 'filetype' as well. There is a
special command :setfiletype (:setf) which sets the 'filetype' only if it has
not already been set by another :autocmd. For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 117

Automatic indent

Automatic Unindent
Automatic Indent

Automatic Unindent

The Vim Tutorial and Reference

:autocmd BufRead *.cpp :set filetype=c
:autocmd BufRead *.html :set filetype=html
“ Any other file types, set to text
:autocmd BufRead * :setfiletype text

Smartindent

The 'cindent' mode is not the only indent mode available to Vim users.
There is also the 'smartindent' mode. In this mode, an extra level of
indentation is added for each { and removed for each }. An extra level of
indentation will also be added for any of the words in the 'cinwords' option.

Lines that begin with # are treated specially. If a line starts with #, all
indentation is removed. This is done so that preprocesser directives will all start
in column 1.The indentation is restored for the next line.

Note 'smartindent' is not as smart as 'cindent', but smarter than
'autoindent'.

Autoindent

Structured languages such as a Pascal, Perl, and Python use indentation to
help the programmer figure out what the program is doing. When writing these
programs, most of the time you want the next line indented at the same level as
the preceding one. To help you do this, the Vim editor has an 'autoindent'
option. When on, it causes lines to be automatically indented.

Suppose, for example, that you have 'autoindent' off
(:set noautoident). To type the following text, you must type four spaces in
front of each printf:

if (true) {
¬¬¬¬printf("It is true\n");
¬¬¬¬printf("It is really true\n");
}

The ¬ character indicates a typed space.

If you have set the 'autoindent' option using the :set autoindent
command, the Vim editor automatically indents the second printf by four spaces
(to line up with the preceding line). Figure 7-6 illustrates the operation of the
'autoindent' option. Type four spaces for indent; with 'autoindent' set, the
following lines are automatically indented.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 118

The Vim Tutorial and Reference

if (true) {
¬¬¬¬printf("It is true\n");
 printf("It is really true\n");
 }

Figure 7-6: 'autioindent'

That is nice, but when you get ready to enter the } line, the Vim editor also
indents four spaces. That is not good because you want the } to line up with the
if statement. While in insert mode, the CTRLD command will cause Vim to back
up one shift width (see Figure 7-7). CTRLD moves the } back one shift width.

if (true) {
¬¬¬¬printf("It is true\n");
 printf("It is really true\n");
}

Figure 7-7: CTRLD

The = Command

The =motion command indents the selected text using Vim's internal
formatting program. If you want to indent a block of text, for example, you can
use the = command to do it. The motion in this case is the % (go to matching {})
command. Figure 7-8 shows the results.

{
if (strcmp (arg, option1) == 0)
return (1) ;
if (strcmp (arg, option2) == 0)
return (1) ;
return (0) ;
}

1) Position cursor on the first "{"

2) Execute the command =%.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 119

autoindent

CTRLD

13

The Vim Tutorial and Reference

{
 if (strcmp (arg, option1) == 0)
 return (1) ;
 if (strcmp (arg, option2) ==0)
 return (1) ;
 return (0) ;
}

Figure 7-8: The = command.

Another way of doing this is to use the visual mode = command. For
example, to indent all the code inside a set of {} (including the {}), execute the
following commands:

1. Position the cursor on the starting {.

2. Start visual mode with v.

3. Go to the other } with the % command.

{
if (strcmp (arg, option1) == 0)
return (1) ;
if (strcmp (arg, option2) == 0)
return (1) ;
return (0) ;
}

4. Press = to indent the text.

{
 if (strcmp (arg, option1) == 0)
 return (1) ;
 if (strcmp (arg, option2) ==0)
 return (1) ;
 return (0) ;
}

Figure 7-9: The visual = command.

Diff Mode

Vim has a diff mode which displays the differences between two or more
files side by side. For example, let's take a look at the difference between two
different version of a program. To do this we execute the command:

$ gvimdiff dltstatus.cpp.bad dltstatus.cpp.works

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 120

The Vim Tutorial and Reference

Figure 7-10 shows the results:

Figure 7-10: Results of gvimdiff

The first 29 lines are the same in both files so Vim has put in a fold hiding
them from you. The line:

static int raw;

is different between the two files. Not only is the line highlighted, but the
actual different (and extra “i”) is highlighted in a different color. You can also
easily see where a line was added in the first file as well.

The nice thing about doing this in Vim is that you can edit both files. To
move from one window to another use the window left (CTRLW h) or window
right (CTRLW l) commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 121

The Vim Tutorial and Reference

You can also easily move differences from one file to another. To move a
change from the current file to the other one, use the dp (diff put) command. To
move a change from the other file to the one you are editing now, use the do (diff
obtain) command.2

Folding

Suppose you are looking at some badly written code such as that in Figure
7-11.

 if (condition) {
 // ... 1200 lines of code
 } else {
 return (ERROR);
 }

Figure 7-11: Bad code

If you look at the code normally, this is all you're going to see:

 if (condition) {
 // Junky code line 1
 // Junky code line 2
 // Junky code line 3
 // Junky code line 4

Now if you scroll down, and down, and down, and down, you'll finally get
the to the else clause. As you see figuring out the structure of such code is
difficult.

The Vim fold feature helps you see the structure of this style of code. Let's
see how to use this feature. To do this we execute the following steps:

1. Put the cursor on the first line of junk code

2. Press V to start visual line mode.

3. Put the cursor on the "{" on the previous (if) line.

4. Press % to go to the matching "}".

5. Go up one line with the j command.

6. Create a fold with the zf command

Figure 7-12 displays the result:

2 dg was already taken as it is the beginning of a d{motion} command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 122

The Vim Tutorial and Reference

#if (x) {
+1200 lines: Junk code line 1
} else {
 return (ERROR);
}

Figure 7-12: Screen after folding

This makes it easy to see the structure of the program. If you want to see
what's in the fold that you just created, position the cursor on the fold and
execute the command zo (Fold Open).

Note: Power users can do the same thing by positioning the cursor on the
"{" and entering zfi{. (This is the zf{motion} command with the inner { select
command: i{.)

So far we've been creating folds manually. This assumes that the
'foldmethod' ('fdm') is set to manual, the default.

We can also define folds based on indentation. Figure 7-13 shows some
unfolded code.

if (a) {
 if (b) {
 if (d) {
 if (e) {
 if (f) {
 do_something();
 }
 }
 }
 }
}

Figure 7-13: Unfolded text

Now let's set the 'foldmethod' to indent.

:set foldmethod=indent

Suddenly all our code is folded. (See Figure 7-14.)

if (a) {
+ 9 lines: if (b) {
}

Figure 7-14: Indent Level Folding

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 123

The Vim Tutorial and Reference

Now let's put the cursor on the fold and do a zo. One level of indention is
displayed. (See Figure 7-15.)

if (a) {
 if (b) {
+ 7 lines: if (d) {
 }
}

Figure 7-15: One level of indent unfolded

If we do another zo, another level of indentation is opened up. The zc
command closes one level of folding.

The zo and zc commands open and close folds manually. In other words
this commands override what Vim would normally do. To reset the folding to the
defaults (no overrides) with the command zX.

Sometimes a folding will cause the line the cursor is on to disappear. If
this happens the zv command opens just enough folds to make the line the
cursor is on visible.

So far we've been opening and closing folds manually. The 'foldlevel'
('fdl') option controls how many level of indents cause Vim to fold. For
example, if you set the 'foldlevel' to 3 anything indented three or more
'shiftwidth' ('sw') indentations is folded.

You can use the :set command to adjust the 'foldlevel' but this is
cumbersome. Instead you can use the zm (fold more) command to reduce the
'foldlevel' increasing the amount of text folded. The zr (fold reduce)
increases the 'foldlevel', reducing the amount of text folded. Figure 7-16
shows how this works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 124

The Vim Tutorial and Reference

if (a) {
+ 9 lines: if (b) {
}

if (a) {
 if (b) {
+ 7 lines: if (d) {
 }
}

if (a) {
 if (b) {
 if (d) {
+ 5 lines: if (e) {
 }
 }
}

Figure 7-16: Increasing and decreasing the folding

Finally to totally get rid of folding use the zR command. To fold things to
the max use the zM command.

C and C++ are problem languages in that they have these nasty
pre-processor directives that don't following the normal indenting rules. To
handle these types of lines the 'foldignore' ('fdi') is used. It tells Vim that
any lines that begin with a certain character are not to be considered for
computing the indentation of a line. Instead these lines inherit their indentation
level from the lines above or below.

Initially when you start editing the 'foldlevel' is set to 1. If you want to
have it start at a different value, set the 'foldlevelstart' ('fdls') to whatever
you want the initial value to be.

Locating Items in a Program

Programmers made the Vim editor, so it has a lot of commands that can be
used to navigate through a program. These include the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 125

zr

zR
Somewhere
off to the right
there's no
folding

zr

zm zm

zM

The Vim Tutorial and Reference

CTRLI,]CTRLI Search for a word under the cursor in the current file
and any brought in by #include directives.

gd, gD Search for the definition of a variable.

]CTRLD, [CTRLD Jump to a macro definition.

]d, [d,]D, [D Display macro definitions.

Instant Word Searches Including #include Files ([CTRL-I,]CTRL-I)

The [CTRLI command jumps to the word under the cursor. The search
starts at the beginning of the file and also searches files brought in by #include
directives. The]CTRLI does the same thing, starting at the cursor location.

Jumping to a Variable Definition (gd, gD)

The gd command searches for the local declaration of the variable under
the cursor (see Figure 7-17).This search is not perfect because Vim has a limited
understanding of C and C++ syntax. In particular, it goes to the wrong place
when you ask for the local declaration of a global variable. Most of the time,
however, it does a pretty good job.

int global_var;
int main()
{
 int local_var;

 global_var = local_var = 5;
 printf("%d %d", global_var, local_var);
 return (0);
}

Figure 7-17: The gd command.

The gD command searches for the global definition of the variable under
the cursor(see Figure 7-18). Again, this search is not perfect, but most of the
time it does the right thing.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 126

gd
Moves cursor to here.

'hlsearch' is on

The Vim Tutorial and Reference

int global_var;
int main()
{
 int local_var;

 global_var = local_var = 5;
 printf("%d %d", global_var, local_var);
 return (0);
}

Figure 7-18: The gD command.

Jump to Macro Definition ([CTRL-D,]CTRL-D)

The [CTRLD command searches for the first definition of the macro whose
name is under the cursor. The]CTRLD command searches for the next
definition of the macro. These commands search not only the file you are
editing, but also all files that are #included from this file. Figure 7-19 shows the
[CTRLD and]CTRLD commands.

#include <stdio.h>
#define SIZE 10
int i = EOF ;
int main ()
{
 for (i = 1; i <= SIZE; ++i)
 {
 printf("%2d squared is %3d\d", i,
i*i)
;
 }
 return (0) ;
}
#undef SIZE
#define SIZE 20

Figure 7-19: [CTRLD and]CTRLD.

Displaying Macro Definitions ([d,]d, [D,]D)

The [d command displays the first definition of the macro whose name is
under the cursor. The]d command does the same thing only it starts looking
from the current cursor position and finds the next definition. Figure 7-20 shows
the result of [d.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 127

gD
Moves cursor to here.

'hlsearch' is on

[CTRLD

]CTRLD

The Vim Tutorial and Reference

#include <stdio.h>
#define SIZE 10
int i = EOF;
int main()
{
 for (i = 1; i <= SIZE; ++i)
 {
 printf("%2d squared is %3d\n", i,
i*i);
 }
 return (0);
}
#undef SIZE
#define SIZE 20

Figure 7-20: [d command.

Again, #include files are searched as well as the current one.

The]D and [D commands list all the definitions of a macro. The difference
between the two is that [D starts the list with the first definition, whereas]D
starts the list with the first definition after the cursor. Figure 7-21 shows the
results of a [D command.

int main()
{
 for (i = 1; i <= SIZE; ++i)
 {
 printf("%2d squared is %3d\n", i, i*i);
 }
 return (0);
}
#undef SIZE
#define SIZE 20
~
~
~
test.c
 1: 2 #define SIZE 10
 2: 13 #define SIZE 20
Press RETURN or enter command to continue

Figure 7-21: [D command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 128

[d

The Vim Tutorial and Reference

Shifting a Block of Text Enclosed in {}

Suppose that you want to indent the text encoded in {} one level. Position
the cursor on the first (or last) {. Execute the command >%. This shifts the text
right to where the motion takes you. In this case, % takes you to the matching
{}. Figure 7-22shows how these commands work.

Figure 7-22:Shifting a block of text.

Unfortunately this shifts the {} in addition to the text. Suppose you just
want to shift what is in the {}. Then you need to do the following:

1. Position the cursor on the first {.

2. Execute the command >i{.

This shift right command (>) shifts the selected text to the right one shift width.
In this case, the selection command that follows is i{, which is the "inner {}
block" command. Figure 7-23 shows the execution of these commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 129

int flag;
int main ()
{
 if (flag)
 {
 printf ("Flag set/n");
 do_it () ;
 }
 return (0) ;
}

int flag;
int main ()
{
 if (flag)
 {
 printf ("Flag set/n");
 do_it () ;
 }
 return (0) ;
}

Scope
of
%

>%

The Vim Tutorial and Reference

Figure 7-23: Shifting a block of text (better method).

Indenting a Block Using Visual Mode

To indent a block using visual mode, follow these steps:

1. Position the cursor on the left or right curly brace.

2. Start visual mode with the v command.

3. Select the inner {} block with the command i}.

4. Indent the text with >.

Finding the man Pages

The K command runs a UNIX man command using the word under the
cursor as a subject. If you position the cursor on the word open and press K, for
example, the man page for open will display.

On Microsoft Windows, the K command does the equivalent of performing a
:help (:h, <Help>, <F1>) on the word under the cursor.

You can also use the visual K command to do the same thing. The format of
the man command is as follows:

$ man [section] subject

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 130

int flag;
int main ()
{
 if (flag)
 {
 printf ("Flag set/n");
 do_it () ;
 }
 return (0) ;
}

int flag;
int main ()
{
 if (flag)
 {
 printf ("Flag set/n");
 do_it () ;
 }
 return (0) ;
}

Scope
of
i{

>i{

The Vim Tutorial and Reference

The K command gets the subject from the word under the cursor. But what
if you need to select the section number? It is simple; the K command takes a
count argument. If specified, this is used as the section number. Therefore, if
you position the K over the word mkdir and execute the 2K, you will get the
mkdir(2) page.

You can customize the Error: Reference source not foundK command. It
runs the program specified by the 'keywordprg' ('kp') option. By default, on
UNIX this is man. Solaris has a non-standard man command. Sections must be
specified with the -s switch. So the 'keywordprg' option defaults to man -s on
Solaris. The Vim editor is smart enough to know that if no section is specified,
that it must drop the -s.

On Microsoft Windows, there is no man command, so 'keywordprg'
defaults to nothing ("").This tells Vim to use the internal :help command to
handle the K command. Finally, the definition of what the K command considers
a word is defined by the 'iskeyword' ('isk') option.

Tags

The Vim editor can locate function definitions in C and C++ programs.
This proves extremely useful when you are trying to understand a program. The
location of function definitions (called tags in Vim terminology) is stored in a
table of contents file generated by the program ctags.3 To generate the table of
contents file, which is named tags, use the following command:

$ ctags *.c

Now when you are in Vim and you want to go to a function definition, you
can jump to it by using the following command:

:tag function

This command will find the function even if it is another file. The CTRL]
command jumps to the tag of the word that is under the cursor. (g<LeftMouse>
and <CLeftMouse> are equivalent to CTRL].) This makes it easy to explore a
tangle of C code.

3 You may need to install Exuberant ctags from http://ctags.sourceforge.net/ if you system does
not have it already.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 131

http://ctags.sourceforge.net/

The Vim Tutorial and Reference

Suppose, for example, that you are in the function write_block. You can
see that it calls write_line. But what does write_line do? By putting the
cursor on the call to write_line and typing CTRL], you jump to the definition
of this function (see Figure 7-24). The write_line function calls write_char.
You need to figure out what it does. So you position the cursor over the call to
write_char and press CTRL]. Now you are at the definition of write_char (see
Figure 7-25).

void write_block(char line_set[])
{
 int i;
 for (i = 0; i < N_LINES; ++i)
 write_line(line_set[i]);
}

CTRL] goes to the definition of write_line (switching files if needed).

The command :tag write_line does the same thing

void write_line(char line[])
{
 int i;
 for (i = 0; line[0] != '\0')
 write_char(line[i]);
}
~
"write_line.c" 6L,

Figure 7-24: Tag jumping with CTRL-].

void write_char(char ch)
{
 write_raw(ch);
}
~
"write_char.c" 4L, 48C

Figure 7-25: Jumping to the write_char tag.

The :tags command shows the list of the tags that you have traversed
through (see Figure 7-26).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 132

CTRL] with cursor on
write_char gets us here

The Vim Tutorial and Reference

~
:tags
 # TO tag FROM line in file/text
 1 1 write_block 1 write_block.c
 2 1 write_line 5 write_block.c
 3 1 write_char 5 write_line.c
>
Press RETURN or enter command to continue

Figure 7-26: The :tags command.

Now to go back. The CTRLT command goes the preceding tag. (The
commands g<RightMouse> and <CRightMouse> do the same thing.) This
command takes a count argument that indicates how many tags to jump back.

So, you have gone forward, and now back. Let's go forward again. The
following command goes to the next tag on the list:

:tag

You can prefix it with a count and jump forward that many tags. For
example:

:3tag

Figure 7-27 illustrates the various types of tag navigation.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 133

:tag write_block

CTRL] (on write_line)
CTRL] (on write_char)

write_block write_line write_char

CTRLT

:tag2CTRLT
:2tag

The Vim Tutorial and Reference

Figure 7-27: Tag navigation.

Help and Tags

The help system makes extensive use of tags. To execute a "hyperlink
jump," you press CTRL] (jump to tag).You can return to a preceding subject
with CTRLT (jump to preceding tag) and so on.

Windows and Tags

The :tag command replaces the current window with the one containing
the new function. But suppose you want to see not only the old function but also
the new one? You can split the window using the :split command followed by
the :tag command. But Vim has a shorthand command that is shorthand for both
commands:

:stag name

Figure 7-28 shows how this command works.

void write_block(
 char line_set[]
)
{
 int i;
 for (i = 0; i < N_LINES;
 write_line(line_set[i]);
}

void write_char(char ch)
{
 write_raw(ch);
write_char.c
 for (i = 0; i < N_LINES; ++i)
 write_line(line_set[i]);
write_block.c
"write_char.c" 4L,

:stag write_char

Figure 7-28: The :stag command.

The CTRLW] command splits the current window and jumps to the tag
under the cursor in the upper window (see Figure 7-29). (CTRLW CTRL] works
as well.) If a count is specified, the new window will be count lines high.

void write_block(
 char line_set[]
)
{
 int i;
 for (i = 0; i < N_LINES;
 write_line(line_set[i]);
}

void write_line(char line[])
{
 int i;
write_line.c
 for (i = 0; i < N_LINES; ++i)
 write_line(line_set[i]);
write_block.c
"write_char.c" 4L,

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 134

The Vim Tutorial and Reference

Figure 7-29: CTRLW].

Finding a Procedure When You Only Know Part of the Name

Suppose you "sort of " know the name of the procedure you want to find?
This is a common problem for Microsoft Windows programmers because of the
extremely inconsistent naming convention of the procedures in the Windows API.
UNIX programmers fare no better. The convention is consistent; the only
problem is that UNIX likes to leave letters out of system call names (for example,
creat).

You can use the :tag command to find a procedure by name, or it can
search for a regular expression. If a procedure name begins with /, the :tag
command assumes that the name is a regular expression. If you want to find a
procedure named "something write something," for example, you can use the
following command:

:tag /write

This finds all the procedures with the word write in their names and
positions the cursor on the first one. If you want to find all procedures that
begin with read, you need to use the following command:

:tag /^read

If you are not sure whether the procedure is DoFile, do_file, or Do_File,
you can use this command:

:tag /DoFile\|do_file\|Do_File

or

:tag /[Dd]o_\=[Ff]ile

These commands can return multiple matches. You can get a list of the
tags with the following command:

:tselect name

(:tselect may be abbreviated as :ts.) Figure 7-30 shows the results of a
typical :tselect command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 135

The Vim Tutorial and Reference

~
 # pri kind tag file
> 1 F C f write_char write_char.c
 void write_char(char ch)
 2 F f write_block write_block.c
 void write_block(char line_set[])
 3 F f write_line write_line.c
 void write_line(char line[])
 4 F f write_raw write_raw.c
 void write_raw(char ch)
Enter nr of choice (<CR> to abort):

Figure 7-30: :tselect command.

The first column is the number of the tag. The second column is the
Priority column. This contains a combination of three letters.

F Full match (if missing, a case-ignored match)

S Static tag (if missing, a global tag)

F Tag in the current file

The last line of the :tselect command gives you a prompt that enables
you to enter the number of the tag you want. Or you can just press Enter (<CR>
in Vim terminology) to leave things alone.

The g] command does a :tselect on the identifier under the cursor. The
:tjump command (a.k.a. :tj) works just like the :tselect command, except if
the selection results in only one item, it is automatically selected. The gCTRL]
command does a :tjump on the word under the cursor. A number of other
related commands relate to this tag selection set, including the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 136

The Vim Tutorial and Reference

:[count] tnext
:[count] tn

Go to the next tag

:[count] tprevious
:[count] tp

:[count] tNext
:[count] tN

Go to the previous tag

:[count] trewind
:[count] tr
:[count] tfirst
:[count] tf

Go to the first tag

:[count] tlast
:[count] tl

 Go to the last tag

Figure 7-31 shows how to use these commands to navigate between
matching tags of a :tag or :tselect command.

Figure 7-31: Tag navigation.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 137

write_block write_line write_char

:tag /write

:tnext
:tnext

:tprevious

:tnext

:trewind

:tlast

The Vim Tutorial and Reference

Shorthand Commands

The command :stselect (:sts) does the same thing as :tselect, except
that it splits the window first. The :stjump does the same thing as a :split and
a :tjump.

The Care and Feeding of Makefiles

The UNIX make command is designed to manage the compilation and
building of programs. The commands to make are stored in a file called
Makefile. The format of this file, although simple, is a little tricky to work with.
In the following file, for example, the first command works, whereas the second
contains an error:

alpha.o: alpha.c
 gcc c alpha.c

beta.o: beta.c
 gcc c beta.c

You may have a little difficulty seeing the problem from this listing. The
problem is that the indent for the first command is a tab, whereas the indent on
the second one uses eight spaces. This difference is impossible to see on screen;

so how do you tell the difference between the two versions? The following
command puts Vim in list mode:

:set list

In this mode, tabs show up as ^I. Also the editor displays $ at the end of
each line (so you can check for trailing spaces). Therefore, if you use the
following command

:set list

your example looks like this:

alpha.o: alpha.c$
^Igcc c alpha.c$
$
beta.o: beta.c$
 gcc c beta.c$

From this it is easy to see which line contains the spaces and which has a
tab. (You can customize list mode by using the 'listchars' ('lcs') option.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 138

The Vim Tutorial and Reference

If the 'expandtab' option is set, when you type a tab, Vim inserts spaces.
This is not good if you are editing a Makefile. To insert a real tab, no matter
what the options are, type in CTRLV<Tab> in insert mode. The CTRLV tells Vim
not to mess with the following character.

Note: If you have syntax coloring turned on, the Vim editor will highlight
lines that begin with spaces in red, whereas lines that start with <Tab>
display normally.

Sorting a List of Files

Frequently in a Makefile, you will see a list of files:

SOURCES = \
 time.cpp \
 set_ix.cpp \
 rio_io.cpp \
 arm.cpp \
 app.cpp \
 amem.cpp \
 als.cpp \
 aformat.cpp \
 adump.cpp \
 rio.cpp \
 progress.cpp \
 add.cpp \
 acp.cpp \
 rio_glob.cpp

To sort this list, execute the following:

1. Position the cursor on the start of the list.

2. Mark this location as a by using the command ma.

3. Go to the bottom of the list.

4. Run the block through the external program sort using the command
!'a sort.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 139

The Vim Tutorial and Reference

SOURCES = \
 acp.cpp \
 add.cpp \
 adump.cpp \
 aformat.cpp \
 als.cpp \
 amem.cpp \
 app.cpp \
 arm.cpp \
 progress.cpp \
 rio_glob.cpp
 rio_io.cpp \
 rio.cpp \
 set_ix.cpp \
 time.cpp \

All the lines, except the last one, must end with a backslash (\). Sorting
can disrupt this pattern. Make sure that the backslashes are in order after a
sort. Figure 7-32 shows how you might need to fix the source list.

SOURCES = \
 acp.cpp \
 add.cpp \
 adump.cpp \
 aformat.cpp \
 als.cpp \
 amem.cpp \
 app.cpp \
 arm.cpp \
 progress.cpp \
 rio.cpp \
 rio_glob.cpp
 rio_io.cpp \
 set_ix.cpp \
 time.cpp \

SOURCES = \
 acp.cpp \
 add.cpp \
 adump.cpp \
 aformat.cpp \
 als.cpp \
 amem.cpp \
 app.cpp \
 arm.cpp \
 progress.cpp \
 rio.cpp \
 rio_glob.cpp \
 rio_io.cpp \
 set_ix.cpp \
 time.cpp

Figure 7-32: Fixing the source list.

Sorting a List in Visual Mode

To sort a list using visual mode, you need to execute the following
commands:

1. Move to the top of the text to be sorted.

2. Start line visual mode with the command V.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 140

 Fix

 Fix

The Vim Tutorial and Reference

3. Move to the bottom of the text to be sorted.

4. Execute the command !sort. The ! tells Vim to pipe the selected text
through a command. The command in this case is sort. (This command
has an implied <Enter> at the end.)

Making the Program

The Vim editor has a set of commands it calls the quick-fix mode. These
commands enable you to compile a program from within Vim and then go
through the errors generated fixing them (hopefully). You can then recompile
and fix any new errors that are found until finally your program compiles without
error.

The :make command

The :make (:mak) command runs the program make (supplying it with any
argument you give) and captures the results:

:make [arguments]

If errors were generated, they are captured and the editor positions you
where the first error occurred.

Take a look at a typical :make session. (Typical :make sessions generate far
more errors and fewer stupid ones.) Figure 7-33 shows the results. From this
you can see that you have errors in two files, main.c and sub.c.

:!make | & tee /tmp/vim215953.err
gcc g Wall o prog main.c sub.c
main.c: In function `main':
main.c:6: too many arguments to function `do_sub'
main.c: At top level:
main.c:10: parse error before `}'
sub.c: In function `sub':
sub.c:3: `j' undeclared (first use in this function)
sub.c:3: (Each undeclared identifier is reported only once
sub.c:3: for each function it appears in.)
sub.c:4: parse error before `}'
sub.c:4: warning: control reaches end of nonvoid function
make: *** [prog] Error 1
2 returned
"main.c" 11L, 111C
(3 of 12): too many arguments to function `do_sub'
Press RETURN or enter command to continue

Figure 7-33: :make output.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 141

The Vim Tutorial and Reference

When you press Enter (what Vim calls Return), you see the results shown
in Figure 7-34.

int main()
{
 int i=3;
 do_sub("foo");
 ++i;
 return (0);
}
}
~
(3 of 12): too many arguments to function do_sub

Figure 7-34: The first error.

The editor has moved you to the first error. This is line 6 of main.c. You
did not need to specify the file or the line number, Vim knew where to go
automatically. The following command goes to where the next error occurs (see
Figure 7-35):

:cnext

int main()
{
 int 1=3;
 do_sub("foo");
 ++i;
 return (0);
}
}
~
(5 of 12): parse error before `}´

Figure 7-35: :cnext.

Note: If you are a Visual-C++ user, the make program supplied by
Microsoft is called nmake. You might need to customize Vim using the
'makeprg' option so that it uses this program rather than the default make
(as discussed on page 406).

The command :cprevious or :cNext goes to the previous error. Similarly,
the command :clast goes to the last error and :crewind goes to the first. The
:cnfile goes to first error message for the next file (see Figure 7-36).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 142

The Vim Tutorial and Reference

int sub(int i)
{
 return (i * j)
}
~
~
~
~
~
~
(7 of 12): `j' undeclared (first use in this function)

Figure 7-36: :cnfile command

If you forget what the current error is, you can display it using the
following command:

:cc

To see a list of errors, use the commands:

:copen

This command opens a new window showing all the errors as shown in
Figure 7-37.

int sub(int i)
{
 return (i * j)
}
~
~
~
~
~
~
(7 of 12): `j' undeclared (first use in this function)

Figure 7-37: :copen command

To see a list of errors, execute the command:

:clist

Figure 7-38 shows the output of a :clist command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 143

The Vim Tutorial and Reference

~
~
:clist
 3 main.c:6: too many arguments to function `do_sub'
 5 main.c:10: parse error before `}'
 7 sub.c:3: `j' undeclared (first use in this function)
 8 sub.c:3: (Each undeclared identifier is reported only once
 9 sub.c:3: for each function it appears in.)
10 sub.c:4: parse error before `}'
11 sub.c:4: warning: control reaches end of nonvoid function
Press RETURN or enter command to continue

Figure 7-38: :clist command

If you want to list only a subset of the errors, you can give :clist a range
of errors to list. For example:

:clist 3,5 (List errors 3 through 5)

:clist ,5 (List errors 1-5)

:clist 5, (List errors 5 to the end)

The Vim editor suppresses all informational messages. If you want
everything, use the following command:

:clist!

The override option (!) tells Vim to not suppress anything.

If you have already run make and generated your own error file, you can
tell Vim about it by using the :cfile errorfile command. Where errorfile
is the name of the output of the make command or compiler. If the errorfile is
not specified, the file specified by the 'errorfile' option is used.

Finally the following command exits Vim like :quit but exits with an error
status (exit code=1):

:cquit

This is useful if you are using Vim in an integrated development
environment and a normal exit would cause a recompilation.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 144

The Vim Tutorial and Reference

The 'errorfile' Option

The 'errorfile' option (also 'ef') defines the default filename used for
the :clist command (:cl) as well as the q command-line option. (This file is
not used for the :make command's output.) If you want to define your default
error file, use the following command:

:set errorfile=error.list

Searching for a Given String

The :vimgrep (:vi) command searches files for a given regular expression.
To find all occurrences of the word hack, for example, you use this command:

:vimgrep /hack/ /usr/src/linux**/*.c

This command searches for the regular expression hack through all the
files that match the wildcard *.c in the directory /usr/src/linux and all directories
below it (**). Figure 7-39 shows the results.

 /* A hack. Not moving message rate limiting to adev>xxx
 * (it's only a debug message after all) */
 static int rate_limit = 0;

 if (rate_limit++ < 3)
 log(L_IOCTL, "Please report in case toggling the power "
 "LED doesn't work for your card!\n");
 if (enable)
 write_reg16(adev, IO_ACX_GPIO_OUT,
 read_reg16(adev, IO_ACX_GPIO_OUT) & ~gpio_pled);
(1 of 481): /* A hack. Not moving message rate limiting t 2677,714 63%

Figure 7-39: :vimgrep output.

Note: The :vimgrep command knows nothing about C syntax, so it will
find hack even it occurs inside a string or comment.

You can use the :cnext (:cn), :cprevious (:cp, :cNext, :cN) , and :cc
commands to page through the list of matches. Also :crewind (:crew,
:cfirst, :cf) goes to the first match and :clast (:cl) to the last. Finally, the
following command goes to the first match in the next file:

:cnfile

The :copen (:cope) command opens a new window containing all the items
found as seen in Figure 7-40.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 145

The Vim Tutorial and Reference

acxpci_l_power_led(acx_device_t *adev, int enable)
{
 u16 gpio_pled = IS_ACX111(adev) ? 0x0040 : 0x0800;

 /* A hack. Not moving message rate limiting to adev>xxx
 * (it's only a debug message after all) */
 static int rate_limit = 0;

 if (rate_limit++ < 3)
3rdparty/acx/pci.c [RO] 2677,714 63%
3rdparty/acx/pci.c|2677 col 7| /* A hack. Not moving message rate limiting to
adev>xxx
3rdparty/at76c503a/at76_usb.c|5410 col 27| /* jal: this is a dirty hack needed by
Tim in adhoc mode */
3rdparty/at76c503a/at76_usb.c|5560 col 12| /* Magic hack for Novell IPXin802.3
packets */
3rdparty/ipw3945/ipw3945.c|11004 col 4| /* hack this function to show different
aspects of received frames,
3rdparty/ipw3945/ipw3945.c|11149 col 21| * but you can hack it to show more, if
you'd liketo. */
3rdparty/ndiswrapper/ntoskernel.c|1778 col 57| * related to ACPI: "_SM_" and
"_DMI_". This may be the hack they do
[Quickfix List] 1,1 Top
:cc

Figure 7-40: Result of :copen

You can move up and down this list using the normal movement commands.
When you a item you are interested in, you can press <Enter> and Vim will jump
to that location.

Vim and outside edits

When I'm programming Java, I like to use the Eclipse IDE. One nice
feature of this program is that it does a good job of suggesting fixes for simple
errors in your code.

Let's suppose you've written a Java program with Vim and wish to see if it
compiles. You write it out using the :w command and load it in Eclipse. Being a
typical programmer, the file needs some fixing, so you let Eclipse fix it. After
saving the file, the one in the Vim editor is out of date.

Vim will detect this and ask if you wish to load the file. If you answer yes,
it will read in the new file and let you continue editing. Eclipse will do the same
thing, so the two editors (Vim and Eclipse's internal editor) work well together as
long as you remember to save the changes after each edit.

Vim also has a option: 'autoread' ('ar') which will cause the editor to
automatically read a file when a change is detected.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 146

The Vim Tutorial and Reference

Other Interesting Commands

The Vim editor can use different options for different types of files through
the use of the :autocmd command. See Chapter 13: Autocommands for more
information. You can also customize your options on a per-file basis by putting
something called a modeline in each file. The Vim editor scans your file looking
for these lines and sets things up based on their content.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 147

The Vim Tutorial and Reference

Chapter 8: Basic Abbreviations, Keyboard Mapping,
and Initialization Files

The Vim editor has some features that enable you to automate repetitive
tasks.

One of these is abbreviation, which enables you to type in part of a word
and let Vim type the rest. Another is the ability to remap the keyboard. You can
easily redefine a key to be a whole set of commands. After you design your
customizations, you can save them to an initialization file that will automatically
be read the next time you start Vim. This chapter discusses the most common
and useful subset of these commands. For a more complete reference, see
Chapter 24: All About Abbreviations and Keyboard Mapping. "

Abbreviations

An abbreviation is a short word that takes the place of a long one. For
example, ad stands for advertisement. The Vim editor enables you to type in an
abbreviation and then will automatically expand it for you. To tell Vim to expand
the abbreviation ad into advertisement every time you type it, use the following
command:

:abbreviate ad advertisement

(:abbreviate can be abbreviated as :ab.)

Now, when you type ad, the whole word advertisement will be inserted into
the text.

What is Typed Result

I saw the a I saw the a

I saw the ad I saw the ad

I saw the ad<space> I saw the advertisement<space>

It is possible to define an abbreviation that results in multiple words. For
example, to define JB as Jack Benny, use the following command:

:abbreviate JB Jack Benny

As a programmer, I use two rather unusual abbreviations:

:abbreviate #b /**
:abbreviate #e <space>**/

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 148

The Vim Tutorial and Reference

These are used for creating boxed comments. The comment starts with #b,
which draws the top line. I then put in the text and use #e to draw the bottom
line. The number of stars (*) in the abbreviations is designed so that the right
side is aligned to a tab stop. One other thing to notice is that the #e abbreviation
begins with a space. In other words, the first two characters are space-star.
Usually Vim ignores spaces between the abbreviation and the expansion. To
avoid that problem, I spell space as seven characters: "<", "s", "p", "a", "c", "e",
">".

Listing Your Abbreviations

The command :abbreviate (:ab) lists all your current abbreviations.
Figure 8-1 shows a typical execution of this command.

~
~
! #j Jack Benny Show
! #l /**/
! #e **/
! #b /**/
! #i #include
! #d #define
Press RETURN or enter command to continue

Figure 8-1: :abbreviate.

Note: The abbreviation is not expanded until after you finish the word by
typing a space, tab, or other whitespace. That is so that a word such as
addition won't get expanded to advertisementdition.

Mapping

Mapping enables you to bind a set of Vim commands to a single key.
Suppose, for example, that you need to surround certain words with curly
braces. In other words, you need to change a word such as amount into
{amount}. With the :map command, you can configure Vim so that the F5 key
does this job. The command is as follows:

:map <F5> i{<Esc>ea}<Esc>

Let's break this down:

<F5> The F5 function key. This is the trigger key that causes the
command to be executed as the key is pressed. (In this
example, the trigger is a single key; it can be any string.)

i{<ESC> Insert the { character. Note that we end with the <Esc> key.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 149

The Vim Tutorial and Reference

E Move to the end of the word.

A}<Esc> Append the } to the word.

After you execute the :map command, all you have to do to put {} around a
word is to put the cursor on the first character and press F5.

Note: When entering this command, you can enter <F5> by pressing the F5
key or by entering the characters <, F, 5, and >.

Either way works. However, you must enter <Esc> as characters. That is
because the <Esc> key tells Vim to abort the command. Another way of
entering an <Esc> key is to type CTRLV followed by the <Esc> key. (The
CTRLV tells Vim to treat the <Esc> as a literal character instead of acting
on it.)

Warning: The :map command can remap the Vim commands. If the trigger
string is the same as a normal Vim command, the :map will supersede the
command in Vim.

Listing Your Mappings

The :map command (with no arguments) lists out all your current mappings
(see Figure 8-2).

~
~
~
 <F5> i {<Esc>ea}<Esc>
 <xHome> <Home>
 <xEnd> <End>
 <SxF4> <SF4>
 <SxF3> <SF3>
 <SxF2> <SF2>
 <SxF1> <SF1>
 <xF4> <F4>
 <xF3> <F3>
 <xF2> <F2>
 <xF1> <F1>
Press RETURN or enter command to continue

Figure 8-2: :map command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 150

The Vim Tutorial and Reference

Fixing the Way Delete Works

On most terminals, the Backspace key acts like a backspace character and
the Delete key sends a delete character. Some systems try to be helpful by
remapping the keyboard and mapping the Backspace key to Delete. If you find
that your keyboard has the Backspace and Delete keys backward, you can use
the following command to swap them:

:fixdel

(:fixdel can be abbreviated as :fix)

It does this by modifying the internal Vim definitions for backspace (t_kb)
and delete (t_kD). This command affects only the Vim keyboard mappings.

Your operating system may have its own keyboard mapping tables. For
example, Linux users can change their keyboard mapping by using the loadkeys
command. For further information, Linux users should check out the online
documentation for loadkeys.

The X Window system also has a keyboard mapping table. If you want to
change this table, you need to check out the xmodmap command. Check the X
Window system documentation for details on how to use this command.

Controlling What the Backspace Key Does

The 'backspace' option controls how the <Backspace> key works in insert
mode. For example, the following command tells Vim to allow backspacing over
autoindents:

:set backspace=indent

The following command enables you to backspace over the end of lines:

:set backspace=eol

In other words, with this option set, if you are positioned on the first
column and press <Backspace>, the current line will be joined with the preceding
one. The following command enables you to backspace over the start of an
insert:

:set backspace=start

In other words, you can erase more text than you entered during a single
insert command. You can combine these options, separated by commas. For
example:

:set backspace=indent,eol,start

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 151

The Vim Tutorial and Reference

Earlier versions of Vim (5.4 and prior) use the following option values.
These still work but are deprecated.

0 "" (No special backspace operations allowed)

1 "indent,eol"

2 "indent,eol,start"

Saving Your Setting

After performing all your :map, :abbreviate, and :set commands, it would
be nice if you could save them and use them again. The command :mkvimrc
(:mkv) writes all your settings to a file. The format of this command is as follows:

:mkvimrc file

Where file is the name of the file to which you want to write the settings.
You can read this file by using the following command:

:source file

(:source can be abbreviated as :so.)

During startup, the Vim editor looks for an initialization file. If it is found, it
is automatically executed. (Only the first file found is read.) The initialization
files are as follows:

UNIX

$HOME/.vimrc

$HOME/_vimrc

$HOME/.exrc

$HOME/_exrc

MS-DOS

$HOME/_vimrc

$HOME/.vimrc

$VIM/_vimrc

$VIM/.vimrc

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 152

The Vim Tutorial and Reference

$HOME/_exrc

$HOME/.exrc

$VIM/_exrc

$VIM/.exrc

When you are running the GUI version, some other files are also read. The
gvimrc file is found in the same location as the vimrc files mentioned in the list.
The $VIMRUNTIME/menu.vim is read too. One way you can find out which
initialization files are read is to use the :version (:ve) command:

:version

In the middle of all the junk it lists out is a list of the initialization files (see
Figure 8-3).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 153

The Vim Tutorial and Reference

:version
:version
VIM Vi IMproved 7.1 (2007 May 12, compiled Sep 7 2007 17:07:14)
Included patches: 187
Compiled by Anssi Hannula <anssi@mandriva.org>
Huge version with GTK2GNOME GUI. Features included (+) or not ():
+arabic +autocmd +balloon_eval +browse ++builtin_terms +byte_offset +cindent
+clientserver +clipboard +cmdline_compl +cmdline_hist +cmdline_info +comments
+cryptv +cscope
+cursorshape +dialog_con_gui +diff +digraphs +dnd ebcdic +emacs_tags +eval
+ex_extra +extra_search +farsi +file_in_path +find_in_path +folding footer
+fork() +gettext
hangul_input +iconv +insert_expand +jumplist +keymap +langmap +libcall +linebreak
+lispindent +listcmds +localmap +menu +mksession +modify_fname +mouse +mouseshape
+mouse_dec
 mouse_gpm mouse_jsbterm +mouse_netterm +mouse_xterm +multi_byte +multi_lang
mzscheme +netbeans_intg osfiletype +path_extra +perl +postscript +printer
+profile +python
+quickfix +reltime +rightleft ruby +scrollbind +signs +smartindent sniff
+statusline sun_workshop +syntax +tag_binary +tag_old_static tag_any_white +tcl
+terminfo
+termresponse +textobjects +title +toolbar +user_commands +vertsplit +virtualedit
+visual +visualextra +viminfo +vreplace +wildignore +wildmenu +windows
+writebackup +X11
xfontset +xim +xsmp_interact +xterm_clipboard xterm_save
 system vimrc file: "/etc/vim/vimrc"
 user vimrc file: "$HOME/.vimrc"
 user exrc file: "$HOME/.exrc"
 system gvimrc file: "/etc/vim/gvimrc"
 user gvimrc file: "$HOME/.gvimrc"
 system menu file: "$VIMRUNTIME/menu.vim"
 fallback for $VIM: "/usr/share/vim"
Compilation: gcc c I. Iproto DHAVE_CONFIG_H DFEAT_GUI_GTK
I/usr/include/gtk2.0 I/usr/lib/gtk2.0/include I/usr/include/atk1.0
I/usr/include/cairo I/usr/include/pan
go1.0 I/usr/include/glib2.0 I/usr/lib/glib2.0/include
I/usr/include/freetype2 I/usr/include/libpng12 DORBIT2=1 pthread
I/usr/include/libgnomeui2.0 I/usr/include/l
ibart2.0 I/usr/include/gconf/2 I/usr/include/gnomekeyring1
I/usr/include/libgnome2.0 I/usr/include/libbonoboui2.0
I/usr/include/libgnomecanvas2.0 I/usr/include/gtk
2.0 I/usr/include/gnomevfs2.0 I/usr/lib/gnomevfs2.0/include
I/usr/include/orbit2.0 I/usr/include/glib2.0 I/usr/lib/glib2.0/include
I/usr/include/libbonobo2.0 I/u
sr/include/bonoboactivation2.0 I/usr/include/libxml2 I/usr/include/pango1.0
I/usr/include/freetype2 I/usr/include/gail1.0 I/usr/lib/gtk2.0/include
I/usr/include/atk
1.0 I/usr/include/cairo I/usr/include/libpng12 O2 g pipe
Wp,D_FORTIFY_SOURCE=2 fstackprotector param=sspbuffersize=4 fexceptions
fomitframepointer march=i
586 mtune=generic fasynchronousunwindtables I/usr/local/include
D_LARGEFILE_SOURCE D_FILE_OFFSET_BITS=64 I/usr/include/gdbm
I/usr/lib/perl5/5.8.8/i386linux/CORE

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 154

The Vim Tutorial and Reference

I/usr/include/python2.5 pthread I/usr/include D_REENTRANT=1 D_THREAD_SAFE=1
D_LARGEFILE64_SOURCE=1
Linking: gcc Wl,E Wl,rpath,/usr/lib/perl5/5.8.8/i386linux/CORE
L/usr/local/lib o vim lgtkx112.0 lgdkx112.0 latk1.0 lgdk_pixbuf2.0
lpangocairo1.0 lpang
o1.0 lcairo lgobject2.0 lgmodule2.0 lglib2.0 lgnomeui2 lbonoboui2
lgnomevfs2 lgnomecanvas2 lgnome2 lpopt lbonobo2 lbonoboactivation
lart_lgpl_2 lgt
kx112.0 lgdkx112.0 latk1.0 lgdk_pixbuf2.0 lpangocairo1.0 lpango1.0
lcairo lgconf2 lgmodule2.0 lORBit2 lgthread2.0 lrt lgobject2.0
lglib2.0 lXt lt
ermcap lacl Wl,E Wl,rpath,/usr/lib/perl5/5.8.8/i386linux/CORE
L/usr/local/lib /usr/lib/perl5/5.8.8/i386linux/auto/DynaLoader/DynaLoader.a
L/usr/lib/perl5/5.8.8/i386l
inux/CORE lperl lutil lc L/usr/lib/python2.5/config lpython2.5 lutil
Xlinker exportdynamic L/usr/lib ltcl8.5 lieee lm
Press ENTER or type command to continue

Figure 8-3: Locating the initialization files with :version.

As part of the initialization process, Vim checks the value of the
'loadplugins' ('lpl') option. If it is set, any available plug-ins are loaded. (A
plug-in a special script that's automatically loaded at initialization time. See the
section Plugins and other scripts in Chapter 27: Expressions and Functions for
more details.)

One other initialization file has not yet been discussed: .exrc. The old Vi
editor used this file for initialization. This is only read if Vim cannot find any
other initialization file. Because the old Vi program does not understand many of
the Vim commands, you will probably want to put everything in the .vimrc file.
The :mkexrc (:mk) command writes the mappings to the .exrc file. If you want to
use all the power of Vim, however, you must use the :mkvimrc command instead.

My .vimrc File

My .vimrc file contains the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 155

The Vim Tutorial and Reference

:syntax on
:autocmd FileType * set formatoptions=tcql
 \ nocindent comments&
:autocmd FileType c,cpp set formatoptions=croql
 \ cindent comments=sr:/*,mb:*,ex:*/,://
:set autoindent
:set autowrite
:ab #d #define
:ab #i #include
:ab #b /**
:ab #e <Space>**/
:ab #l /* */
:ab #j Jack Benny Show
:set shiftwidth=4
:set hlsearch
:set incsearch
:set textwidth=70

The file starts with a command to turn syntax coloring on:

:syntax on

The next thing is an autocommand executed every time a file type is
determined (on file load). In this case, set the formatting options to tcql, which
means autowrap text (t), autowrap comments (c), allow gq to format things (q),
and do not break long lines in insert mode (l). I also turn off C-style indenting
(nocindent) and set the 'comments' option to the default (comments&):

:autocmd FileType * set formatoptions=tcql
 \ nocindent comments&

If a C or C++ file is loaded, the following autocommand is executed. It
defines some additional format options, namely adding the comment header for
new lines (r) and new lines opened with an O command (o). It also turns on C
indentation and defines the 'comments' option for C- and C++-style comments.
Because this autocommand comes after the one for all files, it is executed second
(but only for C and C++ files). Because it is executed second, its settings
override any set by a previous autocommand:

:autocmd FileType c,cpp set formatoptions=croql
 \ cindent comments=sr:/*,mb:*,ex:*/,://

The next options turn on automatic indentation (indent each line the same
as the preceding one) and autowriting (write files when needed). Note that
because the autocommands execute when the file type is determined, any
settings they have override these:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 156

The Vim Tutorial and Reference

:set autoindent
:set autowrite

What follows is a set of abbreviations useful to programmers and a
collector of old Jack Benny radio shows:

:ab #d #define
:ab #i #include
:ab #b /**
:ab #e <Space>**/
:ab #l /**/
:ab #j Jack Benny Show

The indentation size is set to 4, a value that studies have shown is best for
programming:

:set shiftwidth=4

The next two options turn on fancy searching:

:set hlsearch
:set incsearch

When working with text, I like a 70-column page:

:set textwidth=70

Script Files

To read a file containing Vim commands (and to execute the commands),
use the :source (:so) command:

:source myfile.vim

A special version of this command is the :runtime (:ru) command. This
searches the 'runtimepath' ('rtp') for the file. If the file is not present it
reports an error. (This is so you can find and load scripts that are part of the Vim
runtime.)

To see what files have already been loaded, use the :scriptnames (:scr)
command. Figure 8-4 shows the results.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 157

The Vim Tutorial and Reference

 1: /home/sdo/.vimrc
 2: /usr/local/share/vim/vim71/syntax/syntax.vim
 3: /usr/local/share/vim/vim71/syntax/synload.vim
 4: /usr/local/share/vim/vim71/syntax/syncolor.vim
 5: /usr/local/share/vim/vim71/filetype.vim
 6: /home/sdo/.vim/plugin/getscriptPlugin.vim
 7: /usr/local/share/vim/vim71/plugin/getscriptPlugin.vim
 8: /usr/local/share/vim/vim71/plugin/gzip.vim
 9: /usr/local/share/vim/vim71/plugin/matchparen.vim
 10: /usr/local/share/vim/vim71/plugin/netrwPlugin.vim
 11: /usr/local/share/vim/vim71/plugin/rrhelper.vim
 12: /usr/local/share/vim/vim71/plugin/spellfile.vim
 13: /usr/local/share/vim/vim71/plugin/tarPlugin.vim
 14: /usr/local/share/vim/vim71/plugin/tohtml.vim
 15: /usr/local/share/vim/vim71/plugin/vimballPlugin.vim
 16: /usr/local/share/vim/vim71/plugin/zipPlugin.vim
Press ENTER or type command to continue

Figure 8-4: Output of :scriptnames

Scripts which deal with non-English languages are a little tricky to read.
To help with the internationalization of Vim, the :scriptencoding (:scripte)
command lets you tell Vim what encoding to use for a script.

For example, Vim comes with a script that provides Chinese menu
translations, $VIMRUNTIME/langmenu_chinese_gb.936.vim. The beginning of
this script includes the line:

:scriptencoding cp936

To return the encoding to the default use the :scriptencoding command
with no parameters:

:scriptencoding

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 158

The Vim Tutorial and Reference

Chapter 9: Basic Command-Mode Commands

The Vim editor is based on an older editor called Vi. The Vi editor was
based on a command-line editor called ex. The ex editor was made before
screen-oriented editors were popular. It was designed for the old printing
terminals that were standard at that time.

Even though it was line oriented, the ex editor was an extremely versatile
and efficient editor. It is still very useful today. Even with Vim's tremendous
command set, a few things are still better done with ex-style commands. So the
people who created Vim give you access to all the ex commands through the use
of command-line mode. Any command that begins with a colon(:) is considered
an ex-style command. This chapter shows how ex-mode commands are
structured and also discusses the most useful ones, including the following:

● Printing text lines

● Substitution

● Shell (command prompt) escapes

Entering Command-Line Mode

If you want to execute a single command-line-mode command, just type a
colon (:) followed by the command. For example, the command :set number is
actually a command-mode command. This command tells Vim to turn on the
'number' option and display line numbers on the screen. (:set can be
abbreviated as :se and 'number' can be abbreviated as 'nu'.)

A discussion of command-mode commands makes more sense with line
numbering turned on. Therefore, the first command-mode command you enter
for this chapter is as follows:

:set number

After this command has been executed, the editor returns to normal mode.
Switch to command-line mode by executing the command gQ. To switch back to
normal mode (visual mode), use the :visual (:vi) command.

You will get a colon (:) prompt at the beginning of each line when you are
in Ex mode. This can be turned off by turning off the 'prompt' option. Also the
Q command4 will also enter Ex mode, but will not give you command line editing
capability.

4 Some distributions of Linux come with a system vimrc file which maps Q to gq (format text).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 159

The Vim Tutorial and Reference

The Print Command

The :print command (short form :p) prints out the specified lines.
Without arguments, it just prints the current line:

:print 1
1 At one university the computer center was

Ranges

The :print command can be made to print a range of lines. A simple
range can be something like 1,5.This specifies lines 1 through 5. To print these
lines, use the following command:

:1,5 print
1 At one university the computer center was
2 experiencing trouble with a new type of
3 terminal. Seems that the professors loved to
4 put papers on top of the equipment, covering
5 the ventilation holes. Many terminals broke

Strictly speaking, you do not have put a space between the 5 and the
print, but it does make the example look nicer. If you want to print only line 5,
you can use this command:

:5 print
5 the ventilation holes. Many terminals broke

You can use a number of special line numbers. For example, the line
number $ is the last line in the file. So to print the whole file, use the following
command:

:1,$ print
1 At one university the computer center was
...
36 Notice:
37
38 If your computer catches fire, please turn it
39 off and notify computing services.

The % range is shorthand for the entire file (1,$). For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 160

The Vim Tutorial and Reference

:1% print
1 At one university the computer center was
...
36 Notice:
37
38 If your computer catches fire, please turn it
39 off and notify computing services.

The line number dot (.) is the current line. For example:

:. print
39 off and notify computing services.

You can also specify lines by their content. The line number /pattern/
specifies the next line containing the pattern.

Let's move up to the top with :1 print, and then print the lines from the
current line (.) to the first line containing the word trouble:

:1 print
 1 At one university the computer center
was :.,/trouble/print
1 At one university the computer center was
2 experiencing trouble with a new type of

Similarly, ?pattern? specifies the first previous line with pattern in it. In
the following example, we first move to the end of the file with :39 print and
then print the last line with the word Notice in it to the end of the file:

:39 print
39 off and notify computing services. :?
Notice:?,39 print
36 Notice:
37
38 If your computer catches fire, please turn it
39 off and notify computing services.

Marks

Marks can be placed with the normal-mode m command. For example, the
ma command marks the current location with mark a.

You can use marks to specify a line for command-mode commands. The
line number 'a specifies the line with mark a is to be used. Start in normal mode,
for example, and move to the first line of the file. This is marked with a using the
command ma. You then move to line 3 and use the command mz to mark line as z.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 161

The Vim Tutorial and Reference

The command

:'a, `z print

is the same as the following command:

:1,3 print

Visual-Mode Range Specification

You can run a command-mode command on a visual selection. The first
step is to enter visual mode and select the lines you want. Then enter the
command-mode command to execute. Figure 9-1 shows that the first three lines
of the text have been selected.

 1 At one university the computer center was
 2 experience trouble with a new type of computer
 3 terminal. Seems that the professors loved to
 4 put papers on top of the equipment, covering
 5 the ventilation holes. Many terminals broke
 6 down because they became so hot that the solder
 VISUAL

Figure 9-1: Visual-mode selection.

Next, enter the :print command to print these lines. The minute you
press :, Vim goes to the bottom of the screen and displays the following:

:'<,'>

The special mark < is the top line of the visual selection and the mark > is
the bottom. Thus, Vim is telling you that it will run the command on the visual
selection. Because < is on line 1, and > is on line 3, a :print at this point prints
lines 1 to 3.The full command, as it appears onscreen, looks like this:

:`<,`>print

Substitute Command

The :substitute command enables you to perform string replacements on
a whole range of lines. The general form of this command is as follows:

:range substitute /from/to/ flags

(Spaces were added for readability.)

This command changes the from string to the to string. For example, you
can change all occurrences of Professor to Teacher with the following
command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 162

The Vim Tutorial and Reference

:% substitute /Professor/Teacher/

Note: The :substitute command is almost never spelled out completely.
Most of the time, people use the abbreviated version :s. (The long version
is used here for clarity.)

By default, the :substitute command changes only the first occurrence
on each line. For example, the preceding command changes the line

Professor Smith criticized Professor Johnson today.

to

Teacher Smith criticized Professor Johnson today.

If you want to change every occurrence on the line, you need to add the g
(global) flag. The command

:% substitute /Professor/Teacher/g

results in

Teacher Smith criticized Teacher Johnson today.

Other flags include p (print), which causes the :substitute command to
print out each line it changes. The c (confirm) flag tells the :substitute to ask
you for confirmation before it performs each substitution. When you enter the
following

:1,$ substitute /Professor/Teacher/c

the Vim editor displays the text it is about to change and displays the
following prompt:

Professor: You mean it's not supposed to do that?
replace with Teacher (y/n/a/q/^E/^Y)?

At this point, you must enter one of the following answers:

y Make this replacement.

n Skip this replacement.

a Replace all remaining occurrences without confirmation.

q Quit. Don't make any more changes.

CTRLE Scroll one line up.

CTRLY Scroll one line down.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 163

The Vim Tutorial and Reference

How to Change Last, First to First, Last

Suppose you have a file containing a list of names in the form last, first,
and you want to change it to first, last. How do you do it?

You can use the :substitute command to do it in one operation. The
command you need is shown in Figure 9-2. The to string takes the first name (\2)
and last name (\1) and puts them in order.

Note: This command uses regular expressions which are covered in detail
in Chapter 19: Advanced Searching Using Regular Expressions.

Figure 9-2: Changing last, first to first, last.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 164

:1,$s/([^,]*), (.*)$/\2 \1/

First line (1) to last line ($)
(The range % does the same thing)

:s (:substitute) command

Substitute from

Substitute to

Put enclosed in \1 Put enclosed in \2

:1,$s/([^,]*), (.*)$/\2 \1/

String in \1 (last name)

String in \2 (first name)

Any character (.)
Zero or more times (*)

End of line ($)Literally comma, space (,)

Anything except comma ([^,])
Zero or more times (*)

The Vim Tutorial and Reference

Reading and Writing Files

The :read filename command (short form :r) reads in a file and inserts it
after the current line. The :write command (short form :w) writes out the file.
This is a way of saving your work. You can write a different file (prog.c.new, for
example) by giving :write a filename as an argument:

:write prog.c.new

Warning: If you exit using the emergency abort command :q!, the file
reverts to the last written version.

The :write command usually does not overwrite an existing file. The
force (!) option causes it to ignore this protection and to destroy any existing
file. The :write command proves extremely useful when it comes to exporting
portions of a large file to a smaller one--for example, if you have a collection of
jokes and want to write one out to a file to send to a friend. To export a single
joke, first highlight it in visual mode. Then use the following command to write it
out to the file joke.txt:

:'<,'> write joke.txt

Saving the file under a new name

The :saveas (:sav) command saves the current file under a new name.
Unlike the :write command, it also changes the name of the file being edited so
future writes will send their output to the new file.

The :shell Command

The :shell command takes you to the command prompt. You can return
to Vim by executing the exit command. For example:

:shell
$ date
Mon Jan 17 18:55:45 PST 2000
$ exit
 vim window appears

In this example, we are on UNIX, so we get the UNIX prompt ($). If we
were using the UNIX version of gvim, Vim would start a shell in the GUI window.
On MS-DOS, the Vim command acts just like UNIX when a :shell command is
executed. If you are using the GUI, however, the :shell command causes an
MS-DOS prompt window to appear.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 165

The Vim Tutorial and Reference

Printing the file

The :[range]hardcopy (:ha) command prints the file to a printer. On
Linux and UNIX this sends the file to the default printer (unless you customize
the command, see the section Advanced Hardcopy in Chapter .)

On Microsoft Windows, the command brings up a windows print dialog that
lets you select the printer. If you wish to skip this dialog and print to the default
printer, use the override (!) option:

:hardcopy!

The 'printoptions' ('popt') option controls how the file is printed. The
options available are:

bottom:{size} bottom margin (default = 5pc)
collate:{y|n} Turns on collation. (Default = y)
duplex:{off|long|short} Sets duplex printing (default = long).
formfeed:{y|n} If set a formfeed character starts a new page.

(Default = n).
header:{count} Number of lines to reserve for the header. If this

number is 0, no header is printed. If it is one or
more, a line of text (defined by the 'printheader'
option) is printed, followed by any additional blank
lines needed to make up the count.

jobsplit:{y|n} Do each copy as a separate print job. (Default = n}
left:{size} Left margin (Default = 10pc)
number:{y|n} Turn on or of line numbers. (Default = n)
paper:{papersize} Paper size. (Default = A4) The possible sizes are:

10x14, A3, A4, A5, B4, B5, executive, folio, ledger,
legal, letter, quarto, statement , and tabloid.

portrait:{y|n} If set to y to portrait printing. Otherwise do
landscape. (Default = y)

right:{size} Right margin. (Default = 5pc)
syntax:{y|n} If y, turn on syntax highlighting. If n, turn it off. If a

(default), turn it on if the printer appears to have the
ability to do color or greyscale output.

top:{size} Top margin. (Default = 5pc)
wrap:{y|n} Wrap long lines. (Default=y)

The {size} parameter for the margins is of the form {number}{unit}
where {unit} is :

in Inches

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 166

The Vim Tutorial and Reference

mm Millimeters

pc Percentage of the media

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 167

The Vim Tutorial and Reference

Chapter 10: Basic GUI Usage

The Vim editor works well inside a windowing environment. This graphical
user interface (GUI) provides you with not only all of Vim's keyboard commands,
but also a number of menus and other options. This chapter shows you how to
start Vim in GUI mode and how to make use of the special GUI features.

Starting Vim in GUI Mode

To start Vim in windowing mode, use the following command:

$ gvim file

This command starts up a Vim window and begins to edit file. The actual
appearance of the screen depends on which operating system you are using. On
UNIX it also depends on which X Window system toolkit (Motif, Athena, GTK) you
have. Figure 10-1 and 10-2 show some of the various types of GUIs.

Figure 10-1: UNIX with the GTK toolkit.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 168

The Vim Tutorial and Reference

Figure 10-2: Microsoft Windows.

If you have a choice of UNIX GUIs to choose from, it is recommended that
you use the GTK version.

Mouse Usage

Standards are wonderful. In Microsoft Windows, you can use the mouse to
select text in a standard manner. The X Window system also has a standard
system for using the mouse. Unfortunately, these two standards are not the
same. Fortunately, you can customize Vim. You can make the behavior of the
mouse look like an X Window system mouse or a Microsoft Windows mouse. The
following command makes the mouse behave like an X Window mouse:

:behave xterm

(:behave can be abbreviated as :be.)

The following command makes the mouse look like a Microsoft Windows
mouse:

:behave mswin

The default behavior of the mouse on UNIX systems is xterm. The default
behavior on a Microsoft Windows system is selected during the installation
process. In addition to controlling the behavior of the mouse, the :behave
command affects the following options:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 169

The Vim Tutorial and Reference

Option Setting For
:behave xterm

Setting For
:behave mswin

'selectmode' mouse,key (empty)

'mousemodel' popup extend

'keymodel' startsel,stopsel (empty)

'selection' exclusive inclusive

X Mouse Behavior

When xterm behavior is enabled, the mouse behavior is as follows:

<LeftMouse> Move the cursor.

Drag with <Left Mouse> Select text in visual mode.

<RightMouse> Extend select from cursor location to the
location of the mouse.

<MiddleMouse> Paste selected text into the buffer at the
mouse location.

Microsoft Windows Mouse Behavior

When mswin behavior is enabled, the mouse behavior is as follows:

<LeftMouse> Move the cursor.

Drag with <LeftMouse> Select text in select mode.

<SLeftMouse> Extend selection to the cursor location.

<RightMouse> Display pop-up menu.

<MiddleMouse> Paste the text on the system Clipboard into
file.

Special Mouse Usage

You can issue a number of other special commands for the mouse,
including the following

<SLeftMouse> Search forward for the next occurrence
of the word under the cursor.

<SRightMouse> Search backward for the preceding
occurrence of the word under the
cursor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 170

The Vim Tutorial and Reference

<CLeftMouse> Jump to the tag whose name is under
the cursor.

<CRightMouse> Jump to the preceding tag in the stack.

Note: If you execute a command that requires a motion, such as dmotion,
you can use the left mouse button for the motion.

Tear-Off Menus

The menus in Vim (all GUI versions except Athena) have an interesting
feature: "tearoff " menus. If you select the first menu item (the dotted lines), you
can drag the menu to another location on the screen. Figure 10-3 shows how to
tear off a menu.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 171

The Vim Tutorial and Reference

Figure 10-3: Tear-off menus.

When torn off, the menu remains as its own window until you close it using
the normal window close command.

Toolbar

A toolbar appears in the GTK and MS-Windows versions of the GUI. It looks
something like Figure 10-4. The icons perform the following functions:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 172

Drag to
tear off

The Vim Tutorial and Reference

Figure 10-4: Toolbar.

Open. Brings up a File Open dialog box.

Save. Saves the current file.

Save All. Save all the open files in all windows and buffers.

Print. Print to system printer.

Undo.

Redo.

Cut. (Actually "delete.")

Copy. (Actually "yank.")

Paste.

Search. Brings up a dialog box so that you can enter a
pattern.

Find Next.

Find Previous.

Replace. Brings up a Search-and-Replace dialog box.

Make Session. Brings up a dialog box so that you can enter
the name of a session file to write to.

Load Session. Brings up a dialog box so that you can select
the session file to load.

Script. Brings up a dialog box so that you can select a script
to run.

 Make. Performs a :make.

Shell. Does a :shell.

Make Tags. Does a :!ctags R . command.

Tag. Jumps to the definition of the tag under the cursor.

Help. Brings up the general help screen.

Help Search. Brings up a dialog box so that you can enter a
help topic to be displayed. This button is slightly misnamed
because it does not do a general search of the help
documents, but only looks for tags.

Showing the cursor

If you set the 'cursorcolumn' ('cuc') option, Vim will highlight the
column the cursor is in. Figure 10-5 shows the result:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 173

The Vim Tutorial and Reference

Now is the time
for all
good men to come
to the aide of their party.

Figure 10-5: 'cursorcolumn' option

The 'cursorline' ('cul') option highlights the line the cursor is on.
(Warning: This command uses a different highlighting than 'cursorcolumn' and
by default, does not highlight the background.)

Figure 10-6 shows an example:

Now is the time
for all
good men to come
to the aide of their party.

Figure 10-6: 'cursorcolumn' option

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 174

The Vim Tutorial and Reference

Chapter 11: Dealing with Text Files

Despite the proliferation of word processing tools such as Microsoft Word,
OpenOffice, and such, people still use plain-text files for documentation because
this type of file is the most easily read. In this chapter, you learn about the
following:

● Automatic text wrapping

● Text formatting command

● Text formatting options

● Basic Spell Checking

● Dealing with different file formats

● Troff-related commands

● The rot13 algorithm

Automatic Text Wrapping

The Vim editor has a number of functions that make dealing with text
easier. By default, the editor does not perform automatic line breaks. In other
words, you have to press <Enter> yourself. This is extremely useful when you
are writing programs where you want to decide where the line ends. It is not so
good when you are creating documentation and do not want to have to worry
about where to break the lines.

If you set the 'textwidth' ('tw')option, Vim automatically inserts line
breaks. Suppose, for example, that you want a very narrow column of only 30
characters. You need to execute the following command:

:set textwidth=30

Now you start typing (ruler added):

 1 2 3
12345678901234567890123456789012345
I taught programming for a while

The word while makes the line longer than the 30-character limit. When
Vim sees this, it inserts a line break and you get the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 175

The Vim Tutorial and Reference

 1 2 3
12345678901234567890123456789012345
I taught programming for a
while

Continuing on, you can type in the rest of the paragraph:

 1 2 3
12345678901234567890123456789012345
I taught programming for a
while. One time, I was stopped
by the Fort Worth police
because my homework was too
hard. True story.

You do not have to type newlines; Vim puts them in automatically. You can
specify when to break the line in two different ways. The following option tells
Vim to break the line 30 characters from the left side of the screen:

:set textwidth=30

If you use the following option, you tell Vim to break the lines so that you
have margin characters from the right side of the screen.:

:set wrapmargin=margin

('wm' is short for 'wrapmargin'.)

Therefore, if you have a screen that is 80 characters wide, the following
commands do the same thing:

:set wrapmargin=10
:set textwidth=70

Note: The 'textwidth' option overrules 'wrapmargin'.

The Vim editor is not a word processor. In a word processor, if you delete
something at the beginning of the paragraph, the line breaks are reworked. In
Vim they are not; so if you delete some words from the first line, all you get is a
short line:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 176

The Vim Tutorial and Reference

 1 2 3
12345678901234567890123456789012345
I taught for a
while. One time, I was stopped
by the Fort Worth police
because my homework was too
hard. True story.

This does not look good; so how do you get the paragraph into shape?
There are several ways. The first is to select the paragraph as part of a visual
selection:

I taught for a
while. One time, I was stopped
by the Fort Worth police
because my homework was too
hard. True story.

Then you execute the gq command to format the paragraph.

I taught for a while. One
time, I was stopped by the
Fort Worth police because my
homework was too hard. True
story.

Another way to format a paragraph is to use the gqmotion command.
Therefore to format 5 lines, you use the command gq4j. (The 4j tells gq to
format this line and the next 4 -- 5 lines total.)

The move forward paragraph command (})also proves useful in such cases.
To format a paragraph, for example, position the cursor on the first line of the
paragraph and use the command gq}. It is much easier to use this command than
to count the lines.

The command gqip formats the current paragraph. (The gq formats the
selected text and the ip selects the "inner paragraph.") This is easier than gq}
because you don't have to put the cursor on the beginning of a paragraph.

 Finally, to format a line, use the gqgq command. You can shorten this to
gqq.

Text Formatting Commands

To center a range of lines, use the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 177

The Vim Tutorial and Reference

:range center width

(:ce can be used for :center.)

If a width is not specified, it defaults to the value of 'textwidth'. (If
'textwidth' is 0, the default is 80.) For example:

:1,5 center 30

results in the following:

I taught for a while. One
time, I was stopped by the
Fort Worth police because my
homework was too hard. True

story.

Similarly, the command :right (:ri) right-justifies the text. So,

:1,5 right 30

results in the following:

I taught for a while. One
time, I was stopped by the
Fort Worth police because my
homework was too hard. True

story.

Finally there is the :left (:le) command:

:range left margin

Unlike :center and :right, however, the argument to :left is not the
length of the line. Instead it is the left margin. If this is 0, the text will be put
against the left side of the screen. If it is 5, the text will be indented 5 spaces.
For example, these commands

:1 left 5
:2,5 left 0

result in the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 178

The Vim Tutorial and Reference

 I taught for a while. One
time, I was stopped by the
Fort Worth police because my
homework was too hard. True
story.

Justifying Text

The Vim editor has no built-in way of justifying text. However, there is a
neat macro package that does the job. To use this package, execute the
following command:

:source $VIMRUNTIME/macros/justify.vim

This macro file defines a new visual command _j.To justify a block of text,
highlight the text in visual mode and then execute _j.

Fine-Tuning the Formatting

A number of options enable you to fine-tune and customize your spaces.

The joinspaces Option

The J command joins two lines putting in one space to separate them. If
the 'joinspaces' option is set, when the first line ends with a punctuation mark
(period, question mark, or exclamation point), two spaces are added. Input the
following (= represents a space):

This=is=a=test.
Second=line.

When the 'joinspaces' option is turned off with the following command

:set nojoinspaces

the result of a J on the first line is as follows:

This=is=a=test.=Second=line .

If the option is set using this command

:set joinspaces

the result is as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 179

The Vim Tutorial and Reference

This=is=a=test.==Second=line .

The formatoptions Option

The option 'formatoptions' ('fo') controls how Vim performs automatic
wrapping. The Vim editor is smart about comments and does a proper job of
formatting them. With 'formatoptions' you can control both how text and
comments are wrapped. The format of this option is as follows:

:set formatoptions=characters

where characters is a set of formatting flags. The following list identifies
the formatting flags.

t Automatically wrap text.

c Automatically wrap comments.

r Insert the comment leader automatically.

o Insert comment leader in a comment when a new line is inserted.

q Insert comment leader in a comment when a new line is created
using the O and o command.

2 Allow gq to format comments.

v Format based on the indent of the second line, not the first. Do
old-style Vi text wrapping.Wrap only on blanks that you enter.

b Wrap only on blanks you type, but only if they occur before
'textwidth'.

l Do not break line in insert mode. Only let gq break the lines.

Take a look at how these flags affect the formatting.

The t flag must be on for normal text to be wrapped.

The c flag must be on for comments to be wrapped. Therefore, setting the
'formatoptions' option using the following command is good for programming:

:set formatoptions=c

Long lines inside a comment are automatically wrapped. Long lines of code
(Vim calls them text) are not wrapped. Actually you want to set this option:

:set formatoptions=cq

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 180

The Vim Tutorial and Reference

This tells Vim to not only wrap comments, but also to reformat comments
as part of a gq command.

Vim is smart about comments. When it wraps a line in the middle of a
C-style comment, it automatically adds the comment header in front of the line.
Suppose, for example, that you enter the following command:

/* This is a test of a long line.

This line is longer than the 'textwidth', so it wraps. Because it is in a
comment, Vim automatically puts in an asterisk (*). Therefore, although you
typed everything on one line, the result is as follows:

/* This is a test of a long
 * line.

But suppose you actually type <Enter>? By default, Vim does not insert the
asterisk. This means that if you type a two-line comment, you get the following:

/* Line 1
Line 2

If you put an r flag in the 'formatoptions', however, Vim automatically
supplies the comment leader (*) when you press Return:

/* Line 1
* Line 2

If you want to have this done for the O and o commands, you need to put in
the o flag as well.

The 2 option tells Vim to format based on the second line of the text rather
than the first. For example, the original example text is displayed in Figure 11-1.
If you do not have the 2 flag in the 'formatoptions' and you reformat the
paragraph with gq}, you get the results shown in Figure 11-2.

 The first Centronics Printer manual had a whole
chapter devoted to how to open up the packing
crate and find the manual. (What did they think we
were reading anyway?)
~
~
~
~
~

Figure 11-1: The original text.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 181

The Vim Tutorial and Reference

 The first Centronics Printer manual
 had a whole chapter devoted to how
 to open up the packing crate and
 find the manual. (What did they
 think we were reading anyway?)
~
~
~
~

Figure 11-2: Formatted text (no 2 flag).

If you go back to the original paragraph, however, set the 2 flag with the
following

:set formatoptions += 2

and reformat using gq}, you will get the results shown in Figure 11-3.

 The first Centronics Printer manual
had a whole chapter devoted to how to
open up the packing crate and find the
manual. (What did they think we were
reading anyway?)
~
~
~
~

Figure 11-3: Formatted text (2 set).

The v flag character controls where a line will be split. Suppose that you
have the following line:

This is a test of the very long line wrapping

Now add the word logic to the end of the sentence. Without the v flag,
the result is as follows:

This is a test of the very
long line wrapping logic.

With v in 'formatoptions', you get the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 182

The Vim Tutorial and Reference

This is a test of the very long line wrapping
logic.

Even though the existing line is much longer than 'textwidth', with v set,
Vim will not break the line in the existing text. Instead it breaks only things in
the text you add.

If the l character is present in the 'formatoptions', Vim will break only
the line if the space you type is less than the 'textwidth'. If you add the word
logic to the preceding example, you get the following:

This is a test of the very long line wrapping logic.

If you were to type this line from scratch, however, you would get the
following:

This is a test of the very
long line wrapping logic.

Formatting and numbered list

Vim will attempt to recognize numbered lists and properly format them. In
order to tell what a number list looks like, it is matched against the string in the
'formatlistpat' ('flp') option. By default this is: ^\s*\d\+[\]:.)}\t]\s*
which translates to beginning of line (^), any number of spaces (\s*), one or
more digits (\d\+), any one of the characters:]:.)}, <tab> or <space>, followed
by a bunch of spaces (\s*).

Using an External Formatting Program

By default, Vim uses its internal formatting logic to format the text. If you
want, however, you can run an external program to do the job. On UNIX, the
standard program fmt does a good job of doing the work. If you want to use this
command for the gq work, set the following option:

:set formatprg=fmt

('fp' is short for 'formatprg')

You can also use the 'formatexpr' ('fex') option to define an expression
which will tell Vim how to format a paragraph. If both 'formatexpr' and
'formatprg' are set, 'formatexpr' will be used.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 183

The Vim Tutorial and Reference

Even without this option, however, you can always use the filter (!)
command to format text. To run a paragraph through the program fmt, for
example, use the command !}fmt. The ! starts a filter command, the } tells Vim
to filter a paragraph, and the rest (fmt) is the name of the command to use.

Basic Spelling

Vim can spell check your text on the fly. Words that are not spelled
correctly will be highlighted. By default this feature is turned off, to turn it on,
set the 'spell' option:

:set spell

Figure 11-4 shows an editing session with lots of misspelled words and
spell checking enabled. (In this example we use underline to indicate a
misspelled word. The Vim GUI actually uses a read squiggly line which is
impossible to reproduce in a black and white book.)

A church h had just bought ttheir first
computer and were learning how to uuse it.
The church secretary ddecided to set uppp
a form letter to be used in a ffuneral
service. Where tthe person's name was to
be she put in tthe word "<name>". When a
funeral occurred she would change this
word to tthe actual name of tthe departed.

Figure 11-4: Editing with spelling errors highlighted

Now that you can see which words are bad, it would be nice to get them
corrected. To get a list of suggested fixes for the bad word, position the cursor
on a misspelled word and enter the command z=. Figure 11-5 shows the result.

Change "hhad" to:
 1 "had"
 2 "head"
 3 "shad"
 4 "Had"
 5 "hand"
 6 "hard"
 7 "Head"
 8 "Chad"
Type number (<Enter> cancels):

Figure 11-5: Result of the z= command

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 184

The Vim Tutorial and Reference

To change the word, just enter the number of the replacement (in this
example 1). If you don't want to change anything, just press <Enter>.

Note: The change you make is stored in the . (dot) command so you can
repeat it as needed.

If you are like me and you make the same spelling mistakes over and over
again the same way, you'll want to fix all the spelling errors like one. (I must
remember that “beleive” is spelled “believe”.)

To do enter the :spellrepall (:spellr) command. It repeats the last z=
change for all every similar word in your file.

Finding Spelling Errors

To find the next misspelled word use the]s command. The]S does the
same thing, only it does not stop on rare words or words that come from another
region.

Both the]s and]S commands start from the current cursor location for
their searches. If you want to start from the beginning of the file use the [s and
[S commands.

Spelling Language

Unfortunately everyone in the world does not speak the same language. If
you need to change the language Vim uses for spell checking, set the
'spelllang' ('spl') option. This option takes a comma separated list of
dictionaries to use for spell checking. If a spellfile for that language is not
available, Vim will ask if you want to download it. For example:

:set spelllang=de
not found in 'runtimepath': "spell/de.latin1.spl"
not found in 'runtimepath': "spell/de.ascii.spl"
Cannot find spell file for "de" in
Do you want me to try downloading it?
(Y)es, [N]o:

Note: Automatic downloading is not enabled if you don't have the ability to
write into the directory containing the spelling files ($RUNTIME/spell).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 185

The Vim Tutorial and Reference

The Limits of Automated Spell Checking
Can you spot the spelling error in the following word? Answer on page 191.

CAT

Word Lists

Vim lets you create your own word list to augment the built-in dictionary.
To really use this feature you need to first set the 'spellfile' ('spf') option.
The name of this file must end in .add. For example:

:set spellfile=my_words.add

Now suppose you find that you have a perfectly good word in your
document but it's not in the dictionary. To add it to your local word list, put the
cursor on the word and enter the command zg. The word will be added to your
local word list.

You may notice that two files are created: my_words.add and
my_words.add.spl. The second file is a compiled version of the first. In fact Vim
compiles all it's dictionaries for speed. In this case my_words.add.spl is compiled
automatically.

Vim not only keeps track of good words, but bad words as well. For
example, if your file contains the words "ain't" and you consider that an
abomination, then you can put in the bad word list by positioning the cursor on
the word and entering the command zw.

As with zg, the word marked by zw goes into the spell file. However it is
flagged as a badly spelled word.

If you accidentally put a bad word on the good list, the zug command
removes the from the list. The zuw command does the same thing only it
removes a word that flagged as wrong.

Vim also maintains a internal word list. This list is stored in memory and
goes away after each editing session. To add a word to the internal good list,
enter the command zG. For bad words, use the command zW.

And of course the zuG and zuW remove words from the internal list.

The spelling commands (zg, zG, zw, zW, zug, zuG, zuw, zuW) have their own
command mode versions.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 186

The Vim Tutorial and Reference

The following table shows these various commands

Command Command Mode Version
zg :spellgood {word} :spellg {word}
zG :spellgood! {word} :spellg! {word}
zw :spellwrong {word} :spellw {word}
zW :spellwrong! {word}:spellw! {word}
zug :spellundo {word} :spellu {word}
zuG :spellundo! {word} :spellu! {word}

Mulitple word lists

Vim allows you to use multiple word lists for spelling. The 'spellfile'
option actually takes a comma separated list of word files.

:set spellfile=global.add,local.add

Each of the word commands (zg, zw, zug, zuG, :spellgood, :spellwrong,
:spellundo) takes a numeric argument. For example, the zg command adds the
word under the cursor to the first word file. The command 2zg will add it to the
second file (local.add). The commend :2spellgood {word} will do the same
thing.

The :spellinfo (:spelli) command lists the dictionary files being used.

:spellinfo
file: /usr/local/share/vim/vim71/spell/en.latin1.spl

Press ENTER or type command to continue

File Formats

Back in the early days, the old Teletype machines took two character times
to do a newline. If you sent a character to the machine while it was moving the
carriage back to the first position, it tried to print it on-the-fly, leaving a smudge
in the middle of the page. The solution was to make the newline two characters:
<Return> to move the carriage to column 1, and <Line Feed> to move the paper
up.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 187

The Vim Tutorial and Reference

When computers came out, storage was expensive. Some people decided
that they did not need two characters for end-of-line. The UNIX people decided
they could use <Line Feed> only for end-of-line. The Apple people standardized
on <Return>. The MS-DOS (and Microsoft Windows) folks decided to keep the
old <Return><Line Feed>.

This means that if you try to move a file from one system to another, you
have line problems. The Vim editor automatically recognizes the different file
formats and handles things properly behind your back.

Note: If you are an old Vi user and tried to edit an MS-DOS format file, you
would have found that each line ended with a ^M character. (^M is
<Return>.) Fortunately, Vim handles UNIX, MS-DOS and Apple file
formats automatically.

The option 'fileformats' ('ffs') contains the various formats that will
be tried when a new file is edited. The following option, for example, tells Vim to
try UNIX format first and MS-DOS format second:

:set fileformats=unix,dos

The detected file format is stored in the 'fileformat' ('ff') option. To
see which format you have, execute the following command:

:set fileformat?

You can use the 'fileformat' option to convert from one file format to
another. Suppose, for example, that you have an MS-DOS file named readme.txt
that you want to convert to UNIX format. Start by editing the MS-DOS format
file:

$ vim README.TXT

Now change the file format to UNIX:

:set fileformat=unix

When the file is written, it will be in UNIX format.

Changing How the Last Line Ends

The Vim editor assumes that your file is made up of lines. This means that
Vim assumes that the last line in the file ends in an <EOL> character. Sometimes
you will encounter a strange file that contains an incomplete line. When Vim
encounters this type of file, it sets the 'noendofline' ('noeol') option. (If your
file ends in a complete line, the 'endofline' ('eol') option is set.) If you want
to change whether or not your file ends in an <EOL>, use the command

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 188

The Vim Tutorial and Reference

:set endofline

(Last line ends in <EOL>.) or

:set noendofline

(Last line does not have an <EOL>.) This option only works when the
'binary' option is set.

Troff-Related Movement

A number of commands enable you to move through text. The) command
moves forward one sentence. The (command does the same thing backward.

The } command moves forward one paragraph, and { moves one
paragraph backward. Figure 11-6 shows how these commands work.

.B rgview

.SH DESCRIPTION

.B Vim
is a text editor that is upwards compatible to Vi.
It can be used to edit any ASCII text.
It is especially useful for editing
programs.
.PP
There are a lot of enhancements above Vi: multi level
multi windows and buffers, syntax hightlighting, command
editing, filename completion, online help, visual select
See ":help vi_diff.txt" for a summary of the difference
.B Vim
and Vi.
.PP
While running
.B Vim

Figure 11-6: } command.

At one time the troff program was the standard UNIX word processor. It
takes as input a text file with processing directives in it and formats the text.
Although troff is rarely used these days, the Vim editor still contains an option
for dealing with this formatter.

The troff program uses macros to tell it what to do. Some of these macros
start paragraphs. In the following example, for instance, the macro .LP starts
each paragraph:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 189

}

}

The Vim Tutorial and Reference

Because troff uses lots of different macro packages, Vim needs to know
which macros start a paragraph. The 'paragraphs' ('para') option does this.
The format of this option is as follows:

:set paragraphs="macromacromacro..."

Each macro is the two-character name of a troff macro. For example:

:set paragraphs="P<Space>LP"

tells Vim that the macros .P and .LP start a paragraph. (Note that you use
P<Space> to indicate the .P macro.)

By default, the 'paragraphs' option is as follows:

:set paragraphs=IPLPPPQPP LIpplpipbp

This means that the following macros

.IP .LP .pp .lp

.PP .ip .QP .bp

.P .LI

start a new paragraph.

Section Moving

The [[and [] commands move a section backward. A section is defined
by any text separated by a page break character (CTRLL). The reason there are
two movement commands is that these commands also move to the beginning
and end of procedures. (Chapter 7: Commands for Programmers contains
information on programming commands.)

The]] and][commands perform the forward movements as seen in
Figure 11-7.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 190

The Vim Tutorial and Reference

This is page 1
^L
This is page 2
Another paragraph
^L
This is page 3
with a two line paragarph
And another one
~
~
~
~
~
~

Figure 11-7: The]] command.

Defining Sections

You can also define a section using troff macros. The 'sections'
('sect')option acts much like the 'paragraph' option, except that it defines the
macros that separate sections rather than paragraphs. The default is:

:set sections=SHNHH HUnhsh

Encrypting with rot13

If you want to encrypt a block of text with the rot13 algorithm, use the g?
motion command. The rot13 encryption is an extremely weak encryption scheme
designed to obscure text. It is frequently used in news posting for potentially
offensive material. Naturally g?g? or g?? encrypts the current line. You can
decrypt the rot13 encryption by encrypting the text twice.

Answer to the question on question on page 186.

The word is “dog”.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 191

]]

]]

The Vim Tutorial and Reference

Chapter 12: Automatic Completion

The Vim editor can automatically complete words on insertion. This is
where you type the first part of a word, press CTRLP, and Vim guesses at the
rest. How it decides what to use for completion is both simple and flexible. This
chapter covers every aspect of this function. This chapter discusses the
following:

● Automatic completion

● How to customize the automatic completion feature

● How to use different types of completions

Automatic Completion

When you are entering text, Vim can assist you to complete words.
Suppose, for example, that you are creating a C program and want to type in the
following:

total = ch_array[0] + ch_array[1] + ch_array[2];

You start by entering the following:

total = ch_array[0] + ch_

At this point, you tell Vim to complete the word using the command
CTRLP. This command tells Vim to search for a word to complete. In this case,
it is the word ch_array. So typing CTRLP gives you the following:

total = ch_array[0] + ch_array

After a little more typing, you get this:

total = ch_array[0] + ch_array[1] +

If you now type CTRLP again, Vim will search again for a word that
completes the word before the cursor. (In this case, it is "".) The first word that
matches is ch_array.

Typing CTRLP again gives you the next word that matches (in this case,
total).

A third CTRLP causes the editor to run out of words, so it returns to the
original entry: "".

A fourth CTRLP causes the editor to start over again with ch_array.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 192

The Vim Tutorial and Reference

How Vim Searches for Words

The Vim editor goes through a lot of effort to find words to complete. By
default, it uses the following search algorithm:

1. Current file

2. Files in other windows

3. Other files in the loaded (hidden) buffers

4. Files in unloaded buffers

5. The current "tags" list

6. All files #included by the current file

You can customize the search order. (This is described in the section
Automatic Completion Details below.)

Searching Forward

When you type CTRLP, Vim searches backward for a word to complete.
The CTRLN command searches forward. Other than the direction, it acts just
like the CTRLP command.

Automatic Completion Details

The 'ignorecase' ('ic') option tells the editor to try all words regardless
of case:

:set ignorecase

Therefore, if you have the option on, when you try to complete the string
ins, Vim will consider INSERT, Inside, and instep, all as candidates (assuming
that they appear in the text).

When you match words in this way, the completed word takes on the case
of the matched word. Therefore, the completion list for ins is as follows: instep
Inside, INSERT.

What if you want to match INSERT, but put the word insert (lowercase) in
your text. You must tell Vim to infer the case of the new word from what is
typed, not what is matched. You can set the option 'infercase' ('inf'),

:set infercase

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 193

The Vim Tutorial and Reference

Then the match list is as follows: instep inside insert

Automatic Completion Details

For the most part, the Vim editor does the right thing when it comes to
automatic completion. At times, however, you might want to fine-tune your
completions. The 'complete' ('cpt') option controls where Vim searches for
words. The form of this option is as follows:

:set complete=key,key,key,...

key is a key letter (and possible argument). The possible key values are as
follows:

. Current file.

b Files in loaded buffers, not in a window.

d Definitions in the current file and in files included by a #include
directive.

i Files included by the current file through the use of a #include
directive.

k The file defined by the 'dictionary' option (discussed later in
this chapter).

kfile The file named file .

t The "tags" file. (The] character can be used as well.)

u Unloaded buffers.

f Files in other windows.

The Include Path

Vim uses the 'path' ('pa') option to tell it where to look for files that were
included in the current file. (Note that the 'path' option also is used for other
commands such as :find.)

Specifying a Dictionary

The 'dictionary' ('dict') option defines a file to be searched when you
press CTRLP and CTRLN to match words. The format of this command is:

:set dictionary=file,file,...

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 194

The Vim Tutorial and Reference

 To use on Linux, for example, the dictionary file is in /usr/dict/words.
Therefore, to add this file to the list of dictionaries searched for, use the
following command:

:set dictionary=/usr/dict/words

If you have a local list of words, you can search this too:

:set dictionary=/home/oualline/words,/usr/doc/words

You can also specify a dictionary by putting the file after the k (key). For
example:

:set complete=k/usr/oualline/words

You can use the k flag multiple times, each with a different file:

:set complete=k/usr/dict/words,k/usr/share/words

A dictionary file is simply a list of words to check for CTRLX CTRLK. The
one restriction is that no line can be longer than 510 characters.

The words used for a thesaurus search are specified by 'thesaurus'
('tsr') option are used. The files are a little different that the dictionary files.
Each line contains a bunch of words which have similar meanings. When Vim
finds a word in the thesaurus it then lists all the similar words as possible
completion candidates.

Controlling What Is Searched For

CTRLP and CTRLN enable you to perform a wide variety of searches. What
if you want to restrict yourself to just one type of search, however? For that you
use the CTRLX command. When you type CTRLX, you enter the CTRL-X
submode. You can then fine tune your search using one of the commands:

CTRL] Tags

CTRLD Macro definitions

CTRLF Filenames

CTRLK Dictionary

CTRLI Current files and #included files

CTRLL Whole lines

CTRLN Same as CTRLN without the CTRLX (find next match)

CTRLO Use omni completion by calling the function name in the
'omnifun' option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 195

The Vim Tutorial and Reference

CTRLP Same as CTRLP without the CTRLX (find previous match)

CTRLT Thesaurus

CTRLU Perform user defined completing by calling the function
defined by the 'completfunc' option.

s Use the spelling system to find the given word.

The CTRLX CTRLD command searches for a #define macro definition. It
will search included files as well. After typing this command, you can type
CTRLN to search for the next definition and CTRLP for the previous. Take a look
at how this works on the following test file.

File include.h

#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
int sum(int i1, int i2) {
 return(i1+i2);
}

File main.c

#include "include.h"
#define MORE "/usr/ucb/more"

You can start by editing main.c. If you type CTRLX, you enter CTRLX
mode. The editor now displays a mini-prompt at the bottom of the screen (see
Figure 12-1).

#include "include.h"
#define MORE "/usr/ucb/more"
~
~
~
 ^X mode (^]^D^E^F^I^K^L^N^O^Ps^U^V^Y)

Figure 12-1: CTRLX mode.

Suppose that you want to look for a macro definition. You would now type
CTRLD. The screen displays the fact that there are three matches, and then
displays a new menu (see Figure 12-2).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 196

The Vim Tutorial and Reference

#include "include.h"
#define MORE "/usr/ucb/more"
MAX
MAX include.h
MIN include.h
MORE
~
~
~
 Definition completion (^D/^N/^P)

Figure 12-2: CTRLX CTRLD.

At this point, CTRLN searches for the next match (and CTRLP searches for
the previous one). The CTRLD key acts just like CTRLP. Using these keys, you
can cycle through the list of definitions until you find the one that you want.

Tag Search

The CTRLX CTRL] command searches for the next tag. A tag is a C/C++
function definition. The program ctags generates a list of C/C++ function
definitions (tags) and stores them in the tags file. We have generated our tags
file using the following command:

$ ctags *.c *.h

Now when we enter CTRLX CTRL] in insert mode, we get what is shown
in Figure 12-3

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 197

The Vim Tutorial and Reference

#include "include.h"
#define MORE "/usr/ucb/more"
MORE
MORE
!_TAG_FILE_FORMAT
!_TAG_FILE_SORTED
!_TAG_PROGRAM_AUTHOR
!_TAG_PROGRAM_NAME
!_TAG_PROGRAM_URL
!_TAG_PROGRAM_VERSION
MAX
MIN
sum

~
~
~
 Tag completion (^]/^N/^P)

Figure 12-3: CTRLX CTRL].

The result of typing CTRLP a couple of times is shown in Figure 12-4.

#include "include.h"
#define MORE "/usr/ucb/more"
MAX
MORE
!_TAG_FILE_FORMAT
!_TAG_FILE_SORTED
!_TAG_PROGRAM_AUTHOR
!_TAG_PROGRAM_NAME
!_TAG_PROGRAM_URL
!_TAG_PROGRAM_VERSION
MAX
MIN
sum
~
~
~
 Tag completion (^]/^N/^P)

Figure 12-4: Finding previous completions.

By default, the Vim editor just displays the name alone. If you execute the
following command, the entire tag (the function prototype) displays:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 198

The Vim Tutorial and Reference

:set showfulltag

('sft' is the short form of 'showfulltag')

If you repeat your matching commands with this option enabled, you get
the results shown in Figure 12-5.

#include "include.h"
#define MORE "/usr/ucb/more"
int sum(int i1, int i2)
MORE
MORE
!_TAG_FILE_FORMAT
xtended format; format=1 will not append ;" to lines/
!_TAG_FILE_SORTED
=unsorted, 1=sorted, 2=foldcase/
!_TAG_PROGRAM_AUTHOR
hiebert@users.sourceforge.net/
!_TAG_PROGRAM_NAME
!_TAG_PROGRAM_URL
fficial site/
!_TAG_PROGRAM_VERSION
MAX
MIN
sum
int sum(int i1, int i2) {
~
~
~
 Tag completion (^]/^N/^P)

Figure 12-5: The results.

@@ TODO: Investigate why the junk in the previous screen.

Finding Filenames

If you use the CTRLX CTRLF command, the Vim editor will match a
filename. It scans the current directory for files and displays each one that
matches the word in front of the cursor. Suppose, for example, that you have the
following files in the current directory:

main.c sub_count.c sub_done.c sub_exit.c

Now enter insert mode and start typing:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 199

The Vim Tutorial and Reference

The exit code is in the file sub

At this point, you enter the command CTRLX CTRLF. The editor now
completes the current word sub by looking at the files in the current directory.
The first match is sub_count.c. This is not the one you want, so you match the
next file by typing CTRLN. This match is sub_done.c. Typing CTRLN again takes
you to sub_exit.c.

The result:

The exit code is in the file sub_exit.c

Line Mode

All the commands discussed so far work on words only. The CTRLX
CTRLL command works on lines. If you enter CTRLX CTRLL in the example,
for instance, you get the results shown in Figure 12-6. You can now use CTRLN
and CTRLP to go up and down lines.

#include "include.h"
#define MORE "/usr/ucb/more"
#define MORE "/usr/ucb/more"
#include "include.h"
#define MORE "/usr/ucb/more" ~
~
~
 Whole line completion (^L/^N/^P)

Figure 12-6: CTRLX CTRLL.

Dictionary and Thesaurus

The command CTRLX CTRLK searches the dictionary files for the given
word.

The CTRLX CTRLT command does the same thing except that the word
files specified by 'thesaurus' ('tsr') option are used.

Guessing

The CTRLX CTRLV command guesses what type of word is before the
cursor and performs the approbate completion.

@@ How does it guess.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 200

The Vim Tutorial and Reference

User and Omni completion

The CTRLX CTRLU command calls the function defined by the
'completefunc' ('cfu') option. The command CTRLX CTRLO does the same
thing only the function specified by the 'omnifunc' ('ofu') is called.

Writing a completing function is a advanced specialized task that's beyond
the scope of the book.

@@ Maybe add this topic to the book

Adjusting the Screen

There are two more CTRLX commands which surprisingly don't do
completion. After typing CTRLX, you can move the screen up and down a little.
The CTRLY command scrolls down, whereas the CTRLE scrolls up.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 201

The Vim Tutorial and Reference

Chapter 13: Autocommands

One of the nice attributes of the Vim editor is its flexibility. One of the
features that makes it so flexible is the autocommand. An autocommand is a
command executed automatically in response to some event, such as a file being
read or written or a buffer change. Through the use of autocommands, for
example, you can train Vim to edit compressed files. (You define an
autocommand that uncompresses the file on read and another one to compress
the file on write. See the file $VIMRUNTIME/vimrc_example.vim in your Vim
installation.)

In this chapter, you learn about the following:

● Basic autocommands

● Autocommand groups

● Listing and removing autocommands

Basic Autocommands

Suppose you want to put a date stamp on the end of a file every time it is
written. One way you could do this is to define a function:

:function DateInsert()
: $read !date " Insert the date at the
: " end ($) of the file.
:endfunction

Now when you want to write the file all you have to do is to call this
function:

:call DateInsert()

Then you write the file.

That may be a little difficult, so you can map this to a key:

:map <F12> :call DateInsert()<CR> \| :write<CR>

This makes things "easy" because now you just have to press <F12> every
time you want to write the file.

If you forget, however, and use the normal Vim file writing commands, you
screw things up. It would be nice if you could do things automatically. That is
where autocommands come in.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 202

The Vim Tutorial and Reference

The command

:autocmd FileWritePre * :call DateInsert()

causes the command :call DateInsert() to be executed for all files (*)
just before writing the file (FileWritePre).

(:autocmd can be abbreviated as :au.)

You do not need to put in a :write command because this autocommand is
executed just before each :write. In other words, with this command enabled,
when you do a :write, Vim checks for any FileWritePre autocommands and
executes them, and then it performs the :write. The general form of the
:autocmd command is as follows:

:autocmd group events file_pattern nested command

The group name is optional. It is used in managing and calling the
commands (more on this later). The events parameter is a list of events (comma
separated) that trigger the command. (A complete list of events appears later in
this chapter.) The file_pattern is a filename (including wildcards). The nested
flag allows for nesting of autocommands, and finally, the command is the
command to be executed.

Groups

The :augroup (:aug) command starts the definition of a group of
autocommands. The group name is just a convenient way to refer to the set of
autocommands. For example:

:augroup cprograms
: autocmd FileReadPost *.c :set cindent
: autocmd FileReadPost *.cpp :set cindent
:augroup END

Because the :autocmd definitions are inside the scope :augroup, they are
put in the cprograms group. The commands in this group are executed after
reading a file that ends in .c or .cpp. If you want to add another command to this
group for headers, you can use the :augroup command or just include a group
name in your specification:

:autocmd cprograms FileReadPost *.h :set cindent

Now suppose you are editing a file called sam.cx that you would like
treated as a C program. You can tell Vim to go through all the cprograms
autogroup commands and execute the ones that match *.c for the FileReadPost
event. The command to do this is:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 203

The Vim Tutorial and Reference

:doautocmd cprograms FileReadPost foo.c

(:doautocmd can be abbrviated :do.)

The general form of the :doautocmd command is this:

:doautocmd group event file_name

This executes the autocommand group pretending that the current file is
file_name rather than the current one. If the group is omitted, all groups are
used and if file_name is left off, the current filename is used. The event must be
specified and is the event that Vim pretends has just happened.

The following command does the same thing as :doautocmd except it
executes once for each buffer:

:doautoall group event file_name

(Abbreviation :doautoa.)

Note: Do not use this to trigger autocommands that switch buffers, create
buffers, or delete them. In other words, when using this command, leave
the buffers alone.

Events

You can use the following events to trigger an autocommand:

BufNewFile Triggered when editing a
file that does not exist.

BufReadPre BufReadPost Triggered before
(BifReadPre) / after
(BufReadPost) reading a
buffer.

BufRead Alias for BufReadPost.

BufFilePre BufFilePost Before / after changing
the name of a buffer with
the :file (:f) command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 204

The Vim Tutorial and Reference

FileReadPre FileReadPost Before / after reading a
file with the :read
command. For
FileReadPost, the marks
'[and '] will be the
beginning and end of the
text read in.

FilterReadPre FilterReadPost Before / after reading a
file with a filter
command.

FileType When the 'filetype'
option is set.

Syntax When the syntax option is
set.

StdinReadPre StdReadPost Before / after reading
from the standard input.
(The editor must have
been started as vim .)

BufWritePre BufWritePost Before / after writing the
entire buffer to a file.

BufWrite Alias for BufWritePre.

FileWritePre FileWritePost Before / after writing part
of a buffer to a file.

FileAppendPre FileAppendPost Before / after appending
to a file.

FilterWritePre FilterWritePost Before / after writing a
file for a filter command.

FileChangedShell This is triggered when
Vim runs a shell
command and then
notices that the
modification time of the
file has changed.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 205

The Vim Tutorial and Reference

FocusGained FocusLost Triggered when Vim gets
or loses input focus. This
means that Vim is
running in GUI mode and
becomes the current
window or something else
becomes the current
window.

CursorHold Occurs after the user
pauses typing for more
than the timeout specified
by the 'updatetime'
option.

BufEnter BufLeave When a buffer is entered
or left.

BufUnload Triggered just before a
buffer is unloaded.

BufCreate BufDelete Just after a buffer is
created or just before it is
deleted.

WinEnter WinLeave Going into or out of a
window.

GuiEnter The GUI just started.

VimEnter The Vim editor just
started and the
initialization files have
been read.

VimLeavePre The Vim editor is exiting,
but has not written the
.viminfo file.

VimLeave The Vim editor is exiting,
and the .viminfo file has
been written.

FileEncoding The 'fileencoding'
option has just been set.

TermChanged The term option changed.

User Not a real event, but used
as a fake event for use
with :doautocmd.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 206

The Vim Tutorial and Reference

When writing a file, Vim triggers only one pair of the following events:

BufWritePre BufWritePost

FilterWritePre FilterWritePost

FileAppendPre FileAppendPost

FileWritePre FileWritePost

When reading a file, one of the following set of events will be triggered:

BufNewFile

BufReadPre BufReadPost

FilterReadPre FilterReadPost

FileReadPre FileReadPost

File Patterns

The filename pattern matching uses the UNIX standard system. The
following list identifies the special characters in the file matching patterns.

* Match any characters, any length

? Match any single character

, Separates alternate patterns such as: one,two,three which
matches the string one, two, or three.

\? The question mark (?).

\, The comma (,).

[abc] Match one of the given characters.

[^abc] Match any character except the given character.

{string} The first time this occurs, match string and set \1 to the
value of string. Thus {text}\1 and texttext match the
same thing. The second {} will set \2, the third \3 and so
on.

{one,two} Match one or two and set \x to the value of what was
matched.

\character Treat character as a search pattern character. For
example, a\+ matches a, aa, aaa, and so on.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 207

The Vim Tutorial and Reference

Nesting

Generally, commands executed as the result of an autocommand event will
not trigger any new events. For example, suppose you define a :autocmd which
responds to the Syntax event by reading a file. You also have a :autocmd
defined for the event FileReadPre. So a Syntax event is triggered, this causes a
file read which would normally trigger a FileReadPre event. Except because
you are already in a :autocmd and events do not next, the second event is
ignored. However, if you include the keyword nested, then events within events
will trigger a :autocmd. For example:

:autocmd FileChangedShell *.c nested e!

Listing Autocommands

The following command lists all the autocommands:

:autocmd

For example:

:autocmd
 AutoCommands
filetype BufEnter
 *.xpm if getline(1) =~ "XPM2"|set ft=xpm2|endif
 *.xpm2 set ft=xpm2
...
FileType
 * set formatoptions=tcql nocindent comments&
 c set formatoptions=croql cindent
...
filetype StdinReadPost
 * if !did_filetype()|so scripts.vim|endif
Syntax
 OFF syn clear
 abc so $VIMRUNTIME/syntax/abc.vim
(Listing truncated.)

From this, you can see a number of commands under the group filetype.
These command are triggered by the BufEnter and StdinReadPost events.
There are also a couple of commands with no group name triggered by the
FileType event. If you want a subset of all the commands, try the following:

:autocmd group event pattern

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 208

The Vim Tutorial and Reference

If group is specified, only the commands for that group are listed. Event
can be one of the previously defined events or * for all events. The pattern
specifies an optional file matching pattern. Only the commands that match are
listed.

For example:

:autocmd filetype BufEnter *.xpm
 AutoCommands
filetype BufEnter
 *.xpm if getline(1) =~ "XPM2"|set ft=xpm2|endif

Removing Commands

The command :autocmd! removes autocommands. The matching rules
are the same for listing commands, so the following removes all the
autocommands:

:autocmd!

To remove the commands for a specific group, execute this command:

:autocmd! group

You can also specify events and patterns for the group, as follows:

:autocmd! group event pattern

Again, event can be * to match all events. You can use the :autocmd!
command to remove existing commands and define a new one in one command.
The syntax for this is as follows:

:autocmd! group event pattern nested command

This is the equivalent of the following:

:autocmd! group event pattern
:autocmd group event pattern nested command

Ignoring Events

At times, you will not want to trigger an autocommand .The eventignore
option contains a list of events that will be totally ignored. For example, the
following causes all Window Enter and Leave events to ignored:

:set eventignore=WinEnter,WinLeave

('eventignore' can be abbreviated as 'ie')

To ignore all events, use the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 209

The Vim Tutorial and Reference

:set eventignore=all

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 210

The Vim Tutorial and Reference

Chapter 14: File Recovery and Command-Line
Arguments

The Vim editor is designed to survive system crashes with minimum losses of
data. This chapter discusses how to use Vim's crash recovery procedures. In
this chapter, you learn about the following:

● Command-line arguments for file recovery

● Encryption

● Batch files and scripts

● Additional command-line arguments

● Backup file options

● How to do file recovery

● Advanced swap file management

Command-Line Arguments

There are several useful command-line arguments. The most useful is
help, which displays a short help screen listing all the command-line argu-
ments:

$ vim help
VIM Vi IMproved 7.0 (2006 May 7, compiled Jun 27 2006 19:50:12)

usage: vim [arguments] [file ..] edit specified file(s)
 or: vim [arguments] read text from stdin
 or: vim [arguments] t tag edit file where tag is defined
 or: vim [arguments] q [errorfile] edit file with first error

Arguments:
 Only file names after this
 g Run using GUI (like "gvim")
 f or nofork Foreground: Don't fork when starting GUI
 lots more help

To find out which version of Vim you have as well as to list the compilation
options, use the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 211

The Vim Tutorial and Reference

$ vim –version
VIM Vi IMproved 7.0 (2006 May 7, compiled Jun 27 2006 19:50:12)
Compiled by oualline@www.oualline.com
Normal version with GTK2 GUI. Features included (+) or not ():
arabic +autocmd +balloon_eval +browse +builtin_terms +byte_offset +cindent
+clientserver +clipboard +cmdline_compl +cmdline_hist +cmdline_info +comments
 more compile options
+wildignore +wildmenu +windows +writebackup +X11 xfontset +xim +xsmp_interact
+xterm_clipboard xterm_save
 system vimrc file: "$VIM/vimrc"
 user vimrc file: "$HOME/.vimrc"
 user exrc file: "$HOME/.exrc"
 system gvimrc file: "$VIM/gvimrc"
 user gvimrc file: "$HOME/.gvimrc"
 system menu file: "$VIMRUNTIME/menu.vim"
 fallback for $VIM: "/usr/local/share/vim"
Compilation: gcc c I. Iproto DHAVE_CONFIG_H DFEAT_GUI_GTK DXTHREADS
 long command

To view a file, you can "edit" it in read-only mode by using the -R command:

$ vim R file.txt

On most systems, the following command does the same thing:

$ view file.txt

This actually starts “editing” the file with the 'modifiable' ('ma') option
turned off. You can turn on this option if you want to change the file.

Encryption

The x argument tells Vim to encrypt the file. For example, create a file
that contains something you want to keep secret:

$ vim x secret.txt

The editor now prompts you for a key used for encrypting and decrypting
the file:

Enter encryption key:

You can now edit this file normally and put in all your secrets. When you
finish editing the file and tell Vim to exit, the file is encrypted and written.

If you try to print this file using the cat or type commands, all you get is
garbage.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 212

The Vim Tutorial and Reference

Switching Between Encrypted and Unencrypted Modes

The option 'key' contains your encryption key. If you set this option to
the empty string (""), you turn off encryption:

:set key=

If you set this to a password, you turn on encryption. For example:

:set key=secret (Not a good idea!)

Setting the encryption key this way is not a good idea because the
password appears in the clear. Anyone shoulder surfing can read your password.

 To avoid this problem, the :X command was created. It asks you for an
encryption key and sets the key option to whatever you type in. (Note that the
password will not be echoed. Instead * is printed for each character entered.)

:X
Enter encryption key:

Limits on Encryption

The encryption algorithm used by Vim is weak. It is good enough to keep
out the casual prowler, but not good enough keep out a cryptology expert with
lots of time on his hands. Also you should be aware that the swap file is not
encrypted; so while you are editing, people with superuser privileges can read
the unencrypted text from this file.

One way to avoid letting people read your swap file is to avoid using one. If
the n argument is supplied on the command line, no swap file is used (instead,
Vim puts everything in memory). For example, to edit the encrypted file file.txt
and to avoid swap file problems use the following command:

$ vim x n file.txt

Note: If you use the n argument, file recovery is impossible.

Also while the file is in memory, it is in plain text. Anyone with privileges
can look in the editor's memory and discover the contents of the file. If you use a
.viminfo file, be aware that the contents of text registers are written out in the
clear as well. If you really want to secure the contents of a file, edit it only on a
portable computer not connected to a network, use good encryption tools, and
keep the computer locked up in a big safe when not in use.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 213

The Vim Tutorial and Reference

Executing Vim in a Script or Batch File

Suppose you have a lot of files in which you need to change the string
person to Jones. How do you do that? One way is to do a lot of typing. The
other is to write a shell script or batch file to do the work.

The Vim editor does a superb job as a screen-oriented editor when started
in normal mode. For batch processing, however, it does not lend itself to
creating clear, commented command files; so here you will use ex mode instead.
This mode gives you a nice command-line interface that makes it easy to put into
a batch file.

The ex mode commands you need are as follows:

:%s/person/Jones/g
:write
:quit

You put these commands in the file change.vim. Now to run the editor in
batch mode, use this command:

$ vim es file.txt <change.vim

This runs the Vim editor in ex mode (e flag) on the file file.txt and reads
from the file change.vim. The s flag tells Vim to operate in silent mode. In
other words, do not keep outputting the : prompt, or any other prompt for that
matter.

Additional Command-Line Arguments

A number of command-line arguments are designed to control the behavior
of the editor. For example, you may want to restrict what you can do in Vim. The
arguments to support this are as follows:

R Open the file for read-only.

m Modifications are not allowed. This argument is more of a
recommendation than a restriction because all it does is set the
'nowrite' option. It does not prevent you from setting the
'write' option and modifying the file.

Z Restricted mode. This prevents the user from using :shell or
other commands to run an external shell. It does not prevent the
user from trying to edit another file using the :vi file command.

The other arguments enable you to choose which initialization files you
read:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 214

The Vim Tutorial and Reference

u file Use file rather than .vimrc for initialization. If the
filename is NONE, no initialization file is used.

U file Use file rather than .gvimrc for initialization. If the
filename is NONE, no initialization file is used.

i file Use file rather than the .viminfo file.

In UNIX, the Vim editor is actually one file with several different names
(links). The editor starts in different modes, depending on with which name it is
started. The names include the following:

vim Start Vim in console mode. (Edits inside the current window.)

gvim Start Vim in GUI mode. (The editor creates its own window for
editing.)

ex Start in ex mode. (Some systems link this to the system
command ex.)

view Start in normal mode, read-only.

gview Start in GUI mode, read-only.

rvim Start in console mode, restricted.

rview Start in console mode, read-only, restricted.

rgvim Start in GUI mode, restricted.

rgview Start in GUI mode, read-only, restricted.

vi Linux and other similar systems. Alias for vim.

You can use command-line arguments to set the initial mode as well:

g Start Vim in GUI mode (same as using the command gvim).

v Start Vim in visual mode (same as using the command vim).

e Start Vim in ex mode (same as using the command ex on most
systems).

You can use a number of command-line arguments to debug and test,
including the following:

V number Display extra messages letting you know what is going
inside the editor. The higher the number, the more
output you get. This is used for debugging your Vim
scripts.

f Foreground. Do not start a GUI in the background. This
proves useful when gvim is run for another program that
wants to wait until the program finishes. It is also

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 215

The Vim Tutorial and Reference

extremely useful for debugging.

w script Write all characters entered by the user into the script
file. If the script file already exists, it is appended to.

W script Like w, but overwrite any existing data.

s script Play back a script recorded with w.

T terminal Set the terminal type. On UNIX, this overrides the value
of the $TERM environment variable. (Of course, if the
$TERM environment is wrong, lots of other programs will
be screwed up as well.)

You also have compatibility arguments. These are of use only if you really
want Vim to act like Vi.

N Non-compatible mode. This argument makes Vim act like Vim
rather than Vi. This argument is set by default when a .vimrc
file is present.

C Compatible. This turns off many of the Vim special features
and makes the editor look as much like Vi as possible.

l Lisp mode. This mode is an obsolete holdover from the old Vi
days. It sets the 'lisp' and 'showmatch' ('sm') options. The
Vim file-type-related commands do a much better job of
handling Lisp programs, and they do it automatically.

Finally, you have a few arguments that cannot be classified any other way:

d device Amiga only. Open the given device for editing.
b Binary mode. Sets the options noexpandtab, textwidth=0,

nomodeline, and systems)..

Foreign Languages

The Vim editor can handle a variety of languages. Unfortunately, to edit
these languages, you do not only need a Vim editor with the language features
compiled in, but you also need special fonts and other operating system support.
This means that unfortunately foreign language support is beyond the scope of
this book.

But the command-line arguments for the foreign languages are as follows:

F Farsi
H Hebrew

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 216

The Vim Tutorial and Reference

Backup Files

Usually Vim does not produce a backup file. If you want to have one, all
you need to do is execute the following command:

:set backup

('bk' is the short name for 'backup'.)

The name of the backup file is the original file with a "~" added to the end.
If your file is named data.txt, for example, the backup file name is data.txt~. If
you do not like the fact that the backup files end with ~, you can change the
extensions by using the following:

:set backupext=string

('bex' is the short name for 'backupext'.)

If 'backupext' is .bak, data.txt is backed up to data.txt.bak.

The Vim editor goes you one better when it comes to the backup file. If you
set the 'patchmode' ('pm') option, Vim backs up the file being edited to a file
with the same name, but with the 'patchmode' string appended to it. This will
be done only if the file does not exist. For example, suppose you execute this
command:

:set patchmode=.org

Now you edit the existing file data.txt for the first time. When you exit Vim
checks to see whether the file data.txt.org exists. It does not, so the old file is
saved under that name. The next time you edit, the file does exist; so the backup
is written to data.txt~.The file data.txt.org is not used from now on. Instead, all
backups will go to data.txt~ .

Usually Vim puts the backup file in the same directory as the file itself. You
can change this with the 'backupdir' ('bdir') option. For example, the
following causes all backup files to be put in the ~/tmp directory:

:set backupdir=~/tmp/

This can create problems if you edit files of the same name in different
directories. That is because their backup files will all go to the ~/tmp directory
and the name collision will cause the old backup files to disappear.

The 'backupdir' option can actually take a series of directories, separated
by comma. The editor puts the backup file in the first directory where a backup
file can be created.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 217

The Vim Tutorial and Reference

Skipping the backup

For some directories it is not useful to write a backup file. For example
you don't really need to backup temporary files in /tmp. The list of such files is
defined by the 'backupskip' ('bks') option. It is a list of strings. Any file
matching any one of these strings will not be backed up.

Controlling How the File Is Written

Generally when Vim writes a file, the following operations are performed:

1. Vim checks to see whether the file has been changed outside of Vim.
For example, someone could have overwritten the file with a new one. If
this happens, a warning is issued and the editor asks if you want to
continue.

2. If the 'writebackup' ('wb') or 'backup' option is set, any old
backup file is removed. The current file is then copied to the backup file.

3. The buffer is written out to the file.

4. If the 'patchmode' option is set and no patch file exists, the backup
file is renamed to become the patch file.

5. If the 'backup' option is not set, and 'writebackup' is set, remove
the backup file.

The reason that Vim overwrites the existing file is to preserve any hard
links that you might have on a UNIX system. On non-UNIX systems the backup
is created by renaming the original file instead of making a copy.

Note: If you set the 'nobackup' and 'nowritebackup' options, Vim just
overwrites the existing file. This can cause loss of data if the disk fills up
during the file update.

By default, the 'writebackup' option is set. This means that the system
Vim uses to write a file makes it very difficult to lose data. By using this
method, there is no chance you will lose your file if the disk fills up. You may not
be able to write out the new version of the file, but at least you do not lose the
old one.

There are two ways to create a backup file. The one discussed above is
triggered when 'backupcopy' ('bkc') is set to no. The backup method is:

1. Write out the data to a temporary file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 218

The Vim Tutorial and Reference

2. Delete old backup.

3. Rename current --> backup

4. Rename temp -> current

There are a number of subtitle problems with this system. First any hard
links that pointed to the original file, now point to the backup. Second if the
original file was owned by someone else, it is now owned by you.

To avoid these problems (and create others) you can set 'backupcopy' to
yes. If this happens the Vim creates the backup file using the following steps:

1. Copy current -> backup

2. Truncate current

3. Write out all data to current.

Because the file is not deleted or renamed, all the links and permissions
remain. However, it does take time to copy the original file to the backup.

The 'backupcopy' option has a third value: auto. When set to auto Vim
will figure out the most efficient way of creating the backup and then use it.

Basic File Recovery

Suppose that you want to edit a file called sample.txt. You start Vim with
the following command:

$ gvim sample.txt

The editor now creates a swap file to temporarily hold the changes you
make until you write the file. When you finish editing, the swap file is deleted.

If the editor is aborted during mid-edit, however, it does not get a chance
to delete the swap file. This means that if you are in the middle of Vim sessions
and your system locks, forcing a reboot, the swap file will not be deleted.

When Vim first starts editing a file, it checks for a swap file. If it finds one,
that means that either another editing session is in progress or another editing
session was started and the editor got aborted. Therefore, Vim issues a warning
(see Figure 14-1), and gives you a chance to decide what to do.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 219

The Vim Tutorial and Reference

~
~
~
~
~
ATTENTION
Found a swap file by the name ".sample.txt.swp"
 dated: Thu Feb 17 22:44:00 2000
 owned by: sdo
 file name: /tmp/sample.txt
 modified: no
 host name: www.oualline.com
 user name: sdo
 process ID: 8449 (still running)
While opening file "sample.txt"
 dates: Thu Feb 17 22:45:33 2000
(1) Another program may be editing the same file.
 If this is the case, be careful not to end up with two
 different instances of the same file when making changes.
 Quit, or continue with caution.
(2) An edit session for this file crashed.
 If this is the case, use ":recover" or "vim r sample.txt"
 to recover the changes (see ":help recovery)".
 If you did this already, delete the swap file ".sample.txt.swp"
 to avoid this message.

Figure 14-1: File in use warning.

At this point, you have a number options:

Open ReadOnly This option causes Vim to open the file read-only. You
should choose this option if you want to look at the file
and there is another editing session still running.

Edit anyway A.K.A. Damn the torpedoes, full steam ahead. If you
select this option, you can edit the file. Do not choose
this option unless you really know what you are doing.
Note that if you have two or more edit sessions running
on a single file, the last session to write the file wins.

Recover If you were editing the file and the editor got aborted
due to a system crash or some other reason, choose this
option. It examines the swap file for changes and
attempts to restart your session from where you left off.
It usually comes close, but examine your file carefully
because the last few edits may have disappeared.

Quit Do not edit this file.
Delete Delete the swap file. (Appears if no one else is using

the swap file.)

After selecting one of these options, you can edit normally. Be careful if you
choose Recover, because all your changes may not have been saved.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 220

The Vim Tutorial and Reference

Recovering from the Command Line

If you know the name of the file you were editing when your editing session
was aborted, you can start Vim in recovery mode using the r argument. If you
were editing the file commands.c when you were rudely interrupted, for
example, you can recover with the following command:

$ vim r commands.c

If you want to get a list of recoverable editor sessions, use this command:

$ vim r

This causes Vim to check for swap files in the current directory and the
standard temporary directories. For example:

$ vim r
Swap files found:
 In current directory:
 none
 In directory ~/tmp:
 none
 In directory /var/tmp:
 none In directory /tmp:
1. .script.txt.swp
 dated: Fri Feb 18 19:48:46 2000
 owned by: sdo
 file name: /tmp/script.txt
 modified: no
 host name: www.oualline.com
 user name: sdo
 process ID: 26473 (still running)

In this example, you see that there is a swap file for the file /tmp/script.txt.
The process number of the editor that created the swap file is 26473.The process
is still running, so you probably do not want to try to edit or recover the file
using this edit session. You probably want to find the window for process 26473
and use it instead.

Several options and other commands affect file recovery. See the snext
section for more information.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 221

The Vim Tutorial and Reference

Advanced Swap File Management

The Vim editor goes to a great deal of trouble not to overwrite any old
swap files. The first time a file is edited, the swap file name is .file.txt.swp. If
the editor is aborted and you start editing again, the next swap file is called
.file.txt.swo, and then .file.txt.swn, and so on. You can tell Vim to recover using a
specific swap file by specifying the name of the swap file with the command:

$ vim r file.txt.swo

To find out the name of the swap file you are currently using, execute the
following command:

:swapname

(;swapname can be abbreviated as :sw.)

This displays the name of the swap file.

Controlling When the Swap File Is Written

Usually the swap file is written every 4 seconds or when you type 200
characters. These values are determined by the 'updatecount' ('uc') and
'updatetime' ('ut') options. To change the amount of time Vim waits before
writing the swap file to 23 seconds, for example, use the following command:

:set updatetime=23000

Note: The 'updatetime' is specified in milliseconds.

To change the number of characters you have to type before Vim writes
stuff to the swap file to 400, for instance, use this command:

:set updatecount=400

If you change the 'updatecount' to 0, the swap file will not be written.
However, the decision whether to write a swap file is better controlled by the
'swapfile' option. If you have this option set, a swap file will be created (the
default):

:set swapfile

If you do not want a swap file, use the following command:

:set noswapfile

('swf' is the short name for 'swapfile'.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 222

The Vim Tutorial and Reference

This option can be set/reset for each edited file. If you edit a huge file and
don't care about recovery, set 'noswapfile'. If you edit a file in another
window, it will still use a swap file.

On most operating systems, when you "write" a file, the data usually goes
into a memory buffer and is actually written to the disk when the operating
system "thinks" it is appropriate. This usually takes only a few seconds. If you
want to make sure that the data gets to disk, however, you want to use the
following command:

:set swapsync

('sws' is the short name for 'swapsync')

This command tells Vim to perform a sync operation after each writing of
the swap file to force the data onto the disk. The 'swapsync' option can be
empty, fsync, or sync, depending on what system call you want to do the writing.

Controlling Where the Swap File Is Written

Generally, Vim writes the swap file in the same directory as the file itself.
You can change this by using the 'directory' ('dir') option. For example, the
following tells Vim to put all swap files in /tmp:

:set directory=/tmp (Not a good idea)

This is not a good idea because if you try to edit the file readme.txt in two
different directories at the same time, you encounter a swap file collision.

You can set the 'directory' option to a list of directories separated by a
comma (,). It is highly recommended that you use a period (.) as the first item it
this list. The swap file will be written to the first directory in the list in which
Vim can write the file. For example, the following tells Vim to write the swap file
in the current directory, and then to try /tmp:

:set directory=.,/tmp

Advanced File Writing

Normally when Vim writes a file, it just writes a file. If the 'fsync' ('fs')
option is on, it will write a file, then do an fsync() system call to make sure it gets
written to disk. This helps protect you against loss of data when there's a power
outage. However on some laptops it will cause the disk to spin up thus draining
the battery.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 223

The Vim Tutorial and Reference

Saving Your Work

Suppose you have made a bunch of changes and you want to make sure
they stick around even if Vim or the operating system crashes. One way to save
your changes is to use the following command to write out the file:

:write

(:w does the same thing.)

However, this command overwrites your existing file with all your changes.
The following is a related command:

:preserve

(:preserve can be written as :pre.)

This command writes all the edits to the swap file. The original file
remains unchanged and will not be changed until you do a :write or exit with
ZZ. If the system crashes, you can use the swap file to recover all your edits.
Note that after a :preserve, you can recover even if the original file is lost.
Without this command, you need both the original file and the swap file to
recover.

The :recover Command

The following command tries to recover the file named file.txt:

:recover file.txt

(:rec is the short form of :recover.)

It is just like this command:

$ vim r file.txt

If the file you are trying to recover is currently being edited this command
fails. If no filename is specified, it defaults to the file in the current buffer.

If you want to discard any changes you have made to the file and attempt
to recover, use the following command:

:recover! file.txt

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 224

The Vim Tutorial and Reference

MS-DOS Filenames

If you are on an MS-DOS or Windows 3.1 machine, you are stuck with very
limited filenames. The Vim editor detects this and limits the swap filename to
something that can be used on this type of machine. Whereas the normal swap
file for foo.txt is .foo.txt.swp, for example, if you are in short name mode, it is
foo_txt.swp.

You can set the 'shortname' option to force Vim to use this convention.
This is useful if have a Linux or other system and are editing files on an MS-DOS
partition. In this case, the operating system (Linux) supports long filenames,
but the actual disk you are working on (MS-DOS format) does not. Therefore,
you need to tell Vim to use the short swap names by giving it the following
command:

:set shortname

This option is not available for the MS-DOS version of Vim because it
would be always on. Instead, it is used when you are cross-platform editing.

readonly and modified Options

The 'modified' ('mod') flag is set if the buffer has been modified. You
probably do not want to set this option yourself because it is handled
automatically. You can use the value of this option in macros, however.

The 'readonly' ('ro') flag is also set automatically if the file is read-only.
In only one circumstance should you reset this: when you are using a source
control system that normally leaves files in read-only mode. You want to edit the
file, so you start Vim.

The editor warns you that the file is read-only and sets the 'readonly'
option. At this point, you realize that you forgot to tell the source control system
that you want to edit the file. So you use :shell (:sh) to go to the command
prompt and execute the commands needed to tell the system that you want to
edit the file. The RCS system uses the co -l command to do this, for example; the
SCCS system uses sccs edit.

After getting permission to edit the file, you use the exit command to
return to

Vim, where you execute the following command to mark the file as
editable:

:set noreadonly

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 225

The Vim Tutorial and Reference

Chapter 15: Miscellaneous Commands

 This chapter discusses all the commands that do not quite fit in any other
chapter. In this chapter, you learn about the following:

● Getting character number information

● How to go to a specific byte in the file

● Redrawing the screen

● Sleeping

● Terminal control

● Suspending the editor

● Reshowing the introduction screen

Printing the Character

The command :ascii (:as) or ga prints the number of the character under
the cursor. The output looks like this:

<*> 42, Hex 2a, Octal 052

If editing a multibyte (Japanese or Chinese for example) file, and the
character under the cursor is a double-byte character, the output shows both
bytes.

Going to a Specific Character in the File

The countgo command goes to byte number count of the file. The
command g CTRLG displays the current byte number of a file (along with the
current line, column, and other information).

The command :goto offset (:go) also positions the cursor to a given byte
location within the file.

The gg command acts much like the G command. It goes to the line
specified by its count. For example, 5gg goes to line 5.The difference between gg
and G is that if no count is specified, gg goes to the first line and G goes to the
last.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 226

The Vim Tutorial and Reference

Screen Redraw

The CTRLL command redraws the screen. This proves useful when you
are on a terminal and some system message or other text screws up your screen.
With the advent of the dedicated GUI, the need for this command is greatly
diminished.

Sleep

The :sleep time (:sl) command does nothing for the specified number of
seconds. If time ends in m, it is specified in milliseconds. This command proves
useful when you want to pause during the execution of a macro.

The countgs command also sleeps for count seconds.

Terminal Control

On most terminals, the CTRLS command stops output. To restart it again,
you type CTRLQ. These commands are not part of Vim; to avoid keyboard
conflicts, however, they are not used by any Vim commands.

You should not try to use these commands in a :map command because
your terminal might interpret them and they might never get to Vim.

Suspending the Editor

If you are on UNIX in terminal mode, you can suspend the editor with the
normal mode command CTRLZ. To continue editing, use the shell command fg.
This works only on shells that have job control. The :suspend command does
the same thing.

Note: CTRLZ in insert mode inserts the character CTRLZ; it does not
suspend the editor.

General Help

The :help, :h, <F1> and <Help> commands all display the general help
screen.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 227

The Vim Tutorial and Reference

Other Help Commands

The :helpgrep (:helpg) command does a :vimgrep on the help files and
lets you go through the results with :cc, :cn, :cp, and the other :vimgrep
related commands. The :lhelpgrep (:lh) command does the same thing only
using the local version of the :vimgrep command,

The :helptags (:helpt) command generates a help tags files for all the
files in a given directory. This is useful only if you are writing help files.

Nvi Compatibility Commands

For Nvi compatibility some additional commands have been added. The
:exusage (:exu) command displays help on the command mode commands (aka
the Ex commands.) The :viuslage (:viu) command displays help on the normal
mode commands. Both these commands do not work as well as :help but were
included for compability.

Window Size

The z height <CR> command resizes the current window to height. If
there is only one window open, Vim will display only height lines. (The rest will
be blank.) This is useful for slow terminals.

Executing commands without changing things

The :keepalt (:keepa) command executes a command without chainging
the fname of the alternate file. For example:

:keepalt :next

Edits the next file but does not make the current one the alternate file.

The :keepjumps (:keepj) command executes a command without
changing the marks that are normally changed by a jump.

Signs

A sign is small marker on the left side of the screen. The sign feature is
designed to help Vim work with visual debuggers or IDEs. It gives the IDE the
ability to show things like breakpoints and other annotations.

Before you can use a sign, it must be defined. In this example we are
defining a sign named Here that uses the text “=>” to point to a location.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 228

The Vim Tutorial and Reference

:sign Here icon=here.xpm text==>
\ linehl=Search texthl=DiffChange

(:sign can be abbreviated :sig.)

The parameters to this command are:

icon The name of the icon to use (if an icon can be
displayed.) This only works for the GTK and Motif
versions of the GUI.

text The text to display.

linehl Highlight to use for the line on which the sign has
been placed.

texthl Highlight for the sign text.

(See the section Customizing the Syntax Highlighting in Chapter
23: Advanced Commands for Programmers for information on
highlighting.)

Now that we've defined a sign, we can put it somewhere. In this case we
are going to put it on line 3 of the file test.txt.

:sign place 1 line=3 name=Here file=test.txt

The 1 is the sign id number. The line is the line on which to place the
sign. The last parameters is the name of the file.

 Line 1
..Line 2
=>Line 3
 Line 4
 Line 5

Figure 15-1: Sign placement

A sign can be placed by file name or by buffer number. For example:

:sign place 1 line=3 name=Here buffer=1

If a sign is already in place you can change the name of the sign with the
command:

:sign place 1 name=There file=test.txt

This changes the sign from Here to There. (Assuming of course we have
done a :sign define on There.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 229

The Vim Tutorial and Reference

Again we can use a buffer instead of a file name:

:sign place 1 name=There buffer=1

To remove a sing, use the :sign unplace command. This can take a file
name or buffer number as an argument.

:sign unplace 1 file=test.txt
:sign unplace 1 buffer=1
:sign unplace 1

The last form removes all the signs for that id for all buffers.

To remove the sign at the cursor location, use the command:

:sign unplace

Finally to remove all the sign, the command is:

:sign unplace *

You can move to a sign within a given buffer or file with the :sign jump
command:

:sign jump 1 file=test.txt
:sign jump 1 buffer=1

To find out what signs are defined, use the :sign list command.

:sign list

To limit results to a single sign, just specify it on the command line:

:sign line Here

To find out where the signs are located use the command:

:sign list

You can limit yourself to a single buffer or file, by specifying them on the
command line:

:sign list file=test.txt
:sign list buffer=1

Viewing the Introduction Screen

If you start Vim without a filename, you will see an introductory flash
screen. This screen disappears when you type the first character. If you want to
see it again, issue the following command:

:intro

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 230

The Vim Tutorial and Reference

(:int does the same thing.)

Open Mode

The Vim editor has all the capabilities of the Vi editor except one: open
mode. This mode is Vi's way of coping with terminals it does not understand. It
is difficult to get into this mode, difficult to use it, and the fact that Vim does not
have it is no great loss.

Vim does have a command to enter open mode, but when you issue the
command

:open

all you get is an error message.

(:o will also not get you into open mode.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 231

The Vim Tutorial and Reference

Chapter 16: Cookbook

This chapter presents a cookbook full of short recipes for doing some
common (and not so common) Vim editing. The "recipes" include the following:

● Character twiddling

● Replacing one word with another using one command

● Interactively replacing one word with another

● Moving text

● Copying a block of text from one file to another

● Sorting a section

● Finding a procedure in a C program

● Drawing comment boxes

● Reading a UNIX man page

● Trimming the blanks off an end-of-line

● Oops, I left the file write-protected

● Changing Last, First to First Last

● How to edit all the files containing a given word

● Finding all occurrences of a word

Character Twiddling

If you type fast, your fingers can easily get ahead of your mind. Frequently
people transpose characters. For example, the word the comes out teh. To
swap two characters (for example, e with h), put the cursor on the e and type xp.
The x command deletes a character (the e), and the p pastes it after the cursor
(which is now placed over the h).

Replacing One Word with Another Using One Command

Suppose you want to make all idiots into managers. Execute the following
command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 232

The Vim Tutorial and Reference

:1,$s/idiots/managers/g

The colon (:) indicates that you are going to execute an ex type command.
All ex commands begin with range of line numbers on which the command
operates. In this case, the whole document is chosen, from line 1 to the last line
($).The shorthand for 1,$ is simply % as shown previously.

The :s (abbreviation for :substitute) command performs a substitution.
The old text follows enclosed in slashes (/idiots/). The replacement text comes
next, also delimited by the slashes (/managers/). The g flag tells the editor that
this is a global change and so if the word idiots appears more than once on a
line, to change them all.

The Virgin What!?
A church just bought its first computer and was learning how to use it. The church
secretary decided to set up a form letter to be used in a funeral service. Where the
person's name was to be, she put in the word <name>. When a funeral occurred, she
would change this word to the actual name of the departed.
One day, there were two funerals, first for a lady named Mary, and then later one for
someone named Edna. So the secretary used global replace to change <name> to Mary.
So far, so good.
Next, she generated the service for the second funeral by changing the word Mary to
Edna. That was a mistake
Imagine the minister's surprise when he started reading the part containing the
Apostles' Creed and saw,

"Born of the Virgin Edna."

Interactively Replacing One Word with Another

Suppose you want to replace every occurrence of the word idiot with the
word manager, but you want the chance to review each change before you do it.

To do so, follow these steps:

1. Use 1G to go to the top of the document.

2. Execute /idiot to find the first occurrence of the word idiot.

3. Issue the command cwmanager<Esc>. Change the word (cw) to
manager.

4. Use the n command to repeat the last search (find the next idiot).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 233

The Vim Tutorial and Reference

5. Execute the . (dot) command to repeat the last edit (change one word
to manager). If you do not want to change the word, skip this step.

6. Repeat steps 4 and 5 until you have replaced all occurrences of
idiot to manager.

Alternate Method

Execute the following command:

:%s/idiot/manager/cg

This starts an ex-mode command :substitute (abbreviated :s).The % tells
Vim to apply this command to every line in the file. You change idiot to
manager. The c flag tells :substitute to get confirmation before each change.
The g flag tells the command to change all occurrences on the line. (The default
is to change just the first occurrence.)

Moving Text

Suppose you want to move a bunch of paragraphs from the top of the
document to the bottom.

To do so, follow these steps:

1. Move the cursor to the top of the paragraph you want to move.

2. Use ma to place a mark named a at this location.

3. Move the cursor to the bottom of the paragraph to be moved.

4. Execute d'a to delete to mark a. This puts the deleted text in a
register.

5. Move the cursor to the line where the text is to go. The paragraph
will be placed after this one.

6. Use the p command to paste the text below the cursor.

Another method consists of the following steps:

1. Select the first line as in the previous list; make it mark a.

2. Move to the bottom of the paragraph (use the } command). Mark b.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 234

The Vim Tutorial and Reference

3. Move to the line above where you want to put the text, and type the
command:

:'a,'b move .

(:m is short for :move.)

Copying a Block of Text from One File to Another

The old Vi editor did not handle multiple files very well. Fortunately, Vim
does a superb job of dealing with more than one file. There are lots of different
ways to copy text from one to another. If you are used to the traditional Vi-style
commands, you can use a method based around that style. On the other hand,
Vim has a very nice visual mode. You can use it as well. Finally, Vim can make
use of the system Clipboard to move text from one Vim program to another. All
these methods work, and work well. Which one you should use is a matter of
taste.

Method 1: Two Windows with Traditional Vi-Style Commands

To copy a block of text between files, follow these steps:

1. Edit the first file.

2. Execute :split second_file to go to the second file. This opens
another window and starts editing the second file in it.

3. Use CTRLW p to go to the "previous" window, the one with the
original file.

4. Go to the top line to be copied.

5. Mark this line as mark a by using the ma command.

6. Go to the bottom line to be copied

7. Execute y'a to yank (copy in Microsoft parlance) the text from the
current cursor location to mark a ('a) into the default register.

8. Use CTRLW p to go to the file that will receive the text.

9. Go to the line where the insert is to occur. The text will be placed
before this line.

10. Issue the P command to put (paste in Microsoft terminology) the text
in the default register above the current line.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 235

The Vim Tutorial and Reference

Method 2: Two Windows Using Visual Mode

To copy a block of text between files, follow these steps:

1. Edit the first file.

2. Execute :split to edit the second file.

3. Use CTRLW p to go to the "previous" window, the one with the
original file.

4. Go to the start of the text to be copied.

5. Issue the V command to start visual mode.

6. Go to the end of the text to be copied. The selected text will be
highlighted.

7. Execute y to yank (Copy in Microsoft parlance) the text into the
default register.

8. Use CTRLW p to go to the file that will receive the text.

9. Go to the line where the insert is to occur. The text will be placed
before this line.

10. Issue the P command to put (paste in Microsoft terminology) the text
in the default register above the current line.

Method 3: Two Different Vim Programs

In this method, you start up two Vim programs and copy text from one to
another. You do this by using the system Clipboard register ("*).

1. Edit the first file.

2. Start another Vim program to edit the second file. (If you are using
Linux or UNIX, the second editor can be started on another machine.
However, both programs must use the same X Windows display.)

3. Go to the window with the first file in it.

4. Go to the start of the text to be copied.

5. Issue the V command to start visual mode.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 236

The Vim Tutorial and Reference

6. Go to the end of the text to be copied. The selected text will be
highlighted.

7. Use the "*y command to yank (copy in Microsoft parlance) the text
into the system Clipboard register ("*).

8. Change to the other editing command. (Make that editor your active
window.)

9. Go to the line where the insert is to occur. The text will be placed
before this line.

10. Issue the command "*P to put (paste in Microsoft terminology) the
text in the system Clipboard register ("*) above the current line.

Note: This method enables you to not only move text between two Vim
applications, but also to "yank" and "put" between Vim and other
applications as well. For example, you can select text in an xterm window
using the mouse and paste it into a Vim editing using "*P. Or you can copy
text into the system register in a Vim session and paste it into a Microsoft
Word document using the Edit, Paste commands.

Or if you're editing a book about Vim using OpenOffice, you can yank the
text using “*P and paste it into a figure inside your book using the middle
mouse button.

Sorting a Section

Frequently you will be editing a file with a list of names in it (for example,
a list of object files that make up a program). For example:

version.o
pch.o
getopt.o
util.o
getopt1.o
inp.o
patch.o
backupfile.o

This list would be nice in alphabetic order (or at least ASCII order). To do
this using Vim commands execute the following:

1. Move the cursor to the first line to be sorted.

2. Issue the v command to enter visual mode.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 237

The Vim Tutorial and Reference

3. Move to the bottom of the text to be sorted. The text will be
highlighted.

4. Execute the :sort command.

Warning: In actual practice, what you see in most Makefiles (files used by
UNIX to control compilation) looks more like this:

OBJS = \
 version.o \
 pch.o \
 getopt.o \
 util.o \
 getopt1.o \
 inp.o \
 patch.o \
 backupfile.o

Notice that the backslash (\) is used to indicate a continuation line. After
sorting this looks like the following:

OBJS = \
 backupfile.o
 getopt.o \
 getopt1.o \
 inp.o \
 patch.o \
 pch.o \
 util.o \
 version.o \

The names are in order, but the backslashes are wrong. Do not forget to
fix them using normal editing before continuing:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 238

The Vim Tutorial and Reference

OBJS = \
 backupfile.o \ (added)
 getopt.o \
 getopt1.o \
 inp.o \
 patch.o \
 pch.o \
 util.o (removed)

Sorting the old Vi way:

In this method we avoid using Vim's internal :sort command and instead
use an external command. This system also avoids visual mode.

1. Move the cursor to the first line to be sorted.

2. Use the command ma to mark the first line as mark a.

3. Move to the bottom of the text to be sorted.

4. Execute the !'asort command. The ! command tells Vim to run the
text through a command. The 'a tells the editor that the text to be worked
on starts at the current line and ends at mark a. The command that the text
is to go through is sort.

The result looks like this:

backupfile.o
getopt.o
getopt1.o
inp.o
patch.o
pch.o
util.o
version.o

Finding a Procedure in a C Program

The Vim program was designed by programmers for programmers. You
can use it to locate procedures within a set of C or C++ program files.

First, however, you must generate a table of contents file called a tags file.
(This file has been given the obvious name tags.) The ctags command generates
this table of contents file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 239

The Vim Tutorial and Reference

To generate a table of contents of all the C program files in your current
working directory, use the following command:

$ ctags *.c *.h

For C++, use this command:

$ ctags *.cpp *.h

If you use an extension other than .cpp for your C++ files, use it rather
than .cpp.

After this file has been generated, you tell Vim that you want to edit a
procedure and it will find the file containing that procedure and position you
there. If you want to edit the procedure write_file, for example, use the
following command:

$ gvim t write_file

Now suppose as you are looking at the write_file procedure that it calls
setup_data and you need to look at that procedure.

To jump to that function, position the cursor at the beginning of the word
setup_data and press CTRL]. This tells Vim to jump to the definition of this
procedure. This repositioning occurs even if Vim has to change files to do so.

Note: If you have edited the current file and not saved it, Vim will issue a
warning and ignore the CTRL]command.

There are a number of tag-related commands enable you to jump
forward/backward through tags, split the windows and put the called procedure
in the other window, find inexact tags, and many more things. These can be
found in Chapter 7.

Drawing Comment Boxes

I like to put a big comment box at the top of each of my procedures. For
example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 240

The Vim Tutorial and Reference

/***
 * Program Solve it Solves the worlds problems. *
 * All of them. At once. This will be a great *
 * program when I finish it. *
 ***/

Drawing these boxes like this is tedious at best. But Vim has a useful
feature called abbreviations that makes things easier . First, you need to create a
Vim initialization file called ~/.vimrc. The ~/.vimrc file must contain the
following lines:

:ab #b /***************************************
:ab #e <Space>**/

These commands define a set of Vim abbreviations. Abbreviations were
discussed in Chapter 8: Basic Abbreviations, Keyboard Mapping, and
Initialization Files. To create a comment box, enter #b<Enter>. The screen looks
like this:

/**

Enter the comments, including the beginning and ending * characters.
Finally, end the comment by typing #e<Enter>.This causes the ending comment
to be entered.

Another (better) option is to use an external program like boxes (see http://
www.vim.org), which generates all kinds of ASCII art boxes and can be
customized. Here, one might visually select the text and then issue the
command :'<,'> !boxes r ,which would remove an existing box and put a new
box around the text.

Note: This page was written in Vim. So how did we enter the #b and #e?
Easy, we typed in #bb and then deleted a character. (We could not enter #b
or it would have been expanded.) The actual command was i#bb<Esc>x.

Another good tool for this sort of thing is tal, which lines up the final
character (the *, here) so it looks nice.

Reading a UNIX man Page

You can use the Vim editor to browse through text files. One of the most
useful sets of files to browse through is the man pages. Unfortunately, man
pages try to simulate formatting by underlining characters using a sequence
such as _<BS>x for x. This make viewing of the man page in Vim difficult. If you
try to read a man page directly, you will see something like this:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 241

file:///media/sdo/KINGSTON/vim/http:%2F%2F%20www.vim.org
file:///media/sdo/KINGSTON/vim/http:%2F%2F%20www.vim.org

The Vim Tutorial and Reference

N^HNA^HAM^HME^HE

date print or set the system date and time

To get rid of these characters, use the standard UNIX command ul -i. This
is a formatting program that removes the hard-to-read control characters. The
result looks like this:

NAME
!!!!

date print or set the system date and time

Now all that is needed is to put three commands together: the man
command to get the manual page, the ul -i command to fix the formatting, and
vim to read the page. The resulting command is as follows:

$ man date | ul i | vim

Another technique is to use Vim on the raw page and then execute:

:%s/.\b//g

This will remove all characters followed by the backspace (\b), rendering
the file readable.

Trimming the Blanks off an End-of-Line

Some people find spaces and tabs at the end of a line useless, wasteful, and
ugly. To remove whitespace at the end of every line, execute the following
command:

:%s/ \s*$/ /

The colon (:) tells Vim to enter command mode. All command-mode
commands start with a line range; in this case, the special range % is used, which
represents the entire file.

The first set of slashes encloses the "from text." The text is "any
whitespace" (\s), repeated zero or more times (*), followed by "end-of-line"
($).The result is that this pattern matches all trailing whitespace.

The matching text is to be replaced by the text in the next set of slashes.
This text is nothing, so the spaces and tabs are effectively removed.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 242

The Vim Tutorial and Reference

Oops, I Left the File Write-Protected

Suppose you are editing a file and you have made a lot of changes. This is
a very important file and to preserve it from any casual changes, you
write-protected it, even against yourself. The Vim editor enables you to edit a
write-protected file with little or no warning. The only trouble is that when you
try to exit using ZZ you get the following error:

file.txt File is readonly

and Vim does not exit.

So what can you do? You do not want to throw away all those changes, but
you need to get out of Vim so that you can turn on write permission. Use the
command :w! to force the writing of the file.

Another option: Use the :w otherfilename command to save your work in
a different file so you can fix the file permissions if that is what is required.

Changing Last, First to First Last

You have a list of names in the following form:

Last, First

How do you change them to

First Last

You can do so with one command:

:1,$s/\([^,]*\), \(.*$\)/\2 \1/

The colon (:) tells Vim that this is an ex-style command.

The line range for this command is the whole file, as indicated by the range
1,$.

The s (abbreviations for :substitute) tells Vim to perform a string
substitution.

The old text is a complex regular expression. The \(. . . \) delimiters
are used to inform the editor that the text that matches the regular expression
inside the parentheses is to be remembered for later use. The text in the first \(
. . . \) is assigned to \1 in the replacement text. The second set of text inside
\(. . . \) is assigned \2, and so on.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 243

The Vim Tutorial and Reference

In this case, the first regular expression is any bunch of characters that
does not include a comma. The [^,] means anything but a comma, and the *
means a bunch (zero or more characters). Note:This means that all leading
spaces will also be matched, which may not be what is desired.

The second expression matches anything (.*) up to the end-of-line: ($).

The result of this substitution is that the first word on the line is assigned
to \1 and the second to \2.These values are used in the end of the command to
reverse the words.

Figure 16-1 example shows the relationship between the \(\) enclosed
strings and the \1, \2 markers.

Figure 16-1: Regular expression explained

Match anything but comma Any Character Repeated 0 or more times The
end of the line

Figure 16-2 breaks out the various parts of the regular expressions used in
this illustration:

:l,$s/\([^,]*\), \(.*$\)/\2 \1/

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 244

:1,$s/\([^,]*\) , \(.*$\) /\2 \1/

Line range (1 – first, $ -- last)
(% also works)

s – Substitute command

From text
To Text

The Vim Tutorial and Reference

1 First line of the range
$ Last line of the range
s :substitute command
/ <from> / <to> / From and to text for substitution
\(....\) Put contents into \1
[^,] Anything except (^) comma
* Repeat previous zero or more times
\) End of \1
, Literal comma and space
\(...\) Put contents in \2
\2 To text, contents of second \(..\)
\1 To text, contents of first \(...)\)

Figure 16-2: Substitute command to switch words

How to Edit All the Files that Contain a Given Word

If you are a UNIX user, you can use a combination of Vim and grep to edit
all the files that contain a given word. This is extremely useful if you are
working on a program and want to view or edit all the files that contain a
specified variable.

For example, suppose you want to edit all the C program files that contain
the word frame_counter. To do this you use the command:

$ vim `grep l 'frame_counter' *.c`

Let's look at this command in detail. The grep command searches through
a set of files for a given word. Because the -l option is specified, the command
will only list the files containing the word and not print the line itself. The word
it is searching for is frame_counter. Actually, this can be any regular
expression. (Note:What grep uses for regular expressions is not as complete or
complex as what Vim uses.)

The entire command is enclosed in backticks (`).This tells the UNIX shell
to run this command and pretend that the results were typed on the command
line.

So what happens is that the grep command is run and produces a list of
files, these files are put on the Vim command line. This results in Vim editing the
file list that is the output of grep.

You can then use the commands :n and :rewind to browse through the
files.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 245

The Vim Tutorial and Reference

Why show this here? This is a feature of the UNIX shell (such as 'bash'),
and isn't part of Vim's repertoire. The way to accomplish something similar
within Vim, and which works on Win32 as well is:

:args `grep l 'frame_counter' *.c`

which will set the argument list, in other words, the files "on the command
line."

Finding All Occurrences of a Word Using the Built-in Search
Commands

The Vim editor has a built-in grep command that you can use to search a
set of files for a given string. If you want to find all occurrences of error_string
in all C program files, for example, enter the following command:

:vimgrep error_string *.c

This causes Vim to search for a string (error_string) in all the specified
files (*.c).

The editor will now open the first file where a match is found and position
the file on the first matching line.

 To go to the next matching line (no matter what file), use the :cnext
command. To go to the previous match, use the :cprev command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 246

The Vim Tutorial and Reference

Chapter 17: Topics Not Covered

The Vim editor has a tremendously rich set of features. Unfortunately, a
few areas are beyond the scope of this book, and therefore are not covered here.
These include support for commercial applications that I do not have access to
and foreign languages.

This chapter briefly describes the commands omitted from the rest of the
book.

Interfaces to Other Applications

The Vim editor is designed to interface with many common commercial
packages as well as a few Open Source packages. Because I do not have these
packages installed, I could not examine and test these commands. Some brief
documentation appears here.

Cscope

The cscope command is designed to examine a set of C or C++ programs
and produce a database containing information about the location of functions
and variables in the programs. You can then use the Cscope program to query
this database to locate where an identifier is defined or used. Cscope is available
from http://cscope.sourceforge.net.

For full information use the following command:

:help cscope

Cscope-Related Command Reference

:cs arguments
:cscope argument

Handle various activities associated
with the Cscope program.

:scs arguments
:scscope argument

Split the window then handle various
activities associated with the Cscope
program.

:lcs arguments
:lcscope argument

Handle various activities associated
with the Cscope program, but use the
local list instead of the quick fix list.

:cst procedure
:cstag procedure

Go to the tag in the CScope database
named procedure.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 247

http://cscope.sourceforge.net/

The Vim Tutorial and Reference

:set csprg=program
:set cscopeprg=program

Define the name of the Cscope
program (Default=cscope).

:set cst
:set cscopetag
:set nocst
:set nocscopetag

If set, this option causes the
commands that do tag navigation
(:tags, CTRL], and so on) to use the
Cscope database rather than tags.

:set csqf
:set cscopequickfix
:set nocsqf
:set nocscopequickfix

If set, use the quickfix window for
Cscspe output.

:set csto=flag
:set cscopetagorder=flag

Define the search order for the
CScope tag-searching commands. If
flag is 0, the default, search the
CScope database, followed by tags. If
flag is 1, search tags first.

:set csverb
:set cscopeverbose
:set nocsverb
:set nocscopeverbose

If set, output error messages occur
when Vim looks for a CScope database
and fails to find it. This proves useful
when debugging initialization files
that try to load a set of databases
(default=nocscopeverbose).

:set cspc=number
:set csopepathcomp=number

Sets the number of path components
to use for Cscope file specifications.
(Default = 0.)

MzScheme

The MzScheme interface enables you use PLT Scheme scripts from within
Vim. For information use the command:

:help mzscheme

MzScheme Interface Command Reference

:[range]mz statement
:[range]mzscheme statement

Execute a single MzScheme statement.

:[range]mz <<pattern
:[range]mzscheme <<pattern

Execute the following lines as
MzScheme statements until a line
consisting of only pattern is seen.

:[range]mzf file
:[range]mzfile file

Execute the MzScheme script
contained in the given file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 248

The Vim Tutorial and Reference

:set mzquantum={value}
:set mzq={value}

Sets the polling interval to {value}
milliseconds.

Netbeans

Netbeans is a Java IDE developed by Sun. It's available from
http://www.netbeans.org. There is a add on to Netbeans called Viex which lets
you use Vim as an external editor. See http://viex.sourceforge.net/.

Netbeans use the nb command line parameter to start Vim and provide
Vim with information concerning the connection between the two programs.
One of the communications systems involves Vim sending hot keys back to
Netbeans through the :nbkey (:nbk) command.

Since all this communication is handled internally normal user will not
have to worry about the nb command line parameter or the :nbkey command.

OLE

The OLE system is a method by which programs running under Microsoft
Windows can communicate with each other. The Vim editor can act as an OLE
server. This means that you can write Microsoft Windows programs that
interface to it. For those of you who know how to write Visual Basic or other
Microsoft-based applications, you can find more information by using the
command:

:help oleinterface

Perl

The Perl interface enables you to execute perl command from Vim and also
gives the Perl programs an interface that they can use to access some of Vim's
functions. For a complete description of what is available, execute the following
command:

:help perl

Perl Interface Command Reference

:pe command
:perl command

Execute a single perl command.

:pe <<pattern
:perl <<pattern

Execute the following lines as perl commands
until a line consisting of only pattern is seen.

:{range}perld command Execute a perl command on a range of lines.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 249

http://viex.sourceforge.net/
http://www.netbeans.org/

The Vim Tutorial and Reference

:{range}perldo command The perl variable $_ is set to each line in
range.

Python

The Python interface enables you to execute Python statements and
programs from within Vim. Like Perl, the Python interface provides you with lots
of functions and objects that enable you to access parts of the Vim editor.

For complete help, execute the following:

:help python

Python Interface Command Reference

:{range}py statement
:{range}python statement

Execute a single Python statement.

Ruby

Ruby is yet another scripting language you can use with Vim. For a
complete description of what is available, execute the following command:

:help ruby

Ruby Interface Command Reference

:rub command
:ruby command

Execute a single Ruby command.

:rub <<pattern
:ruby <<pattern

Execute the following lines as Ruby
commands until a line consisting of only
pattern is seen.

:{range}rubyd command
:{range}rubydo command

Execute a Ruby command on a range of lines.
The Ruby variable $_ is set to each line in
range.

:{range}rubyf file
:{range}rubyfile file

Execute the Ruby program contained in file.

Sniff+

Sniff+ is a commercial programming environment. The Vim editor enables
you to interface with this program. To get complete help on using this
programming tool, execute the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 250

The Vim Tutorial and Reference

:help sniff

Sniff+ Interface Command Reference

:sni command
:sniff command

Perform a command using the interface to Sniff+. If
no command is present, list out information on the
current connection.

Sun Visual WorkShop

Visual WorkShop is an IDE which has the ability to specify an external
editor. Vim supports the Sun Visual WorkShop interface with a number of
commands and options. These have been designed to be as general as possible
to support other IDE and debugging systems.

For more information use the command:
:help sniff

Sun Visual WorkShop reference

:ws verb
:wsverb verb

Send verb to the workshop. (If you are Visual
WorkShop expert this will make sense to you.
Otherwise not.)

Option 'balloondealy'
('bdlay')

The time in ms that a cursor must hover over a
word before a help balloon appears.

Option 'balloneval'
('beval')

If set, enables balloon help.

Option 'ballonexpr'
('bexpr')

Expression to use to figure out what balloon help
to display.

Tcl

Tcl is another scripting language. As usual, Vim provides you with a way to
execute Tcl scripts as well as an interface for accessing parts of Vim from within
Tcl. For full information, use the following command:

:help tcl

Tcl Interface Command Reference

:tc command Execute a single Tcl command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 251

14

15

The Vim Tutorial and Reference

:tcl command

:{range}tcld command
:{range}tcldo command

Execute a Tcl command once for each line in the
range. The variable line is set to the contents of
the line.

:tclf file
:tclfile file

Execute the Tcl script in the given file.

Foreign Languages

The Vim editor can handle many different types of foreign languages.
Unfortunately, the author cannot. Here is a very short listing of the commands
available to you for editing in other languages. For complete information, you
need to consult the Vim documentation and as well as the documentation that
came with your computer system. Although Vim contains many
language-specific options, a few are fairly generic.

<F8> Toggle between left-to-right and
right-to-left modes.

:set rl
:set rightleft
:set norl
:set norightleft

When set, indicates that the file is
displayed right to left rather than
left to right (default=norightleft).

:set rlc=search
:set rightleftcmd=search

Allow right to left input for the
given mode. The only legal mode is
search which is also the default.

:set ari
:set allowrevins
:set noari
:set noallowrevins

When set, let CTRL_ toggle the
revins option. This enables you to
input languages that run from right
to left rather than left to right.

:set ri
:set revins
:set nori
:set norevins

When set, insert mode works right
to left rather than left to right. The
CTRL_ command toggles this option
if the option allowrevins is set.

:set gfs=f1,f2
:set guifontset=f1,f2

Define a font f1 for English and
another f2 for a foreign language.
This works only if Vim was compiled
with the 'fontset' enabled and
only applies on UNIX systems.

:set gfw=f1,f2 Specifies a list of fonts to use for

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 252

The Vim Tutorial and Reference

:set guifontwide=f1,f2 double wide characters.

When is this used?

:set lmap=ch1ch2,ch1ch2
:set langmap=ch1ch2,ch1ch2

Define a keyboard mapping for a
foreign language.

:set ambiwidth=size
:set ambw=size

Set the with of ambiguous
characters when using a double
byte encoding such as some east
Asian fonts. See the Vim reference
document or just play around with
the setting until things look right.
Possible values: single or double.

:set bomb
:set nobomb

If set Vim checks for a beginning of
file (BOM) marker which tells it how
the file is encoded. This marker will
also be placed at the beginning of
the file when it is written.

:set casemap=internal,keepascii
:set cmp=internal,keepascii

Defines the upper and lower case
mappings for sorting and other
operations. If set to internal, an
internal mapping function is used.
If keepascii is present, the ASCII
characters (0x00 0x7F) use the
ASCII mapping.

:set charconvert=function
:set ccv=function

Define a function to be used for
converting one character set to
another. If no function is specified
the internal function iconv() is
used.

:set termbidi
:set notermbidi
:set tbidi
:set notbidi

If set, the terminal is bidirectional.

:set termencoding={encoding}
:set tenc={encoding}

Set the terminal encoding.

Some languages combine characters. For example, Hebrew combines
constants and vowels into one character. When editing such languages, the

'delcombine' ('delco') option controls how deletes works on such characters.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 253

The Vim Tutorial and Reference

If this option is set, then delete (x) will delete each part of the combination
on it's own. If the option is off ('nodelcobine') then delete removes the entire
character.

Input Method

The following options control the current input method works with Vim.

keymap
kmp

The name of the current keyboard mapping.

imactivekey
imak

Tells Vim what the input mode activation key is. The option
is of the form {modifier}{key} where the modifier is zero
or more of:
S Shift key
L Lock key
C Control key
1 Mod1 key
2 Mod2 key
3 Mod3 key
4 Mod4 key
5 Mod5 key

imcmdline
imc

When this option is set, Vim will always use the input
method to enter or edit a command mode command.

imdisable
imd

If set, the input method is never used.

iminsert
imi

Tell Vim when to turn the language dependent input
mapping (See :lmap page 425). The possible values are

0 :lmap is off and input method is off
1 :lmap is on and input method is off
2 :lmap is off and input method is on

imsearch
ims

Like 'iminsert', only for searching, not insert.

maxcombine
mco

The maximum number of combining characters for display.

Arabic

Arabic is a complex flowing script language which requires special settings
to get right.

Option Meaning

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 254

The Vim Tutorial and Reference

:set arabic
:set arab
:set noarabic
:set noarab

Sets other options to make Arabic
editing possible.

:set arabicshape
:set arshape
:set noarabicshape
:set noarshape

When set make the visual character
corrections needed to do Arabic

Chinese

Written Chinese is a beautiful pictographic language where one character
can convey a world of meaning. Unfortunately typing that one character can be
extremely difficult given the limits of a computer keyboard. Chinese can be
written left to right, right to left, or up to down. The Vim editor supports right to
left and left to right. It also supports both traditional Chinese characters as well
as simplified Chinese.

Note: The Vim documentation does not contain help on the subject of
Chinese input. That is operating system dependent.

Chinese-Related Command Reference

:set fe=encoding
:set fileencoding=encoding

Set the file encoding to be used for
this file. For the Chinese language,
this can be taiwan for the traditional
Chinese character set or prc for
simplified Chinese.

Farsi

The Farsi language is supported, although you must explicitly enable Farsi
when you compile the editor. It is not enabled by default. To edit in a Farsi file,
start Vim in Farsi mode by using the F option.

For example:

$ vim F file.txt

You can get complete information on Farsi editing by executing the
following command:

:help farsi

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 255

The Vim Tutorial and Reference

Farsi-Related Command Reference

:set fk
:set fkmap
:set nofk
:set nofkmap

If set, this option tells Vim that you are using a
Farsi keyboard (default=nofkmap).

:set akm
:set altkeymap
:set noakm
:set noaltkeymap

When 'altkeymap' is set, the alternate keyboard
mapping is Farsi. If noaltkeymap is set, the default
alternate keyboard mapping is Hebrew
(default=noaltkeymap).

CTRL_ Toggle between Farsi and normal mode
(insert-mode command).

<F9> Toggles the encoding between ISIR-3342 standard
and Vim extended ISIR-3342 (supported only in
right-to-left mode).

Hebrew

Hebrew is another language that goes right to left. To start editing a
Hebrew file, use the following command:

$ vim H file.txt

To get help editing in this language, execute the following command:

:help hebrew

Hebrew-Related Command Reference

:set hk
:set hkmap
:set nohk
:set nohkmap

Turn on (or off) the Hebrew keyboard mapping
(default='nohkmap').

:set hkp
:set hkmapp
:set nohkp
:set nohkmapp

When set, this option tells Vim that you are using
a phonetic Hebrew keyboard, or a standard
English keyboard (default='nohkmapp').

:set al=number
:set aleph=number

Define the numeric value of the first character in
the Hebrew alphabet. The value used depends on
how your system encodes the Hebrew characters.
(Default: Microsoft DOS: 128. Other systems:
224)

CTRL_ Toggle between reverse insert and normal insert

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 256

The Vim Tutorial and Reference

modes. Hebrew is usually inserted in reverse, like
Farsi .

:set akm
:set altkeymap
:set noakm
:set noaltkeymap

If 'altkeymap' is set, the alternate keyboard
mapping is Farsi. If 'noaltkeymap' is set, the
default alternate keyboard mapping is Hebrew
(default='noaltkeymap').

Japanese

Japanese-encoded files are supported. Unfortunately there is no specific
online help for Japanese.

Japanese-Related Command Reference

:set fe=japan
:set fileencoding=japan

Tells Vim that the current file is encoded
using the Japanese character set.

Korean

To edit in Korean, you need to tell Vim about your keyboard and where
your fonts reside. You can obtain information on how to do this by executing the
following command:

:help hangul

Korean-Related Command Reference

:set fe=korea
:set fileencoding=korea

Tells Vim that the current file is encoded
using the Korean character set.

Binary Files

Editing binary files using a text editor is tricky at best and suicidal at
worst. If you have the right combination of expertise and desperation, you can
use Vim to edit binary files.

:set bin
:set binary
:set nobin
:set nobinary

If set, then set things up for editing a binary
file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 257

The Vim Tutorial and Reference

Note: I realize that some people out there need to edit a binary file and
that you know what you are doing. For those of you in that situation, Vim is
an excellent editor. Fortunately for those who need to, Vim comes with a
great utility, xxd which allows one to edit binary files almost painlessly. See
the online docs for more information:

:help xxd

Modeless (Almost) Editing

If you enable the 'insertmode' option, insert mode is the default. If you
want to switch to normal, use the CTRLO command to execute a normal-mode
command. This option is for people who do not like modes and are willing to
deal with the confusing setting it generates.

:set im
:set insertmode
:set noim
:set noinsertmode

Make insert mode the default.

CTRLL Leave insert mode if 'insertmode' is set.

Operating System File Modes

Some operating systems keep file type information around on the file. The
two operating systems covered in this book do not have this feature. If the OS
does determine the file type, the result will be saved in the 'osfiletype' option.

:set osf=type
:set osfiletype=type

This is set to the file type detected by an OS
capable of doing so.

:set st=type
:set shelltype=type

Define the shell type for an Amiga.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 258

The Vim Tutorial and Reference

Part II
Reference

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 259

16

17

The Vim Tutorial and Reference

Chapter 18: Complete Basic Editing

In Chapter 2: Editing a Little Faster, you were introduced to some of the
basic editing commands. You can do 90% of most common edits with these
commands. If you want to know everything about basic editing, however, read
this chapter.

Chapter 2, for example, discussed the w command to move forward one
word. This chapter devotes a page to discussing in detail how to define exactly
what a word is. Chapter 2 described how to use two commands (CTRLD and
CTRLU) to move screen up and down through the text. There are actually six
commands to do this, with options, and that does not include the other dozen or
so positioning commands. This chapter discusses the complete command list.

Generally you will not use all the commands in this chapter. Instead you
will pick out a nice subset you like and use them. Chapter 2 presented one
subset. If you prefer to pick your own, however, read this chapter and have fun.

Word Movement

The Vim editor has many different commands to enable you move to the
beginning or end of words. But you can also customize the definition of a word
through the use of some of the Vim options. The following sections explore in
depth the word movement commands.

Move to the End of a Word

The w command moves forward one word. You actually wind up on the
beginning of the next word. The e command moves forward one word, but leaves
you on the end of the word.

The ge command moves backward to the end of the preceding word.
Figure 18-1 shows how the various word-movement commands work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 260

The Vim Tutorial and Reference

Figure 18-1: Word movement commands.

Defining What a Word Is

So what is a word, anyway? There are two answers to this question:

1. The Vim editor does a good job of defining a sane answer to this
question. (Skip to the next section.)

2. If you want to know the details, read the rest of this section.

Your first answer to "What is a word?" might be the easy answer: It is a
series of letters. However, a C programmer might consider something like
size56 to be word. Therefore, another answer might be to use the C identifier
definition: the letters, digits, and the underscore.

But LISP programmers can use the dash () in a variable name. They
consider the word totalsize a single word. C programmers consider it two
words. So how do you resolve this conflict?

The Vim solution is to create an option that defines what is in a word and
what is not. The following command defines the characters that belong in a
word:

:set iskeyword=specification

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 261

Profanity is the one language

w w w e e

that all programmers understand

bbgege

The Vim Tutorial and Reference

Note: You can abbreviate the 'iskeyword' option as 'isk'.

To see what the current value of this option is, use this command:

:set iskeyword?

The following represents a typical value:

iskeyword=@,4857,_,192255

This is all the letters (@), the digits (ASCII characters numbered 4857 or
09), the underscore (_) and the international letters (192255, à through Y).

The specification consists of characters separated by commas. If you want
the word characters to be exclusively vowels, for instance, use this command:

:set iskeyword=a,e,i,o,u

You can specify a range of characters by using a dash. To specify all the
lowercase letters, for example, issue the following command:

:set iskeyword=az

For characters that cannot be specified directly (such as comma and dash),
you can use a decimal number. If you want a word to be the lowercase letters
and the dash (character #45), use the following command:

:set iskeyword=az,45

The @ character represents all characters where the C function isalpha()
returns true. (This might vary, depending on the setting of the C locale, and also
depending on the C compiler and OS you are using to build Vim!)

To exclude a character or set of character, precede it with a circumflex (^).
The following command defines a word as all the letters except lowercase q:

:set iskeyword=@,^q

The @ character is represented by @@.

Special Characters for the iskeyword Option

a Character a.
az Character range (all characters from a to z).
45 Character number 45 (in this case,).
@ All letters (as defined by isalpha()).
@@ The character @.
^x Exclude the character x.
^ac Exclude the characters in the range a through c.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 262

The Vim Tutorial and Reference

Other Types of Words

The 'iskeyword' option controls what is and is not a keyword. Other types
of characters are controlled by similar options, including the following:

'isfname' Filenames. (Abbreviation 'isf'.)

'isident' Identifiers. (Abbreviation 'isi'.)

'isprint' Printing characters. (Abbreviation 'isf'.)

The 'isfname' option is used for commands such as the gf command,
which edits the file whose name is under the cursor. (See Chapter 23: Advanced
Commands for Programmers, for more information on this command.)

The 'isident' option is used for commands such as [d, which searches for
the definition of a macro whose identifier is under the cursor. (See Chapter 7:
Commands for Programmers, for information on this command.)

The 'isprint' option defines which characters can be displayed literally
on the screen. Careful: If you get this wrong the display will be messed up. This
is also used by the special search pattern \p, which stands for a printable
character. (See Chapter 19: Advanced Searching Using Regular Expressions, for
information on search patterns.)

There Are "words," and Then There Are "WORDS"

So now you know what words are, right? Well, the Vim editor also has
commands that affect WORDS. These two terms, WORDS and words, represent
two different things. (Only a programmer could think up terms that differ only by
case.)

The term word means a string of characters defined by the 'iskeyword'
option. The term WORD means any sequence of non-whitespace characters.
Therefore

thatall

is three words(“that”, “-”, and “all”), but it is one WORD. The W command
moves forward WORDS and the B command moves backward WORDS. The
complete list of WORD-related commands is as follows:

[count]<CLeft>
[count] B Move count WORDS backward.
[count] E Move count WORDS forward to the end of the WORD.
[count] gE Move count WORDS backward to the end of the WORD.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 263

The Vim Tutorial and Reference

[count]<CRight>
[count] W Move count WORDS forward.

Note: <CLeft> is the same as CTRL<LEFT>. See Appendix B: The <> Key
Names for a list of <> key names.

Beginning of a Line

The ^ command moves you to the first non-blank character on the line. If
you want to go to the beginning of the line, use the 0 command. Figure 18-2
shows these commands.

 completed = true

Figure 18-2: ^ and 0 commands.

Repeating Single-Character Searches

The fx command searches for the first x after the cursor on the current
line. To repeat this search, use the ; command. As usual, this command can
take an argument that is the number of times to repeat the search.

The ; command continues the search in the same direction as the last f or
F command. If you want to reverse the direction of the search, use the ,
command. Figure 18-3 shows several typical searches.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 264

0 ^

The Vim Tutorial and Reference

Figure 18-3: Repeat single-character search.

Moving Lines Up and Down

The command moves up to the first non-blank character on the preceding
line. If an argument is specified, the cursor moves up that many lines.

The + (<Cr>, <Enter>, CTRLM) command moves down to the beginning of
the next line. If an argument is specified, the cursor moves down that number of
lines. Figure 18-4 shows these commands.

 ATTENTION
This room is fullfilled mit special electronische
equippment. Fingergrabbing and pressing the

cnoeppkes from the computers is allowed for die
experts only! So all the "lefhanders" stay away
and do not disturben the brainstorming von here

working intelligencies. Otherwise you will be out
thrown and kicked anderswhere! Also: please keep
still and only watchen astaunished the
blinkenlights.

Figure 18-4: The + and commands.

The _ command moves to the first non-blank character of the line. If a
count is specified, it moves the first character of the count-1 line below the
cursor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 265

 To err is human to really fowl up you need a computer

fe ; ;

,,

3-

- (minus)

+

2+

The Vim Tutorial and Reference

Cursor-Movement Commands

Several commands enable you to move to different parts of the screen.
The H command moves to the top of the screen. If a count is specified, the cursor
will be positioned to the count line from the top. Therefore, 1H moves to the top
line, 2H the second line, and so on.

The L command is just like H except that the end of the screen is used
rather than the start.

The M command moves to the middle of the screen. Figure 18-5
summarizes the cursor-positioning commands.

Line 40
Line 41
Line 42
Line 43
Line 44
Line 45
Line 46
Line 47
Line 48
Line 49

Figure 18-5: Cursor-positioning commands.

Jumping Around

The Vim editor keeps track of where you have been and enables you to go
back to previous locations. Suppose, for example, that you are editing a file and
execute the following commands:

1G Go to line 1

10G Go to line 10

20G Go to line 20

Now, you execute this command:

:jumps

(The short version is :ju.)

You get the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 266

H

3H
2H

M

L
2L
3L

The Vim Tutorial and Reference

jump line col file/text
 2 1 0 Dumb User Stories
 1 10 0 ventilation holes. Many terminals
>

From this you see that you have recorded as jump 1, line 10, column 0, the
"ventilation holes" line. Jump 2 is at line 1, column, the "Dumb User Stories"
line.

Line 20 is not recorded in the jump list yet, because you are on it. The
jump list records only things after you jump off of them. The > points to the
current item in the list; in this case, it points to the blank line at the end
indicating an unrecorded location.

Now that you know what the jump list is, you can use it. The CTRLO
command jumps back one line. Executing this command takes you back to line
10. The jump list now looks like this:

jump line col file/text
 2 1 0 Dumb User Stories
> 0 10 0 ventilation holes. Many terminals
 0 20 0

The > has moved up one line. If you use the CTRLO command again, you
move to line 1. The CTRLI or <TAB> command moves you to the next jump in
the list. Thus you have the following:

1G Go to line 1.
10G Go to line 10.
20G Go to line 20.
CTRLO Jump to previous location (line 10).
CTRLO Jump to previous location (line 1).
<TAB> Jump to next location (line 10).

Using these commands, you can quickly navigate through a series of
jumping off points throughout your file.

Using the Change List

Error: Reference source not foundThe jump list keeps track of where the
cursor has been. The change list does something similar but only records the
location of the cursor when a change is made. The does the same thing, only it's
limited to cursor locations where something changed.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 267

The Vim Tutorial and Reference

To go to the previous change, use the command g;. This can be proceeded
with a count to go back multiple changes. To go to the next change, use the
command [count]g, (g<comma>).

To get a list of changes use the command :changes.

Controlling Some Commands

Normally Vim stops any left or right movement at the beginning or end of
the line. The 'whichwrap' ('ww')option controls which characters are allowed to
go past the end and in which modes. The possible values for this option are as
follows:

Character Command Mode(s)
b <BS> Normal and visual
s <Space> Normal and visual
h h Normal and visual
l l Normal and visual
< <Left> Normal and visual
> <Right> Normal and visual
~ ~ Normal
[<Left> Insert and replace
] <Right> Insert and replace

Figure 18-6 shows how 'whichwrap' affects cursor movement.

Carelessly planned projects take three time
longer to complete than expected. Carefully
planned projects take four times longer to
complete than expected, mostly because the
planners expect their planning to reduce the
time it takes.

Figure 18-6: Effects of the 'whichwrap' option.

Where Am I, in Detail

The CTRLG command displays summary information at the bottom of the
screen telling you where you are in the file (see Chapter 2: Editing a Little
Faster). However, you can get more detailed information if you ask. The basic
CTRLG output looks like this:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 268

'whichwrap' no b
<bs> stops here

'whichwrap'
with b
<bs> wraps

The Vim Tutorial and Reference

"c02.txt" [Modified] line 81 of 153 52% col 1

To get more information, give CTRLG a count. The bigger the count, the
more detailed information you get. The 1CTRLG command gives you the full
path of the file, for example:

"/usr/c02.txt" [Modified] line 81 of 153 52% col 1

The 2CTRLG command lists a buffer number as well. (You can read more
on buffers in Chapter 5: Windows and Tabs)

buf 1: "/usr/c02.txt" [Modified] line 81 of 153 52% col 1

The gCTRLG command displays another type of status information
indicating the position of the cursor in terms of column, line, and character:

Col 1 of 0; Line 106 of 183; Char 3464 of 4418

If you are interested in having the current cursor location displayed all the
time, check out the 'ruler' ('ru') option in Chapter 28: Customizing the Editor.

Scrolling Up

As discussed in Chapter 2: Editing a Little Faster, the CTRLU command
scrolls up half a screen.

To be precise, the CTRLU command scrolls up the number of lines
specified by the 'scroll' option. You can explicitly set this option with a :set
command:

:set scroll=10

You can also change the value of this option by giving an argument to the
CTRLU command. For example, 2CTRLU changes the scroll size to 2 and moves
up 2 lines. All subsequent CTRLU commands will only go up 2 lines at a time,
until the scroll size is changed. Figure 18-7 shows the operation of the CTRLU
command.

line 31
line 32
line 33
line 34
line 35
line 36
line 37
line 38
line 39
line 40

CTRLU
(Up 1//2 screen

in this case
5 lines)

line 26
line 27
line 28
line 29
line 30
line 31
line 32
line 33
line 34
line 35

2CTRLU
(Set window=2
go up 2 lines)

line 24
line 25
line 26
line 27
line 28
line 29
line 30
line 31
line 32
line 33

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 269

The Vim Tutorial and Reference

Figure 18-7: The CTRLU command.

To scroll the window up one line at a time, use the CTRLY command. This
command can be multiplied by an argument. For example, 5CTRLY scrolls up 5
lines (see Figure 18-8).

line 20
line 21
line 22
line 23
line 24
line 25
line 26
line 27
line 28
line 29

CTRLY

line 19
line 20
line 21
line 22
line 23
line 24
line 25
line 26
line 27
line 28

5CTRLY line 14
line 15
line 16
line 17
line 18
line 19
line 20
line 21
line 22
line 23

Figure 18-8: The CTRLY command.

The CTRLB command scrolls up an entire screen at a time (see Figure
18-9).

line 40
line 41
line 42
line 43
line 44
line 45
line 46
line 47
line 48
line 49

CTRLB
(Down one
screen)

line 32
line 33
line 34
line 35
line 36
line 37
line 38
line 39
lin3 40
line 41

Figure 18-9: The CTRLB command.

You can specify this command as <PageUp> or <SUp>. (<SUp> is the Vim
notation for the Shift+up-arrow key.)

Actually the CTRLB command scrolls up the number of lines specified by
the 'window' ('wi') option. By default, this is an entire screen. So by change
the value of this option you can customize the command.

Scrolling Up Summary

Figure 18-10 illustrates the various scrolling commands. Commands move
the top line to the indicated location.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 270

The Vim Tutorial and Reference

Commands will scroll the screen making the indicated line the top line.

line 40
line 41
line 42
line 43
line 44
line 45
line 46
line 47
line 48
line 49

Figure 18-10: Scrolling commands.

Scrolling Down

There are similar commands for moving down as well, including the
following:

CTRLD Move down. The amount is controlled by the 'scroll' option.

CTRLE Move down one line.

CTRLF Move down one screen of data (also <PageDown> or <SDown>).

Figure 18-11 summarizes the scrolling commands.

CTRLB (screen)

 CTRLU (½ screen)

 2CTRLY (2 lines)

 CTRLY (one line)

Line 40
Line 41
Line 42
Line 43
Line 44
Line 45
Line 46
Line 47
Line 48
Line 49

CTRLE (one line)

2CTRLE (two lines)

CTRLD (½ screen)

CTRLF (full screen)

Figure 18-11: More scrolling commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 271

CTRLY
2CTRLY

CTRLU

CTRLB

The Vim Tutorial and Reference

Both CTRLB and CTRLF scroll a full screen by default. You can adjust the
amount of scrolling by setting the 'window' ('wi') option to the number of lines
you want to scroll.

Define How Much to Scroll

When you move the cursor off the top or bottom, the window scrolls. The
amount of the scrolling is controlled by the 'scrolljump' ('sj') option. By
default this is a single line; if you want more scrolling, however, you can increase
this to a jump of 5, as follows:

:set scrolljump=5

The 'sidescroll' ('ss') option does the same thing, except in the
horizontal direction. Usually the cursor must reach the top or bottom line of the
screen for scrolling to occur. If you want to add a little padding to this margin,
you can set the 'scrolloff' ('so') option. To make sure that there are at least
3 lines above or below the cursor, use the following command:

:set scrolloff=3

The option 'sidescrolloff' ('siso') does the same thing only
horizontally.

Adjusting the View

Suppose you want a given line at the top of the screen. You can use the
CTRLE (up one line) and CTRLY (down one line) commands until you get the
proper line at the top. Or you can position the cursor on the line and type the
command z<Enter>. Figure 18-12 shows how this command changes the screen.

Enjoys work, but she likes
 the beach more.
 She found a good way
 To combine work and
play:
She sells C shells
 by the seashore.

A very intelligent turtle
Found programming UNIX a
hurdle
 The system, you see,

z<Enter>

A very intelligent turtle
Found programming UNIX a
hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying
 much for the turtle.

Albert Einstein, when asked
to describe radio, replied:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 272

The Vim Tutorial and Reference

 Ran as slow as did he,
And that's not saying
 much for the turtle.

"You see, wire telegraph is
a kind of a very, very long
cat. You pull his tail in
New York and his head is
meowing in Los Angeles.
Do you understand this?

Figure 18-12: The z<Enter> command.

If you supply an argument to this command, it will use that line rather than
the current one. z<Enter> positions the current line at the top of the screen, for
instance, whereas 88z<Enter> positions line 88 at the top.

The z<Enter> command not only positions the line at the top of the screen,
it also moves the cursor to the first non-blank character on the line. If you want
to leave the cursor where it is on the line, use the command zt. (If you change
the current line by giving the command an argument, Vim will try to keep the
cursor in the same column.) Figure 18-13 shows the zt command.

Enjoys work, but she likes
 the beach more.
 She found a good way
 To combine work and
play:
She sells C shells
 by the seashore.

A very intelligent turtle
Found programming UNIX a
hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying
 much for the turtle.

zt

A very intelligent turtle
Found programming UNIX a
hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying
 much for the turtle.

Albert Einstein, when asked
to describe radio, replied:
"You see, wire telegraph is
a kind of a very, very long
cat. You pull his tail in
New York and his head is
meowing in Los Angeles.
Do you understand this?

Figure 18-13: The zt command.

If you want to position a line to the end of the screen, use the zb or z
command. The z positions the cursor on the first non-blank column, whereas zb
leaves it alone. Figure 18-14 shows the effects of these commands.

 the beach more. Equals nine squared

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 273

The Vim Tutorial and Reference

 She found a good way
 To combine work and
play:
She sells C shells
 by the seashore.

A very intelligent turtle
Found programming UNIX a
hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying
 much for the turtle.

zt

z

 plus zero, no more.

A UNIX sales lady, Lenore,
Enjoys work, but she likes
 the beach more.
 She found a good way
 To combine work and
play:
She sells C shells
 by the seashore.

A very intelligent turtle

Figure 18-14: The zb and z commands.

Finally, the zz and z. commands position the line at the center of the
window. The zz command leaves the cursor in its current column, and z. moves
it to the first nonblank column. Figure 18-15 shows what these commands do.

Equals nine squared
 plus zero, no more.

A UNIX sales lady, Lenore,
Enjoys work, but she likes
 the beach more.
 She found a good way
 To combine work and
play:
She sells C shells
 by the seashore.

A very intelligent turtle

z.
z(dot)

zz

 She found a good way
 To combine work and play:
She sells C shells
 by the seashore.

A very intelligent turtle
Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
And that's not saying
 much for the turtle.

Albert Einstein, when asked

Figure 18-15: The z. and zz commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 274

The Vim Tutorial and Reference

Delete to the End of the Line

The D command deletes to the end of the line. If preceded by a count, it
deletes to the end of the line and count-1 more lines. (The D command is
shorthand for d$.) See Figure 18-16for some examples of this command.

 Attention

this room is fullfilled mit special electronische
equippment. fingergrabbing and pressing the
cnoeppkes from the computers is allowed for die
experts only! so all the "lefhanders" stay away
and do not disturben the brainstorming von here
working intelligencies. otherwise you will be out
thrown and kicked anderswhere! also: please keep
still and only watchen astaunished the
blinkenlights.

Figure 18-16: The D command.

The C Command

The C command deletes text from the cursor to the end of the line and then
puts the editor in insert mode. If a count is specified, it deletes an additional
count-1 lines. In other words, the command works like the D command, except
that it puts you in insert mode.

The s Command

The s (substitute) command deletes a single character and puts the editor
in insert mode. If preceded by a count, then count characters are deleted.
Figure 18-17 illustrates this command.

Profanity is the q language that all programmers know.

Profanity is the one language that all programmers understand.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 275

D3D

sone<esc>
4sunderstand<esc>

The Vim Tutorial and Reference

Figure 18-17: The s command.

The S Command

The S command deletes the current line and puts the editor in insert mode.
If a count is specified, it deletes count lines. This differs from the C command in
that the C command deletes from the current location to the end of the line,
whereas the S command always works on the entire line. Figure 18-18 illustrates
the use of the S command.

Over the years system installers have
developed many different ways to string
cables above false ceilings. One of the
more innovative is the "small dog"
method. One person takes a small dog,
ties a string to its collar and puts the
dog in the ceiling. The owner then goes
to the spot where they want the cable to
come out and calls the dog. Dog runs to
owner. The attach a cable to the string,
pull it through, and the cable is
installed.

Figure 18-18: The S command.

Deleting Text

The [count] x command deletes characters starting with the one under
the cursor moving right. The X command deletes characters to the left of the
cursor. Figure 18-19 shows how these two commands work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 276

Text affected by C

2C

S (Even if the
cursor is in the
middle of the line)

2S

The Vim Tutorial and Reference

1 is equal to 2 for sufficiently large values of 1.

 3x

1 is equal to 2 for suffintly large values of 1.

1 is equal to 2 for sufficiently large values of 1.

 3X

1 is equal to 2 for suciently large values of 1.

Figure 18-19: The x and X commands.

Insert Text at the Beginning or End of the Line

The I command inserts text like the i command does. The only difference
is that the I command inserts starting at the beginning of the line. (In this case,
"beginning" means at the first non-blank character.) To insert at the first
character of the line (space or not), use the gI command. The A command
appends text like the a command, except the text is appended to the end of the
line.

Arithmetic

The Vim editor can perform simple arithmetic on the text. The CTRLA
command increments the number under the cursor. If an argument is specified,
that number is added to the number under the cursor. Figure 18-20 shows how
various types of numbers are incremented.

123 0177 0x1E 123

 CTRLA CTRLA CTRLA 5CTRLA

124 0200 0x1F 128

Figure 18-20: Incrementing.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 277

The Vim Tutorial and Reference

If a number begins with a leading 0, it is considered an octal number.
Therefore, when you increment the octal number 0177, you get 0200. If a
number begins with 0x or 0X, it is considered a hexadecimal number. That
explains 0x1E to 0x1F.

The Vim editor is smart about number formats, so it will properly
increment decimal, hexadecimal, and octal.

The CTRLX command works just like the CTRLA command, except the
number is decremented; or if an argument is present, the number is subtracted
from the number. Figure 18-21 shows how to decrement numbers.

124 0177 0x1E 123

 CTRLX CTRLX CTRLX 3CTRLX

123 0176 0x1D 120

Figure 18-21: Decrementing.

By default, Vim recognizes the octal and hexadecimal numbers. Which
formats are recognized is controlled by the 'nrformats' ('nf') option. If you
want to recognize just decimal numbers, for instance, execute the following
command:

:set nrformats=""

If you want to recognize octal and decimal numbers, use this command:

:set nrformats=octal

Note: Decimal is always recognized. Unlike hexadecimal and octal, there
is no way to turn off decimal recognition.

The default recognizes decimal, hexadecimal, and octal:

:set nrformats=octal,hex

The Vim editor can do more sophisticated calculations. See Chpater 27:
Expressions and Functions for information on the "= register.

Joining Lines with Spaces

The J command joins the current line with the next one. A space is added
to the end of the first line to separate the two pieces that are joined. But
suppose you do not want the spaces. Then you use the gJ command to join lines
without spaces (see Figure 18-22). It works just like the J command, except that
no space is inserted between the joined parts.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 278

The Vim Tutorial and Reference

This is a
test

 J This is a test

This is a
test

 gJ This is atest

Figure 18-22: The gJ command.

Note: If the first line ends with some trailing spaces, the gJ command will
not remove them.

Replace Mode

The R command causes Vim to enter replace mode. In this mode, each
character you type replaces the one under the cursor. This continues until you
type <Esc>. Figure 18-23 contains a short example.

This is a test.

 Rmess<Esc>

This is a mess.

Figure 18-23: The R command.

If a count is specified, the command will be repeated count times (see
Figure 18-24).

This is a test.

 3Rmess<Esc>

This is a messmessmess.

Figure 18-24: R command with a count.

You may have noticed that this command replaced 12 characters on a line
with only 5 left on it. The R command automatically extends the line if it runs out
of characters to replace.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 279

The Vim Tutorial and Reference

Virtual Editing

Normally Vim treats tab as a single character. This means when you move
the cursor across a line containing the cursor will “jump” from one position to
the other as it moves across the tab. Figure 18-25 shows how this works.

X<Tab> This is a test

l

X<tab> This is a test

Figure 18-25: Normal cursor movement

You can enable virtual mode by setting the 'virtualedit' ('ve') option to
all. Now when you move you left you move one character left on the screen. In
other words, the cursor does not jump. See Figure 18-26.)

X<Tab> This is a test

l

X<tab> This is a test

Figure 18-26: Normal cursor movement

Virtual editing also lets you move the cursor past the end of line. This
makes thing because the $ command moves to the end of line, and in some cases
the $ command could move the cursor to the left!.

One of the problems with replace in normal (non-virtual) mode is where
you have a <Tab> in the text. If you are sitting on a <Tab> and execute the
command rx, the <Tab> will be replaced by x. This can shift your line around
(see Figure 18-27).

 <Tab> This is a test

 rx

xThis is a test

Figure 18-27: Simple non-virtual replace.

With virtual editing Vim is smart enough to figure out how to replace a
single character in screen space, preserving the spacing.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 280

Cursor jumps

Cursor does not jump

The Vim Tutorial and Reference

 <Tab> This is a test

 grx (Virtual mode)

x<Tab> This is a test

Figure 18-28: Virtual replacement.

The 'virtualedit' option is actually a comma separated list of values
telling Vim which modes to edit virtually. The possible value are:

all All modes
block Block visual editing mode
insert Insert mode
onemore Allow the cursor to move only one character past the end of

line.

When 'virtualedit' include the all value, then normal cursor movement
commands move as if <tabs> were spaces. You can also move past the end of
the physical line. Inserts can occur anywhere, Vim will add spaces as need to
make the file match what you've put on the screen.

The block keyword tells Vim to allow virtual movement in block visual
mode. All other modes will act normally. If you wish to do virtual editing in
insert mode, you need the insert keyword. These options can be combined if
you want both modes:

:set virtualedit=block,insert

Finally there is the onemore keyword. If this is not set, you move the
cursor to the right as far as you want to. There is no limit. However, if the
onemore keyword is present, right movement is limited to character past the end
of line.

Replace Mode

If you use the virtual replace command, gr{character}, you replace the
"virtual character" under the cursor (see Figure 18-28) regardless of the state of
the 'virtualedit' option. If the real character under the cursor is part of a tab,
only the space representing the tab jumped over is replaced. The gR command
enters virtual replace mode. Each character you type will replace one character
in screen space until you finish things off with <Esc>.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 281

18

The Vim Tutorial and Reference

The :startgreplace (:startg) command does the same thing as the gR
command. If the override (!) option is present, the command actls like $gR.

Digraphs

As learned in Chapter 2: Editing a Little Faster, executing CTRLK
character1 character2 inserts a digraph. You can define your own digraphs by
using the following command:

:digraphs character1 character2 number

(:dig for short.)

This tells Vim that when you type CTRLK character1 character2 that
you should insert the character whose character number is number. If you are
entering a lot of digraphs, you can turn on the 'digraph' option by using this
command:

:set digraph

(The option can be abbreviated as 'dig')

This means that you can now enter digraphs by using the convention
character1<BS>character2. (<BS> is the backspace character.)

This mode has its drawbacks, however. The digraph C<BS>o is the
copyright character (©). If you type x but want to type y, you can correct your
mistake by typing x (oops), <BS>, and y. If you do that with C and o, however, it
does not erase the C and put in the o; instead, it inserts ©.

Therefore, you need to type C (oops), <BS>, o (darn, © appeared), <BS>, and
o.

To turn off digraph mode, use the following command:

:set nodigraph

Changing Case

The ~ command changes a character's case. The behavior of the ~
command depends on the value of the 'tildeop' ('top') option. With the option
unset, the command behaves normally:

:set notildeop

If you set the following option, however, the syntax of the command
changes to ~motion:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 282

The Vim Tutorial and Reference

:set tildeop

For example the command ~fq changes the case of all the characters up to
and including the first q on the line. Figure 18-29 shows some examples.

now is the time. . . . now is the time. . . .

 3~l ~fm

NOW is the time. . . . NOW IS THE TIMe. . . .

Figure 18-29: ~motion commands.

Error: Reference source not foundThe g~motion command changes the
case of the indicated characters. It is just like the ~motion command except that
it does not depend on the 'tildeop' option. Figure 18-30 shows some examples.

now is the time. . . . now is the time. . . .

 3g~l ~gfm

NOW is the time. . . . NOW IS THE TIMe. . . .

Figure 18-30: The g~ command.

A special version of this command, g~~ or g~g~, changes the case of the
entire line (see Figure 18-31).

now is the time. . . .

 g~~

NOW IS THE TIME. . . .

Figure 18-31: The g~~ command.

Other Case-Changing Commands

The gU{motion} command makes the text from the cursor to motion all
uppercase. The command gUU or gUgU works on a single line. If count is
specified, count lines are changed.

The gumotion, guu, and gugu act just like their gU counterparts, except that
they make the text lowercase. Figure 18-320 illustrates these commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 283

The Vim Tutorial and Reference

This is Mixed Case line. g~~ tHIS IS mIXED cASE LINE.

This is Mixed Case line. gUU THIS IS MIXED CASE LINE.

Figure 18-32: Case-changing commands.

Advanced Undo

Vim has an advanced undo system that lets you forget about your mistakes
in a lot of different ways.

Undo Time Machine

Let's say that you are working on a program starting at 9:00 in the
morning. You try something new and make lots of changes to your program
implementing the brand new methodology that your friend just told you about.

About 10:00 you figure out that what you just did was total garbage and
won't work. But you've made all those changes. How many times do you have to
press u (undo) to get back to the 9:00 state?

The answer is none. All you have to do is to tell the Vim you want the file
you had an hour ago. This is done with the :earlier (:ea) command.

:earlier 1h

Time for the :earlier command can be specified as a number of seconds (s),
minutes (m), or hours (h). If no unit is specified it is the number of change sets
(see below for the definition of this term.)

Of course if you realize that you went back to far, you can always go
forward with the :later (:lat) command.

Undo Level

You can execute only so many undo commands. This limit is set by the
'undolevels' ('ul') option. To set this limit to 5,000 changes, use the following
command:

:set undolevels=5000

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 284

The Vim Tutorial and Reference

Change Sets and Branching

To understand undo branching, we'll start with an example. Figure 18-33
shows the original file:

Change A
Change B
Change C
Change D
Change E
Change F

Figure 18-33: Original file

We now execute the following commands:

1. Create the file, save it, and exit Vim and start a new editing session.

2. Move to the "A" line, delete the word "Change"

3. Move to the "B" line, delete the word "Change"

4. Move to the "C" line, delete the word "Change"

5. Move to the "D" line, delete the word "Change"

6. Undo change #5 with the u command.

7. Undo change #4 with the u command.

8. Move to the "E" line, delete the word "Change"

9. Move to the "F" line, delete the word "Change"

The resulting file appears in Figure 18-34.

A
B
Change C
Change D
E
F

Figure 18-34: Edited File

The change tree for this editing session appears in Figure 18-35.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 285

The Vim Tutorial and Reference

Figure 18-35: Change tree

We can now list the change sets with the :undolist (:undol) command.

:undolist
number changes time
 4 4 12 seconds ago
 6 4 6 seconds ago
Press ENTER or type command to continue

This listing shows our two change sets. Right now we are at the bottom of
change set number 4. Pressing undo (u) four times causes each of the changes (F,
E, B, A) to be undone. Pressing redo (CTRLR) four times redoes the changes.

Now let's switch to change set number 4 with the :undo (:u) command:

:undo 4

All of a sudden the file changes to the state it was in after we completed
the last step of change set 4 (Change D). Figure 18-36 shows the result:

A
B
C
D
Change E
Change F

 Figure 18-36: Result of :undo 4

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 286

Change A

Change B

Change C

Change D

Change E

Change F

Change set 6
Change set 4

The Vim Tutorial and Reference

Now the undo (u) command goes up and down the changes in change set
number 4. (Changes D, C, B, A.)

Lets switch to the second change set (:undo 6). The screen should look
like Figure 18-37.

A
B
Change C
Change D
E
F
~
0 changes; before #6 17:16:44

Figure 18-37: Screen after :undo 6

Now lets undo a change using the g command. The first g undoes change
F. See Figure 18-38.

A
B
Change C
Change D
E
Change F

Figure 18-38: Screen after first g

The next g undoes change E, but moves over to a new part of the change
tree and redoes changes C and D. See Figure 18-39.

A
B
C
D
Change E
Change F

Figure 18-39: File after second g.

Pressing g again undoes Change D. So we are now going up the undo
stack for change #4. The g+ command goes down the change stack and redoes
each change in a similar manner.

Figure 18-40 shows changes traversed by the g command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 287

The Vim Tutorial and Reference

Figure 18-40 g change path.

The :undojoin (:undoj) command tells Vim to make all further changes
part of the same undo block. This undo block ends when the user executes the
next command. This command is useful for scripts and functions that want all
their commands to be part of the same undo block.

Getting Out

The ZQ command is an alias for the :q! or :quit! Command. The
command exits and discards all changes.

The :write command writes out the file. The :quit command exits. You
can use a shorthand for these commands:

:wq

This command can take a filename as an argument. In this case, the edit
buffer will be written to the file and then Vim will exit. To save your work under a
new filename and exit, for instance, use the following command:

:wq count.c.new

This command will fail with an error message if the file count.c.new exists
and is read-only. If you want Vim to overwrite the file, use the override option (!):

:wq! count.c.new

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 288

Change A

Change B

Change C

Change D

Change E

Change F

The Vim Tutorial and Reference

Finally, you can give the :wq command a line-range argument. (See
Chapter 25: Complete Command-Mode (:) Commands for more on ranges.) If a
line range is present, only those lines are written to the file. To write out only
the first 10 lines of a file and exit, for example, execute the following command:

:1,10wq count.c.new

The :xit (:x) command acts much like the :wq command except that it only
writes the file if the buffer has been modified.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 289

The Vim Tutorial and Reference

Chapter 19: Advanced Searching Using Regular
Expressions

Vim has a powerful search engine that enables you to perform many
different types of searches. In this chapter, you learn about the following:

● Turning on and off case sensitivity

● Search options

● Instant word searching

● How to specify a search offset

● A full description of regular expressions

Searching Options

This section describes some of the more sophisticated options that you can
use to fine-tune your search. The 'hlsearch' ('hls') option has been turned on
to show you how these options affect the searching.

Case Sensitivity

By default, Vim's searches are case sensitive. Therefore, include, INCLUDE,
and Include are three different words and a search will match only one of them.
The following example searched for include. Notice that INCLUDE, Include and
iNCLude are not highlighted. Figure 19-1 shows the result of an /include
command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 290

The Vim Tutorial and Reference

*/

#ifdef HAVE_CONFIG_H
include "auto/config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#INCLUDE <FCNTL.H>
#INCLUDE <SYS/TYPES.H>
#INCLUDE <NETDB.H>
#include <netinet/in.h>
#include <errno.h>
#include <sys/socket.h>
#ifdef HAVE_LIBGEN_H
include <libgen.h>
#endif
/include

Figure 19-1: Case-sensitive search.

Now let's turn on the 'ignorecase' option by entering the following
command:

:set ignorecase

Now when you search for include, you will get all four flavors of the word
as (see Figure 19-2).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 291

The Vim Tutorial and Reference

*/

#ifdef HAVE_CONFIG_H
include "auto/config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#INCLUDE <FCNTL.H>
#INCLUDE <SYS/TYPES.H>
#INCLUDE <NETDB.H>
#include <netinet/in.h>
#include <errno.h>
#include <sys/socket.h>
#ifdef HAVE_LIBGEN_H
include <libgen.h>
#endif
/include

Figure 19-2: Non-case-sensitive search.

To turn on case sensitivity, use this command:

:set noignorecase

(Technically what you are doing is turning off case insensitivity, but it
tortures the English language too much to say it this way.)

If you have 'ignorecase' set, word matches word, WORD, and Word. It also
means that WORD will match the same thing. If you set the following two options,
any search string typed in lowercase is searched, ignoring the case of the search
string:

:set ignorecase
:set smartcase

('scs' is the abbreviation for 'smartcase'.)

If you have a string with at least one uppercase character, however, the
search becomes case sensitive. Thus you have the following matches:

String Matches

word word,Word,WORD, worD

Word Word

WORD WORD

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 292

The Vim Tutorial and Reference

WorD WorD

Wrapping

By default, a forward search starts searching for the given string starting
at the current cursor location. It then proceeds to the end of the file. If it does
not find the string by that time, it starts from the beginning and searches from
the start of the file to the cursor location. Figure 19-3 shows how this works.

 1
 2 // Read at most 10MB
 3 const. unsigned int MAX_READ=(10*1024*1024)
 4
 5 // Size of a buffer
 6 const unsigned int BUF_SIZE = (62 * 1024);
 7
 8 // Buffer to be written
 9 static unsigned char buffer[BUF_SIZE];
10

Figure 19-3: Wrapping.

This example starts by searching for unsigned. The first search goes to
line 6. The next search moves to line 9. When trying to search again, you reach
the end of the file without finding the word. At this point, the search wraps back
to line 1 and the search continues. The result is that you are now on line 3.

Turning Off Search Wrapping

To turn off search wrapping, use the following command:

:set nowrapscan

('ws' is the abbreviation for 'wrapescan')

Now when the search hits the end of the file, an error message displays
(see Figure 19-4).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 293

1) Start

2) /unisgned

3) n

4) n

The Vim Tutorial and Reference

 1
 2 // Read at most 10MB
 3 const. unsigned int MAX_READ = (10 * 1024 *1024
 4
 5 // Size of a buffer
 6 const unsigned int BUF_SIZE = (62 * 1024);
 7
 8 // Buffer to be written
 9 static unsigned char buffer[BUF_SIZE];
10

E385: search hit BOTTOM without match for: unsigned

Figure 19-4: 'nowrapscan'.

To go back to normal wrapping searches, use the following command:

:set wrapscan

Interrupting Searches

If you are in the middle of a long search and want to stop it, you can type
CTRLC on a UNIX system or CTRLBREAK on Microsoft Windows. On most
systems, unless you are editing a very large file, searches are almost
instantaneous.

Instant Word Searches

The * command searches for the word under the cursor. For example,
position the cursor on the first const. Pressing * moves the cursor to the next
occurrence of the word, specifically line 26. Figure 19-5 shows the results.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 294

The Vim Tutorial and Reference

19 #include <sys/fcntl.h>
20 #include <sys/time.h>
21 #include <errno.h>
22
23 // Read at most 10MB
24 const unsigned int MAX_READ =(10*1024*1024);
25 // Size of a buffer
26 const unsigned int BUF_SIZE = (62 *1024);
27
28 // Buffer to be written
29 static unsigned char buffer[BUF_SIZE];

Figure 19-5: * command.

The # or £ command does an instant word search in the backward
direction.

These commands work on whole words only. In other words, if you are on
const and conduct a * search, you will not match constant.

The g* command performs an instant word search, but does not restrict
the results to whole words. So whereas * will not match constant, the g*
command will match it. The g# (g£) command does the same thing in the reverse
direction.

Search Offsets

By default, the search command leaves the cursor positioned on the
beginning of the pattern. You can tell Vim to leave it some other place by
specifying an offset. For the forward search command (/), the offset is specified
by appending a slash (/) and the offset, as follows:

/const/2

This command searches for the pattern const and then moves to the
beginning of the second line past the pattern. Figure 19-6 shows how this works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 295

*

The Vim Tutorial and Reference

19 #include <sys/fcntl.h>
20 #include <sys/time.h>
21 #include <errno.h>
22
23 // Read at most 10MB
24 const unsigned int MAX_READ =(10*1024*1024);
25 // Size of a buffer
26 const unsigned int BUF_SIZE = (62 *1024);
27
28 // Buffer to be written
29 static unsigned char buffer[BUF_SIZE];

Figure 19-6: Search offsets.

If the offset is a simple number, the cursor will be placed at the beginning
of the offset line from the match. The offset number can be positive or negative.
If it is positive, the cursor moves down that many lines; if negative, it moves up.

If the offset begins with b and a number, the cursor moves to the beginning
of the pattern, and then travels the "number" of characters. If the number is
positive, the cursor moves forward, if negative, backward. The command
/const/b2 moves the cursor to the beginning of the match, for instance, and
then two characters to the right (see Figure 19-7).

const unsigned int BUF_SIZE = (62 * 1024);

/const /b2 (Two characters past beginning)

Figure 19-7: /const/b2

Note: The b offset is a synonym for s. Therefore, you can use b (begin),
and s (start) for the first character of the match.

The e offset indicates an offset from the end of the match. Without a
number it moves the cursor onto the last character of the match. The command
/const/e puts the cursor on the t of const. Again, a positive number moves the
cursor to the right, a negative number moves it to the left (see Figure 19-8).

const unsigned int BUF_SIZE = (62 * 1024);

/const /e3 (Two characters after end)

Figure 19-8: /const/e3

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 296

/const/4

Find const

Go down 4
lines

The Vim Tutorial and Reference

Finally, there is the null offset. This is the empty string. This cancels the
preceding offset.

Specifying Offsets

To specify an offset on a forward search (/ command), append /offset to
the command, as follows:

/const/e+2

If you want to repeat the preceding search with a different offset, just
leave out the pattern and specify the new offset:

//5

To cancel an offset, just specify an empty offset.

//

For example:

/const/e+2 / // Search moves to the end of the pattern, and then to
the right two characters.

/ Repeats last search, with the preceding offset.
// Repeats the last search with no offset. (Cursor will

be placed on the first character of the pattern.)

To specify an offset for a reverse search (? command), append ?offset to
the command, as follows:

?const?b5

To repeat with the same pattern and a new offset, use the following:

??2

To remove the offset and repeat the search with the preceding pattern, use
the following:

??

One thing to remember when using search offsets, the search always starts
from the current cursor position. This can get you into trouble if you use a
command such as this:

/const/2

This command searches for const and then moves up two lines. If you
then repeat the search with the n command, it goes down two lines, finds the
const you just found, and then moves the cursor back up two lines for the offset.
The result is that no matter how many times you type n, you go nowhere.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 297

The Vim Tutorial and Reference

Complete Regular Expressions

The search logic of Vim uses regular expressions. You saw some simple
ones in Chapter 3: Searching but this chapter goes into them in extreme detail.
Regular expressions enable you to search for more than simple strings. By
specifying a regular expression in your search command, you can search for a
character pattern, such as “all words that begin with t and end in ing” (regular
expression = \<t[^]*ing\>).

However, the power of regular expressions comes with a price. Regular
expressions are quite cryptic and terse. It may take some time for you to get
used to all the ins and outs of this powerful tool. While learning regular
expressions, you should execute the following command:

:set hlsearch

This causes Vim to highlight the text you matched with your last search.
Therefore, when you search for a regular expression, you can tell what you really
matched (as opposed to what you thought you matched).

A regular expression consists of a series of atoms. An atom is the smallest
matching unit in a regular expression. Atoms can be things like a single
character, such as a (which matches the letter a), or a special character, such as
$ (which matches the end of the line). Other atoms, such as \< (word start, see
the following section), consist of multiple characters.

Beginning (\<) and End (\>) of a Word

The atom \< matches the beginning of a word. The atom \> matches the
end of a word. For example, a search for the expression for finds all
occurrences of for, even those in other words, such as Californian and
Unfortunately. Figure 19-9 shows the results of this search. If you use the
regular expression \<for\>, however, you match only the actual word for. Figure
19-10 contains the results of this refined search.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 298

The Vim Tutorial and Reference

Calls and letters to the company failed to correct
this problem. Finally the fellow just gave up and
wrote a check for $0.00 and the bills ceased.

A Californian who loved sailing went down and applied
for a personalized license plate. He filled in his
three choices as 1)SAIL 2)SAILING and 3)NONE. He got
a new plate labeled "NONE."
Unfortunately, when the police write out a ticket
/for

Figure 199: Search for for.

Calls and letters to the company failed to correct
this problem. Finally the fellow just gave up and
wrote a check for $0.00 and the bills ceased.

A Californian who loved sailing went down and applied
for a personalized license plate. He filled in his
three choices as 1)SAIL 2)SAILING and 3)NONE. He got
a new plate labeled "NONE."
Unfortunately, when the police write out a ticket
/\<for\>

Figure 19-10: Search for \<for\>.

Modifiers and Grouping

The modifier * is used to indicate that an atom is to be matched 0 or more
times. The match is "greedy." In other words, the editor will try to match as
much as possible. Thus, the regular expression te* matches te, tee, teee, and
so on.

The expression te* also matches the string t. Why? Because e* can match
a zero length string of e's. And t is the letter t followed by zero e's.

Figure 19-11 shows the results of the search for te*.

This is a test.
te tee teee teee

Figure 19-11: Search for te*.

The \+ modifier indicates that the atom is to be matched one or more
times. Therefore, te\+ matches te, tee, and teee, but not t. (te\+ is the same
as tee*.). Figure 19-12 illustrates what is matched for the search /te\+.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 299

The Vim Tutorial and Reference

This is a test.
te tee teee teee

Figure 19-12: Search for te\+.

Finally, there is the \= modifier. It causes the preceding atom to be
matched zero or one time. This means that te\= matches t and te, but not tee.
(Although it will match the first two characters of tee.) Figure 19-13 shows a
typical search.

This is a test.
te tee teee teee

Figure 19-13: Search for te\=.

Special Atoms

A number of special escaped characters match a range of characters. For
example, the \a atom matches any letter, and the \d option matches any digit.
The regular expression \a\a\a matches any three letters.

Now try a search for any four digits. Figure 19-14 displays the results.

19 #include <sys/fcntl.h>
20 #include <sys/time.h>
21 #include <errno.h>
22
23 // Read at most 10MB
24 const unsigned int MAX_READ=(10*1024*1024);
25 // Size of a buffer
26 const unsigned int BUF_SIZE = (62 * 1024);
27
28 // Buffer to be written
29 static unsigned char buffer[BUF_SIZE];

Figure 19-14: Search for \d\d\d\d.

Now try a search for any three letters followed by an underscore. Figure
19-15 displays the results.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 300

The Vim Tutorial and Reference

19 #include <sys/fcntl.h>
20 #include <sys/time.h>
21 #include <errno.h>
22
23 // Read at most 10MB
24 const unsigned int MAX_READ=(10*1024*1024);
25 // Size of a buffer
26 const unsigned int BUF_SIZE = (62 * 1024);
27
28 // Buffer to be written
29 static unsigned char buffer[BUF_SIZE];

Figure 19-15: Search for \a\a\a_.

Character Ranges

The \a atom matches all the letters (uppercase and lowercase). But
suppose you want to match only the vowels. The range operator enables you to
match one of a series of characters. For example, the range [aeiou] matches a
single lowercase vowel. The string t[aeiou]n matches tan, ten, tin, ton and
tun.

You can specify a range of characters inside the brackets ([]) by using a
dash. For example, the pattern [09], matches the characters 0 through 9. (That
is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.)

You can combine ranges with other characters. For example, [09aeiou]
matches any digit or lowercase vowel.

The ^ character indicates a set of characters that match everything except
the indicated characters. To match anything except a vowel, for example, you
can specify [^aeioAEIOU].

Note: To match special characters such as *, -, ^, [, and other special
characters you need to escape them. (e.g. /*\\^\[matches “*-^[“.)

However, in certain circumstances, Vim can figure out that you don't want
a special character to be special. For example, ^ at the beginning of an
expression matches the beginning of line. A ^ in the middle of the
expression matches ^. So 2\^4 and 2^4 match the same thing. But rather
try remember them all, all you need to remember is that if you escape
always you will rarely go wrong.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 301

The Vim Tutorial and Reference

Character Classes

Suppose you want to specify all the uppercase letters. One way to do this
is to use the expression [AZ]. Another way is to use one of the predefined
character classes. The class [:upper:] matches the uppercase characters.
Therefore, you can write [AZ] as [[:upper:]].

You can write the entire alphabet, upper- and lowercase, [[:upper:]
[:lower:]]. There are a large number of different character classes.

Note: You cannot use the special atoms like \a and \d in a range. For
example, [\a\d] matches the characters \, a, \, and d. It does not match
the letters (\a) and digits (\d).

Repeat Modifiers

You can specify how many times an atom is to be repeated. The general
form of a repeat is as follows:

\{minimum, maximum}

For example, the regular expression a\{3,5} will match 3 to 5 a's. (that is,
aaa, aaaa, or aaaaa.) By default, the Vim editor tries to match as much as
possible. So a\{3,5} will match as many a's as it can (up to 5).

The minimum can be omitted, in which case it defaults to zero. Therefore,
a\{,5} matches 0-5 repeats of the letter. The maximum can be omitted as well,
in which case it defaults to infinity. So a\{3,} matches at least 3 a's, but will
match as many a's as you have got on the line.

If only one number is specified, the atom must match exactly that number
of times. Therefore, a\{5} matches 5 a's, exactly.

Repeating as Little as Possible

If you put a minus sign () before any of the numbers, the Vim editor tries
to match as little as possible.

Therefore, a\{3,5} will match 3 to 5 a's, as little as possible. Actually if
this expression is by itself, it will always match just three a's. That is because
even if you have the word aaaaa, the editor will match as little as possible.

The specification a\{3,} matches 3 or more a's, as little as possible. The
expression a\{,5} matches 0-5 letters.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 302

The Vim Tutorial and Reference

The expression a\{} matches 0 to infinity number of characters, as little
as possible. Note that this pattern by itself will always match zero characters.
It only makes sense when there is something after it. For example: [az]\{}x
will match cx in cxcx. Using [az]*x would have matched the whole cxcx.

Finally, the specification a\{5} matches exactly 5 a's, as little as possible.
Because as little as possible is exactly 5, the expression a\{5} acts just like a\
{5}.

Grouping (\(\))

You can specify a group by enclosing it in a \(and \). For example, the
expression a*b matches b, ab, aab, aaab, and so on. The expression a\(XY\)*b
matches ab, aXYb, aXYXYb, aXYXYXYb, and so on.

When you define a group using \(\), the first enclosed string is assigned
to the atom \1. To match the string the the, for instance, use the regular
expression \(the\) \1. To find repeated words, you can get a bit more general
and use the expression \(\<\a\+\>\) \1. Figure 19-16 breaks this into its
components.

Put matching text in \1

 \(\<\a\+\>\) \1
Match beginning of a word
Match a single letter
Repeat 1 or more times
Ending of a word
Match space
Match what was in the first \ (... \)

Figure 19-16: The repeat (\1) expression.

The first group is assigned to \1, the second to \2, and so on.

The Or Operator (\|)

The \| operator enables you to specify two or more possible matches. The
regular expression foo\|bar matches foo or bar. For example, the search

/procedure\|function

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 303

The Vim Tutorial and Reference

searches for either procedure or function.

Putting It All Together

Let's create a regular expression to match California license plate
numbers. A sample license plate looks like 1MGU103. The pattern is one digit,
three uppercase letters, and three digits. There are several ways of doing this.

Start by specifying the digit as [09], now add the uppercase letter: [09]
[AZ]. There are three of them, so you get [09][AZ]\{3}. Finally, you add
the three digits on the end, resulting in [09][AZ]\{3}[09]\{3}.

 Another way to do this is to recognize that \d represents any digit and \u
any uppercase character. The result is \d\u\{3}\d\{3}.

The experts tell us that this form is faster than using the [] form. If you
are editing a file where this speed up makes a difference, however, your file
might be too big.

You can accomplish this without repeats as well: \d\u\u\u\d\d\d.

Finally, you can use the character classes, yielding [[:digit:]]
[[:upper:]]\{3][[:digit:]]\{3}.

All four of these expressions work. Which version should you use?
Whichever one you can remember. You should remember this old adage: The
simple way you can remember is much faster than the fancy way you can't.

The 'magic' Option

The expressions discussed so far assume that the 'magic' option is on.
When this option is turned off, many of the symbols used in regular expressions
lose their magic powers. They only get them back when escaped. Specifically, if
you execute the command

:set nomagic

the *, ., [, and] characters are not treated as special characters. If you
want to use the * for "0 or more repeats," you need to escape it: *. You should
keep the 'magic' option on (the default) for portability and macro files.

Using \m in a regular expression tells Vim to treat all the following text as
if 'magic' were set. The special sequence \M tells Vim to treat the string as if
'nomagic' were set.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 304

The Vim Tutorial and Reference

The string \v turns “very magic” mode which makes almost every
character magic. To turn this off use \V. The following table summarizes these
items.

'magic' 'nomagic'
\v \m \M \V
$ $ $ \$ matches end-of-line
. . \. \. matches any character
* * * * any number of the previous atom
() \(\) \(\) \(\) grouping into an atom
| \| \| \| separating alternatives
\a \a \a \a alphabetic character
\\ \\ \\ \\ literal backslash
\. \. . . literal dot
\{ { { { literal '{'

Offset Specification Reference
[num]
+[num] Down [num] lines. Cursor is placed at the beginning of the

line.
[num] Up [num] lines. Cursor is placed at the beginning of the line.
e End of the match.
e[num] End of the match, the move [num]. If [num] is positive, move

right, negative, move left.
b
s Start of the match.
b[num]
s[num] Start of the match, then move [num]. If [num] is positive,

move right; negative, move left.

Regular Expressions Reference

The following table assumes that the 'magic' option is on (the default).

Simple Atoms

x The literal character x.
^ Start of line.
$ End of line.
. A single character.
\< Start of a word.
\> End of word.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 305

The Vim Tutorial and Reference

Range Atoms

[abc] Match either a, b, or c.
[^abc] Match anything except a, b, or c.
[az] Match all characters from a through z.
[azAZ] Match all characters from a through z and A through

Z.

Character Classes

[:alnum:] Match all letters and digits.
[:alpha:] Match letters.
[:ascii:] Match all ASCII characters.
[:backspace:] Match the backspace character (<BS>).
[:blank:] Match the space and tab characters.
[:cntrl:] Match all control characters.
[:digit:] Match digits.
[:escape :] Matches the escape character (<Esc>).
[:graph:] Match the printable characters, excluding space.
[:lower:] Match lowercase letters.
[:print:] Match printable characters, including space.
[:punct:] Match the punctuation characters.
[:return:] Matches the end-of-line (carriage return, <Enter>,

<CR>, <NL>).
[:space:] Match all whitespace characters.
[:tab:] Match the tab character (<Tab>).
[:upper:] Match the uppercase letters.
[:xdigit:] Match hexadecimal digits.

Patterns (Used for Substitutions)

\(pattern\) Mark the pattern for later use. The first set of \(\)
marks a subexpression as \1, the second \2, and so
on.

\1 Match the same string that was matched by the first
subexpression in \(and \). For example: \
([az]\).\1 matches ata, ehe, tot, and so forth.

\2 Like \1, but uses second subexpression.
\9 Like \1, but uses ninth subexpression.

Special Character Atoms

\a Alphabetic character (AZaz).
\A Non-alphabetic character (any character except

AZaz).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 306

The Vim Tutorial and Reference

\b <BS>.
\d Digit
\D Non-digit.
\e <Esc>.
\f Any filename character as defined by the 'isfname'

option.
\F Any filename character, but does not include the

digits.
\h Head of word character (AZaz_).
\H Non-head of word character (any character except

AZaz_).
\i Any identifier character as defined by the 'isident'

option.
\I Any identifier character, but does not include the

digits.
\k Any keyword character as defined by the 'iskeyword'

option.
\K Any keyword character, but does not include the

digits.
\l Lowercase character (az).
\L Non-lowercase character (any character except az).
\o Octal digit (07).
\O Non-octal digit.
\p Any printable character as defined by the 'isprint'

option.
\P Any printable character, but does not include the

digits.
\r <CR>.
\s Whitespace (<Space> and <Tab>).
\S Non-whitespace character. (Any character except

<Space> and <Tab>).
\t <Tab>.
\u Uppercase character (AZ).
\U Non-uppercase character (any character except AZ).
\w Word character (09AZaz_).
\W Non-word character (any character except

09AZaz_).
\x Hexadecimal digit (09 af AF).
\X Non-hexadecimal digit.
\~ Matches the last given substitute string.

Modifiers

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 307

The Vim Tutorial and Reference

* Match the previous atom 0 or more times. As much as
possible.

\+ Match the previous atom 1 or more times. As much as
possible.

\= Match the previous atom 0 or 1 times
\{} Match the previous atom 0 or more times. (Same as

the * modifier.)
\{n}
\{n} Match the previous atom n times.
\{n,m} Match the previous atom n to m times.
\{n,} Match the previous atom n or more times.
\{,m} Match the previous atom from 0 to m times.
\{n,m} Match the previous atom n to m times. Match as little

as possible.
\{n,} Match the previous atom at least n times. Match as

little as possible.
\{,m} Match the previous atom up to m times. Match as

little as possible.
\{} Match the previous atom 0 or more times. Match as

little as possible.
str1\|str2 Match str1 or str2.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 308

The Vim Tutorial and Reference

Chapter 20: Advanced Text Blocks and Multiple Files

The Vim editor has lots of different ways of doing things. Chapter 4: Text
Blocks and Multiple Files presented a representative subset of the commands
dealing with text blocks and multiple files and described them. It is entirely
possible for you to edit efficiently using only those commands.

This chapter shows you all the other ways of doing things. If you find that
you do not like the limitations of the commands in Chapter 4, read this one; you
should find a way to get around your annoyances.

For example, you learned how to yank and put (cut and paste) using a
single register to hold the text. That is fine if you are dealing with a single block
of text. If you want to deal with more, however, check out how to use multiple
registers later in this chapter.

This chapter covers the following:

● Different ways to yank and put

● How to use special registers

● How to edit all the files containing a specific string

● Advanced commands for multiple files

● Global marks

● Advanced insert-mode commands

● How to save and restore your setting by using a VIMINFO file

● Dealing with files that contain lines longer than the screen width

Additional Put Commands

When inserting lines, p and P commands move the cursor the first
non-blank character on the line. The gp command works just like the p
command, except that the cursor is left just after at the end of the new text. The
gP command does the same things for the P command. Figure 20-1 shows the
effects of these commands.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 309

The Vim Tutorial and Reference

Figure 20-1: Paste (put) commands.

Special Marks

Vim has a number of special built-in marks. The first one is the single
quotation (') mark. It marks the location of the cursor before the latest jump. In
other words, it is your previous location (excluding minor moves such as up/down
and so on). Other special marks include the following:

] The beginning of the last inserted text

[The end of the last inserted text

" The last place the cursor was resting when you left the file

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 310

Line 1
Line 2 (yank line)
Line 3
Line 4 (put line)
Line 5

Line 1
Line 2 (yank line)
Line 3
Line 4 (put line)
Line 2 (yank line)
Line 5

Line 1
Line 2 (yank line)
Line 3
Line 2 (yank line)
Line 4 (put line)
Line 5

Line 1
Line 2 (yank line)
Line 3
Line 4 (put line)
Line 2 (yank line)
Line 5

Line 1
Line 2 (yank line)
Line 3
Line 2 (yank line)
Line 4 (put line)
Line 5

p (lower case)

gp

P (upper case)

gP

L

L

L

L

L

The Vim Tutorial and Reference

Manipulating Marks

The :delmarks (:delm) command deletes all the marks. If you wish to
delete a specific set of marks, specify them as an argument to :delmarks.

The :lockmarks (:loc) command locks the location of the marks while a
command is being executed. For example:

:lockmarks :%! sort

The :lockmarks command assumes that the command does not change
the numbers of lines in the file.

The :keepmarks (:ke) does the same thing except that if the file gets
shorter any marks that are located past the end of the file are deleted. This only
works for filter (:!) commands.

Multiple Registers

So far, you have performed all your yanks and deletes without specifying
which register to use. If no register is specified, the unnamed register is used.
The characters that denote this register are two double quotation marks ("").
The first double quote denotes a register; the second double quote is the name of
the register. (Therefore, for example, "a means use register a.)

You can specify which register the deleted or yanked text is to go into by
using a register specification before the command. The format of a register
specification is "register, where register is one of the lowercase letters. (This
gives you 26 registers to play around with.)

Therefore, whereas yy puts the current line into the unnamed register, the
command "ayy places the line in the a register, as seen in Figure 20-2. (The text
also goes into the unnamed register at the same time.)

Line 1 unamed register "= "Line 3 (yy here)”
Line 2
Line 3 (yy here)
Line 4 ("ayy here) register a = "Line 4 ("ayy here)”

Figure 20-2: Using the a register for yank and put.

Unnamed Register

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 311

The Vim Tutorial and Reference

It seems a bit silly to name the unnamed register, "The Unnamed
Register," because this gives it a name. The name is a misnomer, because
the unnamed register is named "The Unnamed Register." So, in fact, the
unnamed register has a name even though it calls itself "The Unnamed
Register."

Persons understanding the preceding paragraph have demonstrated
aptitude for writing programs and are urged to enroll in their nearest
engineering college.

To get an idea of what the registers contain, execute the following
command:

:registers

(:reg is the abbreviation for :registers.)

Figure 20-3 shows the results of this command.

:registers
 Registers
"" Line 3 (yy here)^J
"0 Line 3 (yy here)^J
"1 We will tdelete he word in the middle
"2 /* File for bad names */^J
"3 Line 2^J
"4 To err is human ^J to really scre
"5 ^J
"6 ^J
"7 to really screw up, you need a com
"a Line 4 ("ayy here)^J
" to be yy'ed)
". "ayy here)
": registers
"% test.txt
"# tmp.txt
Press RETURN or enter command to continue

Figure 20-3: :registers command.

This illustration shows that the unnamed register (") contains Line 3 (yy
here).

The a register contains Line 4 ("ayy here).

The alphabetic registers are the normal ones used for yanking and pasting
text. Other, special registers are described in the following sections.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 312

The Vim Tutorial and Reference

You can display the contents of specific registers by giving them as an
argument to the :registers command. For example, the following command
displays the contents of registers a and x:

:registers ax

Appending Text

When you use a command such as "ayy, you replace the text in the register
with the current line. When you use the uppercase version of a register, say
"Ayy, you append the text to what is already in the register (see Figure 20-4).
Note that the result is two lines, "Line 3" and "Line 2". (The ^J in the register
indicates end of line.)

Line 1
Line 2 ("Ayy here)
Line 3 ("ayy here)
Line 4
~
~
~
~
~
~
~

Figure 20-4: Appending text to a register.

Special Registers

Vim has a number of special registers. The first is the unnamed register,
whose name is double quote (").

Others include the registers 1 through 9. Register 1 contains the last text
you deleted; register 2 the next to last, and so on.

(Back in the bad old days of Vi, these registers were a lifesaver. You see, Vi
had only one level of undo. So if you deleted three lines by executing dd three
times, you were out of luck if you wanted to undo the delete using the u
command. Fortunately, the three lines were stored in registers 1, 2, and 3, so
you could put them back with "1P"2P"3P. You can also use the command "1P..
("1P and two dots).

Other special registers include the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 313

1) “ayy
Yank line into
register a 2) “Ayy

Append the line on to
register a

The Vim Tutorial and Reference

Register Description Writeable
0 The last yanked text Yes
 The last small delete No
. The last inserted text No
% The name of the current file No
The name of the alternate file No
/ The last search string No
: The last ":" command No
_ The black hole (more on this later) Yes
= An expression (see next page) No
* The text selected with the mouse Yes

The Black Hole Register (_)

Placing text into the black hole register causes it to disappear. You can
also "put" the black hole register, but this is pretty much useless because the
black hole register always contains nothing. The black hole register is useful
when you want to delete text without having it go into the 1 through 9 registers.
For example, dd deletes a line and stores it in 1. The command "_dd deletes a
line and leaves 1 alone.

The Expression Register (=)

The expression register (=) is designed so that you can enter expressions
into text. When you enter a command beginning with an expression register
specification, the Vim editor displays the prompt = at the end of the screen. This
gives you an opportunity to type in an expression such as 38*56, and you can
then put the result into the text with the p command. For example
"=38*56<Enter>p gives you 2128. Figure 20-5 shows this register in action.

The width is 38.
The height is 56.
So the area is
~
~
~
=38*56

Enter the text, press <Esc> to
enter normal mode.

Execute "= to start expression mode.
The cursor jumps to here.

The width is 38.
The height is 56.
So the area is 2128
~
~
~

The p command pastes the answer
in after the cursor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 314

The Vim Tutorial and Reference

Figure 20-5: The expression register.

An expression can contain all the usual arithmetic operators (*, +, -, /, and
so on) as well as a ton of specialized Vim functions and operators. If you are
doing more than simple arithmetic, you will want to check the full expression
documentation.

You can specify the value of an environment variable, for example, by using
the expression $NAME (for instance, $HOME). You can determine the value of a Vim
variable by just specifying the variable (LineSize, for instance).

The Clipboard Register (*)

The clipboard register (*) enables you to read and write data to the system
clipboard. This can be the X selection (UNIX) or the Microsoft Windows
Clipboard. This enables you to cut and paste text between the Vim editor and
other applications.

How to Edit All the Files That Contain a Given Word

If you are a UNIX user, you can use a combination of Vim and grep to edit
all the files that contain a given word. This proves extremely useful if you are
working on a program and want to view or edit all the files that contain a
specified variable.

Suppose, for example, that you want to edit all the C program files that
contain the word frame_counter. To do this, you use the following command:

$ vim `grep l 'frame_counter' *.c`

Consider this command in detail. The grep command searches through a
set of files for a given word. Because the l option is specified, the command
will list only the files containing the word and not print the line itself. The word
it is searching for is frame_counter. Actually, this can be any regular
expression. (Note that what grep uses for regular expressions is not as complete
or complex as what Vim uses.)

The entire command is enclosed in backticks (`). This tells the UNIX shell
to run this command and pretend that the results were typed on the command
line. So what happens is that the grep command is run and produces a list of
files; these files are put on the Vim command line. This results in Vim editing the
file list that is the output of grep.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 315

The Vim Tutorial and Reference

You might be asking, "Why show this here?" This is a feature of the UNIX
shell (for example, bash), and is not part of Vim's repertoire. The way to
accomplish something similar within Vim, and which works on Win32 as well, is
as follows:

:args `grep l 'frame_counter' *.c`

(:ar is the short form of this command and you can use :next `cmd` and
:n `cmd` as well.)

This command sets the argument list (for example, the files "on the
command line," as it were).

Note: The Vim command :vimgrep can perform a similar function.

Editing a Specific File

To edit a specific file in this list (file 2, for instance), you need the following
command:

:argument 2

(:argument can be abbreviated as :argu.)

This command enables you to specify a file by its position in the argument
list. Suppose, for instance, that you start Vim with this command:

$ gvim one.c two.c three.c four.c five.c six.c seven.c

The following command causes you to be thrown into the file four.c.

:argument 4

Changing the File List

The file list is initially set to the list of files you specify on the command
line. You can change this list by specifying a new list to the :args command. For
example:

:args alpha.c beta.c gamma.c

After executing this command, you start editing alpha.c; the next file is
beta.c and so on. (The previous file list is lost.)

Note: The :next filelist and :n filelist commands will do the
same thing.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 316

The Vim Tutorial and Reference

The +cmd Argument

Suppose that you want to start editing a file at line 97. You can start Vim
and execute a 97G, or you can tell Vim to start editing with the cursor on line 97.
You can do this by using the option +linenumber on the command line. For
example:

$ gvim +97 file.c

You can also use the +cmd to search for a string by using +/string on the
command line. To start editing a file with the cursor positioned on the first line
containing #include, for instance, use this command:

$ gvim +/#include file.c

Finally, you can put any command-mode command after the plus sign (+).
You can specify the +cmd argument in a number of commands. For example, the
general form of the :vi (:visual) command is as follows:

:vi [+cmd] {file}

These other commands can take a +cmd:

:next [+cmd]
:n [+cmd]
:wnext [+cmd]
:wn [+cmd]
:previous [+cmd]
:prev [+cmd]
:Next [+cmd]
:N [+cmd]
:wprevious [+cmd]
:wp [+cmd]
:wNext [+cmd]
:wN [+cmd]
:rewind [+cmd]
:rew [+cmd]
:last [+cmd]
:la [+cmd]
:first [+cmd]
:fir [+cmd]

Defining the file list (arguments)

To set the list of files being edited use the :args command:

:args {++opt} [+cmd] {filelist}

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 317

The Vim Tutorial and Reference

The {++opt} argument lets you specify some options to be used for each
file. These include:

Option Meaning
++bad={value} If {value} is a single character, replace all bad

characters with that character. The keyword drop
causes the bad characters to be dropped. A value of
keeps retains the bad characters.

++bin
++binary

Turns on the 'binary' option.

++edit This only works for :read commands. It specifies that
the options for the file be the same as the file being
currently edited.

++enc={encoding}
++encoding={encoding}

Specify the file encoding.

+ff={format}
++fileformat={format}

Specify the file format.

++nobin
++nobinary

Turn off the 'binary' option.

If you wish to just add files to the argument list (and keep the existing files,
use the :argadd (:arga) command. The general form of this command is:

:[count] argadd {file}

If a [count] is given the file is added after the [count] argument. If no
count is present, it is added to the end.

Suppose you want to edit the file you've just added. The :argedit (:arge)
command is a combination of :argadd and :edit.

To delete arguments from the argument list use the :argdelete (:argd)
command. It take an file name pattern as an argument, which means you can
use wildcards. For example, if you wish to remove all the C header files from an
argument list use the command:

:argdelete *.h

You can also delete arguments by position. Simply supply the :argdelete
command with a range. For example, to delete the second and third arguments,
use the command:

:2,3argdelete

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 318

The Vim Tutorial and Reference

Local and Global argument Lists

So far we've been using one argument list. Vim actually supports two
different types of argument lists. The global argument list is the default for all
windows. However a window can switch over and use a local argument list if it
wants to.

The :arglocal (:argl) command switches to the local argument list. If
the window doesn't have one yet, the global one is copied. The :argglobal
(:argg) command switches back to the global list. You can also use the
:arglocal and :argglobal commands to set the file list just like the :args
command. (The :args command works on the current set of arguments, while
:arglocal and :argglobal work on a specific list.)

The :drop (:dr) also sets the argument list. The form of this command is:

:drop {file} [file] [file] ...

Not only does it set the argument list, but it starts editing the first file. If a
the file is already being displayed in a window it will go to it. Otherwise it switch
the current window to the file. But if the file in the window hash changes in it
and can not be abandoned then it will split the window and to go the first file.

Basically the command is designed for interfacing with an interactive
debugger and “does the right thing” when the debugger needs to switch files.

Global Marks

The marks az are local to the file. In other words, you can place a mark a
in file one.c and another mark a in file two.c. These marks are separate and
have nothing to do with each other. If you execute a go-to-mark command, such
as 'a, you will jump within that file to the given mark.

The uppercase marks (AZ) differ. They are global. They mark not only the
location within the file, but also the file itself.

Take a look at an example. You are editing the file one.c and place the
mark A in it. You then go on to edit file two.c. When you execute the
jump-to-mark-A command ('A), the Vim editor will switch you from file two.c to
file one.c and position the cursor on the mark.

For example, you are editing a bunch of C files named alpha.c, beta.c, and
gamma.c. You execute the following commands:

1. /#include Find the first #include (in alpha.c).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 319

The Vim Tutorial and Reference

2. mi Mark it with the mark i.

/* alpha.c */
#include <stdio.h>
int alph(void)
{
 printf("In alpha\n");
}

3. :next Go to file beta.c.

4. n Find the first #include.

5. mi Mark it with the mark i.

6. /magic_function Find the magic function.

7. mF Mark it with the mark F.

/* beta.c */
#include <stdio.h>
int magic_function(void)
{
 printf("In beta\n");
}
"beta.c" 8L, 88C

8. :next Go to file gamma.c.

9. /#include Find the first #include.

10.mi Mark it with the mark i.

/* gamma.c */
#include <stdio.h>
int gamma(void)
{
 printf("In gamma\n");
}
"gamma.c" 8L, 81C

After executing these commands, you have three local marks, all named i.
If you execute the command 'i, you jump to the mark in your buffer. The mark F
is global because it is uppercase.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 320

mi
(mark location
with id “i”)

mi

mF

mi

The Vim Tutorial and Reference

Currently you are in file gamma.c. When you execute the command to go
to mark F ('F), you switch files to beta.c. Now you use the following command to
go to alpha.c.

:rewind

Place the F mark there using the mF command. Because this is a global
mark (you can put it in only one place), the mark named F in the file beta.c
disappears.

Advanced Text Entry

When you are entering text in insert mode, you can execute a number of
different commands. For example, the <BS> command erases the character just
before the cursor. CTRLU erases the entire line (or at least the part you just
inserted). CTRLW deletes the word before the cursor.

Movement

Even though you are in insert mode, you can still move the cursor. You
cannot do this with the traditional Vim keys h, j, k, and l, because these would
just be inserted. But you can use the arrow keys <Left>, <Right>, <Up>, and
<Down>. If you hold down the Control key, you can move forward and backward
words. In other words, execute <CLeft> to go backward one word, and
<CRight> forward.

The <Home> command moves the cursor to the beginning of a line, and
<End> moves to the end. The key <CHome> moves to the beginning of the file,
and <CEnd> moves to the end.

The <PageUp> moves one screen backward, and <PageDown> a screen
forward.

Inserting Text

If you type CTRLA, the editor inserts the text you typed the last time you
were in insert mode. Assume, for example, that you have a file that begins with
the following:

"file.h"
/* Main program begins */

You edit this file by inserting #include at the beginning of the first line:

#include "file.h"

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 321

The Vim Tutorial and Reference

/* Main program begins */

You go down to the beginning of the next line using the commands j^. You
now start to insert a new line that contains a new include line. So you type
iCTRLA. The result is as follows:

#include "file.h"
#include /* Main program begins */

The #include was inserted because CTRLA inserts the contents of the
previous insert. Now you type "main.h"<Enter> to finish the line:

#include "file.h"
#include "main.h"
/* Main program begins */

The CTRL@ command does a CTRLA and then exits insert mode.

The CTRLV command is used to quote the next character. In other words,
any special meaning the character has, it will be ignored. For example,
CTRLV<Esc> inserts an escape. You can also use the command CTRLVdigits to
insert the character number digits. For example, the character number 64 is @.
So CTRLV64 inserts @. The CTRLVdigits uses "decimal" digits by default, but
you can also insert the hex digits.

For example,

CTRLV123

and

CTRLVx7b

both insert the { character.

The CTRLY command inserts the character above the cursor. This is useful
when you are duplicating a previous line.

One of my favorite tricks is to use ASCII art to explain complex things such
as regular expressions. For example:

[09]*[a z]*
||||||||||||+ Repeat 0 or more times
|||||||+++++ Any lower case letter
|||||+ Repeat 0 or more times ++++
+ Any digit

Take a look at how you can use CTRLY to create this file. You start by
entering the first two lines:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 322

The Vim Tutorial and Reference

[09]*[az]*
|||||||||||+ Repeat 0 or more times

Now you type CTRLY six times. This copies the | from the previous line
down six times:

[09]*[az]*
|||||||||||+ Repeat 0 or more times
||||||

Now all you have to do is enter the rest of the comments.

The CTRLE command acts like CTRLY except it inserts the character
below the cursor.

Inserting a Register

The command CTRLRregister inserts the text in the register. If it
contains characters such as <BS> or other special characters, they are
interpreted as if they had been typed from the keyboard. If you do not want this
to happen (you really want the <BS> to be inserted in the text), use the command
CTRLR CTRLR register.

First you enter the following line:

All men^H^H^Hpeople are created equal

Note: To enter the backspace characters (which show up as ^H), you need
to type CTRLV<BS> or CTRLV CTRLH.

Now you dump this into register a with the command "ayy.

Next you enter insert mode and use CTRLRa to put the text into the file.
The result is as follows:

All men^H^H^Hpeople are created equal (original line)
All people are created equal (CTRLRa line)

Notice that Vim put the contents in as if you had typed them. In other
words, the <BS> character (^H) deletes the previous character.

Now if you want to put the contents of the register in the file without
interpretation, you could use CTRLR CTRLR a. This results in the following:

All men^H^H^Hpeople are created equal (original line)
All people are created equal (CTRLRa line)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 323

The Vim Tutorial and Reference

All men^H^H^Hpeople are created equal (CTRLR CTRLR a)

Leaving Insert Mode

The command CTRL\ CTRLN ends insert mode and goes to normal mode.
In other words, it acts like <Esc>. The only advantage this has over <Esc> is that
it works in all modes.

Finally, CTRLO executes a single normal-mode command and goes back to
insert mode. If you are in insert mode, for instance, and type CTRLOdw, the Vim
editor goes into normal mode, deletes a word (dw), and then returns to insert
mode.

The .viminfo File

The problem with global marks is that they disappear when you exit Vim.
It would be nice if they stuck around. The .viminfo file is designed to store
information on marks as well as the following:

● Command-line history

● Search-string history

● Input-line history

● Registers

● Marks

● Buffer list

● Global variables

The trick is that you have to enable it. This is done through the following
command:

:set viminfo={string}

The {string} specifies what to save. (The 'viminfo' option can be
abbreviated as 'vi'.)

The syntax of this string is an option character followed by an argument.
The option/argument pairs are separated by commas.

Let's take a look at how you can build up your own 'viminfo' string.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 324

The Vim Tutorial and Reference

First, the ' (single quote) option is used to specify how many files for
which you save local marks (az). Pick a nice round number for this option
(1000, for instance). Your 'viminfo' option now looks like this:

:set viminfo='1000

The f option controls whether global marks (AZ 09) are stored. If this
option is 0, none are stored. If it is 1 or you do not specify an f option, the
marks are stored. You want this feature, so now you have this:

:set viminfo='1000,f1

The r option tells Vim about removable media. Marks for files on
removable media are not stored. The idea here is that jump to mark is a difficult
command to execute if the file is on a floppy disk that you have left in your top
desk drawer at home. You can specify the r option multiple times; therefore, if
you are on a Microsoft Windows system, you can tell Vim that floppy disks A and
B are removable with the r option:

:set viminfo='1000,f1,rA:,rB:

UNIX has no standard naming convention for floppy disks. On my system,
however, the floppy disk is named /mnt/floppy; therefore, to exclude it, I use this
option:

:set viminfo='1000,f1,r/mnt/floppy

Note: There is a 50-character limit on the names of the removable media.

The " option (which must be escaped (\") to let Vim know it's not a
comment) controls how many lines are saved for each of the registers. By
default, all the lines are saved. If 0, nothing is saved. You like the default, so you
will not be adding a \" specification to the 'viminfo' line.

The : option controls the number of lines of : history to save. 100 is
enough for us:

:set viminfo='1000,f1,r/mnt/floppy,:100,

The / option defines the size of the search history. Again 100 is plenty:

:set viminfo='1000,f1,r/mnt/floppy,:100,/100

Note that Vim will never store more lines than it remembered. This is set
with the 'history' ('hi') option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 325

The Vim Tutorial and Reference

Generally, when Vim starts, if you have the 'hlsearch' ('hi') option set,
the editor highlights the previous search string (left over from the previous
editing sessions). To turn off this feature, put the h flag in your 'viminfo'
option list. (Or you can just start Vim, see the highlighting, and decide you do not
like it and execute a :nohlsearch (:noh).)

The '@' option controls the number of items to save in the input-line
history. (The input history records anything you type as result of an input
function call.) For this example, let this default to the size of the input-line
history.

If the '%' option is present, save and restore the buffer list. The buffer list
is restored only if you do not specify a file to edit on the command line:

:set viminfo='1000,f1,r/mnt/floppy,:100,/100,%

The ! option saves and restores global variables. (These are variables
whose names are all uppercase.)

:set viminfo='1000,f1,r/mnt/floppy,:100,/100,%,!

Finally, the n option specifies the name of the 'viminfo' file. By default,
this is $HOME/.viminfo on UNIX. On Microsoft Windows, the file is as follows:

$HOME_viminfo if $HOME is set

$VIM_viminfo if $VIM is set otherwise

C:_viminfo

The 'n' option must be the last option parameter. Because we like the
default filename, we leave this option off. Therefore, the full 'viminfo' line is
this:

:set viminfo='1000,f1,r/mnt/floppy,:100,/100,%,!

You can put this command and other initializations into a .vimrc
initialization file. The .viminfo file is automatically written when the editor exits,
and read upon initialization. But you may want to write and read it explicitly.
The following command writes the .viminfo file:

:wviminfo[!] [file]

(:wv is the short version of this command.)

If a file is specified, the information is written to that file. Similarly, you can
read the .viminfo file using this command:

:rviminfo [file]

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 326

The Vim Tutorial and Reference

(:rv for short.)

This reads all the settings from file. If any settings conflict with currently
existing settings, however, the file settings will not be used. If you want the
information in the .viminfo file to override the current settings, use the following
command:

:rviminfo! [file]

Dealing with Long Lines

Sometimes you will be editing a file that is wider than the number of
columns in the window. When that occurs, Vim wraps the lines so that
everything fits on the screen (see Figure 20-6).

A programmer once worked on a form letter genera
tion program
for a bank. They wanted to send out a special, p
ersonalized
letter to their richest 1000 customers. Unfortun
ately for the
programmer, he didn't adequately debug his code.
Even worse,
the bank didn't check the first batch of form le
tters.

Figure 20-6: Text wrapping.

If you set the 'nowrap' option, each line in the file shows up as one line on
the screen. Then the ends of the long lines disappear off the screen to the right
(see Figure 20-7).

A programmer once worked on a form letter genera
for a bank. They wanted to send out a special, p
letter to their richest 1000 customers. Unfortun
programmer, he didn't adequately debug his code.
Even worse,
the bank didn't check the first batch of form le

Figure 20-7: :set nowrap.

By default, Vim does not display a horizontal scrollbar on the GUI. If you
want to enable one, as shown in Figure 20-8, use the following command:

:set guioptions+=b

('guioptions' can be abbreviated as 'go'.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 327

w
ra

p
p

in
g

The Vim Tutorial and Reference

Figure 20-8: Horizontal scrollbar.

This window can be scrolled horizontally. All you have to do is position the
cursor on a long line and move to the right using the l or $ command. Figure
20-9 shows what happens when you do a little horizontal scrolling.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 328

The Vim Tutorial and Reference

Figure 20-9: Horizontal scrolling.

The ^ command moves to the first non-blank character of the line. The g^
command moves to the first non-blank character on the screen. If there is text
to the left of the window, it is ignored.

There are a number of similar g-type commands:

Command Command Meaning (When nowrap Set)
^ g^ Leftmost non-blank character on the screen.
<Home> g<Home>
0 g0 Leftmost character on the screen.
<End> g<End>
$ g$ Rightmost character on the screen.

gm Move to the middle of the screen

Figure 20-10 shows how these commands work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 329

The Vim Tutorial and Reference

A programmer once worked on a form letter generation program
for a bank. They wanted to send out a special, personalized
letter to their richest 1000 customers. Unfortunately for the
programmer, he didn't adequately debug his code. Even worse,
the bank didn't check the first batch of form letters.
The result: the wealthiest 1000 customers all got a letter
that began, "Dear Rich Bastard."

Figure 20-10: Line-movement commands.

The [count]| command goes to the count column on the screen.

The [count]zh command scrolls the screen count characters left while the
zl command does the same thing to the right.

The zL command scrolls half a screen to the left and the zR command
scrolls half screen to the right.

The j or <Down> command moves down a line. These commands move
down lines in the file. Take a look at Figure 20-11.

A programmer once worked on a form letter genera
tion program
for a bank. They wanted to send out a special, p
ersonalized
letter to their richest 1000 customers. Unfortun
ately for the
programmer, he didn't adequately debug his code.
Even worse,
the bank didn't check the first batch of form le
tters.

Figure 20-11: The j (down) command.

In this case, line 3 has wrapped. Now you start with the cursor on line 2.
Executing a j command moves you to the beginning of line 3. Another j and you
are down to the beginning of line 4. Note that although you have moved down a
line in text space, you have moved down two lines in screen space.

Typing a gj or g<Down> command moves one line down in screen space.
Therefore, if you start at the beginning of line 3 and type gj, you wind up one
line down in screen space (see Figure 20-12). This is halfway between line 3 and
line 4. (In file space, you are on the middle of line 3.) The gk and g<Up>
commands do the same thing going up.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 330

^ gm
g$g^ $

j

j

j

The Vim Tutorial and Reference

A programmer once worked on a form letter genera
tion program
for a bank. They wanted to send out a special, p
ersonalized
letter to their richest 1000 customers. Unfortun
ately for the
programmer, he didn't adequately debug his code.
Even worse,
the bank didn't check the first batch of form le
tters.

Figure 20-12: The gj (down screen line) command.

Wrapping

By default, the Vim editor wraps long lines. It does this by putting as
much of the line as possible on the first screen line, and then to breaking it, and
putting the rest on the next line. You can to turn this off by setting the following
option:

:set nowrap

With this option set, long lines just disappear off the right side of the
screen. When you move the cursor along them, the screen scrolls horizontally
and you can see what you are doing. You can customize wrapping by setting
some Vim options. First of all, you can tell Vim to break lines at nice places by
setting the option:

:set linebreak or
:set lbr

Figure 20-13 shows how this option affects the screen.

A programmer once worked on a form
 letter generation program
for a bank. They wanted to send ou
t a special, personalized
letter to their richest 1000 custo
mers. Unfortunately for the
programmer, he didn't adequately d
ebug his code. Even worse,
the bank didn't check the first ba
tch of form letters.

A programmer once worked on a
form letter generation program
for a bank. They wanted to send
out a special, personalized
letter to their richest 1000
customers. Unfortunately for the
programmer, he didn't adequately
debug his code. Even worse,
the bank didn't check the first
batch of form letters.

Figure 20-13: The 'linebreak' option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 331

gj

gj
gj

:set nolinebreak :set linebreak

The Vim Tutorial and Reference

But what defines a "nice" place on the line. The answer is the characters
in the 'breakat' ('brk') option. By default, these are ^ I ! @ * +
_ ; : , . / ?. Now suppose you do not want to break words with _ in them.
You need to remove _ from the list of 'breakat' characters, so you execute the
following command:

:set breakat =_

Usually when lines are broken, nothing is put at the beginning of the
continuation lines. You can change this, however, by defining the 'showbreak'
('sbr') option. For example:

:set showbreak=">"

Finally, there is the question of what to do if you need to break a line at the
end of the screen. You have two choices: First, you can refuse to display half of a
line. The Vim editor will display an @ at the bottom of the screen to indicate
"there is a long line here that we cannot fit it on the screen. Second, you can
display half the line. The Vim default is method one. If you want to use method
two, execute this command:

:set display=lastline

('dy' is short for 'display'.)

Spelling Dictionaries

Vim lets you create word lists in a variety of formats. The simplest is a
straight word list. To turn a word list into a dictionary it needs to be compiled.
This is done using the :mkspell (:mksp) command.

The general form of this command is:

:mkspell {outfile} {infile}

There are a lot of rules concerning the name of the output file. First if the
name ends in .spl, the {outfile} name is the actual name of the output file. If
it does not, then it is the base name to be used. Vim will add the current
encoding to the name as well as the extension .spl.

The :mkspell command takes an option (ascii) which tells it to skip all
non-ASCII characters.

Vim accepts word lists in a variety of formats. One of the more common
dictionary layouts is the MySpell format. One source for dictionary files is
http://lingucomponent.openoffice.org/spell_dic.html

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 332

The Vim Tutorial and Reference

Vim supports both simple word lists, and a very complex word lists. The
latter specify things language and region, as well as indicating word parts
(prefixes, suffixes), rare words, and misspelled words. Since this feature is of
interest only to the handful users who will actually make word lists, a full
description has been omitted.

The :mkspell command can take multiple input files and produce a single
word list. The naming of the input files must follow the convention
{name}_{encoding}. The following command creates a English language
dictionary for three regions.

:mkspell en en_US en_CA en_AU

Finally if no output name is specified, the :mkspell command will produce
one based on the input name.

Dictionary construction can be fine tuned through the 'mkspellmem'
('msm') option. This option consists of three memory limits. The first tells
:mkspell how much memory to use before starting compression, the second
specifies the amount of memory that can be allocated before another
compression is done and the last is the upper limit on memory. When memory
reaches this limit aggressive (and time consuming) compression is started.

Dumping dictionaries

If you need to see a list of the words in the current dictionary use the
:spelldump (:spelld) command. This opens a new window with the list of
words in it.

What's the format of this list? It is not documented.

If you use the override (!) option on this command, the words along with a
word count is dumped.

Documentation does not match results.

Customizing the spelling system

The 'spellcapcheck' ('spc') option is used by Vim to tell when a sentence
ends. It contains a regular expression that is executed to detect periods and
other sentence ending text for the spelling system's capitalization check.

The 'spellsuggest' ('sps') is a option which contains information that
tells Vim how to find suggested corrections for a word. It is a set of keywords
separated by commas. The list of keywords includes:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 333

The Vim Tutorial and Reference

best Use the suggesting generator named “best”. This
is the generator that works best for English.

double This suggestion generator first tries the “best”
method, then depending on the results, then tries
the “fast” method and mixes the results. It can be
somewhat slow and not as good as the other
methods.

fast This suggestion generator checks for dropped,
added, or moved letters. (In other words typos.)

{number} Maximum number of suggestions to generate.

file:{filename} Specify a suggestion file. Each line in the file
contains a misspelled word a slash and the correct
version.

expr:{expression}

Evaluate the {expression} to get a list of
suggestions an their scores. (Note: Lower scores
are better.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 334

The Vim Tutorial and Reference

Chapter 21: All About Windows, Tabs, and Sessions

In Chapter 5: Windows and Tabs you learned the basic commands for using
windows. But there are a lot more window-related commands. This chapter
discusses many different commands for selecting and arranging windows. You
will also learn how to customize the appearance of the windows.

Finally, this chapter discusses session files. These files enable you to save
and restore all your editing and window settings so that you can return to editing
where you left off.

The topics covered in this chapter include the following:

● Moving between windows Moving windows up and down

● Performing operations on all windows

● Editing the "alternate" file

● Split searches

● Shorthand operators

● Advanced buffer commands

● Session files

Moving Between Windows

As previously discussed, CTRLWj (CTRLW CTRLJ, CTRLW<Down>) goes to
the window below and CTRLWk (CTRLW CTRLK, CRLW<Up>) goes to the
window above. The following commands also change windows.

CTRLWt
CTRLW CTRLT

Go to the top window.

CTRLWb
CTRLW CTRLB

Go to the bottom window.

CTRLWp
CTRLW CTRLP

Go to the window you were in before you switched to this
one. (Go to the preceding window.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 335

The Vim Tutorial and Reference

/* File one.c */
~
~
~
one.c
/* File two.c */
~
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c

Figure 21-1: Window selection commands.

[count]CTRLWw
[count]CTRLW CTRLW

Go down a window. If at the bottom, wrap. If
count is specified, go to the window number
count.

countCTRLWW Go up a window. If at the top, wrap. If count is
specified, go to the window number count.

/* File one.c */
~
~
~
one.c
/* File two.c */
~
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c

Figure 21-2: More window selection commands.

Moving Windows Up and Down

The CTRLWr (CTRLW CTRLR) command rotates the windows downward
(see Figure 21-3).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 336

CTRLWw
1CTRLWW
CTRLWt

2CTRLWw
2CTRLWW

3CTRLWw
3CTRLWW
CTRLWb

CTRLWw

CTRLWw CTRLWW

CTRLWW

CTRLWW

The Vim Tutorial and Reference

The CTRLWr command takes a count argument, which is the number of
times to perform the rotate down.

/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

CTRLWr

/* This file four.c *
/
~
four.c
/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c

Figure 21-3: Rotating a window down.

The CTRLWR command rotates the windows upward (see Figure 21-4).

/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

CTRLWR

/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c
/* File one.c */
~
~
one.c

Figure 21-4: Rotating a window up.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 337

The Vim Tutorial and Reference

The CTRLWx (CTRLW CTRLX) command exchanges the current window
with the next one (see Figure 21-5). If the current window is the bottom window,
there is no next window, so it exchanges the current window with the previous
one.

/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

CTRLWx

/* File two.c */
~
~
two.c
/* File one.c */
~
~
one.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

Figure 21-5: Exchanging a window.

Performing Operations on All Windows

The :write (:w) command writes out the current file. If you want to write
all the files that have been modified (including hidden buffers), use the following
command:

:wall

(:wa is the short form of :wall.)

The quit command :quit (:q, CTRLWq, CTRLW CTRLQ) closes the
current window. (If this is the last window for a file, the file is closed.) If you
have multiple windows up, you can quit them all using this command:

:qall

(:qa is the short form of :qall.)

If some of the files have been modified, and the changes have not been
saved, the :qall command fails. If you want to abandon the changes you have
made, use the force option (!), which gives you this command:

:qall!

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 338

The Vim Tutorial and Reference

(Use this with caution because you can easily discard work you wanted to
keep.) If you want to perform a combination of :wall and :qall, use this
command:

:wqall

(The aliases for :wqall are :wqa, :xa, :xall.)

Other Window Commands

The CTRLWo (CTRLW CTRLO, :on, :only) command makes the current
window the only one on the screen. As Figure 21-6 shows, all the other windows
are closed. (The system pretends that you did a :quit in each of them.)

/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

CTRLWo

/* File one.c */
~
~
~
~
~
~
~
~
~
~
~
~
~
~
one.c

Figure 21-6: The CTRLWo command.

If you have specified multiple files on the command line or through the
file-list command, the :all (:al, :sall, :sal) command opens up a window for
each file (see Figure 21-7).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 339

The Vim Tutorial and Reference

/* File one.c */
~
~
~
~
~
~
~
~
~
~
~
~
~
~
one.c

:all

/* File one.c */
~
~
one.c
/* File two.c */
~
~
two.c
/* File three.c */
#include <stdio.h>
int i;
three.c
/* This file four.c *
/
~
four.c

Figure 21-7: :all.

A variation of the :all command opens a new window for each hidden
buffer:

:unhide

(Alternate formats :unh, :sunhide, :su.)

This command can take an argument that limits the number of windows
that can be opened at one time. To unhide all the buffers but put no more than
five windows on screen, for example, use the following command:

:unhide 5

Editing the Alternate File

You can split the window and edit the alternate file with the command
CTRLW CTRL^ (CTRLW^). Figure 21-8 shows the results.

/* File three.c */
#include <stdio.h>
int i;
int main()
{
 for(i = 1; i <= 10; ++i)
 {
"three.c" 11L, 160C

CTRL_ /* File two.c */
~
~
~
~
~
~
"two.c" 1L, 17C

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 340

The Vim Tutorial and Reference

CTRLW
CTRL_

/* File two.c */
~
~
"two.c" 1L, 17C
/* File three.c */
#include <stdio.h>
int i;
"three.c" 11L, 160C

Figure 21-8: CTRLW CTRL^.

Split Search

The CTRLW CTRLI command splits the window, and then searches for the
first occurrence of the word under the cursor. This search goes through not only
the current file, but also any #include files.

If you position the cursor on the printf on “Hello World” and press
CTRLW CTRLI, you get a screen that looks like Figure 21-9.

extern int fprintf(...);

/* Write formatted output to stdout. */
extern int printf (...);
/* Write formatted output to S. */
extern int sprintf (...)
/usr/include/stdio.h [RO]
#include <stdio.h>
int main()
{
 printf("Hello World!\n");
 return (0);
}
/tmp/hello.c

Figure 21-9: The CTRLW CTRLI command.

Shorthand Commands

The Vim editor contains some shorthand commands that do the work of
multiple commands, including the following:

:{count}snext
:{count}sn

:split followed by :countnext

:{count}sprevious :split followed by :countprevious

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 341

The Vim Tutorial and Reference

:{count}spr
:{count}sNext
:{count}sN

:split followed by :countNext

:srewind
:sre
:sfirst
:sf

:split followed by :rewind

:slast
:sl

:split followed by :last

:sargument
:sa

:split followed by :argument

CTRLW CTRLD
CTRLWd

:split followed by]CTRLD

CTRLW CTRLF
CTRLWf

:split followed by a :find

CTRLWg] :split followed a CTRL]

One nice thing about these commands is that they do not open a new
window if they fail.

Other Window Commands

The :wincmd (:winc) command executes a command as you typed CTRLW.
Not that useful interactively but very nice when you are writing scripts.

The :windo (:wind) command will execute a command for each open
window. For example, to change “vim” to “Vim” in all the windows use the
command:

:windo :%s/vim/Vim/g

Advanced Buffers

The following sections discuss adding, deleting, and unloading buffers.

Adding a Buffer

The Vim editor maintains a list of buffers. Usually you put a file on the list
by editing it. But you can explicitly add it with the following command:

:badd file

(This is a bad command. Let me rephrase that. The abbreviated version of
this command is :bad.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 342

The Vim Tutorial and Reference

The named file is merely added to the list of buffers. The editing process
will not start until you switch to the buffer. This command accepts an argument:

:badd +lnum file

When you open a window for the buffer, the cursor will be positioned on
line lnum.

Deleting a Buffer

The

:bdelete

command deletes a buffer. (:bd is the short form.)

You can specify the buffer by name:

:bdelete file.c

or by number:

:bdelete 3
:3 bdelete

You can also delete a whole range of buffers, as follows:

:1,3 bdelete

If you use the override (!) option, any changes to the buffer are discarded:

:bdelete! file.c

Unloading a Buffer

The command :bunload (:bun) unloads a buffer. The buffer is unloaded
from memory and all windows for this buffer are closed. However, the file
remains listed in the buffer list. The :bunload command uses the same syntax as
the :bdelete.

The :bwipeout (:bw) command unloads the file and causes Vim to forget
everything it knew about it. This command takes the same syntax as :bdelete
and should not be used unless you know what you are doing.

Opening a Window for Each Buffer

The :ball (:ba, :sball, :sba) command opens a window for each buffer.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 343

The Vim Tutorial and Reference

Windowing Options

The 'laststatus' ('ls') option controls whether the last window has a
status line. (See Figure 21-10.) The three values of this option are as follows:

0 The last window never has a status line.
1 If there is only one window on the screen, do not display the status line. If

there are two or more, however, display a status line for the last window.
(default).

2 Always display a status line even if there is only one window on screen.

laststatus = 0 laststatus = 1 laststatus = 2
/* File one.c */
~
~
~
~
~

/* File one.c */
~
~
~
~
~

/* File one.c */
~
~
~
~
one.c

One file One file One file

/* File one.c */
~
one.c
/* File two.c */
~
~

/* File one.c */
~
one.c
/* File two.c */
~
two.c

/* File one.c */
~
one.c
/* File two.c */
~
two.c

Two Files Two Files Two Files

Figure 21-10: 'laststatus' option.

The 'winheight' ('wh') option sets the minimum number of lines for a
window. This is not a hard limit; if things get too crowded, Vim will make smaller
windows. The 'winwidth' ('wiw') option does the same thing, only for width.

The 'winminheight' ('wmh') option is the absolute minimum height of a
window that's not the current window. The 'winminwidht' ('wmw') does the
same thing for the width of a window.

When the 'equalalways' ('ea') option is enabled (the default), Vim will
always split the screen into equal-size windows. When off, splits can result in
windows of different sizes. Figure 21-11 shows the effect of this option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 344

The Vim Tutorial and Reference

gvim one.c
:split
:split
/* File one.c */
~
~
~
~
one.c
/* File one.c */
~
~
~
~
one.c
/* File one.c */
~
~
~
~
one.c
:split

/* File one.c */
~
~
~
one.c
/* File one.c */
~
~o
one.c
/* File one.c */
~
~
~
~
~
~
~
one.c
:split

:set equalalways :set noequalalways

Figure 21-11: 'equalalways' option.

By default 'equalalways' works for horizontal and vertical splits. If you
want this option to affect only horizontal windows set the 'eadirection' ('ead')
option to hor. If you want only vertical windows to be affected set the
'eadirection' option to ver. The default (both) affects both directions.

If you split horizontally, and the 'equalalways' option is set, any window
with the 'winfixheight' ('wfh') option set will not change size. For vertical
splits the 'winfexwidth' ('wfw') option keeps the size constant.

Controling a split

Generally a :split command opens a window above the current window.
The 'splitbelow' ('sb') option causes a new window to appear below the
current one.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 345

The Vim Tutorial and Reference

A :vsplit command opens a window to the left of the current one. The
'splightright' ('spr') option causes new to open to the right.

The :aboveleft (:abo, :leftabove, :lefta) command causes any
command that splits a window to open the window above the current one or to
the left regardless of the value of any options.

The :rightbelow (:rightb, :belowright, :bel) command does the same
thing except the window will appear below or to the right of the current one.

The :topleft (:to) command will open a window at the top of the screen
for horizontal splitting commands. The window will go across the entire screen.
For vertical splitting commands, the window will occupy the entire left of the
screen.

The :botright (:bo) command acts in a similar manner except the winow
will occupy the entire bottom or right of the screen.

Tabs

In this section we'll take a look at how to execute one command for
multiple tabs as well as how to customize the tab system.

Executing a command for all tabs

The :tabdo (:tabd) command executes a given command for every tab.
For example, to change the word "idiot" to "politician" for every tab, use the
command:

:tabdo :s/idiot/politician/

Other tab commands

The :tabs command lists the tabs and the files being edited in them.

For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 346

The Vim Tutorial and Reference

:tabs
Tab page 1
> + spell.add
Tab page 2
 new.txt
 tabpage.txt
Press ENTER or type command to continue

The :tabmove (:tabm) command moves the current tab to just after the
given tab.

For example Figure 21-12 shows what happens when we have the tab
third.txt open and execute the command:

:tabmove 1

Figure 21-12: Result of :tabmove 1

Customzing tabs

The 'guitablabel' ('gtl') contains a string that defines the format of
the label for each tab. The format is the same as the 'statusline' option
described on page 545.

The 'guitabtooltip' ('gtt') option is used to define a tooltip for each
tab.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 347

The Vim Tutorial and Reference

Both 'guitablabel' and 'guttabtooltip' are evaluated once per tab.

Tabs without the GUI

Tabs are still available if you are using console (non-GUI) mode. They don't
look as nice and you can't click to move from tab to tab, but you do have tabs.
(However, you may wish to consider using windows instead.)

The 'showtabline' ('stal') tells Vim when to show the tab line. This
option has the following values

 0 -- Never show the tab line

 1 -- Show the tab line only when required

 2 -- Always show the tab line

The 'tabline' ('tal') option defines the tabline to be displayed. Unlike
'guitablabel' this option needs to define the entire tab line. For those of you
really interested in this level of customization, there is an example of how to do
this in the :help tabs help page.

Sessions

Suppose you are editing along, and it is the end of the day. You want to
quit work and pick up where you left off the next day. You can do this by saving
your editing session and restoring it the next day.

A Vim session contains all the information about what you are editing. This
includes things such as the file list, windows, and other information. (Exactly
what is controlled by the 'sessionoptions' ('ssop') option is described later in
the section "Specifying What Is Saved in a Session.")

The following command creates a session file:

:mksession file

(:mks is short for :mksession.)

For example:

:mksession vimbook.vim

Later if you want to restore this session, you can use this command:

:source vimbook.vim

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 348

The Vim Tutorial and Reference

(:so is short for :source.)

If you want to start Vim and restore a specific session, you can use the
following command:

$ vim c ":source vimbook.vim"

(This tells Vim to execute a specific command on startup (c). The
command is :source vimbook.vim, which loads the session vimbook.vim.)

Specifying What Is Saved in a Session

The 'sessionoption' option controls what is saved in a session file. It is a
string of keywords separated by commas. For example, the default
'sessionoptions' setting is as follows:

:set sessionoptions=buffers,winsize,options,help,blank

The various keywords are

buffers Saves all buffers. This includes the ones on the screen as well
as the hidden and unloaded buffers.

globals Saves the global variables that start with an uppercase letter
and contain at least one lowercase letter.

help The help window.
blank Any blank windows on the screen.
options All options and keyboard mapping.
winpos Position of the GUI Vim window.
resize Size of the screen.
winsize Window sizes (where possible).
slash Replace backslashes in filenames with forward slashes. This

option is useful if you share session files between UNIX and
Microsoft Windows. (You should set UNIX as well.)

unix Write out the file using the UNIX end-of-line format. This
makes the session portable between UNIX and Microsoft
Windows.

Note: If you enable both the slash and unix options, the session files are
written out in a format designed for UNIX. The Microsoft Windows version
of Vim is smart enough to read these files.

Unfortunately, the UNIX version of Vim is not smart enough to read
Microsoft Windows format session files. Therefore, if you want to have
portable sessions, you need to force Vim to use the UNIX format.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 349

The Vim Tutorial and Reference

Views

Let's say you've got a lot of windows and tabs open. You've gone to a lot of
trouble to make things look just right. Each window is just in the right place,
and the options have been finely tuned to make things just perfect.

Things are great as long as you stay within Vim. But once Vim exists, all
these settings are lost.

That's where the :mkview (:mkvie) command comes in. It creates a script
that restores all your windows and settings to their current values. (It's not
perfect, but it does a pretty good job.)

To save you view use the command:

:mkview view.vim

(If the override (!) option is present, :mkview will overwrite an existing
file.)

The script is called view.vim. You can load it with the command:

:source view.vim

You can also :mkview without a file name. In this case the file is stored in
the directory specified by the 'viewdir' ('vdir') option. If a number is used as
an argument, then a numbered view is stored in this directory.

In any case, these views can be loaded by using the :loadview (:lo)
command.

The 'viewoptions' ('vop') option controls what's stored in the view. It is
a comma separated list of keywords:

Keyword Meaing
cursor Save the cursor position
folds Save the current state of the folds
options Save the current options including the ones local to the buffer or

window.
slash Save file names with backslashed (\) replaced by forward slashes (/).
unix Save in UNIX file format.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 350

The Vim Tutorial and Reference

Chapter 22: Advanced Visual Mode

In Chapter 6: Basic Visual Mode you learned how to perform visual
commands. Now you can take a look at many of the other visual-related
commands. Many of these commands have a limited audience; but read on, that
audience may include you. In this chapter, you learn about the following:

● Using visual mode with text registers

● Using the $ selection command

● Reselecting text

● Additional highlighting commands

● Miscellaneous editing commands

● Select mode

Visual Mode and Registers

Chapter 4: Text Blocks and Multiple Files showed you how to use the yank,
put, and delete commands with registers. You can do similar things with the
visual-mode commands. To delete a block of text, for instance, highlight in visual
mode and then use the d (, x) command. To delete the text into a register,
use the command "{register}d.

To yank the text into a register, use the y command. The D and the Y
commands act like their lowercase counterparts, except they work on entire
lines, whereas d and y work on just the highlighted section.

The $ Command

In block visual mode, the $ command causes the selection to be extended
to the end of all the lines in the selection. Moving the cursor up or down
extends the select text to the end of the line. This extension occurs even if the
new lines are longer than the current ones. Figure 22-1 shows what happens
when you don't use the $ command, and Figure 22-2 shows what happens when
this command is used.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 351

The Vim Tutorial and Reference

 A very intelligent turtle
 Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
 And that's not saying much for the turtle.

 VISUAL BLOCK

Figure 22-1: Block visual mode without $ command.

 A very intelligent turtle
 Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
 And that's not saying much for the turtle.

 VISUAL BLOCK

Figure 22-2: Block visual mode with the $ command.

Repeating a Visual Selection

The gv command repeats the preceding visual mode selection. If you are
already in visual mode, it selects the preceding selection. Repeated gv
commands toggle between the current and preceding selection. Figure 22-3
shows the effects of these commands. The steps are as follows:

1. First visual selection.

2. Finished with visual.

3. gv reselects the old visual.

4. Define new visual.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 352

Start

 Cursor movement
 1) l to move right
 2) j to move down

$ to move
to end of line

The Vim Tutorial and Reference

First visual
selection

Finished with
the selection

gv reselect
the old visual

Define new
visual

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
VISUAL

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
VISUAL

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
VISUAL

Figure 22-3: The gv command.

Selecting Objects

A number of commands in visual mode are designed to help you highlight
the text you want.

The aw command, for example, highlights the next word. Actually it
highlights not only the word, but also the white space after it. At first this may
seem a bit useless. After all, the w command moves you forward one word, so
why not just use it?

That is because when you perform a selection, the text selected is from the
old cursor location to the new one inclusive. Now if you use the w command to
move, the result is that the cursor is placed on the first character of the next
word. Therefore if you delete the text, you not only get the words you selected,
but the first character of the next word.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 353

reselect
gv goes to
previous visual

gv goes to
new visual if done twicel

The Vim Tutorial and Reference

The aw command leaves the cursor positioned just before the first
character of the next word. In other words, it selects the word and the spaces
beyond it, but not the next word.

Another reason to use aw rather than w is that aw selects the whole word,
no matter which part of the word the cursor is on, whereas w just selects from
the current location to the end of the word.

If you want to just select the word, and nothing but the word, use the iw
(inner word) command. Figure 22-4 shows how iw and aw work.

This is a test

This is a test

This is a test

Figure 22-4: iw and aw commands.

You can use the following commands to select text:

{count}aw Select a word and the space after it.
{count}iw Select a word only (inner word).
{count}aW Select a WORD and the space after it.
{count}iW Select inner WORD (the word only)
{count}as Select a sentence (and spaces after it.)
{count}is Select the sentence only.
{count}ap Select a paragraph and the following space.
{count}ip Select a paragraph only.
{count}a(
{count}a)
{count}ab

From within text enclosed in (), select the text up to and
including the ().

{count}i(
{count}i)
{count}ia

Like a(, except the () characters are not selected.

{count}a<
{count}a>

Select matching <> pair, include the <>.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 354

w

aw

iw

The Vim Tutorial and Reference

{count}i<
{count}i>

Select matching <> pair, excluding the <>.

{count}a[
{count}a]

Select matching [] pair, including the [].

{count}i[
{count}i]

Select matching [] pair, excluding the [].

{count}a{
{count}a}

Select matching {} pair, including the {}.

{count}i{
{count}i}

Select matching {} pair, excluding the {}.

{count}a” Select enclosing “”, including the “”.
{count}i” Select enclosing “”, excluding the “”.
{count}a' Select enclosing '', including the ''.
{count}i' Select enclosing '', excluding the ''.
{count}a` Select enclosing ``, including the ``.
{count}i` Select enclosing ``, excluding the ``.
{count}at Select the enclosing XML tag block (<foo> ... </foo>)

including the tags.
{count}it Select the enclosing XML tag block (<foo> ... </foo>)

excluding the tags.

for (i = 0; i < 100; ++1) for (i = 0; i < 100; ++1)

 a(i(

Figure 22-5: a(and i(commands.

Moving to the Other End of a Selection

The o command moves the cursor to the other end of a selection (see
Figure 22-6). You can then move back to the other end (where you came from)
with another o.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 355

The Vim Tutorial and Reference

Found near the computer room of an American
company:

ACHTUNG! ALLES LOOKENSPEEPERS!

Das computermachine ist nicht fuer
gefingerpoken und mittengrabben. Ist easy
schnappen der springenwerk, blowenfusen und
poppencorken mit spitzensparken. Ist nicht
fuer gewerken bei das dumpkopfen. Das
rubbernecken sichtseeren keepen das
cottenpickenen hans in das pockets muss;
relaxen und watchen das blinkenlichten.

Figure 22-6: The o command.

The O command moves the cursor to the other corner of the selection in
block visual mode (see Figure 22-7). In other words, the O command moves to
the other end of the selection on the same line.

The last sign in pseudoGerman has made its
way around the world. It even made its way to
Germany where they translated it into
pseudoEnglish.

ATTENTION

This room is fullfilled mit special
electronische equippment. Fingergrabbing and
pressing the cnoeppkes from the computers is
allowed for die experts only! So all the
"lefthanders" stay away and do not disturben
the brainstorming von here working
intelligencies. Otherwise you will be out
thrown and kicked anderswhere! Also: please
keep still and only watchen astaunished the
blinkenlights.

 VISUAL BLOCK

Figure 22-7: The O command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 356

o
Go to
other end

O
Other
side

The Vim Tutorial and Reference

Case Changes

The ~ command inverts the case of the selection. The U command makes
the text uppercase and the u command turns the text into lowercase. Figure
22-8 illustrates how the various case-changing commands work. The figures
show initial selection, ~, U, and u, respectively.

Line 1
Line 2
Line 3
Line 4
Line 5.
~
~
~
~
lines.txt
VISUAL

Line 1
lINE 2
lIne 3
Line 4
Line 5.
~
~
~
~
lines.txt

Line 1
LINE 2
LINE 3
Line 4
Line 5.
~
~
~
~
lines.txt

Line 1
line 2
line 3
Line 4
Line 5.
~
~
~
~
lines.txt
VISUAL

Initial
Selection

~ U u

Figure 22-8: Case-changing commands.

Joining Lines

The J command joins all the highlighted lines into one long line. Spaces
are used to separate the lines. If you want to join the lines without adding
spaces, use the gJ command. Figure 22-9 shows how the J and gJ commands
work.

Line 1
Line 2
Line 3
Line 4
~
~
~
~
~
lines.txt
 VISUAL

J

 gJ

Line 1
Line 2 Line 3
Line 4
~
~
~
~
~
~
lines.txt [+]

Line 1

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 357

The Vim Tutorial and Reference

Figure 22-9: J and gJ commands.

Formatting a Block

The gq command formats the text (see Figure 22-10).

Select lines Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
~
poem.txt
 VISUAL

gq Oh woe to Mertle the turtle who found web
surfing quite a hurtle. The system you
see was slower than he. And that's not
saying much for the turtle.
~
~
poem.txt
 VISUAL

Figure 22-10: The gq command.

The Encode (g?) Command

?The g? command encodes or decodes the highlighted text using the rot13
encoding. (This primitive encoding scheme is frequently used to obscure
potentially offensive Usenet news postings.)

With rot13, if you encode something twice, you decode it. Therefore if the
text is encoded, g? decodes it. If it is in plain text, g? encodes it. Figure 22-11
shows how this encryption works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 358

The Vim Tutorial and Reference

This is some text to be
obscured by rot13.
~
test.txt [+]
 VISUAL

g?
Encodes text

Repeat to decode

Guvf vf fbzr grkg gb or
bofpherq ol ebg13.
~
test.txt [+]

Figure 22-11: The g? command.

The Colon (:) Commands

The : command starts a command-mode command with a range already
specified. If you want to write a block to a file, for example, select the text using
visual mode, and then execute the following command:

:write block.txt

This writes the text to the file block.txt.

Note: The : command only works on whole lines.

Pipe (!) Command

The ! command pipes a region of text through an external program. For
example, the !sort pipes the selection through the UNIX sort program. Figure
22-12 shows the visual ! command used to sort a range of lines.

one.c
three.c
alpha.c
two.c
four.c
~
~
~
test.txt [+]
 VISUAL

one.c
three.c
alpha.c
two.c
four.c
~
~
~
test.txt [+]
:´<,´>!sort

alpha.c
four.c
one.c
three.c
two.c
~
~
~
test.txt [+]

Define the
selection

!sort
Pipe text through
external
command
sort.

Result after
sorting.

Figure 22-12: The ! (pipe) command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 359

The Vim Tutorial and Reference

Note: The ! command always works on lines even if you are in character
visual mode or visual block mode.

Select Mode

Select mode is yet another visual mode that allows for quick deletion or
replacement of the selected text. The way you use select mode is simple. You
highlight the text and then type <BS> to delete it. Or you can highlight the text,
and then replace it by just typing the replacement.

How does select mode compare with visual mode? With visual mode, you
highlight the text and then perform an operation. In other words, you need to
end the visual mode operation with a command. With select mode, the
commands are limited to <BS> (for delete) and printable characters (for
replacement). This makes things faster because you do not need to enter a
command, but it is much more limited than visual mode.

(CTRLH is equivalent to <BS>.)

You can choose from three select-mode flavors. The commands to start the
various flavors of the select mode are as follows:

gh Start characterwise selection.
gH Start linewise selection.
gCTRLH Start block selection.

Moving the cursor in select mode is a little more difficult than moving it in
normal visual mode because if you type any printable character, you delete the
selected text and start inserting. Therefore, to select text, you must use the
arrow, CTRL, and function keys.

You can also use the mouse to select text if you set the 'selectmode'
('slm') option to mouse, as follows:

:set selectmode=mouse

(Without this option, the mouse performs a visual selection rather than a
select-mode selection.)

You can also use the 'selectmode' option to let the shifted cursor keys
enter select mode.

Deleting the Selection

The backspace command (<BS> or CTRLH) deletes the selected text (see
Figure 22-13).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 360

The Vim Tutorial and Reference

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
 SELECT

gh (start select), then <Right><Right> to highlight “the”.

<bs> deletes text

Oh woe to Mertle turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.

Figure 22-13: Deleting text in select mode.

Replacing Text

Typing any printable character causes the selected text to be deleted and
throws Vim into insert mode (see Figure 22-14).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 361

The Vim Tutorial and Reference

Oh woe to Mertle the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.
 SELECT

gh (start select), then select “Mertle”.

Sam replaces text

Oh woe to Sam the turtle
who found web surfing quite a hurtle.
 The system you see
 was slower than he.
And that's not saying much for the turtle.

Figure 22-14: Replacing text in select mode.

Switching Modes

The CTRLO command switches from selection mode to visual mode for one
command. The CTRLG command switches to visual mode without returning. To
switch from visual mode to select mode, use the CTRLG command.

Avoiding Automatic Reselection

Usually when you select text, the text remains selected. Even if you
execute a command, the selection remains. The gV command causes the
selection to disappear after the command is executed. This proves extremely
useful for macros that make a selection, do something with it, and then want it to
disappear.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 362

The Vim Tutorial and Reference

Chapter 23: Advanced Commands for Programmers

The Vim editor was written by programmers who wanted a good text
editor.

Because of that, Vim includes a lot of commands you can use to customize
and enhance it to make editing programs easier.

Consider, for example, the problem of the <Tab> character. You can deal
with this character in many different ways. You can set the tab stops to the
indentation size, leave them at the default eight characters, or eliminate them
altogether (force everyone to use spaces). The Vim editor supports all these
types of editing. This chapter shows you how to use each of them.

Previously, you saw how to turn on C indent mode. This chapter describes,
in detail, how to customize this mode.

You have learned how to turn syntax highlighting on as well. This chapter
takes you a step further, showing you how to customize it. This chapter discusses
the following:

● Removing autoindents

● Inserting registers and indent

● Indentation program options

● Tabbing options

● Customizing C indentation

● Comparing two files

● Using the preview window

● Matching options

● Additional motion commands for programmers

● Commands for editing files in other directories

● Advanced :make options

● Customizing the syntax highlighting

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 363

The Vim Tutorial and Reference

Removing an Automatic Indentation

Suppose you are editing a program. You have 'autoindent' ('ai') set and
are currently indenting in about three levels. You now want to put in a comment
block. This is a big block, and you want to put it in column 1, so you need to
undo all the automatic indents. One way to this is to type CTRLD a number of
times.

Or you can use 0CTRLD. The 0CTRLD command in insert mode removes all
the automatic indentation and puts the cursor in column 1. (Note that when you
type the 0, it appears on the screen--at this point, Vim thinks you are trying to
insert a 0 into the text. When you type in the CTRLD, it realizes you are
executing a 0CTRLD command and the 0 disappears.)

When you use 0CTRLD, the cursor returns to column 1 (see Figure 23-1).
The next line also starts in column 1 (normal 'autoindent' behavior).

 if (flag) {
 go to skip_it;
 {
 do something();
/* This is the start of comment block */
/* This is the second line of the block */

Figure 23-1: The 0CTRLD command.

Suppose, however, that you are typing in a label or an #ifdef directive and
want to go to column 1 for one line only. In this case, you want the ^CTRLD
command. This places you in column 1 for the current line only. When you enter
the next line, the indent is automatically restored (see Figure 23-2).

 if (flag) {
 go to skip_it;
 }
#ifdef FLAG
 if (flag2) {

Figure 23-2: The ^CTRLD command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 364

0CTRLD
un-indents
this line

This line is not
automatically
indented

^CTRLD
un-indents
this line

Automatically
indented

The Vim Tutorial and Reference

Inserting Indent

The CTRLT command is like a <Tab>, except that it inserts an indent the
size of the 'shiftwidth' option. If you use a 'shiftwidth' ('sw') of 4, for
instance, pressing <Tab> moves you to the next 8-column boundary (a 'tabstop'
('ts'), assuming that you have the default setting of 'tabstop=8'). But pressing
CTRLT moves us you to the next 4-column boundary.

The CTRLT and CTRLD commands work at any point on the line (not just
the beginning). Therefore, you can type some text and then use CTRLT and
CTRLD to adjust the indentation.

Inserting Registers

Generally when you use CTRLR to insert the contents of a register, the
contents are autoindented. If you do not want this to happen, use the command
CTRLR CTRLO register. On the other hand, if you want to insert a register and
have Vim "do the right thing," use the CTRLR CTRLP register command.

Take a look at how this works. Assume that you are editing a file that
contains the following:

1 int main()
2 {
3 if (x)
4 {
5 y();
6 }

The following settings have been made:

:set number
:set cindent
:set shiftwidth=4

You start on line 3 and do a V to enter line visual mode. Going down to line
6, you highlight the entire if block. You dump this in register a with the
command "ay. Next you add two lines at the end to start another if. Your text
now looks like this:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 365

The Vim Tutorial and Reference

1 int main()
2 {
3 if (x)
4 {
5 y();
6 }
7 if (z)
8 {

Register a contains the following:

 if (x)
 {
 y();
 }

Next you go into insert mode and insert the contents of register a using the
command CTRLR a. The result is ugly:

 if (x)
 {

y();
 }

So what happened? Register a contains indented lines. But Vim has
indenting turned on. Because you inserted the register indent and all, you
wound up with double indentation. That was not what you wanted. Go back to
where you were (CTRLOu, undo) and execute a CTRLR CTRLO a. The result is
as follows:

1 int main()
2 {
3 if (x)
4 {
5 y();
6 }
7 if (z)
8 {
9 if (x)
10 {
11 y();
12 }

This is better. You do not have the double indents. Trouble is, you still do
not have the right indent. The problem is that Vim kept the old indent from the
original text. Because this line is under the if (z) statement, however, it should
be indented an extra level. So you go back and try CTRLR CTRLP a.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 366

The Vim Tutorial and Reference

The result is as follows:

1 int main()
2 {
3 if (x)
4 {
5 y();
6 }
7 if (z)
8 {
9 if (x)
10 {
11 y();
12 }

Now Vim correctly indented the text by recalculating the indent of each
line as it was put in.

In normal mode, the "{register}p command inserts the text in the
specified register into the buffer. The "{register}]p (]<MiddleMouse>)
command does the same thing, except each line has its indent adjusted.
Similarly, the "{register}]P command acts like the "{register}P command
with indent adjustment.

To Tab or Not to Tab

Back in the early days, B.C. (before computers), there existed a
communication device called a Teletype. Some models of Teletype could do tabs.
Unfortunately, tab stops were set at every eight spaces. When computers came
along, their first consoles were Teletypes. Later, when more modern devices
(such as video screens) replaced Teletypes, the old tab size of eight spaces was
kept for backward compatibility.

This decision has caused programmers no end of trouble. Studies have
shown that the most readable indentation size is four spaces. Tab stops are
normally eight spaces. How do we reconcile these two facts? People have
chosen several ways. The three main ones are:

1. Use a combination of spaces and tabs in your program to enter code.
If you need an indentation of 12, for example, use a tab (8) and four spaces
(4).

2. Tell the machine that tab stops are only 4 spaces and use tabs
everywhere. (This is one solution I personally frown upon, because I do not
use the special setting and the text appears to be over-indented.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 367

The Vim Tutorial and Reference

3. Throw up your hands and say that tabs are the work of the devil and
always use spaces.

The Vim editor, thank goodness, supports all three methods.

Spaces and Tabs

If you are using a combination of tabs and spaces, you just edit normally.
The Vim defaults do a fine job of handling things. But you can make life a little
easier by setting the 'softtabstop' ('sts') option. This option tells Vim to
make the Tab key look and feel as if tabs were set at the value of 'softtabstop',
but use a combination of tabs and spaces to fake things (see Figure 23-3). After
you execute the following command, every time you press the Tab key the cursor
moves to the next 4-column boundary:

:set softtabstop=4

The first time you press it, however, you get 4 spaces inserted in your text.
The second time, Vim takes out the 4 spaces and puts in a tab (thus taking you to
column 8).

What Was Typed

<Tab>X
<Tab><Tab>X
<Tab><Tab><Tab>X
<Tab>X<Tab><Tab>X
<Tab>X<Tab><Tab><Tab>X

Dots represent spaces
Arrows represent tabs

Result
 111111111122222222223
123456789012345678901234567890
....X
 X
 X
....X X
....X X

Figure 23-3: Soft tabs.

Smart Tabs

Another related option is the 'smarttab' ('sta') option. With this option
on (:set smarttab), tabs inserted at the beginning of a line are treated like soft
tabs. The tab size used in this case is defined by the 'shiftwidth' option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 368

The Vim Tutorial and Reference

But tabs inserted elsewhere in the text act just like normal tabs. Note that
you must have soft tabs off (:set softtabstop=0) for this option to work. Figure
23-4 shows sample results.

Smart indenting is a combination of soft tabs and normal tabs. When you
execute the following command, Vim treats tabs at the beginning of a line
differently:

:set smarttab

Suppose, for example, that you have the following settings:

:set shiftwidth=4
:set tabstop=8
:set smarttab

Tab stops are every eight spaces and the indentation size is four spaces.
When you type <Tab> at the beginning of a line, the cursor will move over the
indentation size (four spaces). Doing a double <Tab> moves over two indention
sizes (eight spaces [4*2]).

What Was Typed

<Tab>X
<Tab><Tab>X
<Tab><Tab><Tab>X
<Tab>X<Tab><Tab>X
<Tab>X<Tab><Tab><Tab>X

Dots represent spaces
Arrows represent tabs

Result
 111111111122222222223
123456789012345678901234567890
....X
 X
 X
....X X
....X X

Figure 23-4: Smart tabs.

The following table shows you what happens if you type certain things at
the beginning of the line.

What's types What's Inserted
<Tab>
<Tab><Tab>
<Tab><Tab><Tab>
<Tab><Tab><Tab><Tab>

Four spaces
One tab
One tab, four spaces
Two tabs

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 369

The Vim Tutorial and Reference

When you type <Tab> anywhere else in the line, however, it acts like a
normal tab.

Using a Different Tab Stop

The following command changes the size of the tab stop to 4:

:set tabstop=4

('ts' is the short form of 'tabstop'.)

You can actually change it to be any value you want. Figure 23-5 shows
what happens when 'tabstop' is set to 4.

What Was Typed

<Tab>X
<Tab><Tab>X
<Tab><Tab><Tab>X
<Tab>X<Tab><Tab>X
<Tab>X<Tab><Tab><Tab>X

Dots represent spaces
Arrows represent tabs

Result
 111111111122222222223
123456789012345678901234567890
 X
 X
 X
 X X
 X X

Figure 23-5: tabstop set at 4.

Note: Just because you change it in Vim does not mean that it will change
in your terminal window, that your printing program will not still use
eight-character tab stops, or that other editors will use the new setting.
Therefore, your type and print commands might require special options to
handle things.

No Tabs

If you want absolutely no tabs in your file, you can set the 'expandtab'
('et') option. When this option is set, the <Tab> key inserts a series of spaces.
(Note that setting 'expandtab' does not affect any existing tabs. In other words,
any tabs in the document remain tabs. If you want to convert tabs to spaces, use
the :retab (:ret) command, which is explained later.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 370

The Vim Tutorial and Reference

Note: If you really want to insert a tab when this option is on, type
CTRLV<Tab>. The CTRL-V command tells Vim that you really want to insert
this <Tab> as a tab and not a bunch of spaces.

The 'copyindent' and 'preserveindent' Options

If the 'preserveindent' ('pi') is set then then Vim will attempt keep
whatever indent structure you already have. (As much as possible.) For
example, if you 16 wide indent consists of 8 spaces and one <tab>, Vim will keep
what you've got. Without this option it will use two tabs.

If the 'copyindent' ('ci') option is set, when a new line is opened, Vim
will attempt to copy the indentation from the previous line.

The :retab Command

The :retab command transforms text with tab stops at one setting to tab
stops with another. You can use it to turn tabs into a series of spaces as well, or
a series of spaces into tabs.

For example, suppose that you have a file that was created with tab stops
of 4 (:set tabstop=4). This is a non-standard setting, and you want to change
things so that the tab stops are 8 spaces. (You want the text to look the same,
just with different tab stops.) To change the tap stop in the file from 4 to 8, first
execute the command

:set tabstop=4

The text should appear on the screen correctly. Now execute the command

:%retab 8

This changes the tab stops to 8. The text will appear unmodified, because
Vim has changed the white space to match the new value of 'tabstop'.

For another example, suppose that you are required to produce files with
no tabs in them. First, you set the 'expandtab' option. This causes the <Tab>
key to insert spaces on any new text you type. But the old text still has tabs in it.
To replace these tabs with spaces, execute the command

:%retab

Because you didn't specify a new tabstop, the current value of 'tabstop' is
used. But because the option 'expandtab' is set, all tabs will be replaced with
spaces.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 371

The Vim Tutorial and Reference

Modelines

One of the problems with all these tabbing options is that people use them.
Therefore, if you work with files created by three different people, you can easily
have to work with many different tab settings. One solution to this problem is to
put a comment at the beginning or end of the file telling the reader what tab
stops to use.

For example:

/* vim:tabstop=8:expandtab:shiftwidth=8 */

When you see this line, you can establish the appropriate Vim settings, if
you want to. But Vim is a smart editor. It knows about comments like this and
will configure the settings for you. A few restrictions apply. The comment must
be formatted in this manner and it must appear in the first or last five lines of the
program (unless you change the setting of 'modelines').

This type of comment is called a modeline.

Shift Details

Suppose that you are typing with a shift width of 4 and you enter a line
with 3 spaces in front of it. What should the >> command do? Should it add 4
spaces in front of the line or move it to the nearest shift width. The answer
depends on the value of the 'shiftround' ('sr') option.

Usually this option is not set, so >> puts in 4 spaces. If you execute the
following command, >> moves the indent to the next shift-width boundary:

:set shiftround

Figure 23-6 shows how this works.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 372

The Vim Tutorial and Reference

With "noshiftround">>moves
the text over 4 spaces

123456789012345678
 size = 20

 size = 20

 8 spaces

With "shiftround">>moves
the text to the next "shiftwidth"
boundary. (In this case, column 8.)

123456789012345678
 size = 20

 size = 20

 3 spaces
 Column 8

Figure 23-6: The 'shiftround' option.

Specifying a Formatting Program

You can define the program Vim uses when executing the = command, by
setting the 'equalprg' option. If this option is not set (and you are not editing a
lisp program), the Vim editor uses its own built-in indentation program that
indents C or C++ programs. If you want to use the GNU indent program
(available from www.gnu.org), for instance, execute this command:

:set equalprg=/usr/local/bin/indent

Formatting Comments

One of the great things about Vim is that it understands comments. You
can ask Vim to format a comment and it will do the right thing.

Suppose, for example, that you have the following comment:

/*
 * This is a test.
 * Of the text formatting.
 */

You then ask Vim to format it using the following commands:

1. Position the cursor to the start of the comment.

2. Press v to start visual mode.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 373

The Vim Tutorial and Reference

3. Go to the end of the comment with the % command.

4. Format the visual block with the command gq. The result is:

/*
 * This is a test. Of the text formatting.
 */

Note that Vim properly handled the beginning of each line.

(For deciding what is and is not a comment, Vim uses the 'comments'
('com') option, described in the following section.)

The gq{motion} command accomplishes the same thing.

Defining a Comment

The 'comments' option defines what is a comment. This option is a series
of flag:string pairs.

The possible flags are as follows:

b Blank must follow. This means the character begins a comment only
if followed by a blank or other whitespace.

f Only the first line has the comment string. Do not repeat the string
on the next line, but preserve indentation.

l When used on part of a three-piece comment, make sure that the
middle lines up with the beginning or end. This must be used with
either the s or e flag.

n Indicates a nested comment.
r Same as l, only right-justify.
x Tells Vim that a three-part comment can be ended by typing just the

last character under the following circumstances:
1. You have already typed in the beginning of the comment.
2. The comment has a middle.
3. The first character of the end string is the first character on

the line.

For three-part comments, the following flags apply:

s Start of three-piece comment.
m Middle of a three-piece comment.
e End of a three-piece comment.
number Add the number of spaces (can be negative) to the

indentation of a middle part of a three-part comment.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 374

The Vim Tutorial and Reference

A C comment starts with /*, has a middle of *, and ends with */, as
follows:

/*
 * This is a comment
 */

This results in the 'comments' option specification of

set comments=s1:/*,mb:*,ex:*/

The s1 indicates that this is the start of a three-part comment (s) and the
other lines in the command need to be indented an extra space (1). The
comment starts with the string /*.

The middle of the comment is defined by the mb:* part. The m indicates a
middle piece, and the b says that a blank must follow anything that is inserted.
The text that begins the comment is *.

The ending is specified by ex:*/. The e indicates the end, and the x
indicates that you have only to type the last character of the ending to finish the
comment. The end delimiter is */.

Take a look at how this definition works. First, you need to set the
following option :

:set formatoptions=qro

375('fo' is the short version of 'formatoptions'.)

The following options prove useful for formatting text (see Chapter 11:
Dealing with Text Files for complete details):

q Allow formatting of comments using gq.
r Automatically insert the middle of a comment after pressing

<Enter>.
o Automatically insert the middle of a comment when a line inside a

comment is opened with an O or o command.

Now start typing in comments. You start with a line containing the
comment header, /*, as follows:

/*

When you type <Enter>, because r is in the format options, you get the
following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 375

The Vim Tutorial and Reference

/*
 *

The Vim editor automatically inserted the * surrounded by a space on each
side to make the comment look good. Now enter a comment and a new line:

/*
 * This is an example
 *

Now you need to end the comment. But Vim has already typed a space
after the asterisk. How can you enter */? The answer is that Vim is smart and
will end the comment properly if you just type /. The cursor moves back, the
slash is inserted, and you get the following:

/*
 * This is an example
 */

You can use a number of different formatting commands to format text or
comments. For more information on these, see Chapter 11: Dealing with Text
Files and Chapter 20: Advanced Text Blocks and Multiple Files.

Customizing the C Indentation

The C indentation process is controlled by the following options:

cinkeys
cink

Defines the keys that trigger an indent event

cinoptions
cino

Defines how much to indent

cinwords
cinw

Defines the C and C++ keywords

The 'cinkeys' option defines which keys cause a change to indentation.
The option is actually a set of type-char key-char pairs. The type-chars are as
follows:

! The following key is not inserted. This proves useful when you want
to define a key that just causes the line to be re-indented. By default,
CTRLF is defined to effect re-indentation.

* The line will be re-indented before the key is inserted.
0 The key causes an indentation change only if it is the first character

typed on the line. (This does not mean that it is the first character on
the line, because the line can be autoindented. It specifies the first
typed character only.)

The key-chars are as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 376

The Vim Tutorial and Reference

<name> The named key. See Appendix B: The <> Key Names
for a list of names.

^X Control character (that is, CTRLX).
o Tells Vim to indent the line when you use an o

command to open a new line.
O Line o, but for the O command.
e Re-indent the line when you type the final e in else.
: Re-indent the line when you type a colon after a label

or case statement.
<^>, <<>, <>>,
<o>, <e>, <O>

The literal character inside the angle brackets.

The default value for this the 'cinkeys' option is as follows:

:set cinkeys=0{,0},:,0#,!^F,o,O,e

Figure 23-7 shows how the 'cinkeys' option works.

 if (x)
 {
 do_it();
 }
 else
 {
goto_here:
 do_other();
 }
#define DONE 1

Figure 23-7: The 'cinkeys' option.

The 'cinoptions' Options

The 'cinoptions' option controls how much Vim indents each line. This
option consists of a series of key indent pairs. The key is a single letter that
controls what part of the program is affected (see the following table and Error:
Reference source not found and Error: Reference source not found). The indent
tells the program how much indentation to use. This can be a number of spaces
(for example, 8), or a negative number of spaces (-8). It can also be a multiple of
the 'shiftwidth' option that is specified as s. For example, 1s is a shift width,
0.5s is half a shift width, and 1s un-indents a shift width.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 377

0{ - { is the first
character typed on the
line

0} - } is the first
character typed on the
line

0# - # is the first
character entered
on the line

e - Second "e" of
"else"

: - Colon anywhere
on the line

The Vim Tutorial and Reference

Key Default Description
> s Normal shift used for indents not covered by another

letter.
e 0 Extra indent added to lines following a line with a curly

brace that ends a line (or more technically, one that does
not begin a line).

n 0 Extra indent added to single lines not inside curly braces
after an if, while, and so on.

f 0 Extra indent added to a function body. Includes the
outermost {} that define the function.

{ 0 Spaces to be added to opening {.
} 0 Spaces to be added to closing }.
^ 0 Spaces to be added to text inside a set of {} that start in

column 1. For example, a value of 1s causes the body of a
function to be pushed one shift width to the left.

: s Amount to indent a case inside a switch statement.
= s Extra indent for statements after the case statement.
l 0 If set to something other than zero, then align the code for

a case with the end of the case.
b 0 Make the break statement match the preceding case

inside a switch. (Please don't do this.)
g s Indentation for C++ protection keywords (public, private,

protected).
h s Indentation for statements that follow a protection

keyword.
p s Shift for K&R-style parameters.
t s Indent the type declaration for a function if it is on a

separate line.
i s Indent for the initializers of a C++ class.
+ s Indent for continuation lines (the 2-n lines of a statement).
c 3 Indent the middle of a multiline comment (if no middle * is

present).
C 0 When non-zero indent lines as specified by the c option

even if there is text in the comment which would cause a
different indentation.

/ 0 Indent comments lines this amount extra.
(2s Indent for a line in the middle of an expression. Actually,

the indent for a line that breaks in the middle of a set of
().

u s Indent for a line that breaks in the middle of a nested set
of () (like (, but one level deeper).

U 0 When non-zero do not ignore u or (inside a set of ().

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 378

The Vim Tutorial and Reference

Key Default Description
w 0 If non-zero and using (0 or

If non-zero and using u0 or
If non-zero and using U0 and the unmatched (is the first
non-blank character on the line then
Align the line with the first non-blank character after the
(.
Basically, don't try to understand this, do some
experimentation to see what looks nice.

W 0 Inside an unmatched (with (0 or u0, the amount to
indent.

m 0 If non-zero then align up the line with the ending) with
the starting (.

M 0 When set a closing) aligns with the previous line.
j 0 Indent Java anonymous classes correctly.
) 20 Specify the number of lines to search for closing ().
* 30 Specify the number of lines to search for unclosed

comment.
0 If non-zero recognize Perl comments.

The following examples show what happens with various indent options.
These examples assume a 'shiftwidth' of 4. (Note dot represents space.)

cindentopt=”” cindentopt=”>2” cindentopt=”>s2”
if (flag)
{
....do_it();
}

if (flag)
{
..do_it();
}

if (flag)
{
........do_it();
}

cindentopt=”” cindentopt=”e2” cindentopt=”es2”
if (flag) {
....do_it();
}
else
{
....do_other();
}

if (flag) {
..do_it();
}
else
{
....do_other();
}

if (flag) {
........do_it();
}
else
{
....do_other();
}

cindentopt=”” cindentopt=”n2” cindentopt=”ns2”
if (flag)
....do_it();

if (flag)
..do_it();

if (flag)
........do_it();

cindentopt=”” cindentopt=”f2” cindentopt=”fs2”

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 379

The Vim Tutorial and Reference

void do_it()
{

void do_it()
..{

void do_it()
........{

cindentopt=”” cindentopt=”{2” cindentopt=”{s2”
if (flag)
{

if (flag)
..{

if (flag)
........{

cindentopt=”” cindentopt=”^2” cindentopt=”^s2”
int foo()
{
....do_it();
}

int foo()
{
......do_it();
}

if (flag)
{
............do_it();
}

cindentopt=”:0” cindentopt=”:2” cindentopt=”:s2”
switch (x)
{
....case 'x':
........break;
}

switch (x)
{
..case 'x':
......break;
}

switch (x)
{
........case 'x':
............break;
}

cindentopt=”” cindentopt=”=2” cindentopt=”=s2”
case 1:
....flag = true;

case 1:
..flag = true;

case 1:
........flag = true;

cindentopt=”” cindentopt=”l1”
switch (x) {
....case a:
........foo();
........break;
 case b: {
 foo();
 break;
 }
}

switch (x) {
....case a:
........foo();
........break;
....case b: {
........foo();
........break;
....}
}

cindentopt=”” cindentopt=”b1”
switch (x) {
....case a:
........foo();
........break;
}

switch (x) {
....case a:
........foo();
....break;
}

cindentopt=”” cindentopt=”g2” cindentopt=”gs2”

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 380

The Vim Tutorial and Reference

class foo {
....public:
........int i;
}

class foo {
..public:
......int i;
}

class foo {
........public:
............int i;
}

cindentopt=”” cindentopt=”h2” cindentopt=”hs2”
class foo {
....public:
........int i;
}

class foo {
....public:
......int i;
}

class foo {
....public:
............int i;
}

cindentopt=”” cindentopt=”p2” cindentopt=”ps2”
int foo(a,b)
....int a;
....int b;

int foo(a,b)
..int a;
..int b;

int foo(a,b)
........int a;
........int b;

cindentopt=”” cindentopt=”t2” cindentopt=”ts2”
....int
foo(a,b)

..int
foo(a,b)

........int
foo(a,b)

cindentopt=”” cindentopt=”i2” cindentopt=”is2”
class foo:
....public class b

class foo:
..public class b

class foo:
........public class b

cindentopt=”” cindentopt=”+2” cindentopt=”+s2”
a = b + c +
....d;

a = b + c +
..d;

a = b + c +
......d;

cindentopt=”” cindentopt=”c2” cindentopt=”cs2”
/*
...test
*/

/*
..test
*/

/*
.......test
*/

cindentopt=”” cindentopt=”C1,c2” cindentopt=”C1,cs2”
/*****
..test
*****/

/*****
..test
*****/

/*****
.......test
*****/

cindentopt=”” cindentopt=”/2” cindentopt=”/s2”
do_it();
/* Did it */

do_it();
../* Did it */

do_it();
......../* Did it */

cindentopt=”” cindentopt=”(2” cindentopt=”(s2”

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 381

The Vim Tutorial and Reference

a = (b +
........c)
c = ((c + d
.....) * (
.........e + f)
....)

a = (b +
..c)
c = ((c + d
.....) * (
...e + f)
..)

a = (b +
........c)
c = ((c + d
.....) * (
.........e + f)
....)

cindentopt=”” cindentopt=”u2” cindentopt=”us2”
a = (b
........+ (c +
............d + e
..........))

a = (b
........+ (c +
..........d + e
..........))

a = (b
........+ (c +
................d + e
..........))

cindentopt=”” cindentopt=”U1,(2” cindentopt=”U1,(2s”
a = (b +
........(c +
.........d + e
........))

a = (b +
..(c +
......d + e
..))

a = (b +
........(c +
............d + e
........))

cindentopt=”” cindentopt=”w1,(2” cindentopt=”w1,(2s”
a = (b +
........(c +
.........d + e
........))

a = (b +
..(c +
...d + e
..))

a = (b +
........(c +
.........d + e
........))

cindentopt=”(0” cindentopt=”W2,(0” cindentopt=”W2s,(0”
func(
.....arg1,
.....arg2);
another_func(arg1,
.............arg2);

func(
..arg1,
..arg2);
another_func(arg1,
.............arg2);

func(
........arg1,
........arg2);
another_func(arg1,
.............arg2);

cindentopt=”” cindentopt=”m1”
a = (b +
....) * (d +
........) * e +
....(f + (g *
............h) + i)

a = (b +
) * (d +
) * e +
(f + (g *
........h) + i)

cindentopt=”” cindentopt=”M1”

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 382

The Vim Tutorial and Reference

if (a || (
............b && c
..........) ||
........d
...)

if (a || (
............b && c
............) ||
........d
........)

cindentopt=””
addListener(new EventListener() {
........public void eventHandler(Event e) {
........process(e);
........}
........});
cindentopt=”j1”
addListener(new EventListener() {
....public void eventHandler(Event e) {
........process(e);
....}
});

The 'cinwords' Option

The 'cinwords' option defines what words cause the next C statement to
be indented one level in the Smartindent and cindent mode. The default value of
this option is as follows:

:set cinwords=if,else,while,do,for,switch

Advanced Diff Mode

Vim's diff mode is simple to use, yet very powerful. You can also do a great
deal of customization with the editor. There are a number of ways you can start
diff mode besides using the gvimdiff command from the command line.

The first is :diffsplit {filename} (:diffs). This splits the window and
does a diff between the current file and new file you just specified. By default
this splits the window horizontally so you may want to execute the following
command to split things vertically:

:vertical diffsplit {filename}

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 383

The Vim Tutorial and Reference

The other way is to execute the command :diffthis (:difft). This makes
the current file part of the set of files who's differences are being displayed.
Naturally you have to execute this command for more than one file for the diffs
to appear.

Next we have the :diffpatch (:diffp) command:

:vertical diffpatch {patchfile}

This runs the patch5 program on the selected file, and opens a new window
with the results. Thus you can see what applying a patch to a file is going to do
to you.

Vim knows how to run the standard GNU patch program, but if you have a
different one you can set the 'patchexpr' ('pex') to be anything you want.
When that :diffpatch command is run, Vim will evaluate this option to perform
the patch.

Vim attempts to be very good about making sure that the difference display
is keep up to date even when you change a file. However, it's not perfect. If
things get a little confused, you can always tell Vim to redo the difference
highlighting with the :diffupdate (:dif) command.

Finally to take a window out of the difference set, use the :diffoff
command. The command :diffoff! performs this operation for all windows in
the current tab page.

Moving from difference to difference

The]c command jumps forward to the next change. A [count] can be
given to jump forward multiple changes. The [c command does the same thing
only backwards.

Moving Differences Around

As we've already discussed do obtains a difference from the other window,
and dp puts the current difference to the other window. The :diffget (:diffg)
and :diffput (:diffpu) commands do the same thing only they give you a little
more control

First of all they take a range argument. All differences within that range
will be moved. For example, to take all the differences in the first 100 lines from
the current file and put them in the other file use the command:

5 The patch program is a standard Linux and UNIX tool. A version for Microsoft Windows is
found in the Cygwin package.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 384

The Vim Tutorial and Reference

:1,100 diffput

The other advantage of :diffget and :diffput is that they take an
argument which specifies which buffer is to be considered the “other” file. This
can be a buffer number, or enough of a file name so that Vim can identify the
buffer.

For example, suppose we are doing a multi-way diff between the file
main.c, main.c.v1, main.c.v2, main.c.v3. We are currently ediing main.c and
want to grab the diff from main.c.v2. For that we use the command:

:diffget v2

Customizing Diff

The 'diff' option tells Vim whether or not this file is part of the diff set. If
this option is set, the the file is part of the set, if not set (nodiff) then it is not.

The option 'diffexpr' ('dex') contains the expression that's evaluated to
perform the diff. The variables v:fname_in, v:fname_new, v:fname_out and
should diff v:fname_in and v:fname_new and store the results in v:fname_out.

The 'diffopt' ('dip') option let's customize difference mode. The values
for this option include:

Option Meaning
filler Display filler lines when lines are added or deleted to keep

things aligned.
context:{number} Display {number} lines of context around a difference.
icase Ignore case differences
iwhite Ignore whitespace differences
horizontal By default split the windows horizontally in diff mode.
vertical By default split the windows vertically in diff mode.
foldcolumn:{column}Set the number of columns to use for the folding indicator.

Comparing Two Files The Old Fashioned Way

Suppose you want to compare two files that differ by a just a few edits and
for some reason diff mode does not appeal to you. You can do this, start by
opening two windows, one for each edit. Next, execute the following command in
each window:

:set scrollbind

('scb' is short for 'scrollbind'.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 385

The Vim Tutorial and Reference

Now when one window scrolls, so does the other. Figure 23-8
demonstrates how this command works. (Go down to line 14 in the first window;
the second window scrolls.) As you scroll through both windows, you might
encounter a place where you must move one window without moving the other.
To do so, all you have to do is execute the following command in the window you
want to move:

:set noscrollbind

After moving the text, then synchronize scrolling, by executing:

:set scrollbind

:set scrollbind
(in top window)

:set scrollbind
(in bottom window)

Move cursor to line
14 in the top.

Bottom window
scrolls as well.

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
/tmp/l1.txt
Line 1
Line 2
Line 3 Changed line
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
/tmp/l2.txt

Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
Line 12
Line 13
Line 14
/tmp/l1.txt
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
Line 12
Line 13
/tmp/l2.txt

Figure 23-8: 'scrollbind'.

The 'scrollopt' ('sbo') option controls how 'scrollbind' works. It is a
set of the following keywords:

ver Vertical scrolling
hor Horizontal scrolling

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 386

The Vim Tutorial and Reference

jump When switching between windows, make sure the offsets are
0.

Finally, the following command synchronizes the two windows:

:syncbind

(:sync for short.)

Suppose, for example, that you have been looking at two versions of a file,
moving both around. To look at some things, you turned off 'scrollbind'. Now
the files point at two different places. You want to go back to synchronized
scrolling.

You could synchronize the windows by going to each and moving it to the
right location; you let Vim do the work. In this case, you set 'scrollbind' in
both windows and then execute the following:

:syncbind

Vim then synchronizes the two files.

Advanced Folding

There are actually a number of different ways that you can cause folding to
happen in your text. We've already discussed the manual mode where you
manually decide to open and close folds. In Chapter 7: Commands for
Programmers we also discussed the indent method where the indent level
controls what's folded.

You can also put special markers in your text that tell Vim where to start
and stop a fold. To make this work you need to set 'foldmethod' ('fdm') to
marker.

The 'foldmarker' ('fmr') option consists of two strings, the first starts a
fold, the second ends it. By default the value of this option is {{{,}}}. Let's
take a look at a typical text

{{{
This will be folded
}}}
This is normal
{{{
Another fold (to be hidden
}}}

Vim will display this text as

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 387

The Vim Tutorial and Reference

+ 3 lines:
This is normal
+ 3 lines:

You can put a number after the marker to indicate the fold level. For
example:

{{{1
Folded at level 1
{{{2
Folded at level 2
}}}2
Folded at level 1
}}}1
Not folded.

Note: An end marker ends all folds at that level and higher. So if you
forget the }}}2, the }}}1 will close the fold.

When in marker mode, the visual command zf command not only creates
the fold, it adds the marker to the end of line. In Figure 23-9 we first highlight
three lines in visual mode then fold them with zf. (Power users can use
zf{motion} to do the same thing.)

A normal line
Fold me
Fold me
Fold me
Normal again

zf

A normal line
+ 3 lines: Fold me
A normal line

zo to open the fold

A normal line
Fold me{{{
Fold me
Fold me}}}
Normal again

Figure 23-9: Creating a fold with zf

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 388

The Vim Tutorial and Reference

The commentstring' ('cms') option can be used to tell Vim to put the
markers inside a comment. This option is a string with a %s in side which tells
Vim where the comment should go. For example:

:set commentstring=\ Comment:%s

We can see the results of a zf with the 'commenstring' set in Figure
23-10.

A normal line
Fold me Comment:{{{
Fold me
Fold me Comment:}}}
Normal again

Figure 23-10: zf with 'commentstring' set.

Similarly the zd command will delete the markers.

Additional fold commands

The [count]zF command will create a fold for [count] lines.

The :fold (:fo) command will fold a range of lines. For example to fold
the first 10 lines of a file use the command:

:1,10 fold

The zd command deletes a fold, but will not delete nested folds. The zD
command deletes all folds recursively for the fold under the cursor.

If you want to see all the text that in the window, the zE command will open
all the folds visible on the screen when you execute this command.

The zo command opens a single fold. The zO command opens all the folds
under the cursor.

A fold can also be opened with the :foldopen (:foldo) command. All folds
within the line range specified are opened one level. If the override (!) option is
used, all levels are opened.

The zc command closes one level of fold around where the cursor is
located. The zC command closes them all.

A fold can also be closed with the :foldclose (:foldc) command. All
folds within the line range specified are closed one level. If the override (!)
option is used, all levels are closed.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 389

The Vim Tutorial and Reference

Toggling folds

So zo opens a fold and zc closes. The za command will open a fold if it's
closed and close it if it's open. This works on one level of folding. To toggle all
the levels at once, use the zA command.

Enabling and disabling folding

The 'foldenable' ('fen') option enables folding. If it is turned off
('nofoldenable') no folding can be done. The zn command turns this option off,
zN turns it on, and zi (fold invert) toggles it.

Moving around folds

You can use the normal movement commands to go up and down the
screen. If you want to jump from fold to fold, use the [z command to move to
the start of the current fold (obviously the fold must be open). The]z command
moves to the end of the fold. The zj command moves down to the start of the
next fold and zk moves up to the end of the previous one.

Executing a command for all folds

The :folddoopen (:foldd) [fold do open] command executes a single
command for every open fold. For example, to comment out a all sections of
code except the stuff in a closed fold execute the command:

:% folddoopen s/^/\/\//

Note that in this command we use a range (%) to tell the command to work
on the entire file. If we wanted to just affect the lines in a closed fold we would
use the command :folddoclosed (:folddoc).

Customizing folds

The 'foldtext' ('fdt') option controls how the text for a fold is displayed.
The following variables are set during the execution of this function:

v:foldstart First line folded (this fold)

v:foldend Last line folded (this fold)

v:folddashes String to be put at the beginning of each fold (you
can set this)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 390

The Vim Tutorial and Reference

v:foldlevel The folding level

The 'foldcolumn' ('fdc') option tells Vim what column to display the fold
information in. It's value must be between 0 and 12.

The 'foldminlines' ('fml') option controls the minimum number of lines
that can be folded. If a fold is smaller that 'foldminlines' it will not be
displayed.

The 'foldnestmax' ('fdn') option controls the maximum nesting level of
the folds.

Controlling what opens and closes folds

The 'foldopen' ('fdo') option is a set of keywords that define when a
command will open a fold. It can be any set of the following keywords:

Keyword Meaning
all Any command
block Any block movement command such as (, {, [[, or [{.
hor Any horizontal movements such as l, w, or fx.
insert Any command that starts an insert.
jump Any command that performs a major jump such as G or gg.
mark Jumping to a mark.
percent The % command
quickfix Any quick fix command such as :cc or :cn.
search Any search such as /, ?, or n.
tag Jumping to a tag with a CTRL] or :tag command.
undo The undo or redo command.

The 'foldclose' ('fcl') option tells Vim when to automatically close a
fold. It can be set to empty in which case any folds that are automatically
opened are never closed, or to any in which case, all folds where are opened
automatically are closed when the cursor leaves the fold.

Fold Methods

There are many different ways folds can be created. This is controlled by
the 'foldmethod' ('fdm') options.

The methods are:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 391

The Vim Tutorial and Reference

diff Folds are created as part of diff operation. (See the
section Diff Mode in Chapter 8: Basic
Abbreviations, Keyboard Mapping, and
Initialization Files.)

expr Folds are controlled by an expression.

indent Folds are controlled by indentation level.

manual Folds are created manually.

marker Markers in the text tell Vim where to fold things.

syntax The syntax highlighting rules tell Vim where to
make the folds.

When the 'foldmethod' is set to syntax, then any syntax elements which
have the fold option on them are folded. For example in the C language to fold
all the stuff between #if 0 and #endif, Vim uses the following syntax rule:

:syn region cCppOut
\ start="^\s*\(%:\|#\)\s*if\s\+0\+\>"
\ end=".\@=\|$" contains=cCppOut2 fold

When 'foldmethod' is set to expr then the expression in the 'foldexpr'
('fde') is evaluated to get the fold level. Creating such a function is a
challenging bit of Vim programming and is beyond the scope of this book.

The Preview Window

Suppose you are going through a program and find a function call that you
do not understand. You could do a CTRL] on the identifier and jump to the
location represented by the tag. But there is a problem with this. The current
file disappears because the file with the function definition replaces it.

A solution to this is to use a special window called the "preview" window.
By executing the following command, you open a preview window and display
the function definition:

:ptag function

(:pt is the short form of this command.)

(If you already have a preview window up, it is switched to the definition of
the function.) Figure 23-11 shows a typical example. Assume that you have just
executed the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 392

The Vim Tutorial and Reference

:ptag copy_p_data

After you have finished with the preview window, execute the following
command:

:pclose

(:pc, CTRLW CTRLZ, CTRLWz accomplish the same thing.)

 assert((*the_data>n_data_ptr) <1000);
 return (result);
}
/* Create data from a db data record */
void copy_p_data(
 struct p_data *the_data,
 const datum db_data
){
 the_data>n_data_ptr = (int*)&the_data>raw_data[0];
 set_datum(the_data, db_data);
}
/mnt/sabina/sdo/tools/local/proto/p_data.c [Preview]

 copy_p_data(&cur_entry, cur_value);

pq.c

Figure 23-11: :ptag example.

A whole set of commands is designed to manipulate the file in the preview
window. The commands are as follows:

:pedit [!] [++opt] [+cmd] {file}
:ped [!] [++opt] [+cmd] {file}

Open a preview window and do an
:edit (:e) command in it.

:ppop
:pp

Do a :pop command in the preview
window.

:ptselect identifier
:pts identifier

Open a preview window and do a
:tselect.

:ptjump identifier
:ptj identifier

Open a preview window and do a
:tjump.

:[count] ptnext
:[count] ptn

Do a :[count] tnext in the preview
window.

:[count] ptprevious
:[count] ptp
:[count] ptNext
:[count] ptN

Do a :[count] tprevious in the
preview window.

:[count] ptrewind Do a :[count] trewind in the

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 393

The Vim Tutorial and Reference

:[count] ptr
:[count] ptfirst
:[count] ptf

preview window.

:ptlast
:ptl

Do a :tlast in the preview window.

CTRLW} Do a :ptag on the word under the
cursor.

CTRLWg}
CTRLW CTRLG }

Do a :ptjump on the word under the
cursor.

Vim also sets the option 'previewwindow' ('pvw') to indicate that the
window is the preview window.

Match Options

The 'matchpairs' ('mps') option controls what characters are matched by
the % command. The default value of this option is as follows:

:set matchpairs = (:),{:},[:]

This tells Vim to match pairs of (), [], and {}. To match <> (useful if you
are editing HTML documents), for example, use the following command:

:set matchpairs=<:>

This matches just <> pairs. If you want to match <> in addition to the other
characters, you need this command:

:set matchpairs=(:),{:},[:],<:>

This is a little long and awkward to type. The += flavor of the :set
command adds characters to an option. Therefore, to add <> to the match list,
use the following command:

:set matchpairs+=<:>

Showing Matches

If you execute the following command, when you enter any type of bracket
((,), [,], {, }), Vim will cause the cursor to jump to the matching bracket
briefly when entering:

:set showmatch

('showmatch' can be abbreviated as 'sm')

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 394

The Vim Tutorial and Reference

Generally this jump lasts only for a half second, but you can change it with
the 'matchtime' ('mat') option. If you want to make it 1.5 seconds, for
instance, use the following command:

:set matchtime=15

The value of this option is 1/10 second.

Finding Unmatched Characters

The [{ command finds the previous unmatched { (see Figure 23-12). The]
{ command finds the next unmatched {. Also, [} finds the next unmatched },
whereas]} finds the previous unmatched }.

int main()
{
 if (flag) {
 do_part2();
 do_part1();
 return (0) ;
}

Figure 23-12: The [{ command.

The]) command finds the next unmatched). The [(finds the previous
unmatched (. The command [# finds the previous unmatched #if or #else (see
Figure 23-13). The command]# finds the next unmatched conditional.

#ifdef FOO
define SIZE 1
#else /* FOO */
ifdef BAR
define SIZE 20
else /* BAR */
define SIZE 30
define WIDTH 10
#endif

Figure 23-13: The [# command.

These commands are not that reliable because matching by mechanical
means is impossible. It is possible to tell that you have three { and two }, but
Vim can only guess at which { is missing a }.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 395

[{

[#

The Vim Tutorial and Reference

Method Location

The following commands move to the beginning or end of a Java method:

[m Search backward for the start of a method.
[M Search backward for the end of a method.
]m Search forward for the start of a method.
]M Search forward for the end of a method.

Movement

Several movement commands are designed to help programmers navigate
through their text. The first set finds the characters { and } in column 1. (This
usually indicates the start of a procedure, structure, or class definition.) The
four curly brace-related movement commands are as follows:

count [[Move backward to the preceding { in column 1.
count [] Move backward to the preceding } in column 1.
count]] Move forward to the next { in column 1.
count][Move forward to the next } in column 1.

Figure 23-14 shows how these commands work.

int sub1 (void)
{
 return (1);
}
int sub2 (void)
{
 return (2);
}
int sub3 (void)
{
 return (3);
}

Figure 23-14: Curly brace movement commands.

Comment Moves

The commands [/ and [* move you backward to the start of the first C
comment it can find. The commands]/ and]* move you forward to the end of
the next C comment it can find. Figure 23-15 illustrates some simple comment
motions.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 396

[]

[[

Cursor starts here

][

]]

The Vim Tutorial and Reference

/*
 * Comment.
 */
int a;
int b;
/*
 * Comment.
 */

Figure 23-15: Comment motions.

Dealing with Multiple Directories

As programming projects grow larger and larger, you might find it
convenient to organize things in different directories. Take a look at a small
project. You have a main directory that contains main.c and main.h. The other
directory is lib and it contains lib.c and lib.h. (This naming has no imagination,
but it does make a good example.) Figure 23-16 shows this example
organization.

Figure 23-16: File layout.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 397

[/

Cursor starts here

]/

prog

main.c
main.h

lib.c
lib.h

The Vim Tutorial and Reference

 You start editing in the directory main. The first thing you need to do is
tell Vim about your new directory. You use the :set ^= (:se ^=) command to
put the directory at the top of the search path with the following command:

:set path ^= ../lib

('path' can be abbreviated 'pa'.)

Suppose you are editing the file main.c. The file looks like this:

#include "main.h"
#include "lib.h"

int main(int argc, char *argv[])

Now you need to check out a subroutine declaration in lib.h. One way of
going to that file is to execute the following command:

:vi ../lib/lib.h

This assumes you know where lib.h resides. But there is a better way.
First, you position the cursor over the filename in the following line:

#include "lib.h"

Now you execute the command gf. The Vim editor tries to edit the
filename which is under the cursor. The editor searches for the file in each
directory in the path variable. In this case it will find the file even though it lives
in another directory.

Suppose, however, that you want to edit the file lib.c. This name does not
appear in the text, so you cannot use the gf command. Instead, you execute the
following command:

:find lib.c

(:fi is the diminutive form of :find.6)

This acts just like the :vi command, except the editor searches for the file
along the path. The following command does the same thing, but it splits the
window and then does a :find :

:sfind lib.c

(:sf is the abbreviation for :sfind.)

6 I'm sorry but with all these abbreviations, I'm running out of ways to describe them.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 398

The Vim Tutorial and Reference

The gf command acts like a :find command but use the word under the
cursor as the name of the file to edit. If there is more than one file along the
'path' that matches the given file name, then you can select which one Vim
edits by giving the gf command a count.

In other words if you position the cursor on the name param.h and execute
the command 2gf, Vim will edit the second param.h file it finds looking through
the directories specified by the 'path' option.

The]f and [f command are older, depreciated versions of the gf
command.

The Java language is a little funny. The syntax of the import directive is
designed to decouple the name of the imported class from the file system. So the
directive:

import com.steve.database;

actually refers to the file com/steve/database.java. To handle this Vim uses
two options. The first 'includeexpr' ('inex') defines an expression that Vim
uses to translate names in the text to file names. The second 'suffixesadd'
('sua') defines the suffixes to add to a name in the text to convert it to a file
name for the gf command.

The include Path

2The 'path' ('pa') option is used by Vim to tell it where to look for files that
were included in the current file. The format of this option is as follows:

:set path=directory,directory,...

The parameter directory is a directory to search. For example:

:set path=/usr/include,/usr/X11R6/include

You can use wildcards (*) in any directory of the path specification:

:set path=/usr/include,/usr/include/*

There are a number of special directories:

** Match an entire tree. For example:

:set path=/usr/include/**

This command searches /usr/include and all its subdirectories.
The following path specification searches the files in any
directory that starts with /home/oualline/progs and ends with
include:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 399

The Vim Tutorial and Reference

:set path=/home/oualline/progs/**/include ""

<empty>

The empty string indicates the current directory. (For example,
the middle directory of the trio first,, last.)

. (dot)

The directory in which the file being edited resides.

For example, the following command tells Vim to search /usr/include and
all it is subdirectories, the directory in which the file resides (.), and the current
directory (,,).

:set path=/usr/include/**,.,,

Checking the Path

To make sure that you can find all the #include files, you can execute the
following command:

:checkpath

(:che for short.)

This command works not only on the #include directives in the file you are
editing, but also on any files that they #include and so on. The result is that all
#include files are checked.

Figure 23-17 shows how this command works.

In this case, a number of files include the files stddef.h and stdarg.h. But
Vim cannot find these files. If you want to tell Vim to search the Linux-specific
include directory, you can execute the following command:

:set path+=/usr/include/linux

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 400

The Vim Tutorial and Reference

 get_rel_name(&cur_entry, i),
 get_full_name(&cur_entry, i));
 }
 if (gdbm_errno != 0) {
 Included files not found in path
/usr/include/stdio.h
 <stddef.h>
 <stdarg.h>
 /usr/include/bits/types.h
 <stddef.h>
 /usr/include/libio.h
 /usr/include/_G_config.h
 <stddef.h>
 <stdarg.h>
 /usr/include/bits/stdiolock.h
 /usr/include/pthread.h
 /usr/include/sched.h
 /usr/include/time.h
 <stddef.h>
/usr/include/stdlib.h
 <stddef.h>
 /usr/include/sys/types.h
 <stddef.h>
 /usr/include/alloca.h
 <stddef.h>
/usr/include/string.h
 <stddef.h>
Press RETURN or enter command to continue

Figure 23-17: The :checkpath command.

Now do another:

:checkpath

Figure 23-18 shows the results.

 for (i = 0; i < *cur_entry.n_data_ptr; i++) {
 printf("\t%d %s (%s)\n",
 (int)get_flags(&cur_entry, i),
 get_rel_name(&cur_entry, i),
 get_full_name(&cur_entry, i));
 }
 if (gdbm_errno != 0) {
All included files were found

Figure 23-18: :checkpath with all files found.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 401

The Vim Tutorial and Reference

This command lists only the files that cannot be found. If you want to list
all #include files, use this command:

:checkpath!

Figure 23-19shows the results.

 Included files in path
<stdio.h>
/usr/include/stdio.h >
 <features.h>
 /usr/include/features.h >
 <sys/cdefs.h>
 /usr/include/sys/cdefs.h >
 <features.h> (Already listed)
 <gnu/stubs.h>
 <stddef.h>
 <stdarg.h>
 <bits/types.h>
 /usr/include/bits/types.h >
 <features.h> (Already listed)
 <stddef.h> (Already listed)
 <bits/pthreadtypes.h>
 /usr/include/bits/pthreadtypes.h >
 <bits/sched.h>
 <libio.h>
 /usr/include/libio.h >
 More

Figure 23-19: The :checkpath! command.

Defining a Definition

The Vim editor knows about C and C++ macro definitions. But what about
other languages? The option 'define' ('def') contains the regular expression
that Vim uses when it looks for a definition. To have Vim look for macros that
start with the string function, for instance, use the following command:

:set define=function

Locating include Files

The 'include' ('inc') option defines what an include directive looks like.
This option is used for the]CTRLI, [CTRLI,]d, and [d searches that look
through #include'd files.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 402

The Vim Tutorial and Reference

In Java you specify packages. The package names happen to look a lot like
file names except that the slashes (/) have been changed to dots (.). In order to
make transformation from Java package to actual file path, Vim uses the value of
the 'includeexpr' ('inex') to change the name in the program to a name that
the file system understands.

This option is used for the :checkpath command as well. Like the
'define' option, the value of this option is a regular expression.

The [i command searches for the first occurrence of the word under the
cursor. Text inside comments is ignored.

The]i command searches for the next occurrence of the word under the
cursor. Again, text inside comments is ignored.

The [I command lists all the lines which contain the keyword under the
cursor. (Comments ignored.) The]I command does the same thing starting at
the current cursor location.

Multiple Error Lists

The :make (:mak) command generates an error list. The Vim editor
remembers the results of your preceding 10 :make , :grep, :gr, :vimgrep or
:vim commands. To go to a previous error list, use the following command:

:colder

(or :col.)

To go to a newer one, use this command:

:cnewer

(or :cnew.)

Manipulating the quick fix list

The :cfile (:cf) command takes a file and loads it into the quick fix list.
For example:

:cfile errorlist.log

The :caddfile (:caddf) does the same thing only the file is added to the
quick fix list.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 403

The Vim Tutorial and Reference

There are a whole lot of other commands that change the contents of the
quick fix list. These are:

Command Add or
Replace

Jump or
No Jump

Description

:cfile {file}
:cf {file}

Replace Jump Replace error list with file.

:cgetfile {file}
:cg {file}

Replace No Jump Replace error list with file.

:caddfile {file}
:caddf {file}

Adds No Jump Add file to error list.

:cbuffer {buffer}
:cb {buffer}

Replace Jump Replace error list with buffer.

:cgetbuffer {buffer}
:cgetb {buffer}

Replace No Jump Replace error list with buffer.

:caddbuffer {file}
:cad {biffer}

Adds No Jump Add buffer to error list.

:cexpr {expr}
:cex {expr}

Replace Jump Replace error list with the
expression.

:cgetexpr {expr}
:cgetx {expr}

Replace No Jump Replace error list with
expression.

:cadexpr {expr}
:cadde {expr}

Adds No Jump Add the expression to error
list.

Local error lists

Vim actually maintains two different types of lists. So far we've been using
the error list which is the same no matter what the current buffer is. There is
also a local list which is local to a buffer. The two are very similar and all of the
error list commands have local list equivalents. The following tables lists the
various commands.

Error
List

Command

Location
List

Command
Description

:cc :ll Display current error.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 404

The Vim Tutorial and Reference

:cn
:cnext

:lne
:lnext Display next error.

:cN
:cNext
:cp
:cprevious

:lN
:lNext
:lp
:lprevious

Display previous error.

:cnf
:cnfile

:lnf
:lnfile Display first error in the next file.

:cNf
:cNfile
:cpf
:cpfile

:lNf
:lNfile
:lpf
:lpfile

Display last error in the previous file.

:cr
:crewind
:cfir
:cfirst

:lr
:lrewind
:lfir
:lfirst

Display the first error.

:cla
:clast

:lla
:llast Display the last error.

:cf
:cfile

:lf
:lfile Read errors from a file. Jump to first.

:cg
:cgetfile

:lg
:lgetfile Read errors from a file. No jump.

:caddf
:caddfile

:laddf
:laddfile Add lines from a file to the error list

:cb
:cbuffer

:lb
:lbuffer Read errors from a buffer. Jump to first

:cgetb
:cgetbuffer

:lgetb
:lgetbuffer Read errors from a buffer. No jump.

:cad
:caddbuffer

:laddb
:laddbuffer Add lines from a buffer to the error list.

:cex
:cexpr

:lex
:lexpr Create error list from expression. Jump to first

:cgete
:cgetexpr

:lgete
:lgetexpr Create error list from expression. No jump.

:cadde
:caddexpr

:lad
:laddexpr Add expression to the error list.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 405

The Vim Tutorial and Reference

:cl
:clist

:lli
:llist List errors

:cope
:copen

:lop
:lopen Open a window containing the error list

:ccl
:cclose

:lcl
:lclose Close the error list window

:cw
:cwindow

:lw
:lwindow Open the quick fix window if needed.

:col
:colder

:lol
:lolder Go to older error list

:cnew
:cnewer

:lnew
:lnewer Go to newer error list

:mak
:make

:lmak
:lmake Run the make program and capture the results.

:vim
:vimgrep

:lv
:lvimgrep Generate results using the internal grep

:vimgrepa :
vimgrepadd

:
lvimgrepa
:lvimgrepadd

Add grep results to the list

:gr
:grep

:lgr
:lgrep

Run the external grep comamnd and capture the
results

:grepa
:grepadd

:lgrepa
:lgrepadd

Run the external grep command and add the result
to the quick fix list

:tag
:ta

:ltag
:lt Jump to a given tag.

Customizing the :make Command

The name of the program to run when the :make command is executed is
defined by the 'makeprg' ('mp') option. Usually this is set to make, but Visual
C++ users should set this to nmake by executing the following command:

:set makeprg=nmake

The :make command redirects the output of make to an error file. The
name of this file is controlled by the 'makeef' ('mef') option. If this option
contains the characters ##, the ## will be replaced by a unique number. The
default value for this option depends on the operating system you are on. The
defaults are as follows: Amiga UNIX : Microsoft Windows and others

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 406

The Vim Tutorial and Reference

Amiga t:vim##.Err
UNIX, Linux, FreeBSD /tmp/vim##.err
Microsoft Windows and others vim##.err

You can include special Vim keywords in the command specification. The %
character expands to the name of the current file. So if you execute the
command

:set makeprg=make\ %

and you do a

:make

it executes the following command:

$ make file.c

The parameter file.c is the name of the file you are editing. This is not too
useful, so you will refine

the command a little and use the :r (root) modifier:

:set makeprg=make\ %:r.o

Now if you are editing file.c, the command executed is as follows:

$ make file.o

The Error Format

The option 'errorformat' ('efm') controls how Vim parses the error file
so that it knows the filename and line number where the error occurred. The
format of this option is as follows:

:set errorformat=string,string,string

The string is a typical error message with the special character % used to
indicate special operations (much like the standard C function scanf). The
special characters are as follows:

%f Filename
%l Line number
%c Column
%t Error type (a single character)
%n Error number
%m Error message
%r Matches the remainder of the line
%*char Matches (and skips) any scanf conversion specified by char.
%% The character %

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 407

The Vim Tutorial and Reference

When compiling a program, you might traverse several directories. The
GNU make program prints a message when it enters and leaves a directory. A
sample make log looks like this:

make[1]: Entering directory '/usr/src/linux2.2.12'
make C kernel fastdep
make[2]: Entering directory '/usr/src/linux2.2.12/kernel'
/usr/src/linux/scripts/mkdep sysctl.c time.c > .depend
make[2]: Leaving directory '/usr/src/linux2.2.12/kernel'
make C drivers fastdep
make[2]: Entering directory '/usr/src/linux2.2.12/drivers'
/usr/src/linux/scripts/mkdep > .depend
make[3]: Entering directory '/usr/src/linux2.2.12/drivers'
make C block fastdep
make[4]: Entering directory '/usr/src/linux2.2.12/drivers/block'
/usr/src/linux/scripts/mkdep xd.c xd.h xor.c z2ram.c > .depend
make _sfdep_paride _FASTDEP_ALL_SUB_DIRS=" paride"
make[5]: Leaving directory '/usr/src/linux2.2.12/drivers/block'
make[4]: Leaving directory '/usr/src/linux2.2.12/drivers/'

To get the filename right Vim needs to be aware of this change. The
following error format specifications are used to tell Vim about directory
changes:

%D Specifies a message printed on entering a directory. The %f in this
string indicates the directory entered.

%X Specifies the leave directory message. The %f in this string specifies
the directory that make is done with.

Some compilers, such as the GNU GCC compiler, output very verbose error
messages. The GCC error message for an undeclared variable is as follows:

tmp.c: In function 'main':
tmp.c:3: 'i' undeclared (first use in this function)
tmp.c:3: (Each undeclared identifier is reported only once
tmp.c:3: for each function it appears in.)

If you use the default Vim 'errorformat' settings, this results in three
error messages. This is really annoying. Fortunately, the Vim editor recognizes
multiline error messages. The format codes for multiline error messages are as
follows:

%A Start of a multiline message (unspecified type)
%E Start of a multiline error message
%W Start of a multiline warning message
%C Continuation of a multiline message
%Z End of a multiline message
%G Global; useful only in conjunction with + or
%O Single-line file message: overread the matched part
%P Single-line file message: push file %f onto the stack

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 408

The Vim Tutorial and Reference

%Q Single-line file message: pop the last file from stack

A + or can precede any of the letters. These signify the following

%letter Do not include the matching line in any output.
%+letter Include the whole matching line in the %m error string.

Therefore, to define a format for your multiline error message, you begin
by defining the start message. This matches the following:

tmp.c:3: 'i' undeclared (first use in this function)

The error message specification is:

%E%f:%l:\ %m\ undeclared\ (first\ use\ in\ this\ function)

Note the use of \ to tell Vim that the space is part of the string.

Now you have a problem. If you use this definition, the %m will match just
'i'. You want a longer error message. So you use + to make Vim put the entire
line in the message:

%+E%f:%l:\ %m\ undeclared\ (first\ use\ in\ this\ function)

The middle matches this:

tmp.c:3: (Each undeclared identifier is reported only once

This translates into the error string:

%C%f:%l:\ (Each\ undeclared\ identifier\ is\ reported\ only\ once

Note the use of the modifier to keep this message out of the list of
messages.

The end of the error is as follows:

tmp.c:3: for each function it appears in.)

which results in the string:

%Z%f:%l:\ for\ each\ function\ it\ appears\ in.)

So you add these three lines to the error format:

%+E%f:%l:\ '%*\k*'\ undeclared\ (first\ use\ in\ this\ function),
%C%f:%l:\ (Each\ undeclared\ identifier\ is\ reported\ only\ once,
%Z%f:%l:\ for\ each\ function\ it\ appears\ in.)

Now this works, but there is a slight problem. When the GNU compiler
encounters the second undefined variable, it does not output the three-line
message. Instead, it outputs just the first line. (It figures you have already seen
the stuff in parenthesis, so why output it again.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 409

The Vim Tutorial and Reference

Unfortunately, your error specification tries to match all three lines.
Therefore, you need a different approach. The solution is to globally tell Vim to
forget about the second two lines:

%G%f:%l:\ (Each\ undeclared\ identifier\ is\ reported\ only\ once
%G%f:%l:\ for\ each\ function\ it\ appears\ in.)

Now all you have to do is to add this option to your .vimrc file. You can just
add them on to the 'errorformat' option by using the following command:

" This will not work
:set errorformat+=
 \%G%f:%l:\ (Each\ undeclared\ identifier\ is\ reported\ only\ once,
\%G%f:%l:\ for\ each\ function\ it\ appears\ in.)

Note that in Vim, continuation lines start with a backslash (\). Also, you
have added a comma at the end of the first error message to separate it from the
second.

There is only one problem with this technique: It doesn't work. The
problem is that Vim goes through the list of strings in 'errorformat' in order,
stopping on the first one that matches. We are appending our messages to the
existing list of messages, and the error string for the GNU compiler (%f:%l:%m)
is defined before us.

It is matched first, and therefore you never get to your two new error
messages. You need to put the more specific matches (your two new messages)
at the beginning. This is accomplished with the following command:

" This will work
:set errorformat ^=
\%G%f:%l:\ (Each\ undeclared\ identifier\ is\ reported\ only\ once,
\%G%f:%l:\ for\ each\ function\ it\ appears\ in.)

Remember, the :set ^= command adds the string to the beginning of the
list.

The 'switchbuf' Option

Normally when you do a :make and errors occur,Vim will display the
offending file in the current window. If you set the 'switchbuf' ('swb') option
to split, then the editor will split the current window displaying the bad file in
the new window. Note the 'switchbuf' option can have the values: ''(nothing),
'split,useopen' and 'split,useopen'." For a description of the useopen
argument see Chapter 5: Windows and Tabs.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 410

The Vim Tutorial and Reference

Makefile
INC=I/usr/include/scsi
all: dltstatus

dltstatus: dltstatus.cpp
 g++ $(INC) Wall g
 o dltstatus
 dltstatus.cpp

const int EX_LOG_SENSE = 0x4D;

static int raw = 0;
static int raw = 0;
static int fd;

enum page_code {
 P_SUPPORTED = 0x00,
 /* Get supported pages */

const int EX_LOG_SENSE = 0x4D;

static int raw = 0;
static int raw = 0;
static int fd;
dltstatus.cpp
Makefile
INC=I/usr/include/scsi
all: dltstatus

Makefile

Figure 23-20: The 'switchbuf' option.

Customizing :grep

The :grep (:gr) command runs the program specified by the 'grepprg'
('gp') option. This option contains the command line to use. The # and %
characters will be expanded to be the names of the current and alternate file.

Also the string $* will be replaced by any arguments to the :grep
command. Note that on UNIX, the 'grepprg' defaults to grep -n. On Microsoft
Windows, it defaults to findstr/s. The capabilities of these two programs differ
vastly.

The :grep command uses the 'grepformat' option to tell Vim how to parse
the output of grep. (It uses the same format as the 'errorformat' option.)

Defining How a Tag Search Is Done

Usually Vim does a binary search for a given tag name. This makes things
quick if the tag file is sorted. Otherwise, a linear search is performed. To force
a linear search, use this command:

:set notagbsearch

(The sort form of the 'tagbsearch' option is 'tagb'.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 411

switchbuf=””

switchbuf=”split”

The Vim Tutorial and Reference

The 'notagbsearch' option is useful if your tag file is not sorted.

Some systems limit the number of characters you can have in a function
name. If you want this limit to be reflected in Vim, you can set the 'taglength'
('tl') option to the maximum length of your function names.

You specify the name of the tags file with the 'tags' ('tag') option. This
can be made to point to a file in another directory. For example:

:set tags+=/home/oualline/tools/vim/tags

But this causes a little confusion. Did you start in the current directory
and tell ctags to put the tag file in the directory /home/oualline/tools/vim or did
you execute the ctags command in this directory?

The Vim editor solves this problem with yet another option. If you set the
following, all tags are relative to the directory that contains the tag file:

:set tagrelative

otherwise, they are relative to the current directory. ('tr' is short for
'tagrelative'.)

With the 'tagstack' option set, the :tag and :tjump commands build a
tag stack. Otherwise, no stack is kept.

Customizing the Syntax Highlighting

The Vim editor enables you to customize the colors used for syntax
hightlighting. The Vim editor recognizes three different types of terminals:

term A normal black-and-white terminal (no color)
cterm Color terminal, such as xterm or the Microsoft Windows

MS-DOS window.
gui A window created by gvim

Black-and-White Terminals

To change the highlighting for a normal terminal, use this command:

:highlight groupname term=attribute

(:hi for short.)

The group-name is the name of the syntax group to be highlighted. This is
the name of a syntax-matching rule set used by Vim to tell what part of the
program to highlight. A list of the standard group names can be found later in
this section.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 412

The Vim Tutorial and Reference

The attribute is a terminal attribute. The terminal attributes for a normal
black-and white terminal are as follows:

bold italic

underline reverse (also standout called inverse)

You can combine attributes by separating them with commas, as follows:

:highlight Keyword term=reverse,bold

Suppose, however, that you have a terminal that has very unusual terminal
codes. You can define your own attributes with the start and stop highlight
options. These define a string to be sent to start the color and one to stop it. For
example:

:highlight Keyword start=<Esc>X stop=<Esc>Y

With this definition, when Vim displays keywords (for example, if, it will
output <Esc>Xif<Esc>Y). If you are familiar with the terminal definition files
used on UNIX (called termcap or terminfo files), you can use terminal codes.
The termcap entry us defines the underline start code, for example, and ue is the
exit underline-mode string. To specify these in a highlight entry, you use the
following command:

:highlight Keyword start=t_us stop=t_ue

Color Terminals

The color entries are defined by the cterm settings. You can set them
using cterm=attribute just like a normal term entry.

But there are additional options for a color terminal. The setting
ctermfg=colornumber defines the foreground color number. The
ctermbg=colornumber defines the background .

Color names are recognized as well as color numbers. The following tells
Vim to display comments in red on blue, underlined:

:highlight Comment cterm=underline ctermfg=red ctermbg=blue

(Incidentally, this looks really ugly.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 413

The Vim Tutorial and Reference

GUI Definition

The GUI terminal uses the option gui=attribute to display the attributes
of a syntax element in the GUI window. The options guifg and guibg define the
colors. These colors can be named. If the name contains a space, the color
name should be enclosed in single quotation marks. To keep things portable, the
Vim people suggest you limit your color names to the following.

Black Blue Brown Cyan
DarkBlue DarkCyan DarkGray DarkGreen
DarkMagenta DarkRed Gray Green
LightBlue LightCyan LightGray LightGreen
LightMagenta LightRed LightYellow Magenta
Orange Purple Red SeaGreen
SlateBlue Violet White Yellow

You can define the color as well by using the standard X11 color numbers.
(This works on all systems, regardless of whether you are using X11.) These are
of the form #rrggbb, where rr is the amount of red, gg is the amount of green,
and bb is the amount of blue. (These three numbers are in hexadecimal.) Under
Microsoft Windows, the following colors are available:

Black Blue Brown
Cyan DarkBlue DarkCyan
DarkGray DarkGreen DarkMagenta
DarkRed Green LightBlue
LightCyan LightGray LightGreen
LightMagenta LightRed Magenta
Red Sys_3DDKShadow Sys_3DFace
Sys_3DHighlight Sys_3DHilight Sys_3DLight
Sys_3DShadow Sys_ActiveBorder Sys_ActiveCaption
Sys_AppWorkspace Sys_Background Sys_BTNFace
Sys_BTNHighlight Sys_BTNHilight Sys_BTNShadow
Sys_BTNText Sys_CaptionText Sys_Desktop
Sys_GrayText Sys_Highlight Sys_HighlightText
Sys_InactiveBorder Sys_InactiveCaption Sys_InactiveCaptionText
Sys_InfoBK Sys_InfoText Sys_Menu
Sys_MenuText Sys_ScrollBar Sys_Window
Sys_WindowFrame Sys_WindowText White
Yellow

You can use the font=xfont as well to define which font to use. This is
not for the faint of heart, because X11 font names are complex. For example:

:highlight Comment font=

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 414

The Vim Tutorial and Reference

 \font=miscfixedboldrnormal141307575c70iso88591

Microsoft Windows fonts can be used as well:

:highlight Comment font=courier_helv:h12

Combining Definitions

You can define colors for multiple terminals in a single highlight command.
For example:

:highlight Error term=reverse cterm=bold ctermfg=7 ctermbg=1

Syntax Elements

The syntax elements are defined by the macros in $VIMRUNTIME/syntax.
To make things easier, however, the following names are generally used.

Boolean Character Comment Conditional
Constant Debug Define Delimiter
Error Exception Float Function
Identifier Include Keyword Label
Macro Number Operator PreCondit
PreProc Repeat Special SpecialChar
SpecialComment Statement StorageClass String
Structure Tag Todo Type
Typedef

In addition to these syntax elements, Vim defines the following for the
various things it generates:

Cursor The character under the cursor.
Directory Directory names (and other special names in listings).
ErrorMsg Error messages displayed on the bottom line.
IncSearch The result of an incremental search.
Mode Msg The mode shown in the lower-left corner (for example,

INSERT).
MoreMsg The prompt displayed if Vim is displaying a long

message at the bottom of the screen and must display
more.

NonText The Vim editor displays ~ for lines past the end of the
file. It also uses @ to indicate a line that will not fit on
the screen. (See Chapter 20: Advanced Text Blocks and
Multiple Files.) This syntax element defines what color
to use for these elements.

Question When Vim asks a question.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 415

The Vim Tutorial and Reference

SpecialKey The :map command lists keyboard mapping. This
defines the highlight to use for the special keys, such as
<Esc>, displayed.

StatusLine The status line of current window.
StatusLineNC Status lines of the other windows.
Title Titles for output from :set all, :autocmd, and so on.
Visual This color is used to highlight the visual block.
VisualNOS Visual-mode selection when Vim is "Not Owning the

Selection." This works only on X Windows Systems.
WarningMsg Warning messages displayed on the last line of the

window.
WildMe nu Current match in 'wildmenu' completion.
LineNr Line number for :number and :# commands, and when

the 'number' option is set.
Normal Normal text.
Search The results of the last search when the 'hlsearch'

option is enabled.
User1 through
User9

The 'statusline' option enables you to customize the
status line. You can use up to nine different highlights
on this line, as defined by these names.

Menu Menu color for the GUI.
Scrollbar Scrollbar color for the GUI

Color Chart

If you want to see what the various colors look like on your terminal, you
can use Vim's color chart. To access this chart, either pull down the
Syntax|Color test menu (gvim) or follow these steps:

1. Edit the file $VIMRUNTIME/syntax/colortest.vim. Your directories
might be different if you install Vim in a different place.

2. Execute a :source (:so) command to read in the test:

:source %

3. Browse the color list (in the third column). Figure 23-21 shows the
results. Unfortunately, this book is in black and white, but you can imagine
what it would look like in color.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 416

The Vim Tutorial and Reference

 grey_on_black black_on_grey
" lightred lightred_on_white white_on_lightred
" lightred_on_black black_on_lightred
" lightgreen lightgreen_on_white white_on_lightgreen
" lightgreen_on_black black_on_lightgreen
" lightyellow lightyellow_on_white white_on_lightyellow
" lightyellow_on_black black_on_lightyellow
" lightblue lightblue_on_white white_on_lightblue
" lightblue_on_black black_on_lightblue
" lightmagenta lightmagenta_on_white white_on_lightmagenta
" lightmagenta_on_black black_on_lightmagenta
" lightcyan lightcyan_on_white white_on_lightcyan
" lightcyan_on_black black_on_lightcyan

" Open this file in a window if it isn't edited yet.
" Use the current window if it's empty.
if expand('%:p') != expand('<sfile>:p')
 if &mod || line('$') != 1 || getline(1) != ''
 exe "new " . expand('<sfile>')
 else
 exe "edit " . expand('<sfile>')
 endif
endif
:source %

Figure 23-21: Color test.

The 'syntax' Option

The 'syntax' ('syn') option contains the name of the current language
used for syntax highlighting. You can turn syntax highlighting off by entering the
command:

:set syntax=off

To turn it back on, use this command:

:set syntax=on

Note: The on and off value for the 'syntax' option have special meaning,
they are not the name of programming languages, yet.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 417

The Vim Tutorial and Reference

Chapter 24: All About Abbreviations and Keyboard
Mapping

In Chapter 8: Basic Abbreviations, Keyboard Mapping, and Initialization
Files you learned about abbreviations and keyboard mappings, but that
discussion focuses on only the most useful subset of the commands. This chapter
examines things in complete detail. These commands have a lot of different
variations, and this chapter covers them all. In this chapter, you learn about the
following:

● How to remove an abbreviation

● Creation of mode-specific abbreviations

● Listing abbreviations

● How to force abbreviation completion in insert mode

● Mode-specific mappings

● Clearing and listing mappings

● Other mapping options

Removing an Abbreviation

To remove an abbreviation, use the command :unabbreviate (:una).
Suppose you have the following abbreviation, for example:

:abbreviate @a fresh

(The abbreviation of :abbreviate is :ab.)

You can remove it with this command:

:unabbreviate @a

To clear out all the abbreviations, use the following command:

:abclear

(You can use :abc as well.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 418

The Vim Tutorial and Reference

Note: One problem with this command is that the abbreviation @a is
expanded on the command line. Vim is smart, however, and it will
recognize that fresh is really @a expanded and will remove the
abbreviation for @a.

Abbreviations for Certain Modes

The :abbreviate command defines abbreviations that work for both insert
mode and command-line mode. If you type the abbreviation @a in the text, for
example, it will expand to fresh. Likewise, if you put it in a command-mode (:)
command, it will also expand .

Normal mode i@ a< ESC> Inserts fresh

Command mode :s/xx/@a/ Executes :s/xx/fresh/

If you want to define an abbreviation that works only in insert mode, you
need the :iabbrev (:ia) command:

:iabberv @a fresh

This means that in command mode, @a is just @a. The :noremap (:no)
version of this command is :inoreabbrev (:inorea). To unabbreviate an
insert-mode abbreviation, use the command :iunabbreviate (:inua). To clear
out all the insert abbreviations, use the following command:

:iabclear

(Or you can shorten this to :iabc.)

If you want an abbreviation defined just for command mode, use the
:cabbreviate (:ca) command. The :noremap version of this command is
:cnoreabbrev (:cnorea). To remove a definition, use the :cunabbreviate
(:cuna) command; and to clear out the entire abbreviation list, use the command
:cabclear (:cabc).

Listing Abbreviations

You can list all abbreviations by using the :abbreviate (:ab) command
with no arguments (see Figure 24-1).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 419

The Vim Tutorial and Reference

~
~
~
c r :rewind
i ab abbreviate
! h Help
Press RETURN or enter command to continue

Figure 24-1: :abbreviate output.

The first column contains a flag indicating the abbreviation type. The flags
are:

c Command mode

i Insert mode

! Both

Forcing Abbreviation Completion

In insert mode, the command CTRL] causes Vim to insert the current
abbreviation.

The command CTRLC causes Vim to exit insert mode. The difference
between CTRLC and <Esc> is that CTRLC does not check for an abbreviation
before entering normal mode.

Mapping and Modes

The :map command enables you to define mappings limited to certain
modes. Suppose, for example, that you want to use the <F5> key to yank the
current visual-mode select into register v. You can define the following
command:

:map <F5> "vy

This maps the <F5> key for normal, visual, and operator-pending modes.
But you want this mapping to be valid only for visual mode. To do that, use a
special version of the mapping command:

:vmap <F5> "vy

(Or :vm for short.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 420

The Vim Tutorial and Reference

The "v" flavor of the :map command tells Vim that this mapping is valid
only for visual mode. Table 24-1 lists seven different flavors of the :map
command.

Table 24.1 :map Commands

Command Normal Visual Operator
 Pending

Insert Command
 Line

Select
Mode

:map √ √ √

:nmap
:nm

√

:vmap
:vm

√

:omap
:om

√

:map! √ √

:imap
:im

√

:cmap
:cm

√

:smap √

Note: Operator-pending mode is the mode that occurs when you enter a
command such as d that expects a motion to follow. (For example, dw
deletes a word. The w is entered in operator-pending mode.)

Now suppose that you want to define <F7> so that the command d<F7>
deletes the C program block (text enclosed in curly braces, {}). Similarly y<F7>
would yank the program block into the unnamed register. Therefore, what you
need to do is to define <F7> to select the current program block. You can do this
with the following command:

:omap <F7> a{

This causes <F7> to perform a select block (a{) in operator-pending mode.
With this mapping in place, when you press the d of d<F7>, you enter
operator-pending mode. Pressing <F7> executes the command a{ in
operator-pending mode, selecting the block. Because you are performing a d
command, the block is deleted.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 421

The Vim Tutorial and Reference

Other :map Commands

A number of commands relate to mapping. The first is this:

:map lhs rhs

This adds the mapping of lhs to rhs. Therefore, pressing lhs results in the
execution of rhs. The :map command allows remapping of rhs. The command
:noremap (:no) however, does not

:noremap lhs rhs

For example:

:map ^A dd
:map ^B ^A

This causes Vim to delete a line when you type CTRLA. It also causes the
CTRLB command to do the same thing as CTRLA − that is, delete a line. Note:
When entering the control characters, you must "quote" them with CTRLV. In
other words, you must type

:map CTRLV CTRLA dd

to get:

:map ^A dd

Suppose you use the following :noremap command:

:map ^A dd
:noremap ^B ^A

When you type CTRLB, you execute a normal CTRLA (not mapped) CTRLA
command. Therefore, CTRLB will now increment the value of the number under
the cursor.

Undoing a Mapping

The :unmap (:unm) command removes a mapping. To cause a mapped
CTRLA command to revert to the default, use the following command:

:unmap ^A

This also proves useful if you want to map a command for a limited set of
modes. To define a command that exists in only normal and visual modes, but
not operator pending mode, for example, use the following commands:

:map ^A 3w
:ounmap ^A

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 422

The Vim Tutorial and Reference

(:ou can be used for :ounmap.)

The first command maps the CTRLA to 3w in normal, visual, and
operator-pending modes. The second removes it from the operating-pending
mode map.

Clearing Out a Map

The command :mapclear (:mapc) removes all mapping:

:mapclear

Be careful with this one because it also removes any default mappings you
might have.

Listing the Mappings

The :map command with no arguments lists out the mappings (see Figure
24-2).

~
~
~
 <xHome> <Home>
 <xEnd> <End>
 <SxF4> <SF4>
 <SxF3> <SF3>
 <SxF2> <SF2>
 <SxF1> <SF1>
 <xF4> <F4>
 <xF3> <F3>
 <xF2> <F2>
 <xF1> <F1>
Press RETURN or enter command to continue

Figure 24-2: Output of :map command.

The first column lists flags indicating the modes for which the mapping is
valid.

Character Mode

<Space> Normal, visual, and operator-pending

n Normal

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 423

The Vim Tutorial and Reference

v Visual

o Operator-pending

! Insert and command line

i Insert

c Command line

The second column indicates the various lhs of any mappings. The third
column is the value of the rhs of the mapping. If the rhs begins with an asterisk
(*),the rhs cannot be remapped.

The :map command lists all the mappings for normal, visual, and
operator-pending modes. The :map! command lists all the mappings for insert
and command-line mode. The :imap, :vmap, :omap, :nmap, and :cmap commands
list only the mappings for the given modes.

Recursive Mapping

By default, Vim allows recursive command mapping. To turn off this
feature clear the 'remap' with the command:

:set noremap

This may break some scripts. Using :noremap will avoid this problem.

Remapping Abbreviations

Abbreviations can cause problems with mappings. Consider the following
settings, for example:

:abbreviate @a ad
:imap ad adder

Now when you type @a, the string ad is inserted. Because ad is mapped in
insert mode to the string adder, the word adder is inserted in the text.

If you use the command :noreabbrev (:norea), however, you tell Vim to
avoid this problem. Abbreviations created with this command are not candidates
for mapping.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 424

The Vim Tutorial and Reference

One of the problems with the :abbreviate command is that the
abbreviations on the right side are expanded when the abbreviations are defined.
There is a clumsy way of avoiding this: Type an extra character before the word,
type the word, then go back and delete the extra character.

Language Dependent Mappings

The :lmap (:lm) command defines a mapping that's to be used in language
dependent mode. This mode is encountered when you are entering text in
command mode, insert mode, and search patterns that is not an actual Vim
command, but text or arguments to that command.

The usual suite of commands applies. :map Mode Table

The following chart shows the commands and the various modes they are
associated with:

Mode Commands

Normal, Visual
Operator Pending

:map :
noremap :
no

:
unmap :
unm

:
mapclear :
mapc

Normal :nmap
:nm

:
nnremap :
nn

:nunmap
:nun

:nmapclear
:nmapc

Visual
Select

:vmap
:vm

:vnoremap
:vn

:vunmap
:vu

:vmapclear
:vmapc

Visual :xmap
:xm

:xnoremap
:xn

:xunmap
:xu

:xmapclear
:xmapc

Operator
Pending

:omap
:om

:onoremap
:ono

:ounmap
:ou

:omapclear
:omapc

Insert
Command Line

:map! :noremap!
:no!

:unmap!
:unm!

:mapclear!
:mapc!

Insert :imap
:im

:inoremap
:ino

:iunmap
:iu

:imapclear
:imapc

Command
Line

:cmap
:cm

:cnoremap
:cno

:cunmap
:cu

:cmapclear
:cmapc

Language
Depedent

:lmap
:lm

:lnoremap
:ln

:lunmap
:lu

:lmapclear
:lmapc

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 425

The Vim Tutorial and Reference

Mode Commands

Select :smap :snoremap
:sno

:sunmap
:sun

:smapclear
:smapc

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 426

The Vim Tutorial and Reference

Chapter 25: Complete Command-Mode (:) Commands

Although the Vim editor is superb when it comes to doing things visually,
sometimes you need to use command mode. For example, command-mode
commands are much easier to use in scripts. Also, a number of other specialized
commands are found only in command mode.

Being expert in the command-mode means that you are a Vim power user
with the ability to execute a number of amazing high-speed editing commands.

Advanced Command Entry

Command mode maintains a history of the command mode command
you've entered. You can browse this history by going to command mode (:) and
using the <Up> and <Down> keys.

You can also open the command mode history window with the q: or
CTRLF command. This window lets you use the up (j) and down (k) commands
to select a command. You can edit this command using the normal Vim
commands, then execute it by pressing <Enter>.

Actually, the key (CTRLF) which opens the command history window is
configurable by setting the option 'cedit'. The default just happens to be
CTRLF.

The number of lines that appear for the command window is controlled by
the value of the 'cmdwinheight' ('cwh') option.

Editing Commands

The :delete (:d) command deletes a range of lines. To delete lines 1
through 5 (inclusive), for example, use the following command:

:1,5 delete

The general form of the :delete command is as follows:

:[range] delete [register] [count]

The register parameter specifies the text register in which to place the
deleted text. This is one of the named registers (az). If you use the uppercase
version of the name (AZ), the text is appended to what is already in the register.
If this parameter is not specified, the unnamed register is used.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 427

The Vim Tutorial and Reference

The count parameter specifies the number of lines to delete (more on this
later in this section).

The range parameter specifies the lines to use. Consider the following
example (spaces added for readability):

:1, 3 delete

Figure 25-1 shows the results of this command.

 1 A UNIX sales lady, Lenore,
 2 Enjoys work, but she likes the beach more.
 3 She found a good way
 4 To combine work and play:
 5 She sells C shells by the seashore.

:1,3 delete

 1 To combine work and play:
 2 She sells C shells by the seashor
~
~
~
~
3 fewer lines

Figure 25-1: :1,3 delete.

You have learned how to use search patterns for line specification. For
example, the following command deletes starting from the first line with hello to
the first line that contains goodbye.

:/hello/,/goodbye/ delete

Note: If goodbye comes before hello, the line range will be backwards, and
the command will not work.

You can refine the search string specification by adding an offset. For
example, /hello/+1 specifies the line one line after the line with the word hello
in it. Therefore, the following command results in the screen shown in Figure
25-2.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 428

The Vim Tutorial and Reference

 1 A UNIX sales lady, Lenore,
 2 Enjoys work, but she likes the beach more.
 3 She sells C shells by the seashore.
~
~
~
: /beach/+1, /seashore/1 delete

Figure 25-2: Results of :/beach/+1, /seashore/1 delete.

You can also use special shorthand operators for patterns, as follows:

\/ Search forward for the last pattern used.
\? Search backward for the last pattern used.
\& Search forward for the pattern last used as substitute pattern.

You can also chain patterns. The following command, for example, finds
the string first and then searches for the string second.

/first//second/

Figure 25-3 shows the result of the command:

:/found//work/ delete

 1 A UNIX sales lady, Lenore,
 2 Enjoys work, but she likes the beach more.
 3 She found a good way
 4 She sells C shells by the seashore.
~
~
:/found//work/ delete

Figure 25-3: :/found//work/delete.

You can also specify a line number on which to start. To start the search at
line 7, for instance, use the following command-line specification:

7/first/

Other Ways to Specify Ranges

If you execute a : command with no count (as most users generally do), the
Vim editor puts you into command mode and enables you to specify the range. If
you give the command a count(5:, for example), the range is count lines
(including the current one). The actual specification of this arrangement is that
if you include a count, your line range is as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 429

The Vim Tutorial and Reference

:.,count 1

In the example original file, for instance, if you move to the top line and
then execute the following command, you get the results shown in Figure 25-4:

:3delete

 1 To combine work and play:
 2 She sells C shells by the seashore.
~
~
~
~
3 fewer lines

Figure 25-4: 3:delete.

Deleting with a Count

Another form of the delete command is as follows:

:line delete count

In this case, the :delete command goes to line (default = the current line)
and then deletes count lines. If you execute the following command on the
original example file, for instance, you get the results shown in Figure 25-5:

:3 delete 2

 1 A UNIX sales lady, Lenore,
 2 Enjoys work, but she likes the beach more.
 3 She sells C shells by the seashore.
~
~
~
:3 delete 2

Figure 25-5: :3 delete 2.

Note: You can specify a line range for this type of command, but the first
line is ignored and the second one is used.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 430

The Vim Tutorial and Reference

Copy and Move

The :copy (:co, :t) command copies a set of lines from one point to
another. The general form of the copy command is as follows:

:[range] copy address

If not specified, range defaults to the current line. This command copies
the line in range to the line specified after address. Consider the following
command, for example:

:1,3 copy 4

Executed on the original joke, you get the results shown in Figure 25-6.

 1 A UNIX sales lady, Lenore,
 2 Enjoys work, but she likes the beach more.
 3 She found a good way
 4 To combine work and play:
 5 A UNIX sales lady, Lenore,
 6 Enjoys work, but she likes the beach more.
 7 She found a good way
 8 She sells C shells by the seashore.
~
3 more lines

Figure 25-6: :1,3 copy 4.

The :move command is much like the :copy command, except the lines are
moved rather than copied. The following command results in what is shown in
Figure 25-7:

:1,3 move 4

 1 To combine work and play:
 2 A UNIX sales lady, Lenore,
 3 Enjoys work, but she likes the beach more.
 4 She found a good way
 5 She sells C shells by the seashore.
~
~
~
~
3 lines moved

Figure 25-7: :1,3 move 4.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 431

The Vim Tutorial and Reference

Inserting Text

Suppose that you want to insert a bunch of lines and for some reason you
want to use command mode. You need to go to the line above where you want
the new text to appear. In other words, you want the text to be inserted after the
current line. Now start the insert by executing the :append (:a) command. Type
the lines that you want to add and finish by typing a line that consists of just a
period (.). The following example illustrates the :append command.

 :% print
 A UNIX sales lady, Lenore,
 Enjoys work, but she likes the beach more.
 She found a good way
 To combine work and play:
 She sells C shells by the seashore.
 :1 append
 This line is appended.
 .
 :% print
 A UNIX sales lady, Lenore,
 This line is appended.
 Enjoys work, but she likes the beach more.
 She found a good way
 To combine work and play:
 She sells C shells by the seashore.

The general form of the :append command is as follows:

:[line] append

The line is the line after which to insert the new text.

The :insert command also inserts text. It has a similar form:

:[line] insert

It works just like :append except that :append inserts after and :insert
inserts before the current line.

The :stopinsert (:stopi) command stops insert mode as if you had typed
<ESC>. But this command is a little hard to enter manually, since you must stop
insert mode before you can type it in. It is useful however in :autocmd
declarations. For example, if you want to exit insert mode when you enter a
buffer, use the command:

:autocmd BufEnter * :stopinsert

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 432

The Vim Tutorial and Reference

The :startreplace (:startr) command starts a replace just as if you had
typed an R. If the override (!) option is present, replacement begins at the end
of line as if you typed $R.

Printing with Line Numbers

You do not have to turn on the number option to print the text with line
numbers. The :# (:number, :nu) command accomplishes the same thing as
:print but includes line numbers:

:1 print
A UNIX sales lady, Lenore,
:1 #
 1 A UNIX sales lady, Lenore,

Printing with list Enabled

The 'list' option causes invisible characters to be visible. The :list (:l)
command lists the specified lines, assuming that this option is on:

:1,5 list

The following example shows the difference between :print and :list:

:100,111 print
open_db(void)
{
 if (proto_db == NULL) {
 proto_db = gdbm_open(proto_db_name, 512, GDBM_READER ,
 0666, NULL);
 if (proto_db == NULL) {
 fprintf(stderr, "Error: Could not open database %s\n",
 proto_db_name);
 exit (8);
 }
 }
}
:100,111 list
open_db(void)$
{$
 if (proto_db == NULL) {$
^Iproto_db = gdbm_open(proto_db_name, 512, GDBM_READER, $
^I^I^I^I0666, NULL);$
^Iif (proto_db == NULL) {$

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 433

The Vim Tutorial and Reference

^I fprintf(stderr, "Error: Could not open database %s\n",
$
^I ^I^I proto_db_name);$
^I exit (8);$
^I}$
 }$
}$

Print the Text and Then Some

The :z command prints a range of lines (the current one being the default)
and the lines surrounding them. For example, the following command prints line
100 and then a screen full of data:

:100 z

The :z command takes a count of the number of extra lines to list. For
example, the following command lists line 100 and three additional lines:

:100 z 3

The :z command can be followed by a code indicating how much to display.
The following table lists the codes:

Code Listing Start Listing End New Current Line
+ Current line One screen forward One screen forward
- One screen back Current line Current line
^ Two screens back One screen back One screen back
. One-half screen back One-half screen forward One-half screen forward
= One-half screen back One-half screen forward Current line

Substitute

The format of the basic substitute command is as follows:

:[range] s /from/to/[flags] [count]

(You can use :substitute for :s, but in practice this is almost never done.)

Note: This example uses a slash (/) to separate the patterns. Actually you
can use almost any character that does not appear in the patterns. The
following, for example, is perfectly valid:

:s +from+to+

This can prove extremely useful when you are dealing with patterns that
contain slashes, such as filenames:

 :1,$ s +/home/user+/apps/product+

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 434

The Vim Tutorial and Reference

Delimiters can be any character except letters, digits, backslash, double
quote, or vertical bar.

The Vim editor uses a special set of magic characters to represent special
things. For example, star (*) stands for "repeat 0 or more times." If you set the
'nomagic' option, however, the magic meanings of some of these characters are
turned off. (For a complete list of the magic characters and how the 'nomagic'
option affects them, see Chapter 19: Advanced Searching Using Regular
Expressions.)

The :smagic (:sm) command performs a substitute but assumes that the
'magic' option is set during the command. For example, start in command mode
with a one-line file. You start by printing the entire file:

:%print
Test aaa* aa* a*

Now set the 'magic' option and perform a substitution. The p flag tells the
editor to print the line it changed:

:set magic
:1 s /a*/b/p
bTest aaa* aa* a*

This command made only one change at the beginning of the line. So why
did it change Test to bTest when there is no a around? The answer is that the
magic character star (*) matches zero or more times. Test begins with zero a's.

But why did it make only one change? Because the :substitute command
changes only the first occurrence unless the g flag is present. Now undo the
change and try again:

:undo
:1 s /a*/b/pg
bTbebsbtb b*b b*b b*b

This time you got what you wanted. Now try it again with the 'nomagic'
option set:

:undo
:set nomagic
:1 s /a*/b/pg
Test aab ab b

Without 'magic', a star (*) is just a star. It is substituted directly. The
:smagic command forces magic on the star (*) and other characters while the
substitution is being made, resulting in the following:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 435

The Vim Tutorial and Reference

:undo
:1 smagic /a*/b/pg
bTbebsbtb b*b b*b b*b

The :snomagic (:sno) forces 'magic' off.

:undo
:set magic
:1 snomagic /a*/b/pg
Test aab ab b

The & command repeats the substitution. This enables you to keep your
old from and to strings, but also to supply a different range or flags. The general
form of this command is:

:[range]& [flags] [count]

For example:

:1 s /a\+/b/p
Test b* aa* a*

The command changes the first occurrence of from on the line. You want
the entire line, so you repeat the substitution with the g option:

:&g

Of course, this does not print (because the new flags--in this case
g--replaces the flags and you did not specify p or, more specifically, pg). Take a
look at the result:

:1 print
Test b* b* b*

This is what you wanted.

The :& command and the :substitute command with no from or to
specified acts the same. The normal-mode & command repeats the last
:substitute command. If you were to execute the following command, for
instance, you would change the first manager on line 5 to an idiot:

:5 s /manager/idiot/

Now if you enter normal mode (through the :vi command) and execute an
& command, the next manager on this line would change as well. If you were to
move down to another line and execute an & command, you would change that
line as well. If you give & a count, it will work on that many lines.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 436

The Vim Tutorial and Reference

The :~ command acts just like the &r command, except that it uses as from
the last search pattern (used for a / or ? search) rather than the last
:substitute from string.

The general form of this command is:

:[range]~ [flags] [count]

Substitute flags

The flags or the :substitute and other similar command are:

Print the line number and line after substitution.

& Use the previous flags again. This must be the first
flag in the list.

c Confirm each substitution.

e Do not output an error message if no text matches.

g Replace every occurrence on the line instead of just
the first one.

i Ignore case.

I Do not ignore case even if the options tell you to.

l Print the line in 'list' mode after substitution.

n Don't actually do the work, just report the number
of changes that would be made if you did.

p Print the line after substitution.

r If the search pattern is empty, use the previous one.

Making g the Default

Generally the :substitute command changes only the first occurrence of the
word unless you use the 'g' option. To make the 'g' option the default set the
'gdefault' ('gd') option.

:set gdefault

Note:This can break some scripts you may use.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 437

The Vim Tutorial and Reference

Global Changes

The command-mode commands covered so far have one limitation: They
work only on a contiguous set of lines. Suppose, however, that you want to
change just the lines that contain a certain pattern. In such a case, you need the
:global (:g) command.

The general form of this command is:

:[range] global /pattern/ command

This tells Vim to perform the given command on all lines that contain the
pattern in the specified range.

To print all the lines within a file that contain the word Professor, for
instance, use the following command:

:% global /Professor/ print
Professor: Yes.
Professor: You mean it's not supposed to do
Professor: Well there was no Computer Center
Professors of mathematics will prove the

The :global! (:g!) command applies the command to all the lines that do
not match the given pattern, as will the :vglobal command.

Commands for Programs

The following sections describe some commands for programs.

Include File Searches

The :ijump (:ij) command searches for the given pattern and jumps to the
first occurrence of the word in the given range. It searches not only the current
file, but all files brought in by #include directives. The general form of this
command is as follows:

:[range] ijump [count] [/]pattern[/]

If a count is given, jump to the count occurrence of the pattern. If the
pattern is enclosed in slashes it must be whole word. With slashes it is a regular
expression. Consider the file hello.c, for example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 438

The Vim Tutorial and Reference

#include <stdio.h>
int main() {
 printf("Hello World\n");
 return (0);
}

The following command goes to the first line that contains define EOF:

:ijump /define\s*EOF/

In this case, it is in the include file stdio.h. The :ilist (:il) command
acts like :ijump, except it lists the lines instead of jumping to them:

:ilist EOF
/usr/include/libio.h
1: 84 #ifndef EOF
2: 85 # define EOF (1)
3: 327 && __underflow (_fp) == EOF ? EOF \
/usr/include/stdio.h
4: 83 #ifndef EOF
5: 84 # define EOF (1)
6: 408 null term.), or 1 on error or EOF. */
/usr/include/bits/stdio.h
7: 138 if (__c == EOF) \
8: 157 if ((*__ptr++, __stream) == EOF) \

The :isearch (:is) command is like :ilist, except that the first
occurrence is listed:

:isearch EOF
#ifndef EOF

Finally, the command :isplit (:isp) works like a :split and a :ijump.

Jumping to Macro Definitions

You learned how to use the command [CTRLD to jump to the definition of
the macro under the cursor. The :djump (:dj) command accomplishes the same
thing for the macro named name:

:djump name

To jump to the macro MAX, for example, use this command:

:djump MAX

You do not have to know the full name of the macro to find its definition. If
you know only part of a name, you can perform a search for a partial string by
enclosing the name in slashes, as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 439

The Vim Tutorial and Reference

:djump /MAX/

This command finds the first definition of the macro with the word MAX in
it. You can give the :djump command a range argument that restricts the search
to the given range:

:50,100 djump /MAX/

This command finds the first definition of any macro containing the word
MAX in lines 50 through 100.

If you do not want the first definition, but the second, you can add a count
to the command. To find the second definition of MAX, for instance, use this
command:

:djump 2 MAX

Split the Window and Go to a Macro Definition

The :dsplit (:dsp) command is shorthand for :split and :djump:

:[range] dsplit [count] [/]pattern[/]

Listing the Macros

The :dlist (:dl) command works just like :djump, except that instead of
moving to the macro definition, the command just lists all the definitions that
match:

:dlist EOF
/usr/include/libio.h
1: 85 # define EOF (1)
/usr/include/stdio.h
2: 84 # define EOF (1)

Listing the First Definition

The :dsearch (:ds) command works just like :dlist, except that it
displays only the first definition:

:dsearch EOF
define EOF (1)

Override Option (!)

The :ilist, :ijump, :djump, :dlist, and :dsearch commands take an
override option (!). If the ! is present, definitions within comments are found as
well.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 440

The Vim Tutorial and Reference

Directory Manipulation

To change the current working directory, use the following command:

:cd dir

(Also known as :chdir, :chd.)

This command acts just like the system cd command. On UNIX, it changes
the current working directory to the given directory. If no directory is specified,
it goes to the user's home directory.

On Microsoft Windows, it goes to the indicated directory. If no directory is
specified, it prints the current working directory. The following command
changes the directory to the previous path:

:cd

In other words, it does a cd to the last directory you used as the current
working directory.

To find out which directory Vim is currently using, use the :pwd (:pw)
command:

:pwd

Start deep in the directory tree, for instance:

:pwd
/mnt/sabina/sdo/writing/book/vim/book/11

You are working on a UNIX system, so go to your $HOME directory:

:cd
:pwd
/home/sdo

Jump into another directory:

:cd tmp
:pwd
/home/sdo/tmp

Return to the previous directory:

:cd
:pwd
/home/sdo

Return to the previous directory before this one:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 441

The Vim Tutorial and Reference

:cd
:pwd
/home/sdo/tmp

The :cd command is global. In other words, the current directory is
changed for everyone. If you want to change it for just a single window use the
:lcd (:lc, :lchdir, :lch) command.

The 'cdpath' ('cd') option can be used to give Vim a set of directories to
search when doing a :cd. For example, if you enter the command:

:set cdpath=/usr/src,/new/src,,
:cd tools

Then Vim will attempt to go to the first directory it finds in the list:

/usr/src/tools
/usr/new/tools
./tools

Note: The current directory is just the empty string: ,,
(<comma><comma>).

Also if enable the 'auctochdir' ('acd') option then the directory will
automatically change when you change files to the directory of the file you are
currently editing.

Current File

The :file (:f) command prints out the current file and line information:

:file

If you want to change the name of what Vim thinks is the filename, use this
command:

:file name

Suppose, for example, that you start editing a file called complete.txt. You
get this file just right, so you write it out using the :write (:w) command.

Now you want to shorten the file and write it out as summary.txt. So now
you execute this command:

:file summary.txt

Now when you continue to edit, any changes are saved to summary.txt.

Take a look at how this works. You start by editing the file star.txt.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 442

The Vim Tutorial and Reference

:file
"star.txt" line 1 of 1 100% col 1

The :write command with no arguments writes the file to the current
filename (in this case, star.txt).

:write
"star.txt" 1 line, 18 characters written

Now you want to change the filename to new.txt. The editor tells you that
this is a new filename.

:file new.txt
"new.txt" [Not edited] line 1 of 1 100% col 1

The :write command is used to write the file. In this case, the current
filename differs; it is new.txt.

:write
"new/txt" [New File] 1 line, 18 chars written

The following command prints the current line number:

:=

For example:

:=
line 1

Advanced :write Commands

The :write command writes the buffer (or a selected range of lines) to a
file. It has some additional options. The following command, for example,
appends the contents of the file you are editing to the file named collect.txt:

:write >> collect.txt

If the collect.txt file does not exist, this command aborts with an error
message. If you want to "append" to the file even if does not exist, use the force
(!) option:

:write! >> collect.txt

The :write command can not only write to a file, but it can also be used to
pipe the file to another program. On Linux or UNIX, for instance, you can send
the file to a printer by using the following command:

:write !lpr

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 443

The Vim Tutorial and Reference

Warning: The following two commands are different; the difference being
only the spacing:

:write! lpr
:write !lpr

The first writes to the file named lpr with the force option in place. The
second sends the output to the command lpr.

Updating Files

The :update (:up) command acts just like the :write command, with one
exception: If the buffer is not modified, the command does nothing.

Reading Files

The :read (:r) command reads in a file. The general form of this command
is as follows:

:[line] read file

The preceding command reads the file in and inserts it just after line. If no
file is specified, the current file is used. If no line is supplied, the current line is
used.

Like :write, the :read command can use a command rather than a file. To
read the output of a command and insert it after the current line, use the
following command:

:[line] read !command

Register Execution

Chapter 2: Editing a Little Faster showed you how to record macros in
registers. If you want to use these macros in command mode, you can execute
the contents of a register with the command :@ (:*).

:[line]@register

This command moves the cursor to the specified line, and then executes
the register. This means that the following command executes the previous
command line:

:@:

To execute the previous :@register command, use this command:

:[line]@@

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 444

The Vim Tutorial and Reference

Simple Edits

The following sections describe simple edits.

Shifting

The :> command shifts lines to the right. The :< command shifts lines to
the left. The following command, for example, shifts lines 5 through 10 to the
right:

:5, 10 >

Changing Text

The :change (:c) command acts just like the :delete command, except
that it performs an :insert as well.

Entering Insert Mode

The :startinsert (:star) command starts insert mode as if you were in
normal mode and were to press i.

Joining Lines

The :join (:j) command joins a bunch of lines (specified by the range
parameter) together into one line. Spaces are added to separate the lines. If you
do not want the added spaces, use the :join! command.

Yanking Text

The :yank (:y) command yanks the specified lines into the register:

:[range] yank [register]

If no register is specified, the unnamed register is used.

Putting Text

The :put command puts the contents of a register after the indicated line.
To dump the contents of register a after line 5, for example, use the following
command:

:5put a

If you want to put the text before the line, use this command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 445

The Vim Tutorial and Reference

:5put! a

Undo/Redo

The :undo (:u) command undoes a change just like the u command does.
The :redo command redoes a change like CTRLR does.

Marks

To mark the beginning of the line, use the :mark (:ma) command.

:mark register

command. If a line is specified, that line will be marked. The :k command
does the same thing, with the exception that you don't have to put a space in
front of the register name.

The following two commands are equivalent:

:100 mark x
:100 kx

Miscellaneous Commands

The following sections describe some miscellaneous commands you can
use.

The :preserve Command

The :preserve (:pre) command writes out the entire file to the "swap" file.
This makes it possible to recover a crashed editing session without the original
file. (If you do not use this command, you need both the swap file and the
original to perform recovery.) See Chapter 14: File Recovery and Command-Line
Arguments, for information on recovering crashed sessions.

The Shell Commands

To execute a single shell command, use the following Vim command (where
cmd is the system command to execute):

:!cmd

To find the current date, for instance, use this command:

:!date

The following command repeats the last shell command you executed:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 446

The Vim Tutorial and Reference

:!!

Finally, the following command suspends Vim and goes to the command
prompt:

:shell

You can now enter as many system commands as you want. After you have
finished, you can return to Vim with the exit command.

Shell Configuration

The following several options control the actual execution of a command.

'shell'
'sh'

The name of the shell (command processor).

'shellcmdflag'
'shcf'

Flag that comes after the shell.

'shellquote'
'shq'

The quote characters around the command.

'shellxquote'
'sxq'

The quote characters for the command and the
redirection.

'shellpipe'
'sp'

String to make a pipe.

'shellredir'
'srr'

String to redirect the output.

'shellslash'
'ssl'

Use forward slashes in filenames (MS-DOS only).

 'quoteescape'
 'qe'

Defines the character to use for quoting the escape
(/) character.

'shelltmp'
'stmp'

Use temporary files if set. Otherwise use pipes.

Command History

The :history (:his) command prints out the current command-mode
command history:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 447

The Vim Tutorial and Reference

:history
 # cmd history
 2 1 print
 3 5
 4 7 print
 5 . print
> 6 history

The Vim editor maintains a set of histories for various commands. A code
identifies each of these:

Code History Type
c cmd : Command-line history (command-mode commands)
s search / Search strings (See Chapter 3: Searching)
e expr = Expression register history
i input @ Input line history (data typed in response to an

:input operator)
a all All histories

Therefore, to get a list of all the various history buffers, use the :history
all command:

:history all
 # cmd history
 2 1 print
 35
 4 7 print
 5 . print
 6 history
> 7 history all
 # search history
 1 human
 2 uni
 3 comp
 4 Seem
> 5 \<At\>
 # expr history
 1 55
 2 2*88
> 3 5+99
 # input history
Press Return or enter command to continue

The general form of the :history command is as follows:

:history code first , last

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 448

The Vim Tutorial and Reference

If no first and last are specified, the whole history is listed. The first
parameter defaults to the first entry in the history, and the last defaults to the
last. Negative numbers indicate an offset from the end of the history. For
example, 2 indicates the next-to-last history entry. The following command, for
example, list history entries 1 through 5 for command-mode commands:

:history c 1,5

And, this next command lists the last 5 search strings:

:history s 5,

Setting the Number of Remembered Commands

The 'history' ('hi') option controls how may commands to remember for
command mode (: mode) commands. To increase the number of commands to
remember (to 50, for instance), use this command:

:set history=50

Viewing Previous Error Messages

The Vim editor keeps track of the last few error and information messages
displayed on the last line of the screen. To view the message history, use the
:messages (:mes) command:

:messages
"../joke.txt" 6092 lines, 174700 characters
Entering Ex mode. Type "visual" to go to Normal
mode.
search hit BOTTOM, continuing at TOP
Not an editor command: xxxxx
search hit BOTTOM, continuing at TOP
search hit BOTTOM, continuing at TOP
Pattern not found: badbad
Not an editor command: :^H
Invalid address

Redirecting the Output

The :redir (:redi) command causes all output messages to be copied to
the file as well as to appear on the screen:

:redir > file

To end the copying, execute the following command:

:redir END

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 449

The Vim Tutorial and Reference

This command proves useful for saving debugging information or messages
for inclusion in a book.

You can also use the :redir command to append to a file by using this
command:

:redir >> file

Executing a :normal Command

The :normal (:norm) command executes a normal-mode command. The
following command, for instance, changes the word where the cursor is located
to the word DONE:

:normal cwDONE<Esc>

The group of commands is treated as one for the purposes of undo/redo.
The command should be a complete command. If you leave Vim hanging
(suppose that you executed a command cwDone, for instance), the display will not
update until the command is complete. If you specify the '!' option, mappings
will not be done on the command.

Getting Out

The :exit (:exi, :xit, :x) command writes the current file and closes the
window:

:exit

When the last window is closed, the editor stops. If the override flag (!) is
given, an attempt will be made to write the file even if it is marked read-only. You
can also specify a filename on the command line. The data will be written to this
file before exiting. The following command, for example, saves the current file in
save-it.txt and exits.

:exit saveit.txt

If you want to save only a portion of the file, you can specify a range of
lines to write. To save only the first 100 lines of a file and exit, for example, use
this command:

:1,100 exit saveit.txt

Write and Quit

The following command does the same thing that :exit does, except it
always writes the file:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 450

The Vim Tutorial and Reference

:range wq! file

The :exit command writes only if the file has been changed.

Advanced Hardcopy

The :hardcopy (:ha) command will print the file to the line printer. You
can also send the printed output to a file with the command:

:[range]hardcopy[!] > file

Warning: The command always overwrites the file without warning. The
override option (!) is used only to automatically select the default printer when
using Microsoft Windows.

On Linux and UNIX the output file is written in Postscript format. On
Microsoft Windows, it's written in the printer's native format using the “print to
file” feature of Microsoft Windows.

Normally the file is printed to the default printer. To change the name of
the printer, set the 'printerdev' ('pdev') option. For example, to go to the
printer named “Fred”, execute the command:

:set printerdev=Fred

The 'printfont' ('pfn') tells the printer what font to use. The actual font
name is the same as for the 'guifont' option. (See page 482.)

The 'encoding' ('enc') option Vim what encoding to use for the text in
the file. If you wish to use a different encoding for printing set the
'printencoding' ('penc') option.

If you are printing CJK (Korean), the 'printmbfont' ('pmbfn') option
controls what fonts are used for printing. Also the 'printmbcharset' ('pmbcs')
option controls the character set to be used. Unfortunately the Korean language
is beyond the scope of this book.

The format of the header is controlled by the 'printheader' ('pheader')
expression. The format of this option is exactly the same as that of the
'statusline' option (see page 482).

Finally the 'printexpr' ('pexpr') option sets the expression to use for
printing. The expression is passed in the variables v:fname_in as the file to be
printed. This file must be deleted by the expression.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 451

The Vim Tutorial and Reference

Also the variable v:cmdarg contains any arguments to the :hardcopy
command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 452

The Vim Tutorial and Reference

Chapter 26: Advanced GUI Commands

The Vim editor is highly configurable. This chapter shows you how to
customize the GUI. Among other things, you can configure the following in Vim:

● The size and location of the window

● The display of menus and toolbars

● How the mouse is used

● The commands in the menu

● The buttons on the toolbar

● The items in the pop-up menu

The remainder of this chapter introduces you to the commands that enable
you to customize all these features.

Switching to the GUI Mode

Suppose you are editing in a terminal window and want to switch to the
GUI mode. To do so, use the :gui (:gu, :gvim, :gv) command:

:gui

Window Size and Position

When you first start gvim (GUI Vim), the window is positioned by the
windowing system. The size of the window on UNIX is set to the size of the
terminal window that started the editor. In other words, if you have a 24×80
xterm window and start gvim, you get a 24×80 editing window. If you have a
larger window, say 50×132, you get a 50×132 editing window.

On UNIX you can tell gvim to start at a given location and size by using the
geometry flag. The general format of this option is as follows:

geometry {width}x{height}{x_offset}+{y_offset}

The width and height options specify the width and height of the window
(in characters). The x-offset and y-offset tell the X Windows System where to put
the window.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 453

The Vim Tutorial and Reference

The x-offset specifies the number of pixels between the left side of the
screen and the right side of the window. If the x-offset specification is negative,
it specifies the distance between the left edge of the editor and the right side of
the screen.

Similarly, the y-offset specifies the top margin, or if negative, the bottom
margin.

Thus, the geometry +0+0 option puts the window in the upper-left corner,
whereas -geometry 00 specifies the lower-right corner. The width and height
parameters specify how big the editing window is to be in lines and columns. To
have a 24-by-80 editing window, for example, use the option geometry 80x24.

Figure 26-1 shows how these options work.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 454

width

H
eight

x offset

y offset

The Vim Tutorial and Reference

Figure 26-1: geometry option.

Microsoft Windows Size and Position Command-Line Specification

The Microsoft Windows version of gvim starts with an editing window of
80×25. The gvim editor uses the standard Microsoft Windows command-line
option to specify an initial size and position. Because Microsoft Windows does
not have a standard option for this value, gvim does not have one either.

Moving the Window

The :winpos (:winp) command displays the current location (in pixels) of
the upper-left corner of the window:

:winpos

If you want to move the window, you can use this command:

:winpos X Y

To position the screen 30 pixels down and 20 pixels over from the left, for
instance, use the following command:

:winpos 20 30

Window Size

The following command displays the number of lines in the editing window:

:set lines?

To change this number, use this command:

:set lines=lines

Lines is the number of lines you want in the new editing window.

To change the number of columns on the screen, use the 'columns' ('co')
option:

:set columns=columns

The :winsize Command

Older versions of Vim used a :winsize (:wi) command. This command is
deprecated because the :set lines and :set columns commands have
superseded it.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 455

The Vim Tutorial and Reference

The 'guioptions'

You can control a number of GUI-based features with the 'guioptions'
('go') option. The general form this command is as follows:

:set guioptions=options

Options is a set of letters, one per option.

The following options are defined:

a Autoselect When set, if you select text in the visual mode, Vim
tries to put the selected text on the system's global
clipboard. This means that you can select text in
one Vim session and paste it in another using the
"*p command. Without this option you must use
the "*y command to copy data to the clipboard.

It also means that the selected text has been put on
the global clipboard and is available to other
applications. On UNIX, for example, this means
that you can select text in visual mode, and then
paste it into an xterm window using the middle
mouse button.

If you are using Microsoft Windows, any text
selected in visual mode is automatically placed on
the clipboard. (Just as the Copy ^C menu item does
in most other applications.) This means that you
can select the text in Vim and paste it into a
Microsoft Word document.

f Foreground On UNIX, the gvim command executes a fork()
command so that the editor can run in the
background. Setting this flag prevents this, which
is useful if you are writing a script that needs to
run the gvim command to let the user edit a file,
and that needs to wait until the editing is done.
(The f command-line option accomplishes the
same thing.) The f flag also proves useful if you
are trying to debug the program.

Note: You must set this in the initialization file (because by the time you
can set it from the edit window, it is too late).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 456

The Vim Tutorial and Reference

i Icon If set, gvim displays an attractive icon when the
editor is minimized if you are using a window
manager which displays programs on the
background.. If not present, the program just
displays the name of the file being edited with no
icon, (see Figure 26-2). (Note: This works only on
certain types of window managers.)

:set guiopt+=i :set guiopt=i

Figure 26-2: i option

m Menu Display menu bar (see Figure 26-3)

m Option

no m Option

Figure 26-3: m option.

M No menu If this option is present during initialization, the
system menu definition file
$VIMRUNTIME/menu.vim is not read in.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 457

The Vim Tutorial and Reference

Note: This option must be set in the .vimrc file. (By the time .gvimrc is
read, it is too late.)

g Gray Turn menu items that cannot be used gray. If not
present, these items are removed from the menu
(see Figure 26-4).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 458

Grey

The Vim Tutorial and Reference

Figure 26-4: g option.

t Tear off Enable tear off menus.

T Toolbar Include toolbar (see Figure 26-5)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 459

Removed

The Vim Tutorial and Reference

Figure 26-5: T option

r Right scrollbar Put a scrollbar on the right (see Figure 26-6).

l Left scrollbar Put a scrollbar on the left (see Figure 26-6).

b Bottom scrollbar Put a scrollbar on the bottom (see Figure 26-6).

Figure 26-6: Scrollbars.

v Vertical dialog boxes

Use vertical alignment for dialog boxes (see Figure
26-7).

Figure 26-7: v option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 460

l option
r optionb option

The Vim Tutorial and Reference

p Pointer callback fix

This option is designed to fix some problems that
might occur with some X11 window managers. It
causes the program to use pointer callbacks. You
must set this in the .gvimrc file.

Changing the Toolbar

The 'toolbar' ('tb') option controls the appearance of the toolbar. It is a
set of values:

icon Display toolbar icons

text Display text

tooltips When the cursor hovers over an icon, display a ToolTip.

The default displays ToolTips and icons:

:set toolbar=icons,tooltips

Figure 26-8 shows how this option affects the screen.

:set toolbar=icons,tooltips

:set toolbar=icons,text,tooltips

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 461

 Save all files

The Vim Tutorial and Reference

:set toolbar=text,tooltips

Figure 26-8: The 'toolbar' option.

Note: To turn off the toolbar, you cannot set this option to the empty
string. Instead use the following command:

:set guioptions = T

You can also customize the size of the icons using the 'toolbariconsize'
('tbis') option. (This only works if you are using the GTK+2 gui.) The value of
this option are tiny, small, medium, and large.

Customizing the Icon

If you are editing in a terminal window, some terminals enable you to
change the title of their window and their icon. If you want Vim to try to change
the title to the name of the file being edited, set this option:

:set title

Sometimes the name of the file with its full path name is longer than the
room you have for the title. You can change the amount of space used for the
filename with the following command:

:set titlelen=85

In this case, the title text can consume 85% of the title bar. For example:

:set titlelen=45

Figure 26-9 shows how 'titlelen' can affect the display.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 462

The Vim Tutorial and Reference

Figure 26-9: 'titlelen' option.

If you do not like what Vim selects for your title, you can change it by
setting the following:

:set titlestring=Hello\ World!

When you exit Vim, it tries to restore the old title. If it cannot restore it
(because it is impossible to remember it), the editor sets the title to the string
specified by the 'titleold' option. For example:

:set titleold=vim\ was\ here!

When the window is iconified, the icon option tells Vim whether to attempt
to put the name of the file in the icon title. If this option is set, Vim attempts to
change the icon text.

If you do not like the Vim default, you can set the 'iconstring' option and
that text will be used for the icon string.

The 'icon' option, if set causes the string under the icon to contain the
name of the file being edited (or the value of 'iconstring' if set). If the option is
turned off, the icons just have the generic title Vim.

This only works with certain types of window managers which do not
include the major Linux desktops KDE and Gnome.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 463

The Vim Tutorial and Reference

Mouse Customization

The Vim editor is one of the few UNIX text editors that is mouse-aware.
That means you can use the mouse for a variety of editing operations. You can
customize the utility of the mouse by using the options discussed in the following
sections.

Mouse Focus

Generally when you want to move from one Vim editing window to another,
you must use one of the window change commands such as CTRLWj or CTRLWk
or click the mouse inside that window. If you set the 'mousefocuse' ('mousef')
option, the current Vim editing window is the one where the mouse pointer is
located:

:set mousefocus

Note: This option affects only the windows within a Vim session. If you are
using the X Windows System, the selection of the current window (X Client
window) is handled by the window manager. On Microsoft Windows, the
current window selection is handled by Microsoft Windows, which always
forces you to use "click to type."

The 'mousemodel' Option

The 'mousemodel' ('mousem') option defines what the mouse does. There
are three possible modes: extend, popup, and popup_setpos. To set the mouse
model, use the following command:

:set mousemodel=mode

In all modes, the left mouse button moves the cursor, and dragging the
cursor using the left button selects the text.

In extend mode, the right mouse button extends the text and the middle
button pastes it in. This behavior is similar to the way an xterm uses the mouse.

In popup mode, the right mouse button causes a small pop-up menu to
appear. This behavior is similar to what you find in most Microsoft Windows
applications.

The popup_setpos mode is exactly like popup mode, except when you press
the right mouse button, the text cursor is moved to the location of the mouse
pointer, and then the pop-up menu appears.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 464

The Vim Tutorial and Reference

The following table illustrates how 'mousemodel' affects the mouse
buttons.

Mouse extend popup popup_setpos

Left Place cursor Place cursor Place cursor

Drag-left Select text Select text Select text

Shift-left Search word Extend selection Extend selection

Right Extend selection Pop-up menu Move cursor, and
then pop-up menu

Drag-right Extend selection

Middle Paste Paste Paste

Mouse Configuration

The 'mouse' option enables the mouse for certain modes. The possible
modes are as follows:

n Normal

v Visual

i Insert

c Command-line

h All modes when in a help file except "hit-return"

a All modes except the "hit-return"

r "more-prompt" and "hit-return" prompt

Mouse Mapping

The left mouse button (<LeftMouse>) moves the text cursor to where the
mouse pointer is located. The <RightMouse> command causes Vim to enter
visual mode. The area between the text cursor and the mouse pointer is
selected. The <MiddleMouse> acts like the P command and performs a put to
insert in the unnamed register in the file. If you precede the mouse click with a
register specification (such as "a, for instance), the contents of that register are
inserted.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 465

The Vim Tutorial and Reference

If you have a wheel on your mouse, the up-wheel (<MouseUp>) moves three
lines up. Similarly, a down-wheel movement (<MouseDown>) moves three lines
down. If you press Shift, the screen moves a page. In other words, <SMouseUp>
goes up a page and <SMouseDown> goes down a page.

Double-Click Time

The 'mousetime' ('mouset') option defines the maximum time between
the two presses of a double-click. The format of this command is as follows:

:set mousetime=time

Time is the time in milliseconds. By default, this is half a second (500ms).

Hiding the Mouse Cursor

When you are editing with the GUI, you have a text cursor and a mouse
pointer to deal with. If that is too confusing, you can tell Vim to turn off the
mouse pointer when not in use. To enable this feature, set the 'mousehide'
('mh') option:

:set mousehide

When you start typing, the mouse pointer disappears. It reappears when
you move the mouse.

Select Mode

The 'selectmode' ('slm') option defines when the editor starts select
mode instead of visual mode. The following three events can trigger select
mode:

mouse Moving the mouse (see 'mousemodel', discussed earlier)

key Using some special keys

cmd The v, V, or CTRLV command

The general form of the command is as follows:

:set selectmode=mode

Mode is a comma-separated list of possible select events (mouse, key, cmd).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 466

The Vim Tutorial and Reference

The 'keymodel' ('km') option allows the keys <Left>, <Right>, <Up>,
<Down>, <End>, <Home>, <PageUp>, and <PageDown> to do special things. If you set
this option as follows, Shift+key starts a selection: The

 :set keymodel=startsel

If the option is set as follows, an unshifted key results in the section being
stopped:

:set keymodel=stopsel

You can combine these options as well, as follows:

:set keymodel=startsel,stopsel

Custom Menus

The menus that Vim uses are defined in the file $VIMRUNTIME/menu.vim.

If you want to write your own menus, you might first want to look through
that file. To define a menu item, use the :menu (:me) command. The basic form
of this command is as follows:

:menu menuitem commandstring

(This command is very similar to the :map command.) The menu-item
describes where on the menu to put the item. A typical menu-item is File.Save,
which represents the item Save under the menu File. The ampersand character
(&) is used to indicate an accelerator. In the gvim editor, for instance, you can use
AltF to select File and S to select save. Therefore, the menu-item looks like
&File.&Save. The actual definition of the File.Save menu item is as follows:

:menu 10.340 &File.&Save<Tab>:w :confirm w<CR>

The number 10.340 is called the priority number. It is used by the editor to
decide where it places the menu item. The first number (10) indicates the
position on the menu bar. Lower numbered menus are positioned to the left,
higher numbers to the right.

The second number (340) determines the location of the item within the
pulldown menu. Lower numbers go on top, higher number on the bottom.

Figure 26-10 diagrams the priorities of the current menu items. The
menu-item in this example is &File.&Save<Tab>:w. This brings up an important
point: menu-item must be one string. If you want to put spaces or tabs in the
name, you either use the <> notation (<space>, <tab>, for instance) or use the
backslash (\) escape.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 467

The Vim Tutorial and Reference

:menu 10.305 &File.&Do\ It :exit<CR>

In this example, the name of the menu item contains a space (Do It) and
the command is :exit<CR>. Finally, you can define menu items that exist for only
certain modes. The general form of the menu command is as follows:

:mode menu priority menuitem commandstring

Figure 26-10: Menu item priorities.

The mode parameter is one of the following:

Character Mode
a Normal, visual, and operator-pending
n Normal
v Visual / Select
x Visual
o Operator-pending. (:omenu, :ome)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 468

10 20 40 50 60 70 9999

335

450470

350
360

370
380

400

410

420

430
440440440

340

330
320
310

425

405

The Vim Tutorial and Reference

Character Mode
i Insert
c Command line

Special Menu Names

There are some special menu names. These are

ToolBar The toolbar (the icons under the menu)
PopUp The pop-up window that appears when you press the right

mouse button in the edit window in certain modes

Limiting the Maximum Number of Generated Items

Some menus like the Buffers menu contain a dynamically generated list.
In the case of the Buffers menu it's a list of buffers. The 'menuitems' ('mis')
option controls how many items can be generated.

Toolbar Icons

The toolbar uses icons rather than text to represent the command. The
name of the icon is taken from the name of the menu item. For example, the
menu-item named ToolBar. New causes the New icon to appear on the toolbar.
The Vim editor has 28 built-in icons. The following table lists these.

Each icon has two names. The New icon, for instance, can be specified as
ToolBar.New or ToolBar.builtin00.

The editor looks for a file in the $VIMRUNTIME/pximaps directory for the
icon, then will search its internal list of icons. The name of the icon file is
NAME.BMP on Microsoft Windows and tb_{name}.xpm on UNIX. On Microsoft
Windows, the icon may be any size. On UNIX, it must be 20×20 pixels.

Icon Name Alternative Name
New builtin00

Open builtin01

Save builtin02

Undo builtin03

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 469

The Vim Tutorial and Reference

Icon Name Alternative Name
Redo builtin04

Cut builtin05

Copy builtin06

Paste builtin07

Print builtin08

Help builtin09

Find builtin10

SaveAll builtin11

SaveSesn builtin12

NewSesn builtin13

LoadSesn builtin14

RunScript builtin15

Replace builtin16

WinClose builtin17

WinMax builtin18

WinMin builtin1

WinSplit builtin20

Shell builtin21

FindPrev builtin22

FindNext builtin23

FindHelp builtin24

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 470

The Vim Tutorial and Reference

Icon Name Alternative Name
Make builtin25

TagJump builtin26

RunCtags builtin27

Toolbar Tips

The toolbar can display a "tip" when the cursor is placed over an icon. To
define the tip, issue the :tmenu (:tm) command:

:tmenu menuitem tip

For example, the following command causes the tip Open file to display
when the cursor rests over the Open icon (see Figure 26-11):

:tmenu ToolBar.Open Open file

Figure 26-11: ToolTip.

Listing Menu Mappings

The following command lists all the menu mappings:

:menu

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 471

The Vim Tutorial and Reference

 :menu
 Menus
1 ToolBar
 10 Open
 n* :browse confirm e<CR>
 v* <CC>:browse confirm e<CR><C\><CG>
 s* <CC>:browse confirm e<CR><C\><CG>
 o* <CC>:browse confirm e<CR><C\><CG>
 20 Save
 n*s :if expand("%") == ""|browse confirm w|else|confirm w|endif<CR>
 v*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><
C\><CG>
 s*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><
C\><CG>
 o*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><

... lots of other lines ...

The problem with the :menu command is that you get 51 screens of data.
That is a lot. To get just the menu items for a specific top-level menu, use the
following command:

:menu menu

For example, the following command lists only the menu items for the File
menu:

:menu File

The next command lists the items for just the File.Save menu:

:menu File.Save

:menu File.Save
 Menus
340 &Save^I:w
 n*s :if expand("%") == ""|browse confirm w|else|confirm w|endif<CR>
 v*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><C
\><CG>
 s*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><C
\><CG>
 o*s <CC>:if expand("%") == ""|browse confirm w|else|confirm w|endif<CR><C
\><CG>

The letters at the beginning of each line denote the mode in which the
command applies. They correspond to the letters used for the mode parameter
described earlier.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 472

The Vim Tutorial and Reference

Executing a Menu Item

The :emenu (:en) command executes the menu-item as if the user had
selected the command from the menu:

:emenu menuitem

No Remapping Menus

The :menu command defines a menu item. If you want to define an item
and make sure that no mapping is done on the right side, use the :noremenu
(:noreme) command.

Like other mapping commands this has several forms depending on mode:

Command Normal Visual Operator
Pending

Insert Command
Line

:noremenu √ √ √

:nnoremenu
:nnoreme

√

:vnoremenu
:vnoreme

√

:onoremenu
:onoreme

√

:noremenu! √ √

:inoremenu
:inoreme

√

:cnoremenu
:cm

√

Removing Menu Items

The following command removes an item from the menu:

:mode unmenu menuitem

If you use an asterisk (*) for the menu-item, the entire menu is erased. To
remove a ToolTip, use the :tunmenu (:tu) command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 473

19

The Vim Tutorial and Reference

:tunmenu menuitem

Tearing Off a Menu

You can tear off a menu by using the dotted tear-off line on the GUI.
Another way to do this is to execute the :tearoff (:te) command:

:tearoff menuname

Translating A Menu

The base language of all built-in menus is English. If you want to add a
translation to your own language, use the :menutranslate (:menut) command.
For example:

:menutranslate Open Abierto

Now when you have “Open” as an item in a menu, “Abierto” will be
displayed instead.

You'll find a whole lot of menu translation files in the $VIMRUTIME/lang
directory. Depending on the setting of v:lang, a file in this directory called
menu_{v_lang}.vim will be loaded.

If you want to have your own translations properly loaded into Vim you
need to execute the following commands in order:

:source $VIMRUNTIME/delmenu.vim

:menutranslate {English} {Other}
: ... more :menutranslate commands

:source $VIMRUNTIME/menu.vim

The actual translation that's used for the menu is controlled by the
'languagemenu' ('lm') option. Set this to your local language if you need to
understand the menus.

To clear the current set of menu translations, use the :menutranlate
clear command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 474

The Vim Tutorial and Reference

Special GUI Commands

The Vim editor has many commands designed for use in GUI-based menus.
These commands are all based around various dialog boxes (such as the file
browser connected with the File.Open menu).

The File Browsers

The :browse (:bro) command opens up a file browser and then executes a
command on the file selected. For example, the following command opens a file
browser and enables the user to select a file (see Figure 26-12):

:browse edit

The editor then performs an :edit file command.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 475

The Vim Tutorial and Reference

Figure 26-12: File browser.

The general form of the :browse command is as follows:

:browse command [directory]

The command is any editor command that takes a filename as an argument.
Commands such as :read, :write, and :edit fall into this category.

The [directory] parameter, if present, determines the directory in which
the browser starts.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 476

The Vim Tutorial and Reference

If the [directory] parameter is not present, the directory for the browser
is selected according to the 'browsedir' ('bsdir') option. This option can have
one of three values:

last Use the last directory browsed (default).

buffer Use the same directory as the current buffer.

current Always use the current directory.

Therefore, if you always want to start in the current directory, put the
following command in your initialization file:

:set browsedir=current

Finding a String

The :promtfind (:pro) command displays a search dialog box (see Figure
26-13):

:promptfind [string]

Figure 26-13: :promptfind dialog box.

If a string is specified, the string is used as the initial value of the Find
What field. When the user presses the Find Next button, the Vim editor
searches for the given string.

Replace Dialog Box

There is a similar dialog box for the replace command. The :promptrepl
(:promptr) command displays a Replace dialog box (see Figure 26-14):

:promptrepl [string]

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 477

The Vim Tutorial and Reference

Figure 26-14: :promptrepl dialog box.

If a string parameter is present, it is used for the Find What parameter.

Finding Help

The :helpfind (:helpf) command brings up a dialog box that enables you
to type in a subject that will be used to search the help system:

:helpfind

Confirmation

The :confirm (:conf) command executes a command such as :quit that
has the potential for destroying data. If the execution of the command would
destroy data, a confirmation dialog box displays. For example, the following
command on a modified buffer results in the dialog box displayed in Figure
26-15:

:confirm :quit

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 478

The Vim Tutorial and Reference

Figure 26-15: Confirmation dialog box.

Note: This command works for the terminal version of Vim as well, but the
Confirmation dialog box does not look as nice. This is illustrated in Figure
26-16.

This is a test

:confirm :q
Save changes to "Untitled"?
[Y]es, (N)o, (C)ancel:

Figure 26-16: Confirmation without a GUI.

Browsing the Options

The :browse set (:bro set, :opt, :options) command opens a window
that enables you to browse through the options:

:browse set

Figure 26-17 shows the screen.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 479

The Vim Tutorial and Reference

" Each "set" line shows the current value of an option (on the left).
" Hit <CR> on a "set" line to execute it.
" A boolean option will be toggled.
" For other options you can edit the value.
" Hit <CR> on a help line to open a help window on this option.
" Hit <CR> on an index line to jump there.
" Hit <Space> on a "set" line to refresh it.

 1 important
 2 moving around, searching and patterns
 3 tags
optionwindow

~
[No Name]
"optionwindow" [New File]

Figure 26-17: :browse set.

This window gives you access to all the options. The beginning is a short
table of contents, starting with the following:

1 important
2 moving around, searching and patterns

You can use the cursor commands to position the cursor on one of the
items and press <CR> to get a list of the options for this section. If you were to
move the cursor down to the first entry (important) and press <CR>, for instance,
you would get Figure 26-18.

 1 important

compatible behave very Vi compatible (not advisable)
 set nocp cp
cpoptions list of flags to specify Vi compatibility
 set cpo=aABceFs
insertmode use Insert mode as the default mode
 set noim im
paste paste mode, insert typed text literally
 set nopaste paste
pastetoggle key sequence to toggle paste mode
optionwindow

~
~
[No Name]
/ 1 important

Figure 26-18: :browse set detail screen.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 480

The Vim Tutorial and Reference

The first option in this window is the 'compatible' option. According to
the help text beside it, setting this option causes Vim to "behave very Vi
compatible (not advisable). "The abbreviation for this option is 'cp', and the
current setting is 'nocp'. If you move down to the 'compatible' line and press
<CR>, you get a full help screen on the option (see Figure 26-19).

 'compatible' *'cp'* *'nocompatible'* *'nocp'*
'compatible' 'cp' boolean (default on, off when a |vimrc| or |gvimrc|
 file is found)
 global
 {not in Vi}
 This option has the effect of making Vim either more Vicompatible, or
 make Vim behave in a more useful way.
 This is a special kind of option, because when it's set or reset,
 other options are also changed as a side effect. CAREFUL: Setting or
 resetting this option can have a lot of unexpected effects: Mappings
 are interpreted in another way, undo behaves differently, etc. If you
 set this option in your vimrc file, you should probably put it at the
 very start.
 By default this option is on and the Vi defaults are used for the
 options. This default was chosen for those people who want to use Vim
 just like Vi, and don't even (want to) know about the 'compatible'
 option.
 When a |vimrc| or |gvimrc| file is found while Vim is starting up,
options.txt [Help][RO]
compatible behave very Vi compatible (not advisable)
optionwindow

[No Name]

Figure 26-19: :browse set help screen.

If you close the help screen and move down to the set nocp line and press
<CR>, the option is toggled. (This works for all Boolean options.) The next option
('cpoptions') is a string. To change its value, just edit it using the normal Vim
editing commands, and then press <CR> to set the option to this value.

Using the Clipboard

The 'clipboard' ('cl') option controls how Vim treats text selected with
the mouse. If you use the following command, Vim takes all the text that should
go in the unnamed register and puts it in the clipboard register:

:set clipboard=unnamed

This means that the text is placed on the system clipboard and can be
pasted into other applications.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 481

The Vim Tutorial and Reference

Another option is this:

:set clipboard=autoselect

When this option is set, any text selected in visual mode is put on the
system clipboard (if possible). (The a flag of the 'guioptions' ('go') option
does the same thing.)

The 'autoselect' option works for both the GUI and console versions of
Vim.

Coloring

opt-guioptionsd(27-3)When Vim starts the GUI, it tries to figure out
whether you have a light or dark background and performs the 'background'
('bg') option to set the proper value:

:set background=value

The syntax files use the value of this option to determine which colors to
use.

Warning: When the GUI is started, the value of this option is light.
The .gvimrc file is then read and processed. After this, the window is
created. Only after the window is created can Vim tell the color of the
background, so it is only after this that the background option is set. This
means that anything in the .gvimrc that depends on the background being
correct will fail.

Selecting the Font

If you do not like the font that Vim uses for its GUI, you can change it by
using the 'guifont' ('gfn') option:

:set guifont=font

Font is the name of a font. On an X Windows System, you can use the
command xlsfonts to list out the available fonts. On Microsoft Windows, you can
get a list of fonts from the Control Panel. You can also use the following
command:

:set guifont=*

This command causes Vim to bring up a font selection window from which
you can pick your font.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 482

The Vim Tutorial and Reference

You can also turn on and off anti-aliasing with the 'antialias' ('anti')
option. Currently this only works on the Mac.

Customizing Select Mode

The 'selection' ('sel') option defines how a selection is handled. The
possible values are as follows

old Does not allow selection for one character past the end of
a line. The last character of the selection is included in
the operation.

inclusive The character past the end of the line is included, and the
last character of the selection is included in the
operation.

exclusive The character past the end of the line is included, and the
last character of the selection is not included in the
operation.

Mouse Usage in Insert Mode

Clicking the left mouse button (<LeftMouse> in Vim terminology) causes
the cursor to move to where the mouse pointer is pointing.

If you have a wheel on your mouse, the mouse-wheel commands act just
like they do in normal mode.

Microsoft Windows - Specific Commands

By setting the 'winaltkeys' ('wnk') option to "no," Vim will take over the
entire keyboard. This means that you can use the Alt key for keyboard
commands and mappings. However, Microsoft Windows generally uses the Alt
key to access menus.

The :simalt (:si) key simulates the pressing of Alt+key. You can use this
in the following command, for example:

:map <Mf> :simalt f<CR>

This command tells Vim that when Meta-F (Alt+f in Microsoft Windows
terminology) is pressed, the editor is to simulate the pressing of the Alt+f key.
This brings down the File menu.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 483

The Vim Tutorial and Reference

Changing the Appearance of the Cursor

The 'guicursor' ('gcr') option defines how the cursor looks for the GUI
version of Vim. The format of this command is as follows:

:set guicursor=mode:style[highlight],mode:style[highlight],...

You can set the mode as follows:

n Normal mode
v Visual mode
ve Visual mode with 'selection' exclusive (same as v, if not

specified)
o Operator-pending mode
i Insert mode
r Replace mode
c Command-line normal (append) mode
ci Command-line insert mode
cr Command-line replace mode
sm showmatch in insert mode
a All modes

You can combine by separating them with hyphens, as follows:

nvc For normal, visual, and command modes

The style is as follows:

horN Horizontal bar, N percent of the character height
verN Vertical bar, N percent of the character width
block block cursor, fills the whole character
blinkwaitN
blinkonN
blinkoffN When these options are specified, the system waits for

blinkwait milliseconds, and then turns the cursor off for
blinkoff and on for blinkon.The off/on cycle repeats.

And highlight is a highlight group name.

The 'mouseshape' ('mouses') option defines which cursor to use for the
various modes in the GUI version of Vim. The format of this command is as
follows:

:set mouseshape=mode:cursor,mode:cursor,...

The modes are:

a Everywhere.
c Appending to the command-line.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 484

The Vim Tutorial and Reference

ci Inserting in the command-line.
cr Replacing in the command-line.
e Any mode, pointer below last window.
i Insert mode.
m At the Hit ENTER or More prompts.
ml At the Hit ENTER or More prompts, with cursor in the last line.
n Normal mode.
o Operator-pending mode.
r Replace mode.
s Any mode, pointer on a status line.
sd Any mode, while dragging a status line.
vd Any mode, while dragging a vertical separator line.
ve Visual mode with 'selection' "exclusive" (same as 'v', if not specified).
vs Any mode, pointer on a vertical separator line.
v Visual mode.

The cursor names come from the following list:

arrow Normal mouse pointer. (Microsoft Windows, X Window System)
beam I-beam. (Microsoft Windows, X Window System)
blank No pointer at all. (Do not use this one unless you really know

what you are doing.) (Microsoft Windows, X Window System)
busy The system's usual busy pointer. (Microsoft Windows, X Window

System)
crosshair Like a big thin +. (X Windows System)
hand1 Black hand. (X Windows System)
hand2 White hand. (X Windows System)
leftright Left-right sizing arrows. (Microsoft Windows, X Window

System)
lrsizing Indicates left-right resizing. (X Windows System)
no The system's usual 'no input' pointer. (Microsoft Windows, X

Window System)
pencil Cursor that looks like a pencil. (X Windows System)
question Large question mark. (X Windows System)
rightuparrowArrow pointing right-up. (X Windows System)
udsizing Indicates up-down resizing. (X Windows System)
uparrow Arrow pointing up. (Microsoft Windows, X Window System)
updown Up-down sizing arrows. (Microsoft Windows, X Window System)
<number> Any X11 pointer number. (See X11/cursorfont.h.) (X Windows

System)

Line spacing

The 'linespacing' ('lsp') option tell Vim how many extra pixels of space
to put between lines.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 485

The Vim Tutorial and Reference

X Windows System - Specific Commands

In the X Windows System, the window manager is responsible for the
border around the window and other decorations. The 'guiheadroom' ('ghr')
option tells the Vim editor how big the margin is around the window (top and
bottom) so that when it goes into full screen mode, it can leave room for the
border.

Selecting the Connection with :shell Commands

What happens when you are using the GUI window and you try to execute
a :shell (:sh) command? Usually the system uses a UNIX device called pty to
handle the command interface.

If you want to connect using a pipe, clear the 'guipty' option:

:set noguipty

Otherwise the default is used and a pty connection made between the shell
and the GUI:

:set guipty

MS-DOS-Specific Commands

The :mode (:mod) command changes the screen mode of an MS-DOS
window:

:mode mode

This command is effective only if you are editing inside MS-DOS; it does
not work inside a Microsoft Windows GUI.

Mode is an MS-DOS screen mode such as B80, B40, c80, c40, or one of the
screenmode numbers.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 486

The Vim Tutorial and Reference

Chapter 27: Expressions and Functions

The Vim Editor contains a rich scripting language. This command
language gives you tremendous flexibility when it comes to customizing your
editor for specialized tasks.

This chapter covers the following:

● Basic variables and expressions

● The :echo statement Control statements

● User-defined functions

● A complete list of built-in functions

Basic Variables and Expressions

The Vim editor enables you to define, set, and use your own variables. To
assign a value to a variable, use the :let command. The general form of this
command is as follows:

:let variable = expression

The Vim editor uses the same style variable names as most other
languages--that is, a variable begins with a letter or underscore and then
consists of a series of letters, digits, and the underscore.

To define the variable line_size, for example, use this command:

:let line_size = 30

To find out what the variable is, use the :echo (:ec) command:

:echo "line_size is" line_size

When entered, this command results in Vim displaying the following on the
last line:

line_size is 30

Variables can contain numbers (such as 30) or strings (such as "foo"). For
example:

:let my_name = "Steve Oualline"

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 487

The Vim Tutorial and Reference

Special Variable Names

The Vim editor uses special prefixes to denote different types of variables.
The prefixes are as follows:

Name Use

All uppercase, digits, and
underscore

Variables which can be stored in the
.viminfo file if the 'viminfo' ('vi') option
contains the ! flag.

Initial uppercase letter,
lowercase letter somewhere
inside

Variable saved by the make session
(:mksession, :mks) command.

:let Save_this_option = 1 " Options saved in session
:let forget_this = "yes" " Discarded between sessions

All lowercase, digits, and
underscore

A variable not stored in any save file.

$environment Environment variable.

@register Text register.

&option The name of an option.

b:name The variable is local to the buffer. Each
buffer can have a different value of this
variable.

w:name A variable local to a window.

g:name A global variable. (Used inside functions to
denote global variables.)

a:name An argument to a function.

v:name A Vim internal variable

Some examples:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 488

The Vim Tutorial and Reference

" The environment variable $PAGER contains
“ the name of the page viewing command
:let $PAGER = "/usr/local/bin/less"

" Display the value of the last search
pattern :echo "Last search was "@/

" The following two commands do the same
thing :let &autoindent = 1
:set autoindent

" Define the syntax for the current buffer
:let b:current_syntax = "c"

"Note: This doesn't handle all the side
“ effects associated with
"changing the language of the buffer

The internal variables (v:name) are used by Vim to store a variety of
information. The following table shows the full list of variables.

v:count The count given for the last normal-mode command.
v:count1 Like v:count, except that it defaults to 1 if no count is

specified.
v:errmsg The last error message.
v:warningmsg The last warning message.
v:statusmsg The last status message.
v:shell_error Result of the last shell command. If 0, the command

worked; if non-0, the command failed.
v:this_session Full filename of the last loaded or saved session file.
v:version Version number of Vim. Version 5.01 is stored as 501.

Constants

The Vim editor uses a variety of constants. There are the normal integers:

123 Simple integer

0123 Octal integer

0xAC Hexadecimal

There are also string constants:

"string" A simple string

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 489

The Vim Tutorial and Reference

'string' A literal string

The difference between a simple string and a literal string is that in a
simple string, characters escaped by backslash are expanded, whereas in a
literal string a backslash is just a backslash. For example:

:echo ">\100<"
>@<
:echo '>\100<'
>\100<

Note: The character number octal 100 is @.

Expressions

You can perform a variety of operations on integers. These include the
arithmetic operator s:

int + int Addition
int int Subtraction
int * int Multiplication
int / int Integer divide (and truncate)
int % int Modulo
 int Negation

Note: Strings are automatically converted to integers when used in
conjunction with these operators.

In addition, a number of logical operators work on both strings and
integers. These return a 1 if the comparison succeeds and 0 if it does not.

var == var Check for equality.
var != var Inequality.
var < var Less than.
var <= var Less than or equal to.
var > var Greater than.
var >= var Greater than or equal to.

In addition, the comparison operators compare a string against a regular
expression. For example, the following checks the given string ("word") against
the regular expression "\w*" and returns a 1 if the string matches the
expression:

"word" =~ "\w*"

The two regular expression comparison operators are as follows:

string =~ regexp Regular expression matches.
string !~ regexp Regular expression does not match.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 490

The Vim Tutorial and Reference

In addition, strings have the following special comparisons:

string ==? string Strings equal, ignore case.
string ==# string Strings equal, case must match.
string !=? string Strings not equal, ignore case.
string !=# string Strings not equal, case must match.
string <? string Strings less than, ignore case.
string <# string Strings less than, case must match.
string <=? string Strings less than or equal, ignore case.
string <=# string Strings less than or equal, case must match.
string >? string Strings greater than, ignore case.
string ># string Strings greater than, case must match.
string >=? string Strings greater than or equal, ignore case.
string >=# string Strings greater than or equal, case must match.

There are three forms of each operator. The bare form (i.e. ==) honors the
'ignorecase' option. The ? form (i.e.==?) always ignores case differences while
the # form (i.e.==#) never ignores different case characters.

Deleting a Variable

The :unlet (:unl) command deletes a variable:

:unlet[!] name

Generally, if you try to delete a variable that does not exist, an error result.
If the override (!) character is present, no error message results.

Locking and unlocking a variable

A variable can be locked so that its value can not be changed using the
:lockvar (:lockv) command:

:lockvar line_size

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 491

The Vim Tutorial and Reference

After this command is executed any :let command that attempts to
change this variable will fail. To unlock a variable, use the :unlockvar (:unlo)
command.

Locking Arrays and Dictionaries

The :lockvar command takes a depth as an argument. A depth of 1 means
that the variable itself is locked. You can not add or remove items. However, you
can change items. That because the item is indirectly referenced and is
considered stored at a depth of 2.

If you lock with a depth of two then the array is locked and any items in the
array are locked. But any items referenced by items in the array (which require
two levels of indexing to access) are not locked.

A level of 3 locks the array, the items, items referenced by the items, but
items referenced by items inside items (requiring three levels of indexing to get
to.)

The :lockvar! command with the override(!) sets the locking level to 100
and pretty much locks everything.

Entering Commands

When you are entering arguments to a command, you can use a number of
special words and characters. The words work when you need to enter an
argument such a file name, directory, or other word argument such as the
argument to :tag and the :vimgrep pattern. The special words are::

% Current filename
Alternate filename
<cword> The word under the cursor.
<cWORD> The WORD under the cursor.
<cfile> The filename under the cursor.
<afile> The name of a file being read or written during the execution

of a related autocommand. (See Chapter 13: Autocommands
for more information.

<abuf> The current buffer number in an autocommand.
<amatch> Like <abuf>, but when used with a FileType or Syntax event

it is not the file name, but the file type or syntax name.
<sfile> The name of the file currently being :sourced.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 492

The Vim Tutorial and Reference

You can modify each of these words by one or more of the modifiers listed
here (for example, the :p modifier, which turns a filename into a full pathname).
If the name of the file under the cursor is test.c, for instance, <cfile> would be
test.c. On the other hand, <cfile>:p would be /home/oualline/examples/test.c.

You can use the following modifiers:

:p Turn a filename into a full path. Must appear first if
multiple modifiers are used.

:~ Turn an absolute path such as
/home/oualline/examples/test.c into a short version using
the ~ notation, such as ~oualline/examples/test.c.

:. Turn the path into one relative to the current directory,
if possible.

:h Head of the filename. For example, ../path/test.c yields
../path.

:t Tail of the filename. Therefore, ../path/test.c yields
test.c.

:r Filename without extension. Therefore, ../path/test.c
yields I../path/test.

:e Extension.
:s?from?to? Substitution changing the pattern from to the pattern to,

first occurrence.
:gs?from?to? Substitution changing the pattern from to the pattern to,

all occurrences.

How to Experiment

You can determine how Vim will apply modifiers to a filename. First create
a text file whose content is the filename on which you want to run experiments.
Put the cursor on this filename and then use the following command to test out a
modifier:

:echo expand("<cword>:p")

(Change :p to whatever modifier you want to check.)

The following sections discuss the :echo statement and expand function in
more detail.

The :echo Statement

The :echo statement just echoes its arguments. For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 493

The Vim Tutorial and Reference

:echo "Hello world"
Hello world

You can also use it to display the value of a variable:

:let flag=1
:echo flag
1

The :echon command echoes the arguments, but does not output a
newline. For example:

:echo "aa" | echo "bb"
aa
bb
:echon "aa" | echon "bb"
aabb

Note: The bar (|) is used to separate two commands on the same line.

Echoing in Color

You can use the :echohl (:echoh) command to change the color of the
output :echo to a given highlight group. For example:

:echohl ErrorMsg
:echo "A mistake has been made"
:echohl None

Note: Good programming practice dictates that you always reset the
highlighting to None after your message. That way you do not affect other
:echo commands.

If you want to see what highlight groups are defined, use the command
:highlight (:hi) :

:highlight

Printing error messages using :echoerr

The :echoerr (:echoe) command acts much like :echo except the string is
highlighted using the same colors as an error message and it is placed in the
error history.

If this command is used in a script or funciton, a line number will be added
to the message.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 494

The Vim Tutorial and Reference

Finally, if this command occurs inside a :try / :catch block, it acts as if an
exception where thrown. (See Exceptions on page 497 for more information.)

Echoing message

The :echomsg (:echom) command acts just like :echo only the string is
saved in the message buffer and will appear if you issue a :messages command.

Control Statements

The Vim editor has a variety of control statements that enable you to
change the flow of a macro or function. With these, you can make full use of
Vim's sophisticated script language.

The :if Statement

The general form of the :if statement is as follows:

:if {condition}
: " Statement
: " Statement
:endif

(You can abbreviate :endif as :en, but please don't. It makes your code
hard to read.)

The statements inside the :if statement are executed if the condition is
non-zero. The four-space indent inside the :if is optional, but encouraged
because it makes the program much more readable. The :if statement can have
an :else clause:

:if {condition}
: " Statement
: " Statement
:else
: " Statement
: " Statement
:endif

(:el can be used for :else if you wish to make your code hard to read.)

Finally, the :elseif (:elsei) keyword is a combination of :if and :else.
Using it removes the need for an extra :endif:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 495

The Vim Tutorial and Reference

:if &term == "xterm"
: " Do xterm stuff
:elseif &term == "vt100"
: " Do vt100 stuff
:else
: " Do non xterm and vt100 stuff
:endif

Looping

The :while (:wh) command starts a loop. The loop ends with the
:endwhile (:endw) command:

:while counter < 30
: let counter = counter + 1
: " Do something
:endwhile

The :continue (:con) command goes to the top of the loop and continues
execution. The :break (:brea) command exits the loop:

:while counter < 30
: if skip_flag
: continue
: endif
: if exit_flag
: break
: endif
: "Do something
:endwhile

The :for Loop

The :for statement loops through all the elements of a list. For example:

:set list=['a', 'b', 'c']
:for item in list
: echo item
:endfor

(For the lazy, :endfo can be used to end the loop. Please don't use it
however as it makes the code less readable.)

If the items in the list are arrays, you can specify a set variables in the
:for. The variables will be assigned each corresponding element in the array.
For example, the following two code fragments are equivalent:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 496

The Vim Tutorial and Reference

:let m=[[11,12],[21,22],[31,32]]
:for [x,y] in m
: echo x " > " y
:endfor

:for q in m
: echo q[0] " > " q[1]
:endfor

The :execute Command

The:execute (:exe) executes the argument as a normal command-mode
command:

:let command = "echo 'Hello world!'"
:execute command
Hello World

Exceptions

When an error occurs Vim throws an exception. If this exception is not
caught, Vim will print an error message and abort processing. For example:

:badcommand
E492: Not an editor command: badcommand

If you want to intercept exception you need to create a try/catch block.
You start by putting everything in a a :try block.:

:try
: “ Do something that might cause an exception

The :try is followed by all the commands you hope to execute.

Next comes the exception handling code. Each exception gets its own
:catch (:cat) statement which tells Vim, when an error occurs (exception is
throw), come here to handle it.

:catch /^E492/
: echo 'Someone typed a bad command'

The argument to :catch is a regular expression. Vim is highly text
oriented and the exception handling is no exception.7 Our regular expression
(/^E492/) matches any string beginning with “E492”. Since all Vim errors are
numbered this will match the “Not an editor command” error no matter what
language is selected for the error message.

7 No pun intended.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 497

The Vim Tutorial and Reference

The regular expression is optional. If omitted, all error messages would be
caught.

:catch
: echo 'Something unexpected happened.'

The :catch statements are executed in order. So in our little example,
the statement will be checked against /^E492/, then no-argument :catch
statement.

If we have any cleanup code we can put it a :finally (:fina) block:

:finally
: “ Clean up

The entire :try block is then ended with a :endtry (:endt) statement.

:endtry

What's left is to cause an error. The preferred method is to use the :throw
(:th) command. For example:

:throw “ERROR: You made a mistake”

This will cause current processing to stop and Vim will continue execution
at the first matching :catch statement it finds. If there is no matching :catch
statement, an “E605: Exception not caught” error will occur.

The other way of throwing an exception is to use the :echoerr command.
(See Printing error messages using :echoerr on page 494 for more information.)
This differs from :throw in that if the error is not caught, the error message is
printed. In other words, an uncaught :echoerr message does not cause a
“E605”.

All Vim errors (like “E492: Not an editor command”) act like they were
produced with :echoerr.

The :finish (:fini) command will cause all subsequent statements inside
a :try to be skipped. The next statement to be executed will be the first
statement in the :finally block if there is any. If not, the it will be the first
statement after the :endtry. If this statement is executed outside a :try, all the
remaining statement inside the file will be skipped. (The command can not be
executed outside of a file or :try.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 498

The Vim Tutorial and Reference

Defining Your Own Function

The Vim editor enables you to define your own functions. The basic
function declaration begins with a :function (:fu) statement:

:function name(var1, var2, ...)

Note: Function names must begin with a capital letter.

It ends with an :endfunction (:endf) statement:

:endfunction

Let's define a short function to return the smaller of two numbers, starting
with this declaration:

:function Min(num1, num2)

This tells Vim that the function is named Min and it takes two arguments
(num1 and num2). The first thing you need to do is to check to see which number
is smaller:

: if a:num1 < a:num2

The special prefix a: tells Vim that the variable is a function argument.
Let's assign the variable smaller the value of the smallest number:

: if a:num1 < a:num2
: let smaller = a:num1
: else
: let smaller = a:num2
: endif

The variable smaller is a local variable. All variables used inside a
function are local unless prefixed by a g:.

Warning: A variable outside a function declaration is called var; whereas
inside if you want to refer to the same variable, you need to call it g:var.
Therefore, one variable has two different names depending on the context.

You now use the :return (:retu) statement to return the smallest number
to the user. Finally, you end the function:

: return smaller
:endfunction

The complete function definition is as follows:

:function Min(num1, num2)
: if a:num1 < a:num2

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 499

The Vim Tutorial and Reference

: let smaller = a:num1
: else
: let smaller = a:num2
: endif
: return smaller
:endfunction

Note: I know that this function can be written more efficiently, but it is
designed to be a tutorial of features, not efficiency.

Using a Function

You can now use your function in any Vim expression. For example:

:let tiny = Min(10, 20)

You can also call a function explicitly using the function name with the
:call (:cal) command:

:[range] call function([parameters])

If a range is specified, the function is called for each line, unless the
function is a special "range"-type function (as discussed later).

Function Options

If you attempt to define a function that already exists, you will get an error.
You can use the force option (!) to cause the function to silently replace any
previous definition of the function:

:function Max(num1, num2)
: " Code
:endfunction

:function Max(num1, num2, num3)
 error

:function! Max(num1, num2, num3)
 no error

By putting the range keyword after the function definition, the function is
considered a range function. For example:

:function Count_words() range

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 500

The Vim Tutorial and Reference

When run on a range of lines, the variables a:firstline and a:lastline
are set to the first and last line in the range.

If the word abort follows the function definition, the function aborts on the
first error. For example:

:function Do_It() abort

Finally, Vim enables you to define functions that have a variable number of
arguments. The following command, for instance, defines a function that must
have 1 argument (start) and can have up to 19 additional arguments:

:function Show(start, ...)

The variable a:1 contains the first optional argument, a:2 the second, and
so on. The variable a:0 contains the number of extra arguments. For example:

:function Show(start, ...)
: let index = 1 " Loop index
: echo "Show is" a:start
: while (index <= a:0)
: echo "Arg" index "is " a:000[index]
: let index = index + 1
: endwhile
:endfunction

Listing Functions

The :function command lists all the user-defined functions:

:function
function FTCheck_nroff()
function FTCheck_asm()

To see what is in a single function, execute this command:

:function name

 For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 501

The Vim Tutorial and Reference

:function Show
 let index = 1 " Loop index
 echo "Show is" a:start
 while (index <= a:0)
 echo "Arg" index "is " a:index
 let index = index + 1
 endwhile

Deleting a Function

To delete a function, use the command :delfunction (:delf) :

:delfunction name

Running Functions in a Sandbox

Normally when you execute a function, the code has full access to Vim and
can alter settings and the files being edited. If you want to run things in a more
secure environment use the :sandbox (:san) command.

The general form of this command is:

:sandbox command

For example:

:sandbox :call Show("foo", "bar")

Debugging a Function

Vim has a built-in debugger that lets you debug functions. Let's take a look
at a typical function. This one goes through and changes lines such as:

stdio.h

to lines which look like:

#include <stdio.h>

The function is fairly smart. It can tell the difference between system
includes and user includes and insert the correct C statement for each type of
include.

Let's start by listing out the contents of the function so we know what we
are dealing with:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 502

The Vim Tutorial and Reference

:function Include
function Include()
1 : " Get the current line
2 : let l:line = getline(".")
3 :
4 : let l:dir_list = split(&path, ",")
5 : " Loop through the local dirs looking for the file
6 : for l:cur_dir in l:dir_list
7 : if (filereadable(l:cur_dir."/".l:line))
8 :
9 : " System directory?
10 : if (match(l:cur_dir, "/usr/include") == 0)
11 :
12 : " Put the #include in the right place
13 : let l:line = "#include <".l:line.">"
14 : else
15 : " Put the #include in the right place
16 : let l:line = "#include \"".l:line."\""
17 : endif
18 :
19 : call setline(".", l:line)
20 : return
21 : endif
22 : endfor
23 :
24 : "At this point we did not find anything
25 : "We could put in a default
 endfunction

In order to understand what this function does we would like to single step
through it. So the first thing we do is use the :breakadd (:breaka) command to
add a breakpoint at the beginning of the function.

:breakadd func Include

In this example the func parameter tells Vim to stop at the first line of the
function.

Next we need to start the debugger. The :debug (:deb) command tells Vim
to run the following command, but do so inside the debugger. Without
the :debug, we'd just execute the function normally.

:debug call Include()
Entering Debug mode. Type "cont" to continue.

cmd: call Include()

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 503

The Vim Tutorial and Reference

Breakpoint in "Include" line 1
function Include
line 2: let l:line = getline(".")
>

Vim now starts calling the function Include() and encounters our
breakpoint. So it stops on the first line of code in the function.

Now that we are stopped we can enter debugging commands, or normal
Vim commands for that matter.

The debug command step single steps through the code, stepping into any
functions called along the way. If we wanted to step over the function calls, we
need the debugging command next.

Let's see what happens if we enter step.

>step
function Include
line 4: let l:dir_list = split(&path, ",")

The editor executes the next statement.

Now let's examine one of the function's variables. This is done with the
:echo command:

>:echo l:line
stdio.h

Let's now take a look at the l:dir_list variable. Since this is an array,
the result looks a little different.

>echo l:dir_list
['.', '/usr/include', '']

Next we take a look at what breakpoints we have with the :breaklist
(:breakl) command.

>:breaklist
 1 func Include line 1

The next interesting point for us in this function is line 10 where we do the
match() call. Let's put a breakpoint there. The following command tells Vim to
put a breakpoint in a function (func) named Include at line 10:

>:breakadd func 10 Include

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 504

The Vim Tutorial and Reference

Now we continue execution until we hit the breakpoint:

>cont

Breakpoint in "Include" line 10
function Include
line 10: if (match(l:cur_dir, "/usr/include") == 0)

From here on things just work so we have no more need of debugging.

Other debugging commands

The :breakadd command has both a function and a file. The file forms
looks like:

:breakadd file filename
:breakadd file line filename

The first form sets a breakpoint that is triggered when a file is loaded. The
second when a specific line of a file is executed. These commands are useful for
debugging Vim command files and the code that exists outside functions.

There's one more :breakadd command to discuss:

:breakadd here

This sets a breakpoint at the current location. (Which you've arrived at
through step and next commands.)

To remove a breakpoint use the :breakdel (:breakd) command. It has the
same syntax as the :breakadd command:

:breakdel func name
:breakdel func line name
:breakdel file name
:breakdel file line name
:breakdel here

You can also delete a breakpoint by breakpoint number:

:breakdel number

Finally to delete all breakpoints, use the command:

:breakdel *

Inside the debugger you can type the following commands:

step Single step going into functions.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 505

The Vim Tutorial and Reference

next Single step treat function calls as a single step.

cont Continue execution until the next breakpoint.

quit Abort the current function or file being debugged.

interrupt Pretend that the script was interrupted with
CTRL-C. (Useful for debugging catch and finally
blocks.)

finish Continue execution of the current
function or file, then go back to debug mode.

Finally we have the :debugready (:debugg) command. Normally the
debugger reads commands from the console. This makes it impossible to put
debug commands in a file. The :debugready command tells Vim to read debug
commands from the input stream. The :0debugready command turns this
feature off.

Redrawing the screen

Normally Vim does not redraw the screen until the current function or
script finishes. To force a redraw, use the :redraw (:redr) command. If you
have an extreme problem with the screen :redraw! clears and redraws the
screen.

To just redraw the status line, use the :redrawstatus (:redraws). By
default this works on the current window only. To make it work on all windows
use the override: :redrawstatus!.

Profiling a function

Vim has a built-in profiling feature. To start you must turn on profiling
with the command:

:profile start filename

(:profile can be abbreviated :prof.)

This tells Vim to start profiling and to write the results out to the given file
upon exit. Now at this point we told Vim to do profiling but haven't given it
anything to profile. Let's tell it to profile our Include() function:

:profile func Include

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 506

The Vim Tutorial and Reference

Now when we execute this function Vim records the profile information.
Let's execute the function once:

:call Include()

Next we exit with the ZZ command. The profile results are now available
in the file we specified at the beginning of this process:

FUNCTION Include()
Called 1 time
Total time: 0.000244
 Self time: 0.000244

count total (s) self (s)
 : " Get the current line
 1 0.000017 : let l:line = getline(".")
 :
 1 0.000015 : let l:dir_list = split(&path, ",")
 : " Loop through the local dirs looking for the
file
 2 0.000011 : for l:cur_dir in l:dir_list
 2 0.000090 : if (filereadable(l:cur_dir."/".l:line))
 :
 : " System directory?
 1 0.000009 : if (match(l:cur_dir, "/usr/include") == 0)
 :
 : " Put the #include in the right place
 1 0.000005 : let l:line = "#include <".l:line.">"
 1 0.000002 : else
 : " Put the #include in the right place
 : let l:line = "#include \"".l:line."\""
 : endif
 :
 1 0.000013 : call setline(".", l:line)
 1 0.000003 : return
 : endif
 1 0.000003 : endfor
 :
 : :profile continue "At this point we did not find
anything
 : "We could put in a default

FUNCTIONS SORTED ON TOTAL TIME
count total (s) self (s) function
 1 0.000244 Include()

FUNCTIONS SORTED ON SELF TIME
count total (s) self (s) function
 1 0.000244 Include()

This shows how many times each line was executed and how much time
was spent in the line itself.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 507

The Vim Tutorial and Reference

Other Profile Commands

To profile the code in a file, use the command:

:profile file filename

If you want to profile a file and all the functions in a file use the command:

:profile! file filename

To temporarily stop profiling use the command:

:profile pause

To start after a pause use the command:

:profile continue

Deleting Profile Items

If you wish to turn off profiling you can do so with any of the following
commands:

:profdel *
:profdel number
:profdel func line functionname
:profdel file line filename
:profdel here

(:profdel can be abbreviated :profd.)

User-Defined Commands

The Vim editor enables you to define your own commands. You execute
these commands just like any other command-mode command. To define a
command, use the :command (:com) command. For example:

:command DeleteFirst :1delete

Now when you execute the command

:DeleteFirst

the Vim editor performs a

:1delete

which deletes the first line.

Note: User-defined commands must start with a capital letter.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 508

The Vim Tutorial and Reference

To list out the user-defined commands, execute the following command:

:command

To remove the definition of a user-defined command, issue the
:delcommand (:delc).

:delcommand DeleteOne

You can clear all user-defined commands with the command :comclear
(:comc):

:comclear

User-defined commands can take a series of arguments. The number of
arguments must be specified by the nargs option on the command line. For
instance, the example DeleteOne command takes no arguments, so you could
have defined it as follows:

:command nargs=0 DeleteFirst 1delete

However, because nargs=0 is the default, you do not need to specify it.
The other values of -nargs are as follows:

nargs=0 No arguments

nargs=1 One argument

nargs=* Any number of arguments

nargs=? Zero or one argument

nargs=+ One or more arguments

Inside the command definition, the arguments are represented by the
<args> keyword. For example:

:command nargs=+ Say :echo "<args>"

Now when you type

:Say Hello World

the system echoes

Hello World

Some commands take a range as their argument. To tell Vim that you are
defining such a command, you need to specify a range option. The values for
this option are as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 509

The Vim Tutorial and Reference

range Range is allowed. Default is the current line.
range=% Range is allowed. Default is the whole file.
range=count Range is allowed, but it is really just a single number

whose default is count.

When a range is specified, the keywords <line1> and <line2> get the
values of the first and last line in the range. For example, the following
command defines the SaveIt command, which writes out the specified range to
the file save_file:

:command range=% SaveIt :<line1>, <line2> write! save_file

Some of the other options and keywords are as follows:

count=number The command can take a count whose default is
number. The resulting count is stored in the <count>
keyword.

bang You can use the override (!) modifier. If present, a !
will be stored in the keyword <bang>.

register You can specify a register. (The default is the
unnamed register.) The register specification is put in
the <reg> (a.k.a. <register>) keyword .

The <fargs> keyword contains the same information as the <args>
keyword, except in a format suitable for use as function call arguments. For
example:

:command nargs=* DoIt :call AFunction(<fargs>)
:DoIt a b c

is the same as executing the following command:

:call AFunction("a", "b", "c")

Finally, you have the <lt> keyword. It contains the character <.

The Operator Function

Another way to connect a function to a command is through the operator
function. You start by setting the option 'operatorfunc' ('opfunc') to the
name of the function you wish to call. This function will be called when you use
the g@{motion} command.

The function takes one argument which tells it if the motion was line or
char (character) oriented. (It is also possible for it to be called with the block
argument, but this is almost never done because g@ is not useful is block visual
mode.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 510

The Vim Tutorial and Reference

When the function is called the starting mark ('[) will be placed where the
motion starts and the ending mark (']) will be located where it ends.

This is a highly specialized Vim feature and you may need to refer to the
on-line help for details.

Built-In Functions

The Vim editor has a number of built-in functions. This section lists all the
built-in functions.

append(line_number, string)

What it does: Appends the string as a new line after line_number.

Parameters:

line_number The line number after which the text is to be
inserted. A value of 0 causes the text to be inserted
at the beginning of the file.

string The string to be inserted after the given line.

Returns: Integer flag.

0 = no error; 1 = error caused by a line_number
out of range.

argc()

What it does: Counts the number of arguments in the argument
list.

Returns: Integer.

The argument count.

argv(number)

What it does: Returns an argument in the argument list.

Parameter:

number The argument index. Argument 0 is the first
argument in the argument list (not the name of the
program, as in C programming).

Returns: String.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 511

The Vim Tutorial and Reference

Returns the requested argument.

browse(save, title, initial_directory, default)

What it does: Displays a file browser and lets the user pick a file.
This works only in the GUI version of the editor.

Parameters:

save An integer that indicates whether the file is being
read or saved. If save is non-0, the browser selects
a file to write. If 0, a file is selected for reading.

title Title for the dialog box.

initial_directory The directory in which to start browsing.

default Default filename.

Returns: String.

The name of the file selected. If the user selected
Cancel or an error occurs, an empty string is
returned.

bufexists(buffer_name)

What it does: Checks to see whether a buffer exists.

Parameter:

buffer_name The name of a buffer to check for existence.

Returns: Integer flag.

Returns true (1) if the buffer exists and false (0)
otherwise.

bufloaded(buffer_name)

What it does: Check to see whether a buffer is loaded.

Parameter:

buffer_name The name of a buffer to check to see whether it is
currently loaded.

Returns: Integer flag.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 512

The Vim Tutorial and Reference

Returns true (1) if the buffer is loaded and false (0)
otherwise.

bufname(buffer_specification)

What it does: Find the indicated buffer.

Parameter:

buffer_specification A buffer number or a string that specifies the
buffer. If a number is supplied, buffer number
buffer_specification is returned. If a string is
supplied, it is treated as a regular expression and
the list of buffers is searched for a match and the
match returned.

There are three special buffers: % is the current
buffer, # is the alternate buffer, and $ is the last
buffer in the list.

Returns: String.

String containing the full name of the buffer or an
empty string if there is an error or no matching
buffer can be found.

bufnr(buffer_expression)

What it does: Obtains the number of a buffer.

Parameter:

buffer_expression

A buffer specification similar to the one used by the
bufname function.

Returns: Integer.

Number of the buffer, or 1 for error.

bufwinnr(buffer_expression)

What it does: Obtains the window number for a buffer.

Parameter:

buffer_expression

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 513

The Vim Tutorial and Reference

A buffer specification similar to the one used by the
bufname function.

Returns: Integer. The number of the first window associated
with the buffer or 1 if there is an error or no
buffer matches the buffer_expression.

byte2line(byte_index)

What it does: Converts a byte index into a line number.

Parameter:

byte_index The index of a character within the current buffer.

Returns: Integer.

The line number of the line that contains the
character at byte_index or 1 if byte_index is out of
range.

char2nr(character)

What it does: Converts a character to a character number.

Parameter:

character A single character to be converted. If a longer
string is supplied, only the first character is used.

Returns: Integer.

The character number. For example, char2nr("A")
is 65. (The ASCII code for 'A' is 65.)

col(location)

What it does: Returns the column of the specified location.

Parameter:

location Is a mark specification (for example, 'x) or "." to
obtain the column where the cursor is located.

Returns: Integer.

The column where the mark or cursor resides, or 0
if there is an error.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 514

The Vim Tutorial and Reference

confirm(message, choice_list, [default], [type])

What it does: Displays a dialog box giving the user a number of
choices and returns what the user chooses.

Parameters:

message A prompt message displayed in the dialog box.

choice_list A string containing a list of choices. The newline
("\n") separates each choice. The ampersand (&) is
used to indicate an accelerator character.

[default] An index indicating default choice. The first button
is #1. If this parameter is not specified, the first
button is selected.

[type] The type of the dialog box to be displayed. The
choices are "Error", "Question", "Info", "Warning",
or "Generic". The default is "Generic".

Returns: Integer.

The choice number (starting with 1), or 0 if the
user aborted out of the dialog box by pressing
<ESC> or CTRLC.

Figure 27-1 shows the various types of confirmation dialog boxes.

GUI Confirmation

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 515

The Vim Tutorial and Reference

~
~
:confirm :q
Save changes to "Untitled"?
[Y]es, (N)o, (C)ancel:

Confirmation without a GUI

Figure 27-1: Dialog box types.

Note: This function works on both the GUI and console version of the
editor. The console versions of the dialog boxes do not look as nice:

:echo confirm("Hello", "&One\n&Two", 1, "Error")
Hello
[O]ne, (T)wo: O

delete(file_name)

What it does: Deletes the file.

Parameter:

file_name The name of the file to delete.

Returns: Integer.

0 means that the file was deleted. Non-0 for error.

did_filetype()

What it does: Checks to see whether the FileType event has
been done. This command is useful in conjunction
with the autocommands.

Returns: Integer.

Non-0 if autocommands are being executed and at
least one FileType event has occurred. 0
otherwise.

escape(string, character_list)

What it does: Turns a {string} of characters into an escaped
string. The {character_list} specifies the character
to be escaped.

Parameters:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 516

The Vim Tutorial and Reference

string The string you want to escape.

character_list The list of characters in string that need to have
the escape character (\) put in front of them.

Returns: String.

The escaped string.

For example:

:echo escape("This is a 'test'.", " '")
This\ is\ a\ \'test\'."

exists(string)

What it does: Checks to see whether the item specified by
{string} exits.

Parameters:

string An item to check. This can be used to specify an
option ('&autoindent'), an environment variable
('$VIMHOME'), a built-in function name ('*escape'),
or a simple variable ('var_name'). (Note:The
quotation marks are required because you are
passing in a string.)

Returns: Integer.

Returns 1 if the item exists, 0 otherwise.

expand(string, [flag])

What it does: Returns a list of files that match the string. This
string can contain wildcards and other
specifications. For example, expand("*.c")
returns a list of all C files.

Parameters:

string A string to be expanded. The string can contain
any of the special file characters described earlier.
Note: The 'suffixes' ('su') and 'wildignore'
options affect how the expansion is carried out.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 517

The Vim Tutorial and Reference

When a special word such as '<cfile>' is
expanded, no further expansion is performed. If
the cursor is on the string '~/.vimrc', for
example, expand('<cfile>') results in '/.vimrc.

If you want the full filename, however, you need to
expand twice. Therefore,
expand(expand('<cfile>')) returns
/home/oualline/.vimrc.

[flag] The 'wildignore' and 'suffixes' options are
honored unless a non-0 flag argument is supplied.

Returns: String list.

A list of filenames that match the string separated
by newlines. If nothing matches, an empty string is
returned.

filereadable(file_name)

What it does: Checks to see whether a file is readable.

Parameter:

file_name The name of the file to check.

Returns: Integer.

Non-0 number is returned when the file exists and
can be read. A 0 indicates that the file does not
exist or is protected against reading.

fnamemodify(file_name, modifiers)

What it does: Applies the modifiers to the file_name and return
the result.

Parameters:

file_name The name of a file.

modifiers Modification flags such as ":r:h".

Returns: String.

The modified filename.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 518

The Vim Tutorial and Reference

getcwd()

What it does: Obtains the current working directory.

Returns: String.

The current directory.

getftime(file_name)

What it does: Gets the modification time of a file.

Parameter:

file_name The name of the file to check.

Returns: Integer.

The modification time of the file (in UNIX format,
seconds since January 1, 1970), or 1 for error.

getline(line_number)

What it does: Gets a line from the current editing buffer.

Parameter:

line_number The line number of the line to get or "." for the line
the cursor is on.

Returns: String.

The text of the line or an empty string if the
line_number is out of range.

getwinposx()
getwinposy()

What they do: Return the x or y position of the Vim GUI window.

Returns: Integer.

The location in pixels of the x or y position of the
GUI window, or -1 when the information is not
available.

glob(file_name)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 519

The Vim Tutorial and Reference

What it does: Expands the wildcards in the filename and return a
list of files.

Parameter:

file_name A string representing the filename pattern to
match. You can also use an external command
enclosed in backticks (`). For example

glob("`find . name '*.c' print`")

Returns: String list.

The list of files matched (separated by <NL>), or
the empty string if nothing matches.

has(feature)

What it does: Checks to see whether a particular feature is
installed.

Parameter:

feature A string containing the feature name.

Returns: Integer flag.

1 if the feature is compiled in, or 0 if it is not.

histadd(history, command)

What it does: Adds an item to one of the history lists.

Parameters:

history Name of the history to use. Names are as follows:

"cmd" ":" Command history
"search" " /" Search pattern history
"expr" " =" Expressions entered for "=
"input" "@" Input line history

Returns: Integer flag.

1 for okay, 0 for error.

histdel(history, [pattern])

What it does: Removes commands from a history.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 520

The Vim Tutorial and Reference

Parameters:

history Which history list to use.

[pattern] A regular expression that defines the items to be
removed. If no pattern is specified, all items are
removed from the history.

Returns: Integer flag.

1 for okay, 0 for error.

histget(history, [index])

What it does: Obtains an item from the history.

Parameters:

history Which history list to use.

[index] An index of the item to get. The newest entry is
1, the next newest2, and so on. The last entry is
1, next to last 2, and so on. If no index is specified,
the last entry is returned.

Returns: String.

The specified item in the history, or an empty string
if there is an error.

histnr(history)

What it does: Returns the number of the current entry in the
given history.

Parameter:

history The history to be examined.

Returns: Integer.

The number of the last item in the history or 1 for
error.

hlexists(name)

What it does: Checks to see whether a syntax highlighting group
exists.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 521

The Vim Tutorial and Reference

Parameter:

name Name of the group to check for.

Returns: Integer flag Non-0, the group exists; 0 it does not.

hlID(name)

What it does: Given the name of a syntax highlight group, returns
the ID number.

Parameter:

name Name of the syntax highlighting group.

Returns: Integer.

The ID number.

hostname()

What it does: Gets the name of the computer.

Returns: String.

The hostname of the computer.

input(prompt)

What it does: Asks a question and gets an answer.

Parameter:

prompt The prompt to be displayed.

Returns: String. What the user types in as a response.

isdirectory(file_name)

What it does: Tests to see whether file_name is a directory.

Parameter:

file_name The name of the item to be checked.

Returns: Integer flag.

1, it is a directory; 0 it is not a directory or does not
exist.

libcall(dll_name, function, {argument})

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 522

The Vim Tutorial and Reference

What it does: Calls a function in a DLL file. (Microsoft Windows
only).

Parameters:

dll_name Name of a shared library (DLL) file in which the
function is defined.

function The name of the function

argument A single argument. If this argument is an integer, it
will be passed as an integer. If it is a string, it will
be passed as "char *".

Note: The function must return a string or NULL. A function that returns
a random pointer might crash Vim.

Returns: String.

Whatever the function returns.

line(position)

What it does: Given a marker or other position indicator, returns
the line number.

Parameter:

position The position marker. This can be a mark: 'x, the
current cursor location ., or the end-of-file $.

Returns: Integer.

The line number or 0 if the marker is not set or
another error occurs.

line2byte(line_number)

What it does: Converts a line number to a byte index.

Parameter:

line_number The line number to be converted. This can also be
a mark (x), the current cursor position (.) or the
last line in the buffer ($).

Returns: Integer.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 523

The Vim Tutorial and Reference

The byte index of the first character in the line
starting with 1. An error results in a return of 1.

localtime()

What it does: Returns the current time in the UNIX standard time
format.

Returns: Integer.

The number of seconds past January 1, 1970.

maparg(name, [mode])

What it does: Returns what a key is mapped to.

Parameters:

name The name of a lhs mapping.

[mode] The mode in which the string is mapped. This
defaults to "".

Returns: String.

The resulting mapping string. An empty string is
returned if there is no mapping.

mapcheck(name, [mode])

What it does: Checks to see whether a mapping exists.

Parameters:

name The name of a lhs mapping.

[mode] The mode in which the string is mapped. This
defaults to "".

Returns: String.

This returns any mapping that can match name.
This differs slightly from the maparg function in
that it looks at mappings for conflicting names. If
you have a mapping for "ax," for instance, it will
conflict with "axx".

For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 524

The Vim Tutorial and Reference

:map ax Test
:echo maparg("ax")
Test
:echo maparg("axx")
:echo mapcheck("ax")
 Test
:echo mapcheck("axx")
Test

match(string, pattern)

What it does: Checks to see whether string matches pattern.
Setting the 'ignorecase' ('ic') option causes the
editor to ignore upper/lowercase difference.

Parameters:

string String to check.

pattern Pattern to check it against. This pattern acts like
'magic' is set.

Integer.

Returns: The index of the first character of string where
pattern occurs. The first character is number 0. If
nothing matches, a 1 is returned.

matchend(string, pattern)

What it does: Similar to the match function, except that it returns
the index of the character of string just after where
pattern occurs.

matchstr(string, pattern)

What it does: Like the match function, but returns the string that
matches.

Parameters:

string String to check.

pattern Pattern to check it against .This pattern acts like
'magic' is set.

Returns: String. The part of {string} that matches or the
empty string if nothing matches.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 525

The Vim Tutorial and Reference

nr2char(number)

What it does: Turns a number into a character.

Parameter:

number The number of an ASCII character.

Returns: String of length 1.

The ASCII character for the number.

rename(from, to)

What it does: Renames a file.

Parameters:

from The name of the existing file.

to The name to which we want to rename the file.

Returns: Integer flag.

0 for success, non-0 for failure

setline(line_number, line)

What it does: Replaces the contents of line line_number with the
string line.

Parameters:

line_number The number of the line to change.

line The text for the replacement line.

Returns: Integer flag.

0 for no error, non-0 if there was a problem.

strftime(format, [time])

What it does: Returns the time formatted according to the format
string. The conversion characters that can be put
in the string are determined by your system's
strftime function.

Parameters:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 526

The Vim Tutorial and Reference

format The format string.

[time] The time (in seconds since 1970) to be used.
(Default is now).

Returns: String.

The time string containing the formatted time.

strlen(string)

What it does: Computes the length of a string.

Parameter:

string The string whose length you want.

Returns: Integer.

The length of the string.

strpart(string, start, length)

What it does: Returns the substring of string that starts at index
start and up to length characters long.

For example:

:echo strpart("This is a test", 0, 4)
This
:echo strpart("This is a test", 5, 2)
is

If the start or length parameters specify
non-existent characters, they are ignored. For
example, the following strpart command starts to
the left of the first character:

:echo strpart("This is a test", 2, 4)
Th

Parameters:

string The string from which you want a piece.

start The location of the start of the string you want to
extract.

length The length of the string to extract. String.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 527

The Vim Tutorial and Reference

Returns: The substring extracted for string.

strtrans(string)

What it does: Translates the unprintable characters in {string} to
printable ones.

Parameter:

string A string containing unprintable characters.

Returns: String.

The resulting string has unprintable characters,
such as CTRLA translated to ^A.

substitute(string, pattern, replace, flag)

What it does: In string, changes the first match of pattern with
replace. This is the similar to performing the
following on a line containing string:

:. substitute /pattern/replace/flag

Parameters:

string The string in which the replacement is to be made.

pattern A pattern used to specify the portion of string to be
replaced.

replace The replacement text.

flag If the empty string, replace just the first
occurrence. If g, replace all occurrences.

Returns: String.

The string that results from the substitution.

synID(line, column, transparent_flag)

What it does: Returns the syntax ID of the item at the given line
and column.

Parameters:

line, column The location of the item in the buffer.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 528

The Vim Tutorial and Reference

transparent_flag If non-0, transparent items are reduced to the items
they reveal.

Returns: Integer.

The Syntax ID.

synIDattr(sytnax_id, attribute, [mode])

What it does: Obtains an attribute of a syntax color element.

Parameters:

syntax_id The syntax identification number.

attribute The name of an attribute. The attributes are as
follows:

name The name of the syntax item
fg Foreground color
bg Background color
fg# Foreground color in #RRGGBB form
bg# Background color in #RRGGBB form
bold "1" if this item is bold
italic "1" if this item is italic
reverse "1" if this item is reverse
inverse Same as "reverse"
underline 1" if this item is underlined

mode "Which type of terminal to get the attributes for.
This can be gui, cterm, or term. It defaults to the
terminal type you are currently using.

Returns: String.

The value of the attribute.

synIDtrans(syntax_id)

What it does: Returns a translated syntax ID.

Parameter:

syntax_id The ID of the syntax element.

Returns: Integer.

The translated syntax ID.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 529

The Vim Tutorial and Reference

system(command)

What it does: Executes the external command specified by
command and captures the output. The options
'shell' ('sh') and 'shellredir' ('ssr') apply to
this function.

Parameter:

command A command to execute.

Returns: String. Whatever the command output is returned.

tempname()

What it does: Generates a temporary filename.

Returns: String.

The name of a file that can be safely used as a
temporary file.

visualmode()

What it does: Gets the last visual mode.

Returns: String.

The last visual mode as a command string. This is
either v, V, or CTRLV.

virtcol(location)

What it does: Computes the virtual column of the given location.

Parameter:

location A location indicator such as . (cursor location), 'a
(mark a), or $ (end of the buffer).

Returns: Integer.

The location of the virtual column (that is, the
column number assuming that tabs are expanded
and unprintable characters are made printable).

winbufnr(number)

What it does: Gets the buffer number of the buffer that is in a
window.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 530

The Vim Tutorial and Reference

Parameter:

number The window number or 0 for the current window.

Returns: Integer.

Buffer number or -1 for error.

winheight(number)

What it does: Gets the height of a window.

Parameter:

number The window number or 0 for the current window.

Returns: Integer.

Window height in lines or -1 for error.

winnr()

What it does: Gets the current window number.

Returns: Integer.

The current window number. The top window is
#1.

Obsolete Functions

A few functions are currently obsolete and have been replaced with newer
versions; however, you might still find some scripts that use them.

Obsolete Name Replacement
buffer_exists() bufexists()
buffer_name() bufname()
buffer_number() bufnr()
last_buffer_nr() bufnr("$")
file_readable() filereadable()
highlight_exists() hlexists()
highlightID() hlID()

Plugins and other scripts

To read in a script file you use the command :source (:so) and the script
name:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 531

The Vim Tutorial and Reference

:source myfile.vim

There are a number of files that Vim reads in automatically. Any file that is
in the $HOME/.vim/plugin directory is considered a plugin and read in
automatically.

The 'runtimepath' ('rtp') option can also be set to a series of directories
in which to look for plugins.

Vim has a couple of funny syntax elements that to help avoid name
collisions with plugins or any other script. The <SID> string will be translated
into a magic character (named <SNR>) a unique serial number and an
underscore. So putting <SID> in front of all your variables and functions in a
script assures that they will all have a unique name.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 532

The Vim Tutorial and Reference

Chapter 28: Customizing the Editor

The Vim editor is highly customizable. It gives you a huge number of
options.

This chapter discusses how to use the ones that enable you to customize
the appearance and the behavior of your Vim editor.

This chapter discusses the following:

● The :set command (in extreme detail)

● Local initialization files

● Customizing keyboard usage

● Customizing messages and the appearance of the screen

● Other miscellaneous commands

Setting

The Vim editor has a variety of ways of setting options. Generally, to set an
option, you use the :set (:st) command:

:set option=value

This works for most options. Boolean options are set with this command:

:set option

They are reset with the following command:

:set nooption

To display the value of an option, use this command:

:set option?

If you want to set an option to its default value, use the following
command:

:set option&

Boolean Options

You can perform the following operations on a Boolean option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 533

The Vim Tutorial and Reference

Operation Meaning
:set {option} Turn the option on.
:set no{option} Turn the option off.
:set {option}! Invert the option.
:set inv{option} Invert the option
:set {option}& Set the option to the default value.

For example:

:set list
:set list?
list

:set nolist
:set list?
nolist

:set list!
:set list?
list

:set list&
:set list?
nolist

Numeric Options

You can perform the following operations on a numeric option.

Command Meaning
:set option += value Add value to the option.
:set option = value Subtract value from the option.
:set option ^= value Multiply the option by value.
:set option& Set the option to the default value.

For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 534

The Vim Tutorial and Reference

:set shiftwidth=4
:set shiftwidth += 2
:set shiftwidth?
shiftwidth=6

:set shiftwidth=3
:set shiftwidth
shiftwidth=3

:set shiftwidth ^= 2
:set shiftwidth
shiftwidth=6

:set shiftwidth&
:set shiftwidth
shiftwidth=8

String-Related Commands

You can perform the following operations on string options:

Command Meaning
:set option += value Add value to the end of the option.
:set option = value Remove value (or characters) from the

option.
:set option ^= value Add value to the beginning of the option.

For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 535

The Vim Tutorial and Reference

:set cinwords=test
:set cinwords?
cinwords=test

:set cinwords+=end
:set cinwords?
cinwords=test,end

:set cinwords=test
:set cinwords?
cinwords=end

:set cinwords^=start
:set cinwords?
cinwords=start,end

Another Set Command

The following command sets a Boolean option (such as 'list' and
'nolist'), but it displays the value of other types of options:

:set option

However, it is not a good idea to use this form of the command to display
an option value because it can lead to errors if you are not careful. It is much
better to use the following command to display the value of an option:

:set option?

An alternative form of the

:set option = value

command is this command:

:set option:value

Other :set Arguments

Error: Reference source not foundError: Reference source not foundTheEr
ror: Reference source not foundError: Reference source not found following
command prints out all the options that differ from their default values:

:set

The following command prints all options:

:set all

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 536

The Vim Tutorial and Reference

This command prints out all the terminal control codes:

:set termcap

Finally, to reset everything to the default values, use this command:

:set all&

Chaining Commands

You can put several :set operations on one line. To set three different
options, for example, use the following command:

:set list shiftwidth=4 incsearch

Automatically Setting Options in a File

You can put Vim settings in your files. When Vim starts editing a file, it
reads the first few lines of the file, looking for a line like this:

vim: set optioncommand optioncommand optioncommand :

This type of line is called a modeline. In a program, for instance, a typical
modeline might look like this:

/* vim: set shiftwidth=4 autoindent : */

An alternate format is:

vim: optioncommand:.optioncommand: ...:

The option 'modeline' ('ml') turns on and off this behavior. The
'modelines' ('mls') option controls how many lines are read at the start and
end of the file when Vim looks for setting commands.

If you set the following option, for instance, Vim does not look for
modelines:

:set nomodeline

If the following option is set, Vim does look at the top and bottom of each
file for the number of lines specified by the 'modeline' option:

:set modeline

For example, you may see lines like the following at the end of many of the
Vim help files:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 537

The Vim Tutorial and Reference

vim:tw=78:ts=8:sw=8:

This sets the 'tw' ('textwidth') option to 78, the 'ts' ('tabstop') to 8,
and the 'sw' ('shiftwidth') to 8. These settings make the text in the help files
look nice. By using modelines, the creators of the help file make sure that the
text is formatted correctly no matter what local settings you use for your other
files.

Another example: For this book, I have had to create a number of C
programming examples. When I copy these programs into the word processor,
the tabs get really screwed up. The solution to this problem is to make sure that
there are no tabs in the program. One way to do this is to put a line like this at
the end of the file:

/* vim: set expandtab : */

This turns on 'expandtab' and causes Vim to never insert a real tab--well,
almost never; you can force the issue by using CTRLV <Tab>. If you have some
custom settings for your own C programs, you can put a line near the top of
bottom of your program like this:

/* vim: set cindent shiftwidth=4 smarttabs : */

Local .vimrc Files

Suppose you want to have different settings for each directory. One way to
do this is to put a .vimrc or .gvimrc file in each directory. That is not enough,
however, because by default Vim ignores these files. To make Vim read these
files, you must set the 'exrc' ('ex') option:

:set exrc

Note: The .vimrc and .gvimrc files are read from the current directory,
even if the file being edited is located in a different directory.

Setting this option is considered a security problem. After all, bad things
can easily be dumped into these files, especially if you are editing files in
someone else's directory.

To avoid security problems, you can set the 'secure' option using this
command:

:set secure

This option prevents the execution of the :autocommand, :write, and
:shell commands from inside an initialization file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 538

The Vim Tutorial and Reference

Customizing Keyboard Usage

The Vim editor is highly customizable. This section shows you how to
fine-tune the keyboard usage so that you can get the most out of your editor.

Microsoft Windows

Most programs that run under Microsoft Windows use the Alt keys to
select menu items. However, Vim wants to make all keys available for
commands. The 'winaltkeys' ('wak') option controls how the Alt keys are
used.

If you use the following command, for example, all the Alt keys are
available for command mapping with the :map command:

:set winaltkeys=no

Typing ALTF will not select the file menu, but will instead execute the
command ALTF is mapped to. A typical mapping might be this:

:map <Mf> :write

(Remember: Vim "spells" ALT as M-, which stands for Meta.) If you use the
following command, all the Alt keys will select menu items and none of them can
be used for mapping:

:set winaltkeys=yes

The third option is a combination of yes and no:

:set winaltkeys=menu

In this mode, if an Alt key can be used for a menu, it is; otherwise, it is
used for :map commands. So ALTF selects the File menu, whereas you can use
ALTX (which is not a menu shortcut) for :map commands.

Two options control how Vim reads the keyboard when you are using the
console version of Vim from an MS-DOS window. The 'conskey' ('consk')
option tells Vim to read characters directly from the console:

:set conskey

Do not set this option if you plan to use your Vim editor to read a script file
from the standard input.

The 'bioskey' ('biosk') option tells Vim to use the BIOS for reading the
keyboard:

:set bioskey

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 539

The Vim Tutorial and Reference

Again, do not use this if you plan using a script file for a redirected
standard in. By pointing Vim at the BIOS, you get faster response to CTRLC and
Break interrupts.

Customizing Keyboard Mappings

Most UNIX function keys send out a string of characters beginning with
<Esc> when they are pressed. But a problem exists: the <Esc> key is used to end
insert mode. So how do you handle function keys in insert mode?

The solution is for Vim to wait a little after an <Esc> key is pressed to see
whether anymore characters come in. If they do, Vim knows that a function key
has been pressed and acts accordingly. To turn on this feature, execute the set
the 'esckeys' option:

:set esckeys

But what about other key sequences? These are controlled by the
'timeout' ('to') and 'ttimeout' options:

:set timeout
:set ttimeout

The following table shows the effects of these settings.

timeout ttimeout Result
notimeout nottimeout Nothing times out.
timeout N/A All key codes (<F1>, <F2>, and so on) and

:map macros time out.
notimeout ttimeout Key codes (<F1>, <F2>, and so on) only time

out.

The option 'timeoutlen' ('tm') determines how long to wait after <Esc>
has been pressed to see whether something follows. The default is as follows,
which equals one second (1000 milliseconds):

:set timeoutlen=1000

Generally, 'timeoutlen' controls how long to wait for both function keys
and keyboard mapping strings. If you want to have a different timeout for
keyboard mapping strings, use the 'ttimeoutlen' ('ttm') option:

:set ttimeoutlen=500

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 540

The Vim Tutorial and Reference

These two timeouts tell Vim to wait 1/2 second after an <Esc> key has been
pressed to see whether you have a function key or one second to see whether it
is a keyboard mapping. (In other words, if Vim reads enough to determine that
what comes after the <Esc> press cannot possibly be a keyboard mapping
sequence, it will wait only one second between characters trying to figure out
what function key has been typed.)

Confirmation

Generally, when you do something that Vim considers questionable, such as
quitting from a modified buffer, the command fails. If you set the 'confirm'
('cf') option, however, and use the following command, Vim displays a
confirmation dialog box instead of failing:

:set confirm

When you try to :quit a buffer containing a modified file, for example, the
Vim editor displays a confirmation dialog box (see Figure 28-1).

Figure 28-1: Confirmation dialog box.

Customizing Messages

Vim generally uses the bottom line of the screen for messages. Sometimes
these messages exceed one line and you get a prompt that states something like
Press Return to Continue. To avoid these prompts, you can increase the
number of message lines by setting the 'cmdheight' ('ch') options. To change
the height of the message space to 3, for instance, use this command:

:set cmdheight=3

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 541

The Vim Tutorial and Reference

Showing the Mode

When you set the 'showmode' ('smd') option, the Vim editor displays the
current mode in the lower-left corner of the screen. To enable this feature, use
the command:

:set showmode

Showing Partial Commands

If you set the 'showcmd' ('sc') option, any partial command is displayed at
the lower-right of the screen while you type it. Suppose you execute the
following command:

:set showcmd

Now you enter an fx command to search for x. When you type the f, an f
appears in the lower-right corner.

This is nice for more complex commands because you can see the
command as it is assembled. For example, the command displays the entire
command (incomplete as it is) in the lower-right corner: "y2f.

Figure 28-2 shows how 'cmdheight', 'showmode', and 'showcmd' affect
the screen.

 A very intelligent turtle
 Found programming UNIX a hurdle
 The system, you see,
 Ran as slow as did he,
 And that's not saying much for the turtle.

joke.txt

 VISUAL 2f

Figure 28-2: 'showmode' and 'showcmd'.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 542

cmdheight

showmode showcmd

The Vim Tutorial and Reference

Short Messages

Another way to limit the "Press Return" prompts is to set the "short
message" option. This shortens many common messages. The flags in the
'shortmess' ('shm') option determine which messages are shortened. The
general form of this command is as follows:

:set shortmess=flags

The following table lists the flags.

Flag Short Value Long Value Default
f (3 of 5) (file 3 of 5) On
i [noeol] [Incomplete last line] On
l 999L, 888C 999 lines, 888 characters On
m [+] [Modified] Off
n [New] [New File] On
r [RO] [re adonly] Off
w [w] written Off
x [dos] [dos format] On
x [unix] [unix format] On
x [mac] [mac format] On
a All the abbreviations: filmnrwx.
A Eliminate the "attention" messages issued when Vim finds an

existing swap file. (Default = off.)
I Eliminate the introduction screen. (Default = off.)
o Sometimes you will perform an operation that writes a file and

then does something else that writes a message, such as
executing a :wnext command.

If this option is not set, you will get two messages and will
probably have to go through a "Press Return" prompt to see the
second one.

If this option is set (the default), the first message is overwritten
by the second.

(Default = on.)
O If you get a message stating that you are reading a file, it will

overwrite any previous message.

(Default = on.)
s If set, do not issue a "Search Hit Bottom, Continuing at Top" or

"Search Hit Top, Continuing at Bottom" message.

(Default = off.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 543

The Vim Tutorial and Reference

Flag Short Value Long Value Default
t If set, truncate the filename at the beginning of the message if it

is too long to fit on one line. Thus, a long filename, such as
/home/oualline/writing/books/vimbook/editormessages/
myreplies/tuesday.txt, appears as
<itormessages/myreplies/tuesday.txt (or something
similar).

(Default = off.) (Does not change the message in ex mode.)
T Truncate messages in the middle if they are too long. The

deleted portion will appear as an ellipsis (...).

(Default = on.) (Does not apply to ex mode.)
W Drop "written" or "[w]" when writing a file.

(Default = off.)

The 'terse' Option

To set the 'terse' option, issue the command:

:set terse

This command adds the s flag to the 'shortmess' option. Setting
'noterse' removes this flag.

The "File Modified" Warning

Generally, Vim warns when you do a :shell command and the file is
modified before you return to Vim. If you want to turn off this option, execute the
following command:

:set nowarn

Error Bells

When Vim gets an error, it just displays an error message. It is silent. If
you are more audio-oriented than visually proficient, you might want to turn on
the 'errorbells' ('eb') option. This following command causes Vim to beep
when there is an error:

:set errorbells

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 544

The Vim Tutorial and Reference

Beeping can sometimes disturb others in an office or classroom
environment. An alternative to audio bells is a "visual" bell. When the
'visualbell' ('vb') option is set, the screen flashes (everything will go into
reverse video and back to normal quickly). To set this option, use the following
command:

:set visualbell

Status Line Format

You can customize the status line. You can use the 'statusline' ('stl')
option to define your status line:

:set statusline=format

The format string is a printf line format string. A % is used to indicate a
special field. For example, %f tells Vim to include the filename in the status line.

The command

:set statusline=The\ file\ is\ \"%f\"

gives you the following status line:

The file is "sample.txt"

You can specify a minimum and maximum width for an item. For example,
the command tells Vim that the filename must take up 8 characters, but is
limited to only 19:

:set statusline=%8.19f

Items are right-justified. If you want them left-justified, put a just after
the %. For example:

>%10.10f< >%10.10f<
> foo.txt< >foo.txt <

Numeric items are displayed with leading zeros omitted. If you want them,
put a zero after the %. To display the column number, for instance, with leading
zeros, use the following command:

:set statusline=%05.10c

Format Type Description
%(... %) Define an item group. If all the items in this group

are empty, the entire item group (and any text
inside it) disappears.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 545

The Vim Tutorial and Reference

Format Type Description
%{n}* Uses the highlight group Usern for the rest of the

line (or until another %n* is seen).The format %0*
returns the line to normal highlighting.
If the highlight group User1 is underlined, for
example, the status line

:set statusline=File:\ %1*%f%0*
gives you the following status line:

File: sample.txt
%< Define a location where the status line can be

chopped off if it is too long.
%= Defines a location in the "middle" of the line. All

the text to the left of this will be placed on the left
side of the line, and the text to the right will be put
against the right margin.
For example:

:set statusline=<Left%=Right>
results in

<Left Right>
%% The character %.
%B Number The number of the character under the cursor in

hexadecimal.
%F String Filename including the full path.
%H Flag HLP if this is a help buffer.
%L Number Number of lines in buffer.
%M Flag + if the buffer is modified.
%O Number Byte offset in the file in hexadecimal form.
%P String The % of the file in front of the cursor.
%R Flag RO if the buffer is read-only.
%V Number Virtual column number. This is the empty string if

equal to %c.
%W Flag PRV if this is the preview window.
%Y Flag File type
a% String If you are editing multiple files, this string is

"({current} of {arguments})".
For example:

 (5 of 18)
If there is only one argument in the command line,
this string is empty.

%b Number The number of the character under the cursor in
decimal.

%c Number Column number.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 546

The Vim Tutorial and Reference

Format Type Description
%f String The filename as specified on the command line.
%h Flag [Help] if this is a help buffer.
%l Number Line number.
%m Flag [+] if the buffer is modified.
%n Number Buffer number.
%o Number Number of characters before the cursor including

the character under the cursor.
%p Number Percentage through file in lines.
%r Flag [RO] if the buffer is read-only.
%t String The filename (without any leading path

information).
%v Number Virtual column number.
%w Flag [Preview] if this is a preview window.
%y Flag Type of the file as [type].
%{expr%} The result of evaluating the expression expr.

The flag items get special treatment. Multiple flags, such as RO and PRV,
are automatically separated from each other by a comma. Flags such as + and
help are automatically separated by spaces.

For example:

:set statusline=%h%m%r

can look like this:

[help] [+] [RO]

Note: For the purpose of this example, we are ignoring the fact that we
have done the improbable and modified a read-only buffer.

The 'fillcharacs' ('fcs') option controls how extra space in the status
lines (and other separation lines) is filled. It is a list of value from the following
table:

diff:{char}Deleted lines in a diff window
fold:{char}Lines which indicate folds
slt:{char} Status line of the current window
stln:{char}Status line of non-current windows
vert:{char}Vertical lines separating windows.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 547

The Vim Tutorial and Reference

+ +399 lines: ************************|+ +399 lines: ***********************
 scsi_cmd.cmd[8] = sizeof(log)%256;| scsi_cmd.cmd[8] = sizeof(log)%256
 scsi_cmd.cmd[9] = 0; | scsi_cmd.cmd[9] = 0;
 |
 scsi_cmd.inlen = 0; | scsi_cmd.inlen = 0;
 scsi_cmd.outlen = sizeof(log); | scsi_cmd.outlen = sizeof(log);
 |
 // For more infomration see: |
 if (ioctl (fd, SCSI_IOCTL_SEND_COM| if (ioctl (fd, SCSI_IOCTL_SEND_CO
 int error = errno; | int error = errno;
 perror("SCSI command failed: "| perror("SCSI command failed:
 printf("Error code: %d\n", err| printf("Error code: %d\n", er
 exit (1); | exit (1);
 } | }
+ +282 lines: Copy the the data to the|+ +282 lines: Copy the the data to th
 ~ | ~
 ~ | ~
 ~ | ~
 ~ | ~
 ~ | ~
 ~ | ~
 ~ | ~
<tatus/dltstatus.cpp 1,38 All </dltstatus.cpp.bad 1,38 All
"mtstatus/dltstatus.cpp.bad" 693L, 20156C

Rulers

If you do not like the default status line, you can turn on the 'ruler'
('ru') option:

:set ruler

This causes Vim to display a status line that looks like this:

help.txt [help][RO] 1,38 Top

After the file name and flags, this displays the current column, the virtual
column, and an indicator showing you how far you are through the file. If you
want to define your own ruler format, set the 'rulerformat' ('ruf') to the
desired format.

:set rulerformat=string

String is the same string used for the 'statusline' option.

Reporting Changes

When you delete or change a number of lines, Vim tells you about it if the
number of lines is greater than the value of the 'report' option. Therefore, to
report information on all changes, use the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 548

difffold

slt stln
vert

The Vim Tutorial and Reference

:set report=0

On the other hand, if you do not want to be told about what you have
changed, you can set this to a higher value.

Help Window Height

You can set the minimum size of the help window by using the
'helpheight' ('hh') command:

:set helpheight=height

This minimum is used when opening the help window. The height can get
smaller afterwards .

Preview Window Height

You can also specify the height of the preview window by using the
'previewheight' ('pvh') option:

:set previewheight=height

Defining How 'list' Mode Works

Generally, 'list' ('li') uses ^I for <Tab> and $ for the end of the line.
You can customize this behavior. The 'listchars' ('lcs') option defines how
list mode works. The format for this command is as follows:

:set listchars=key:string,key:string,...

The possible values for the key:string pairs are:

eol:char Define the character to be put after the end of
the line.

tab:char1 char2 A tab is displayed as char1 followed by enough
char2 to fill the width.

trail:char Character for showing trailing spaces
extends:char Character used at the end of a line that wraps to

the next line in screen space.

For example:

:set listchars=tab:>

shows up with tabs like this:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 549

The Vim Tutorial and Reference

>Tabbing
can>be
fun if you >know how
to set the list >>command.

Another example:

:set listchars=tab:>,trail:=

Gives us:

This line>====
has spaces and tabs>===
at the end=====
of the line====

Suppose that you have set the following options:

:set nowrap
:set listchars=extends:+

Figure 28-3 displays the results.

The student technicians were used to t+
technician took the back off a termina+
loose chip and instead found a large h+
board. He decided to talk to the prof+

Technician: Did you pile papers on+

Professor: Yes.

Figure 28-3: listchars=extends:+.

Changing the line number size

The 'numberwidth' ('nuw') option controls how many characters are taken
up by the line numbers which are displayed if 'number' is set. This is a minimum
width. Vim will increase it if the number of lines in the file gets very large.

Changing the Highlighting

You can change the highlighting of various objects by using the
'highlight' ('hl') option. The format for this option is as follows:

:set highlight=key:group, [key:group]....

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 550

The Vim Tutorial and Reference

Key is a key letter listed in the following table, and group is the name of a
highlight group. The keys are:

Key Default Meaning
8 SpecialKey This highlighting is applied when :map lists out a

special key.
@ NonText Applied to the ~ and @ character that Vim uses to

display stuff that is not in the buffer.
M ModeMsg The mode information in the lower left of the screen.

(See the 'showmode' option.)
S StatusLineNC Status line for every window except the current one.
V VisualNOS Text selected in visual mode when Vim does not own

the selection.
W WildMenu Items displayed as part of a wildcard completion set.
d Directory Directories listed when you press CTRLD.
e ErrorMsg Error messages.
i IncSearch Text highlighted as part of an incremental search.
l Search Text highlighted as part of a search.
m MoreMsg The More prompt.
n LineNr The line number printed by the :number command.
r Question The Press Return prompt and other questions.
s StatusLine The status line of the current windows.
t Title Titles for commands that output information in

sections, such as :syntax, :set all, and others.
v Visual Text selected in visual mode.
w WarningMsg Warning

You can use a number of shorthand characters for highlighting, including
the following:

r Reverse
i Italic
b Bold
s Standout
u Underline
n None
 None

Therefore, you can specify that the error message use the highlight group
ErrorMsg by executing the following command:

:set highlight=e:ErrorMsg

Or, you can use the shorthand to tell Vim to display error messages in
reverse, bold, italic, by issuing this command:

:set highlight=e:vrb

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 551

The Vim Tutorial and Reference

In actual practice, you would not define just one mode with a :set
highlight command. In practice, this command can get quite complex. If a key
is not specified, the default highlighting is used.

The 'more' Option

When the 'more' option is set, any command that displays more than a
screen full of data pauses with a More prompt. If not set, the listing just scrolls
off the top of the screen.

The default is:

:set more

Number Format

The following command defines which types of numbers can be recognized
by the CTRLA and CTRLX commands:

:set nrformats=octal,hex

(Decimal format is always recognized.)

Restoring the Screen

When the 'restorescreen' ('rs') option is set, Vim attempts to restore
the contents of the terminal screen to its previous value:

:set restorescreen

In other words, it tries to make the screen after you run Vim look just like
it did before your ran the program.

Pasting Text

The X Windows xterm program enables you to select text by drawing the
mouse over it while the left button is held down. This text can then be "pasted"
into another window. However, some of Vim's capabilities can easily get in the
way when pasting text into the window.

To avoid problems, you can set paste mode the 'paste' option:

:set paste

This is shorthand for setting a number of options:

:set textwidth=0

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 552

The Vim Tutorial and Reference

:set wrapmargin=0
:set noautoindent
:set nosmartindent
:set nocindent
:set softtabstop=0
:set nolisp
:set norevins
:set noruler
:set noshowmatch
:set formatoptions=""

At times, you might want paste mode and you might not. The
'pastetoggle' option enables you to define a key that toggles you between
'paste' mode and 'nopaste' mode. To use the <F12> key to toggle between
these two modes, for instance, use the command:

:set pastetoggle=<F12>

When 'paste' mode is turned off, all the options are restored to the values
they had when you set paste mode.

Wildcards

When you are entering a command in ex mode, you can perform filename
completion. If you want to read in the file input.txt, for example, you can enter
the following command:

:read input<Tab>

Vim will try to figure out which file you want. If the only file in your
current directory is input.txt, the command will appear as:

:read input.txt

If several files that with the word input, the first will display. By pressing
<Tab> again, you get the second file that matches; press <Tab> again, and you
get the third, and so on.

To define which key accomplishes the wildcard completion, set the
'wildchar' ('wc') command:

:set wildchar=character

If you are using filename completion inside a macro, you need to set the
'wildcharm' ('wcm') (which stand for wild-char-macro). It is the character that
accomplishes filename completion from inside a macro.

For example:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 553

The Vim Tutorial and Reference

:set wildcharm=<F12>
:map <F11> :read in<F12>

Now when you press <F11>, it will start a read command for the file
in-whatever.

You probably do not want to match backup file or other junk files. To tell
Vim what is junk, use the 'wildignore' ('wig') option:

:set wildignore=pattern,pattern

Every file that matches the given pattern will be ignored. To ignore object
and backup files, for example, use the following command:

:set wildignore=*.o,*.bak

The 'suffixes' ('su') option lists a set of file name suffixes that will be
given a lower priority when it comes to matching wildcards. In other words if a
file has one of these suffixes it will be placed at the end of any wildcard list.
Generally, the filename completion code does not display a list of possible
matches.

If you set the 'wildmenu' ('wmnu') option

:set wildmenu

when you attempt to complete a filename, a menu of possible files displays
on the status line of the window (see Figure 28-4).

This is a test
~
~
~
~
~
~
in.txt index.txt indoors.txt input.txt >
:read /tmp/in.txt

Figure 28-4: Filename completion.

The arrow keys cause the selection to move left and right. The > at the end
of the line indicates that there are more choices to the right. The <Down> key
causes the editor to go into a directory. The <Up> key goes to the parent
directory. Finally, <Enter> selects the item.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 554

The Vim Tutorial and Reference

You can customize the behavior of the file completion logic by using the
'wildmode' ('wim') option. The following command causes Vim to complete only
the first match:

:set wildmode=

If you keep pressing the 'wildchar' key, only the first match displays.
Figure 28-5 shows how this option works.

in.txt input.txt
invoide.txt

Figure 28-5: wildmode=.

The following command causes Vim to complete the name with the first file
it can find:

:set wildmode=full

After that, if you keep pressing the 'wildchar' key, the other files that
match are gone through in order. Figure 28-6 shows what happens when this
option is enabled.

in.txt input.txt
invoide.txt

Figure 28-6: wildmode= full.

The following command causes the pressing of 'wildchar' to match the
longest common substring and then stop:

:set wildmode=longest

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 555

First 'wildchar'

First 'wildchar'

Next 'wildchar'
Next 'wildchar'

Next 'wildchar'

The Vim Tutorial and Reference

If you use the following command, you accomplish the same thing; but the
display is just the list of files on the 'wildmenu' line:

:set wildmode=longest:full

The following command displays a list of possible matches when the
'wildchar' is pressed (see Figure 28-7).

:set wildmode=list

~
~
~
~
~
~
~
:r g
getchar.c gui_beval.c gui_x11.c
gui_at_sb.h gui_xmebwp.h
gui.c gui_gtk.c gui_xmdlg.c
gui_beval.h
gui_at_fs.c gui_gtk_f.c gui_xmebw.c
gui_gtk_f.h
gui_at_sb.c gui_gtk_x11.c globals.h
gui_x11_pm.h
gui_athena.c gui_motif.c gui.h
gui_xmebw.h
:r g

Figure 28-7 wildmode=list.

This mode does not complete the match. If you want that to happen as
well, use this option:

:set wildmode=list:full

Finally, to complete the longest common substring and list the files, use the
following option :

:set wildmode=list:longest

You can use these options in a set. The first option is used the first time
the 'wildchar' is pressed, the second option is used the second time you press
'wildchar', and so on, for up to four presses. Therefore, if you want to
complete the longest substring (longest) and then go through the list (full), use
the following option:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 556

The Vim Tutorial and Reference

:set wildmode=longest,full

Customizing Behavior of the Screen Movement Commands

When the 'startofline' ('sol') option is set, the screen movement
commands as well as several cursor movement commands such as H, M, L, G, and
<CEnd> move the cursor to the start of a line. If it is not set, the cursor remains
in the same column (or as close as possible).

File Writing Options

If set, the 'write' option lets Vim write files. If this option is not set, you
can view the file only. This is useful if you want to use Vim as a secure viewer.

Generally, when you try to write a file that you should not, Vim makes you
use the override option (!). If you want to live dangerously, you can tell Vim to
always assume that this option is present for writing type commands by
executing setting the 'writeany' ('wa'):

:set writeany

Memory Options

To set the maximum memory for one buffer, use the 'maxmem' ('mm')
option.

:set maxmem=size

size is the memory limit in kilobytes.

To define total amount of memory for all buffers, use the maxmemtot'
('mx') option.

:set maxmemtot=size

To control the amount of memory used for pattern matching (in search) use
the 'maxmempattern' ('mmp') option.

Function Execution Options

The 'maxfuncdepth'('mdf') option defines the maximum number of nested
functions. Similarly, the 'maxmapdepth' ('mmd') parameter defines the maximum
number of nested mappings.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 557

The Vim Tutorial and Reference

Terminal Options

The following sections describe the terminal options.

Terminal Name

The name of your terminal is stored in the 'term' option. ('ttytype' and
'tty' are aliases for this option.) Generally, you do not need to set this option
because it is set by your shell or operating environment. However, you might
need to read it to enable terminal-specific macros.

Lazy Redraw

The 'lazyredraw' ('lz') option is useful for a slow terminal. It also
prevents Vim from redrawing the screen in the middle of a macro. The default is
as follows:

:set nolazyredraw

If you do set this option, you do not see macros being executed.

Internal Termcap

The UNIX system has a database of terminal control codes called termcap.
The Vim editor has its own built-in database as well. If the 'ttybuiltin' ('tbi')
option is enabled, this internal database is searched first.

Fast Terminals

If the 'ttyfast' ('tf') option is set, Vim assumes you have a fast terminal
connection and changes the output to produce a smoother update, but one with
more characters. If you have a slow connection, you should reset this option.

Mouse Usage Inside a Terminal

The 'ttymouse' ('ttym') option controls the terminal mouse codes. This
option is of interest to those trying to do fancy things with terminal control
codes. For example, if you want to use the mouse buttons <LeftMouse> and
<RightMouse> in console editing, you should enable this option.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 558

The Vim Tutorial and Reference

How Much to Scroll

The 'ttyscroll' ('tls') option controls how many lines to scroll the
screen when an update is required. You can adjust this to a small number if you
are on a slow terminal.

Finally we have the 'weirdinvert' ('wiv') option. This is a historical
holdover from the 4.x version of Vim. If you happen to have an ancient terminal
that requires this option, don't set the option. Donate the terminal to a museum
and get a modern Linux system to replace it.

Some More Obscure Options

This section discusses some of the more obscure options in Vim. These
were kept around for compatibility with Vi and to support equipment that was
long ago rendered obsolete.

Compatibility

The 'compatible' ('cp') option makes Vim act as much like Vi as
possible:

:set compatible

If you enable this option, many of the examples in this book will not work
properly. This option is generally set unless there is a $HOME/.vimrc file
present.

Similarly, the 'coptions' ('cpo') option enables you to fine-tune Vi
compatibility:

:set cpoptions=characters

This 'edcompatible' ('ed') command makes the g and c options on the
:substitute command to act like they do for the UNIX editor Ed:

:set edcompatible

The following option sets lisp mode. This sets a number of options to make
Lisp programming easier:

:set lisp

The 'lispwords' ('lw') option contains a set of words that help Vim
properly indent Lisp.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 559

The Vim Tutorial and Reference

The 'tildeop' ('top') option makes ~ behave like an operator. This is for
Vi compatibility. If this option is turned off, the ~ command will switch the case
of a single character. With the following, the ~ command takes the form of
~motion:

:set tildeop

Note: The g~ command always behaves as an operator regardless of this
option.

The 'helpfile' ('hf') option defines the location of the main help file.
This option proves useful if you want to redirect where the :help command gets
its information.

For example:

:set helpfile=/usr/sdo/vim/my_help.txt

Weirdinvert

The 'weirdinvert' ('wiv') option has been provided for backward
compatibility with version 4.0 of Vim:

:set weirdinvert

It has been made obsolete by the t_xs string. (See the Vim terminal help
documentation for more information.) Some terminals, such as hpterm, need to
have t_xs set to work. If you have one of these, you might want to look at the
help text:

:help hpterm

Debugging

The 'writedelay' ('wd') option causes a delay of time (in milliseconds)
between each character output:

:set writedelay={time}

The 'verbose' ('vbs') option controls how much Vim chatters while
performing its job (the higher the number, the more output). The current
numbers are as follows:

>= 1 When the viminfo file is read or written.
>= 2 When a file read because of a :source command.
>= 5 Every searched tags file and include file.
>= 8 Files for which a group of autocommands is executed.
>= 9 Every executed autocommand.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 560

The Vim Tutorial and Reference

>= 12 Every executed function.
>= 13 When an exception is thrown, caught, finished, or discarded.
>= 14 Anything pending in a :finally clause.
>= 15 Every executed ex command (truncated at 200 characters).

The :verbose (:verb) command does the same thing except it only affects
a single command. The general form of this command is:

:[count] verbose {command}

Where [count] is the verbose number from above. This command is useful
for debugging scripts to understand what's happening in them.

One of the problems with turning on verbose output is that things scroll off
the screen quickly. One way to solve this problem is to set the 'verbosefile'
('vfile') option and save the output to a file. Then when you're done, you can
browse through the file using Vim to look for anything you might have missed.

By default many functions that are called automatically such as those for
'foldexpr', 'formatexpr', and 'indentexpr' do out output error message. If
you set the option 'debug' to msg, error messages which normally are
suppressed.

They still won't throw an exception however. For than you need to set
'debug' to throw. Finally, if you want an audible notification of the error, add a
beep.

You can use the three keywords, msg, throw, and beep in any combination
you want such as:

:set debug=msg,beep

Production

The opposite of :verbose is :silent (:sil). It causes normal information
messages produced during the execution of a command to disappear. If used
with the override (!) option, error messages disappear as well.

Keyboard Mapping

The :loadkeymap (:loadk) load a keyboard mapping file into the system.
These mapping files are highly keyboard and language dependent and beyond
the scope of this book.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 561

The Vim Tutorial and Reference

If you really must create a keyboard map file, you can examine the current
set of mapping files which come with Vim as well as browse the on-line help
documentation for more information.

Encoding

The 'encoding' ('enc') option controls the character set encoding used by
Vim. Unfortunately languages other English are beyond the scope of this book.

Macintosh Silliness

The 'macatsui' is designed to work around a Macintosh drawing bug.
Basically if something is going wrong with Vim on a Mac, try setting this. (As
soon as they figure out what the bug is, this option goes away.)

Obsolete Options

The 'textauto' ('tx') and 'textmode' ('tx') options are obsolete. Use
the options 'fileformats' and 'fileformat' instead.

Legacy Options

Vim tries to be as compatible with the old Vi editor as possible. Vi has a
number of options that mean something to Vi, but are not relevant to Vim. In
order to be fully compatible with Vi, the Vim editor won't generate an error
message if you set any of these options. But the options themselves have no
effect on the editor.

The options are:

autoprint beautify flash graphic hardtabs
mesg novice open optimize prompt
redraw slowopen sourceany window w300
w1200 w9600

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 562

The Vim Tutorial and Reference

Chapter 29: Language-Dependent Syntax Options

Syntax coloring is controlled by language-dependent syntax files that
reside $VIMRUNTIME/syntax/language.vim.

You can make your own copy of these syntax files and modify and update
them if their syntax coloring is not what you desire.

You can also set a number of language-specific options. (This chapter
covers the language-dependent syntax option for each language Vim knows
about.) These options must be turned on before you edit the file. You can fake
this by setting the option and then turning the syntax coloring off and back on.

Abel

There are only a couple of variable that control the Able syntax
highlighting:

abel_obsolete_ok Obsolete keywords are statements, not errors
abel_cpp_comments_illegal Do not interpret // as inline comment leader

Ada

Ada is a programming language designed by the United States Defense
Department for embedded programming. There are several options which you
can use to fine tune Ada editing. These are:

g:ada_standard_types If this variable is set, highlight standard Ada
types

g:ada_space_errors Highlight spacing errors. These are not
really errors, but they shouldn't be in a high
quality program.

g:ada_no_trail_space_error Do not highlight trailing spaces at the end of
a line even if g:add_space_errors is set

g:ada_no_tab_space_error Do not highlight tabs after spaces.

g:ada_all_tab_usage Highlight all tab use

g:ada_line_errors Highlight lines which are too long. (And
chew up a lot of CPU figuring out which
lines to highlight.)

g:ada_rainbow_color Use rainbow colors for parenthesis

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 563

The Vim Tutorial and Reference

g:ada_folding This string variable controls how Ada folding
is done. For information on this option see
:help ftadasyntax

g:ada_abbrev Create some abbreviations to help you in
writing your Ada programs.

g:ada_withuse_ordinary Treat with and use as ordinary keywords.

g:ada_begin_preproc Show all begin line keywords using special
coloring.

g:ada_omni_with_keywords Add keywords to omni-completion (CTRLI
CTRLU)

g:ada_extended_tagging If set to jump then tags will be jumped to
using :tjump. If set to list tags will be
added to the error list.

g:ada_extended_completion Use extended completion for CTRLN and
CTRLR completions in insert mode.

g:ada_gnat_extensions Support GNAT extensions

g:ada_with_gnat_project_files Support GNAT project file keywords and
attributes.

g:ada_default_compiler This string tells Vim if the compiler is gnat
or decada.

Ant

Ant is a tool for building Java program and just about everything else. One
of the problems with Ant is that you can embed scripts written in other
languages inside a Ant file. So not only do you have Ant, but you also have
JavaScript, Perl, Python, and just about anything else.

By default the Ant syntax file correctly highlights JavaScript and Python. If
you want to add another language, for example, Perl, you have to call the
AntSyntaxScript function:

:call AntSyntaxScript('perl', 'perl.vim')

This must be done for each language you to embed in Ant except of course
JavaScript and Python.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 564

The Vim Tutorial and Reference

Apache

The variable apache_version should be set to the version of Apache you
are using. The default is 1.3.x.

Assembly Language

There are a number of different assembly languages out there. By default,
Vim assumes that you are using a GNU-style assembly language. The other
assemblers supported are:

asm68k Motorola 680x0 assembly
asm GNU assembly (the default)
asmh8300Hitachi H-8300 version of GNU assembly
fasm Flat assembly (http://flatassembler.net)
ia64 Intel Itanium 64
masm Microsoft assembly (probably works for any 80x86)
nasm Netwide assembly
pic PIC assembly (currently for PIC16F84)
tasm Turbo Assembly (with opcodes 80x86 up to Pentium, and MMX)

To let Vim know you are using another assembly language, execute the
following command:

:let asmsyntax=language

The language parameter is one of the languages listed above.

This commands sets the global version of the variable. To set the buffer
specific one (and change the syntax highlighting for a single buffer) use the
command:

:let b:asmsyntax=language

You can also put a line like:

 ; :asmsyntax=nasm

in the first five lines of your code. (Use whatever comment marker is
allowed by your assembler.)

The following variables control the optional parts of the assembly
highlighting:

nasm_loose_syntax Do not highlight unofficial parser allowed syntax as an
error.

nasm_ctx_outside_macroDo not flag contexts outside a macro as errors.
nasm_no_warn Do not flag potential risky syntax as TODOs.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 565

The Vim Tutorial and Reference

ASP

Files that end with .asp and .asa can contain Perl or Visual Basic code. It's
hard for Vim to automatically tell the difference between these two types of file.
So you need to help things along by setting the variables: g:filetype_asa and
g:filetype_asp to aspperl or aspvbs to let Vim know what to do.

BaaN

The following variables control the way Vim handles BaaN files:

bann_code_stds Highlight code that violates coding standards
bann_fold Enable folding at the function level
baan_fold_blockEnable folding at the block level
baan_fold_sql Enable folding at the SQL statement level

Basic

Both Visual Basic and Standard Basic both use files that end in .BAS. To
tell the difference between the two, the Vim editor reads the first five lines of the
file and checks for the string VB_Name. (Files with the extension .FRM are always
Visual Basic.)

C and C++

You can perform a number of customizations for the C and C++ syntax
colors, including the following:

c_comment_strings Highlight strings and numbers inside
comments.

/* Example a: "Highlighted String" */

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 566

The Vim Tutorial and Reference

c_ansi_constants Highlight ANSI types. (If c_no_ansi set.)

/*:unlet c_ansi */
/*:unlet c_ansi_constants*/
size_t foo;
int i = INT_MIN;

/* :set c_no_ansi_constants = 1 */
size_t foo;
int i = INT_MIN;

c_ansi_typedefs Highlight ANSI typedefs. (If c_no_ansi
set.)

/*:unlet c_ansi */
/*:unlet c_ansi_typedefs */
size_t foo;
int i = INT_MIN;

/* :let c_ansi_typedefs = 1n */
size_t foo;
int i = INT_MIN;

c_gnu Highlight gcc specific items.
c_no_bracket_error Do not flag {} inside [] as an error.
c_no_curly_error Don't flag {} inside () or [] as an error.
c_no_ansi Do not highlight ANSI types and constants.

size_t foo; /* :unlet c_no_ansi */
int i =INT_MIN;/* :unlet c_no_ansi */

size_t foo; /* :let c_no_ansi = 1 */
int i =INT_MIN;/*:let c_no_ansi= 1 */

c_no_c99 Do not highlight C99 items.
c_no_comment_fold Normally you can fold comments when the

'foldmethod' is set to syntax. This
disables that feature.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 567

The Vim Tutorial and Reference

c_no_cformat Do not highlight %-formats in strings.

/* :let c_no_cformat = 1 */
printf("Data %3f\n", f);

/* :unlet c_no_cformat */
printf("Data %3f\n", f);

c_no_if0_fold Don't fold #if 0 / #endif if the
'foldmethod' option is set to syntax.

c_no_tab_space_error Do not flag spaces before a <Tab> when
c_space_error is set. In the following we
use "." for blank and ---> for tab.

int..>foo;......

c_no_if0 Do not highlight #if 0 / #endif blocks as
comments.

c_no_trail_space_error Do not flag trailing whitespace when
c_space_error is set . In the following we
use "." for blank and ---> for tab.

int..>foo;......

c_no_utf Highlight \u or \U in strings.

/* :let c_no_utf = 1*/
char *f = "\uFF + \Uffff";

/* :unlet c_no_utf */
char *f = "\uFF + \Uffff";

c_space_errors Flag trailing whitespace and spaces in
front of a <Tab>.

int..>foo;......

c_syntax_for_h Use C (instead of C++) syntax
highlighting for include files.

Sometimes you will notice some highlighting errors in comments or #if
0 / #endif blocks. You can fix these by redrawing the screen using the CTRLL
command. To fix them permanently, you need to increase the number of lines
searched for syntax matches by using the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 568

The Vim Tutorial and Reference

:let c_minlines = number

The parameter number is the minimum number of lines to search. Setting
this to a large number helps to eliminate syntax coloration errors.

Doxygen

Doxygen is an embedded documentation system for C and C++ programs.
To enable Doxygen syntax highlighting you need to set the 'syntax' option to
c.doxygen. This can be done through a :set command:

:set syntax=c.doxygen

or by putting a modline in your program:

 // vim:syntax=c.doxygen

Another way of doing this for every C, C++ and Idl file is to set the
variable: g:load_doxygen_syntax.

The following variables control the Doxygen syntax coloring:

g:doxygen_enhanced_color Use non-standard highlighting for Doxygen
comments.

g:doxygen_enhanced_colour Same thing for people who spell color funny.
doxygen_my_rendering Disable rendering of HTML bold, italic and

html_my_rendering underline.
doxygen_javadoc_autobrief Set to 0 to disable javadoc autobrief colour

highlighting.
doxygen_end_punctuation Set to regexp match for the ending punctuation of

brief

CH

CH is a C/C++ like interpreter. To tune the C syntax highlighting for it, set
the variable: ch_syntax_for_h.

Chill

Chill is another language with a like syntax. The options for this program
are listed in the following table:

chill_space_errors Flag trailing whitespace and spaces in front of a <Tab>.
chill_comment_string Highlight strings and numbers inside comments.
chill_minlines Defines the number of lines searched for syntax

highlighting.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 569

The Vim Tutorial and Reference

Changelog

By default the Changelog syntax highlights spaces at the beginning of a
line. To turn this off set the variable g:changelog_spacing_errors to 0.

COBOL

There are two versions of COBOL highlighting: fresh development and
legacy. To enable legacy highlighting, use the following command:

:let cobol_legacy_code = 1

Cold Fusion

If you use Cold Fusion style comments, you'll want to set the variable:
html_wrong_comments.

CSH / TCSH

Vim can't tell the different between csh and tcsh files. So to help it you can
set the variable filetype_csh to “csh” or “tcsh” (including the quotes).

CYNLIB

Cynlib files end with .cc and .cpp which make them very difficult to tell
from C and C++ files. To tell Vim to prefer Cynlib syntax, set the variables:
cynlib_cyntax_for_cc and cynlib_cyntax_for_cpp.

CWEB

Files that end in .w can be Progress or Cweb files. To help Vim know that
they are Cweb files, set the variable: filetype_w.

Desktop

There is a standard highlighting syntax for .desktop and .directory files. To
for Vim to adhere to the standard, set the variable:
enforce_freedesktop_standard.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 570

The Vim Tutorial and Reference

Dircolors

To highlight directory colors according to the Slackware standard set the
variable: dircolors_is_slackware.

DocBook

DocBook files come in two flavors XML and SGML. Normally Vim will
guess at the type, but if the variable docbk_type is set to “sgml” or “xml”
before the syntax file is loaded, that flavor will always be set. (The quotes are
part of the value.)

If Vim guesses wrong you can always manually set the file type using one
of the following commands:

:set filetype=docbksgml
:set filetype=docbkxml

DosBatch

If you are edit MS-DOS batch files you have my deepest sympathy. You
also have a couple of options you can use. The dosbatch_cmdextversion should
be set to 1 if you are using the Windows-NT command processor and 2 if you are
using Windows 2000. The default is Windows 2000.

Also if you are using .btm files, you need to set the variable
g:dosbatch_syntax_for_btm to let Vim know these are MS-DOS batch files.

Doxygen

See C/C++ above.

DTD

DTD is usually case sensitive. To make it not case sensitive, use this
command:

:let dtd_ignore_case = 1

The syntax highlighting flags unknown tags as errors. To turn off this
feature, use the following command:

:let dtd_no_tag_errors = 1

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 571

The Vim Tutorial and Reference

The parameter entity names are highlighted using the Type highlight group
with the Comment group. You can turn this off by using the following command:

:let dtd_no_parameter_entities=1

Eiffel

Eiffel is not case sensitive, but the standard style guidelines require the
use of upper/lowercase. The syntax highlighting rules are designed to encourage
you to follow the standard guidelines. To disable case checking, use the
following command:

:let eiffel_ignore_case = 1

You can cause the syntax coloring to check for the proper capitalization for
Current,Void, Result, Precursor, and NONE, by using this command:

:let eiffel_strict = 1

If you want to really check the syntax against the style guide, use the
following command:

:let eiffel_pedantic = 1

You can use the lowercase versions of current, void, result, precursor,
and none by setting eiffel_lower_case_predef, as follows:

:let eiffel_lower_case_predef = 1

To handle ISE's proposed new syntax, use the following command:

:let eiffel_ise = 1

For support of hexadecimal constants, use this:

:let eiffel_hex_constsnts = 1

ERLANG

ERLANG stands for ERicsson LANGuage. The syntax coloring has two
options:

erlang_keywords Disable the highlighting of keywords.
erlang_characters Disable the highlighting of special characters.
erlang_functions Disable built-in function highlighting

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 572

The Vim Tutorial and Reference

FlexWiki

The syntax file not only defines the syntax coloring for FlexWiki, but also
sets a number of options to make editing easier. The only language dependent
control is the variable flexwiki_maps which if set, allows you to move and down
display lines with j and k.

Form

If you enable enhanced color mode, Vim makes it easier to differentiate
between header and body statements in a program. To enable this feature set
the variable form_enhanced_color.

Fortran

The following variables control how Fortran is highlighted:

fortran_dialect Define the dialect (f95, f90, f77, elf, F) of
Fortran to be used.

fortran_free_source For using the free format flavor of Fortran

fortran_fixed_source Use the fixed format flavor of Fortran

fortran_have_tabs Do not mark tabs as errors

fortran_fold Allow syntax directed folding

fortran_fold_conditionals Allow folding of conditional regions

fortran_fold_multilinecomment
s

Allow folding of multi-line comments

fortran_more_precise If defined the syntax coloring will be more
precise, but slower

FVWM

FVWM is a window manager. If you are editing configuration files for this
program, you need to tell Vim the location of the color file using the following
command:

:let rgb_file="/usr/X11/lib/X11/rgb.txt"

This example shows the location of the rgb.txt file that comes with Linux.
Other systems may put it in /usr/lib or other locations.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 573

The Vim Tutorial and Reference

Haskell

Haskell is a literate programming language. The options that control the
syntax highlighting for this language are:

hs_allow_hash_operator Highlight # operators
hs_highlight_boolean Highlight true and false as keywords
hs_highlight_debug Highlight the names of debugging functions
hs_highlight_delimiters Highlight delimiters.
hs_highlight_more_types Treat uncommon types as keywords
hs_highlight_types Treat primitive types as keywords
lhs_markup Define the type of markup. This can be none for no

markup or tex for TeX markup.

HTML

The HTML syntax file uses the following highlight tags:

htmlTitle htmlH1 htmlH2
htmlH3 htmlH4 htmlH5
htmlH6html Boldhtml BoldUnderline
htmlBoldUnderlineItalic htmlUnderline htmlUnderlineItalic
htmlItalic htmlLink

If you want to turn off some of syntax coloring, use the following command:

:let html_no_rendering = 1

If you want to define your own colors for these items, put the color-setting
commands in your .vimrc and use the following command:

:let html_my_rendering = 1

Some files contain <! and !> or <! and !> for comments. If you want
these comments highlighted, use the following command:

:let html_wrong_comments = 1

Inform

Inform language options:

inform_highlight_glulx Do highlighting for Glulx/Glk programs (as opposed
to Z machine programs)

inform_highlight_old Highlight for the older (before version 6.30)
language

inform_highlight_simple Do not highlight library symbols
inform_suppress_obsolete Do not highlight obsolete keywords as errors.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 574

The Vim Tutorial and Reference

IDL (Interface Definition Language)

The syntax for this language can be customized through the following
variables:

idl_no_ms_extensions Disable some of the Microsoft specific extensions
idl_no_extensions Disable complex extensions
idlsyntax_showerror Show IDL errors (can be rather intrusive, but quite

helpful)
idlsyntax_showerror_soft Use softer colors by default for errors

Java

The Java syntax has the following options:

java_mark_braces_in_parens_as_errors

If set, braces inside parentheses are flagged as errors (Java 1.0.2).
This is legal in Java 1.1.

java_highlight_java_lang_ids

Highlight all the identifiers in java.lang.*.

java_highlight_functions = "indent"

Set if function declarations are always indented.

java_highlight_function = "style"

Function declarations are not highlighted.

java_highlight_debug

Highlight debug statements (System.out.println and
System.err.println).

java_allow_cpp_keywords

If set do not mark all C and C++ keywords as an error. Marking
C/C++ keywords helps prevent you from using them, so your code is
more portable to C or C++.

java_ignore_javadoc

Turn off highlighting for Javadoc.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 575

The Vim Tutorial and Reference

java_javascript

Turn on highlighting for JavaScript inside Javadoc.

java_css

Turn on highlighting for CSS style sheets inside of Javadoc

java_vb

Turn on highlighting for VB scripts.

java_minlines

Number of lines to scan for figuring what syntax to highlight.

Lace

The specification of the language states that it is not case sensitive. Good
style is case sensitive. If you want to turn off the "good style" case-sensitive
feature, use the following command:

:let lace_case_insensitive=1

Lex

Lex files are divided up into major sections separated by lines consisting of
%%. If you write long Lex files, the syntax highlighting may not be able to find the
%%.To fix this problem you might need to increase the minlines syntax option
by using a command such as this:

:syntax sync minlines = 300

Lisp

The option g:lisp_instring highlights data inside strings as if it were
lisp. To turn on rainbow parent his (very useful in Lisp) set the variable
g:lisp_rainbow.

Lite

Lite uses a SQL-like query language. You can enable highlighting of SQL
inside strings with the following command:

:let lite_sql_query = 1

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 576

The Vim Tutorial and Reference

If you have large commands, you might want to increase the number of
lines used for synchronizing the syntax coloring:

:let lite_minlines = 500

LPC

LPC files end with .c which Vim considers C files. To make them LPC files
you need to set the variable: lpc_syntax_for_c. You can also use a mode line:

 // vim:set ft=lpc:

The following variables can be used to customize LPC.

lpc_pre_v22 Color code for LPC v22 and earlier.
lpc_compat_32 Handle the LpMud 3.2 version of LPC.
lpc_use_lpc4_syntax Color for version 4.0 and later.

LUA

LUA is another language who's syntax has changed from version to version.
To customize the highlighting for a particular version use the variables:

:let lua_version = 4 Version 4

:let lua_version = 5
:let lua_subversion = 0

Version 5.0

:let lua_version = 5
:let lua_subversion = 1

Version 5.1

Mail

The variable mail_minlines controls the number of lines used for
synchronization.

Make

In Makefiles commands are highlighted to make the stand out. If this
results in confusion you can turn it off by setting: make_no_commands.

Maple

Maple V, by Waterloo Maple Inc., is a symbolic algebra language. It has
many different packages that the user can selectively load. If you want to
highlight the syntax for all packages, use the following command:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 577

The Vim Tutorial and Reference

:let mvpkg_all = 1

If you want to enable specific packages, use one or more of the following
options:

mv_DEtools mv_genfunc mv_networks mv_process
mv_Galois mv_geometry mv_numapprox mv_simplex
mv_GaussInt mv_grobner mv_numtheory mv_stats
mv_LREtools mv_group mv_orthopoly mv_student
mv_combinat mv_inttrans mv_padic mv_sumtools
mv_combstruct mv_liesymm mv_plots mv_tensor
mv_difforms mv_linalg mv_plottools mv_totorder
mv_finance mv_logic mv_powseries

Mathematica

New files ending in .m are assumed to be Mathlib files. To tell Vim that
they should be Mathematica files, execute the command:

:let filetype_m = "mma"

Moo

The variables which control Moo highlighting are:

moo_extended_cstyle_comments Allow C style comments
moo_no_pronoun_sub Turn off highlighting of pronoun substitution

patterns
moo_no_regexp Disable highlighting of regular expression

operator %!, %(and %) inside strings
moo_unmatched_quotes Unmatched double quotes are errors
moo_builtin_properties Highlight built-in property keywords
moo_unknown_builtin_functionsHighlight unknown built-in functions as errors

MSQL

To highlight SQL statements inside strings (stored procedures for example)
set the variable: msql_sql_query. The only other option is msql_minlines
which controls the number of lines to look through when doing syntax
synchronization.

NCF

To highlight unknown statements as error set the variable:
ncf_highlight_unknowns.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 578

The Vim Tutorial and Reference

Nroff

The variables that control the syntax highlighting for nroff type documents
are:

b:nroff_is_groff Nroff files use groff syntax
nroff_space_errors Highlight spacing errors
b:preprocs_as_sectionsTreat pre-processor entires as section markers

OCAML

Ocaml can be customized by two variables:

ocaml_revised Support revised syntax with camlp4 preprocessor directives.
ocaml_noend_errorDo not highlight end statements as an error. (Useful if you

define very long structures and Vim fails to synchronize
properly.)

Papp

Normally HMLT inside Papp files is treated as a string. If you want to have
it treated as HTML, set the variable: papp_include_html.

Pascal

By default files that end in .p can be Progress or Pascal. To force Vim to
consider all .p file as Pascal, put the following in your .vimrc.

:let filetype_p = "pascal"

The syntax highlighting for Pascal is configured through the following
variables:

pascal_delphi Highlight for the Delphi version of Pascal
pascal_fpc Use the fpc variant of Pascal for highlighting
pascal_gpc Configure the syntax highlighting for the gpc version

of Pascal
pascal_no_functions Do not highlight function differently
pascal_no_tabs Highlight tabs as errors
pascal_one_line_stringHighlight multi-line strings as errors
pascal_symbol_operatorHighlight operators
pascal_traditional Turn off highlighting of Turbo Pascal 7.0 features

(stick to the traditional version)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 579

The Vim Tutorial and Reference

Perl

If you include POD documentation in your files, you can enable POD syntax
highlighting using the following command:

:let perl_include_pod = 1

If you do not include POD documents, you should. Perl is bad enough when
it is documented.

The following option changes how Perl displays package names in
references (such as $PkgName::VarName):

:let perl_want_scope_in_variables = 1

If you do not what to use use complex variable declarations such as @{$
{"var"}}, and have the highlighted you need the following:

:let perl_no_extended_vars = 1

The following option tells the syntax coloring to treat strings as a
statement:

:let perl_string_as_statement = 1

If you have trouble with synchronization, you might want to change some
of the following options:

:let perl_no_sync_on_sub = 1
:let perl_no_sync_on_global = 1
:let perl_sync_dist = {lines}

To use folding with Perl, set the variable perl_fold. Folding is configured
by the variables: perl_fold_blocks which allows folding inside blocks,
perl_nofold_packages which turns off package folding and perl_nofold_subs
which turns off subroutine folding.

Php3/ Php4

The following options control the highlighting for Php:

php_asp_tags ASP-style short tags get highlighted
php_baselib Add highlighting for Baselib method
php_folding Allows folding
php_htmlInStrings Highlight HTML syntax inside strings
php_noShortTags Do not highlight short tags
php_oldStyle Use the older style of highlighting
php_parent_error_closeHighlight closing brace errors
php_parent_error_open Highlight opening brace errors

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 580

The Vim Tutorial and Reference

php_sql_query Highlight SQL queries inside strings
php_sync_method Define how Vim synchronizes the highlighting. -1 uses

a search method to start synchronization, 0
synchronizes from the start, any positive number
defines a number of lines to go backward to begin
synchronization.

PlainTex

The only option to PlainTex syntax highlighting is the variable
g:plaintex_delimiters which turns on highlighting for the delimiters [] and
{}.

PPWizard

If you set the variable ppwiz_highlight_defs to 1 (the default) #define
statement retain the color of their contents. If you set this variable to 2, the
these statements are highlighted using a single color.

Setting ppwiz_with_html to 1 (the default) highlights HTML inside strings.
A setting of 0 treats all string contents as strings.

Phtml

To highlight SQL syntax in a string, use the following:

:let phtml_sql_query = 1

To change the synchronization window, use this command:

:let phtml_minlines = lines

PostScript

The options for PostScript highlighting are:

postscr_level Set the PostScript language level
(default = 2).

postscr_display Highlight display postscript features.
postscr_ghostscript Hightlight GhostScript-specific syntax.
postscr_fonts For font highlighting (off by default for

speed).
postscr_encodings Encoding tables (off by default for

speed).

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 581

The Vim Tutorial and Reference

postscr_andornot_binary Color logical operators differently.

Printcap and Termcap

If you are doing complex printcap or termcap work, I feel for you. These
files are cryptic enough as is and dealing with long and complex ones is
especially difficult. As far as Vim is concerned, you might want to increase the
number of lines used for synchronization:

:let ptcap_minlines = 100

Progress

Progress files can end in .w, .i, or .p. To make Vim detects you Progress
file as Progress files, you may wish to set some of the following variables:

:let filetype_w = "progress"
:let filetype_i = "progress"
:let filetype_p = "progress"

Python

The Python highlighting can be tuned by setting the following variables:

python_highlight_all Turn on all possible Python highlighting
python_highlight_builtins Highlight builtin functions
python_highlight_exceptions Highlight standard exceptions
python_highlight_numbers Highlight numbers
python_highlight_space_errorsHighlight trailing spaces

Quake

Quake comes in multiple flavors. To tune Vim for your flavor you should
set one of the variables: quake_is_quake1, quake_is_quake2, or
quake_is_quake3. You can set all three, and highlight for Quake Version
1+2+3, but as there is no such game, this may not be useful.

ReadLine

To highlight the bash extensions to ReadLine, set the variable:
readline_has_bash.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 582

The Vim Tutorial and Reference

Rexx

You can adjust the number of lines used for synchronization with the
following option :

:let rexx_minlines = lines

Ruby

The variables which control the Ruby syntax are:

ruby_fold Allow folding based on the Ruby syntax
ruby_minlines The minimum number of lines to use for syntax

synchronization
ruby_no_comment_fold Do not allow the folding of multi-line comments
ruby_no_expensive Do not highlight an end statement in a way that

matches it to the opening statement. (This is an
expensive operation, hence the variable name.)

ruby_no_special_methodsDo not highlight significant methods of the kernel,
module, and object.

ruby_operators Highlight Rudy operators
ruby_space_errors Highlight space errors

Scheme

By default Vim uses the R5RS version of Schema. To tell it that you are
using MzScheme set the variable is_mzscheme.

SDL

To enable SDL-2000 keyword highlighting set the variable sdl_2000. To
disable the older keywords set SDL_no_96.

Sed

To make tabs stand out, you can use the :set list option. You can
highlight them differently by using the following command:

:let highlight_sedtabs = 1

Hint: If you execute a

:set tabstop = 1

as well, it makes it easy to count the number of tabs in a string.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 583

The Vim Tutorial and Reference

SGML

If you set the sgml_my_rendering Vim assumes that you've already defined
highlighting for SGML and does not overwrite your definitions. (Not syntax, just
the colors for highlighting.)

The variable sgml_no_rendering disable SGML rendering.

Shell

The following options change the highlighting for shell scripts:

is_bash The Bash version of the syntax is expected.
is_korn_shell Assume the Korn Shell flavor of the syntax.
is_posix Assume POSIX syntax.
is_sh The old Borne shell syntax is highlighted.
sh_fold_enable Enable syntax directed folding.
sh_minlines Set the number of lines for synchronization
sh_maxlines Limit the number of lines for synchronization

(speeds things up).

Speedup

The options for Speedup are:

strict_subsections Only highlight the keywords that belong in
each subsection.

highlight_types Highlight stream types as a type.
oneline_comments = 1 Allow code after any number of # comments.
oneline_comments = 2 Show code starting with the second # as an

error (default).
oneline_comments = 3 If the line contains two or more # characters

in it, highlight the entire line as an error.

TCsh

This is a super-set of csh, so all the csh rules apply. It also has the
following customizations:

tcsh_backslash_quoteDo not highlight \" as an error
tcsh_minlines Minimum number of lines for syntax synchronization

TeX

TeX is a complex language that can fool the syntax highlighting. If the
editor fails to find the end of a texZone, put the following comment in your file:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 584

The Vim Tutorial and Reference

%stopzone

The TeX options include:

tex_fold_enabledEnable syntax directed folding
tex_no_error Disable flagging of errors
tex_stylish Indicate that your TeX files use @ commands

TinyFugue

To adjust the synchronization limit for TinyFugue files, use this option:

:let tf_minlines = lines

Vim

Even Vim has its own syntax files. These can customized as well.

vimembedscript If set to 1, embed scripting languages are highlighted. If set
to 0, the syntax file for embedded scripting languages are
not loaded. If not defined, the files are loaded, just not used.

vim_maxlines Maximum lines for syntax synchronization
vim_minlines Minimum lines for syntax synchronization
vimsyntax_noerrorDo not highlight errors

XF86Config

There are two different major version of the Xfree86 configuration files.
The variable xf86conf_xfree86_version should be set to 3 or 4 depending on
which version you have.

Xml

Xml namespaces are highlighted by default. To turn off this feature, set
the variable: g:xml_namespace_transparent.

To turn on syntax directed folding for Xml, set the variable:
g:xml_syntax_folding.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 585

The Vim Tutorial and Reference

Chapter 30: How to Write a Syntax File

Suppose you want to define your own syntax file. You can start by taking a
look at the existing syntax files in the $VIMRUNTIME/syntax directory. After
that, you can either adapt one of the existing syntax files or write your own.

Basic Syntax Commands

Let's start with the basic options. Before we start defining any new syntax,
we need to clear out any old definitions:

:syntax clear

(:sy is the short form of the :syntax command.)

Some languages are not case sensitive, such as Pascal. Others, such as C,
are case sensitive. You need to tell which type you have with the following
commands:

:syntax case match
:syntax case ignore

The match option means that Vim will match the case of syntax elements.
Therefore, int differs from Int and INT. If the ignore option is used, the
following are equivalent: Procedure, PROCEDURE, and procedure.

 The :syntax case commands can appear anywhere in a syntax file and
affect all the syntax definitions that follow. In most cases, you have only one
:syntax case command in your syntax file; if you work with an unusual
language that contains both case-sensitive and non-case-sensitive elements,
however, you can scatter the :syntax case command throughout the file.

The most basic syntax elements are keywords. To define a keyword, use
the following form:

:syntax keyword group keyword

The group name is the name of a highlight group, which is used by the
:highlight command for assigning colors. The keyword parameter is an actual
keyword. Here are a few examples:

:syntax keyword xType int long char
:syntax keyword xStatement if then else endif

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 586

The Vim Tutorial and Reference

This example uses the group names xType and xStatement. By convention,
each group name is prefixed by a short abbreviation for the language being
defined. This example defines syntax for the x language (eXample language
without an interesting name).

These statements cause the words int, long, and char to be highlighted
one way and the words if and endif to be highlighted another way.

Now you need to connect the x group names to standard Vim names. You
do this with the following commands:

:highlight link xType Type
:highlight link xStatement Statement

(The :highlight command can be shortened to :hi.)

This tells Vim to treat xType like Type and xStatement like Statement.

The x language allows for abbreviations. For example, n and next are both
valid keywords. You can define them by using this command:

:syntax keyword xStatement n[ext]

Defining Matches

Consider defining something a bit more complex. You want to match
ordinary identifiers. To do this, you define a match syntax group. This one
matches any word consisting of only lowercase letters:

:syntax match xIdentifier /[az]\+/

Now define a match for a comment. It is anything from # to the end of a
line:

:syntax match xComment /#.*$/

Note: The match automatically ends at the end of a line by default, so the
actual command is as follows:

:syntax match xComment /#.*/

Defining Regions

In the example x language, you enclose strings in double quotation marks
("). You want to highlight strings differently, so you tell Vim by defining a region.
For that, you need a region start (double quote) and a region end (double quote).
The definition is as follows:

:syntax region xString start=/"/ end=/"/

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 587

The Vim Tutorial and Reference

The start and end directives define the patterns used to define the start
and end of the region. But what about strings that look like this?

"A string with a double quote (\") in it"

This creates a problem: The double quotation marks in the middle of the
string will end the string. You need to tell Vim to skip over any escaped double
quotes in the string. You do this with the skip keyword:

:syntax region xString start=/"/ skip=/\\"/ end=/"/

Note: The double backslash is needed because the string you are looking
for is \", so the backslash must be escaped (giving us \\").

Nested Regions

Take a look at this comment:

Do it TODO: Make it real

You want to highlight TODO in big red letters even though it is in a
comment. To let Vim know about this, you define the following syntax groups:

:syntax keyword xTodo TODO contained
:syntax match xComment /#.*$/ contains=xTodo

In the first line, the contained parameter tells Vim that this keyword can
exist only inside another syntax element. The next line has a contains=xTodo
parameter. This indicates that the xTodo syntax element is inside it. The results
(xTodo=underline, xComment=italic) are as follows:

Do it TODO: Make it real

Consider the following two syntax elements:

:syntax region xComment start=/%.*/ end=/$/ contained
:syntax region xPreProc start=/#.*/ end=/$/ contains=xComment

You define a comment as anything from % to the end of the line. A
preprocessor directive is anything from # to the end of the line. Because you can
have a comment on a preprocessor line, the preprocessor definition includes a
contains=xComment paramter. The result (xComment=italic,
xPreProc=underline) is as follows:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 588

The Vim Tutorial and Reference

#define X = Y % Comment
int foo = 1;

But there is a problem with this. The preprocessor directive should end at
the end of the line. That is why you put the end=/$/ directive on the line. So
what is going wrong? The problem is the contained comment. The comment
start starts with % and ends at the end of the line. After the comment is
processed, the processing of the preprocessor syntax contains. This is after the
end of the line has been seen, so the next line is processed as well.

To avoid this problem and to force contained syntax from eating a needed
end of line, use the keepend parameter. This takes care of the double end-of-line
matching:

:syntax region xComment start=/%.*/ end=/$/ contained
:syntax region xPreProc start=/#.*/ end=/$/
 \ contains=xComment keepend

You can use the contains parameter to specify that everything can be
contained. For example:

:syntax region xList start="\[" end="\]" contains=ALL

You can also use it to include a group of elements except for the ones
listed:

:syntax region xList start="\[" end="\]"
 \ contains=ALLBUT,xString

Multiple Group Options

Some syntax is context-dependent. You expect if to be followed by then,
for example. Therefore, a then/if statement would be an error. The Vim syntax
parser has options that let it know about your syntax order.

For example, you define a syntax element consisting of > at the beginning
of a line. You also define a element for the KEY string. In this case, the KEY is
important only if it is part of a > line. The definition for this is as follows:

:syntax match xSpecial "^>" nextgroup=xKey
:syntax match xKey "KEY" contained

The nextgroup option tells Vim to highlight KEY, but only if it follows
xSpecial. The result (xKey=italic, xSpecial=underline) is:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 589

The Vim Tutorial and Reference

KEY (Normal key, nothing special, no >)
>KEY Key follows the > so highlighted

However, the KEY must immediately follow the >. If there is a space
present, the KEY will not be highlighted:

> KEY

If you want to allow whitespace between the two groups, you can use the
'skipwhite' op tion :

:syntax match xSpecial "^>" skipwhite nextgroup=xKey
:syntax match xKey "KEY" contained

This gives you:

> KEY

The skipwhite directive tells Vim to skip whitespace between the groups.
There are two other related options. The skipnl option skips newline in the
pattern. If it were present, you would get the following:

>
KEY

The 'skipempty' option causes empty lines to be skipped as well:

>

KEY

Transparent Matches

The 'transparent' option causes the syntax element to become
transparent, so the highlighting of the containing syntax element will show
through. For example, the following defines a string with all the numbers inside
highlighted:

:syntax region xString start=/"/ skip=/\\"/ end=/"/
 \ contains=xNumbers,xSpecial
:syntax match xNumbers /[09]\+/ contained

Now add a special group that does not take on any special highlighting:

:syntax match xSpecial /12345/ transparent contained
 \ contains=xNothing

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 590

The Vim Tutorial and Reference

This also has a contains argument to specify that xNothing can be
contained. Otherwise, the contains argument xString would be used, and
xNumbers would be included in xSpecial. The results (xString=italic,
xNumbers=underline, xSpecial=N.A.) look like this:

"String 12 with number 45 in it 12345 "

Other Matches

The oneline option indicates that the region does not cross a line
boundary. For example:

:syntax region xPrePoc start=/^#/ end=/$/ oneline

Things now become a little more complex. Let's allow continuation lines.
In other words, any line that ends with \ is a continuation line. The way you
handle this is to allow the xPreProc syntax element to contain a continuation
pattern:

:syntax region xPreProc start=/^#/ end=/$/ oneline
 \ contains=xLineContinue
:syntax match xLineContinue "\\$" contained

In this case, although xPreProc is on a single line, the groups contained in
it (namely xLineContinue) let it go on for more than one line.

This is what you want. If it is not what you want, you can call for the
region to be on a single line by adding excludenl to the contained pattern. For
example, you want to highlight "end" in xPreProc, but only at the end of the line.
To avoid making the xPreProc continue on the next line, use excludenl like this:

:syntax region xPreProc start=/^#/ end=/$/
 \ contains=xLineContinue,xPreProcEnd
:syntax match xPreProcEnd excludenl /end$/ contained

Note that excludenl is placed before the pattern. Now you can still use
xLineContinue as previously. Because it doesn't have excludenl, a match with
it will extend xPreProc to the next line.

Match Groups

When you define a region, the entire region is highlighted according to the
group name specified. To highlight the text enclosed in parentheses () with the
highlight group xInside, for example, use the following command:

:syntax region xInside start=/(/ end=/)/

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 591

The Vim Tutorial and Reference

Suppose, however, that you want to highlight the parentheses separately.
You can do this with a lot of convoluted region statements, or you can use the
matchgroup option. This option tells Vim to highlight the start and end of a
region with a different highlight group (in this case, the Xparen group).

:syntax region xInside matchgroup=Xparen start=/(/ end=/)/

Match Offsets

Several options enable you to adjust the start and end of a pattern used in
matching for the :syntax match and :syntax region directives. For example,
the offset ms=s+2 indicates that the match starts two characters from the start of
the match.

For example:

:syntax match xHex /0x[afAF09]*/ms=s+2

The general form of a match offset is as follows:

location=offset

Location is one of the following:

ms Start of the element
me End of the element
hs Start highlighting here
he End highlighting here
rs Marks the start of a region
re Marks the end of region
lc Leading context

The offset can be as follows:

s Start of match

e End of the match

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 592

The Vim Tutorial and Reference

Clusters

One of the things you will notice as you start to write a syntax file is that
you wind up generating a lot of syntax groups. The Vim editor enables you to
define a collection of syntax groups called a cluster. Suppose you have a
language that contains for loops, if statements, while loops, and functions.
Each of them contains the same syntax elements: numbers and identifiers. You
define them like this:

:syntax match xFor /^for.*/ contains=xNumber,xIdent
:syntax match xIf /^if.*/ contains=xNumber,xIdent
:syntax match xWhile /^while.*/ contains=xNumber,xIdent

You have to repeat the same contains= every time. If you want to add
another contained item, you have to add it three times. Syntax clusters simplify
these definitions by enabling you to group elements. To define a cluster for the
two items that the three groups contain, use the following command:

:syntax cluster xState contains=xNumber,xIdent

Clusters are used inside other :syntax elements just like any syntax
group. Their names start with @. Thus, you can define the three groups like this:

:syntax match xFor /^for.*/ contains=@xState
:syntax match xIf /^if.*/ contains=@xState
:syntax match xWhile /^while.*/ contains=@xState

You can add new elements to this cluster with the add argument:

:syntax cluster xState add=xString

You can remove syntax groups from this list as well:

:syntax cluster xState remove=xNumber

Including Other Syntax Files

The C++ language syntax is a superset of the C language. Because you do
not want to write two syntax files, you can have the C++ syntax file read in the
one for C by using the following command:

:source <sfile>:p:h/c.vim

(:so is short for :source.)

The word <sfile> is the name of the syntax file that is currently being
processed. The :p:h modifiers remove the name of the file from the <sfile>
word. Therefore, <sfile>:p:h/c.vim is used to specify the file c.vim in the
same directory as the current syntax file.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 593

The Vim Tutorial and Reference

Now consider the Perl language. The Perl language consists of two distinct
parts: a documentation section in POD format, and a program written in Perl
itself.

The POD section starts with =head and the end starts with =cut. You want
to construct the Perl syntax file to reflect this. The :syntax include reads in a
syntax file and stores the elements it defined in a syntax cluster. For Perl, the
statements are as follows:

:syntax include @POD <sfile>:p:h/pod.vim
:syntax region perlPOD start="^=head" end="^=cut"
 \ contains=@POD

In this example, the top-level language is Perl. All the syntax elements of
the POD language are contained in the Perl syntax cluster @POD.

Listing Syntax Groups

The following command lists all the syntax items:

:syntax

To list a specific group, use this command:

:syntax list groupname

This also works for clusters as well:

:syntax list @clustername

Synchronization

Compilers have it easy. They start at the beginning of a file and parse it
straight through. The Vim editor does not have it so easy. It must start at the
middle, where the editing is being done. So how does it tell where it is?

The secret is the :syntax sync command. This tells Vim how to figure out
where it is. For example, the following command tells Vim to scan backward for
the beginning or end of a C-style comment and begin syntax coloring from there:

:syntax sync ccomment

You can tune this processing with some options. The minlines option tells
Vim the minimum number of lines to look backward, and maxlines tells the
editor the maximum number of lines to scan.

For example, the following command tells Vim to look at 10 lines before the
top of the screen:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 594

The Vim Tutorial and Reference

:syntax sync ccomment minlines=10 maxlines=500

If it cannot figure out where it is in that space, it starts looking farther and
farther back until it figures out what to do. But it looks no farther back than 500
lines. (A large maxlines slows down processing. A small one might cause
synchronization to fail.) By default, the comment to be found will be colored as
part of the Comment syntax group. If you want to color things another way, you
can specify a different syntax group:

:syntax sync ccomment xAltComment

If your programming language does not have C-style comments in it, you
can try another method of synchronization. The simplest way is to tell Vim to
space back a number of lines and try to figure out things from there. The
following command tells Vim to go back 150 lines and start parsing from there:

:syntax sync minlines=150

A large minlines option can make Vim slower. Finally, you can specify a
syntax group to look for by using this command:

:syntax sync match syncgroupname
 \ grouphere groupname pattern

This tells Vim that when it sees pattern the syntax group named
group-name begins just after the pattern given. The sync-group-name is used to
give a name to this synchronization specification.

For example, the sh scripting language begins an if statement with if and
ends it with fi:

if [f file.txt] ; then
 echo "File exists"
fi

To define a grouphere directive for this syntax, you use the following
command:

:syntax sync match shIfSync grouphere shIf "\<if\>"

The groupthere option tells Vim that the pattern ends a group. For
example, the end of the if/fi group is as follows:

:syntax sync match shIfSync groupthere NONE "\< fi\> "

In this example, the NONE tells Vim that you are not in any special syntax
region. In particular, you are not inside an if block.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 595

The Vim Tutorial and Reference

You also can define matches and regions that are with no grouphere or
'groupthere' options. These groups are for syntax groups skipped during
synchronization. For example, the following skips over anything inside {}, even
if would normally match another synchronization method:

:syntax sync match xSpecial /{.*}/

To clear out the synchronization commands, use the following command:

:syntax sync clear

To remove just the named groups, use this command:

:syntax sync clear syncgroupname syncgroupname ...

The :syntax sync commands only control the number of lines used to do
syntax matching. The 'synmaxcol' ('smc') option tells Vim how many columns
to use for syntax matching. The default is 3000, and if you have a file with more
that 3000 characters per line, syntax matching is the least of your problems.

Adding Your Syntax File to the System

Suppose that you have defined your own language and want to add it to the
system. If you want it to be a part of Vim, you need to perform the following
steps:

1. Create your syntax file and put it in the
$VIMRUNTIME/syntax/language.vim file.

2. Edit the file $VIMRUNTIME/syntax/synload.vim and add a line to this
file for your language. The line should look like this:

SynAu language

3. Edit the file $VIMRUNTIME/filetype.vim and insert an :autocmd that
recognizes your files and sets the filetype to your language. For example,
for the foo language, execute the following command:

:autocmd BufRead,BufNewFile *.foo set ft=foo

Now Vim should automatically recognize your new language. If the file
works well, you might want to send your changes to the Vim people so that they
can put it in the next version of Vim.

Option Summary
contained Syntax group is contained in another

group. Items that are contained cannot appear

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 596

The Vim Tutorial and Reference

at the top level, but must be contained in
another group.

contains=grouplist Define a list of syntax groups that can be
included inside this one. The group name can
be ALL for all groups or ALLBUT,groupname for
all groups except the names specified.

nextgroup=group Define a group that may follow this one.
skipwhite Skip whitespace between this group and the

next one specified by nextgroup.
skipnl Skip over the end of a line between this group

and the next one specified by nextgroup
skipempty Skip over empty lines between this group and

the next one specified by nextgroup.
transparent This group takes on the attributes of the one in

which it is contained.
oneline Do not extend the match over more than one

line.
keepend Do not let a pattern with an end-of-line ($)

match in it extend past the end of a line. This
avoids the inner pattern inside a nested pattern
eating an end of line. If this is a contained
match, the match will not match the end-of-line
character.

excludenl Do not let a contained pattern extend the item
in which it is contained past the end of a like

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 597

20

The Vim Tutorial and Reference

Appendix A: Installing Vim

You can obtain Vim from the web site at www.vim.org. This site contains
the source to Vim as well as precompiled binaries for many different systems.

UNIX

You can get precompiled binaries for many different UNIX systems from
www.vim.org. Go to http://www.vim.org, click the "Download Vim" link, and then
follow the "Binaries Page" link. This takes you to the "Binaries" page, which lists
the various precompiled binaries for many different systems along with the links
to download them.

Volunteers maintain the binaries, so they are frequently out of date. It is a
good idea to compile your own UNIX version from the source. Also, creating the
editor from the source allows you to control which features are compiled. To
compile and install the program, you'll need the following:

● A C compiler (GCC preferred)

● The bzip program (you can get it from http://www.bzip.org)

To obtain Vim, go to http://www.vim.org and click the "Download Vim" link.
This page displays a list of sites that contain the software. Click a link to one
that's near you. This takes you to a directory listing. Go into the "UNIX"
directory and you'll find the sources for Vim. You'll need to download one files:

● vim-7.2.tar.bz2

Unpacking the sources

Unpacking the sources is a simple matter of using bzcat (part of the bzip
software suite) to decompress the archive, and tar to extract the members:

$ bzcat vim7.2.tar.bz2 | tar xf

Next we go into the directory containing the sources:

$ cd vim

Running configure

The configure script configures the source so that it can be properly built.
First let's take a look at the help option (that is <dash><dash>help) to see
what the command does:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 598

21

The Vim Tutorial and Reference

$./configure Khelp
`configure' configures this package to adapt to many kinds of systems.

Usage: auto/configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
 h, help display this help and exit
 help=short display options specific to this package
 help=recursive display the short help of all the included packages
 V, version display version information and exit
 q, quiet, silent do not print `checking...' messages
 cachefile=FILE cache test results in FILE [disabled]
 C, configcache alias for `cachefile=config.cache'
 n, nocreate do not create output files
 srcdir=DIR find the sources in DIR [configure dir or `..']

Installation directories:
 prefix=PREFIX install architectureindependent files in PREFIX
 [/usr/local]
 execprefix=EPREFIX install architecturedependent files in EPREFIX
 [PREFIX]

By default, `make install' will install all the files in
`/usr/local/bin', `/usr/local/lib' etc. You can specify
an installation prefix other than `/usr/local' using `prefix',
for instance `prefix=$HOME'.

For better control, use the options below.

Fine tuning of the installation directories:
 bindir=DIR user executables [EPREFIX/bin]

... three pages of options deleted ...

 withtlib=library terminal library to be used

Some influential environment variables:
 CC C compiler command
 CFLAGS C compiler flags
 LDFLAGS linker flags, e.g. L<lib dir> if you have libraries in a
 nonstandard directory <lib dir>
 LIBS libraries to pass to the linker, e.g. l<library>
 CPPFLAGS C/C++/Objective C preprocessor flags, e.g. I<include dir> if
 you have headers in a nonstandard directory <include dir>
 CPP C preprocessor
 XMKMF Path to xmkmf, Makefile generator for X Window System

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 599

The Vim Tutorial and Reference

Use these variables to override the choices made by `configure' or to help
it to find libraries and programs with nonstandard names/locations.

Don't worry about all these options. You'll probably never use most of
them. They only really important option is --prefix (<dash><dash>prefix) which
tells configure where you want to install the program. For example, in a users
home directory.

$./configure prefix=/home/auser/local

Now configure looks through system and figures out how to make Vim.

configure: creating cache auto/config.cache
checking whether make sets $(MAKE)... yes
checking for gcc... gcc

... many many checks omitted ...

checking for setjmp.h... yes
checking for GCC 3 or later... yes
configure: updating cache auto/config.cache
configure: creating auto/config.status
config.status: creating auto/config.mk
config.status: creating auto/config.h

Most of this output you can ignore. However one common problem
(discussed below) occurs when you attempt to make the GUI version of Vim and
don't have the development files for the approbate toolkit installed. How to deal
with this is discussed in the troubleshooting section below.

Next it's time to actually build the program.

$ make 2>&1 | tee log

This version of the command tells the shell to redirect standard error to
standard out (2>&1) and to send the whole thing to the tee command (| tee).
The tee command prints the results on the screen and records the data in the file
log.

$ make 2>&1 | tee log
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && make first
make[1]: Entering directory `/mnt/disk/vim/build/vim72/src'
mkdir objects

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 600

The Vim Tutorial and Reference

CC="gcc Iproto DHAVE_CONFIG_H DFEAT_GUI_GTK I/usr/include/gtk2.0
I/usr/lib/gtk2.0/include I/usr/include/atk1.0 I/usr/include/cairo
I/usr/include/pango1.0 I/usr/include/glib2.0 I/usr/lib/glib2.0/include
I/usr/include/freetype2 I/usr/include/libpng12 " srcdir=. sh
./osdef.sh

... a few hundred lines of log file later ...

make[2]: Leaving directory `/mnt/disk/vim/build/vim72/src/xxd'
make[1]: Leaving directory `/mnt/disk/vim/build/vim72/src'
$

Assuming that you compiled without error, the next step is to install the
software with the command:

$ make install 2>&1 | tee log.install

The results can be seen below.

$ make install 2>&1 tee log.install
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && make install
make[1]: Entering directory `/mnt/disk/vim/build/vim72/src'

... Many lines omitted

if test d /home/sdo/local/share/icons/locolor/16x16/apps a w
/home/sdo/local/share/icons/locolor/16x16/apps \

a ! f
/home/sdo/local/share/icons/locolor/16x16/apps/gvim.png; then \

 cp ../runtime/vim16x16.png
/home/sdo/local/share/icons/locolor/16x16/apps/gvim.png; \

fi
cp gvimtutor /home/sdo/local/bin/gvimtutor
chmod 755 /home/sdo/local/bin/gvimtutor
make[1]: Leaving directory `/mnt/disk/vim/build/vim72/src'

If you are lucky these commands will run without error and you'll have a good Vim installation.
If not, read the next section;

Dealing with common installation problems

The console (text) version of Vim is fairly robust and has compiled
successfully on every machine I've tried it on, and I've compiled on a lot of very
strange machines. (Microsoft Windows excluded.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 601

The Vim Tutorial and Reference

The big problem comes in configuring and compiling the GUI version of
Vim. No matter which version you choose, the system will make heavy use of
several X Windows GUI libraries. If these libraries are not installed on your
system, or you do not have the correct version of the library, Vim will fail to build
the GUI version of itself.

To see if you have a GUI problem, after executing the make command
(make only, not make install), go into the src directory and execute the command
./vim -g:

$ make

$ cd src

$./vim -g

If a GUI appears and it's the correct GUI, then you don't have a problem.
You're done.

But if you get an error, then look at your configuration log file: config.log.
The relevant lines (in this case) are:

configure:7800: result: yes
configure:7841: checking if X11 header files can be found
configure:7857: gcc -c -g -O2 -I/usr/local/include conftest.c >&5
conftest.c:17:27: fatal error: X11/Intrinsic.h: No such file or directory
 #include <X11/Intrinsic.h>
 ^
compilation terminated.
configure:7857: $? = 1

This is where the configuration command is attempting to figure out what
libraries are installed so it can figure out what GUI to build. In this example we
do not have the X11 development library which supplies X11/Intrinsic.h.

Now you may think that you have the yy library installed but Vim fails to
detect it. You need to find out why. Some clues can be found the config.log file
which is automatically generated by the configure command. This file gives you
some idea of what tests are being run to determine which libraries are installed.

If the config.log file does not help you, you'll need to examine the contents
of the configuration command itself. It is written the shell programming
language so it is somewhat readable, although if you are not a expert shelling
program going into the script, you will be before you leave.

If all else fails you can hit the mail list and ask for help. But before doing
so, please, please search the archive. Someone may have already experienced
your problem and found a solution.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 602

The Vim Tutorial and Reference

In closing I must say that the last time I got Vim installed it went surprising well
even through it was on a rather difficult platform. I simply sent a request to the
IT department, and a week later I got an E-Mail saying: “We finally got Vim
installed and you wouldn't believe the trouble we had getting the thing to work.”
(Yes I would, I wrote the book, literally, on Vim.)

Installation for Each UNIX User

Each UNIX user should make sure that Vim is in his path. If you have an
.exrc file, copy it to .vimrc:

$ cp ~/.exrc ~/.vimrc

If you do not have an .exrc file, create an empty .vimrc file by executing the
following command:

$ touch ~/.vimrc

Note: The presence of the .vimrc file turns on all the fancy features of Vim.
If this file is not present, Vim tries very hard to look like Vi, even disabling
some of its features to do so.

Installing on Microsoft Windows

Installation on Microsoft Windows is now a very simple operation. First of
all download the Microsoft Windows binary from http://www.vim.org. Next
simply run the installer and answer the questions.

Common Installation Problems and Questions

This section describes some of the common problems that occur when
installing Vim and suggests some solutions. It also contains answers to many
installation questions.

I Do Not Have Root Privileges. How Do I Install Vim? (UNIX)

Use the following configuration command to install Vim in a directory
called $HOME/vim :

$ configure prefix=$HOME/vim

This gives you a personal copy of Vim. You need to put $HOME/vim/bin in
your path to access the editor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 603

The Vim Tutorial and Reference

The Colors Are Not Right on My Screen. (UNIX)

Check your terminal settings by using the following command:

$ echo $TERM

If the terminal type listed is not correct, fix it. UNIX has a database called
termcap, which describes the capabilities of your terminal. Almost all xterm
programs support color. Frequently, however, the termcap entry for xterm
defines a terminal without color. To get color to work, you might have to tell the
system that you have an xtermc or cxterm terminal. (Another solution is to
always use the GUI version of Vim called gvim.)

I Am Using RedHat Linux. Can I Use the Vim That Comes with the
System?

By default RedHat installs a minimal version of Vim. Check your RPM
packages for something named vimenchancedversion.rpm and install that.

How Do I Turn Syntax Coloring On? (All)

Use the following command:

:syntax on

What Is a Good vimrc File to Use? (All)

See the www.vim.org Web site for several good examples.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 604

The Vim Tutorial and Reference

Appendix B: The <> Key Names

Appendix A: This appendix provide a quick reference for the <> key
names in Vim.

The Function Keys
<F1> <F2> <F3> <F4> <F5> <F6>
<F7> <F8> <F9> <F10> <F11> <F12>
<F13> <F14> <F15> <F16> <F17> <F18>
<F19> <F20> <F21> <F22> <F23> <F24>
<F25> <F26> <F27> <F28> <F29> <F30>
<F31> <F32> <F33> <F34> <F35>

Line Endings
<CR> <Return> <Enter>
<LF> <LineFeed>
<NL> <NewLine>

Other Special Characters

<BS > <BackSpace>
<Ins> <Insert>
 <Delete>

Editing Keys
<End> <Home> <PageDown> <PageUp>

Arrow Keys
<Left> <Right> <Up> <Down>

Keypad Keys
<kDivide> <kPlus> <kEnd> <kEnter>
<kHome> <kPageUp> <kMinus> <kMultiply>
<kPageDown>

VT100 Special Keys

The VT100 terminal has an extra set of function keys:

<xF1> <xF2> <xF3> <xF4> <xEnd> <xHome>

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 605

The Vim Tutorial and Reference

Printable Characters
<Bar> |
<Bslash> \
<Space>
<Tab>
<Lt> <

Other Keys
<Esc> <Help> <Nul> <Undo>

Termcap Entries

On UNIX systems, the Termcap or Terminfo database contains a
description of the terminal, including function keys. The special key <t_XX>
represents the key defined by XX Termcap entry.

See your UNIX documentation for a complete list of keys. One way to get a
list (for most systems) is to execute the following command:

$ man terminfo

Mouse Actions
<LeftMouse> <RightMouse>
<LeftRelease> <RightRelease>
<LeftDrag> <RightDrag>
<MiddleDrag> <MiddleRelease>
<MouseUp> <MouseDown>
<MiddleMouse> <Mouse>

Modifiers
M Meta (Alt)
C Control
S Shift
D Macintosh command key

Mouse Modifiers

<Blank> Mouse button one
2 Mouse button two
3 Mouse button three
4 Mouse button four

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 606

The Vim Tutorial and Reference

Note: If you want to find the name of a key on the keyboard, you can go
into Insert mode and press CTRLK key. The <> name of the key will be
inserted. This works for the function keys and many other keys.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 607

The Vim Tutorial and Reference

Appendix C: Normal-Mode Commands
[count]<BS> Move count characters to the left. See the 'backspace'

option to change this to delete rather than backspace.
(Same as: <Left>, CTRLH, CTRLK, h. See page 31, 32,
38, 49, 268.)

[count]<CEnd> Move to the end of line count. If no count is specified,
go to the end of the file. (Same as: G.) (See pages 557.)

[count]<CHome> Move to the start (first non-blank character) of line
[count]. Default is the beginning of the file. (Same as:
gg.) (See page 226.)

[count]<CLeft> Move count WORDS backward. (Same as: B.) (See
page 263.)

<CLeftMouse> Jump to the location of the tag whose name is under the
cursor. (Same as: CTRL], g<LeftMouse>.) (See pages
131, 132, 134, 240.)

[count] <CPageDown> Go to the next tab. If a [count] is specified, go to the
given tab. (Same as :tabn :tabnext, gt.) (See page
97.)

[count] <CPageUp> Go to the previous tab. If a [count] is specified, go to
the given tab. (Same as :tabN :tabNext, :tabp,
:tabprevious, gT.) (See page 97.)

<CRight> Move count WORDS forward. (Same as: W.) (See page
263.)

[count]<CRightMouse>
Jump to a previous entry in the tag stack. (Same as:
CTRLT, g<RightMouse>.) (See pages 133, 134.)

[count]<CR> Move down count lines. Cursor is positioned on the
first nonblank character on the line. (Same as:
<ENTER>, CTRLM, and +.) (See page 265.)

["{register}][count]
Delete characters. If a "{register} is present, the
deleted text is stored in it. (Same as: x.) (See pages
33, 36, 69, 232, 276.)

[count]<Down> Move [count] lines down. If the 'keymodel' is set to
startselect, start a selection. (Same as: <NL>, CTRLJ,
CTRLN, j.) (See pages 330, 467.)

[count]<End> Move the cursor to the end of the line. If a [count] is
present, move to the end of the count line down from
the current one. (Same as: <kEnd>, $.) (See pages 43,
329.)

[count]<Enter> Move down [count] lines. (Default = 1.) Cursor is

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 608

The Vim Tutorial and Reference

positioned on the first nonblank character on the line.
(Same as: <CR>, CTRLM, +.) (See page 265.)

<F1> Go to the initial help screen. (Same as: <Help>, :h, and
:help.) (See pages 40, 130, 131, 227.)

<F8> Toggle between left-to-right and right-to-left modes.
(See page 252.)

<F9> Toggles the encoding between ISIR-3342 standard and
Vim extended ISIR-3342 (supported only in right-to-left
mode when 'fkmap' [Farsi] is enabled). (See page
255.)

<Help> Go to the initial help screen. (Same as: <F1>, :h,
:help.) (See pages 40, 130, 131, 227.)

<Home> Move to the first character of the line. (Same as:
<kHome>.) (See page 44, 329.)

[count]<Insert>text<Esc>
Insert text. If [count] is present, the text will be
inserted count times. (Same as: i.) (See pages 30, 32,
56.)

[count]<kEnd> Move the cursor to the end of the line. If a count is
present, move to the end of the count line down from
the current one. (Same as: <End>, $.) (See page 43,
329.)

<kHome> Move to the first character of the line. (Same as:
<Home>. See page 44, 329.)

[count]<Left> Move left count characters. If the 'keymodel' is set to
startselect, start a selection. (Same as: <BS>, CTRLH,
CTRLK, h.) (See page 268, 467.)

<LeftMouse> Move the text cursor to the location of the mouse
cursor. (See pages 465.)

["register] <MiddleMouse>
Insert the text in register at the location of the mouse
cursor. (Same as: P.) (See pages 235, 236, 236, 465.)

<MouseDown> Scroll three lines down. (See page 465.)
<MouseUp> Scroll three lines up. (See page 465.)
[count]<NL> Move count lines down. (Same as CTRLN.) (See page

330.)
[count]<PageDown> Scroll count pages forward. If the 'keymodel' is set to

startselect, stop a selection. (Same as: <SDown>,
CTRLF.) (See page 271, 467.)

[count]<PageUp> Scroll the window count pages backward. If the
'keymodel' is set to startselect, stop a selection.
(Same as: <SUp>, CTRLB.) (See page 270, 467.)

[count]<Right> Move right count characters. f the 'keymodel' is set to

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 609

The Vim Tutorial and Reference

startselect, stop a selection. (Same as: <Space>, l.)
(See page 268, 467.)

<RightMouse> Start select mode with the text from the text cursor to
the mouse cursor highlighted. (See pages 465.)

[count]<SDown> Scroll [count] pages forward. If you are running
Windows GUI version, <SDown> enters visual mode and
selects down. (Same as: <PageDown>, CTRLF.) (See
page 271.)

[count]<SLeft> Move left count words. (Same as: b.) (See page 42.)
[count]<SLeftMouse>

Find the next occurrence of the word under the cursor.
(See page 294.)

<SMouseDown> Scroll a full page up. (See page 465.)
<SMouseUp> Scroll a full page down three lines up. (See page 465.)
[count]<SRight> Move count words forward. (Same as: w.) (See pages

42, 49, 49, 51.)
[count]<SRightMouse>

Search backward for the word under the cursor. (See
page 295.)

[count]<SUp> Scroll count pages up. (Same as: <PageUp>, CTRLB.)
(See page 270.)

[count]<Space> Move count spaces to the right. (Same as: <Right>, l.
See page 268.)

[count]<Tab> Go to the count position in the jump list. (Same as:
CTRLI. See page 266.)

[count]<Undo> Undo the last count changes. (Same as: u.) (See page
34.)

[count]<Up> Move count lines up. If the 'keymodel' is set to
startselect, start a selection. (Same as: CTRLP, k.
See page122, 467.)

CTRL\ CTRLN Enter normal mode from any other mode. (See page
102.)

CTRL] Jump to the function whose name is under the cursor.
(In the help system, jump to the subject indicated by a
hyperlink.) (Same as: <CLeftMouse>, g<LeftMouse>.)
(See pages 38, 131, 132, 134, 240.)

[count]CTRL^ If a [count] is specified, edit the [count] file on the
command line. If no [count] is present, edit the
previously edited file. Thus repeated CTRL^ can be
used to toggle rapidly between two files. (See page 81.)

CTRL_ Switch between English and a foreign language
keyboard. (See pages 255, 256, 340.)

[count]CTRLA Add [count] to the number under the cursor. If no

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 610

The Vim Tutorial and Reference

[count] is specified, increment the number. (See pages
277, 552.)

[count]CTRLB Move back [count] screens. (Default = 1.) (Same as:
<PageUp>, <SUp>. See pages 270.)

CTRLBREAK Interrupt search (Same as CTRLC). (See page 294.)
CTRLC Interrupt search. (Same as CTRLBREAK). (See page

294.)
[count]CTRLD Move down the number of lines specified by the

'scroll' option. If a [count] is specified, set the
'scroll' option to [count] and then move down. (See
pages 48, 271.)

[count]CTRLE Move down [count] lines. (See page 271, 272.)
[count]CTRLF Scroll the window [count] pages forward. (Same as:

<PageDown>, <SDown>.) (See page 271.)
CTRLG Display the current file and location of the cursor within

that file. (Same as: :file.) (See pages 47, 268.)
1 CTRLG Same as CTRLG, but include the full path in the

filename. (See pages 268.)
2 CTRLG Same as 1 CTRLG, but adds a buffer number. (See

pages 268.)
[count]CTRLH Move [count] characters to the left. See the

'backspace' option to change this to delete rather than
backspace. (Same as: <BS>, <Left>, CTRLK, h.) (See
page 31, 32, 38, 49, 268.)

[count]CTRLI Jump to the [count] next item in the jump list. (Same
as: <Tab>. See page 266.)

[count]CTRLJ Move down [count] lines. (Same as: <Down>, <NL>,
CTRLJ, j.) (See pages 330.)

[count]CTRLK Move [count] characters to the left. (Same as: <BS>,
<Left>, CTRLH, h.) (See page 31, 32, 38, 49, 268.)

CTRLL Redraw screen. (See page 227.)
CTRLL Leave insert mode if 'insertmode' is set. (See page

258.)
CTRLM Move down count lines. Cursor is positioned on the

first nonblank character on the line. (Same as:
<ENTER>, <CR>, and +.) (See page 265.)

[count]CTRLN Move count lines down. (Same as: <Down>, <NL>,
CTRLJ, j.) (See pages 330.)

[count]CTRLO Jump to the count previous item in the jump list. (See
page 266.)

[count]CTRLP Move count lines upward. (Same as: <Up>, k.) (See
pages 31, 32, 38, 41, 122.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 611

The Vim Tutorial and Reference

CTRLQ Not a Vim command. Used by some terminals to start
output after it was stopped by CTRLS. (See page 227.)

CTRLR Redo the last change that was undone. (See page 34,
286.)

CTRLS Not a Vim command. Used by some terminals to stop
output. (See page 227.)

[count]CTRLT Go back [count] tags. If the current buffer has been
modified, this command fails unless the force (!) option
is present. When using the help system, this command
returns to the location you were at before making the
last hyperlink jump. (Same as: <CRightMouse>,
g<RightMouse>.) (See pages 39, 133, 134.)

[count]CTRLU Move up the number of lines specified by the 'scroll'
option. If a [count] is specified, set the 'scroll'
option to [count] and then scroll up. (See pages 48,
269.)

CTRLV Start visual block mode. (See pages 101, 103 and 105.)
[count]CTRLW<Down>

Move down a window. If a [count] is specified, move to
window number [count]. (Same as: CTRLW CTRLJ,
CTRLWj. See page 84, 335, 464.)

[count]CTRLW<Left> Go left [count] windows. (Same as: CTRLW CTRLh,
CTRLW<Left>. See page 85.)

[count]CTRLW<Right> Go right [count] windows. (Same as: CTRLW CTRLl,
CTRLW<Right>. See page 85.)

[count]CTRLW<Up> Move up a window. If a [count] is specified, move to
window number [count]. (Same as: CTRLW CTRLK,
CTRLWk. See page 84, 335, 464.)

[count]CTRLW CTRL]
Split the current window and jump to the function
whose name is under the cursor. If a [count] is
specified, it is the height of the new window. (Same as:
CTRLW].) (See page 134.)

CTRLW CTRL^ Split the window and edit the alternate file. If a
[count] is specified, split the window and edit the
[count] file on the command line. (Same as: CTRLW^.)
(See page 340.)

[count]CTRLW CTRL_
Set the height of the current window to [count].
(Same as: CTRLW_, :resize.) (See page 89.)

CTRLW CTRLB Move to the bottom window. (Same as: CTRLWb.) (See
page 335.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 612

The Vim Tutorial and Reference

CTRLW CTRLC Cancel any pending window command. (See page 84.)
CTRLW CTRLD Split the window and find the definition of the word

under the cursor. If the definition cannot be found, do
not split the window. (Same as: CTRLWd.) (See page
341.)

CTRLW CTRLF Split the window and edit the file whose name is under
the cursor. Looks for the file in the current directory,
and then all the directories specified by the 'path'
option. (Same as: CTRLWf.) (See page 341.)

[count]CTRLW CTRLG CTRL]
:split followed a CTRL]. If a [count] is specified,
make the new window [count] lines high. (Same as:
CTRLWg CTRL], CTRLWg.) (See page 341.)

[count]CTRLW CTRLG }
Do a :ptjump on the word under the cursor. If a
[count] is specified, make the new window [count]
lines high. (Same as: CTRLW CTRLG}.) (See page
393.)

[count]CTRLW CTRLH Go left [count] windows. (Same as: CTRLW h,
CTRLW<Left>.) (See page 85.)

[count]CTRLW CTRLI
Split the window and search for the [count]
occurrence of the word under the cursor. Start the
search at the beginning of the file. (Same as: CTRLWi.
See page 340.)

[count]CTRLW CTRLJ
Move down a window. If a count is specified, move to
window number count. (Same as: CTRLW<Down>,
CTRLWj.) (See page 84, 335, 464.)

[count]CTRLW CTRLK
Move count windows up. (Same as: CTRLW<Up>,
CTRLWk.) (See page 84, 335, 464.)

[count]CTRLW CTRLL Go right [count] windows. (Same as: CTRLW l,
CTRLW<Right>. See page 85.)

CTRLW CTRLN Split the window like :split. The window is started on
a blank file. (Same as: CTRLWn. See page 86.)

CTRLW CTRLO Make the current window the only one. (Same as:
CTRLWo, :on, :only.) (See page 339.)

CTRLW CTRLP Move to the previous window. (Same as: CTRLWp.)
(See pages 235, 236, 335.)

CTRLW CTRLQ Close a window. If this is the last window, exit Vim. The
command fails if this is the last window for a modified

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 613

The Vim Tutorial and Reference

file, unless the force (!) option is present. (Same as:
CTRLW q, :q, :quit.) (See pages 35, 84, 165, 288,
338.)

[count]CTRLW CTRLR
Rotate windows downward. (Same as: CTRLWr.) (See
page 336.)

[count]CTRLW CTRLS
Split the current window. (Make the new window count
lines high.) (Same as: CTRLWs, CTRLWS, :sp, :split.
See pages 235, 236.)

CTRLW CTRLT Move the top window. (Same as: CTRLWt. See page
335.)

CTRLW CTRLW Move to the next window down. (if in vertical mode
move to the next window to the right.) If there is no
next window, move to the first one. If a [count] is
specified, move to window number [count]. (Same as:
CTRLWw.) (See pages 84, 85, 336.)

[count]CTRLW CTRLX
Exchange the current window with the next one. If
there is no next one, exchange the last window with the
first. If a [count] is specified, exchange the current
window with window number [count]. (Same as:
CTRLWx.) (See page 338.)

CTRLW CTRLZ Close the preview window. Discard any changes if the
force (!) option is present. (Same as: CTRLWz, :pc,
:pclose.) (See page 393.)

[count]CTRLW + Increase the size of the current window by [count].
(Default = 1.) (Same as: :res +, :resize +.) (See page
89.)

[count]CTRLW (CTRLW <dash>)
Decrease the size of the current window by [count].
(Default = 1.) (Same as :res , :resize .) (See page
89.)

CTRLW= Make all windows the same size (or as close as
possible). (See page 89.)

[count]CTRLW] Split the current window and jump to the function
whose name is under the cursor. If a [count] is
specified, it is the height of the new window. (Same as:
CTRLW CTRL].) (See page 134.)

[count]CTRL W ^ Split the window and edit the alternate file. If a
[count] is specified, split the window and edit the
[count] file on the command line. (Same as: CTRLW
CTRL^.) (See page 340.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 614

The Vim Tutorial and Reference

[count]CTRLW _ Set the current window to be [count] lines high. If no
count is specified, make the window as big as possible.
(Same as: CTRLW CTRL_, :res, :resize.) (See page
89.)

CTRLW } Do a :ptag on the word under the cursor. (See page
393.)

CTRLW b Move to the bottom window. (Same as: CTRLW
CTRLB.) (See page 335.)

CTRLW c Close the current window. (Same as: :clo, :close.)
(See page 84.)

CTRLW d Split the window and find the definition of the word
under the cursor. If the definition cannot be found, do
not split the window. (Same as: CTRLW CTRLD.) (See
page 341.)

CTRL W f Split the window and edit the file whose name is under
the cursor. Looks for the file in the current directory,
then all the directories specified by the 'path' option.
(Same as: CTRLW CTRLF.) (See page 341.)

CTRLW g CTRL] :split followed a CTRL]. (Same as: CTRLW CTRLG],
CTRLWg].) (See page 341.)

CTRL W g] :split followed a CTRL]. (Same as: CTRLW g CTRL],
CTRLW CTRLG].) (See page 341.)

CTRL W g } Do a :ptjump on the word under the cursor. (Same as:
CTRLW CTRLG}. (See page 393.)

CTRLWgf Open a new tab and do a :find on the file who's name
is under the cursor. (Similar to :tabfind, :tabf) (See
page 98.)

CTRLWgF Open a new tab and do a :find on the file who's name
is under the cursor. Position the cursor on the line
who's number appears after the file name. (Similar to
:tabfind, :tabf) (See page 98.)

[count]CTRLW h Go left [count] windows. (Same as: CTRLW CTRLh,
CTRLW<Left>.) (See page 85.)

[count]CTRLW i Split the window and search for the [count]
occurrence of the word under the cursor. Start the
search at the beginning of the file. (Same as: CTRLW
CTRLI.) (See page 340.)

[count]CTRLW j Move down a window. If a [count] is specified, move to
window number [count]. (Same as: CTRLW CTRLJ,
CTRLW<Down>.) (See page 84, 335, 464)

[count]CTRLW k Go up [count] windows. (Same as: CTRLW CTRLK,
CTRLW<Up>.) (See page 84, 335, 464.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 615

The Vim Tutorial and Reference

[count]CTRLW l Go right [count] windows. (Same as: CTRLW CTRLL,
CTRLW<Right>.) (See page 85.)

CTRLW n Split the window like :split. The window is started on
a blank file. (Same as: CTRLW CTRLN.) (See page 86.)

CTRLW o Make the current window the only one. If ! is specified,
modified files whose windows are closed will have their
contents discarded. (Same as: CTRLW CTRLO, :on,
:only.) (See page 339.)

CTRLW p Move to the previous window. (Same as: CTRLW
CTRLP.) (See pages 235, 236, 335.)

CTRLW q Close a window. If this is the last window, exit Vim. The
command fails if this is the last window for a modified
file, unless the force (!) option is present. (Same as:
CTRLW CTRLQ, :q, :quit.) (See pages 35, 84, 165,
288, 338.)

[count]CTRLW r Rotate windows downward. (Same as: CTRLW CTRLR,
CTRLWR.) (See page 336.)

[count]CTRLW R Rotate windows upward. (See page 336.)
[count]CTRLW s Split the current window. Make the new window

[count] lines high (same as [count]CTRLWS). (Same
as: CTRLW CTRLS, CTRLWS, :sp, :split.) (See pages
235, 236.)

[count]CTRLW S Split the current window. Make the new window count
lines high (same as [count]CTRLWs). (Same as:
CTRLW CTRLS, CTRLWs, :sp, :split.) (See page 235,
236.)

CTRLW t Move the top window. (Same as: CTRLW CTRLT.) (See
page 335.)

[count]CTRLW w Move to the next window down (to the right in vertical
mode). If there is no next window, move to the first
one. If a [count] is specified, move to window number
[count]. (Same as: CTRLW CTRLW.) (See pages 84,
85, 336.)

[count]CTRLW W Move to the previous window. If at the top window, go
to the bottom one. >If a [count] is specified, move to
window number [count]. (See page 336.)

[count]CTRLW x Exchange the current window with window number
count. (Same as: CTRLW CTRLX.) (See page 338.)

CTRLW z Close the preview window. (Same as: CTRLW CTRLZ,
:pc, :pclose.) (See page 393.)

[count]CTRLX Subtract [count] from the number under the cursor. If
no [count] is specified, decrement the number. (See

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 616

The Vim Tutorial and Reference

pages 278, 552.)
[count]CTRLY Move up [count] lines. (See pages 270, 272.)
CTRLZ Suspend the editor (Unix only). (Same as CTRLZ,

:suspend, :sus, :st, and :stop.) (See page 227.)
!{motion}{command} Filter the block of text represented by {motion}

through the an external {command}command. (See
pages 76, 139, 184, 239.)

[count]!!{command} Filter the current line (or [count] lines} through the an
external command. (See page 76, 77.)

[count]# Search for the word under the cursor, backward.
(Same as: £, <SRightMouse>.) (See page 295.)

[count]$ Move the cursor to the end of the line. If a [count] is
present, move to the end of the [count] line down from
the current one. (Same as: <End>, <kEnd>.) (See pages
43, 50, 56, 328, .)

% Find the matching (), {}, #ifdef/#else/#endif.
(See pages 113, 114, 120, 122, 129, 373.)

[count]% Jump to the line whose [count] percent of the way
through the file. (See page 46.)

& Synonym for :s//~/ Repeat last substitution. (See
page 435.)

'{letter}
 (single quote)

Go to the line containing mark named {letter}. (See
pages 239, 319.)

[count](Move backward [count] sentences. (See page 189.)
[count]) Move forward [count] sentences. (See page 184, 189.)
[count]* Search for the word under the cursor, forward. (See

page 294.)
[count]+ Move down [count] lines. (Default = 1.) Cursor is

positioned on the first nonblank character on the line.
(Same as: <CR>, +, CTRLM.) (See page 265.)

[count], Reverse the direction of the last single character and
perform the search [count] times. (See page 264.)

[count] Move up [count] lines. (Default = 1.) Cursor is
positioned on the first non-blank character on the line.
(See page 264.)

[count] . (dot) Repeat the last simple normal mode command that
changed text. If [count] is specified use it instead of
the [count] specified with the original command. (See
page 53, 233, 185.)

[count]/ Repeat last search in the forward direction. (See pages
60, 60.)

[count]/{pattern} Search forward. (See pages 59-68, 233, 319.)
[count]/{pattern}/{offset}

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 617

The Vim Tutorial and Reference

Search forward, position the cursor at {offset} from
the search pattern. (See page 295.)

[count]//{offset} Repeat last search in the forward direction with a new
offset. (See page 297.)

[count]; Repeat the last single character search [count] times.
(Default = 1.) (See page 264.)

[count]<< Shift count lines to the left. (See pages 115.)
<{motion} Shift lines from cursor to {motion} to the left. (See

pages 115.)
[count]>> Shift [count] lines to the right. (See page 115.)
>{motion} Shift lines from cursor to {motion} to the right. (See

pages 115, 129, 129.)
={motion} Filter {motion} lines through the internal indentation

program or if the 'equalprg' option is defined, the
external program given by 'equalprg'. (See page
119.)

[count]? Repeat last search in the backward direction. (See
page 64, 65.)

[count]?{pattern} Search backward. (See page 297.)
[count]?{pattern}?{offset}

Search backward, position the cursor at {offset} from
the search pattern. (See page 297.)

[count]??{offset} Repeat last search in the backward direction with a
new {offset}. (See page 297.)

[count]@{character}
Execute the macro in register {character}. (See page
55.)

["{register}] [<MiddleMouse>
Put the {register} in the buffer like the p command,
but adjust the text to fit the indent of the current line.
(Same as: [p, [P,]P.) (See page 367.)

[count] [CTRLD Find definition of the macro currently sitting under the
cursor. Start the search from the beginning of the file.
(See page 127.)

[count] [CTRLI Search for the word under the cursor starting at the
beginning of the file. (See pages 126, 402.)

[count] ["{register}<MiddleMouse>
Put the {register} in the buffer like the p command,
but adjust the text to fit the indent of the current line.
(See page 367.)

[# Finds the previous unmatched #if/#else/#endif.
(See page 395.)

[count] [* Move backward to the beginning of the [count]

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 618

The Vim Tutorial and Reference

comment from the cursor. (Same as: [/.) (See page
396.)

[count] [/ Same as: [*. (See page 396.)
[count] [(Move backward to the [count] previous unmatched

(in column 1. (See page 395.)
[count] [) Move backward to the [count] previous unmatched).

(See page 395.)
[count] [[Move backward [count] sections or to the previous { in

column 1. (See pages 190, 396.)
[count] [] Move [count] sections backwards or to the previous }

in column 1. (See pages 396.)
[count] [} Finds the [count] previous unmatched }. (See page

395.)
[count] [c Go to the [count] next change in the current diff. (See

page 384.)
[count] [d List the definition of the macro. Start search at the

beginning of the file. (See pages 127, 402.)
[count] [D List all definitions of the macro whose name is under

the cursor. Start the list with the next first definition in
the file. (See page 127.)

[f Deprecated. Use gf instead. (Same as: gf,]f.) (See
page 399.)

[count] [i Display the [count] line that contains the keyword
under the cursor. The search starts from the beginning
of the file. (See page 403.)

[I List all lines in the current and included files that
contain the word under the cursor. (See page 403.)

[m Search backward for the start of a method. (See page
396.)

[M Search backward for the end of a method. (See page
396.)

["{register}] [p Put the {register} in the buffer like the P command,
but adjust the text to fit the indent of the current line.
(Same as: [<MiddleMouse>, [P,]P.) (See page 367.)

["{register}] [P Put the {register} in the buffer like the P command,
but adjust the text to fit the indent of the current line.
(Same as: [<MiddleMouse>, [p, [P.) (See page 367..)

[count] [s Search for the next misspelled word starting at the
current location. A [count] cause the command to
repeat [count] times. (See page 185.)

[count] [S Search for the next misspelled word starting at the
current location, but do not stop at bad words or
uncommon words. A [count] cause the command to

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 619

The Vim Tutorial and Reference

repeat [count] times. (See page 185.)
[z Move to the start of the current open fold. (See page

390.)
["{register}]]<MiddleMouse>

Put the {register} in the buffer like the p command,
but adjust the text to fit the indent of the current line.
(Same as:]p.) (See page 367.)

[count]]CTRLD Find definition of the macro currently sitting under the
cursor. Start the search from the beginning current
location. (See page 127, 439.)

[count]]CTRLI Search for the word under the cursor starting at the
current cursor location. (See pages 126,-402.)

[count]]# Finds the next unmatched #if/#else/#endif. (See
page 395.)

[count]]) Move forward to the [count] next unmatched). (See
page 396.)

[count]]/ -or -
[count]]* Move forward to the end of the [count] comment from

the cursor. (See page 396.)
[count]](Move forward to the count next unmatched (. (See

page 395.)
[count]][Move count sections forward or to the next } in column

1. (See pages 396.)
[count]]] Move count sections forward or to the next { in column

1. (See pages 190, 396.)
[count]]{ Finds the count previous unmatched {.(See page 395.)
[count]]} Finds the count previous unmatched }. (See page 395.)
[count]]c Go to the [count] previous change in the current diff.

(See page 384.)
[count]]d List the definition of the macro. Start search at the

current cursor position. (See pages 127, 263, 402.)
[count]]D List all definitions of the macro whose name is under

the cursor. Start the list with the first next definition.
(See page 127.)

]f Deprecated. Use gf instead. (Same as: gf, and
depreciated command [f. See page 399.)

[count]]i Display the [count] line that contains the keyword
under the cursor. The search starts from the current
cursor position. (See page 403.)

]I List all lines in the current and included files that
contain the word under the cursor starting at the
current location. (See page 403.)

]m Search forward for the start of a method. (See page

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 620

The Vim Tutorial and Reference

396.)
]M Search forward for the end of a method. (See page

396.)
["{register}]]p Put the {register} in the buffer like the P command,

but adjust the text to fit the indent of the current line.
(Same as:]<MiddleMouse>.) (See page 367.)

["{register}]]P Put the {register} in the buffer like the P command,
but adjust the text to fit the indent of the current line.
(Same as]<MiddleMouse>, [p, [P. See page 367.)

[count]]s Search for the next misspelled word starting at the
current location. A [count] cause the command to
repeat [count] times. (See page 185.)

[count]]S Search for the next misspelled word starting at the
current location, but do not stop at bad words or
uncommon words. A [count] cause the command to
repeat [count] times. (See page 185.)

]z Move to the end of the current open fold. (See page
390.)

[count]_ Move to the first printing character of the [count]-1
line below the cursor. (See page 265.)

`{mark} Go to the mark named mark. Cursor is positioned
exactly on the mark. (See page 72.)

`{mark} (backtick) Go to the line containing mark. Position the cursor at
the first non-blank character on the line. (See page 72)

[count] { Move backward [count] paragraphs. (See page 189.)
[count]| Move to the column [count] on the current line. (See

page 330.)
[count] } Move forward [count] paragraphs. (See page 177,

189, 234.)
~{motion} Change the case of the indicated characters. (This

version of the command depends on the 'tildeop'
option being on. (The default is off.) (See page 55.)

[count]~ Change the case of count characters. (This version of
the command depends on the 'tildeop' option being
off (the default). (See pages 268.)

[count]£ Search for the word under the cursor, backward.
(Same as #, <SRightMouse>.) (See page 295.)

0 (Zero) Move to the first character on the line. (See pages 44,
263, 329.)

[count]a{text}<Esc>
Insert text starting after the character under the cursor.
If a [count] is specified, the text is inserted count
times. (See page 36, 41, 56.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 621

The Vim Tutorial and Reference

[count]A{text}<Esc>
Append the text on to the end of the line. (See page
277.)

[count]b Move backward count words. (Same as: <SLeft>.)
(See page 42.)

[count]B Move count WORDS backward. (Same as: <CLeft>.
See page 263.)

c{motion} Delete from the cursor to the location specified by the
{motion} then enter insert mode. (See pages 51, 103,
233.)

[count]C Delete from the cursor to the end of the current line
and [count]-1 more lines, and then enter insert mode.
(See page 52, 103, 275, 276.)

[count]cc Delete [count] entire lines (default = 1) and enter
insert mode. (See page 52.)

["{register}] d{motion}
Delete from the cursor location to where {motion}
goes. (See pages 49, 50, 53, 69, 70, 73, 234, 275.)

do Copy the current diff from the other window to this
one. (See page 122.)

dp Copy the current diff from the this window to the other
one. (See page 122.)

[count]D Delete from the cursor to the end of the line. If a
[count] is specified, delete an additional [count]-1
lines. (See pages 50, 275.)

["{register}][count]dd
Delete [count] lines. (See pages 36, 49, 313.)

[count]e Move [count] words forward, stop at the end of the
word. (See page 260.)

[count]E Move [count] WORDS forward to the end of the
WORD. (See page 263.)

[count]f{char} Search forward for character {char} on the current
line. Stop on the character. (See pages 44, 53, 264,
282.)

[count]F{char} Search backward for character {char} on the current
line. Stop on the character. (See page 44.)

[count]G Go to the line [count]. If no line is specified, go to the
last line in the file. (Same as: <CEnd>. See pages 46,
226, 233, 266, 557.)

[count]g<Down> Move down one line on the screen. (Same as: gj.) (See
page 330.)

g<End> Move to the rightmost character on the screen. (Same
as: g$.) (See page 329.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 622

The Vim Tutorial and Reference

g<Home> Move to the leftmost character on the screen. (In other
words, move to column 1.) (Same as: g0. See page
329.)

g<LeftMouse> Jump to the location of the tag whose name is under the
cursor. (Same as: <CLeftMouse>, CTRL].) (See page
131, 132, 134, 240.)

[count]g<RightMouse>
Jump to a previous entry in the tag stack. (Same as:
<CRightMouse>, CTRLT.) (See page 133, 134.)

[count]]g<Up> Move up lines in one the screen space. (Same as: gk.)
(See page 330.)

g CTRL] Do a :tjump on the word under the cursor. (See page
136.)

g CTRLG Display detailed information about where you are in the
file. (See page 226.)

g CTRLH Start select block mode. (See page 360.)
g@{Motion} Call the function specified by the 'operatorfunc' to

process the text. (See page 510.)
[count]g Go to the [count] older text state. (See page 287.)
[count]g+ Go to the [count] newer text state. (See page 287.)
[count]g, Go [count] forward cursor positions in the change list

(Seepage 267.)
[count]g; Go [count] backward cursor positions in the change

list (Seepage 267.)
[count]g£ Search for the word under the cursor, backward. Unlike

£, this finds partial words. (Same as: g#.) (See page
295.)

g$ Move to the rightmost character on the screen. (Same
as: g<End>.) (See page 329.)

[count]g* Search for the word under the cursor, forward. Unlike
*, this finds partial words. (See page 295.)

g?{motion} Encrypt the text from the current cursor location to
where {motion} takes you using rot13 encryption. (See
page 191.)

[count]g?? Encrypt the lines using the rot13 encryption. (Same as:
g?g?. See page 191.)

[count]g?g? Encrypt the lines using the rot13 encryption. (Same as:
g??. See page 191.)

g# Search for the word under the cursor, backwards.
Unlike #, this finds partial words. (Same as: g£. See
page 295.)

g] Do a :tselect on the word under the cursor. (See page
136.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 623

The Vim Tutorial and Reference

g^ Move to the leftmost printing character visible on the
current line. (See page 329.)

[count]g; Go [count] cursor positions back in the change list.
(See page 267.)

g~{motion} Reverse the case of the text from the cursor to
{motion}. (See pages 283.)

[count]g~g~ -or -
[count]g~~ Reverse the case of the entire line. If a [count] is

specified, change the case of [count] lines. (See page
283.)

g0 (zero) Move to the leftmost character on the screen. (In other
words, move to column 1.) (Same as: g<Home>.) (See
page 329.)

g£ Search for the word under the cursor, backwards.
Unlike #, this finds partial words. (Same as: g#. See
page 295.)

ga Print the ASCII value of the character under the cursor.
(Same as: :as, :ascii. See page 226.)

gd Find the local definition of the variable under the
cursor. (See pages 126.)

gD Find the global definition of the variable under the
cursor. (See pages 126.)

[count]ge Move [count] words backward stopping on the end of
the word. (See page 260.)

[count]gE Move [count] WORDS backward to the end of the
WORD. (See page 263.)

gf Edit the file whose name is under the cursor. If the file
is not in the current directory, search the directory list
specified by the 'path' option. (Same as: [f,]f. See
page 263.)

[count]gg Move to line count. Default is the first line. (Same as:
<CHome>. See page 226.)

gh Start select mode characterwise. (See page 360.)
gH Start select mode linewise. (See page 360.)
[count]gI{text}<Esc>

Insert text in column 1, [count] times. (See page 277.)
[count]gj Move down one line on the screen. (Same as: g<Down>.)

(See page 330.)
[count]gJ Join lines. No spaces are put between the assembled

parts. If a [count] is specified, [count] lines are
joined (minimum of two lines). (See page 278.)

[count]] gk Move up lines in the screen space. (Same as: g<Up>.)
(See page 330.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 624

The Vim Tutorial and Reference

gm Move to the middle of the screen. (See page 329.)
[count]go Go to [count] byte of the file. (Same as: :go, :goto.

See page 226.)
[""{register}] gp Paste the text before the cursor, but do not move the

cursor. (See page 309.)
[""{register}] gP Paste the text after the cursor, but do not move the

cursor. (See page 309.)
gq{motion} Format the text from the line the cursor is on to the line

where {motion} takes you. (See pages 156, 177, 181,
183, 374.)

gqq Format the current line. (Same as: gqgq. See page
177.)

gqgq Format the current line. (Same as: gqq. See page 177.)
qQ Enter :ex mode. (See page 159.)
[count]gr{character}

Replace the virtual character under the cursor with
{character}. (See pages 281.)

[count]gR{string}<Esc>
Enter virtual replace mode until <Esc> is pressed. (See
page 281.)

[count] gs Sleep for the specified number of seconds. (Same as:
:sl, :sleep.) (See page 227.)

[count] gt Go to the next tab. If a [count] is specified, go to the
given tab. (Same as :tabn :tabnext, <CPageDown>.)
(See page 97.)

[count] gT Go to the previous tab. If a [count] is specified, go to
the given tab. (Same as :tabN :tabNext, :tabp,
:tabprevious, <CPageUp>.) (See page 97.)

gu{motion} Lowercase the text from the cursor to {motion}. (See
page 283.)

gU{motion} Uppercase the text from the cursor to {motion}. (See
page 283.)

[count]gugu -or -
[count]guu Lowercase the entire line. If a [count] is specified

change the case of [count] lines. (See page 283.)
[count]gUgU -or -
[count]gUU Uppercase the entire line. If a [count] is specified

change the case of [count] lines. (See page 283.)
gv Repeat the last visual-mode selection. (See page Error:

Reference source not found352.)
gV Do not automatically reselect the selected text. (See

page 362.)
[count]h Move cursor left. (Same as: <BS>, <Left>, CTRLH,

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 625

The Vim Tutorial and Reference

CTRLK.) (See page 31, 32, 38, 49, 268.)
[count]H Move to the cursor to the top of the screen. If a

[count] is specified, move to the count line from the
top. (See page 266, 557.)

[count]i{text}<Esc>
Insert text starting before the character under the
cursor. If a count is specified, the text is inserted count
times. (Same as: <Insert>.) (See pages 30, 32, 56.)

[count]I{text}<Esc>
Insert the text at the beginning of the line. (See page
277.)

[count]j Down. (Same as: <Down>, <NL>, CTRLJ, CTRLN. See
pages 31, 32, 38, 330.)

[count]J Join lines. Spaces are put between the assembled
parts. If a [count] is specified, [count] lines are joined
(minimum of 2 lines). (See pages 54, 179, 278.)

[count]k Move cursor up. (Same as: <Up>, CTRLP.) (See pages
31, 32, 38, 41, 122.)

[count]K Run the man command on the word under the cursor. If
a [count] is specified, use [count] as the section
number. On Microsoft Windows, by default, this
command performs a :help on the word under the
cursor. (See page 130, Error: Reference source not
found131.)

[count]l Right. (Same as: <Right>, <Space>. See page 31, 32,
38, 268, 328.)

[count]L Move the cursor to the bottom of the screen. If a count
is specified, move to the [count] line from the bottom.
(See page 266, 557.)

m{letter} Mark the current text with the name {letter}. If
{letter} is lowercase, the mark is local to the buffer
being edited. In other words, just the location in the
file is marked, and you have a different set of marks for
each file.

If an uppercase letter is specified, the mark is global.
Both the file and the location within are marked. If you
execute a "go to mark(`)" command to jump to a global
mark, you may switch files. (See pages 72, 75, 139,
161, 234, 235, 239, 319.)

M Move to the cursor to the middle of the screen. (See
page 266, 557.)

[count]n Repeat last search. Search in the same direction. (See

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 626

The Vim Tutorial and Reference

pages 64, 65, 233.)
[count]N Repeat last search. Search in the reverse direction.

(See pages 65, 65.)
[count]o Open a new line below the cursor and put the editor

into insert mode. (See page 37, 181, 375.)
[count]O Open a new line above the cursor and put the editor

into insert mode. (See page 37, 181, 375.)
["{register}] p Paste the test in the unnamed register (") after the

cursor. (If the register contains complete lines, the text
will be placed after the current line.) (See pages 69, 70,
71, 75, 232, 234, 309, 367.)

["{register}] P Paste the text in the {register} before the cursor. If
no {register} is specified, the unnamed register is
used. (Same as: <MiddleMouse>. See pages 71, 235,
236, 236, 309, 313, 367.)

q/ Open a command window and allow the user to browse
through the forward search history. (See page 61.)

q: Open a command window and allow the user to browse
through the command history. (See page 427.)

q? Open a command window and allow the user to browse
through the reverse search history. (See page 64.)

q{character} Begin recording keys in register {character}
(character is a-z). Stop recording with a q command.
(See page 55.)

Q Enter ex mode. (See page 159.)
[count]r{char} Replace count characters with the given character.

(See pages 54, 55, 280.)
[count]R{text}<Esc>

Enter replace mode and replace each character in the
file with a character from {text}. If a [count] is
specified, repeat the command [count] times. (See
page 279.)

[count]s Delete [count] characters and enter insert mode. (See
page 275.)

[count]S Delete [count] lines and enter insert mode. (See page
276.)

[count]t{char} Search forward for character {char} on the current
line. Stop one before the character. (See page 45.)

[count]T{char} Search backward for character {char} on the current
line. Stop one after the character. (See page 45.)

u Undo the last change. (Same as: <Undo>.) (See page
34, 286.)

U Undo all the changes on the last line edited. (A second

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 627

The Vim Tutorial and Reference

U redoes the edits.) (See page 34, 313.)
v Start visual character mode. (See pages 49, 51, 53, 71,

76, 99, 100, 103, 103, 130, 373.)
V Start visual line mode. (See pages 71, 74, 100, 122,

140, 236, 236, 236, 237, 365.)
[count]w Move count words forward. (Same as: <SRight>.)

(See pages 42, 49, 49, 51.)
[count]W Move count WORDS forward. (Same as: <CRight>.)

(See page 263.)
["[register}] [count]x

Delete [count] characters. (Default = 1.) Deleted text
goes into {register} or the unnamed register if no
register specification is present. (Same as: .)
(See pages 33 , 36, 69, 232, 276.)

["{register}][count]X
Delete the characters before the cursor. (See pages
276.)

xp Exchange the character under the cursor with the next
one. Useful for turning "teh" into "the". (See pages 70,
232.)

["{register}] y{motion}
Yank the text from the current location to {motion} into
the register named {register}. Lowercase register
specifications cause the register to be overwritten by
the yanked text. Uppercase register specifications
append to the contents of the register. (See pages 74,
75, 103, 235.)

["{register}][count]Y -or -
["{register}] [count]yy -or -
[count]["{register}] yy

Yank [count] lines into the register named {register}.
Lowercase register specifications cause the register to
be overwritten by the yanked text. Uppercase register
specifications append to the contents of the register.
(See pages 74, 76, 103, 311, 313.)

z{height}<CR> Make the window {height} lines high. (See page 228.)
[count]z<CR> (Same as: z<Enter>, see next entry..)
[count]z<Enter> Position the line count at the top of the screen. If no

[count] is specified, the current line is used. Cursor is
positioned on the first nonblank character after this
command. (Same as: z:<CR>. See page 272.)

[count]z<Left> Scroll the screen [count] characters to the right.
(Same as: zh. See page 241.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 628

The Vim Tutorial and Reference

[count]z<Right> Scroll the screen [count] characters to the left. (Same
as: zl. See page 330.)

[count]z Position the line [count] at the bottom of the screen. If
no [count] is specified, the current line is used. Cursor
is positioned on the first nonblank character after this
command. (See page 273.)

[count]z. Position the line [count] at the middle of the screen. If
no [count] is specified, the current line is used. Cursor
is positioned on the first nonblank character after this
command. (See pages 274.)

[count]z= Display a list of suggested corrections for the
misspelled word under the cursor. If [count] is
present, automatically the [count] entry from the list.
(See page 184.)

za Open a fold if it's closed. Close it if it's open. Works on
a single level of folding. (See page 390.)

zA Open a fold if it's closed. Close it if it's open. Works on
a all levels of folding. (See page 390.)

[count]zb Position the line [count] at the bottom of the screen. If
no [count] is specified, the current line is used. Cursor
is positioned on the same column after this command.
(See page 273.)

zc Close one fold at the cursor. (See page 124, 389.)
zC Close all folds at the cursor. (See page 389.)
zd Delete the current fold. (See page 389.)
zD Delete the current fold and all nested folds. (See page

389.)
zE Open all the folds current visible in the window. (See

page 389.)
zf{motion} Create a fold. (See page 122, 387.)
[count]zF Create a fold starting at the cursor and containing

[count] lines. (See page 389.)
[count]zg Add the word under the cursor to the list of good words.

If a [count] is specified, add it to the [count] word
file. (See page 186.)

zG Add the word under the cursor to the internal list of
good words. This list is temporary and is not stored
between sessions. (See page 186.)

[count]zh Scroll the screen [count] character to the right. (Same
as z<Left>. See page 330.)

zi Invert 'foldenable'. If this option is set, folding is
allowed, if not all text is displayed. (See page 390.)

[count] zj Move down to the start of the next fold. The [count]

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 629

The Vim Tutorial and Reference

parameter tells Vim how many folds to move down.
(See page 390.)

[count] zk Move up to the end of the previous fold. The [count]
parameter tells Vim how many folds to move up. (See
page 390.)

[count]zl Scroll the screen count character to the left. (Same as
z<Right>. See page 330.)

zm Increase the folding by one level, but subtracting one to
'foldlevel'. (See page 124.)

zM Open all folds by setting the 'foldelevel' to 0. (See
page 125.)

zn Turn off 'foldenable' opening all folds. (See page
390.)

zN Turn on 'foldenable' causing all folds to return to the
current open / closed state. (See page 390.)

zo Open a fold at the cursor. (See page 123, 124, 389,
390.)

zO Open all folds under the cursor. (See page 389.)
zL Move the screen ½ screen-full left. (See page 330.)
ZQ Abandon the file discarding all edits. (Same as :quit!.)

(See page 288.)
zr Decrease the folding by one level, but adding one to

'foldlevel'. (See page 124.)
zR Remove all folding by setting 'foldlevel' to the

highest fold level. (See page 125.)
[count]zt Position the line count at the top of the screen. If no

[count] is specified, the current line is used. Cursor is
positioned on the same column after this command.
(See pages 273.)

[count]zug Remove the word under the cursor from the good list.
If a [count] is specified, remove it from the [count]
word file. (See page 186.)

zuG Remove the word under the cursor from the internal
good list. (See page 186.)

[count]zuw Remove the word under the cursor from the wrong list.
If a [count] is specified, remove it from the [count]
word file. (See page 186.)

zuW Remove the word under the cursor from the internal
wrong list. (See page 186.)

zv Undo enough folds to make the line the cursor is on
visible. (See page 124.)

[count]zw Add the word under the cursor to the list of wrong
words. If a [count] is specified, add it to the [count]

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 630

The Vim Tutorial and Reference

word file. (See page 186.)
zW Add the word under the cursor to the internal list of

good words. This list is temporary and is not stored
between sessions. (See page 186.)

zX Clear all manually opened and closed folds. (See page
124.)

ZZ Write file and exit. (See pages 35, 38, 96, 224, 243.)

Motion Commands

[count]a" Select matching "" pair, including the "". (See page 354.)
[count]a' Select matching '' pair, including the ''. (See page 354.)
[count]a(
[count]a)

From with text enclosed in (), select the text up to and
including the (). (See page 354.)

[count]a<]
[count]a>

Select matching <> pair, include the <>. (See page 354.)

[count]a[
[count]a]

Select matching [] pair, include the []. (See page 354.)

[count]a` Select matching `` pair, including the ``. (See page 354.)
[count]a{
[count]a}

Select matching {} pair, including the {}. (See page 354.)

[count]ab From with text enclosed in (), select the text up to and
including the (). (See page 354.)

[count]aB Select matching {} pair, including the {}.
[count]ap Select a paragraph and the following space. (See page 354.)
[count]as Select a sentence (and spaces after it). (See page 354.)
[count]aw Select a word and the space after it. (Word is defined by the

'iskeyword' option . (See page 353, 354.)
[count]aW Select a word and the space after it. (Word is defined to be

any series of printable characters.) (See page 354.)
[count]at Select the enclosing XML tag block (<foo> ... </foo>)

including the tags. (See 354.)
[count]i" Select matching "" pair, not including the "". (See page

354.)
[count]i' Select matching '' pair, not including the ''. (See page 354.)
[count]i(
[count]i)

From with text enclosed in (), select the text up to but not
including the (). (See page 354.)

[count]i<
[count]i>

Select matching <> pair, excluding the <>. (See page 354.)

[count]i[
[count]i]

Select matching [] pair, excluding the []. (See page 354.)

[count]i` Select matching `` pair, not including the ``. (See page
354.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 631

The Vim Tutorial and Reference

[count]i{
[count]i}

Select matching {} pair, excluding the {}. (See page 123,
130.)

[count]ib From with text enclosed in (), select the text up to but not
including the (). (See page 354.)

[count]iB Select matching {} pair, excluding the {}. (See page 354.)
[count]ip Select a paragraph only. (See page 177, 354.)
[count]is Select the sentence only. Do no select whitespace after a

sentence. (See page 354.)
[count]it Select the enclosing XML tag block (<foo> ... </foo>)

excluding the tags. (See page 354.)
[count]iw Select inner word (the word only). (Word is defined by the

'iskeyword' option.) (See page Error: Reference source not
found353, 354.)

[count]iW Select inner word (the word only). (Word is defined to be any
series of printable characters.) (See page 354.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 632

The Vim Tutorial and Reference

Appendix D: Command-Mode Commands

:! :!{cmd}

Execute shell command.

(See page 446.)

:!! :!!

Repeat last :!{cmd}.

(See page 446.)

:# :[range] #

Print the lines with line numbers.

(See page 433.)

:& :[count] &

Repeat the last :substitute command on the next [count] lines.
(Default = 1.)

(See page 435.)

:& cmdzm(71) :[range] & [flags] [count]

Repeat the last substitution with a different [range] and [flags].

(See page 435.)

:* [line] *{register}

Execute the contents of the {register} as an ex-mode command.

(Same as: :@.) (See page 444.)

:< :[line] < {count}

Shift lines left.

(See page 445.)

:= :=

Print line number.

(See page 443.)

:> :[line] > {count}

Shift lines right.

(See page 445.)

:@ :[line] @{register}

Go to line and execute {register} as a command. (Same as: :*.)

(See page 444.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 633

The Vim Tutorial and Reference

:@: :[line] @:

Repeat the last command-mode command.

(See page 444.)

:@@ :[line] @@

Repeat the last :@{register} command.

(See page 444.)

:~ :[range]~ {flags} {count}

Repeat the last substitution, but the last search string as the {from}
pattern instead of the {from} from the last substitution.

(See page 437.)

:a :[line] a

Insert text after the specified line. (Default = current.)

(Same as: :append.) (See page 432.)

:ab :ab

List all abbreviations. (Same as: :abbreviate.)

(See pages 149, 419.)

:ab :ab {lhs} {rhs}

Define an abbreviation. When {lhs} is entered, put {rhs} in the
text. (Same as :abbreviate.)

(See page 148, 157, 241, 418.)

:abbreviate :abbreviate

List all abbreviations. (Same as: :ab.)

(See pages 149, 419.)

:abbreviate :abbreviate {lhs} {rhs}

Define an abbreviation. When {lhs} is entered, put {rhs} in the
text. (Same as :ab.) (See pages 148, 157, 241, 418.)

:abc :abc

:abclear :abclear

Remove all abbreviations.

(See page 418.)

:abo :abo {cmd}

:aboveleft :aboveleft {cmd}

Execute the Vim command {cmd}. If the command splits a window,
the window is opened above the current one or to its left (overriding

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 634

The Vim Tutorial and Reference

any any split options that are currently set.) (Same as :lefta,
:leftabove)

(See page 346.)

:al :[count] al

:all :[count] all

Open a window for all the files being edited. When a [count] is
specified, open up to [count] windows. (Note that the [count] can
be specified after the command, such as ":all [count].) (Same as
:sal, :sall.)

(See page 339.)

:am :[priority] am {menuitem} {commandstring}

:amenu :{priority amenu {menuitem} {commandstring}

Define a menu item that's that is valid for all modes .

(See page 468.)

The following characters are automatically inserted for some modes:
Mode Prefix Character

Inserted
Meaning

Normal (Nothing) ?N/A

Visual <Esc> Exit visual mode

Insert CTRLO Execute one normal command.

Command Line CTRLC Exit command-line mode

Operator pending mode <ESC> End operator-Pending

:an :{priority} an {menuitem} {commandstring}
:anoremenu :{priority} anoremenu {menuitem} {commandstring}

Perform a :amenu command in which the {commandstring} is not
remapped.

(See page 473.)

:append :[line] append

Insert text after the specified line. (Default = current). (Same as:
:a.)

(See page 432.)

:ar :ar

List the files being edited. The name of the current file is enclosed in
square brackets ([]). (Same as :args.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 635

The Vim Tutorial and Reference

(See page 78, 246, 316, 317.)

:arga :[count]arga {file}

:argadd :[count]argadd {file}

Add the {file} to the argument list. If [count] is given, the {file}
will be added after the [count] parameter. If no [count] is
specified, the {file} will be added after the current file.

(See page 318.)

:argd :argd {pattern}

:argdelete
:argadelete {pattern}

Delete all the files which match {pattern} from the argument list.

(See page 318.)

:argd :{range}argd

:argdelete: :{range}argadelete

Delete all the files specified {range} from the argument list.

(See page 318.)

:argdo :argdo[!] {cmd}

Execute the command {cmd} for each argument on the argument
list.

(See page 78.)

:arge :arge[!] [++opt] [+cmd] {filename}

:argedit :argedit[!] [++opt] [+cmd] {filename}

A combination of :argadd and :edit. Add a file to the argument list
(if it's not already there and then edit it.)

(See page 318.)

:argg :argg[!] [++opt] [+cmd] {filelist}

:argglobal :argglobal[!] [++opt] [+cmd] {filelist}

Define a new global argument list and use it for this window. If a
{filelist} is not specified, use the existing global argument list.

(See page 319.)

:arg :argl[!] [++opt] [+cmd] {filelist}

:arglocal :arglocal[!] [++opt] [+cmd] {filelist}

Define a new local argument list and use it for this window. If a
{filelist} is not specified, use the existing global argument list,
but make a local copy.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 636

The Vim Tutorial and Reference

(See page 319.)

:args :args

List the files being edited. The name of the current file is enclosed in
square brackets ([]). (Same as: :ar.)

(See pages 79, 317.)

:args :args {filelist}

Change the list of files to {filelist} and start editing the first one.
(Same as: :ar.)

(See page 78, 246, 316, 317.)

:argu :argu {number}

:arguement
:argument {number}

Edit the {number} file in the file list. _

(See page 316.)

:as :as

:ascii :ascii

Print the number of the character under the cursor. (Same as: ga.)

(See page 226.)

:au :au

List all the autocommands. (Same as: :autocmd.)

(See page 208.)

:au :au {group} {event} {pattern}

Lists the autocommands that match the given specification. If * is
used for the event, all events will match.

(See pages 156.)

:au :au {group} {events} {file_pattern} nested {command}

Define an autocommand to be executed when one of the {events}
happens on any files that match {pattern}. The group parameters
enables you to put this command in a named group for easier
management. The nested flag allows for nested events. (Same as
:autocmd.)

(See page 117, 203, 203, 208, 596.)

:au :au !

Delete all the autocommands. (Same as :autocmd!)

(See page 209.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 637

The Vim Tutorial and Reference

:au :au! {group} {event} {pattern} nested {command}

Remove any matching autocommands and replace them with a new
version.

(See page 209.)

:aug :aug {name}

:augroup :augroup {name}

Start an autocommand group. The group ends with a :augroup END
statement.

(See page 203.)

:aun :aun {menuitem}

:aunmenu :aunmenu {menuitem}

Remove the menu item named {menuitem} that was defined with an
:amenu command. The wildcard * will match all menu items. (Same
as: :aun.)

(See page 473.)

:autocmd :autocmd

List all the autocommands. (Same as: :au.)

(See page 208.)

:autocmd :autocmd {group} {event} {pattern}

Lists the autocommands that match the given specification. If * is
used for the event, all events will match. (Same as: :au.)

(See pages 156, 203, 203.)

:autocmd :autocmd {group} {events} {file_pattern} [nested] {command}

Define an autocommand to be executed when one of the {events}
happens on any files that match {pattern}.The group parameters
enables you to put this command in a named group for easier
management. The nested flag allows for nested events. (Same as
:au.)

(See pages 117, 147, 208, 596.)

:autocmd :autocmd !

Delete all the autocommands. (Same as :au!)

(See page 209.)

:autocmd :autocmd! {group} {event} {pattern}

Remove the specified autocommands. (Same as :au!)

(See page 209.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 638

The Vim Tutorial and Reference

:autocmd :autocmd! {group} {event} {pattern} [nested] {command}

Remove any matching autocommands and replace them with a new
version.

(See page 209.)

:b :[count] b[!]

Switch the current window to buffer number count. (If a count is not
specified, the current buffer is used.) If ! is specified, if the switch
abandons a file, any changes might be discarded.

(An alternative version of this command has count at the end--for
example, :buffer 5.) (Same as: :buffer.)

(See page 92.)

:b :b[!] {filename}

Switch the current window to the buffer containing {filename}. If
! is specified, if the switch abandons a file, any changes might be
discarded. (Same as: :buffer.)

(See page 92.)

:ba :[count] ba

Open a window for each buffer. If a count is specified, open at most
count windows. (Same as: :ball, :sba, :sball.)

(See page 343.)

:bad :bad [+line] {file}

:badd :badd [+line] {file}

Add the file to the buffer list. If a +line is specified, the cursor will
be positioned on that line when editing starts.

(See page 342.)

:ball :[count] ball

Open a window for each buffer. If a count is specified, open at most
count windows. (Same as: :ba, :sba, :sball.)

(See page 343.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 639

The Vim Tutorial and Reference

:bd :bd[!] {file}

:bdelete :bdelete[!] {file}

:[n] bd[!]

:[n] bdelete[!]

:[n,m] bd[!]

:[n,m] bdelete[!]

:bd[!] [n]

:bdelete[!] [n]

Delete the specified buffer, but leave it on the buffer list. (Reclaims
all the memory allocated to the buffer and closes all windows
associated with.) If the override option (!) is specified, any changes
made are discarded. If {file} is specified, the buffer for that file is
deleted. A buffer number [n] or a range of buffer numbers [n,m]
can be specified as well.

(See page 342.)

:be :be {mode}

:behave :behave {mode}

Sets the behavior of the mouse. The {mode} is either xterm for X
Windows System-style mouse usage or mswin for Microsoft
Windows-style usage.

(See page 169.)

:bel :bel {cmd}

:belowright :belowright {cmd}

Execute the Vim command {cmd}. If the command splits a window,
the window is opened below the current one or to its right
(overriding any any split options that are currently set.)

(See page 346.)

:bf :bf[!]

:bfirst :bfirst[!]

Go to the first buffer in the list. (Same as: :brewind, :br.)

(See page 93.)

:bl :bl[!]

:blast :blast[!]

Go to the last buffer in the list. (Same as: :bl.)

(See page 93.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 640

The Vim Tutorial and Reference

:bm :bm [count]

:bmodified :bmodified [count]

Go to count-modified buffer. (Same as: :bm.)

(See page 93.)

:bn :[count] bn[!]

Go to the next buffer. If ! is specified, if the switch abandons a file,
any changes might be discarded. If a [count] is specified, go to the
[count] next buffer. (Same as: :bnext.)

(See page 93.)

:bN :[count] bN[!]

Go to previous buffer. If a [count] is specified, go to the [count]
previous buffer. (Same as: :bNext, :bp, :bprevious.)

(See page 93.)

:bnext :[count] bnext[!]

Go to the next buffer. If ! is specified, if the switch abandons a file,
any changes might be discarded. If a [count] is specified, go to the
[count] next buffer.

(See page 93.)

:bNext :[count] bNext[!]

Go to previous buffer. If a [count] is specified, go to the [count]
previous buffer. (Same as: :bN, :bNext, :bp, :bprevious.)

(See page 93.)

:bo :bo {cmd}

:botright :botright {cmd}

Execute the Vim command {cmd}. If the command splits a window
horizontally, a new full width window is created at the bottom of the
screen. Commands that cause a vertical split create a full height
window at the right of the screen. This overrides any any split
options that are currently set.

(See page 346.)

:bp :[count] bp

:bprevious :[count] bprevious

Go to previous buffer. If a [count] is specified, go to the [count]
previous buffer. (Same as: :bN, :bNext, :bf, :bfirst.)

(See page 93.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 641

The Vim Tutorial and Reference

:br :br[!]

Go to the first buffer in the list. (Same as: :brewind, :bf,
:bfirst.)

(See page 93.)

:brea :brea

:break :break

Break out of a loop.

(See page 496.)

:breaka file :breaka file [line] {filename}

:breakadd file :breakadd file [line] {filename}

Set a breakpoint that will be triggered when the specified file is read
by a :source command. If [line] is specified, stop on that line,
otherwise stop on the first line.

(See page 505.)

:breaka func :breaka func [line} {functionname}

:breakadd func :breakadd func [line} {functionname}

Create a breakpoint in the specified {functionname}. If no [line]
is specified, the breakpoint will be set at the start of the function,
otherwise it is set at the specified line.

(See page 503, 504.)

:breaka here :breaka here

:breakadd here :breakadd here

Add a breakpoint at the current file and line.

(See page 505.)

:breakd :breaka {number}

:breakdel :breakadd {number}

Delete a breakpoint specified by number. The special number * (star)
deletes all breakpoints.

(See page 505.)

:breakd file :breakd file [line] {filename}

:breakdel file :breakdel file [line] {filename}

Delete a file type breakpoint.

(See page 505.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 642

The Vim Tutorial and Reference

:breakd func :breakd func [line} {functionname}

:breakdel func :breakdel func [line} {functionname}

Delete function breakpoint.

(See page 505.)

:breakd here :breakd here

:breakdel here :breakdel here

Delete a breakpoint at the current location.

(See page 505.)

:breakl :breakl

:breaklist :breaklist

List breakpoints.

(See page 504.)

:brewind :brewind[!]

Go to the first buffer in the list. (Same as: :br, :bf, :bfirst.)

(See page 93.)

:bro :bro {command}

Open a file browser window and then run {command} on the chosen
file. (Same as: :browse.)

(See page 475.)

:bro set :bro set

Enter an option browsing window that enables you to view and set all
the options. (Same as: :browse set, :opt, :options.)

(See page 479.)

:browse :browse {command}

Open a file browser window and then run {command} on the chosen
file. (Same as: :bro.)

(See page475.)

:browse set :browse set

Enter an option browsing window that enables you to view and set all
the options. (Same as: :bro set, :opt, :options.)

(See page 479.)

:buffer :[count] buffer[!]

Switch the current window to buffer number [count]. (If a [count]
is not specified, the current buffer is used.) If ! is specified, if the
switch abandons a file, any changes might be discarded. (An

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 643

The Vim Tutorial and Reference

alternative version of this command has [count] at the end--for
example, :buffer 5.) (Same as: :b.)

(See page 92.)

:buffer :buffer[!] {filename}

Switch the current window to the buffer containing {filename}. If !
is specified, if the switch abandons a file, any changes might be
discarded. (See page 92.)

:buffers

List all the specified buffers. (Same as: :files, :ls.)

(See pages 90.)

:bun :bun[!] {file}

:bun :[n]bun[!]

:bun :[n,m]bun[!]

:bun :bun[!] [n]-

:bunload :bunload[!] {file}

:bunload :[n]bunload[!]

:bunload :[n,m]bunload[!]

:bunload :bunload[!] [n]

Unload the specified buffer. If the override option is specified, if there
are any changes, discard them.

(See page 342.)

:bw :bw[!] {file}

:bw :[n]bw[!]

:bw :[n,m]bw[!]

:bw :bw[!] [n]-

:bwipeout :bwipeout[!] {file}

:bwipeout :[n]bwipeout[!]

:bwipeout :[n,m]bwipeout[!]

:bwipeout :bwipeout[!] [n]

Wipeout the the specified buffer. If the override option is specified, if
there are any changes, discard them. This is similar to unloading a
buffer, but everything about the buffer disappears.

(See page 343.)

:c :[range] c

Delete the specified lines, and then do a :insert. (Same as:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 644

The Vim Tutorial and Reference

:change, :t.)

(See page 431, 445.)

:ca :ca {lhs} {rhs}

:cabbrrev :cabbrrev {lhs} {rhs}

Define an abbreviation for command-mode only.

(See page 419.)

:cabc :cabc

:cabclear :cabclear

Remove all for command mode.

(See page 419.)

:cad :cad [buffernumber]

:caddbuffer :caddbuffer [buffernumber]

Adds the contents of the buffer to the quick fix list. If not buffer is
specified the current one is used.

(See page 404, 405.)

:cadde :cadde[!] {expression}

:caddexpr :caddexpr[!] {expression}

Add the results of {expression} to the quick fix buffer.

(See page 404, 405.)

:caddf :caddf[!] {file}

:caddfile :caddfile[!] {file}

Add the contents of {file} to the quick fix buffer.

(See page 403, 404, 405.)

:cal :[range] cal {name}({argument list})

:call :[range] call {name}({argument list})

Call a function.

(See page 500.)

:cat :cat /{pattern}/

:catch :catch /{pattern}/

Catch an exception. If no /{pattern}/ is specified, all exceptions
will be caught.

(See page 497.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 645

The Vim Tutorial and Reference

:cb :cb [buffernumber]

:cbuffer :cbuffer [buffernumber]

Replace the contents of the quick fix list with the current buffer. If
not buffer is specified the current one is used.

(See page 404, 405.)

:cc :cc[!] [number]

Display error number. If the [number] is omitted, display the
current error. Position the cursor on the line that caused it.

(See page 404.)

:ccl :ccl

:cclose :cclose

Close the quick fix window.

(See page 406.)

:cd :cd [path]

Change the directory to the specified path. If path is , change the
previous path. If no path is specified, on UNIX go to the home
directory. On Microsoft Windows, print the current directory. (Same
:chd, :chdir.)

(See page 441.)

:ce :[range] ce [width]

:center :[range] center [width]

Center the specified lines. If the width of a line is not specified, use
the value of the 'textwidth'. (If 'textwidth' is 0, 80 is used.)

(See page 177.)

:cex :cex[!] {expr}

:cexpr :cexpr[!] {expr}

Create a quick fix list from {expr}.

(See page 404, 405.)

:cf :cf[!] [errorfile]

:cfile :cfile[!] [errorfile]

Read an error list from file. (Default = the file specified by the
'errorfile' option.) Go to the first error. If the override option is
specified and a file switch is made, any unsaved changes might be
lost.

(See page 403, 403, 405.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 646

The Vim Tutorial and Reference

:cfir :cfir[!] [number]

:cfirst :cfirst[!] [number]

Go the first error in the list. If a number is specified, display that
error. (Same as :cr, :crewind.)

(See page 142, 145, 405.)

:cg :cg[!] [errorfile]

Create a quick fix list from the contents of [errorfile] but do not
jump to the first error. (Sames as :cgetfile)

(See page 404, 405.)

:cgetb :cgetb [buffernumber]

:cgetbuffer :cgetbuffer [buffernumber]

Create a quick fix list from [buffernumber] but do not jump to the
first error. If no [buffernumber] is specified, the current one is
used.

(See page 404, 405.)

:cgete :cgetx {expr}

:cgetexpr :cgetexpr {expr}

Create a quick fix list from {expr} but do not jump to the first error.

(See page 404, 405, 405.)

:cgetfile :cgetfile[!] [errorfile]

Create a quick fix list from the contents of [errorfile] but do not
jump to the first error. (Sames as :cgetfile)

(See page 404.)

:change :[range] change

Delete the specified lines, and then do an :insert. (Same as: :c.)

(See page 445.)

:changes :changes

Print the change list.

(See page 267.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 647

The Vim Tutorial and Reference

:chd :chd [path]

:chdir :chdir [path]

Change the directory to the specified path. If path is , change the
previous path. If no path specified, on UNIX go to the home
directory. On Microsoft Windows, print the current directory. (Same
as :cd)

(See page 441.)

:che :che[!]

:checkpath :checkpath[!]

Check all the #include directives and make sure that all the files
listed can be found. If the override option (!) is present, list all the
files. If this option is not present, only the missing files are listed.

(See page 400, 402.)

:cl :cl[!] [from], [to]

List out the specified error messages. If the override option is
present, list out all the errors. (Same as: :clist.)

(See page 145, 406.)

:cla :cla [number]

:clast :clast [number]

Go the last error in the list. If a number is specified, display that
error.

(See page 142, 145, 405.)

:clist :clist[!] [from], [to]

List out the specified error messages. If the override option is
present, list out all the errors. (Same as: :cl.)

(See page 145, 406.)

:clo :clo[!]

:close :close[!]

Close a window. If this is the last window, exit Vim. The command
fails if this is the last window for a modified file, unless the force (!)
option is present. (Same as: CTRLWc.)

(See page 84.)

:cm :cm

Listing all the mappings for command-line mode maps. (Same as:
:cmap.)

(See page 421, 423, 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 648

The Vim Tutorial and Reference

:cm :cm {lhs}

List the command-line mapping of {lhs}. (Same as: :cmap.)

(See page 421, 425.)

:cm :cm {lhs} {rhs}

Define a keyboard mapping for command-line mode. (Same as:
:cmap.)

(See page 421, 425.)

:cmap :cmap

Listing all the command-line mode mappings. (Same as: :cm.)

(See page 421, 423, 425.)

:cmap :cmap {lhs}

List the command-line mode mapping of {lsh}. (Same as: :cm.)

(See page 421, 425.)

:cmap :cmap {lhs} {rhs}

Define a keyboard mapping for command-line mode. (Same as: :cm.)

(See page 421, 425:d(25-1).)

:cmapc :cmapc-

:cmapclear :cmapclear

Clear all the command-mode mappings.

(See page 425.)

:cme :[priority] cme {menuitem} {commandstring}

:cmenu :[priority] cmenu {menuitem} {commandstring}

Define a menu item that is available for command-line mode only.
The priority determines its placement in a menu. Higher numbers
come first. The name of the menu item is {menuitem}, and when
the command is selected, the command {commandstring} is
executed.

(See page 467.)

:cn :[count] cn[!]

Go to the [count] next error. (Same as: :cnext.)

(See pages 246, 405.)

:cN :[count] cN[!]

Go the previous error in the error list. (Same as: :cNext, :cp,
:cprevious.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 649

The Vim Tutorial and Reference

(See page 246, 405.)

:cnew :cnew [count]

:cnewer :cnewer [count]

Go to the [count] newer error list.

(See page 403, 406.)

:cnext :[count] cnext[!]

Go to the [count] next error. (Same as: :cn.)

(See pages 246, 405.)

:cNext :[count] cNext[!]

Go the previous error in the error list. (Same as: :cN, :cp,
:cprevious.)

(See page 246, 405.)

:cnf :[count] cnf[!]

Go the first error in the next file. If the override option (!) is present,
if there are any unsaved changes, they will be lost.

(See page 405.)

:cNf :[count] cNf[!]

Go the first last in the previous file. If the override option (!) is
present, if there are any unsaved changes, they will be lost.

(See page 405.)

:cnfile :[count] cnfile[!]

Go the first error in the next file. If the override option (!) is present,
if there are any unsaved changes, they will be lost.

(See page 405.)

:cNfile :[count] cNfile[!]

Go the last error in the previous file. If the override option (!) is
present, if there are any unsaved changes, they will be lost.

(See page 405.)

:cno :cno {lhs} {rhs}

Same as :cmap, but does not allow remapping of the {rhs}. (Same
as: :cnoremap.)

(See page 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 650

The Vim Tutorial and Reference

:cnorea :cnorea {lhs} {rhs}

:cnoreabbr :cnoreabbr {lhs} {rhs}

Do a :noreabbrev that works in command-mode only.

(See page 419, 425.)

:cnoremap :cnoremap {lhs} {rhs}

Same as :cmap, but does not allow remapping of the {rhs}. (Same
as: :cno.

(See page 425.)

:cnoreme :[priority] cnoreme {menuitem} {commandstring}

:cnoremenu :[priority] cnoremenu {menuitem} {commandstring}

Like :cmenu, except the {commandstring} is not remapped.

(See page 473.)

:co :[range] co {address}

Copy the range of lines below {address}. (Same as: :copy, :t.)

(See page 431.)

:col :col [count]

:colder :colder [count]

Go to the [count] older error list.

(See page 403, 406.)

:colo :colo {name}

:colorscheme :colorscheme {name}

Load the color scheme {name}.

:com :com

List the user-defined commands. (Same as: :command.)

(See page 509.)

:com :com {definition}

Define a user-defined command. (Same as: :command.)

(See pages 508.)

:comc :comc

:comclear :comclear

Clear all user-defined commands.

(See page 509.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 651

The Vim Tutorial and Reference

:command :command

List the user-defined commands. (Same as: :com.)

(See page 509.)

:command :command {definition}

Define a user-defined command. (Same as: :com.)

(See page 508.)

:con :con {command}

Start a loop over. (Same as: :continue.)

(See page 496.)

:conf :conf {command}

:confirm :confirm {command}

Execute the {command}. If this command would result in the loss of
data, display a dialog box to confirm the command.

(See page 478.)

:continue :continue

Start a loop over. (Same as: :con.)

(See page 496.)

:cope :cope [height]

:copen :copen [height]

Open a window for the quick fix list. If [height] is specified, use it
as the window height.

(See page 146, 406.)

:copy :[range] copy {address}

Copy the range of lines below {address}. (Same as: :co, :t.)

(See page 431.)

:cp :[count] cp[!]

Go to the [count] previous error. (Same as: :cpevious, :cN,
:cNext.)

(See pages 246, 405.)

:cpf :[count]cpf[!]

:cpfile :[count]cpfile[!]

Go to the last error in the previous file. If a [count] is specified, go
back that many files.

(See page 405.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 652

The Vim Tutorial and Reference

:cprevious :
[count] cprevious[!]

Go to the [count] previous error. (Same as: :cp, :cN, :cNext.)

(See pages 246 405.)

:cq :cq

:cquit :cquit

Exit Vim with an error code. (This is useful in integrating Vim into an
IDE.)

(See page 144.)

:cr :cr[!] [number]

:crewind :crewind[!] [number]

Go the first error in the list. If a number is specified, display that
error. (Same as :cfir, :cfirst.)

(See page 142, 145, 405.)

:cs :cs {arguments}

:cscope :cscope {argument}

Handle various activities associated with the CScope program.

(See page 247.)

:cst :cst {procedure}

:cstag :cstag {procedure}

Go to the tag in the CScope database named {procedure}.

(See page 247.)

:cu :cu {lhs}

Remove a command-mode mapping. (Same as: :cunmap.)

(See page 425.)

:cuna :cuna {lhs}

:cunabbreviate :cunabbreviate {lhs}

Remove the command-line mode abbreviation.

(See page 419, 425.)

:cunmap :cunmap {lhs}

Remove a command-mode mapping. (Same as: :cu.)

(See page 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 653

The Vim Tutorial and Reference

:cunm :cunm

:cunmenu :cunmenu {menuitem}

Remove the command-mode menu item named {menuitem}.The
wildcard * will match all menu items.

(See page 473.)

:cw :cw [height]

:cwindow :cwindow [height]

If there are errors, open a quick fix window of the specified height. If
there are no errors, close the quick fix window.

(See page 406.)

:d :[range] d {register} [count]

Delete text. (Same as: :delete.)

(See page 427.)

:deb :deb {command}

:debug :debug {command}

Execute {command} in debug mode.

(See page 503.)

:debugg :[0]debugg

:debuggreedy :[0]debuggreedy

The :debugg command tells Vim to read debug commands from the
standard command stream instead of forcing all debug input to come
from the user. This is useful for starting a debug session with a
script. The :0debugg command cancels this feature and all future
debug input must come from the user.

(See page 506.)

:delc :delc {command}

:delcommand :delcommand {command}

Delete a user-defined command.

(See page 509.)

:delete :[range] delete {register} [count]

Delete text. (Same as: :d.)

(See page 427.)

:delf :delf {name}

:delfunction :delfunction {name}

Delete the function named {name}.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 654

The Vim Tutorial and Reference

(See page 502.)

:delm :delm {marks}

Delete the specified {marks}. (Same as :delmarks.)

(See page 311.)

:delm :delm!

Delete all marks. (Same as :delmarks.)

(See page 311.)

:delmarks :delmarks {marks}

Delete the specified {marks}. (Same as :delm.)

(See page 311.)

:delmarks :delmarks!

Delete all marks. (Same as :delm.)

(See page 311.)

:di :di {list}

Display the registers. (Same as: :display, :reg, :registers.)

(See page 312.)

:dif :dif

When in diff mode, update the list of differences between the files.
(Same as :diffupdate.)

(See page 384.)

:diffg :[range]diffg [bufferspec]

:diffget :[range]diffget [bufferspec]

Get a different from the other buffer. In other words, take the
change from the other buffer and put it in the current file.

(See page 384.)

:diffo :diffo[!]

:diffoff :diffoff[!]

Turn off diff mode for the current window. If the override (!) is
specified, turn off diff mode for all windows in the current tab.

(See page 384.)

:diffp :diffp {patchfile}

:diffpatch
:diffpatch {patchfile}

Apply the diffs in the {patchfile} to the current buffer.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 655

The Vim Tutorial and Reference

(See page 384.)

:diffpu :[range]diffpu [bufferspec]

:diffput :[range]diffput [bufferspec]

Put a different from the current buffer to the other one.

(See page 384.)

:diffs :diffs {filename}

:diffsplit :
diffsplit {filename}

Open a new window for the file {filename}. Both windows will be
part of a difference set.

(See page 383.)

:difft :difft

:diffthis :diffthis

Make this window part of the set of files being diffed.

(See page 384.)

:diffupdate :diffupdate

When in diff mode, update the list of differences between the files.
(Same as :dif.)

(See page 384.)

:dig :dig

List all the digraph definitions. (Same as: :digraphs.)

(See page 57.)

:dig :dig {character1}{character2} {number}

Define a digraph. When is pressed, inset character whose number
CTRLK{character1}{character2} is {number}.

(See page 282.)

:digraphs :digraphs

List all the digraph definitions. (Same as: :dig.)

(See page 57.)

:digraphs :digraphs {character1}{character2} {number}

Define a digraph. When CTRLK{character1}{character2} is
pressed, insert character whose number is {number}.

(See page 282.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 656

The Vim Tutorial and Reference

:display :display [arg]

Display the contents of the registers. (Same as :registers, :di.)

(See page 312.)

:dj :[range] dj [count] /{pattern}/

:djump :[range] djump [count] /{pattern}/

Search the range (default = whole file) for the definition of the macro
named {pattern} and jump to it. If a [count] is specified, jump to
the [count] definition. If the pattern is enclosed in slashes (/), it is a
regular expression; otherwise, it is the full name of the macro.

(See page 439.)

:dl :[range] dl /{pattern}/

:dlist :[range] dlist /{pattern}/

List the all the definitions of the macro named {pattern} in the
range. (Default = the whole file.) If the pattern is enclosed in
slashes (/), it is a regular expression; otherwise, it is the full name of
the macro.

(See page 440.)

:do :do {group} {event} [file_name]

Execute a set of autocommands pretending that {event} has just
happened. If a group is specified, execute only the commands for
that group. If a filename is given, pretend that the filename is
file_name rather than the current file during the execution of this
command. (Same as: :doautocmd.)

(See page 204, 204, 206.)

:doautoa :doautoa {group} {event} [file_name]

:doautoall
:doautoall {group} {event} [file_name]

Like :doautocmd, but repeated for every buffer.

(See page 204.)

:doautocmd :
doautocmd {group} {event} [file_name]

Execute a set of autocommands, pretending that {event} has just
happened. If a group is specified, execute only the commands for
that group. If a [file_name] is given, pretend that the filename is
file_name rather than the current file during the execution of this
command. (Same as: :do.)

(See page 204, 204, 206.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 657

The Vim Tutorial and Reference

:dr :dr {file} [file] ...

:drop :drop {file} [file] ...

Edit the first file in the list. If the file is already in a window, then
switch to that window. If not attempt to open the file in the current
window. If switching files would cause changes in the current
window to be lost, split the current window and then edit the file.

(See page 319.)

:ds :[range] ds /{pattern}/

:dsearch :[range] dsearch /{pattern}/

List the first definition of the macro named {pattern} in the range.
(Default = the whole file.) If the pattern is enclosed in slashes (/), it
is a regular expression; otherwise, it is the full name of the macro.

(See page 440.)

:dsp :[range] dsp [count] /{pattern}/

:dsplit :[range] dsplit [count] /{pattern}/

Do a :split and a :djump.

(See page 440.)

:e :e [+cmd] [file]

Close the current file and start editing the named file. If no file is
specified, re-edit the current file. If [+cmd] is specified, execute it as
the first editing command. (Same as: :edit.)

(See page 77.)

:ea :ea {time}

:earlier :earlier {time}

Go to an earlier text state. If {time} is specified as a count, then
count changes are undone. Time also can be specified as {n}s, then
the state will go back that many seconds. Time can also be specified
as {n}m for minutes, and {n}h for hours.

(See page 284.)

:ec :ec {arguments}

:echo :echo {arguments}

Print the arguments.

(See pages 487, 504.)

:echoe :echoe {arguments}

:echoerr :echoerr {arguments}

Print the arguments as an error message and save it in the message

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 658

The Vim Tutorial and Reference

history.

(See page 494, 498.)

:echoh :echoh {name}

:echohl :echohl {name}

Change the color of future echoes to be in the color of highlight
group {name}.

(See page 494.)

:echom :echom {arguments}

:echomsg :echomsg {arguments}

Print the arguments as a message and save it in the message history.

(See page 495.)

:echon :echon {arguments}

Echo the arguments without a newline.

(See page 494.)

:edit :edit [+cmd] [file]

Close the current file and start editing the named file. If no file is
specified, re-edit the current file. If +cmd is specified, execute it as
the first editing command. (Same as: :e.)

(See page 77.)

:el :el

:else :else

Reverse the condition of an :if.

(See page 495.)

:elsei :elsei

:elseif :elseif

A combination of :else and :if.

(See page 495.)

:em :em {menuitem}

:emenu :emenu {menuitem}

Execute the given {menuitem} as if the user had selected it.

(See page 473.)

:en :en

End an :if statement. (Same as: :endif.)

(See page 495.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 659

The Vim Tutorial and Reference

:endf :endf

End a function. (Same as :endfunction.)

(See page 499.)

:endfo :endfo

:endfor :endfor

End a :for loop.

(See page 496.)

:endfunction :endfunction

End a function. (Same as :endf.)

(See page 499.)

:endif :endif

End an :if statement. (Same as: :en.)

(See page 495.)

:endt :endt

:endtry :endtry

End a :try block.

(See page 498.)

:endw :endw

:endwhile :endwhile

End a :while loop.

(See page 496.)

:ene :ene[!]

:enew :enew[!]

Start editing a new buffer.

(See page 77.)

:ex :ex[!] [+command] [filename]

Enter ex mode. If a filename is specified, edit that file; otherwise,
use the current file. The +command argument is a single command
that will be executed before any editing begins. If the override
option (!) is specified, switching files will discard any changes that
have been made.

(See page Error: Reference source not found.)

:ex :[range] ex[!] [file]

If the buffer has been modified, write the file and exit. If a range is

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 660

The Vim Tutorial and Reference

specified, write only the specified lines. If a file is specified, write
the data to that file. When the override option (!) is present, attempt
to overwrite existing files or read-only files.

(See page Error: Reference source not found.)

:exe :exe {string}

:execute :execute {string}

Execute a string as a command.

(See page 497.)

:exi :[range] exi[!] [file]

:exit :[range] exit[!] [file]

If the buffer has been modified, write the file and exit. If a range is
specified, write only the specified lines. If a file is specified, write
the data to that file. When the override option (!) is present, attempt
to overwrite existing files or read-only files. (Same as :xit, :x.)

(See page 450.)

:exu :exu

:exusage :exusage

Provides help on the ex mode commands. Included for compatibility
with Nvi. The :help command is much better for getting information
than this one.

(See page 228.)

:f :f[!] [file]

:file :file[!] [file]

Print the current filename. The override (!) option causes the short
version of the message to be printed.

If a file is specified, set the name of the current file to file. (Same as:
CTRLG.)

(See pages 204, 442.)

:files

List all the specified buffers. (Same as: :buffers, :ls.)

(See page 90.)

:filet :filet {on|off}

:filetype :filetype {on|off}

Tell Vim to turn on or off the file type detection logic.

(See page 117.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 661

The Vim Tutorial and Reference

:fin :fin[!] {+command} {file}

Edit a file like the :vi command, but searches for the file in the
directories specified by the path option. (Same as :find.)

(See page 398.)

:fina :fina

:finally :finally

This command starts the part of a try/catch block which is executed
after all other code.

(See page 498.)

:find :find[!] {+command} {file}

Edit a file like the :vi command, but searches for the file in the
directories specified by the path option. (Same as :fin.)

(See page 398.)

:fini :fini

:finish :finish

Stop sourcing a script.

(See page 498.)

:fir :fir

:first :first

Edit the first file in the list. (Same as :rew, :rewind.)

(See pages 80, 245, 317.)

:fix :fix

:fixdel :fixdel

Make the <Delete> key do the right thing on UNIX systems.

(See page 151.)

:fo :{range}fo

:fold :{range}fold

Manually create a fold.

(See page 389.)

:foldc :{range}foldc[!]

:foldclose :{range}foldclose[!]

Close a fold. One level of folding is closed unless the override (!)
option is present, then all levels are closed.

(See page 389.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 662

The Vim Tutorial and Reference

:foldd :[range]foldd {cmd}

(Fold Do Open) Execute the {cmd} for each line in the [range] which
is not folded. Much like :global only for open folds. (Same as
:folddoopen.)

(See page 390.)

:folddoc :[range]folddoc {cmd}

:folddoclosed :[range]folddoclosed {cmd}

(Fold Do Closed) Execute the {cmd} for each line in the [range]
which is folded. Much like :global only for closed folds.

(See page 390.)

:folddoopen :[range]folddoopen {cmd}

(Fold Do Open) Execute the {cmd} for each line in the [range] which
is not folded. Much like :global only for open folds. (Same as
:foldd.)

(See page 390.)

:foldo :[range]foldo[!]

:foldopen :[range]foldopen[!]

Open one level of folding for all lines within the given [range]. If the
override option (!) is present, open all levels.

(See page 389.)

:for :for {var} in {list}

:for :for {var1}, {var2} ... in {list}

Start a loop. For scripting.

(See page 496.)

:fu :fu

List all functions. (Same as: :function.)

(See page 501.)

:fu :fu {name}

List the contents of function {name}. (Same as :function.)

(See page 501.)

:fu :fu {function definition}

Start a function definition.

(See page 499.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 663

The Vim Tutorial and Reference

:function :function

List all functions. (Same as: :fu.)

(See page 501.)

:function :function {name}

List the contents of function {name}.

(See page 501.)

:function :function {function definition}

Start a function definition.

(See page 499.)

:g : [range] g /{pattern}/ {command}

Perform {command} on all lines that have {pattern} in them in the
given range. (Same as: :global.)

(See page 438.)

:g! : [range] g! /{pattern}/ {command}

Perform {command} on all lines that do not have {pattern} in them in
the given range. (Same as :global!, :v, :vglobal.)

(See page 438.)

:global :[range] global /{pattern}/ {command}

Perform {command} on all lines that have {pattern} in them in the
given range. (Same as: :g.)

(See page 438.)

:global! :[range] global! /{pattern}/ {command}

Perform {command} on all lines that do not have {pattern} in them in
the given range. (Same as :g!, :v, :vglobal.)

(See page 438.)

:go :go [count]

:goto :goto [count]

Go to [count] byte of the file. If no [count] is specified, go to the
first byte of the file.

(See page 226.)

:gr :gr {arguments}

:grep :grep {arguments}

Run the grep program with the given {arguments} and capture the
output so that the :cc, :cnext, and other commands will work on it.
(Like :make, but with grep rather than make.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 664

The Vim Tutorial and Reference

(See pages 403, 411, 406.)

:grepa :grepa {arguments}

:grepadd :grepadd {arguments}

Like :grep, but add to the quick fix list instead of replacing it.

(See page 406.)

:gu :gu [+command] [f|b] [files...]

:gui :gui [+command] [f|b] [files...]

:gv :gv [+command] [f|b] [files...]

:gvim :gvim [+command] [f|b] [files...]

Start GUI mode. If a +command is specified, execute that after loading
the files. If the b flag is specified, execute the command in the
background (the default).The f flag tells Vim to run in the
foreground. If a list of files is specified, they will be edited;
otherwise, the current file is edited.

(See page 453.)

:h :h [topic]

Display help on the given topic. If no topic is specified, display
general help. (Same as: :help, <F1>, <Help>)

(See pages 37, 39, 41, 130, 131, 227.)

:ha :[range]ha[!] [arguements]

:hardcopy :[range]hardcopy[!] [arguments]

Send the lines in [range] to the printer. The [arguments], if
specified will be given to the print command. The override (!) option
will cause printing on Microsoft Windows to skip the printer selection
dialog and go directly to the default printer.

(See page 166.)

:ha :[range]ha[!] >{filename}

:hardcopy :[range]hardcopy[!] >{filename}

Send the lines in [range] to the a printable (PostScript) file. The
[arguments], if specified will be given to the print command. This
command does not work on Microsoft Windows, use the print to file
feature in the printer dialog instead.

(See page 451.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 665

The Vim Tutorial and Reference

:help :help [topic]

Display help on the given topic. If no topic is specified, display
general help. (Same as: :h, <F1>, <Help>)

(See pages 37, 39, 41, 110, 130, 131, 227.)

:help! :help!

:help 42 :help 42

:help holygrail :help holdgrail

These commands do something interesting. Not useful, but
interesting.

:helpf :helpf

:helpfind :helpfind

Open a dialog box that enables you to type in a help subject.

(See page 478.)

:helpg :helpg {pattern} [@lang]

:helpgrep :helpgrep {pattern} [@lang]

Search the help text for the given {pattern} and put the results in
the quick fix list. If @lang is included, limit results to that language.

(See page 228.)

:helpt :helpt {dir}

:helptags :helptags {dir}

Generate the help tags. Useful for those of you rewriting the help
file. But if you're rewriting the help files you probably don't need this
book.

(See page 228.)

:hi :hi

List all highlight groups. (Same as: :highlight.)

(See page 81, 494.)

:hi :hi {options}

Customize the syntax coloration.

(See page 412.)

:hi link :hi link {newgroup} {oldgroup}

Highlight the {newgroup} the same as {oldgroup}.

(See page 587.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 666

The Vim Tutorial and Reference

:hid :hid

:hide :hide

Hide the current buffer.

(See page 90, 94.)

:highlight
:highlight

List all highlight groups.

(See page 81, 494.)

:highlight
:highlight {options}

Customize the syntax coloration. (Same as: :hi.)

(See pages 412.)

:highlight link :highlight link {newgroup} {oldgroup}

Highlight the {newgroup} the same as {oldgroup} .

(See page 587.)

:his :his {code} [first] ,[last]

:history :history {code} [first] ,[last]

Print the last few commands or search strings (depending on the
code). The code parameter defaults to cmd for command-mode
command history. The first parameter defaults to the first entry in
the list and last defaults to the last.

(See page 447.)

:i :[line] i

Start inserting text before line. Insert ends with a line consisting of
just .. (Same as: :insert.)

(See page 432.)

:ia :ia {lhs} {rhs}

:iabbrev :iabbrev {lhs} {rhs}

Define an abbreviation for insert mode only.

(See page 419.)

:iabc :iabc

:iabclear :iabclear

Remove all for insert mode.

(See page 419.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 667

The Vim Tutorial and Reference

:if :if {expression}

Start a conditional statement.

(See page 495.)

:ij :[range] ij [count] /{pattern}/

:ijump :[range] ijump [count] /{pattern}/

Search the range (default = whole file) for the {pattern} and jump
to it. If a [count] is specified, jump to the [count] occurrence. If
the pattern is enclosed in slashes (/), it is a regular expression;
otherwise, it is just a string.

(See page 438.)

:il :[range] il /{pattern}/

:ilist :[range] ilist /{pattern}/

List all the occurrences {pattern} in the range. (Default = the
whole file.) If the pattern is enclosed in slashes (/), it is a regular
expression; otherwise, it is a string.

(See page 438.)

:im :im

List all the insert-mode mappings. (Same as: :imap.)

(See page 421, 423, 425.)

:im :im {lhs}

List the insert-mode mapping of {lhs}. (Same as: :imap.)

(See page 421, 425.)

:im :im {lhs} {rhs}

Define a keyboard mapping for insert mode. (Same as: :imap.)

(See page 421, 425.)

:imap :imap

List all the insert-mode mappings. (Same as: :im.)

(See page 421, 423, 425.)

:imap :imap {lhs}

List the insert-mode mapping of {lhs}. (Same as: :im.)

(See page 421, 425.)

:imap :imap {lhs} {rhs}

Define a keyboard mapping for insert mode. (Same as: :im.)

(See page 421, 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 668

The Vim Tutorial and Reference

:imapc :imapc

:imapclear :imapclear

Clear all the insert-mode mappings.

(See page 425.)

:ime :[priority] ime {menuitem} {commandstring}

:imenu :[priority] imenu {menuitem} {commandstring}

Define a menu item that is available for insert mode only. The
priority determines its placement in a menu. Higher numbers come
first. The name of the menu item is {menuitem}, and when the
command is selected, the command {commandstring} is executed.

(See page 468.)

:ino :ino {lhs} {rhs}

Same as :imap, but does not allow remapping of the {rhs}. (Same
as: :inoremap.)

(See page 425.)

:inorea :inorea {lhs} {rhs}

:inoreabbrev :inoreabbrev {lhs} {rhs}

Do a :noreabbrev that works in insert mode only.

(See page 419, 425.)

:inoremap :inoremap {lhs} {rhs}

Same as :imap, but does not allow remapping of the {rhs}. (Same
as: :ino.)

(See page 425.)

:inoreme :[priority] inoreme {menuitem} {commandstring}

:inoremenu :[priority] inoremenu {menuitem} {commandstring}

Like :imenu, except the {commandstring} is not remapped.

(See page 473.)

:insert :[line] insert

Start inserting text before line. Insert ends with a line consisting of
just .. (Same as: :i.)

(See page 432.)

:int :int

:intro :intro

Display the introductory screen.

(See page 230.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 669

The Vim Tutorial and Reference

:is :[range] is /{pattern}/

:isearch :[range] isearch /{pattern}/

List the first occurrence {pattern} in the range. (Default = the
whole file.) If the pattern is enclosed in slashes (/), it is a regular
expression; otherwise, it is a string.

(See page 439.)

:isp :[range] isp [count] /{pattern}/

:isplit :[range] isplit [count] /{pattern}/

Combination of :split and :ijump. Split the window and jump to
the first occurrence of the {pattern}. Things that look like
comments are ignored.

(See page 439.)

:iu :iu {lhs}

Remove an insert-mode mapping. (Same as: :iunmap.)

(See page 425.)

:iuna :iuna {lhs}

:iunabbreviate :iunabbreviate {lhs}

Remove the insert line-mode abbreviation.

(See page 419, 425.)

:iunmap :iunmap {lhs}

Remove an insert-mode mapping. (Same as :iu.)

(See page 425.)

:iunme :iunme {menuitem}

:iunmenu :iunmenu {menuitem}

Remove the insert-mode menu item named {menuitem}.The
wildcard * will match all menu items.

(See page 473.)

:j :[range] j[!]

:join :[range] join[!]

Join the lines in range into one line. Spaces are used to separate the
parts unless the ! is specified.

(See page 445.)

:ju :ju

:jumps :jumps

List out the jump list.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 670

The Vim Tutorial and Reference

(See page 266.)

:k :[line] k{letter}

Place mark {letter} on the indicated line. (Same as: :mar, :mark.)

(See page 446.)

:ke :ke {command}

Execute {command} and attempt to preserve the marks inside the text
affected by the command. Currently only filter ([range]!)
commands are supported. The number of lines after filtering must be
greater or equal to the number of lines before for this to work.
(Same as :keepmarks.)

(See page 311.)

:keepa :keepa {command}

:keepalt :keepalt {command}

Execute {command} but do not change the name of the alternate file.
(Even if the {command} would normally cause it to change.)

(See page 228.)

:keepj :keepj {command}

:keepjumps
:keepjump {command}

Execute a command which might normally move or destroy the jump
list or the marks '', '., or '^, but do not destroy the marks.

(See page 228.)

:keepmarks
:keepmarks {command}

Execute {command} and attempt to preserve the marks inside the text
affected by the command. Currently only filter ([range]!)
commands are supported. The number of lines after filtering must be
greater or equal to the number of lines before for this to work.
(Same as :ke.)

(See page 311.)

:l :[range] l [count]

Like :print, but assumes that the 'list' option is on.

(See page 433.)

:la :la [+command]

Edit the last file in the list. (Same as :last.)

(See page 80, 317.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 671

The Vim Tutorial and Reference

:lad :lad[!] {expr}

Add the results of {expr} to the location list. (Same as :laddexpr.)

(See page 405.)

:laddb :laddb {buffer}

:laddbuffer :laddbuffer {buffer}

Add the contests of {buffer} to the location list.

(See page 405.)

:laddexpr :laddexpr[!] {expr}

Add the results of {expr} to the location list. (Same as :lad.)

(See page 405.)

:laddf :laddf {file}

:laddfile :laddfile {file}

Add the contests of {file} to the location list.

(See page 405.)

:last :last [+command]

Edit the last file in the list. (Same as :la.)

(See page 80, 317.)

:lat :lat {time}

:later :later {time}

Go to an later text state. If {time} is specified as a count, then count
changes are redone. Time also can be specified as {n}s, then the
state will go forward that many seconds. Time can also be specified
as {n}m for minutes, and {n}h for hours.

(See page 284.)

:lb :lb[!] [buffernumber]

:lbuffer :lbuffer[!] [buffernumber]

Read the contents of the buffer into the location list and jump to the
first location.

(See page 405.)

:lc :lc[!] [path]

:lcd :lcd[!] [path]

:lch :lch[!] [path]

:lchdir :lchdir[!] [path]

Change the directory like :cd, but only for the current window.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 672

The Vim Tutorial and Reference

(See page 442.)

:lcl :lcl

:lclose :lclose

Close the window with the location list in it.

(See page 406.)

:lcs :lcs {arguments}

:lcscope :lcscope {argument}

Handle various activities associated with the CScope program
sending the results to the location list.

(See page 247.)

:le :[range] le [margin]

:left :[range] left [margin]

Left justify the text putting each line [margin] characters from the
left margin. (Default = 0.)

(See page 178.)

:lefta :lefta {cmd}

:leftabove
:leftabove {cmd}

Execute the Vim command {cmd}. If the command splits a window,
the window is opened above the current one or to its left (overriding
any any split options that are currently set.) (Same as :abo,
:aboveleft)

(See page 346.)

:let :let {variable} = {expression}

Assign a {variable} a value.

(See page 487.)

:lex :lex[!] {expr}

:lexpr :lexpr[!] {expr}

Evaluate {expr} and use it to create a location list.

(See page 405.)

:lf :lf[!] {file}

:lfile :lfile[!] {file}

Create a location list from the contents of {file}.

(See page 405.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 673

The Vim Tutorial and Reference

:lfir :lfir[!] [number]

:lfirst :lfirst[!] [number]

Go to the first location in the location list. If a number is specified go
to that error number. (Same as :lr, :lrewind.)

(See page 405.)

:lg :lg[!] {file}

Read the file into the location list but do not jump to the first
location. (Same as :lgetfile.)

(See page 405.)

:lgetb :lgetb {buffer}

:lgetbuffer :lgetbuffer {buffer}

Read the {buffer} into the location list, but do not jump to the first
location.

(See page 405.)

:lgete :lgete[!] {expr}

:lgetexpr :lgetexpr[!] {expr}

Evaluate the expression and turn it into a location list. Do not jump
to the first location.

(See page 405.)

:lgetfile :lgetfile[!] {file}

Read the file into the location list but do not jump to the first
location. (Same as :lg.)

(See page 405.)

:lgr :lgr[!] [arguemets]

:lgrep :lgrep[!] [arguemets]

Execute a grep command and use the results to create a location list.
(See :grep.)

(See page 406.)

:lgrepa :lgrepa[!] [arguemets]

:lgrepadd :lgrepadd[!] [arguemets]

Execute a grep command and add the results to the location list.
(See :grep.)

(See page 406.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 674

The Vim Tutorial and Reference

:lh :lh {pattern} [@lang]

:lhelpgrep
:lhelpgrep {pattern} [@lang]

Search the help text for the given {pattern} and put the results in
the location list. If @lang is included, limit results to that language.

(See page 228.)

:list :[range] list [count]

Like :print, but assumes that the 'list' option is on. (Same as:
:l.)

(See page 433.)

:ll :ll[!] [number]

Move to the current location in the location list. If a number is
specified, move to the indicated entry in the location list.

(See page 404.)

:lla :lla[!] [number]

:llast :llast[!] [number]

Move to the last location in the location list (or a [number] of entries
from the end if specified.)

(See page 405.)

:lli :lli[!] [from] [,to]

:llist :llist[!] [from] [,to]

List all the locations in the list that match the given range (the
default being all). If the override (!) option is given, output is limited
to those locations valid for the current window.

(See page 406.)

:lm :lm {lhs} {rhs}

Define a language dependent mapping that's will be used in
command mode, insert mode, and when entering a language
dependent argument. (Same as :lmap.)

(See page 425.)

:lmak :lmak[!] [arguements]

:lmake :lmake[!] [arguments]

Execute the make command and capture the results in the location
list. Position the editor on the first error.

(See page 406.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 675

The Vim Tutorial and Reference

:lmap :lmap {lhs} {rhs}

Define a language dependent mapping that's will be used in
command mode, insert mode, and when entering a language
dependent argument. (Same as :lm.)

(See page 425.)

:lmapc :lmapc

:lmapclear
:lmapclear

Clear all language dependent mappings.

(See page 425.)

:lN :[count]lN [!]

Go to the previous location in the location list. (Same as :lNext, :lp,
:lprevious.)

(See page 405.)

:ln :ln {lhs} {rhs}

Create a language dependent mapping which is used for command
mode, insert mode, and language input which does not remap {rhs}.
(Same as :lnoremap.)

(See page 425.)

:lne :[count]lne[!]

Go to the next location in the location list. (Same as :lnext.)

(See page 405.)

:lnew :lnew [count]

:lnewer :lnewer [count]

Go to a newer version of the location list.

(See page 406.)

:lNext :[count]lNext [!]

Go to the previous location in the location list. (Same as :lN :lp,
:lprevious.)

(See page 405.)

:lnext :[count]lnext[!]

Go to the next location in the location list. (Same as :lne.)

(See page 405.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 676

The Vim Tutorial and Reference

:lNf :[count]lNf[!]

:lNfile :[count]lNfile[!]

Go to the last location in the previous file. (Same as :lpf, :lpfile.)

(See page 405.)

:lnf :[count]lnf[!]

:lnfile :[count]lnfile[!]

Go to the first location in the next file in the location list.

(See page 405.)

:lnoremap :lnoremap {lhs} {rhs}

Create a language dependent mapping which is used for command
mode, insert mode, and language input which does not remap {rhs}.
(Same as :ln.)

(See page 425.)

:lo :lo [number]

Load a view which has been made with :mkview for the current file.
(Same as :loadview.)

(See page 350.)

:loadk :loadk {file}

:loadkeymap :loadkeymap {file}

Load a keymap file.

(See page 561.)

:loadview :loadview [number]

Load a view which has been made with :mkview for the current file.
(Same as :lo.)

(See page 350.)

:loc :loc {cmd}

:lockmarks
:lockmarks {cmd}

Execute {cmd} without changing the location of any marks.

(See page 311.)

:lockv :lockv[!] [depth] {name}

:lockvar :lockvar[!] [depth] {name}

Lock a variable so it can not be changed. The [depth] if specified is
a code which indicates how to lock dictionaries and list. A value of 1
locks the size of the dictionary or list, but lets you change values.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 677

The Vim Tutorial and Reference

The 2 code indicates that the top level values can not be changed. A
level of 3 indicates that the array, the values in the array, and their
values can not be changed. The override option (!) tell Vim that
nothing can be changed.

(See page 491.)

:lol :lol [count]

:lolder :lolder [count]

Use an older version of the location list.

(See page 406.)

:lop :lop [height]

:lopen :lopen [height]

Open a window containing the location list.

(See page 406.)

:lp :[count]lp [!]

Go to the previous location in the location list. (Same as :lN,
:lNext, :lprevious.)

(See page 405.)

:lpf :[count]lpf[!]

:lpfile :[count]lpfile[!]

Go to the last location in the previous file. (Same as :lNf, :lNfile.)

(See page 405.)

:lprevious
:[count]lprevious [!]

Go to the previous location in the location list. (Same as :lN,
:lNext.)

(See page 405.)

:lr :lr[!] [number]

:lrewind :lrewind[!] [number]

Go to the first location in the location list. If a number is specified go
to that error number. (Same as :lfir, :lfirst.)

(See page 405.)

:ls :ls

List all the buffers. (Same as: :buffers, :files.)

(See page 90.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 678

The Vim Tutorial and Reference

:lt :lt[!] {name}

:ltag :ltag[!] {name}

Jump to the first tag {name} and create a location list for this window
containing all matching tags.

(See page 406.)

:lu :lu {lhs}

:lunmap :lunmap {lhs}

Remove a language entry mode mapping from the system.

(See page 425.)

:lv :lv[!] /{pattern}/[g][j] {filelist]

:lvimgrep :lvimgrep[!] /{pattern}/[g][j] {filelist]

Perform a search using the Vim internal grep command and store the
results in a new location list for the current window.

(See page 406.)

:lvimgrepa
:lvimgrepa[!] /{pattern}/[g][j] {filelist]

:lvimgrepadd :lvimgrepadd[!] /{pattern}/[g][j] {filelist]

Perform a search using the Vim internal grep command and add the
results to the existing location list for the current window.

(See page 406.)

:lw :lw [height]

:lwindow :lwindow [height]

Open the location window if it contains data. If it is open and empty,
close it.

(See page 406.)

:m :[range] m {address}

Move the range of lines from their current location to below
{address}. (Same as: :move.)

(See pages 234, 431.)

:ma :[line] ma{letter}

Mark the current line with mark {letter}. (Same as: :k, :mark.)

(See page 446.)

:mak :mak {arguments}

:make :make {arguments}

Run the external make program, giving it the arguments indicated.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 679

The Vim Tutorial and Reference

Capture the output in a file so that error-finding commands such as
:cc and :cnext can be used.

(See pages 145, 403, 406.)

:map :map[!]

List all the mappings. Note: Only :map and :map! list the mappings
for all modes. The other mode-dependent versions of these
commands list the mapping for their modes only. Normally this
command lists the mappings for the normal, visual, select, and
operating pending modes. With the override (!) it lists the mappings
for the Insert, Command Line, and Language argument modes.

(See pages 150, 421, 423, 425.)

:map :map {lhs}

List the mapping of {lhs}.

(See page 421, 423, 425.)

:map! :map! {lhs}

List the mapping of {lhs} for insert and command mode..

(See page 421, 425.)

:map :map {lhs} {rhs}

Define a keyboard mapping. When the {lhs} is typed in normal
mode, pretend that {rhs} was typed.

(See page 149, 420, 421, 425, 539.)

:map! :map! {lhs} {rhs}

Define a keyboard mapping. When the {lhs} is typed in insert or
command mode, pretend that {rhs} was typed.

(See page 149, 420, 421, 425.)

:mapc :{mode} mapc[!]

:mapclear :{mode} mapclear[!]

Clear all the mappings. Normally this command clears the mappings
for the normal, visual, select, and operating pending modes. With the
override (!) it clears the mappings for the Insert, Command Line, and
Language argument modes.

(See page 423, 425.)

:mark :[line] mark {letter}

Mark the given line with mark {letter}. (Same as: :k.)

(See page 446.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 680

The Vim Tutorial and Reference

:marks :marks

List all the marks.

(See page 73, 74.)

:marks :marks {chars}

List the marks specified by the character list: {chars}.

(See page 73, 74.)

:mat :[number]mat {group} /{pattern}/

:match :[number]match {group} /{pattern}/

Display text that matches {pattern} using the given highlight
{group}. Multiple matches may be displayed at the same time by
using the numbers 1-3.

(See page 81.)

:me :[priority][mode] me {menuitem} {commandstring}

:menu :[priority][mode] menu {menuitem} {commandstring}

Define a menu item. The priority determines its placement in a
menu. Higher numbers come first. The mode parameter defines
which Vim mode the item works in. The name of the menu item is
{menuitem}, and when the command is selected, the command
{commandstring} is executed.

(See page 467.)

:menut :menut {english} {lang}

:menut :menut clear

:menutranslate :menutranslate {english} {lang}

:menutranslate :menutranslate clear

Create a menu translation from English to another language. If the
keyword clear is use, clear all translations.

(See page 474.)

:mes :mes

:messages :messages

View previous messages.

(See page 449, 495.)

:mk :mk[!] [file]

:mkexrc :mkexrc[!] [file]

Like :mkvimrc, except the [file] defaults to .exrc. This command
has been superseded by the :mkvimrc command. (Same as: :mk.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 681

The Vim Tutorial and Reference

(See page 155.)

:mks :mks[!] [file]

:mksession :mksession[!] [file]

Create a session file and save the current settings. If the override
option (!) is specified, overwrite any existing session file.

(See page 348, 488.)

:mksp :mksp[!] [ascii] {outname} [inname]

:mkspell :mkspell[!] [ascii] {outname} [inname]

Create a spelling word list file.

(See page 332.)

:mkv :mkv[!] {file}

Write out setting to {file} in a manner suitable for including in
a .vimrc file. In fact, if you do not specify {file}, it defaults
to .vimrc. If the file exists, it will be overwritten if the override
option (!) is used. (Same as :mkvimrc.)

(See page 152.)

:mkvie :mkvie[!] {file}

:mkview :mkview[!] {file}

Create a view file which stores the view information about the
current window. See :loadview.

(See page 350.)

:mkvimrc :mkvimrc[!] {file}

Write out setting to {file} in a manner suitable for including in
a .vimrc file. In fact, if you do not specify {file}, it defaults
to .vimrc. If the file exists, it will be overwritten if the override
option (!) is used. (Same as :mkv.)

(See page 152.)

:mod :mod {mode}

:mode :mode {mode}

Set the screen mode for an MS-DOS editing session.

(See page 486.)

:move :[range] move {address}

Move the range of lines from their current location to below
{address}. (Same as: :m.)

(See pages 234, 431.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 682

The Vim Tutorial and Reference

:mz :[range]mz {statement}

Execute the MzScheme statement {statement}. (Same as
:mzscheme.)

(See page 248.)

:mz :[range]mz << {marker}

Execute the MzScheme statements that follow up to {marker}.
(Same as :mzscheme.)

(See page 248.)

:mzf :[range]mzf {file}

:mzfile :[range]mzfile {file}

Execute the MzScheme statements in {file}.

(See page 248.)

:mzscheme :[range]mzscheme {statement}

Execute the MzScheme statement {statement}. (Same as :mz.)

(See page 248.)

:mzscheme :[range]mzscheme << {marker}

Execute the MzScheme statements that follow up to {marker}.
(Same as :mz.)

(See page 248.)

:n :[count] n {+cmd} {filelist}

When editing multiple files, go to the next one. If [count] is
specified, go to the [count] next file. (If no {filelist}, same as:
:next. If {filelist} same as: :args, :ar, :next.)

(See pages 78, 245, 246, 317, 319.)

:N :[count] N {+cmd} {filelist}

When editing multiple files, go to the previous one. If a [count] is
specified, go to the [count] previous file. (Same as: :Next,
:prev, :previous.)

(See page 80, 317.)

:nb :nb {key}

:nbkey :nbkey {key}

Used to send ean:q the given key for when Vim is working inside of
Netbeans.

(See page 249.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 683

The Vim Tutorial and Reference

:new :new[!] [+command] [filename]

Split the window like :split. The only difference is that if no
filename is specified, a new window is started on a blank file. (Same
as: CTRLW CTRLN, CTRLWn.)

(See page 88.)

:next :[count] next [+cmd] [filelist]

When editing multiple files, go to the next one. If count is specified,
go to the count next file. (If no {filelist}, same as: :n. If
{filelist} same as: :args, :ar, :n.)

(See pages 78, 245, 246, 317, 319.)

:Next :[count] Next [+cmd] [filelist]

When editing multiple files, go to the previous one. If [count] is
specified, go to the [count] previous file. (Same as: :N, :prev,
:previous.)

(See page 80, 317.)

:nm :nm

Listing all the mappings for normal-mode maps. (Same as: :nmap.)

(See page 421, 423, 425.)

:nm :nm {lhs}

List the normal mapping of {lhs}. (Same as :nmap.)

(See page 421, 425.)

:nm :nm {lhs} {rhs}

Define a keyboard mapping for normal mode. (Same as :nmap.)

(See page 421, 425.)

:nmap :nmap

Listing all the normal-mode mappings. (Same as: :nm.)

(See page 421, 423, 425.)

:nmap :nmap {lhs}

List the normal-mode mapping of {lhs}. (Same as :nm.)

(See page 421, 425.)

:nmap :nmap {lhs} {rhs}

Define a keyboard mapping for normal mode. (Same as :nm.)

(See page 421, 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 684

The Vim Tutorial and Reference

:nmapc :nmapc

:nmapclear
:nmapclear

Clear all the normal mappings.

(See page 425.)

:nme :[priority]nme {menuitem} {commandstring}

:nmenu :[priority]nmenu {menuitem} {commandstring}

Define a menu item that is available for normal mode only. The
priority determines its placement in a menu. Higher numbers come
first. The name of the menu item is {menuitem}, and when the
command is selected, the command {commandstring} is executed.

(See page 468.)

:nn :nn {lhs} {rhs}

:nnoremap :nnoremap {lhs} {rhs}

Same as :nmap, but does not allow remapping of the {rhs}.

(See page 425.)

:nnoreme :[priority] nnoreme {menuitem} {commandstring}

:nnoremenu :[priority] nnoremenu {menuitem} {commandstring}

Like :nmenu, but the {commandstring} is not remapped.

(See page 473.)

:no :no {lhs} {rhs}

Same as :map, but does not allow remapping of the {rhs}. (Same as:
:noremap.)

(See pages 419, 421, 425.)

:noh :noh

:nohlsearch :nohlsearch

Turn off the search highlighting. (It will be turned on by the next
search. To turn it off permanently, use the :set nohisearch
command.)

(See page 326.)

:norea :norea {lhs} {rhs}

:noreabbrev :noreabbrev {lhs} {rhs}

Define an abbreviation, but do not allow remapping of the right side.

(See page 424, 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 685

The Vim Tutorial and Reference

:noremap :noremap {lhs} {rhs}

Same as :map, but does not allow remapping of the {rhs}. (Same as:
:no.)

(See pages 419, 425.)

:noreme :[priority][mode] noreme[!] {menuitem} {commandstring}

:noremenu :[priority][mode] noremenu [!] {menuitem}
{commandstring}

Define a menu item like defined with :menu, but do not allow
remapping of the {commandstring}.

(See page 473.)

:norm :norm[!] {commands}

:normal :normal[!] {commands}

Execute the commands in normal mode. If the override option (!) is
present, mappings will not be used.

(See page 450.)

:nu :[range] nu

:number :[range] number

Print the lines with line numbers.

(See page 433.)

:nun :nun {lhs}

:nunmap :nunmap {lhs}

Remove a normal mapping.

(See page 425.)

:nunme :nunme {menuitem}

:nunmenu :nunmenu {menuitem}

Remove the normal menu item named {menuitem}. The wildcard *
will match all menu items. (Same as: :nunme.)

(See page 468.)

:o :o

The one command that Vi has that Vim does not. (In Vi, this
command puts the editor into "open" mode, a mode that no sane
persons ever use if they can avoid it.) (Same as: :open.)

(See page 231.)

:om :om

List all the mappings for operator-pending-mode maps. (Same as:

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 686

The Vim Tutorial and Reference

:omap.)

(See page 421, 423, 425.)

:om :om {lhs}

List the operator-pending mapping of {lhs}. (Same as :omap.)

(See page 421, 425.)

:om :om {lhs} {rhs}

Define a keyboard mapping for operator-pending mode. (Same as
:omap.)

(See page 421, 425.)

:omap :omap

List all the operator-pending-mode mappings. (Same as: :om.)

(See page 421, 423, 425.)

:omap :omap {lhs}

List the operator-pending-mode mapping of {lhs}. (Same as :om.)

(See page 421, 425.)

:omap :omap {lhs} {rhs}

Define a keyboard mapping for operator-pending mode. (Same as
:om.)

(See page 421, 425.)

:omapc :omapc

:omapclear
:omapclear

Clear all the operator-pending-mode mappings.

(See page 425.)

:ome :[priority] ome {menuitem} {commandstring}

:omenu :[priority] omenu {menuitem} {commandstring}

Define a menu item that is available for operator-pending mode only.
The priority determines its placement in a menu. Higher numbers
come first. The name of the menu item is {menuitem}, and when
the command is selected, the command {commandstring} is
executed.

(See page 468.)

:on :on[!]

:only :only[!]

Make the current window the only one. If ! is specified, modified files

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 687

The Vim Tutorial and Reference

whose windows are closed will have their contents discarded. (Same
as: :CTRLW CTRLO, CTRLWo.)

(See page 339.)

:ono :ono {lhs} {rhs}

:onoremap :onoremap {lhs} {rhs}

Same as :omap, but does not allow remapping of the {rhs}.

(See page 425.)

:onoreme :[priority] onoreme {menuitem} {commandstring}

:onoremenu
:[priority] onoremenu {menuitem} {commandstring}

Like :omenu, but the the {commandstring} is not remapped.

(See page 473.)

:open :open

The one command that Vi has that Vim does not. (In Vi, this
command puts the editor into "open" mode, a mode that no sane
persons ever use if they can avoid it.) (Same as: :o. See page 231.)

:opt :opt

:options :options

Enter an option-browsing window that enables you to view and set all
the options. (Same as: :bro set, :browse set.)

(See page 479.)

:ou :ou {lhs}

:ounmap :ounmap {lhs}

Remove an operator-pending-mode mapping.

(See page 422, 425.)

:ounme :ounme {menuitem}

:ounmenu :ounmenu {menuitem}

Remove the command-mode menu item named {menuitem}.The
wildcard * will match all menu items.

(See page 473.)

:p :[range] p

:p :[range] P

Print the specified lines. (Same as: :print, :Print.)

(See page 160, 160, 161.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 688

The Vim Tutorial and Reference

:pc :pc[!]

:pclose :pclose[!]

Close the preview window. Discard any changes if the force (!)
option is present. (Same as: CTRLW CTRLZ, CTRLWz.)

(See page 393.)

:pe :pe {command}

Execute a single Perl command. Requires Vim be compiled with Perl
support (not on by default). (Same as :perl.)

(See page 249.)

:pe :pe << pattern

Execute Perl commands until a line containing only pattern is seen..
Requires Vim be compiled with Perl support (not on by default).
(Same as :perl.)

(See page 249.)

:ped :ped[!] [++opt] [+cmd] {file}

:pedit :pedit[!] [++opt] [+cmd] {file}

Edit a file in the preview window.

(See page 393.)

:perl :perl {command}

Execute a single Perl command. Requires Vim be compiled with Perl
support (not on by default). (Same as :pe.)

(See page 249.)

:perl :perl << pattern

Execute Perl commands until a line containing only pattern is seen..
Requires Vim be compiled with Perl support (not on by default).
(Same as :pe.)

(See page 249.)

:perld :[range] perld {command}

:perldo :[range] perldo {command}

Execute a Perl command on a range of lines. The Perl variable $_ is
set to each line in range.

(See page 249.)

:po :[count]po[!]

:pop :[count]pop[!]

Go back [count] tags. If the current buffer has been modified, this

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 689

The Vim Tutorial and Reference

command will fail unless the force (!) option is present.

(See page 393.)

:pp :[count]pp[!]

:ppop :[count] ppop[!]

Do a :pop command in the preview window. If the force option (!) is
specified, discard any changes made on the file in the preview
window. If a [count] is specified, pop that many tags.

(See page 393.)

:pre :pre

:preserve :preserve

Write out entire file to the swap file. This means that you can
recover the edit session from just the swap file alone.

(See pages 224, 446.)

:prev :[count] prev {[+cmd]} {[file—list]}

:previous :[count] previous {[+cmd]} [{file—list]}

Edit the previous file in the file list. (Same as :N, :Next.)

(See page 80, 317.)

:print :[range]print

:Print :[range]Print

Print the specified lines. (Same as :p.)

(See pages 160, 160, 161.)

:pro :pro

Open a Find dialog box. (Same as :promptfind.)

(See page 477.)

:prof :prof continue

Continue profiling after a profiling pause. (Same as :profile.)

(See page 508.)

:prof :prof[!] file {pattern}

Profile all files which match {pattern}. If the override (!) operator
is used, profile the functions inside these files as well. (Same as
:profile.)

(See page 508.)

:prof :prof func {pattern}

Profile all functions that match {pattern}. (Same as :profile.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 690

The Vim Tutorial and Reference

(See page 506.)

:prof :prof pause

Stop profiling until a :profile continue command is executed.
(Same as :profile.)

(See page 508.)

:prof :prof start {file}

Start profiling. Write the results to {file} when done. (Same as
:profile.)

(See page 506.)

:profd :profd *

:profd :profd {number}

:profd :profd func {line} {functionname}

:profd :profd file {line} {filename}

:profd :profd here

:profdel :profdel *

:profdel :profdel {number}

:profdel :profdel func {line} {functionname}

:profdel :profdel file {line} {filename}

:profdel :profdel here

Stop profiling the indicated item. The item specification can be *
(star) which deletes all profiles, or a profile {number}. A specific line
in a function or file can be used. Finally the profiling of the current
location can be turned off by using the here keyword.

(See page 508.)

:profile :profile continue

Continue profiling after a profiling pause. (Same as :prof.)

(See page 508.)

:profile :profile[!] file {pattern}

Profile all files which match {pattern}. If the override (!) operator
is used, profile the functions inside these files as well. (Same as
:prof.)

(See page 508.)

:profile :profile func {pattern}

Profile all functions that match {pattern}. (Same as :prof.)

(See page 506.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 691

The Vim Tutorial and Reference

:profile :profile pause

Stop profiling until a :profile continue command is executed. (Same
as :prof.)

(See page 508.)

:profile :profile start {file}

Start profiling. Write the results to {file} when done. (Same as
:prof.)

(See page 506.)

:promptfind :promptfind

Open a Find dialog box. (Same as :pro.)

 (See page 477.)

:promptr :promptr

:promptrepl :promptrepl

Open a Replace dialog box.

(See page 477.)

:ps :[range]ps[!] [count] /{pattern}/

:psearch :[range]psearch[!] [count] /{pattern}/

Search for the given pattern and show the first match in the preview
window. If the override option (!) is present, things that look like
comments are searched. If the pattern is enclosed in slashes (/) then
it's a regular expression. Without the slashes (/) it's considered a set
of independent words.

:pt :pt[!] {identifier}

:ptag :ptag[!] {identifier}

Open a preview window and do a :tag. Discard any changes in the
preview window if the override (!) option is present.

(See page 392, 393.)

:ptf :[count] ptf[!]

:ptfirst :[count] ptfirst[!]

Do a :trewind in the preview window. Discard any changes in the
preview window if the override (!) option is present. (Same as :ptr,
:ptrewind.)

(See page 393.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 692

The Vim Tutorial and Reference

:ptj :ptj[!] {identifier}

:ptjump :ptjump[!] {identifier}

Open a preview window and do a :tjump. Discard any changes in the
preview window if the override (!) option is present.

(See page 393.)

:ptl :ptl[!]

:ptlast :ptlast[!]

Do a :tlast in the preview window. Discard any changes in the
preview window if the override (!) option is present.

(See page 393.)

:ptn :[count] ptn[!]

Open a preview window and do a :[count] tnext. Discard any
changes in the preview window if the override (!) option is present.
(Same as: :ptnext.)

(See page 393.)

:ptN :[count] ptN[!]

Open a preview window and do a :[count] tprevious. Discard any
changes in the preview window if the override (!) option is present.
(Same as: :ptNext, :ptp, :ptprevious.)

(See page 393.)

:ptnext :[count] ptnext[!]

Open a preview window and do a :[count] tnext[!]. Discard any
changes in the preview window if the override (!) option is present.
(Same as: :ptn.) (See page 393.)

:ptNext :[count] ptNext[!]

Same as :[count] ptnext!. (Same as: :ptNext, :ptprevious.)

(See page 393.)

:ptp :[count] ptp[!]

:ptprevious :[count] ptprevious[!]

Do a :tprevious in the preview window. Discard any changes in the
preview window if the override (!) option is present. (Same as: :ptN,
:ptNext.)

(See page 393.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 693

The Vim Tutorial and Reference

:ptr :[count] ptr[!]

:ptrewind :[count] ptrewind[!]

Do a :trewind in the preview window. Discard any changes in the
preview window if the override (!) option is present. (Same as :ptf,
:ptfirst.)

(See page 393.)

:pts :pts[!] {identifier}

:ptselect :ptselect[!] {identifier}

Open a preview window and do a :tselect. Discard any changes in
the preview window if the override (!) option is present.

(See page 393.)

:pu :[line] pu[! register

:put :[line] put[!] register

Put the text in the register after (before ! is specified) the specified
line. If a register is not specified, it defaults to the unnamed register.

(See page 445.)

:pw :pw

:pwd :pwd

Print current working directory.

(See page 441.)

:py :[range] py {statement}

Execute a single Python {statement}. (Same as: :python.)

(See page 250.)

:pyf :[range] pyf {file}

:pyfile :[range] pyfile {file}

Executes the Python program contained in {file}.

(See page 250.)

:python :[range] python {statement}

Execute a single Python {statement}. This works only if Python
support was compiled into Vim; it is does not work by default. (Same
as: :py.)

(See page 250.)

:q :q[!]

Close a window. If this is the last window, exit Vim. The command
fails if this is the last window for a modified file, unless the force (!)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 694

The Vim Tutorial and Reference

option is present. (Same as: CTRLW CTRLQ, CTRLWq, :quit.)

(See pages 35, 84, 165, 288, 338, 96.)

:qa :qa[!]

:qall :qall[!]

Close all windows. If the force option is present, any modifications
that have not been saved will be discarded. (Same is :quita,
:quitall.)

(See page 338.)

:quit :quit[!]

Close a window. If this is the last window, exit Vim. The command
fails if this is the last window for a modified file, unless the force (!)
option is present. (Same as: CTRLW CTRLQ, CTRLWq, :q.)

(See pages 35, 84, 165, 288, 338, 9696.)

:quita :quita[!]

:quitall :quitall[!]

Close all windows. If the force option is present, any modifications
that have not been saved will be discarded. (Same is :qa, :qall.)

(See page 338.)

:r :[line] r {file}

Read the specified file (default = current file) and insert it after the
given line (default = current line). (Same as :read.)

(See page 165, 444.)

:r :[line] r !{command}

Run the given command, capture the output, and insert it after the
given line (default = current line). (Same as :read.)

(See page 444.)

:read :[line] read {file}

Read the specified file (default = current file) and insert it after the
given line (default = current line). (Same as :r.)

(See page 444.)

:read :[line] read !{command}

Run the given command, capture the output, and insert it after the
given line. (Default = current line.) (Same as :r.)

(See page 444.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 695

The Vim Tutorial and Reference

:rec :rec[!] {file}

:recover :recover[!] {file}

Recover the editing session from the specified file. If no file is
specified, the current file is used. If changes have been made to the
file, this command will result in an error. If the force (!) option is
present, attempting to recover a file changed in the current session
will discard the changes and start recovery.

(See page 224.)

:red :red

Redo the last edit. (Same as: :redo.)

(See page 446.)

:redi :redi[!] {>|>>} {file}

:redir :redir[!] {>|>>} {file}

Copy messages to the file as they appear on the screen. If the
override option (!) is present, the command will overwrite an existing
file. The flag > tells the command to write the file; the >> indicates
append mode. To close the output file, use the command
:redir END.

(See page 449.)

:redo :redo

Redo the last edit. (Same as :red,)

(See page 446.)

:redr :redr[!]

:redraw :redraw[!]

Redraw the screen. If the override option (!) is present, clear, then
redraw the screen. This command is useful to show progress in
scripts and mappings.

(See page 506.)

:redraws :redraws[!]

:redrawstatus
:redrawstatus[!]

Redraw the status line of the current window. If the override option
(!) is present, clear, then redraw the status line of all windows. This
command is useful to show progress in scripts and mappings.

(See page 506.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 696

The Vim Tutorial and Reference

:reg :reg {list}

:registers :registers {list}

Show the registers in list. If no list is specified, list all registers.
(Same as :di, :display.)

(See page 312.)

:res :res [count]

Change the size of the current window to [count]. If no [count] is
specified, make the window as large as possible. (Similar to: CTRLW
CTRL_, CTRLW+, CTRLW, CTRLW_, :resize.)

(See page 89.)

:res :res +[count]

Increase the size of the current window by [count]. (Default = 1.)
(Similar to: CTRLW CTRL_, CTRLW+, CTRLW, CTRLW_, :resize.)

(See page 89.)

:res :res [count]

Decrease the size of the current window by [count]. (Default = 1.)
(Similar to: CTRLW CTRL_, CTRLW+, CTRLW, CTRLW_, :resize.)

(See page 89.)

:resize :resize [count]

Change the size of the current window to [count]. If no [count] is
specified, make the window as large as possible. (Similar to CTRLW
CTRL_, CTRLW+, CTRLW, CTRLW_, :res.)

(See page 89)

:resize :resize +[count]

Increase the size of the current window by [count]. (Default = 1.)
(Similar to: CTRLW+, :res +.)

(See page 89.)

:resize :resize [count]

Decrease the size of the current window by [count]. (Default = 1.)
(Similar to: CTRLW, :res .)

(See page 89.)

:ret :[range] ret [!] {tabstop}

:retab :[range] retab [!] {tabstop}

Replace tabs at the current tab stop with tabs with the tab stops set
at {tabstop}. If the 'expandtab' option is set, replace all tabs with

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 697

The Vim Tutorial and Reference

space. If the force option (!) is present, multiple spaces will be
changed into tabs where appropriate.

(See page 370.)

:retu :retu {expression}

:return :return {expression}

Return a value from a function.

(See page 499.)

:rew :rew {filelist}

:rewind :rewind {filelist}

Edit the first file in the list. (Same as :fir, :first.)

(See pages 80, 245, 317, 319.)

:ri :[range] ri {width}

:right :[range] right {width}

Right-justify the specified lines. If the width of a line is not specified,
use the value of the 'textwidth'. (If 'textwidth' is 0, 80 is used.)

(See page 178.)

:rightb :rightb {cmd}

:rightbelow :rightbelow {cmd}

Execute {cmd} and if it owns a new window, open the window to the
below or right of the current window overriding all other windowing
options. (Same as :bel, :belowright.)

(See page 346.)

:ru :ru[!] {filespec}

Read the command in the first file on the 'runtimepath' that
matches {filespec}. If the override options (!) is present, read all
the files. If this option is not present, only the first file is read. No
error message is issued if no file is found. (Same as :runtime.)

(See page 157.)

:rub :[range]rub {statement}

Execute the Ruby statement {statement}. (Same as :ruby.)

(See page 250.)

:rub :[range]rub << {marker}

Execute the Ruby statements that follow up to {marker}. (Same as
:ruby.)

(See page 250.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 698

The Vim Tutorial and Reference

:ruby :[range]ruby {statement}

Execute the Ruby statement {statement}. (Same as :rub.)

(See page 250.)

:ruby :[range]ruby << {marker}

Execute the Ruby statements that follow up to {marker}. (Same as
:rub.)

(See page 250.)

:rubyd :[range] rubyd {command}

:rubydo :[range] rubydo {command}

Execute a Ruby command on a range of lines. The Ruby variable $_
is set to each line in range.

(See page 250.)

:rubyf :[range]rubyzf {file}

:rubyfile :[range]rubyfile {file}

Execute the Ruby statements in {file}.

(See page 250.)

:runtime :runtime[!] {filespec}

Read the command in the first file on the 'runtimepath' that
matches {filespec}. If the override options (!) is present, read all
the files. If this option is not present, only the first file is read. No
error message is issued if no file is found. (Same as :ru.)

(See page 157.)

:rv :rv[!] {file}

:rviminfo :rviminfo[!] {file}

Read the .viminfo file specified. If the override option is present (!),
settings in the file override the current settings.

(See page 326.)

:s :[range] s /{from}/{to}/{flags}

Change the regular expression {from} to the string {to}. See
:substitute for a list of flags. (Same as: :substitute.)

(See pages 162, 164, 232, 234, 242, 243, 434, 559.)

See section Substitute flags on page 437 for a list of {flags}

:sa :[count] sa[!] {number}

Do a :[count]split followed by :argument[!] number. (Same as:
:sargument.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 699

The Vim Tutorial and Reference

(See page 341.)

:sal :[count] sal

:sall :[count] sall

Open a window for all the files being edited. When a count is
specified, open up to count windows. (Note that the count can be
specified after the command--for example, :all count.) (Same as:
:all.

(See page 339.)

:san :san {cmd}

:sandbox :sanbox {cmd}

Evaluate {cmd} in a sandbox. The sandbox prevents the command
from modifying a number of things like the text in the buffer and is
designed for the secure execution of the command.

(See page502.)

:sarguement :[count] sargument[!] {number}

Do a :[count]split followed by :argument[!] number. (Same as:
:sa.)

(See page 341.)

:sav :sav[!] {filename}

:saveas :saveas[!] {filename}

Save the file under a new name and change the name of the file to
this name.

(See page 165.)

:sb :sb [number]

Shorthand for :split and :buffer [number].

(See page 92, 93.)

:sba :[count] sba

:sball :[count] sball

Open a window for each buffer. If a [count] is specified, open at
most [count] windows. (Same as: :ba, :ball, :sba.)

(See page 343.)

:sbf :sbf[!]

:sbfirst :sbfirst[!]

Shorthand for :split and :bfirst. (Same as :sbr, :sbrweind.)

(See page 93.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 700

The Vim Tutorial and Reference

:sbl :sbl[!]

:sblast :sblast[!]

Shorthand for :split and :blast.

(See page 93.)

:sbm :sbm [count]

:sbmodified :sbmodified [count]

Shorthand for :split and :bmodified.

(See page 94.)

:sbn :[count] sbn

Shorthand for :split followed by :[count] bnext. (Same as:
:sbnext.)

(See page 93.)

:sbN :[count] sbN

Shorthand for :split and :[count] bprevious. (Same as: :sbNext,
:sbp, :sbprevious.)

(See page 93.)

:sbnext :[count] sbnext

Shorthand for :split followed by :[count] bnext. (Same as: :sbn.)

(See page 93.)

:sbNext :[count] sbNext

:sbp :[count] sbp

:sbprevous
:[count] sbprevious

Shorthand for :split and :[count] bprevious. (Same as: :sbN.)

(See page 93.)

:sbr :sbr[!]

:sbrewind :sbrewind[!]

Shorthand for :split and :brewind. (Same as :sbf, :sbfirst.)

(See page 93.)

:sbuffer :sbuffer {number}

Shorthand for :split and :buffer {number}. (Same as: :sb.)

(See page 92, 93.)

:scr :scr

List the name of all the sourced scripts in the order they were

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 701

The Vim Tutorial and Reference

sourced. (Same as :scriptnames.)

(See page 157.)

:scripte :scripte [encoding]

:scriptencoding :scriptencoding [encoding]

Specify the encoding that's used for a script.

(See page 158.)

:scriptnames :scriptnames

List the name of all the sourced scripts in the order they were
sourced. (Same as :scr.)

(See page 157.)

:scs :scs {arguments}

:scscope :scscope {argument}

Split the window and handle various activities associated with the
CScope program.

(See page 247.)

:se :se

List all options that are not set to the default. (Same as: :set.)

(See page 536.)

:se :se {option}

Set Boolean option. Depreciated. For all other types of options, show
the value of the option.

(See page 159, 533, 535.)

:se :se {option}:{value}

:se :se {option}={value}

Set an {option} to a {value}.

(See page 533, 535.)

:se :se {option}^={number}

:se :se {option}[!]

Multiple an option by the given value.

(See page 534.)

:se :se {option}&

Set the option to the default value.

(See page 533.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 702

The Vim Tutorial and Reference

:se :se {option}+={value}

Add a number to a numeric option. For a string option, append the
{value} to the string.

(See page 534, 534.)

:se :se {option}={number}

Subtract a number to a numeric option. For a string option, remove
the {value} from the string.

(See page 534, 534.)

:se :se {option}?

List the value of an option.

(See page 533, 535.)

:se :se {option}^={number}

Multiply a number to a numeric option. Prepend string to the
beginning of the option.

(See page 398, 534, 534.)

:se :se all

List all options.

(See page 536.)

:se :se all&

Set all options to their default values.

(See page 537.)

:se :se inv{option}

Invert a Boolean option.

(See page 533.)

:se :se no{option}

Clear a Boolean option.

(See page 533.)

:set :set

List all options not set to the default. (Same as: :se.)

(See page 536.)

:set :set {option}

Set Boolean option. Depreciated. For all other types of options,
show the value of the option. Depreciated: show all others.

(See page 159, 533, 535.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 703

The Vim Tutorial and Reference

:set :set {option}:{value}

:set :set {option}={value}

Set an option.

(See page 533, 534, 535.)

:set :set {option}[!]

Invert a Boolean option.

(See page 533.)

:set :set {option}&

Set the option to the default value.

(See page 533, 534.)

:set :set {option}+={value}

Add a number to a numeric option. Append a string to a string
option.

(See page 534, 535.)

:set :set {option}={value}

Subtract a number from a numeric option. Remove a string from a
string option.

(See page 534, 534, 534.)

:set :set {option}?

List the value of an option.

(See page 533, 535.)

:set :set {option}^={number}

Multiply a number to a numeric option. Prepend string to the
beginning of the option.

(See page 398, 534, 534.)

:set :set all

List all options.

(See page 536.)

:set :set all&

Set all options to their default values.

(See page 537.)

:set :set inv{option}

Invert a Boolean option.

(See page 533.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 704

The Vim Tutorial and Reference

:set :set no{option}

Clear a Boolean option.

(See page533.)

:setf :setf {filetype}

:setfiletype :setfiletype {filetype}

Set the 'filetype' option if it has not already been set by in this
series of autocommands.

(See page 117.)

:sf :[count] sf[!] [+command] {file}

:sfind :[count] sfind[!] [+command] {file}

A combination of :[count] split and :find.

(See page 398.)

:sfir :sfir[!]

:sfirst :sfirst[!]

:split followed by :rewind. If ! is specified, modified files whose
windows are closed will have their contents discarded. (Same as :sr,
:srewind.)

(See page 341.)

:sh :sh

:shell :shell

Suspend the editor and enter command mode (a.k.a. run a shell).

(See pages 165, 225, 486.)

:si :si {char}

Simulate the pressing of Alt{char}. (Same as :simalt.)

(See page 483.)

:sig :sig [arguments]

:sign :sign [arguments]

Handle the placement of “signs”, that is markers in the text. This is
designed for integration with other programs such as debuggers
which need to annotate the code.

(See page 228.)

:sil :sil[!] {cmd}

:silent :silent[!] {cmd}

Execute {cmd} silently. Normal messages will not be output. With
the override option (!), error message disappear as well.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 705

The Vim Tutorial and Reference

(See page 561.)

:simalt :simalt {char}

Simulate the pressing of Alt{char}. (Same as :si.)

(See page 483.)

:sl :sl {seconds}

:sl :sl {milliseconds}m

Sleep the specified number of seconds or milliseconds. (Same as: gs,
:sleep.)

(See page 227.)

:sla :sla[!]!

:slast :slast![!]

:split followed by :last. If ! is specified, modified files whose
windows are closed will have their contents discarded.

(See page 341.)

:sleep :sleep {seconds}

:sleep :sleep {milliseconds)m

Sleep the specified number of seconds or milliseconds. (Same as: gs,
:sl.)

(See page 227.)

:sm :[range] sm /{from}/{to}/[flags]

:smagic :[range] smagic /{from}/{to}/[flags]

Substitute the pattern {to} for the pattern {from} for the given
range assuming that the 'magic' option is set for the duration of the
command.

(See page 435.)

:smap :smap {lhs} {rhs}

Define a mapping that works only in select mode.

(See page 421.)

:smapc :smapc

:smapclear
:smapclear

Clear all select mode mappings.

(See page 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 706

The Vim Tutorial and Reference

:sme :[priority] sme {menuitem} {commandstring}

:smenu :[priority] smenu {menuitem} {commandstring}

Define a menu item for select mode only. The priority determines its
placement in a menu. Higher numbers come first. The name of the
menu item is {menuitem}, and when the command is selected, the
command {commandstring} is executed.

(See pages 468.)

:sn :[count] sn[!] [filelist]

:split followed by :[count] next. If ! is specified, discard any
changes to buffers that have been modified, but not written. If
file-list is specified, change the arguments to that list. (Same as:
:snext.)

(See page 341.)

:sN :[count] sN[!]

:split followed by :[count] previous. If ! is specified, discard any
changes to buffers that have been modified, but not written.
(Note:The [count] parameter can be specified after the
command--for example, :sN [count] .) (Same as: :sNext, :spr,
:sprevious.)

(See page 341.)

:snext :[count] snext[!] [filelist]

:split followed by :[count] next. If ! is specified, discard any
changes to buffers that have been modified, but not written. If
[filelist] is specified, change the arguments to that list. (Same
as: :sn.)

(See page 341.)

:sNext :[count] sNext[!]

:split followed by :[count] previous. If ! is specified, discard any
changes to buffers that have been modified, but not written.
(Note:The [count] parameter can be specified after the
command--for example, :sN [count] .) (Same as: :sN, :spr,
:sprevious.)

(See page 341.)

:sni :sni {command}

:sniff :sniff {command}

Perform a command using the interface to Sniff+. If no command is
present, list out information on the current connection. Sniff+

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 707

The Vim Tutorial and Reference

support has to be compiled in for this to work (not on by default).

(See page 250.)

:sno :[range] sno /{from}/{to}/[flags]

:snomgic :[range] snomagic /{from}/{to}/[flags]

Substitute the pattern {to} for the pattern {from} for the given
range assuming that the 'nomagic' option is set.

(See page 435.)

:snoreme :[priority] snoreme {menuitem} {commandstring}

:snoremenu :[priority] snoremenu {menuitem} {commandstring}

Define a menu item like defined with :smenu, but do not allow
remapping of the {commandstring}.

(See page 473.)

:so :so {file}

Read in a session file. (Actually read in a whole set of commands.)
(Same as :source.)

(See pages 152, 157 348, 350, 416, 531, 560, 593.)

:sor :[range] sor [flags] [/{pattern}/]

:sort :[range] sort [flags] [/{pattern}/]

Sort a [range] of lines (default = entire file).

Flags are:

! -- Sort in reverse

i – Ignore case

n – Sort on the first decimal number

o – Sort on the first octal number

r – Sort on the pattern

u – Output only unique lines

x – Sort on the first hexadecimal number

The {pattern} denotes a pattern to be sorted on (r flag present) or
text to be ignored (no r flag.)

(See page 237.)

:source :source {file}

Read in a session file. (Actually read in a whole set of commands.)
(Same as :so.)

(See pages 152, 157, 348, 350, 416, 531, 560, 593.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 708

The Vim Tutorial and Reference

:sp :[count] sp [+cmd] [filename]

Split the current window. If a [count] is specified, make the new
window [count] lines high. If a filename is present, put that file in
the new window. (Otherwise, use the current file.) (Same as:
:split, CTRLW CTRLS, CTRLWs, CTRLWS.)

(See pages 83, 86, 86, 134, 138, 148, 235, 236.)

:spe :[count] spe {word}

Add the {word} to the list of good words in the spelling list. The
optional [count] select which entry in the 'spellfile' list is used.

(Same as :spellgood.)

(See page 187.)

:spelld :spelld[!]

:spelldump :spelldump[!]

Open a new window and dump the list of spelling words into it. If the
override (!) option is used include the word count.

(See page 333.)

:spellgood
:[count] spellgood {word}

Add the {word} to the list of good words in the spelling list. The
optional [count] select which entry in the 'spellfile' list is used.

(Same as :spellg.)

(See page 187.)

:spelli :spelli

:spellinfo :spellinfo

Display current list of spell files.

(See page 187.)

:spellr :spellr

:spellrepall :spellrepall

Repeat the replace done with the last z= command for all matching
words.

(See page 185.)

:spellu :[count]spellu[!] {word}

:spellundo :[count]spellundo[!] {word}

Remove the {word} from the list of wrong wrong. If the override
option (!) is present the word in removed from the internal word list.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 709

The Vim Tutorial and Reference

If [count] is specified, then [count] file in 'spellfile' is used.

(See page 187.)

:spellw :[count]spellw[!] {word}

:spellwrong :[count]spellwrong[!] {word}

Add {word} to the list of incorrect words. The override operator (!)
causes it to be added to the internal word list. If a [count] is
specified, the word is added to the [count] file in 'spellfile'.

(See page 187.)

:split :[count] split [+cmd] [filename]

Split the current window. If a [count] is specified, make the new
window [count] lines high. If a filename is present, put that file in
the new window. (Otherwise, use the current file.) (Same as: :sp,
CTRLW CTRLS, CTRLWs, CTRLWS.)

(See pages 83, 86, 86, 134, 138, 235, 236.)

:spr :[count] spr[!]

:sprevious :[count] sprevious[!]

:split followed by :[count] previous. If ! is specified, discard
any changes to buffers that have been modified, but not written.
(Note:The [count] parameter can be specified after the
command--for example, :sN [count].) (Same as: :sN, :sNext.)

(See page 341.)

:sr :sr[!]

:srewind :srewind[!]

:split followed by :rewind. If ! is specified, modified files whose
windows are closed will have their contents discarded. (Same as
:sfir, :sfirst.)

(See page 341.)

:st :st[!]

Suspend the editor (UNIX terminal only). If the ! option is not
present and 'autowrite' is set, all changed files will be saved.
(Same as: :stop, :sus, :suspend and CTRLZ.)

(See page 227.)

:sta :[count] sta[!] {function}

:stag :[count] stag[!]! {function}

A combination of :split and :tag. If a [count] is specified it is the
height of the new window.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 710

The Vim Tutorial and Reference

(See page 134.)

:star :star[!]

Begin insert mode as if a normal i command had been entered. If
the ! is present, the insert starts at the end of line as if an A
command had been issued. (Same as :startinsert.)

(See page 445.)

:startg :startg[!]

:startgreplace :startgreplace[!]

Begin virtual replace mode as if a normal gR command had been
entered. If the ! is present, the insert starts at the end of line as if an
$gR command had been issued.

(See page 282.)

:startinsert :startinsert[!]

Begin insert mode as if a normal i command had been entered. If
the ! is present, the insert starts at the end of line as if an A
command had been issued. (Same as :star.)

(See page 445.)

:startr :startr[!]

:startreplace :startreplace[!]

Begin replace mode as if a normal R command had been entered. If
the ! is present, the insert starts at the end of line as if an $R
command had been issued.

(See page 433.)

:stj :stj[!]! {ident}

:stjump :stjump[!]! {ident}

Do a :split and a :tjump.

(See page 138.)

:stop :stop[!]

Suspend the editor (UNIX terminal only). If the ! option is not
present and 'autowrite' is set, all changed files will be saved.
(Same as: :st, :sus, :suspend and CTRLZ.)

(See page 227.)

:stopi :stopi

:stopinsert :stopinsert

Stop insert mode.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 711

The Vim Tutorial and Reference

(See page 432.)

:sts :sts[!] {ident}

:stselect :stselect[!] {ident}

Do a :split and a :tselect.

(See page 138.)

:substitute :[range] substitute /{[from}]/{[to}]/{[flags}]

Change the regular expression {from} to the string {to}. (Same as:
:s.)

(See pages 162, 164, 232, 234, 242, 243, 434, 559.)

See section Substitute flags on page 437 for a list of {flags}

:sun :sun [count]

:sunhide :sunhide [count]

Open a new window for all hidden buffer. Limit the number of
window to count, if specified. (Same as: :unh, :unhide.)

(See page 340.)

:sus :sus[!]

:suspend :suspend[!]

Suspend the editor (UNIX terminal only). Actually, works in Win32
also.). If the ! option is not present and 'autowrite' is set, all
changed files will be saved. (Same as: :stop, :st, and CTRLZ.)

(See page 227.)

:sv :sv [+command] [filename]

:sview :sview [+command] [filename]

Split the window like :split. The only difference is that the file is
opened for viewing.

(See page 88.)

:sw :sw

:swapname :swapname

List name of the current swap file.

(See page 222.)

:sy :sy

List out all the syntax elements. (Same as: :syntax.)

(See page 594.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 712

The Vim Tutorial and Reference

:sy case match :sy case match

Syntax definitions are case sensitive. In other words, the case of the
letters must match.

(See page 586.)

:sy case ignore :sy case ignore

Syntax definitions are case not sensitive. In other words, case
differences are ignored.

(See page 586.)

:sy clear :sy clear

Clear out any existing syntax definitions.

(See page 586.)

:sy cluster :sy cluster {name} contains={groups}

\ add={groups} remove={group}
Define a cluster of syntax groups.

(See page 593.)

:sy include :sy include @{cluster} {file}

Read in a syntax file and put all the defined groups in the specified
cluster. (See page 594.)

:sy keyword :sy keyword {group}

\ {keyword} ... {keyword} {options}

Define a set of keywords for syntax highlighting. They will be
highlighted according to {groupname}. The options may appear
anywhere within the {keyword} list. Options can include 'contained',
nextgroup, skipwhite, skipnl, 'skipempty', and transparent.
Keywords for abbreviations can be defined like abbreviation. This
matches both abb and abbreviation.

(See page 586.)

:sy list :sy list {groupname}

List out the named syntax groups.

(See page 594.)

:sy list :sy list @{clustername}

List out the elements for syntax cluster.

(See page 594.)

:sy match :sy match {group} excludenl {pattern} {options}

Define a regular expression that matches a syntax element. Options

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 713

The Vim Tutorial and Reference

can be contained, nextgroup, skipwhite, skipnl, skipempty,
transparent, and contains.

(See page 587.)

:sy off :sy off

Turn off syntax highlighting. (Same as :syntax off.)

(See page 111.)

:sy on :sy on

Turn on syntax highlighting. (Same as :syntax on.)

(See page 111, 156.)

:sy region :sy region {options} matchgroup={group} keepend

\ excludenl start={pattern}

\ skip={pattern} end={pattern}

Define a syntax-matching region that starts and ends with the
specified pattern. Options can be contained, nextgroup, skipwhite,
skipnl, skipempty, transparent, 'contains', and oneline.

(See page 587.)

:sy sync :sy sync ccomment {groupname}

\ minlines={min} maxlines={max}

Tell Vim to synchronize based on C-style comments. If a group name
is specified, use that group for highlighting; otherwise, use the group
name Comment. The 'minlines' and 'maxlines' options tell Vim
how much to look backward through the file for a comment.

(See page 594.)

:sy sync clear
:sy sync clear

Remove all syntax synchronization directives.

(See page 596.)

:sy sync clear :sy sync clear {syncgroupname}

\ syncgroupname ...

Clear all the syntax synchronization commands for the named
groups.

(See page 596.)

:sy sync match :sy sync match {syncgroupname}

\ grouphere {groupname} {pattern}

Define a synchronization command (in the group

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 714

The Vim Tutorial and Reference

{syncgroupname}) that tells Vim that when it sees {pattern} that
the group {groupname} follows the match.

(See page 594.)

:sy sync match :sy sync match {syncgroupname}

\ groupthere {groupname} {pattern}

Define a synchronization command (in the group
{syncgroupname}) that tells Vim that when it sees {pattern} that
the group {groupname} precedes the match.

(See page 594.)

:sy sync minlines :sy sync minlines={min}

Define the minimum number of lines for a brute-force
synchronization match.

(See page 594.)

:sy sync match :sy sync match {matchspecification}

Define a match or region to be skipped during synchronization.

(See page 594.)

:sync :sync

:syncbind :syncbind

Cause all scroll-bound windows to go to the same location.

(See page 387.)

:syntax :syntax

List out all the syntax elements. (Same as: :sy.)

(See page 594.)

:syntax case match :syntax case match

Syntax definitions are case sensitive. In other words, the case of the
letters must match.

(See page 586.)

:syntax case ignore :syntax case ignore

Syntax definitions are not case sensitive. In other word, case
differences are ignored.

(See page 586.)

:syntax clear :syntax clear

Clear out any existing syntax definitions.

(See page 586.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 715

The Vim Tutorial and Reference

:syntax cluster :syntax cluster {name} contains={groups}

\ add={groups} remove={group}

Define a cluster of syntax groups.

(See page 593.)

:syntax sync :syntax sync ccomment [groupname]

\ minlines={min} maxlines={max}

Tell Vim to synchronize based on C-style comments. If a group name
is specified, use that group for highlighting; otherwise, use the group
name Comment. The minlines and maxlines options tell Vim how
much to look backward through the file for a comment.

(See page 594.)

:syntax include :syntax include @{cluster} {file}

Read in a syntax file and put all the defined groups in the specified
cluster.

(See page 594.)

:syntax keyword :syntax keyword {group}

\ {keyword} ... {keyword} options

Define a set of key words for syntax highlighting. They will be
highlighted according to {groupname}. The options may appear
anywhere within the {keyword} list. Options can include contained,
nextgroup skipwhite, skipnl, skipempty, and transparent.
Keywords for abbreviations can be defined like abbreviation. This
matches both abb and abbreviation.

(See page 586.)

:syntax list :syntax list {groupname}

List out the named syntax groups.

(See page 594.)

:syntax list :syntax list @{clustername}

List out the elements for syntax cluster.

(See page 594.)

:syntax match :syntax match {group} excludenl {pattern} options

Define a regular expression that matches a syntax element. Options
can be contained, nextgroup, skipwhite, skipnl, skipempty,
transparent, and contains.

(See page 587.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 716

The Vim Tutorial and Reference

:syntax off :syntax off

Turn off syntax highlighting. (Same as :sy off.)

(See page 111, 156.)

:syntax on :syntax on

Turn on syntax highlighting. (Same as :sy on.)

(See page 111.)

:syntax region :syntax region options matchgroup={group}

\ keepend excludenl

\ start={pattern} skip={pattern} end={pattern}

Define a syntax-matching region that starts and ends with the
specified pattern. Options can be contained, nextgroup, skipwhite,
skipnl, skipempty, transparent, contains, and oneline.

(See page 587.)

:syntax sync clear :syntax sync clear

Remove all syntax synchronization directives.

(See page 596.)

:syntax sync clear :syntax sync clear {syncgroupname}

\ syncgroupname ...

Clear all the syntax synchronization commands for the named
groups.

(See page 594.)

:syntax sync match :syntax sync match {syncgroupname}

\ grouphere {groupname} {pattern}

Define a synchronization command (in the group
{syncgroupname}) that tells Vim that when it sees {pattern} that
the group {groupname} follows the match.

(See page 594.)

:syntax sync match :syntax sync match {syncgroupname}

\ groupthere {groupname} {pattern}

Define a synchronization command (in the group
{syncgroupname}) that tells Vim that when it sees {pattern} that
the group {groupname} precedes the match.

(See page 594.)

:syntax sync minlines :syntax sync minlines={min}

Define the minimum number of lines for a brute- force

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 717

The Vim Tutorial and Reference

synchronization match.

(See page 594.)

:syntax sync region :syntax sync region {regionspecification}

Define a match or region to be skipped during synchronization.

(See page 594.)

:t :[range] t {address}

Copy the range of lines below {address}. (Same as: :copy.)

(See page 431.)

:ta :[count] ta[!]

Go forward [count] tags. (Same as: :tag.)

(See pages 133, 134, 412.)

:ta :ta[!] /{pattern}

Search for all functions that match the regular expression defined by
{pattern} and jump to the first one.

(See page 135.)

:tab :[count]tab {cmd}

Execute a command that normally opens a new window, but open a
new tab instead. If [count] is specified, then open the new tab after
the [count] tab in the list. Otherwise open a new tab to the right.

(See page 96.)

:tabc :tabc[!]

:tabclose :tabclose[!]

Close the current tab. If there are unsaved changes, this will fail
with an error, unless the override option (!) is present.

(See page 96.)

:tabd :tabd {cmd}

:tabdo :tabdo {cmd}

Execute the {cmd} for each tab. (See page 346.)

:tabe :tabe

:tabedit :tabedit

Create an empty buffer in a new tab. (Same as :tabnew.)

(See page 96.)

:tabnew :tabedit

Create an empty buffer in a new tab. (Same as :tabe, :tabedit.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 718

The Vim Tutorial and Reference

(See page 96.)

:tabf :tabf [++opt] [+cmd] {file}

:tabfind :tabfind [++opt] [+cmd] {file}

Like :find, but in a new tab.

(See page 98.)

:tabfir :tabfir

:tabfirst :tabfirst

Go to the first tab. (Same as :tabr, :tabrewind.)

(See page 97.)

:tabl :tabl

:tablast :tablast

Go to the last tab.

(See page 97.)

:tabm :tabm [position]

:tabmove :tabmove [position]

Move the current tab to just after [postion]. If not specified, the
tab will be moved to the last position.

(See page 346.)

:tabn :tabn [count]

Go to the next tab. If at the last tab, then wrap to the first. If a
[count] is specified, go to the indicated tab. (Same as :tabnext,
<CPageDown>, gt.)

(See page 97.)

:tabN :tabN [count]

Go to the previous tab. If you are already on the first one, wrap to
the last one. If a [count] is specified, go to the indicated tab.
(Same as :tabNext, :tabp, :tabPrevious, <CPageUp>, gT.)

(See page 97.)

:tabnext :tabnext [count]

Go to the next tab. If at the last tab, then wrap to the first. If a
[count] is specified, go to the indicated tab. (Same as :tabn,
<CPageDown>, gt.)
(See page 97.)

:tabNext :tabNext [count]

Go to the previous tab. If you are already on the first one, wrap to

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 719

The Vim Tutorial and Reference

the last one. If a [count] is specified, go to the indicated tab. (Same
as :tabN, :tabp, :tabPrevious, <CPageUp>, gT.)

(See page 97.)

:tabo :tabo[!]

:tabonly :tabonly[!]

Make this tab the only tab closing all others.

(See page 97.)

:tabp :tabp [count]

:tabprev :tabprev [count]

Go to the previous tab. If you are already on the first one, wrap to
the last one. If a [count] is specified, go to the indicated tab. (Same
as :tabN, :tabNext, <CPageUp>, gT.)

(See page 97)

:tabr :tabr

:tabrewind :tabrewind

Go to the first tab. (Same as :tabfir, :tabfirst.)

(See page 97.)

:tabs :tabs

List each tab and the windows contained in them.

(See page 346.)

:tag :[count] tag!

Go forward [count] tags. (Same as: :ta.)

(See pages 131, 132, 133, 134.)

:tag :tag! /{pattern}

Search for all functions that match the regular expression defined by
{pattern} and jump to the first one. (Same as: :ta.)

(See pages 135, 412.)

:tags :tags

List the tags.

(See page 132.)

:tc :tc {command}

:tcl :tcl {command}

Execute a single Tcl {command}.

(See page 251.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 720

The Vim Tutorial and Reference

:tcld :[range] tcld {command}

:tcldo :[range] tcldo {command}

Execute a Tcl {command} once for each line in the range. The
variable "line" is set to the contents of the line.

(See page 251.)

:tclf :tclf {file}

:tclfile :tclfile {file}

Execute the Tcl script in the given {file}.

(See page 251.)

:te :te {name}

:tearoff :tearoff {name}

Tear off the named menu.

(See page 474.)

:th :th {expr}

:throw :throw {expr}

Throw an exception.

(See page 446.)

:tf :[count] tf

:tfirst :[count] tfirst

Go to the first tag. (Same as :tr, :trewind.)

(See page 136, 393.)

:tj :tj[!] {ident}

:tjump :tjump[!] {ident}

Like :tselect, but if there is only one tag, automatically pick it.

(See page 136, 138, 393, 412.)

:tl :[count] tl

:tlast :[count] tlast

Go to the last tag.

(See page 136, 393.)

:tm :tm {menuitem} {tip}

:tmenu :tmenu {menuitem} {tip}

Define the "tip" text that displays when the cursor is placed over an
icon in the toolbar.

(See page 471.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 721

The Vim Tutorial and Reference

:tn :[count] tn

Go to the next tag. (Same as: :tnext.)

(See page 136, 393.)

:tN :[count] tN

Go to the previous tag. (Same as: :tNext, :tp, :tprevious.)

(See page 136, 393.)

:tnext :[count] tnext

Go to the next tag. (Same as: :tn.)

(See page 136, 393.)

:tNext :[count] tNext

Go to the next tag. (Same as: :tN, :tp, :tprevious.)

(See page 136, 393.)

:to :to {cmd}

:topleft :topleft {cmd}

Execute a command which which opens a window and make that
window to the top or left of the current window, overriding all other
windowing options.

(See page 346.)

:tp :[count] tp

:tprevious
:[count] tprevious

Go to the previous tag.

(See page 136, 393.)

:tr :[count] tr

:trewind :[count] trewind

Go to the first tag. (Same as :tf, :tfirst.)

(See page 136, 393.)

:try :try

Begin a try / catch block of commands. (For scripting.)

(See page 497.)

:ts :ts[!] [ident]

:tselect :tselect[!] [ident]

List all the tags that match [ident]. If [ident] is not present, use
the results of the last :tag command. After listing the tags, give the

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 722

The Vim Tutorial and Reference

user a chance to select one and jump to it.

(See page 135, 136, 137, 138, 393.)

:tu :tu {menuitem}

:tunmenu :tunmenu {menuitem}

Remove a "tip" from an menu item.

(See page 473.)

:u :u

Undo a change. (Same as: :undo.)

(See page 286, 446.)

:una :una {lhs}

:unabbreviate :unabbreviate {lhs}

Remove the abbreviation.

(See page 418.)

:undo :undo

Undo a change. (Same as: :u.)

(See page 286, 446.)

:undoj :undoj

:undojoin :undojoin

Make any additional changes part of the previous undo block. The
command set ends with the next user keypress.

(See page 288.)

:undol :undol

:undolist :undolist

List undo information.

(See page 286.)

:unh :unh [count]

:unhide :unhide [count]

Write the file in all windows. (Same as: :su, :sunhide.)

(See page 340.)

:unl :unl[!] {variable}

:unlet :unlet[!] {variable}

Remove the definition of the variable. If the force (!) option is
present, do not issue an error message if the variable is not defined.

(See page 491.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 723

The Vim Tutorial and Reference

:unlo :unlo[!] [depth] {name}

:unlockvar
:unlockvar[!] [depth] {name}

Unload a variable locked with :lockvar. The [depth] if specified is a
code which indicates how to lock dictionaries and list. A value of 1
locks the size of the dictionary or list, but lets you change values.
The 2 code indicates th:unmenu(x1)at the top level values can not be
changed. A level of 3 indicates that the array, the values in the array,
and their values can not be changed. The override option (!) tell Vim
that nothing can be changed.

(See page 491.)

:unm :unm[!] {lhs}

:unmap :unmap[!] {lhs}

Remove a mapping. The override option (!) is used to :unmap for a
command in insert and command modes.

(See pages 422, 425.)

:unme :[mode] unme {menuitem}

:unmenu :[mode] unmenu {menuitem}

Remove the menu item named {menuitem}. The wildcard * will
match all menu items.

(See page 473.)

:up :[range] up[!] [file]

:up :[range] up[!] >> [file]

:up :[range] up !{command}

:update :[range] update[!] [file]

:update :[range] update[!] >> [file]

:update :[range] update !{command}

Acts just like the :write command if the buffer is modified. Does
absolutely nothing if it's it is not.

(See page 444.)

:v :[range] v /{pattern}/ {command}

Perform {command} on all lines that do not have {pattern} in them in
the given range. (Same as: :vglobal, :global!, :g!.)

(See page 438.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 724

The Vim Tutorial and Reference

:ve :ve

List version and configuration information, including the list of
.vimrc files read in at startup. (Same as :version.)

(See page 153.)

:verb :[count]verb {cmd}

:verbose :[count]verbose {cmd}

Execute {cmd} with the 'verbose' option set to [count].

(See page 561.)

:vert :vert {cmd}

:vertical :vertical {cmd}

Execute {cmd}. If it opens a new window, perform a vertical split.

(See page 88, 92.)

:version :version

List version and configuration information, including the list of .vimrc
files read in at startup. (Same as :ve.)

(See page 153.)

:vglobal :[range] vglobal /{pattern}/ {command}

Perform {command} on all lines that do not have {pattern} in them in
the given range. (Same as :v, :global!, :g!.)

(See page 438.)

:vi :vi [+cmd] {file}

Close the current file and start editing the named file. If [+cmd] is
specified, execute it as the first editing command. (Same as:
:visual.)

(See page 159, 317, 241, 398.)

:vie :vie [+cmd] {file}

:view :view [+cmd] {file}

Like :vi, but open the file read-only.

(See page 77.)

:vim :vim[!] /{pattern}/[g][j] {filelist}

:vimgrep :vimgrep[!] /{pattern}/[g][j] {filelist}

Search the {filelist} for the given {pattern} and put the
results in the quick fix list. Go to the location of the first occurrence.
The g option causes lines which match {pattern} more than once to
be added more than once. The j flag tells Vim to update the list but

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 725

The Vim Tutorial and Reference

do not do the jump. The override (!) option will cause Vim to
abandon the current buffer even if there are unsaved modifications in
it.

(See page 246, 403, 406.)

:vimgrepa :vimgrepa[!] /{pattern}/[g][j] {filelist}

:vimgrepadd :vimgrepadd[!] /{pattern}/[g][j] {filelist}

Like :vimgrep, but add to the quick fix list instead of replacing it.
(See page 406.)

:visual :visual [+cmd] {file}

Close the current file and start editing the named file. If [+cmd] is
specified, execute it as the first editing command. (Same as: :vi.)

(See page 159, 317.)

:viu :viu

:viusage :viusage

Show help on normal mode commands. This is for compatibility with
Nvi. The :help command is much more useful for getting help.

(See page 228.)

:vm :vm

List all the mappings for visual-mode maps. (Same as: :vmap.)

(See pages 421, 423, 425.)

:vm :vm {lhs}

List the visual mode mapping of {lhs}. (Same as: :vmap.)

(See pages 421, 425.)

:vm :vm {lhs} {rhs}

Define a keyboard mapping for visual mode. (Same as: :vmap.)

(See pages 420, 425.)

:vmap :vmap

List all the visual-mode mappings. (Same as: :vm.)

(See pages 421, 423, 425.)

:vmap :vmap {lhs}

List the visual-mode mapping of {lhs}. (Same as: :vm.)

(See page 421, 425.)

:vmap :vmap {lhs} {rhs}

Define a keyboard mapping for visual mode. (Same as: :vm.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 726

The Vim Tutorial and Reference

(See page 420, 421, 425.)

:vmapc :vmapc

:vmapclear :vmapclear

Clear all the visual-mode mappings.

(See page 425.)

:vme :[priority] vme {menuitem} {commandstring}

:vmenu :[priority] vmenu {menuitem} {commandstring}

Define a menu item that is available for visual mode only. The
priority determines its placement in a menu. Higher numbers come
first. The name of the menu item is {menuitem}, and when the
command is selected, the command {commandstring} is executed.

(See page 468.)

:vn :vn {lhs} {rhs}

Same as :vmap, but does not allow remapping of the {rhs}. (Same as
:vnoremap.)

(See page 425.)

:vne :[n]vne [++opt] [+cmd] [file]

:vnew :[n]vnew [++opt] [+cmd] [file]

Split the current window vertically and edit a new file. If no file is
specified a blank window is created.

(See page 88.)

:vnoremap :vnoremap {lhs} {rhs}

Same as :vmap, but does not allow remapping of the {rhs}. (Same as
:vn.)

(See page 425.)

:vnoreme :[priority] vnoreme {menuitem} {commandstring}

:vnoremenu :[priority] vnoremenu {menuitem} {commandstring}

Like :vmenu, but the {commandstring} is not remapped.

(See page 473.)

:vs :[n]vs [++opt] [+cmd] [file]

:vsplit :[n]vsplit [++opt] [+cmd] [file]

Split the window vertically and start editing the given file.

(See page 84.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 727

The Vim Tutorial and Reference

:vu :vu {lhs}

:vunmap :vunmap {lhs}

Remove the visual mode mapping for {lhs}.

(See page 425.)

:vunme :vunme {menuitem}

:vunmenu :vunmenu {menuitem}

Remove the visual mode menu item named {menuitem}. The
wildcard * will match all menu items.

(See page 473.)

:w :w[!]

Write out the current file. (Same as: :write.)

(See page 77, 78, 165, 224, 243, 288, 338, 442.)

:w :[range] w[!]! filename

Write out the specified file. If no filename is specified, write to the
current file. The range defaults to the entire file. If the force (!)
option is present, overwrite an existing file, or override the read-only
flag. (Same as: :write.)

(See pages 77, 165, 243.)

:w :[range] w[!]! >> file

Append the specified range to the file. This will fail if the file does
not exist unless the force (!) option is specified. (Same as: :write.)

(See page 77, 443.)

:wa :wa

:wall :wall

Write the file in all windows.

(See page 338.)

:wh :wh {expression}

:while :while {expression}

Start a loop.

(See page 496.)

:wi :wi {width} {height}

Obsolete older command to set the number of rows and columns.
Use :set rows and :set columns instead. (Same as: :winsize.)

(See page 455.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 728

The Vim Tutorial and Reference

:winc :[count]winc {arg}

:wincmd :[count]wincmd {arg}

Simulate a CTRLW command of the form [count] CTRLW {arg}.

(See page 342.)

:wind :wind {cmd}

:windo :windo {cmd}

Execute {cmd} for each window.

(See page 342.)

:winp :winp {X} {Y}

:winpos :winpos {X} {Y}

Set the position opt-columns(26-1)of the window on the screen.

(See page 455.)

:winsize :winsize {width} {height}

Obsolete older command to set the number of rows and columns.
Use :set rows and :set columns instead. (Same as: :wi.)

(See page 455.)

:wn :count] wn[!] {+command} [files]

Shorthand for :write and :[count] next. (Same as: :wnext.)

(See page 79, 81, 317.)

:wN :[count] wN[!]

Shorthand for :write and :[count] previous. (Same as:
:wprevious, :wp, :wNext.)

(See page 80, 317.)

:wnext :[count] wnext[!] {+command} [files]

Shorthand for :write and :[count] next. (Same as: :wn.)

(See page 79, 81, 317.)

:wNext :[count] wNext[!] {+command} [files]

:wp :[count]wp[!] {+command} [files]

:wprevious :
[count] wprevious[!] {+command} [files]

Shorthand for :write and :[count] previous. (Same as: :wN,
:wNext.)

(See page 80, 317.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 729

The Vim Tutorial and Reference

:wq :[range] wq[!] file

Write the file and exit. If a range is specified, only write the specified
lines. If a file is specified, write the data to that file. When the
override option (!) is present, attempt to overwrite existing files or
read-only files.

(See pages 450.)

:wqa :wqa[!]

:wqall :wqall[!]

Shorthand for :wall and :qall. (Same as: :xa, :xall.)

(See page 338.)

:write :write[!]

Write out the current file. (Same as: :w.)

(See page 77, 78, 165, 224, 243, 288, 338, 442.)

:write :[range] write[!] [filename]

Write out the specified file. If no [filename] is specified, write to
the current file. The range defaults to the entire file. If the force (!)
option is present, overwrite an existing file, or override the read-only
flag. (Same as: :w.)

(See pages 77, 165, 243.)

:write :[range] write[!] >> {file}

Append the specified range to the file. This will fail if the file does
not exist unless the force (!) option is specified. (Same as: :w.)

(See page 443.)

:ws :ws {verb}

:wsverb :wsverb {verb}

Used for integration with the Sun Visual WorkShop program.

(See page 251.)

:wv :wv[!] {file}

:wviminfo :wviminfo[!] {file}

Write the .viminfo file specified. If the override option is present (!),
any existing file will be overwritten.

(See page 326.)

:x :[range] x[!] file

If the file has been modified, write it. Then exit. If the override (!)
option is present, overwrite any existing file. (Same as: :xit.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 730

The Vim Tutorial and Reference

(See page 289, 450.)

:X :X

Prompt for an encryption key and assign the resulting value to the
'key' option.

(See page 213.)

:xa :xa

:xall :xall

Write all changed buffers and exit.

(See page 338.)

:xit :[range] xit[!] {file}

If the file has been modified, write it. Then exit. If the override (!)
option is present, overwrite any existing file. (Same as: :x,
:exi, :exit.)

(See page 289, 450.)

:xm :xm

List all the mappings for visual-mode only maps. (Same as: :xmap.)

(See page 425.)

:xm :xm {lhs}

List the visual mode only mapping of {lhs}. (Same as: :xmap.)

(See page 425.)

:xm :xm {lhs} {rhs}

Define a keyboard mapping for visual mode only. (Same as: :xmap.)

(See pages 425.)

:xmap :xmap

List all the visual-mode only mappings. (Same as: :xm.)

(See pages 425.)

:xmap :xmap {lhs}

List the visual-mode only mapping of {lhs}. (Same as: :xm.)

(See page 425.)

:xmap :xmap {lhs} {rhs}

Define a keyboard mapping for visual mode only. (Same as: :xm.)

(See page 425.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 731

The Vim Tutorial and Reference

:xmapc :xmapc

:xmapclear :xmapclear

Clear all the visual-mode only mappings.

(See page 425.)

:xme :[priority] xme {menuitem} {commandstring}

:xmenu :[priority] xmenu {menuitem} {commandstring}

Define a menu item that is available for visual mode only. The
priority determines its placement in a menu. Higher numbers come
first. The name of the menu item is {menuitem}, and when the
command is selected, the command {commandstring} is executed.

(See page 468.)

:xn :xn {lhs} {rhs}

:xnoremap :xnoremap {lhs} {rhs}

Same as :xmap, but does not allow remapping of the {rhs}.

(See page 468.)

:xnoreme :[priority] xnoreme {menuitem} {commandstring}

:xnoremenu :[priority] xnoremenu {menuitem} {commandstring}

Like :xmenu, but the {commandstring} is not remapped.

(See page 468.)

:y :[range] y {register}

:yank :[range] yank {register}

Yank the range (default = current line) into the register (default =
the unnamed register).

(See page 445.)

:z :[line] z{code} [count]

List the given line (default = current) and a few lines after it. The
code controls what section of the text is listed. The [count] defines
what "a few" is.

(See page 434.)

:map Mode Table

 needs updating -- copy from chapter 24 end

NVO N V O IC I C
:map :nm :vm :om :map! :im :cm

:nmap :vmap :omap :imap :cmap
:no :nn :vn :ono :no! :ino :cno

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 732

The Vim Tutorial and Reference

NVO N V O IC I C
:noreamp :nnremap :vnoremap :onoremap :noremap! :inoremap :cnoremap
:unm :nun :vu :ou :unm! :iu :cu
:unmap :numap :vumap :oumap :unmap! :iunmap :cunmap
:mapc :nmapc :vmapc :omapc :mapc! :imapc :cmapc
:mapclear :nmapclear :vmapclear :omapclear :mapclear! :imapclear :cmapclear

Modes

N Normal

V Visual

O Operator pending

I Insert

C Command

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 733

The Vim Tutorial and Reference

Appendix E: Visual-Mode Commands
<Esc> Cancel visual mode.

(See page 101, 103.)
 Delete the highlighted text. (Same as visual d and x)

(See pages 49, 72, 99, 100, 101, 102, 351.)
CTRL] Jump to highlighted tag.

(See page 104.)
CTRL\ CTRLN Enter normal mode.

 (See page 102.)
CTRLG Toggle between select and visual mode.

(See page 362.)
CTRLV Switch to visual block mode or exit block visual mode.

(See page 103.)
!{program} Pipe the selected text through an external program.

(See page 76, 359.)
$ Move to the end of the line and extend the

highlighting to the end of all the selected lines. (See
page 108, 351.)

< Shift lines to the left (different in block visual mode.)
(See page 104, 116.)

= Indent the lines.
(See page 104, 120.)

> Shift lines to the right (different in block visual mode.)
(See page 104, 116, 130.)

:{command} Execute a colon-mode command on the selected lines.
(See page 359.)

~ Invert the case of the selected text.
(See page 357.)

"{register}c Delete and enter insert mode. (Same as r and s.)
(See page 51, 103.)

"{register}C Delete the selected lines and enter insert mode.
(Same as R and S.)
(See pages 103 and 107.)

"{register}d Delete the highlighted text. (Same as visual x and
)
(See pages 49, 72, 99, 100, 101, 102, 351.)

"{register}D Delete the highlighted lines.
(See page 102, 351.)

g@ Call the function specified by the 'operatorfunc' to
process the text. (See page 510.)

g? Rot13 the text.
(See page 358.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 734

The Vim Tutorial and Reference

gJ Join the selected lines with no spaces inserted
between the words.
(See page 103, 357.)

gq Format a block.
(See page 156, 177, 183, 358, 373.)

gv Toggle between the current and previous visual-mode
selection.
(See page 352.)

J Join the selected lines.
(See pages 53, 103, 357.)

K Look up the selected word using the man command.
(See page 104, 130.)

o Jump to the other end of a visual selection.
(See page 355.)

"{register}r Delete and enter insert mode (different in block visual
mode.) (Same as c and s.)
(See page 103.)

"{register}R Delete the selected lines and enter insert mode. (Same
as C and S.)
(See page 103 and 107.)

"{register}s Delete and enter insert mode. (Same as c and r.)
(See page 103.)

"{register}S Delete the selected lines and enter insert mode. (Same
as C and R.)
(See page 103 and 107.)

u Make the selected case all lowercase.
(See page 357.)

U Make the selected case all uppercase.
(See page 357.)

V Enter line visual mode, or exit to normal mode.
(See page 103.)

"{register}x Delete the highlighted text. (Same as visual d and
)
(See pages 49, 72, 99, 100, 101, 102, 351.)

"{register}X Delete the highlighted lines. (Same as visual D)
(See page 102.)

"{register}y Yank the highlighted text into a register.
(See pages 74, 74, 103, 236, 236, 351, 365)

"{register}Y Yank the highlighted lines into a register. (See page
351.)

zf Create fold. (See page 388.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 735

The Vim Tutorial and Reference

Visual Block Commands
> Move the block to the right.

(See page 109.)
< Move the block to the left.

(See page 109.)
A{string}<Esc> Append string to the right side of each line.

 (See page 107.)
c{string}<Esc> Delete the selected text and then insert the string on

each line.
(See page 106.)

C{string}<Esc> Delete selected text to end of line, then insert on
each line.
(See page 106.)

I{string}<Esc> Insert text on the left side of each line.
(See page 105 and 106.)

O Go to the other corner diagonally.
(See page 356.)

r{char} Replace all the text with a single character.
(See page 108.)

Starting Select Mode
gCTRLH Start select block mode.

(See page 360.)
gh Start select character mode.

(See page 360.)
gH Start select line mode.

(See page 360.)
gV Do not automatically reselect an area after a command has

been executed.
(See page 360.)

Select Mode Commands

Arrow, CTRL,
Function Keys
(cursor motion)

Extend selection.
(See page 360.)

{string}<Esc> Delete the selected text and replace it with string.
(See page 360.)

<BS> Backspace.
(See page 360.)

CTRLG Go to visual mode. (See page 362.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 736

The Vim Tutorial and Reference

CTRLH Delete the selected text. (See page 360.)
(See page 360.)

CTRLO Switch from select mode to visual mode for one
command.
(See page 362.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 737

The Vim Tutorial and Reference

Appendix F: Insert Mode Commands
<BS> Delete character before the cursor. (See page 321.)
<BS>char1<BS>char2 Enter digraph (only when digraph option set). (See

page 282.)
<CEnd> Cursor past end of file. (See page 321.)
<CHome> Cursor to start of file. (See page 321.)
<CLeft> Cursor one word left. (See page 321.)
<CLeftMouse> Jump to the tag who's name is under the cursor. (See

page 170.)
<CRight> Cursor one word right. (See page 321.)
<CRightMouse> Jump to the preceding tag in the stack. (See page 170.)
<CR> Begin new line.
 Delete character under the cursor.
<Down> Cursor one line down. (See page 321.)
<End> Cursor past end of line. (See page 321.) 483
<Esc> End insert mode (unless 'insertmode' set). (See page

31, 37, 324, 420.)
<F1> Same as <Help>.
<Help> Stop insert mode and display help window.
<Home> Cursor to start of line. (See page 321.)
<Insert> Toggle insert/replace mode.
<Left> Cursor one character left. (See page 321.)
<LeftMouse> Move cursor to mouse click. (See page 170, 483.)
<MiddleMouse> Paste selected text into buffer at the mouse location.

(See page 170.)
<MouseDown> Scroll three lines downward.
<MouseUp> Scroll three lines upward.
<NL> Same as <CR>.
<PageDown> Scroll one screen forward. (See page 321.)
<PageDown> Scroll one screen backward. (See page 321.)
<Right> Cursor one character right. (See page 321.)
<RightMouse> Extend selection from cursor to current mouse

location. (See page 170.)
<SDown> Move one screen forward.
<SLeft> Cursor one word left.
<SLeftMouse> Search for the word under the cursor. (If :behave

xterm.) Extend selection from cursor to mouse click.
(If :behave mswin.) (See page 170.)

<SMouseDown> Scroll a full page downward.
<SMouseUp> Scroll a full page upward.
<SRight> Cursor one word right.
<SRightMouse> Search for previous occurance of the word under the

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 738

The Vim Tutorial and Reference

cursor. (If :behave xterm.) Popup menu. (If :behave
mswin.) (See page 170.)

<SUp> Scroll one screen backward.
<Tab> Insert a <Tab> character.
<Up> Move one line up. (See page 321.)
CTRL@ Insert previously inserted text and stop insert. (See

page 322.)
CTRL[Same as <Esc>. (See page 31, 37, 324, 420.)
CTRL\ CTRLN Go to Normal mode. (See page 324.)
CTRL] Trigger abbreviation. (See page 420.)
CTRL_ When 'allowrevins' is set: change language

(Hebrew, Farsi) (only works when compiled with
+rightleft feature). (See page 256.)

CTRLA Insert previously inserted text. (See page 321.)
CTRLC Quit insert mode, without checking for abbreviation,

unless 'insertmode' set. (See page 420.)
CTRLD Delete one shift width of indent in the current line.

(See page 119, 364.)
CTRLE Insert the character that is below the cursor. (See

page 322.)
CTRLG
CTRLH Same as <BS>.
CTRLI Same as <Tab>.
CTRLJ Same as <CR>.
CTRLK {char1} {char2} Insert digraph. (See page 57, 282.)
CTRLL When 'insertmode' is set, this command enables you

to leave insert mode. (See page 258.)
CTRLM Same as <CR>.
CTRLN Find next match for keyword in front of the cursor.

(See page 193.)
CTRLO Execute one normal mode command, then return to

insert mode. (See page 258, 324, 366.)
CTRLP Find previous match for word in front of the cursor.

(See page 192.)
CTRLQ Same as CTRLV (used for terminal control flow on

some terminals). (See page 139, 322, 323, 370.)
CTRLR register Insert the contents of a register. (See page 323, 365.)
CTRLR CTRLO register Insert the contents of a register literally and do not

auto-indent. (See pages 323, 365, 366.)
CTRLR CTRLP register Insert the contents of a register literally and fix indent.

(See pages 365, 366.)
CTRLR CTRLR register Insert the contents of a register literally. (See pages

323.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 739

The Vim Tutorial and Reference

CTRLS Used for terminal control flow. Not a Vim command.
CTRLT Insert one shift width of indent in current line. (See

page 365.)
CTRLU Delete all entered characters in the current line. (See

page 321.)
CTRLV character Insert next non-digit literally. (See pages 139, 322,

323, 370.)
CTRLV digit digit
digit

Insert three-digit decimal number as a single byte.
(See page 322.)

CTRLW Delete word before the cursor. (See page 321.)
CTRLX Enter CTRL-X sub mode, see the following entries.

(See page 195.)
CTRLX CTRL] Search for the tag that completes the word under the

cursor. (See pages 195, 196).
CTRLX CTRLD Search for a macro definition for completion. (See

pages 195.)
CTRLX CTRLE Scroll up. (See page 201.)
CTRLX CTRLF Search filenames for completion. (See pages 195,

199.)
CTRLX CTRLI Search the current file and #include files for

completion. (See page 195.)
CTRLX CTRLK Complete identifiers from dictionary. (See page 195,

200.)
CTRLX CTRLL Search the line completion of the line under of the

cursor. (See pages 195, 200.)
CTRLX CTRLN Search for next word that matches the word under the

cursor. (See page 195.)
CTRLX CTRLO Perform omni completion. The word list for this is

obtained by calling the function named in the
'omnfunc' option. (See page 201.)

CTRLX CTRLP Search for previous word that matches the word under
the cursor. (See page 195.)

CTRLX CTRLT Perform a thesaurus search. (See page 200.)
CTRLX CTRLU Perform user completion. The word list for this is

obtained by calling the function named in the
'completefunc' option. (See page 201.)

CTRLX CTRLV Guess the type of the word before the cursor and
perform the appropriate completion. (See page 200.)

CTRLX CTRLY Scroll down. (See page 201.)
CTRLX s Use the spelling system to search for completions.

(See page 196.)
CTRLY Insert the character that is above the cursor. (See

pages 322.)
CTRLZ When in insert mode, suspend Vim.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 740

The Vim Tutorial and Reference

^CTRLD Delete all indent in the current line, and restore it in
the next. (See page 364.)

0 CTRLD Delete all indent in the current line. (See page 364.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 741

The Vim Tutorial and Reference

Appendix G: Option List

- A -

aleph al Global Number Default: 128 for MS-DOS
224 otherwise

ASCII code for the first letter of the Hebrew alphabet. (See page 256.)

allowrevins ari Global Boolean Default: off

All CTRL_ to reverse the input direction. (See page 252.)

altkeymap akm Global Boolean Default: off

Used for Farsi and Hebrew input. (See page 255, 256.)

ambiwidth ambw Global String Default: single

Used for foreign languages. (See page 253.)

antialias anti Global Boolean Default: off

If enabled some fonts will be antialised making them easier to read. (See page
483.)

autochdir acd Global Boolean Default: off

If set, change the current directory as you change files. (See page 442.)

arabic arab Local Boolean Default: off

Used for the Arabic language. (See page 254.)

arabicshape arshape Global Boolean Default: on

Used for the Arabic language. (See page 254.)

autoindent ai Local Boolean Default: off
Turn on automatic indentation. (See page 116, 118, 118, 157, 364, 552)
autoread ar Global Boolean Default off

If a file is changed outside Vim, just read it in instead of asking you about it.
(See page 146.)

autowrite aw Global Boolean Default: off
Instead of warning you when your command is going to discard change, write
out the file automatically. (See 79, 157.)
autowriteall awa Global Boolean Default: off

Turns on automatic writing for a number of commands. (See page 79.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 742

The Vim Tutorial and Reference

- B -

background bg Global String Default: dark or light depending on
terminal type.

Tells Vim if the default backup ground color is light or dark. (See page 112,
482.)
backspace bs Global String Default: empty

Defines how backup space types commands work in insert mode. (See page
151.)

backup bk Global Boolean Default: off

If set, create backup files. (See page 217.)

backupcopy bkc Global String Vi Default: Unix: yes
Otherwise: auto

Defines the method to be used to make a backup copy of a file. (See page 218.)
backupdir bdir Global String Default: System dependent

A list of directories in which to place the backup. The first writable directory on
the list gets the file. (See page 217.)

backupext bex Global String Default: ~
VMS: _

String thats added to a file name to make it a backup file name. (See page 217.)

backupskip bsk Global String Default: /tmp/*,$TMPDIR/*,$TMP/*,
$TEMP/*

A set of file patterns that when matched will cause Vim to skip backup
generation. (See page 218.)

balloondelay bdlay Global Number Default: 600

Delay in milliseconds before a balloon may pop up. (See page 251.)

ballooneval beval Global Boolean Default: off

Enables the balloon text. (See page 251.)

balloonexpr bexpr Global String Default: empty

Set the function to be called when deciding what balloon text to display. (See
page 251.)

binary bin Local Boolean Default: off

Indicates that the file is binary. (See page 189, 257.)

bioskey biosk Global Boolean Default: on

When set, keyboard input is obtained from the BIOS. (See page 539.)

bomb Local Boolean Default: off

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 743

The Vim Tutorial and Reference

If set a byte order mark (BOM) is placed at the beginning of the file. (See page
253.)
breakat brk Global String Default: ^I!@*+;:,./?

Defines characters which can be used for breaking long lines. (See page 332.)

browsedir bsdir Global String Default: last

Controls the initial directory for browse mode. (See page 477.)

bufhidden bh Local String Default: empty

If set this buffer becomes hidden. (Don't use unless you know what you are
doing.) (See page 94.)

buflisted bl Local Boolean Default: on

If set the buffer is show in the list of buffers. If off, it is not shown. (See page
94.)

buftype bt Local String Default: empty
Type of buffer. (See page 94.)

- C -

casemap cmp Global String Default: internal,keepascii

Defines the character set for the case changing operators. (See page 253.)

cdpath cd Global String Default: equivalent to $CDPATH or ,,

A set of directories that will be searched when changing directory. (See page
442.)

cedit Global String Vi Default: empty
Vim Default: CTRLF

The key that opens the command line window. (See page 427.)

charconvert ccv Global String Default: empty

Used to convert characters when different encodings are used. (See page 253.)

cindent cin Local Boolean Default: off
If set use C style indenting. (See page 116, 156, 365, 552.)
cinkeys cink Local String Default: 0{,0},0
A set of keys that trigger cindent mode. (See page 376, 377.)
cinoptions cino Local String Default: empty
Defines how cindent mode works. (See page 376, 377,379.)
cinwords cinw Local String Default: if,else,while,do,for,

switch
Words that cause the next line to be indented in 'cindent' mode. (See page
118. 376, 383.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 744

The Vim Tutorial and Reference

clipboard cb Global String X windows Default: autoselect,
exclude:cons\|linux
Otherwise: empty

Defines how the clipboard is used. (See page 481.)

cmdheight ch Global Number Default: 1

Number of lines for command prompts. (See page 541, 542.)

cmdwinheight cwh Global Number Default: 7

Number of lines that can be used for a command window. (See page 427.)

columns co Global Number Default: 80 or terminal width

Number of columns in the window. (See page 455.)

comments com Local String Default:
s1:/*,mb:*,ex:*/,://,b:#,:%,:
XCOMM,n:>,fb:

List of strings that can start a comment. (See page 156, 374.)

commentstring cms Local String Default /*%s*/

Comment template used for creating folding markers. (See page 389.)

compatible cp Global Boolean Default: Off unless a Vim specific
initialization file is found (i.e. .vimrc)

Controls Vi compatibility. (See page 28, 559.)

complete cpt Local String Default: .,w,b,u,t,i

Controls how completion works. (See page 194.)

completefunc cfu Local String Default: empty

Function that is called as a result of the insert mode CTRLX CTRLU command.
(See page 201.)

completeopt cot Global String Default: menu,preview

A list of options that define how insert mode completion is to be done. (See
page 194.)

confirm cf Global Boolean Default off

Confirm operations such as :q with a modified buffer. (See page 541.)

conskey consk Global Boolean Default: off

When on, try to go directly to the BIOS for console keys. (Leave off unless you
know what you are doing.) (See page 539.)

copyindent ci Local Boolean Default: off
If set, try to copy the existing indentation structure when reindenting a file.
(See page 371.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 745

The Vim Tutorial and Reference

cpoptions cpo Global String Vim Default: aABceFs
Vi Default: all flags

Compatibility options. (See page 559.)

cscopepathcomp cspc Global Number Default: 0
Defines the number of path components to include with a tag in a tag list for
Cscope. (See page 247.)
cscopeprg csprg Global String Default: cscope

Specifies the command to execute Cscope. (See page 247.)

cscopequickfix csqf Global String Default: empty

If set, Cscope output goes to the quickfix window. (See page 247.)

cscopetag cst Global Boolean Default: off

If set Cscope will be used for tag commands. (See page 247.)

cscopetagorder csto Global Number Default: 0

Determines the search order for :cstabs. (See page 247.)

cscopeverbose csverb Global Boolean Default: off

When enabled a message is issued when a new cscope database is enabled. (See
page 247.)

cursorcolumn cuc Local Boolean Default: off

Highlight the column of where the cursor is located, if enabled. (See page 173.)

cursorline cul Local Boolean Default: off

When enabled the line on which the cursor rests will be highlighted. (See page
174.)

- D -
debug Global String Default: empty
Used for debugging some macros. (See page 561.)
define def Global String Default: ^\s*#\s*define
Pattern used to locate macro definitions. (See page 402.)
delcombine deco Global Boolean Default: off
Defines how Unicode characters are handled for foreign languages. (See page
253.)
dictionary dict Global String Default: empty
List of dictionary files used for word completion. (See page 194, 223.)
diff Local Boolean Default: off
Add this window to the set being used for a diff. (See page 385.)
diffexpr dex Global String Default: empty
Expression that defines the command to be used for a diff. (See page 385.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 746

The Vim Tutorial and Reference

diffopt dip Global String Default: filler
Controls how diff mode works. (See page 385.)
digraph dg Global Boolean Default: off
Enable the entry of digraphs using {char1}<BS>{char2}. (See page 282.)
directory dir Global String Default: System dependent
Defines where a swap file can be created. (See page 223.)
display dy Global String Default: empty
Defines how text is displayed.

- E -

eadirection ead Global String Default: both
When 'equalalways' is set defines if vertical windows, horizontal windows, or
both are to be affected. (See page 345.)
edcompatible ed Global Boolean Default: off

Turning this option on make the e and g flags of :substutute toggle. (For Vi
compatibility.) Please do not turn this on. (See page 559.)

encoding enc Global String Default: $LANG or latin1

Sets the character encoding. (See page 562.)

endofline eol Local Boolean Default: on

If not set, Vim will not automatically add an EOL to a file that does not have one.
(See page 188.)

equalalways ea Global Boolean Default: on
When set try and keep windows the same size. (See page 344.)
equalprg ep Global String Default: empty

Program to use for the = command. If not set, Vim's internal indention program
will be used. (See page 373.)

errorbells eb Global Boolean Default: off

If set, error which would ring the bell instead flash the screen. (See page 544.)

errorfile ef Global String Amiga Default: AztecC.Err
Others: errors.err

Name of the error file for quickfix mode. (See page 145.)

errorformat efm Global String Default: Complex
Defines the format of the error messages for quickfix mode. (See page 407.)
esckeys ek Global Boolean Vim Default: on

Vi Default: off

If set, Vim will recognize function keys even if they send an escape sequence.
(See page 540.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 747

The Vim Tutorial and Reference

eventignore ei Global String Default: empty

A list of event names that will be ignored. (Turns off events for some :autocomd
commands.) (See page 209.)

expandtab et Local Boolean Default: off

In insert mode turn tabs into spaces if set. (See page 216, 370.)

exrc ex Global Boolean Default: off
If set, initialization files in the current directory will be read. (See page538.)

- F-

fileencoding fenc Local String Default: empty

The current file encoding. (See page 255, 256, 257.)

fileencodings fencs Global String Default: System dependent

A list of file encodings to try when reading a file. (See page 206.)

fileformat ff Global String Default: File dependent

Current file format. (See page 188.)

fileformats ffs Global String Default: System dependent

A list of file formats which Vim will try and detect when reading a new file. (See
page 188.)

filetype ft Local String Default: – File dependent.
The type of file. (See page 113, 205)
fillchars fcs Global String Default: vert:|,fold:

Define the fill characters for the status line and other informational lines. (See
page 547.)

fkmap fk Global Boolean Default: off
Used for Faris editing. (See page 255.)
foldclose fcl Global String Default: empty

When set to all, folds are closed automatically when the cursor moves off of
them. (See page 391.)

foldcolumn fdc Local Number Default: 0

The width of the column showing the number of lines folded. (See page 391.)

foldenable fen Local Boolean Default: on

When off, show all folds. When on, do folding normally. (See page 390.)

foldexpr fde Local String Default: 0
The expression to be used when 'foldmethod' is expr. (See page392, 561.)
foldignore fdi Local String Default: #

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 748

The Vim Tutorial and Reference

Lines starting with this character will be ignored when doing indent type
folding. (See page 125.)

foldlevel fdl Local Number Default: 0.

Defines the level of folding for this buffer. (See page 124.)

foldlevelstart fdls Global Number Default: -1
Initial 'foldlevel' to be used when editing a new file. (See page 125.)
foldmarker fmr Local String Default: {{{,}}}

If we are using the marker method of folding, this option defines the markers.
(See page 387.)

foldmethod fdm Local String Default: manual.

Defines how folding is to be done. (See page 123, 387, 391, 392.)

foldminlines fml Local Number Default: 1

The minimum number of lines for which to display a fold. (See page 391.)

foldnestmax fdn Local Number Default: 20

The maximum nesting level of folds. (See page 391.)

foldopen fdo Global String Default: block,hor,mark,percent,
quickfix,search,tag,undo

The commands for which folds will be opened. (See page 391.)

foldtext fdt Local String Default: foldtext()

Configures how text folds are displayed. (See page 390.)

formatoptions fo Local String Vim Default: tcq
Vi Default: vt

A series of options that define how automatic formatting is to be done. (See
page 156, 180, 180, 182, 183, 375, 552.)

formatlistpat flp Local String Default: ^\s*\d\+[\]:.)}\t]\s*

A regular expression that is used to detect lists so that the n flag may be
passed to the format programming. (See page 183.)

formatprg fp Global String Default: empty

Name of the command used to format lines for gq if 'formatexpr' is empty.
(See page 183.)

formatexpr fex Local String Default: empty

Expression used to format lines for gq. If this is not set, the lines are run
through 'formatprg'. (See page 183, 561.)

fsync fs Global Boolean Default: on

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 749

The Vim Tutorial and Reference

When enabled, Vim tries to make sure that data is written to disk using the
fsync() system call. (See page 183.)

- G -

gdefault gd Global Boolean Default: off

When set all :substitute commands will be global. (See page 437.)

grepformat gfm Global String Default: %f:%l%m,%f %l%m
Format used to recognize what comes out of the :grep command. (The :grep
command is obsolete. Use :vimgrep instead.) (See page 411.)
grepprg gp Global String Default: System dependent
Program to use for the :grep command. (The :grep command is obsolete. Use
:vimgrep instead.) (See page 411.)
guicursor gcr Global String Default: System dependent

Define how the cursor looks in GUI mode. (See page 484.)

guifont gfn Global String Default: empty

Font to use for the GUI. (See page 482.)

guifontset gfs Global String Default: empty

Fonts to be used for the GUI. The first is for English, the second for special
characters. (See page 252.)

guifontwide gfw Global String Default: empty

Font to use for double wide characters. (See page 252.)

guiheadroom ghr Global Number Default: 50

The number of pixels that you expect the windowing system to use for
decorations. (So when we go full screen we don't push any decorations off the
display.) (See page 486.)

guioptions go Global String Default: System dependent
A set of options which controls the behavior and appearance of the GUI. (See
page 327, 456, 482.)
guipty Global Boolean Default: on

In GUI mode, try and open a pty (Psuedo Teletype) when executing an external
process. (See page 486.)

guitablabel gtl Global String Default: empty

Text to appear in the tab label for the GUI. (See page 347.)

guitabtooltip gtt Global String Default: empty

Tooltip for the tab line of a GUI. (See page 347.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 750

The Vim Tutorial and Reference

- H -
helpfile hf Global String Default: System dependent
Name of the top level help file. (See page 560.)
helpheight hh Global Number Default: 20
Minimum height of the help window. (Seepage 549.)
helplang hlg Global String Default: locale dependent
Comma separated list of languages to search for help text. (See page 40.)
hidden hid Global Boolean Default: off
Make buffers that become abandon hidden instead of making them just go away.
(See page 94.)
highlight hl Global String Default: Complex string
Defines the highlighting for various system items. (See page 550.)
hlsearch hls Global Boolean Default: off
If set, search results are highlighted. (See page 61, 157, 290, 298, 326)
history hi Global Number Vim Default: 20

Vi Default: 0
The number of entries remembered in the command mode (:) and search (/)
histories. (See page 325, 449.)
hkmap hk Global Boolean Default: off
Used for Hebrew input. (See page 256.)
hkmapp hkp Global Boolean Default: off
Option for configuring the Hebrew keyboard. (See page 256.)

- I -

icon Global Boolean Default: off, on when title can be restored

When enabled, the name in the iconified Vim window will be set to the value of
'iconstring'. If that option is not set, the name of the current file will be
used. (See page 463.)

iconstring Global String Default: empty

The string to be used when the editing window is iconified. You have to have
the 'icon' option enabled for this to work. (See page 463.)

ignorecase ic Global Boolean Default: off

Determines if searches and completion commands are case sensitive or
insensitive. (See page 193, 291, 491, 525.)
imactivatekey imak Global String Default: empty

Specifies which keys are used by the Input Method when using the X Windows
system. (See page 254.)

imcmdline imc Global Boolean Default: off

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 751

The Vim Tutorial and Reference

If set automatically turns the input method (for foreign languages) when enter
commands. (Except for search patterns which is controlled by the 'imsearch'
option.) (See page 254.)

imdisable imd Global Boolean Default: System dependent

When set, the input method is disabled. (See page 254.)

iminsert imi Local Number Default: System dependent

Specifies how foreign language text is to be input. (See page 254.)

imsearch ims Local Number Default: System Dependent

Specifies how foreign language text is to be input. (See page 254.)

include inc Global String Default: ^\s*#\s*include
Pattern that matches a #include line. (See page 402.)
includeexpr inex Local String Default: empty
Expression that changes a included file name from text to file name. For C this
is a noop, but for Java you have to change each “.” to “/”. (See page 403, 399.)
incsearch is Global Boolean Default: off
Turn on incremental searching. (See page 62, 157.)
indentexpr inde Local String Default: Language specific.

Expression which controls how indentation is done. (See page 561.)

indentkeys indk Local String Default: 0{,0},:,0#,!^F,o,O,e
A set of keys that when typed will trigger an indentation event.
infercase inf Local Boolean Default: off

When doing replacement and work completion, see if you can determine the
correct case of the new word. (See page 193.)

insertmode im Global Boolean Default: off

When enabled, Vim works in insert mode as Default:. This option is useful for
people who don't know Vim and don't want to learn. However, if you're reading
this book, you are not one of those people. (See page 258.)

isfname isf Global String Default: System dependent

Determines which characters are considered part of a file name. (See page
263.)

isident isi Local String Default: system dependent

Determines which characters are part of an identifier. (See page 263.)

iskeyword isk Global String Default: Operating system and
compatibility mode dependent.

Defines what characters are considered part of a keyword. (See page 131,
261.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 752

The Vim Tutorial and Reference

isprint isp Global String Default: System dependent

Determines which characters are printable. (See page 263.)

- J -
joinspaces js Global Boolean Default: on
When enabled, Vim will insert spaces when two lines are joined. (See page
179.)

- K -
key Local String Default: empty
The current encryption key. (See page 213.)
keymap kmp Local String Default: empty
Set the keyboard mapping. (See page 254.)
keymodel km Global String Default: empty
A quick and dirty way for setting the behavior of certain special keys. (See page
169, 467.)
keywordprg kp Global String System dependent.
Program that's used when the K command is executed. (See page 131.)

- L -

langmap lmap Global String Default: empty

Define a keyboard map for a foreign language. (See page 252.)

langmenu lm Global String Default: empty

Language for menus. (See page 474.)

laststatus ls Global Number Default: 1
Determines when a status line is displayed at the bottom of a window. (See page
344.)
lazyredraw lz Global Boolean Default: off

If set, redrawing will be done as little as possible in order to save terminal
bandwidth. (See page 558.)

linebreak lbr Local Boolean Default: off
If enabled Vim will try to break long lines in nice places. (See page 331.)
lines Global Number Default: Terminal height.

Number of lines to use for the editing window. (See page 455.)

linespace lsp Global Number Default: 0
Windows: 1

Amount of whitespace in pixels to add between lines in the GUI. (See page

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 753

The Vim Tutorial and Reference

485.)

lisp Local Boolean Default: off

Turns on a number of options to make editing Lisp easier. A holdover from the
Vi days. (See page 216, 552, 559.)

lispwords lw Global String Default: Long and complex.

Words to use for Lisp indenting. (See page 559.)

list Local Boolean Default: off
Make all the invisible characters visible. Looks ugly, but you can see everything.
Good for finding out where you have tabs and where you have just a series of
spaces. (See page 138, 433, 549.)
listchars lcs Global String Default: eol:$
When the 'list' option is set, this controls how the invisible characters are
displayed on the screen. (See page 138, 549.)
loadplugins lpl Global Boolean Default: on

If set, load plugins from the plugin directory. (See page 155.)

- M -
macatsui Global Boolean Default: on
When set, enabled a hack to work around some drawing problems which are only
seen on Macintosh computers. Set it to off if you are on a Mac and experience
drawing problems.
Ideally this option should go away as soon as the underlying bug is fixed. (See
page 562.)
magic Global Boolean Default: on
Changes the way certain pattern matching characters work. (See page 304, 435,
525.)
makeef mef Global String Default: empty
Name of the error file for :make. If no string is specified, a temporary file is used.
If you put “##” in the file name it will be replaced by a unique number. (See
page 406.)
makeprg mp Global String Default: make

VMS: MMS
The program to use when :make is executed. (See page 406.)
matchpairs mps Local String Default: (:),{:},[:]
Things that can are considered matching pairs. Examples include (), [], and <>.
(See page 394.)
matchtime mat Global Number Default: 5
The time, in tenths of a second, to show the matching parenthesis (assuming
'showmatch' is set.) In order to be compatible with Nvi, this option uses tenths
of a second, while every other timing option uses milliseconds. (See page 394.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 754

The Vim Tutorial and Reference

maxcombine mco Global Number Default: 2
Maximum number of combining characters that are displayed when entering
text. (You can enter more, you just can't see them.) (See page 254.)
maxfuncdepth mfd Global Number Default: 100
Maximum length of the function call stack. (See page 557.)
maxmapdepth mmd Global Number Default: 1000
Number of times one mapping can trigger another. This prevents bad mappings
from going on endlessly. (See page 557.)
maxmem mm Global Number Default: System dependent
Maximum amount of memory to use for one buffer. (Seepage 557.)
maxmempattern mmp Global Number Default: 1000
Maximum amount of memory to use for pattern matching. (See page 557.)
maxmemtot mmt Global Number Default: System dependent
Total amount of memory to use for buffers. (See page 557.)
menuitems mis Global Number Default: 25
Maximum number of items for a menu like the buffer menu who's contents are
generated automatically. (See page 469.)
mkspellmem msm Global String Default: 460000,2000,500
Sets tuning parameters for the :mkspell command. (See page 333.)
modeline ml Local Boolean Vim Default: on,

Vi Default: off
If enabled Vim will check for mode lines within the files. These lines contain
Vim directives and are used to supply file specific to Vim. (See page 216, 537.)

modelines mls Global Number Default: 5
If non-zero the first and last 'modelines' number of lines is searched for a
mode line. (See page 372.)
modifiable ma Local Boolean Default: on
When enabled, the buffer can be modified. (See page 212.)
modified mod Local Boolean Default: off
Set automatically when the buffer is modified. (See page 225.)
more Global Boolean Vim Default: on

Vi Default: off
When enabled, if the screen fills with messages, you'll get a “More” prompt.
(See page 552.)
mouse Global String Default: empty

GUI, MS-DOS and Win32: a
Enable the use of the mouse for certain types of text terminals. (See page 465.)
mousefocus mousef Global Boolean Default: off
If enabled focus is automatically switched to whatever window is under the
mouse. (See page 464.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 755

The Vim Tutorial and Reference

mousehide mh Global Boolean Default: on
If enabled the mouse is hidden when typing text. (Actually mis-named, the
cursor is hidden. The mouse remains visible right next to your keyboard.) (See
page 466.)
mousemodel mousem Global strings Default: extend

MS-DOS and Win32: popup
Defines how the mouse works when selecting text. (See page 169, 464, 466.)
mouseshape mouses Global String Default: i:beam,r:beam,s:updown,

sd:cross, m:no,ml:uparrow,
v:rightuparrow

Defines how the mouse should look in various modes. (See page 484.)
mousetime mouset Global Number Default: 500
Maximum time between the two mouse clicks of a double click. (See page 466.)
mzquantum mzq Global Number Default: 100
Controls polling times for MzScheme threads. (See page 249.)

- N -

nrformats nf Local String Default: octal,hex

Defines the number formats recognized by Vim. Can be any combination of
octal and hex. (Decimal is always recognized.) (See page 278, 552.)

number nu Local Boolean Default: off
Show line numbers in front of each line. (See page 46, 159, 365.)
numberwidth nuw Local Number Vim Default: 4

Vi Default: 8

When line numbering is turned on, the minimum number of columns for the line
number. (See page 550.)

- O -

omnifunc ofu Local String Default: empty

Function to be used for the insert omni completion commands (CTRLX CTRLO).
(See page 201.)

operatorfunc opfunc Global String Default: empty

The function called by the g@ opeator. (See page 510.)

osfiletype oft Local String Default: System dependent.

For systems which support a file type, the file type to write. (See page 258.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 756

The Vim Tutorial and Reference

- P -

paragraphs para Global String Default: IPLPPPQPP LIpplpipbp

When editing troff files, this option specifies the macros that start a paragraph.
(See page 190.)

paste Global Boolean Default: off

When enabled a lot of other options are set so you can cut text from another
window and easily paste it in Vim. (See page 552.)

pastetoggle pt Global String Default: empty

Define a key that will toggle the 'paste' option. (See page 552.)

patchexpr pex Global String Default: empty

Expression to use for patching files. (See page 384.)

patchmode pm Global String Default: empty

When set, if a file of this extension does not exist, Vim will use it to create a
backup file. Once this file is created, it is not overwritten. (See page 217.)

path pa Global String Default: System dependent

Path on which to look for file when using gf , :find, and similar commands.
(See page 194, 398Error: Reference source not found.)

preserveindent pi Local Boolean Default: off

When redoing the indentation, attempt to preserve the existing indentation as
much as possible. (See page 371.)

previewheight pvh Global Number Default: 12

Default height of the preview window. (See page 549.)

previewwindow pvw Local Boolean Default: off

If set, then this window is the preview window. (Only one preview window is
allowed.) (See page 394.)

printdevice pdev Global String Default: empty

Name of the device to be used for hardcopy output. (See page 451.)

printencoding penc Global String System dependent

Character encoding for :hardcopy output. (See page 451.)

printexpr pexpr Global String System dependent.

The command that prints the Postscript file produced for :hardcopy output.
(See page 451.)

printfont pfn Global String Default: courier

Name of the font for :hardcopy output. (See page 451.)

printheader pheader Global String Default: %<%f%h%m%=Page %N

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 757

The Vim Tutorial and Reference

Specifies the header for :hardcopy output. (See page 451.)

printmbcharset pmbcs Global String Default: empty

Controls the character set for CJK (Korean) printing. (See page 451.)

printmbfont pmbfn Global String Default: empty

Controls the fonts to be used for CJK (Korean) printing. (See page 451.)

printoptions popt Global String Default: empty

Controls how :hardcopy printing is done. (See 166.)

prompt Global Boolean Default: on

When on a ":" prompt is used in Ex mode. (See page 159.)

pumheight ph Global Number Default: 0

Determines the maximum number of items to show in the popup menu for Insert
mode completion. When zero as much space as available is used.

- Q -

quoteescape qe Local String Default: \

The string to use for quoting characters when a shell command is issued. (See
page 447.)

- R -

readonly ro Local Boolean Default: off

If enabled, no changes are allowed to the current file. (See page 225.)

remap Global Boolean Default: on
Allows for mappings to work recursively. (See page424.)
report Global Number Default: 2

When more than this many lines are changed, Vim will output a short message
telling you how many where changed. (See page 548.)

restorescreen rs Global Boolean Default: on

When set Vim will attempt to restore the original terminal screen when existing.
(See page 552.)

revins ri Global Boolean Default: off

Inserting character will work right to left. (See page 252, 552.)

rightleft rl Local Boolean Default: off

Enables right to left mode. (See page 252.)

rightleftcmd rlc Local String Default: search

Edit right to left instead of left to right. (See page 252.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 758

The Vim Tutorial and Reference

ruler ru Global Boolean Default: off

Show ruler. (See page 269, 548, 552.)

rulerformat ruf Global String Default: empty

Defines the look of a ruler line if set. (See page 548.)

runtimepath rtp Global String Default: System dependent

Path to use for locating runtime files. (See page 157, 532.)

- S -

scroll scr Local Number Default: half the window height

Number of lines to scroll with CTRLU and CTRLD commands. (See page 269.)

scrollbind scb Local Boolean Default: off
All windows with 'scrollbind' set will scroll together. (See page 385.)
scrolljump sj Global Number Default: 1

Minimum number of lines to scroll when scrolling is needed. (See page 272.)

scrolloff so Global Number Default: 0

Minimum of lines to keep above or below the cursor before the screen scrolls.
(See page 272.)

scrollopt sbo Global String Default: ver,jump
Determines how scrolling is done. (See page 386.)
sections sect Global String Default: SHNHH HUnhsh

For users of troff, controls the macros that denote a section start. (See page
191.)

secure Global Boolean Default: off

When set, locks Vim down so that a user can't do bad things like start a shell or
perform other insecure commands. (See page 538.)

selection sel Global String Default: inclusive

Controls how selection mode works. (See page 169, 483.)

selectmode slm Global String Default: empty

Defines what starts select mode. (See page 169, 360, 466.)

sessionoptions ssop Global String Default: blank,buffers,curdir,
folds,help,options,tabpages,
winsize"

Controls what goes into a session created by the :mksession command. (See
page 348, 348.)
shell sh Global String Default: System dependents.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 759

The Vim Tutorial and Reference

Name of the shell program to use for shell commands. (See page 447, 530.)

shellcmdflag shcf Global String Default: System dependent.

The flag you have to send to the shell to tell it that a command files. (See page
447.)

shellpipe sp Global String Default: System dependent

Determines how shell output is piped to the user and a file. (See page 447.)

shellquote shq Global String Default: System dependent

Determines show shell arguments are quoted. (See page 447.)

shellredir srr Global String Default: System dependent

Controls how the output of shells are redirected to a file. (See page 447, 530.)

shellslash ssl Global Boolean Default: off

When set a forward slash is used when expanding file names. (See page 447.)

shelltemp stmp Global Boolean Vi Default: off,
Vim Default: on

When enabled use temporary files for shell output. When disabled, pipes are
used. (See page 447.)

shelltype st Global Number Default: 0

Determines how shell commands are spawned on an Amiga. (See page 258.)

shellxquote sxq Global String Default: System dependent

Determines how arguments are quoted for shell commands. Don't fiddle with
this unless you know what you are doing. (See page 447.)

shiftround sr Global Boolean Default: off

When set, indent commands move things to the a rounded indent stop. When
clear, shift commands move things a full 'shiftwidth' regardless of the current
position. (See page 372.)

shiftwidth sw Local Number Default: 8
Number of spaces for indenting. (See page 115, 157, 365, 365, 368, 377.)
shortmess shm Global String Vim Default: filnxtToO

Vi Default: empty
POSIX Default: A

A set of letters that control when short messages are used instead of long ones.
This help prevent excessive Hit Enter prompts due to long messages. (See
page 543.)

shortname sn Local Boolean Default: off

When turned on, file names are restricted to the MS-DOS 8.3 style. You have to
have a pretty old and restricted system to need this option. (See page 225.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 760

The Vim Tutorial and Reference

showbreak sbr Global String Default: empty

When wrapping lines, this string is put at the beginning of the continuation line.
The character “>” is a common value for this option. (See page 332.)

showcmd sc Global Boolean Vim Default: on
Unix: off
Vi Default: off

When typing a multi-character command, show the portion already entered on
the status line. (See page 542, 542.)

showfulltag sft Global Boolean Default: off

When completing a tag in insert mode, show not only the tag (procedure name)
but the full tag (procedure name and arguments). (See page 198.)

showmatch sm Global Boolean Default: off

When enabled, inserting a parenthesis, bracket, or similar character causes the
cursor to temporarily jump to the matching character. (See page 216, 394, 552.)

showmode smd Global Boolean Vim Default: on
Vi Default: off

When set, show the current mode in the status line. (See page 542, 542.)

showtabline stal Global Number Default: 1

Tells Vim when to display the tab line at the top of the screen. Values include:
 0 – Never
 1 – Only if two or more tabs are present.
 2 – Always
(See page 348.)

sidescroll ss Global Number Default: 0

Minimum number of character to scroll when moving horizontally. The default
(0) causes the cursor to jump to the middle of the screen when scrolling. (See
page 272.)

sidescrolloff siso Global Number Default: 0

If you have 'nowrap' set, the minimum number of columns to keep on either
side of the cursor (if possible). (See page 272.)

smartcase scs Global Boolean Default: off
If enabled and you have 'ignorecase' then typing in a mixed character string
will cause 'ignorecase' to be ignored. (See page 292.)
smartindent si Local Boolean Default: off
Enables an indenting algorithm that mostly works for C like languages, but has
been obsoleted by 'cindent'. (See page 116, 118, 552)
smarttab sta Global Boolean Default: off

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 761

The Vim Tutorial and Reference

When enabled a <Tab> at the front of the line inserts spaces or blanks according
to your 'shiftwidth'. In the middle of a line, it inserts tabs. (See 368.)

softtabstop sts Local Number Default: 0

Number of columns that are used for tabstops when the <Tab> key is pressed.
Depending on your settings, this may result in a tab or spaces being inserted.
(See 368, 552.)

spell Local Boolean Default: off

When on spell checking will be done. (See page 184.)

spellcapcheck spc Local String Default: [.?!]_[\]

Regular expression used to find an end of sentence. (See page 333.)

spellfile spf Local String Default: empty

Name of the file where Vim is to store words added to the dictionary. (See page
186, 187.)

spelllang spl Local String Default: en

A list of languages to use for spelling. (See page 185.)

spellsuggest sps Global String Default: best

A list of methods to be used for deciding how to to suggest spelling corrections.
Values include best, double, fast, {number}, file:{filename}, expr:
{expression}. (See page 333.)

splitbelow sb Global Boolean Default: off
When enabled, the split command creates a new window below the current one.
(See page 345.)
splitright spr Global Boolean Default: off

When enabled, the split command creates the new window to the right of the
current one. (See page 345.)

startofline sol Global Boolean Default: on

When enabled, changes the behavior of some movement commands so that they
also move the cursor to the first non-blank column of the line. If disabled, Vim
attempts to keep the cursor in the same column. (See page 557.)

statusline stl Global String Default: empty

Define how the status line is displayed. (See page 545.)

suffixes su Global String Default: .bak,~,.o,.h,.info,
.swp,.obj

When doing a wildcard match, put files with these suffixes last on the list. (See
'wildignore' for how to completely ignore files.) (See page 517, 554.)

suffixesadd sua Local String Default: empty

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 762

The Vim Tutorial and Reference

List of suffixes used when searching for a file using gf. (See page 399.)

swapfile swf Local Boolean Default: on

If set, use a swap file for this buffer. (See page 223.)

swapsync sws Global String Default: fsync

When set, causes a sync operation to be executed each time the swap file is
written. This causes Vim to tell the operating system to flush the disk buffers so
that the data is really written to the disk. If set to sync all buffers for all files
will be flushed. Setting it to the null string turns off this operation. (See page
223.)

switchbuf swb Global String Default: empty
Controls how buffers are displayed when switching buffers. (See 95, 96, 410.)
synmaxcol smc Local Number Default: 3000

Limit on the number of columns to be used for searching for syntax highlighting
elements. (0 is no limit.) (See page 596.)

syntax syn Local String Default: empty
The name of the syntax to use for syntax highlighting. This can actually contain
more than one language, for example c.doxygen tells Vim to use C syntax
highlighting and then the doxygen highlighting. The special string ON and OFF
turn syntax highlighting on and off. (See page 417.)

- T -

tabline tal Global String Default: empty

Defines how the tab line (the line at the top of the screen containing a list of
tabs) looks in terminal (non-GUI) mode. (See page 348.)

tabpagemax tpm Global Number Default: 10

Maximum number of tabbed panes that can be opened from the command line.
(See page 98.)

tabstop ts Local Number Default: 8

Number of spaces for each tab stop. (This value was chosen because the old
Teletype terminals had tab stops hardwired in at 8. Most programs honor this
value, so don't change this value unless you are ready to deal with a lot of
problems external programs.) (See page 365, 368, 370.)

tagbsearch tbs Global Boolean Default: on
If enabled, use a binary search to locate tags. This is faster for large tagfiles,
but won't work if the tagfile is not sorted. (See page 411.)
taglength tl Global Number Default: 0
If non-zero, tags are significant up to this number of characters. (See page 412.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 763

The Vim Tutorial and Reference

tagrelative tr Global Boolean Default: on
If enabled, then tags are resolved relative to the directory where the tagfile
resides. (See page 412.)
tags tag Global String Default: ./tags,tags

If compiled with with the
+emacs_tags:
./tags,./TAGS,tags,TAGS

A list of files which contains the tags for use with tag related commands. (See
page 412.)
tagstack tgst Global Boolean Default: on
When enabled, the tagstack acts normally. When disabled, the :tag and
:tselect commands with an argument will not push a tag onto the stack. (See
page 412.)
term on String Default: System dependent

The name of the terminal being used. (See page 558.)

termbidi tbidi Global Boolean Default: off
mlterm: on

If set, the terminal handles bidirection text instead of Vim. (See page 253.)

termencoding tenc Global String Default: System dependent

Character encoding system used by the GUI. (See page 253.)

terse Global Boolean Default: off

When set, output terse messages. See the 'shortmess' option for details. (See
page 544.)

textauto ta Global Boolean Vim Default: on
Vi Default: off

This option is obsolete. Use 'fileformats'. (See page 562.)

textmode tx Local Boolean Operating system dependent

This option is obsolete. Use 'fileformat'. (See page 562.)

textwidth tw Local Number Default: 0

The width of the text being inserted. Lines longer than this will be
automatically wrapped. A value of 0 turns off automatic line wrapping. (See
page 157, 175, 180, 181, 183, 183, 216, 552.)

thesaurus tsr Global String Default: empty

Name of the file used for the thesaurus completion commands (CTRLX CTRLT).
(See page 194,223.)

tildeop top Global Boolean Default: off

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 764

The Vim Tutorial and Reference

When set the tilde (~) command acts like an operator. If not set, the tilde (~)
command acts like a motion command. (See page 282, 560.)

timeout to Global Boolean Default: on
ttimeout Global Boolean Default: off
These two options control whether Vim will timeout in the middle of a function
key sequence or sequence defined by the :map command. The values are:

'timeout' 'ttimeout' Action

off off do not time out

on n.a. Time out on both :map and function key sqeuences

off on time out key codes
(See page 540.)
timeoutlen tm Global Number Default: 1000
ttimeoutlen ttm Global Number Default: 1

These two options control the time (in milliseconds) allowed between characters
when Vim is looking for a sequence of keystrokes. Terminal function keys send
out such sequences, but sequences can also be defined using the :map
command.
Normally only 'timeoutlen' is used. If 'ttimeoutline' is set to then it is used
for function key sequences, and 'timeoutlen' is then only used for :map
sequences. (See page 540.)

title Global Boolean Default: Terminal dependent

If set, Vim will attempt to change the title of the terminal window in which it is
running. (See page 461.)

titlelen Global Number Default: 85

What percentage of the window to use for the title. (See page 462.)

titleold Global String Default: Thanks for flying Vim

When Vim exists, it tries to restore the original title. If it can't it will use the
value of this option as the title to be displayed after Vim has stopped. (See page
463.)

titlestring Global String Default: empty

The title of the window. (See page 463.)

toolbar tb Global String Default: icons,tooltips
Controls what goes into the toolbars. Possible values are: icons, text, horiz,
tooltips. (See page 461.)
toolbariconsize tbis Global String Default: small

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 765

The Vim Tutorial and Reference

The size of the icons in the toolbar. Values are tiny, small, medium, and large.
(See page 462.)

ttybuiltin tbi Global Boolean Default: on

When enabled Vim will search its internal terminal database before searching
any external ones. (See page 558.)

ttyfast tf Global Boolean Default: on for most terminals

If set indicates you have a fast terminal and Vim can redraw the screen using a
system which sends more characters, but looks better. (See page 558.)

ttymouse ttym Global String Default: depends on 'term'

Controls how mouse events are sent to Vim through a terminal. (See page 558.)

ttyscroll tsl Global Number Default: 999

Maximum number of lines to scroll the screen. If there are more lines
to scroll the window is redrawn. For terminals where scrolling is
very slow and redrawing is not slow this can be set to a small number,
e.g., 3, to speed up displaying. (See page 559.)

ttytype tty Global String Default: from $TERM

Alias for 'term', see above. (See page 558.)

- U -

undolevels ul Global Number 100
Unix, VMS, Win32, OS/2: 1000

Maximum number of changes that can be undone. (See page 284.)

updatecount uc Global Number Default: 200

The number of characters you can type before the swap file is written. (See
page 222.)

updatetime ut Global Number Default: 4000

If set, the number of milliseconds of idle time before the swap file is written.
(See page 206, 222.)

- V -

verbose vbs Global Number Default: 0

Controls how much debugging information is displayed. (See page 560.)
verbosefile vfile Global String Default: empty

If set, the name of a file where verbose messages are logged. (See page 561.)

viewdir vdir Global String Amiga, MS-DOS, OS/2 and Win32:
$VIM/vimfiles/view,

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 766

The Vim Tutorial and Reference

Macintosh: $VIM:vimfiles:view
VMS: sys$login:vimfiles/view
RiscOS: Choices:vimfiles/view

Directory where view files (:mkview) are stored. (See page 350.)

viewoptions vop Global String Default: folds,options,cursor

Controls what's saved using the :mkview command. (See page 350.)

viminfo vi Global String Vi mode: empty
Vim mode for MS-DOS, Windows and
OS/2: '20,<50,s10,h,rA:,rB:
Vim mode for other systems:
'20,<50,s10,h

A string defining what data is stored in a .viminfo file. (See page 324-326, 488.)
virtualedit ve Global String Default: empty
Tells Vim when you can do virtual editing. (See page 281.)
visualbell vb Global Boolean Default: off
Use a visual bell instead of beeping. (See page 545.)

- W -
warn Global Boolean Default: on
Give a warning message when a shell command is used while the buffer
has been changed. (See page 544.)
weirdinvert wiv Global Boolean Default: off
Provided for backward compatibility with version 4.x. Mostly it's here to get
around some problems with strange terminals. (See page 559.)
whichwrap ww Global String Vim Default: b,s

Vi Default: empty
Specifies which characters are allowed to move the cursor past the end of line or
beginning on line. (See page 268.)
wildchar wc Global Number Vim mode: <Tab>

Vi mode: CTRLE
Character that starts wildcard expansion in command line mode. (See page
553.)
wildcharm wcm Global Number Default: 0
The character number of a character will act like 'wildchar' when used inside
macros. (See page 553.)
wildignore wig Global String Default: empty
A list of file patterns of files that you want to ignore when doing command line
completion. For example, you probably want to ignore all object files because

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 767

The Vim Tutorial and Reference

you never edit them in Vim. (See page 517, 554.)
wildmenu wmnu Global Boolean Default: off
When 'wildmenu' is enabled then attempting to complete a command line
command with <Tab> may result in a menu being shown giving you a list of
possible completions to accept. (See page 554.)
wildmode wim Global String Default: full
Along with 'wildchar', controls how completion mode operates. Values
include:

<empty> Complete only the first match

full Cycle through each complete match.

longest Complete the longest possible string. If this does not result
in a completion, then use the next completion mode.

longest:fill Like longest, but start 'windmenu' mode if enabled.

list If more than one match, show a list of possible matches.

list:full When more that one match, list all matches, then select the
first full match.

list:longest When there is more than one match, list all the matches
and then select the longest string.

(See page 555.)
wildoptions wop Global String Default: empty
In command mode the CTRLD key causes a matching list of files to be displayed.
When this option is set to tagfile, a matching list of tags and files will be
displayed.
winaltkeys wak Global String Default: menu
If set to “no”, the ALT key will work like it normally does in Microsoft Windows.
It will select menu items. If set to “menu”, then ALT is just another keyboard
modifier that can be used for Vim commands. (See page 483, 539.)
window wi Global Number Default: screen height - 1
When CTRLF, <PageUp>, CTRLB, and <PageDown> are used to move the screen
up or down a page, this option defines the number of lines in a page. (See page
270, 272.)
winheight wh Global Number Default: 1
Minimum height of the current window. (See page 344.)
winfixheight wfh Local Boolean Default: off
Do not change the height of this window even if 'equalalways' is set. (See
page 345.)
winfixwidth wfw Local Boolean Default: off
Do not change the width of this window even if 'equalalways' is set. (See page

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 768

The Vim Tutorial and Reference

345.)
winminheight wmh Global Number Default: 1
Minimum height of a window that's not the current window. (See page 344.)
winminwidth wmw Global Number Default: 1
Minimum width of the windows that are not current. (See page 344.)
winwidth wiw Global Number Default: 20
Minimum width of the current window. (See page 344.)
wrap Local Boolean Default: on
If set, long lines will wrap around and be displayed on the screen. If not set the
ends of long lines go off the screen and can only be seen when you use horizontal
scrolling. (See page 327, 331.)
wrapmargin wm Local Number Default: 0
When typing characters with auto-wrap turned on, the number of characters to
use for a right margin. (See page 176, 552.)
wrapscan ws Global Boolean Default: on
If set searches wrap past the beginning or end of the file. (See page 293.)
write Global Boolean Default: on
If set, the user is allowed to write files. If not set, you can look but not touch
(write) files. (See page 557.)
writeany wa Global Boolean Default: off
If set, when writing files do not force the user to use the overwrite (!) option if a
file is going to overwrite an existing file. (See page 557.)
writebackup wb Global Boolean Default: on with writebackup feature

off otherwise
If set, then files are written by making a backup, writing the file, and deleting
the backup. (See page 218.)
writedelay wd Global Number Default: 0
A debugging option which inserts the specified amount of time (in milliseconds)
between each character output. Basically a simple way of slowing down the
editor so you can see how it redraws the screen. (See page560.)

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 769

22
23

The Vim Tutorial and Reference

Appendix H: Vim License Agreement
VIM LICENSE

I) There are no restrictions on distributing unmodified copies of Vim except
 that they must include this license text. You can also distribute
 unmodified parts of Vim, likewise unrestricted except that they must
 include this license text. You are also allowed to include executables
 that you made from the unmodified Vim sources, plus your own usage
 examples and Vim scripts.

II) It is allowed to distribute a modified (or extended) version of Vim,
 including executables and/or source code, when the following four
 conditions are met:
 1) This license text must be included unmodified.
 2) The modified Vim must be distributed in one of the following five ways:
 a) If you make changes to Vim yourself, you must clearly describe in

 the distribution how to contact you. When the maintainer asks you
 (in any way) for a copy of the modified Vim you distributed, you
 must make your changes, including source code, available to the
 maintainer without fee. The maintainer reserves the right to
 include your changes in the official version of Vim. What the
 maintainer will do with your changes and under what license they
 will be distributed is negotiable. If there has been no negotiation
 then this license, or a later version, also applies to your changes.
 The current maintainer is Bram Moolenaar <Bram@vim.org>. If this
 changes it will be announced in appropriate places (most likely
 vim.sf.net, www.vim.org and/or comp.editors). When it is completely
 impossible to contact the maintainer, the obligation to send him
 your changes ceases. Once the maintainer has confirmed that he has
 received your changes they will not have to be sent again.

 b) If you have received a modified Vim that was distributed as
 mentioned under a) you are allowed to further distribute it
 unmodified, as mentioned at I). If you make additional changes the
 text under a) applies to those changes.

 c) Provide all the changes, including source code, with every copy of
 the modified Vim you distribute. This may be done in the form of a
 context diff. You can choose what license to use for new code you
 add. The changes and their license must not restrict others from
 making their own changes to the official version of Vim.

 d) When you have a modified Vim which includes changes as mentioned
 under c), you can distribute it without the source code for the
 changes if the following three conditions are met:
 The license that applies to the changes permits you to distribute
 the changes to the Vim maintainer without fee or restriction, and
 permits the Vim maintainer to include the changes in the official
 version of Vim without fee or restriction.
 You keep the changes for at least three years after last
 distributing the corresponding modified Vim. When the maintainer

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 770

The Vim Tutorial and Reference

 or someone who you distributed the modified Vim to asks you (in
 any way) for the changes within this period, you must make them
 available to him.
 You clearly describe in the distribution how to contact you. This
 contact information must remain valid for at least three years
 after last distributing the corresponding modified Vim, or as long
 as possible.

 e) When the GNU General Public License (GPL) applies to the changes,
 you can distribute the modified Vim under the GNU GPL version 2 or
 any later version.

 3) A message must be added, at least in the output of the ":version"
 command and in the intro screen, such that the user of the modified Vim
 is able to see that it was modified. When distributing as mentioned
 under 2)e) adding the message is only required for as far as this does
 not conflict with the license used for the changes.
 4) The contact information as required under 2)a) and 2)d) must not be
 removed or changed, except that the person himself can make
 corrections.

III) If you distribute a modified version of Vim, you are encouraged to use
 the Vim license for your changes and make them available to the
 maintainer, including the source code. The preferred way to do this is
 by email or by uploading the files to a server and emailing the URL.
 If the number of changes is small (e.g., a modified Makefile) emailing a
 context diff will do. The email address to be used is
 <maintainer@vim.org>

IV) It is not allowed to remove this license from the distribution of the Vim
 sources, parts of it or from a modified version. You may use this
 license for previous Vim releases instead of the license that they came
 with, at your option.

Author's Note

By Steve Oualline

The people behind Vim have spent a lot of time and effort to make one of
the best editors in the world. Yet they do not ask anything for themselves;
instead, they ask that you help some of the poorest and most needy people in
Africa. Please send them a donation.

If you work for a medium-size or large company, please take the time to tell
your boss how much using Vim has helped you and encourage your company to
make a substantial donation.

The people behind Vim are good people. Please help them out.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 771

The Vim Tutorial and Reference

Appendix I: Basic Vim Quick Reference

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 772

The Vim Tutorial and Reference

Appendix J: Vim Quick Reference

Minimum Command Set. Learn This First.

Basic Movement

[number]j – Down

[number]k – Up

[number]h – Left

[number]r – Right

Editing Commands

u – Undo

CTRLR – Redo

i{text}<Esc> – Insert text in front of cursor

a{text}<Esc> – Insert text after cursor

[number]x – Delete characters

[number]dd – Delete Lines

Getting Out

ZZ – Write file and exit :q! – Abort edits and discard all work (since editing
started or the last :write command).

Note: On Linux and Unix you must enable the Vim command set

Use the command:

$ touch .vimrc

to create a .vimrc file which tells Vim it's OK to act like Vim.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 773

j

k

h l

Basic Movement

The Vim Tutorial and Reference

Vertical Movement / Scrolling

[number]CTRLB – Screen down (also <PageUp>)

[number]CTRLU – ½ Window down (Actually the number of lines defined by
'scroll'. The [number] set the size of the movement
('scroll'), down not specify the number of moves.)

[number]CTRLY – Lines down

[number]CTRLF – Screens up

[number]CTRLD – ½ Window up. Actually the number of lines defined by
'scroll'. The [number] set the size of the movement
('scroll'), down not specify the number of moves.)

[number]CTRLE – Lines up

Line 10
Line 11
Line 12
Line 13
Line 14
Line 15
Line 16
Line 17
Line 18
Line 19

Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?

Line 10
Line 11
Line 12
Line 13
Line 14
Line 15
Line 16
Line 17
Line 18
Line 19

Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?
Line ?

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 774

CTRLB
(Line 1 is new top line)

CTRLU (Line 5 top)

CTRLY
(Line 9 is new top line)

CTRLE
(Line 11 is new top line)

CTRLD (Line 15 top)

CTRLF
(Line 18 is new top line)

The Vim Tutorial and Reference

[number] – Go up [number] lines to start

[number]<CR> – Forward to start of the next [number] line

[number]_ – Cursor to start of [number] lines lower

User interfaces are
interesting. First we had
text, but that was not good
enough. Then we had icons,
but then the icons got to
confusing, so we added
tooltips. So now when you
place a cursor over an icon
you get text. The icon you
can't understand with the
text you can, replaced the
original text menus.

m{mark} – Place mark.

`{mark} -- Go to mark.

'{mark} – Go to first non-blank character of the line containing
{mark}

{count}% – Go to {count} percent of the file. The {count} must be
specified because % with no {count} goes to the matching
brace, parenthesis, or curly bracket.

[number]G -- Go to line [number] (default = last line).

Screen Location

[number]H line from top of screen

M Middle of the screen

[number]L line from bottom of the
screen

"What's the fastest way to
move 500GB of data daily
from Santa Cruz to
Los Angeles?".

Answer: FedEx.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 775

(minus)

<CR> 2_

M

L

H

The Vim Tutorial and Reference

Screen Redrawing

[count]z<cr> Redraw with this line at the top of the window. If
[count] is specified, the line will be [count] lines from
the top.

A dozen, a gross, and a score,
Plus three times the square root of
four,
 Divided by seven,
 Plus five time eleven,
Equals nine squared plus zero, no
more.

 Plus five time eleven,
Equals nine squared plus zero, no
more.

A UNIX sales lady, Lenore,

[count]z{height}<cr>

Like z<cr> only set the window height as well.

[count]z+ Redraw the screen with [count] line at the top. If no
[count] specified, this command acts like z<cr>.

Line 10
Line 11
Line 12
Line 13
Line 14

Line 2
Line 3
Line 4
Line 5
Line 6

[count]z Put line [count] at the bottom of the screen. If no
[count] is specified, put the current line at the bottom.

Line 10
Line 11
Line 12
Line 13
Line 14

Line 8
Line 9
Line 10
Line 11
Line 12

[count]z. Put line [count] at the center of the screen. If no
[count] is specified, put the current line at the center.

Line 10
Line 11
Line 12
Line 13
Line 14

Line 31
Line 32
Line 33
Line 34
Line 35

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 776

z<cr>

2z+

12z

33z.

The Vim Tutorial and Reference

Virtual movement

j – Move up gj – Virtual Move up

k – Move down gk – Virtual Move down

l – Move right gl – Virtual Move right

h – Move left gh – Virtual Move left

'virtualedit' option values:

block Allow virtual editing in Visual block mode.
insert Allow virtual editing in Insert mode.
all Allow virtual editing in all modes.
onemore Allow the cursor to move just past the end of the line

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 777

The Vim Tutorial and Reference

Commands for English Text

:set tw={number}

Set the width for automatic text wrapping. (Does not
wrap existing text.)

:set spell Turn on spell checking

z= Suggest corrections for the misspelled word under the
cursor.

[s Previous spelling error

]s Next spelling error

Text Movement

'(Sentence start

') Sentence end

[number](Sentences backward

[number]) Sentences forward

'{ Paragraph start

'} Paragraph end

[number]{ Paragraph backwards

[number]} Paragraph forward.

gq{motion} Format text

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 778

The Vim Tutorial and Reference

Horizontal Movement

[number]fx Single character forward search, stop on character.

[number]Fx Single character reverse search, stop on character.

[number]tx Single character forward search, stop before character.

[number]Tx Single character forward search, stop before character.

To err is human.
To really foul up you need a computer.

[number]; Repeat last single character search

[number], Repeat last single character search in the other direction

To keep things fouled up you need a government.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 779

fi Fh

ty Ty

fo ; ; ;

; ,

The Vim Tutorial and Reference

[number]e Forward to end of word.

[number]E Forward to end of WORD.

[number]w Forward to start of word.

[number]W Forward to start of WORD.

[number]b Backward to start of word.

[number]B Backward to start of WORD.

[number]ge Backward to end of word.

[number]gE Backward to end of WORD.

In Vim A.word is not A.WORD need.more.words.
And hereis anexample of backward stuff.

^ First character of the line

$ Last character on the line

This is a test.

g0 First character of the screen line

g$ Last character of the screen line

This is a very long unwrapped text that exceeds the screen size

m{mark} Place mark

'{mark} Go to line containing mark

`{mark} Go to character containing mark

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 780

e E 3w W

gE
ge

Bb

^ $

g^ g$

The Vim Tutorial and Reference

Changing text

[number]i{text}<ESC>

Insert text at the current cursor position..

[number]I{text}<ESC>

Insert text at the beginning (first no blank character) of
the line.

[number]a{text}<ESC>

Insert text after the cursor.

[number]a{text}<ESC>

Append text to the end of the line.

[number]O Open [number] line above

[number]o Open [number] lines below

xp Reverse characters

[number][“{register}]d{move}

Delete text from the current position to where the move
takes you.

[number][“{register}]dd

Delete lines.

[number][“{register}]D

Delete to the end of line (and [number]1 more lines).

[number][“{register}P

Put text in front of the cursor.

[number][“{register}P

Put text in back of the cursor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 781

The Vim Tutorial and Reference

[“{register}][number]c{motion}{text}<ESC>

Change text.

[“{register}][number]cc{text}<ESC>

Change lines of text.

[“{register}][number]C{text}<ESC>

Change text from the cursor to the end of the line.

[number]r{char}

Replace character under the cursor.

[number]R{text}<ESC>

Replace a series of characters.

[number]gr{char}

Replace a single virtual character.

[number]gR{text}<ESC>

Replace a series of virtual characters.

[number]J Join lines

[number]gJ Join lines without adding a space

[number][“{register}]s{text}<ESC>

Delete [number] characters, then enter insert mode.

[number][“{register}]S{text}<ESC>

Delete [number] lines, then enter insert mode.

U Undo all the changes on a line (twice redoes them).

[number][“{register}]X

Delete characters before the cursor.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 782

The Vim Tutorial and Reference

[number][“{register}]y{motion}

Yank text into a register. (Copy.)

[number][“{register}]yy

Yank lines into a register. (Copy.)

[number][“{register}]Y

Yank to the end of the line.

[number]gU{motion}

Make the text upper case.

[number]gUgU

[number]gUU Make lines upper case.

[number]gu{motion}

Make the text lower case.

[number]gugu

[number]guu Make lines lower case.

[number]g?{motion}

Encode / decode text with rot13.

[number]g?g?

[number]g?? Encode / decode lines with rot13.

[number]!!{motion}{command}

Filter lines through {command}.

[number]!!

Filter lines through {command}.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 783

The Vim Tutorial and Reference

Windows

[number]CTRLW +

Increase the current window's height.

[number]CTRLW

Decrease the current window's height.

[number]CTRLW <

Increase the current window's width.

[number]CTRLW >

Decrease the current window's width.

O woe to Myrtle the turtle
Who found programming quite a hurtle
 the system you see
 was slower than he
and that's not saying much for the turtle.

CTRLW = Make all windows the same height.

[number]CTRLW _

Set window height.

[number]CTRLW |

Set window width.

CTRLW H Move the window to far left.

CTRLW L Move the window to far right

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 784

CTRLW <

CTRLW >

CTRLW CTRLW +

The Vim Tutorial and Reference

One |Two |Three
~ |~ |~
~ |~ |~
~ |~ |~
~ |~ |~
~ |~ |~
one.c [+] two.c [+] three.c [+]

CTRLW K Window to top

CTRLW J Window to bottom

One
~
~
~
one.c [+]
Two
~
~
two.c [+]
Three
~
~
three.c [+]

CTRLW R Rotate windows up.

CTRL_W r Rotate windows down.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 785

CTRLW H

CTRLW L

CTRLW J

CTRLW K

The Vim Tutorial and Reference

One
~
~
~
one.c [+]
Two
~
~
two.c [+]
Three
~
~
three.c [+]

CTRL_W x Exchange window

One
~
~
~
one.c [+]
Two
~
~
two.c [+]

CTRLWW Previous window (wrap)

CTRLWn Next window (wrap)

CTRLWb Bottom window

CTRLWj Window up

CTRLWk Window down

CTRLWl Window left

CTRLWh Window left

CTRLWt Window top

CTRLWP Preview window

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 786

CTRLW r

CTRLW R

CTRLW r

The Vim Tutorial and Reference

Others

CTRLWs Split current window

CTRLWv Vertical split

CTRLW^ Split and edit alternate file

CTRLWf Split and edit file under cursor

CTRLWF Split and edit file with line number

CTRLWgf Edit file with new tab

CTRLWgF Same thing with line number

CTRLWn New window

CTRLWT Make window a new tab.

CTRLWc Close window

CTRLWo Close everyone else (only window)

CTRLWq Quit window

CTRLWz Close preview

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 787

The Vim Tutorial and Reference

Multiple Files

:args {filelist}

Set the file list to the given files. Wildcards like “*”, “**”,
and “?” may be used.

CTRL^ Edit alternate file

:n Next file in the argument list

:p Previous file in the argument list

:first First file on the list

:last Last file on the list.

gf Edit the file who's name is under the cursor

gF Like gf but if a line number follows, position the cursor
on that line.

CTRLW gf Edit the file who's name is under the cursor in a new tab.

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 788

The Vim Tutorial and Reference

Searching

* Search word forward for the word under the cursor

Search word backward for the word under the cursor

g# Search string forward for the word under the cursor

g* Search string backwards for the word under the cursor

/{text} Search forward

?{text} Search reverse

n Repeat search

N Repeat search backward

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 789

The Vim Tutorial and Reference

Search Pattern Reference

Simple atoms

Pattern Description Example Result
abc Literal /abc abcdef cba
\\ Literal \ /\\ a\b
\/ Literal / /\/ a/b
\. Literal . /\. a.b a+b
\{ Literal { /\{ a{b a+b
\[Literal [/\[a[b a+b
\$ Literal $ /\$ a$b a+b
\^ Literal ^ /\^ a^b a+b
\%dnnn The character who's decimal number is nnn
\%xnn The character who's hexadecimal number is nn
\%onnn The character who's octal number is nnn
\%unnnn The multibyte character who's number is nnnn
\%Unnnnnnnn The large multibyte character who's number is nnnnnnnn
\e <Esc> Character
\t <Tab> Character
\r <CR> Character
\b <BS> Character
\n End of line

Character Classes

Pattern Description Example Result
\a Alphabetic character \a ab123(*&ab
\i Identifier

(defined by 'isident')
\i abc def a10b

\I Identifier excluding digits \I abc def a10b
\k Keyword

(defined by 'iskeyword')
\k abc def a10b

\K Keyword excluding digits \k abc def a10b
\f File name

(defined by 'isfname')
\f sam.txt /root/sam.txt f10.dat

\F File name excluding digits\F sam.txt /root/sam.txt f10.dat
\p Printable

(defined by 'isprint')
\p sam.txt ^A^B^C f10.dat

\P Pritable name excluding
digits

\P sam.txt ^A^B^C f10.dat

\s Whitespace \s Space tab done

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 790

The Vim Tutorial and Reference

Pattern Description Example Result
\S Non-whitespace \S Space tab done
\d Digit \d 1234 abc xyz
\D Non-digit \D 1234 abc xyz
\x Hex-digit \x 1234 abc xyz
\X Non-hex digit \X 1234 abc xyz
\o Octal-digit \o 1234567890 abc xyz
\O Non-octal digit \O 1234567890 abc xyz
\w Word character

(a-z,A-Z,0-9, underscore)
\w _test10 a test

\w Non-word character \W _test10 a test

Modifiers

Pattern Description Example Result
\c Ignore case \cabc ABC abc
\C Match case \ca\CBC aBC abc ABC
\m Turn 'magic' off
\M Turn 'magic' on
\v Turn very magic on
\V Turn off very magic
\Z Ignore differences in Unicode combination characters

Grouping and Repeats

Pattern Description Example Result
\~ Last substitute

string
\(xx\) Grouping /\(ab\)\1 abab abx
\1 First match inside \(...\)
\9 Ninth match inside \(...\)

Sets of Characters

Pattern Description Example Result
[abc] Any of the given

characters
[abc] abcdefgaaxxyycc

[af] From a to f [af] axbxefxx
[^abc] Any character

except a,b, or c
[^af] axbxefxx

\%[string] Match as much
of string as
possible

a\%[bcd] abxx
abcxx

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 791

The Vim Tutorial and Reference

Anchors

Pattern Description Example Action
^ Start of line ^abc abc abc abc
$ End of line abc$ abc abc abc
_^ Start of line

(can be inside
pattern)

abc_^def line with abc
def on next

_$ End of line (can
be inside
pattern)

abc_$def line with abc
def on next

\< Beginning of
word

\<abc abc xxabc

\> End of word abc\> abcxx xxabc abcyy
\%^ Beginning of

file
\%^abc abc

abc
\%$ End of file abc\%$ abc

abc
\%V Inside visual

area
\%# Cursor position
\%55l Inside line 55
\%5l Inside column 5
\%7l Inside virtual

column 7
\%'m Mark m postion
\zs Set start of

match
\ze Set end of

match

Repeats and Wildcards

Pattern Description Example Result
. Any single character a.c abc axc ac
_. Any single character (eol

included)
a_.c abc a

c
* Repeat 0 or more times ab* ax abx abbx
\+ Repeat 1 or more times ab\+ ax abx abbx
\= Zero or one times ab\= ax abx abbx
\? Zero or one times ab\? ax abx abbx
\{n,m} Between n to m times ab\{2,3} ab abb abbb abbbb
\{n} Exactly n times ab\{2} ab abb abbb abbbb

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 792

The Vim Tutorial and Reference

Pattern Description Example Result
\{n,} At least n times ab\{2,} ab abb abbb abbbb
\{,m} m or less times ab\{,2} ab abb abbb abbbb
\{} 0 or more times (like *) ab\{} ax ab abb abbb abbb
\{n,m} Between n to m times, as few

as possible
ab\{2,3} ab abb abbb abbbb

\{n} Exactly n times, as few as
possible

ab\{2} ab abb abbb abbbb

\{n,} At least n times, as few as
possible

ab\{2,} ab abb abbb abbbb

\{,m} m or less times, as few as
possible

ab\{,2} ab abb abbb abbbb

\{} 0 or more times (like *), as
few as possible

ab\{} ax ab abb abbb abbb

Choices

Pattern Description Example Result
a|b a or b a|b abcdef cba
a\&b a followed by b a\&b ab ac

Zero Width Conditionals

Pattern Description Example Result
\@> Makes the preceding atom

a whole pattern
\(a*\)ab

\(a*\)ab

aaab

aaab
\@= Zero with pattern match

for the preceding atom
which must follow.

foo\(bar\)\@= foobar foofoo

\@! Zero with pattern not
matching for the
preceding atom which
must follow.

foo\(bar\)\@! foobar foofoo

\@<= Zero with pattern match
for the preceding atom
which must come before.

f[ox]*\(oo\)\@<= foxo fxoo

\@<! Zero with pattern
non-match for the
preceding atom which
must come before.

f[ox]*\(oo\)\@<! foxo fxoo

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 793

The Vim Tutorial and Reference

For programmers

Command Go to If one tag If many Result in
:tag {tag} Tag Jump Jump Same window
:tselect {tag} Tag Select Select Same window
:tjump {tag} Tag Jump Select Same Window
:stag {tag} Tag Jump Jump New window
:stselect {tag} Tag Select Select New window
:stjump {tag} Tag Jump Select New Window
:ptag {tag} Tag Jump Jump Preview Window
:ptselect Tag Select Select Preview Window
:ptjump Tag Jump Select Preview Window
CTRL] Tag Jump Jump Same Window
g] Tag Select Select Same Window
g CTRL] Tag Jump Select Same Window
gf File Jump N.A. Same Window
CRLWf File Jump N.A. Same Window
CTRLWgf File Jump N.A. New tab
CTRLW] Tag Jump Jump New Window
CTRLWg] Tag Select Select New Window
CTRLwgCTRL] Tag Jump Select New Window
CTRLW} Tag Jump Jump Preview Window
CTRLWg} Tag Jump Select Preview Window

CTRLWd Split and jump to definition

CTRLWi Split and jump to declaration of id

[number]>> Right shift lines

>{motion} Right shift lines to {motion}.

<< Left shift

<{motion} Left shift lines to {motion}.

={motion} Reindent

=% Reindent to matching curly bracket

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 794

The Vim Tutorial and Reference

== Reindent line

[p Paste but with current indent

% Match curly bracket

K Keyword lookup

CTRLX Increment the number under the cursor

CTRLA Decrement the number under the cursor

K Do a man on the keyword under the cursor

Program searches

Command Search For Start Result

[d Macro definition Start of file Show line

]d Macro definition Current position Show line

[D Macro definition Start of file Show all

]D Macro definition Current position Show all

[CTRLD Macro definition Start of file Jump

] CTRLD Macro definition Current position Jump

CTRLW d Macro definition Start of file New window

CTRLW i Line containing word Start of file Open new window

[CTRLI Line containing word Start of file Jump

] CTRLI Line containing word Current position Jump

[i Line containing word Start of file Show line

]i Line containing word Current position Show line

[I Line containing word Start of file List all

]I Line containing word Current position List all

[# Go to the next unmatched #if/#else/#endif

]# Go to the previous unmatched #if/#else/#endif

[(Go to the previous unmatched ().

[(Go to the next unmatched ().

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 795

The Vim Tutorial and Reference

gD Go to global declaration

gd Go to local declaration

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 796

The Vim Tutorial and Reference

Text selection

Command Delimiter Include
Delimiter

Example

a" " Yes print "Hello world"

a' ' Yes ch = 'x';

a(
a)
ab

[] () Yes x = data[j];
x = f(y);

a<
a>

<> Yes <bold>Bold text

a{
a}
aB

{} Yes if (a) { b(c); }

aw word Yes This is an example

aW WORD Yes This wordstyle example

a[
a]

[] Yes a = x[3];

a` ` Yes x = `ls 1`

ap Paragraph Yes This is a sentence. And
this is another.

Different paragraph.

as Sentence Yes No way. Yes way.

at Tag block Yes <i>Yell</i>

i" “ No print "Hello world"

i' ' No ch = 'x';

i(
i)
ib

[] () No x = data[j];
x = f(y);

i<
i>

<> No <bold>Bold text

i{
i}
iB

{} No if (a) { b(c); }

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 797

The Vim Tutorial and Reference

Command Delimiter Include
Delimiter

Example

iw word No This is an example

iW WORD No This wordstyle example

i[
i]

[] No a = x[3];

i` ` No x = `ls 1`

ip Paragraph No This is a sentence. And
this is another.

Different paragraph.

is Sentence No No way. Yes way.

it Tag block No <i>Yell</i>

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 798

The Vim Tutorial and Reference

Display options

:set number Show line numbers

:set list Show unprintable characters

:set linebreak Break lines at nice boundaries

:set breakat The nice boundaries to use if 'linebreak' set.

:set nowrap Do not wrap the screen

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 799

The Vim Tutorial and Reference

Diff mode

do Get (obtain) difference from the other window

dp Put difference to the other window

:diffsplit {file} Split the window and start diff mode.

:diffthis Add this file to the ones being used for this diff.

:diffoff Turn off diff mode

:diffupdate Update the differences between files

[number] [c Backward change.

[number]]c Forward change

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 800

The Vim Tutorial and Reference

Folding

zf{motion} Fold text

zO Open all folds under the cursor

zo Open a single fold under the cursor

zC Close all folds under the cursor

zc Close fold under the cursor

zR Set 'foldlevel' to it's lowest level

zr Reduce 'foldlevel' by one

zi Invert 'foldenable'

[z Move to start of fold

]z Move to end of fold

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 801

The Vim Tutorial and Reference

Misc commands

qa{commands}q Start macro

@a Execute macro

q: Edit : commands

q/ Edit searches

q? Edit reverse searches

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 802

24

The Vim Tutorial and Reference

 Index
basic..

editing...28
Basic..

Movement Commands.................28
Basic Editing...................................28
Basic Movement Commands...........28
Command..

Delete..
Normal Mode...........................28

Esc...
Insert Mode.............................31

i..
Normal Mode...........................30

Insert...
Normal Mode...........................28

x...
Normal Mode...........................33

<Enter>..
Insert Mode.............................33

<Esc>..
Insert Mode.............................31

Command mode..................................
:set...

Command.................................28
compatible...

Option..28
compatible option...........................28
cp...

option..28
cp option...28
CTRL-H..

Normal Mode Command.............32
CTRL-H, Normal Mode Command. .32
CTRL-J...

Normal Mode Command.............32
CTRL-K..

Normal Mode Command.............32
CTRL-K, Normal Mode Command...32
CTRL-N..

Normal Mode Command.............32
CTRL-N, Normal Mode Command. .32

CTRL-P..
Normal Mode Command.............32

CTRL-P, Normal Mode Command. . .32
Delete Character.................................

Normal Mode...............................33
Delete Command (Normal Mode)...28
deleting characters, Normal Mode. 33
Down (j)...

Normal Mode...............................31
Down (k)..

Movement Command (Normal
mode)...31

Esc (key) Insert Mode command. . .31
Exiting the editor............................28
Getting Out...

Insert Mode.................................31
Getting out of Insert Mode..............31
gvim command................................29
Help...

Command....................................28
Help Command...............................28
Inseert...

Mode..30
Insert...

Mode..30
Insert (i)..

Normal Mode...............................30
Insert command (i)..........................30
Insert Command (Normal Mode)....28
Insert Mode.....................................30
Leavingf Insert Mode......................31
Left (h)..

Movement Command (Normal
mode)...31
Normal Mode...............................31

Linux...28
Microsoft Windows,........................29
Mode Visual.....................................30
Modes..30
Movement...

Basic..

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 803

The Vim Tutorial and Reference

Command.................................28
Normal Mode......................................

Delete..
Command.................................28

Insert...
Command.................................28

Normal Mode command (h)................
Left..31

Normal Mode command (j).................
Down...31

Normal Mode command (k)................
Up..31

Normal Mode command (l).................
Right..31

Right (l)...
Movement Command (Normal
mode)...31
Normal Mode...............................31

running vim.....................................29
starting vim.....................................29
Trouble (Getting out of)..................31
UNIX...28
Up (j)...

Movement Command..................31
Movement Command (Normal
mode)...31

Up (k)..
Normal Mode...............................31

Vi mode...28
vim...

command line command..............29
Vim..

Mode..28
vim command..................................29
Vim mode..28
Visual...

Mode..30
Visual Mode.....................................30
Windows, Microsoft........................29
x command, Normal Mode..............33
x, Normal Mode Command.............33
:set...

Command command....................28
:set command..................................28
.vimrc..

File...28
.vimrc file..28
<BS>...

Normal Mode Command.............32
<BS>, Normal Mode Command.....32
<Down>..

Normal Mode Command.............32
<Down>, Normal Mode Command.32
<Enter>, Insert Mode....................33
<Enter>, Insert Moder...................33
<Esc> Insert Mode command........31
<Left>...

Normal Mode Command.............32
<Left>, Normal Mode Command. . .32
<NL>..

Normal Mode Command.............32
<NL>, Normal Mode Command.....32
<Right>..

Normal Mode Command.............32
<Right>, Normal Mode Command. 32
<Space>...

Normal Mode Command.............32
<Space>, Normal Mode Command 32
<Up>..

Normal Mode Command.............32
<Up>, Normal Mode Command.....32

vim-1.0.odt (28. Sep. 2007) The Vim Book Page 804

25

	Introduction
	Copyright and License Information

	Chapter 1: Basic Editing
	Before You Start
	Running Vim for the First Time
	The vim Command
	Modes

	Editing for the First Time
	Inserting Text
	Getting Out of Trouble
	Moving Around
	Aliases

	Deleting Characters
	Undo and Redo
	Getting Out
	Discarding Changes

	Other editing Commands
	Inserting Characters at the End of a Line
	Deleting a Line
	Opening Up New Lines

	Help
	Help Language
	Other Ways to Get Help

	Using a Count to Edit Faster
	The Vim Tutorial
	Summary

	Chapter 2: Editing a Little Faster
	Word Movement
	Moving to the Start or End of a Line
	Searching Along a Single Line
	Moving to a Specific Line
	Telling Where You Are in a File
	Where Am I?

	Scrolling Up and Down
	Deleting Text
	Deleting Text Without Visual Mode
	Where to Put the Count (3dw or d3w)
	Visual vs. Normal Mode Delete

	Changing Text
	The . Command
	Joining Lines
	Replacing Characters
	Changing Case
	Keyboard Macros
	Digraphs

	Chapter 3: Searching
	Simple Searches
	Search History
	History Window

	Searching Options
	Highlighting
	Incremental Searches
	Searching Backward
	Reverse Search History

	Changing Direction
	Basic Regular Expressions
	The Beginning (^) and End ($) of a Line
	Match Any Single Character (.)
	Matching Special Characters
	Regular Expression Summary

	Chapter 4: Text Blocks and Multiple Files
	Cut, Paste, and Copy
	Character Twiddling
	More on "Putting"

	Moving Large Blocks of Text
	Marks
	Where Are the Marks?

	Yanking
	Normal Mode Yanking
	Yanking Lines

	Filtering
	Normal Mode Filtering

	Editing Another File
	The :view Command
	Dealing with Multiple Files
	Which File Am I On?
	Going Back a File
	Editing the First or Last File
	Editing Two Files

	Matching

	Chapter 5: Windows and Tabs
	Opening a New Window
	Vertical Windows
	Opening Another Window with Another File
	Quick Split
	Controlling Window Size
	Split Summary

	The :new Command
	Split and View
	Changing Window Size
	Buffers
	Selecting a Buffer

	Buffer Types
	Buffer Options
	Basic Tabbed Editing
	Selecting a tab
	Finding Files with Tabs

	Editing Multiple Files From the Command Line

	Chapter 6: Basic Visual Mode
	Entering Visual Mode
	The Three Visual Modes
	Leaving Visual Mode
	Editing with Visual Mode
	Deleting Text in Visual Mode
	Yanking Text

	Switching Modes
	Changing Text
	Joining Lines

	Commands for Programmers
	Keyword Lookup

	Visual Block Mode
	Inserting Text
	Changing Text
	Replacing
	Shifting
	Visual Block Help

	Chapter 7: Commands for Programmers
	Syntax Coloring
	Syntax Coloring Problems
	Colors Look Bad When I Use Vim (UNIX only)
	I Turned on Syntax Colors, but All I Get Is Black and White (UNIX)
	I'm Editing a C File with a Non-Standard Extension. How Do I Tell Vim About It?
	Running the Color Test

	Matching Pairs
	Shift Commands
	Automatic Indentation
	C Indentation
	Smartindent
	Autoindent

	The = Command
	Diff Mode
	Folding
	Locating Items in a Program
	Instant Word Searches Including #include Files ([CTRL-I,]CTRL-I)
	Jumping to a Variable Definition (gd, gD)
	Jump to Macro Definition ([CTRL-D,]CTRL-D)
	Displaying Macro Definitions ([d,]d, [D,]D)

	Shifting a Block of Text Enclosed in {}
	Indenting a Block Using Visual Mode
	Finding the man Pages
	Tags
	Help and Tags
	Windows and Tags
	Finding a Procedure When You Only Know Part of the Name
	Shorthand Commands

	The Care and Feeding of Makefiles
	Sorting a List of Files
	Sorting a List in Visual Mode

	Making the Program
	The :make command
	The 'errorfile' Option

	Searching for a Given String
	Vim and outside edits
	Other Interesting Commands

	Chapter 8: Basic Abbreviations, Keyboard Mapping, and Initialization Files
	Abbreviations
	Listing Your Abbreviations

	Mapping
	Listing Your Mappings
	Fixing the Way Delete Works
	Controlling What the Backspace Key Does
	Saving Your Setting
	My .vimrc File
	Script Files

	Chapter 9: Basic Command-Mode Commands
	Entering Command-Line Mode
	The Print Command
	Ranges
	Marks
	Visual-Mode Range Specification

	Substitute Command
	How to Change Last, First to First, Last

	Reading and Writing Files
	Saving the file under a new name
	The :shell Command
	Printing the file

	Chapter 10: Basic GUI Usage
	Starting Vim in GUI Mode
	Mouse Usage
	X Mouse Behavior
	Microsoft Windows Mouse Behavior
	Special Mouse Usage

	Tear-Off Menus
	Toolbar
	Showing the cursor

	Chapter 11: Dealing with Text Files
	Automatic Text Wrapping
	Text Formatting Commands
	Justifying Text
	Fine-Tuning the Formatting
	The joinspaces Option
	The formatoptions Option
	Formatting and numbered list

	Using an External Formatting Program
	Basic Spelling
	Finding Spelling Errors
	Spelling Language
	Word Lists
	Mulitple word lists

	File Formats
	Changing How the Last Line Ends
	Troff-Related Movement
	Section Moving
	Defining Sections

	Encrypting with rot13

	Chapter 12: Automatic Completion
	Automatic Completion
	How Vim Searches for Words
	Searching Forward
	Automatic Completion Details
	Automatic Completion Details
	The Include Path
	Specifying a Dictionary

	Controlling What Is Searched For
	Tag Search
	Finding Filenames
	Line Mode
	Dictionary and Thesaurus
	Guessing
	User and Omni completion
	Adjusting the Screen

	Chapter 13: Autocommands
	Basic Autocommands
	Groups
	Events
	File Patterns
	Nesting
	Listing Autocommands
	Removing Commands
	Ignoring Events

	Chapter 14: File Recovery and Command-Line Arguments
	Command-Line Arguments
	Encryption
	Switching Between Encrypted and Unencrypted Modes
	Limits on Encryption

	Executing Vim in a Script or Batch File
	Additional Command-Line Arguments
	Foreign Languages
	Backup Files
	Skipping the backup

	Controlling How the File Is Written
	Basic File Recovery
	Recovering from the Command Line
	Advanced Swap File Management
	Controlling When the Swap File Is Written
	Controlling Where the Swap File Is Written

	Advanced File Writing
	Saving Your Work
	The :recover Command
	MS-DOS Filenames

	readonly and modified Options

	Chapter 15: Miscellaneous Commands
	Printing the Character
	Going to a Specific Character in the File
	Screen Redraw
	Sleep
	Terminal Control
	Suspending the Editor
	General Help
	Other Help Commands
	Nvi Compatibility Commands

	Window Size
	Executing commands without changing things
	Signs
	Viewing the Introduction Screen
	Open Mode

	Chapter 16: Cookbook
	Character Twiddling
	Replacing One Word with Another Using One Command
	Interactively Replacing One Word with Another
	Alternate Method

	Moving Text
	Copying a Block of Text from One File to Another
	Method 1: Two Windows with Traditional Vi-Style Commands
	Method 2: Two Windows Using Visual Mode
	Method 3: Two Different Vim Programs

	Sorting a Section
	Sorting the old Vi way:

	Finding a Procedure in a C Program
	Drawing Comment Boxes
	Reading a UNIX man Page
	Trimming the Blanks off an End-of-Line
	Oops, I Left the File Write-Protected
	Changing Last, First to First Last
	How to Edit All the Files that Contain a Given Word
	Finding All Occurrences of a Word Using the Built-in Search Commands

	Chapter 17: Topics Not Covered
	Interfaces to Other Applications
	Cscope
	Cscope-Related Command Reference

	MzScheme
	MzScheme Interface Command Reference

	Netbeans
	OLE
	Perl
	Perl Interface Command Reference

	Python
	Python Interface Command Reference
	Ruby
	Ruby Interface Command Reference

	Sniff+
	Sniff+ Interface Command Reference

	Sun Visual WorkShop
	Sun Visual WorkShop reference

	Tcl
	Tcl Interface Command Reference

	Foreign Languages
	Input Method
	Arabic
	Chinese
	Chinese-Related Command Reference

	Farsi
	Farsi-Related Command Reference

	Hebrew
	Hebrew-Related Command Reference

	Japanese
	Japanese-Related Command Reference

	Korean
	Korean-Related Command Reference

	Binary Files
	Modeless (Almost) Editing
	Operating System File Modes

	Chapter 18: Complete Basic Editing
	Word Movement
	Move to the End of a Word
	Defining What a Word Is
	Special Characters for the iskeyword Option
	Other Types of Words
	There Are "words," and Then There Are "WORDS"

	Beginning of a Line
	Repeating Single-Character Searches
	Moving Lines Up and Down
	Cursor-Movement Commands
	Jumping Around
	Using the Change List

	Controlling Some Commands
	Where Am I, in Detail
	Scrolling Up
	Scrolling Up Summary

	Scrolling Down
	Define How Much to Scroll
	Adjusting the View
	Delete to the End of the Line
	The C Command
	The s Command
	The S Command
	Deleting Text
	Insert Text at the Beginning or End of the Line
	Arithmetic
	Joining Lines with Spaces
	Replace Mode
	Virtual Editing
	Replace Mode

	Digraphs
	Changing Case
	Other Case-Changing Commands
	Advanced Undo
	Undo Time Machine
	Undo Level
	Change Sets and Branching

	Getting Out

	Chapter 19: Advanced Searching Using Regular Expressions
	Searching Options
	Case Sensitivity
	Wrapping
	Turning Off Search Wrapping

	Interrupting Searches
	Instant Word Searches
	Search Offsets
	Specifying Offsets

	Complete Regular Expressions
	Beginning (<) and End (>) of a Word
	Modifiers and Grouping
	Special Atoms
	Character Ranges
	Character Classes
	Repeat Modifiers
	Repeating as Little as Possible
	Grouping (())
	The Or Operator (|)
	Putting It All Together
	The 'magic' Option

	Offset Specification Reference
	Regular Expressions Reference
	Simple Atoms
	Range Atoms
	Character Classes
	Patterns (Used for Substitutions)
	Special Character Atoms
	Modifiers

	Chapter 20: Advanced Text Blocks and Multiple Files
	Additional Put Commands
	Special Marks
	Manipulating Marks

	Multiple Registers
	Appending Text
	Special Registers
	The Black Hole Register (_)
	The Expression Register (=)
	The Clipboard Register (*)

	How to Edit All the Files That Contain a Given Word
	Editing a Specific File
	Changing the File List
	The +cmd Argument
	Defining the file list (arguments)
	Local and Global argument Lists

	Global Marks
	Advanced Text Entry
	Movement
	Inserting Text
	Inserting a Register
	Leaving Insert Mode

	The .viminfo File
	Dealing with Long Lines
	Wrapping

	Spelling Dictionaries
	Dumping dictionaries
	Customizing the spelling system

	Chapter 21: All About Windows, Tabs, and Sessions
	Moving Between Windows
	Moving Windows Up and Down
	Performing Operations on All Windows
	Other Window Commands
	Editing the Alternate File
	Split Search
	Shorthand Commands
	Other Window Commands
	Advanced Buffers
	Adding a Buffer
	Deleting a Buffer
	Unloading a Buffer
	Opening a Window for Each Buffer

	Windowing Options
	Controling a split

	Tabs
	Executing a command for all tabs
	Other tab commands
	Customzing tabs
	Tabs without the GUI

	Sessions
	Specifying What Is Saved in a Session

	Views

	Chapter 22: Advanced Visual Mode
	Visual Mode and Registers
	The $ Command
	Repeating a Visual Selection
	Selecting Objects
	Moving to the Other End of a Selection
	Case Changes
	Joining Lines
	Formatting a Block
	The Encode (g?) Command
	The Colon (:) Commands
	Pipe (!) Command
	Select Mode
	Deleting the Selection
	Replacing Text
	Switching Modes

	Avoiding Automatic Reselection

	Chapter 23: Advanced Commands for Programmers
	Removing an Automatic Indentation
	Inserting Indent
	Inserting Registers
	To Tab or Not to Tab
	Spaces and Tabs
	Smart Tabs
	Using a Different Tab Stop
	No Tabs
	The 'copyindent' and 'preserveindent' Options
	The :retab Command
	Modelines

	Shift Details
	Specifying a Formatting Program
	Formatting Comments
	Defining a Comment
	Customizing the C Indentation
	The 'cinoptions' Options
	The 'cinwords' Option

	Advanced Diff Mode
	Moving from difference to difference
	Moving Differences Around
	Customizing Diff

	Comparing Two Files The Old Fashioned Way
	Advanced Folding
	Additional fold commands
	Toggling folds
	Enabling and disabling folding
	Moving around folds
	Executing a command for all folds
	Customizing folds
	Controlling what opens and closes folds
	Fold Methods

	The Preview Window
	Match Options
	Showing Matches
	Finding Unmatched Characters
	Method Location
	Movement
	Comment Moves

	Dealing with Multiple Directories
	The include Path
	Checking the Path
	Defining a Definition
	Locating include Files

	Multiple Error Lists
	Manipulating the quick fix list
	Local error lists

	Customizing the :make Command
	The Error Format
	The 'switchbuf' Option

	Customizing :grep
	Defining How a Tag Search Is Done
	Customizing the Syntax Highlighting
	Black-and-White Terminals
	Color Terminals
	GUI Definition
	Combining Definitions
	Syntax Elements
	Color Chart

	The 'syntax' Option

	Chapter 24: All About Abbreviations and Keyboard Mapping
	Removing an Abbreviation
	Abbreviations for Certain Modes
	Listing Abbreviations

	Forcing Abbreviation Completion
	Mapping and Modes
	Other :map Commands
	Undoing a Mapping
	Clearing Out a Map
	Listing the Mappings
	Recursive Mapping

	Remapping Abbreviations
	Language Dependent Mappings
	The usual suite of commands applies. :map Mode Table

	Chapter 25: Complete Command-Mode (:) Commands
	Advanced Command Entry
	Editing Commands
	Other Ways to Specify Ranges
	Deleting with a Count

	Copy and Move
	Inserting Text
	Printing with Line Numbers
	Printing with list Enabled
	Print the Text and Then Some
	Substitute
	Substitute flags

	Making g the Default
	Global Changes
	Commands for Programs
	Include File Searches
	Jumping to Macro Definitions
	Split the Window and Go to a Macro Definition
	Listing the Macros
	Listing the First Definition
	Override Option (!)

	Directory Manipulation
	Current File
	Advanced :write Commands
	Updating Files
	Reading Files
	Register Execution
	Simple Edits
	Shifting
	Changing Text
	Entering Insert Mode
	Joining Lines
	Yanking Text
	Putting Text
	Undo/Redo
	Marks

	Miscellaneous Commands
	The :preserve Command
	The Shell Commands
	Shell Configuration
	Command History
	Setting the Number of Remembered Commands
	Viewing Previous Error Messages
	Redirecting the Output
	Executing a :normal Command

	Getting Out
	Write and Quit
	Advanced Hardcopy

	Chapter 26: Advanced GUI Commands
	Switching to the GUI Mode
	Window Size and Position
	Microsoft Windows Size and Position Command-Line Specification
	Moving the Window
	Window Size
	The :winsize Command

	The 'guioptions'
	Changing the Toolbar
	Customizing the Icon

	Mouse Customization
	Mouse Focus
	The 'mousemodel' Option
	Mouse Configuration
	Mouse Mapping
	Double-Click Time
	Hiding the Mouse Cursor

	Select Mode
	Custom Menus
	Special Menu Names
	Limiting the Maximum Number of Generated Items
	Toolbar Icons
	Toolbar Tips
	Listing Menu Mappings
	Executing a Menu Item
	No Remapping Menus
	Removing Menu Items
	Tearing Off a Menu
	Translating A Menu

	Special GUI Commands
	The File Browsers
	Finding a String
	Replace Dialog Box
	Finding Help
	Confirmation
	Browsing the Options

	Using the Clipboard
	Coloring
	Selecting the Font
	Customizing Select Mode
	Mouse Usage in Insert Mode
	Microsoft Windows - Specific Commands
	Changing the Appearance of the Cursor
	Line spacing
	X Windows System - Specific Commands
	Selecting the Connection with :shell Commands
	MS-DOS-Specific Commands

	Chapter 27: Expressions and Functions
	Basic Variables and Expressions
	Special Variable Names
	Constants
	Expressions
	Deleting a Variable
	Locking and unlocking a variable
	Locking Arrays and Dictionaries

	Entering Commands
	How to Experiment

	The :echo Statement
	Echoing in Color

	Printing error messages using :echoerr
	Echoing message
	Control Statements
	The :if Statement
	Looping
	The :for Loop
	The :execute Command

	Exceptions
	Defining Your Own Function
	Using a Function
	Function Options
	Listing Functions
	Deleting a Function

	Running Functions in a Sandbox
	Debugging a Function
	Other debugging commands
	Redrawing the screen

	Profiling a function
	Other Profile Commands
	Deleting Profile Items

	User-Defined Commands
	The Operator Function
	Built-In Functions
	Obsolete Functions
	Plugins and other scripts

	Chapter 28: Customizing the Editor
	Setting
	Boolean Options
	Numeric Options
	String-Related Commands

	Another Set Command
	Other :set Arguments
	Chaining Commands
	Automatically Setting Options in a File

	Local .vimrc Files
	Customizing Keyboard Usage
	Microsoft Windows
	Customizing Keyboard Mappings

	Confirmation
	Customizing Messages
	Showing the Mode
	Showing Partial Commands
	Short Messages
	The 'terse' Option
	The "File Modified" Warning
	Error Bells
	Status Line Format
	Rulers
	Reporting Changes
	Help Window Height
	Preview Window Height
	Defining How 'list' Mode Works
	Changing the line number size
	Changing the Highlighting
	The 'more' Option
	Number Format
	Restoring the Screen
	Pasting Text
	Wildcards
	Customizing Behavior of the Screen Movement Commands
	File Writing Options
	Memory Options
	Function Execution Options
	Terminal Options
	Terminal Name
	Lazy Redraw
	Internal Termcap
	Fast Terminals
	Mouse Usage Inside a Terminal
	How Much to Scroll

	Some More Obscure Options
	Compatibility
	Weirdinvert
	Debugging

	Production
	Keyboard Mapping
	Encoding
	Macintosh Silliness
	Obsolete Options
	Legacy Options

	Chapter 29: Language-Dependent Syntax Options
	Abel
	Ada
	Ant
	Apache
	Assembly Language
	ASP
	BaaN
	Basic
	C and C++
	Doxygen

	CH
	Chill
	Changelog
	COBOL
	Cold Fusion
	CSH / TCSH
	CYNLIB
	CWEB
	Desktop
	Dircolors
	DocBook
	DosBatch
	Doxygen
	DTD
	Eiffel
	ERLANG
	FlexWiki
	Form
	Fortran
	FVWM
	Haskell
	HTML
	Inform
	IDL (Interface Definition Language)
	Java
	Lace
	Lex
	Lisp
	Lite
	LPC
	LUA
	Mail
	Make
	Maple
	Mathematica
	Moo
	MSQL
	NCF
	Nroff
	OCAML
	Papp
	Pascal
	Perl
	Php3/ Php4
	PlainTex
	PPWizard
	Phtml
	PostScript
	Printcap and Termcap
	Progress
	Python
	Quake
	ReadLine
	Rexx
	Ruby
	Scheme
	SDL
	Sed
	SGML
	Shell
	Speedup
	TCsh
	TeX
	TinyFugue
	Vim
	XF86Config
	Xml

	Chapter 30: How to Write a Syntax File
	Basic Syntax Commands
	Defining Matches
	Defining Regions
	Nested Regions
	Multiple Group Options
	Transparent Matches

	Other Matches
	Match Groups
	Match Offsets
	Clusters
	Including Other Syntax Files
	Listing Syntax Groups
	Synchronization
	Adding Your Syntax File to the System
	Option Summary
	UNIX
	Unpacking the sources
	Running configure
	Dealing with common installation problems
	Installation for Each UNIX User

	Installing on Microsoft Windows
	Common Installation Problems and Questions
	I Do Not Have Root Privileges. How Do I Install Vim? (UNIX)
	The Colors Are Not Right on My Screen. (UNIX)
	I Am Using RedHat Linux. Can I Use the Vim That Comes with the System?
	How Do I Turn Syntax Coloring On? (All)
	What Is a Good vimrc File to Use? (All)

	The Function Keys
	Line Endings
	Editing Keys
	Arrow Keys
	Keypad Keys
	VT100 Special Keys
	Printable Characters
	Other Keys
	Termcap Entries
	Mouse Actions
	Modifiers
	Mouse Modifiers
	Motion Commands
	:map Mode Table
	Modes

	Visual Block Commands
	Starting Select Mode
	Select Mode Commands
	- A -
	- B -
	- C -
	- D -
	- E -
	- F-
	- G -
	- H -
	- I -
	- J -
	- K -
	- L -
	- M -
	- N -
	- O -
	- P -
	- Q -
	- R -
	- S -
	- T -
	- U -
	- V -
	- W -
	Author's Note
	Minimum Command Set. Learn This First.
	Editing Commands
	Getting Out
	Note: On Linux and Unix you must enable the Vim command set

	Vertical Movement / Scrolling
	Screen Location
	Screen Redrawing
	Virtual movement

	Commands for English Text
	Text Movement

	Horizontal Movement
	Changing text
	Windows
	Others

	Multiple Files
	Searching
	Search Pattern Reference
	Simple atoms
	Character Classes
	Modifiers
	Grouping and Repeats
	Sets of Characters
	Anchors
	Repeats and Wildcards
	Choices
	Zero Width Conditionals

	For programmers
	Program searches
	Text selection
	Display options
	Diff mode
	Folding
	Misc commands

