
Rev. 7631A–USB–03/06

8-bit
Microcontrollers

Application Note
AVR273: USB Mass Storage Implementation

Features
• Bulk-Only Transport Protocol
• Supported by all Microsoft O/S from Windows® 98SE and later
• Supported by Linux Kernel 2.4 or later and Mac OS 9/x or later.
• Complete solution based on DataFlash memory.
• Can support different memories with the suitable drivers (NF, SD, MMC...)
• Runs on any AVR USB microcontroller

1. Introduction
The floppy disk is over, too slow, too fragile and small capacity. The CD-ROM is not
convenient to exchange data (generally not rewritable) and it is not convenient for
travelling. The USB key offers you the flexibility and the small size of the floppy disk
and the big capacity of the CD-ROM.

Atmel offers a complete solution based on Mass Storage class with an Atmel
DataFlash as target. This ensures a full duplex file transfer between the device and
the PC.

The aim of this document is to describe how to start and implement a USB application
based on the Mass Storage (Bulk only) class to transfer data between a PC and user
equipment.

A familiarity with the USB firmware architecture (Doc 7603, Included in the USB CD-
ROM & Atmel website) and the Mass Storage specification (http://www.usb.org) is
assumed.

USB interface

2. Hardware Requirements
The Mass Storage application requires the following hardware:

1. AVR USB evaluation board (STK525) or AT90USBKey Demo board
2. AT90USB microcontroller with default factory configuration (including USB bootloader)
3. USB cable (Standard A to Mini B)
4. PC running on Windows (98SE, ME, 2000, XP) with USB 1.1 or 2.0 host

3. Software Requirement
The software needed for this application includes:

1. FLIP software (Device Firmware Upgrade tool)
2. ms_df_stk525.a90 or ms_df_usbkey.a90 (included in USB CD-ROM)

4. Hardware Default Settings
The applications are bus powered, no external power supply is required. The STK525 board
must be configured as below:

Figure 4-1. STK525 Board

All the jumpers should be opened, only the Vcc Source jumper VBUS5 should be set as below:
 2
7631A–USB–03/06

AVR273

 AVR273

Figure 4-2. Vcc Jumpers

The microcontroller must be properly placed on its socket. Please refer to STK525 Hardware
User’s Guide

The AT90USBKey board does not required a specific configuration.

Figure 4-3. AT90USBKey

5. Device Firmware Upgrade
The first thing to do before starting the demo is to load the HEX file into the on-chip Flash mem-
ory of the microcontroller. The “Flip” software is the tool used to upgrade the firmware (available
freely from the USB CD-ROM or Atmel website).

The following steps should be completed to allow the device starting DFU (Device Firmware
Upgrade)mode and load the HEX file:

1. Install Flip software (Flip version 3.0 or above is required).
2. Push the RST (Reset) button
3. Connect the board to the PC using the USB cable (Standard A to Mini B).
4. Push the HWB (Hardware Bootloader) button
5. Release the RST button
6. Release the HWB button
7. If your hardware conditions explained above are correct, a new device detection wizard

will be displayed fi you are using Flip for the first time. Please follow the instructions
(the INF file is located in the USB subdirectory from Flip installation: “install
path:\ATMEL\FLIP\FLIPx.x.x\usb”).

Vcc
Source

Reg 5

Reg3.3

VBUS5

STK
 3
7631A–USB–03/06

Figure 5-1. New Device Detection Wizard

Figure 5-2. Driver Location

8. Check the Device Manager, and you should see the same icon (Jungo® icon) as shown
in the figure below. If not start again from the step 2.
 4
7631A–USB–03/06

AVR273

 AVR273

Figure 5-3. Device Manager

Once your device is in DFU mode, launch the Flip software and follow the instructions explained
below, Figure 5-4.

1. Select AT90USB device

Figure 5-4. Device Selection
 5
7631A–USB–03/06

 6
7631A–USB–03/06

AVR273

 AVR273

2. Select the USB as communication mode

a. USB Communication Mode
 7
7631A–USB–03/06

3. Open the communication

Figure 5-5. Open the USB Communication
 8
7631A–USB–03/06

AVR273

 AVR273

4. Choose the HEX file to load (the HEX file is including in USB CD-ROM:

usb_hid_generic.hex

Figure 5-6. HEX File to Load
 9
7631A–USB–03/06

5. Load the HEX file (Check Erase, Program and Verify, then Push Run button)

Figure 5-7. HEX File Loading
 10
7631A–USB–03/06

AVR273

 AVR273

6. Start the application

Figure 5-8. Start Application

Note: The AT90USB bootloader will detach and jump into the user application when “Start Application” button is pressed.
 11
7631A–USB–03/06

6. Quick Start
Once your dev ice is programmed wi th ms_df_stk525.a90 (for the STK525) or
ms_df_usbkey.a90 (for the AT90USBKey) file, you can start using your kit as an USB key.
Check that your device has enumerated as Mass Storage device (see Figure 6-1.), then launch
the PC explorer, a new removable disk has appeared. Now you can start transferring files
between the PC and your board.

Note: For the first use, the PC will ask you to format the removable disk.

Figure 6-1. Mass Storage Enumeration
 12
7631A–USB–03/06

AVR273

 AVR273
7. Application Overview
The Mass Storage application is a simple file transfer application between the USB host and the
starter kit or demonstartion board.

The USB data exchange for this application is based on the SCSI (Small Computer System
Interface) commands which use two bulk endpoints (one IN and one OUT) to perform the status
and data transfer. The endpoint 0 (control endpoint) is used only to perform the enumeration
process, the errors management and to determine the LUN value.

In other words, the Mass Storage application is a set of SCSI commands send by the host to
manage the file transfer.

The Mass Storage class allows one device to manage several storage units at the same time
thanks to the LUN (Logic Unit Number).

Figure 7-1. Mass Storage Application Overview

The standard enumeration process (USB chapter 9 support) is performed through the default
control endpoint. This process consists of a set of parameters sent by the device to the host to
identify the device class and load the appropriate drivers. These parameters are called the
descriptors.

The SCSI commands are performed through both endpoints (IN or OUT). Each SCSI command
is decoded and transmitted to the appropriate Storage Unit through a command set (Read,
Write, is memory present, is memory write protected,...).

The memory answers are converted in SCSI status before being wrapped in USB CSW (Com-
mand Status Wrapper) and sent to the USB Host controller.
 13
7631A–USB–03/06

As the USB bus is a single master bus (the USB Host), each data transfer is initiated by the USB
Host, following a specific Command-Data-Status flow (see figure below)

Figure 7-2. Command/Data/Status Flow

The CBW (Command Block Wrapper) contains some USB information such as the addressed
LUN , the length of the SCSI command, and of course, it also contains the SCSI command for
the memory.

The CSW (Command Status Wrapper) contains the SCSI status. If the status is GOOD, the Host
will send the next following command. If the status is different from GOOD (FAILED, PHASE
ERROR,...), the Host will ask for more information regarding the error by sending a REQUEST
SENSE command.

The figure below showns an overview of the solution provided by Atmel which targets DataFlash
memories: one for STK525 and two for the AT90USBKey. Physical memories can be mapped
on the same logical unit and interleaved to reduce the apparent write access time. The maxi-
mum size per logical unit is limited to...

Figure 7-3. Atmel Mass Storage Solution
 14
7631A–USB–03/06

AVR273

 AVR273
SP
I B

U
S

DataFlash memories

USB Endpoint
0

Control
Transfer

(Enumeration
Process, Error

Management, LUN
command)

USB Endpoint
IN

Bulk Transfer
(Data, Command)

USB Endpoint
OUT

Bulk Transfer
(Data, Status)

USB Serial Interface Engine (SIE)

AVR USB MCU

USB PORT

PC Application
(e.g., File explorer)

Win32 Subsystem

Win32 API Calls

Disk Drivers
(disk.sys,

PartMgr.sys)

Storage
Volume Driver
(VolSnap.sys)

Function
Drivers

(usbstor.sys)

USB Hub Drivers (usbhub.sys)

Bus Drivers (usbd.sys)

Hardware (Root Hub)

PC

USB BUS
 15
7631A–USB–03/06

8. Firmware
As explained in the USB Firmware Architecture document (Doc 7603, included in the USB CD-
ROM) all USB firmware packages are based on the same architecture (please refer to this docu-
ment for more details).

Figure 8-1. Mass Storage Firmware Architecture

This section is dedicated to the Mass Storage module only.To customize this firmware, you have
just to modify the memories drivers, the rest can be used as is. Find hereunder the explanation
of the files related to the Mass Storage module:

main.c

scheduler.c

usb_task.c

usb_standard_
request.c

usb_specific_
request.c

conf_scheduler.h

storage_task.h

usb_descriptors.c

usb_drv.c

config.h

usb_standard_request.h usb_specific_request.h usb_descriptors.h
conf_usb.h

Should not be modified by user Can be modified by user Added by user

H
ID

 a
pp

lic
at

io
n

A
PI

D
riv

er
s

usb_drv.h

H
ar

dw
ar

e

USB hardware interface

Enumeration
management

Mass Storage
application

management

usb_task.h

St
ar

t u
p

stk_525.c
usbkey.c

stk_525.h

storage_task.c

scsi_decoder.c

ctrl_access.c

df_mem.c

df_mem.h

scsi_decoder.h

ctrl_access.h
 16
7631A–USB–03/06

AVR273

 AVR273
8.1 storage_task.c
This file contains the functions to initialize the prameters of the hardware used by the application
(spi, DataFlash, Leds) and to manage the commands sent by the host (Command Block Wrap-
per, Command Status Wrapper).

Figure 8-2. Mass Storage task

8.1.1 storage_task_init
This function performs the initialization of the device parameters and hardware resources.

8.1.2 usb_mass_storage_cbw
This function decodes the CBW (Command Block Wrapper) and store the SCSI command.

8.1.3 usb_mass_storage_csw
This function sends the status (CSW: Command Status Wrapper) of the last CBW.

Initialization

CSW
??

CBW
??

Decode CBW Command and
set SCSI Command

usb_mass_storage_cbw()
Send the Status of the

latest CBW
usb_mass_storage_csw()

Endpoint O
U

TEn
dp

oi
nt

 IN

storage_task_init()
 17
7631A–USB–03/06

8.2 stk_525.c/usbkey.c
This file contains all the routines to manage the board resources (Joystick, potentiometer, Tem-
perature sensor, LEDs...). The user should not modify this file when using the STK525 or the
AT90USBKey board. Otherwise he has to build his own hadware management file.
 18
7631A–USB–03/06

AVR273

 AVR273
8.3 Memory management
Each memory is interfaced to the Atmel firmware by a specific memory driver.

The following functions have to be implemented in order to support a memory with the USB
Mass Storage Device firmware. In order to support a new memory, the developper has to write
the memory driver according to this memory interface. Some functions only return the status of
the memory (present, write protected, total capacity and if the memory can be removed). The
other functions are used to read or write into the memory. The functions read_10 and write_10
open the memory at a specific location. The functions usb_read and usb_write manage the data
transfer between the USB Controller and the memory. Most of these functions returns a
Ctrl_status byte that could be:

• CTRL_GOOD: function is PASS and another command can be sent

• CTRL_FAIL: there is a FAIL in the command execution

• CTRL_NO_PRESENT: the memory is not present

• CTRL_BUSY: the current memory is not initialized or its status has changed

8.3.1 sbc_test_unit_ready
This function returns the memory state.

Figure 8-3. sbc_test_unit_ready

sbc_test_unit_ready

Is
memory
present

?

return CTRL_NO_PRESENTNO

YES

Has
memory
changed

?

return CTRL_BUSYYES

return CTRL_GOOD

NO
 19
7631A–USB–03/06

8.3.2 sbc_read_capacity
This function returns the address of the last valid sector, stored in u32_nb_sector. The sector
size is fixed to 512 Bytes for OS compatibility.

For example, a memory of 16KBytes returns ((16 x 1024)/512) -1) = 31

Figure 8-4. sbc_read_capacity

sbc_read_capacity

Is
m em ory
present

?

return CTRL_NO _PRE SENTNO

YES

H as
m em ory
changed

?

return CTRL_BUS YYE S

return C TR L _G O O D

NO

w rite last sector adress
 20
7631A–USB–03/06

AVR273

 AVR273

8.3.3 sbc_read_10

This function sets the sector address (addr) and the number of consecutive sector (512Bytes
each) to read.

Figure 8-5. sbc_read_10

sb c _ r e a d _ 1 0

Is
m e m o r y

p r o te c te d
?

re tu rn C T R L _ N O _ P R E S E N TN O

Y E S

H a s
m e m o r y
c h a n g e d

?

re tu rn C T R L _ B U S Y

Y E S

r e tu r n C T R L _ G O O D

N O

s to r e a d r e ss a n d
se c to r s n u m b e r to r e a d
 21
7631A–USB–03/06

8.3.4 sbc_write_10
This function sets the sector address (addr) and the number of consecutive sector (512Bytes
each) to write.

Figure 8-6. sbc_write_10

sb c _ w r ite_ 1 0

Is
m em o ry

p ro te c ted
?

re tu rn C T R L _ N O _ P R E S E N TN O

Y E S

H a s
m em o ry
ch a n g ed

?

re tu rn C T R L _ B U S Y

Y E S

r e tu r n C T R L _ G O O D

N O

s to r e a d r e ss a n d se c to r s
n u m b e r to w r ite
 22
7631A–USB–03/06

AVR273

 AVR273

8.3.5 mem_wr_protect

This function returns FALSE if the memory is not write protected and TRUE if the memory is
write protected.

Figure 8-7. mem_wr_protect removed.

Figure 8-8. mem_removal

mem_wr_protect

Is
memory

protected
?

return FALSENO

YES

return TRUE

mem_removal

Is memory
removable

?
return FALSE

NO

YES

return TRUE
7631A–USB–03/06
 23

8.4 Integration of new memory
The integration of a memory on the USB Mass Storage stack is performed in conf_access.h.
The corresponding LUN has to be first set to ENABLE and the corresponding functions have to
be defined.

The USB Mass Storage stack supports up to 8 different LUN.

Here is an example with the DataFlash memory sets as LUN_3:

// Active the Logical Unit

#define LUN_0 DISABLE // On-Chip flash vitual memory

#define LUN_1 DISABLE // NF 2KB

#define LUN_2 DISABLE // NF 512B

#define LUN_3 ENABLE // Data Flash

#define LUN_4 DISABLE

#define LUN_5 DISABLE

#define LUN_6 DISABLE

#define LUN_7 DISABLE

// LUN 3 DEFINE

#if (LUN_3 == ENABLE)

#define DF_MEM ENABLE

#else

#defineDF_MEM DISABLE

#endif

#define LUN_3_INCLUDE "lib_mem\df\df_mem.h"

#define Lun_3_test_unit_ready() df_test_unit_ready()

#define Lun_3_read_capacity(nb_sect) df_read_capacity(nb_sect)

#define Lun_3_wr_protect() df_wr_protect()

#define Lun_3_removal() df_removal()

#define Lun_3_read_10(ad, sec) df_read_10(ad, sec)

#define Lun_3_usb_read() df_usb_read()

#define Lun_3_write_10(ad, sec) df_write_10(ad, sec)

#define Lun_3_usb_write() df_usb_write()

9. PC Software
.The Mass Storage device does not require a PC software. However a PC drivers are needed for
Windows 98SE, this drivers are delivered by Atmel with the Mass Storage package.

10. Limitation

11. Related Documents
AVR USB Datasheet (doc 7593)

USB Firmware Architecture (doc 7603)

USB Mass Storage class specification
 24 AVR273

7631A–USB–03/06

 Printed on recycled paper.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are®

are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications
intended to support or sustain life.

Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Data-
com

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature
7631A–USB–03/06

	Features
	1. Introduction
	2. Hardware Requirements
	3. Software Requirement
	4. Hardware Default Settings
	5. Device Firmware Upgrade
	6. Quick Start
	7. Application Overview
	8. Firmware
	8.1 storage_task.c
	8.1.1 storage_task_init
	8.1.2 usb_mass_storage_cbw
	8.1.3 usb_mass_storage_csw

	8.2 stk_525.c/usbkey.c
	8.3 Memory management
	8.3.1 sbc_test_unit_ready
	8.3.2 sbc_read_capacity
	8.3.3 sbc_read_10
	8.3.4 sbc_write_10
	8.3.5 mem_wr_protect

	8.4 Integration of new memory

	9. PC Software
	10. Limitation
	11. Related Documents

