
 

  
 

 
 

AVR115: Data Logging with Atmel File System 
on ATmega32U4 

 

 
 

1 Introduction 
Atmel® provides a File System management for AT90USBx and ATmegaxxUx 
parts. This File System allows performing data logging operation and this 
application note shows how to implement this feature using ATmega32U4 and 
EVK527 board. The “EVK527-series4-datalogging” is the firmware package related to 
AVR®115. 

The reader should be familiar with AVR114 Application Note before reading this 
one. 

  

01101010
11010101
01010111
10010101
… 

 

 

 
Microcontrollers 
 
Application Note 
 
 
 

Rev. 8202A-AVR-01/09 



 

2 AVR115 
8202A-AVR-01/09 

2 Hardware Requirements 
The Data Logging example application requires the following hardware: 

• AVR USB evaluation board ATEVK527 which includes: 

- ATmega32U4 

- DataFlash® (32Mbits) 

- SD/MMC connector 

• USB cable (Standard A to Mini B) 

• PC running on Windows® (98SE, ME, 2000, XP), Linux® or MAC® OS with an USB 
1.1 or 2.0 host 

3 In-System programming and Device Firmware Upgrade 
To program the device you can use one of the following methods: 

• The JTAG interface using the JTAGICE mkII 

• The SPI interface using the AVRISP mkII and JTAGICE mkII 

• The USB interface thanks to the factory DFU bootloader and FLIP(1) software 

• The parallel programming using the STK®500 or STK600 

Please refer to FLIP(1) help content to see how to install the USB driver and program 
the device through the USB interface. 
Note: 1. FLIP is software provided by Atmel to allow the user to program the Atmel 

devices through the USB interface (No external hardware required) thanks to the 
factory DFU bootloader. 

Note: With JTAGICE MKII be careful with the box ‘‘erase before programming’’ in 
AVR Studio®. If checked, the DFU bootloader is deleted before to 
programming. 



 AVR115
 

 3

8202A-AVR-01/09 

4 Quick Start 
Once your device is programmed with EVK527-series4-datalogging hex file, you can 
start the data logging demonstration: 

1. Unplug the USB cable and plug a power cable (9 V) 
2. Press key down to start record : 

• The log file is created either on the MMC/SD card if present, or on DataFlash 
memory 

• The LED0 is turned on when the recording starts 

• The LED2 is turned on when an error occurs (Disk not present, Disk full, 
…) 

3. Press the key HWB or plug the USB cable to stop the recording. 
4. Plug USB cable on your PC to run the U-Disk and to read the log file 

“Disk:\log000\log000.bin” 

Figure 4-1. EVK521 Rev1 

Note: This is the EVK527 default factory configuration except the SP2 & SP4 which 
must be sold. 
 

By default, the recorded data is only a digital number (16-bits) incremented and 
stored each 120 µs. One can change the record source via the software 
compilation options in datalogging.c file: 
#define LOG_ADCMIC_EXAMPLE // From microphone ADC to a WAV file 

#define LOG_ADCEXT_EXAMPLE // From other ADC input to a BIN file 

#define LOG_PIN_EXAMPLE    // Records pins states to a BIN file 

#define LOG_ENUM_EXAMPLE     // Records counter value to a BIN file (Default) 

 

Board power = 3V 
for Operational Amplifier 

MMC/SD slot 

External Power 5V 
USB 

Stop record Start record 

Solder SP2 & SP4 to 
enable LED0 and LED2 



 

4 AVR115 
8202A-AVR-01/09 

5 Application 

5.1 Behavior 
The sample application provides two operating modes: 

Download mode: the user has to connect the kit to PC (removable disk “U-Disk“) to 
be able to access to the log file written on the memories (DataFlash or SD/MMC 
card). In this mode, the embedded Atmel File System is not allowed to access to the 
memories. 

Note: To prevent data corruption, only one file system management may be active at a given 
time. 
Figure 5-1. Download mode (U-Disk) 

Data logging mode: during this mode the data recording can be performed. The kit 
must be disconnected from the USB host and starting/stopping record actions are 
managed by EVK527 buttons (see Figure 4-1. EVK521 Rev1). When the data 
recording starts, a file is created in a memory. An 8 KHz interrupt timer samples the 
values from ADC or another source and writes them in a buffer. The full buffers are 
transferred in the file by the data logging task.  

Figure 5-2. Data Logging mode 

 

USB Device 
Class Mass Storage 

MMC / SD Card (via SPI) 

DataFlash (via SPI) The File System (FS) is 
decoded by the PC 

ADC 

I/O 

… 

Timer Interrupt 
(8 KHz) 

 

Two buffers of 512 B 
“ping-pong” mode 

MMC / SD Card (via SPI) 

DataFlash (via SPI) 

The FS is decoded by 
the embedded Atmel FS 

Data Logging Task 
(scheduled by main) 



 AVR115
 

 5

8202A-AVR-01/09 

5.2 Firmware 
This section explains only the File System management code and not the USB 
module. The following code samples are extracted from the data_logging.c file from 
“EVK527-series4-datalogging” package. 

5.2.1 Enable/disable embedded FS 

The File System module initialization and exit are managed by the datalogging_task(). 

When the chip exits from USB Device mode, one can call “nav_reset()” to initialize the 
embedded Atmel File System. 

When one wants to stop the embedded Atmel File System or when the USB Device 
mode starts, the “nav_exit()” must be called to flush cache information into the 
memories. 

Figure 5-3. Example of datalogging_task() routine 
void datalogging_task(void) 
{  
   // Change the data logging state 
   if( Is_joy_down()             // If data logging started by user 
   && (!Is_device_enumerated())) // and if USB Device mode stopped 
   { 
      if( !g_b_datalogging_running ) 
      { 
         // Start data logging 
         nav_reset();            //** Init File System 
         g_b_datalogging_running = datalogging_start(); 
      } 
   } 
   if( Is_hwb()                  // If data logging stopped by user 
   ||  Is_device_enumerated() )  // or if USB Device mode started 
   { 
      if( g_b_datalogging_running ) 
      { 
         // Stop data logging 
         g_b_datalogging_running = FALSE; 
         datalogging_stop(); 
         nav_exit();             //** Exit of File System module 
      } 
   } 
    
   // Execute data logging background task 
   if( g_b_datalogging_running ) 
   { 
      g_b_datalogging_running = datalogging_file_write_sector(); 
      if( !g_b_datalogging_running ) 
      { 
         datalogging_stop(); 
         nav_exit();             //** Exit of File System module 
      } 
   }    
} 

 

 



 

6 AVR115 
8202A-AVR-01/09 

5.2.2 Open disk 

In this example, only one navigator handle1 is needed because the application has 
only one disk exploration and only one file opened at the same time. In that case, we 
select the default navigator handle 0 “nav_select(0)”. 

Note: 1. see Application Note AVR114 for more information about navigator handle 
 

The algorithm to open a disk depends on the number of disks connected (see 
configuration in conf_access.h file). By default the example uses the DataFlash and 
MMC/SD driver and the following algorithm: 

Try to mount MMC/SD disk and format if necessary 
If error (disk not present, fail, …)  

Try to mount DataFlash disk and format if necessary 
If error (disk not present, fail, …)  

Abort data logging 

Figure 5-4. datalogging_open_disk() routine 
Bool datalogging_open_disk(void) 
{ 
   U8 u8_i; 
   nav_select(FS_NAV_ID_DEFAULT); 
    
#if( (LUN_2 == ENABLE) && (LUN_3 == ENABLE)) // Configuration set in conf_access.h 
   // Select and try to mount disk MMC/SD (lun 1) or DataFlash (lun 0) 
   // Try first the MMC/SD 
   for( u8_i=1; u8_i!=0xFF; u8_i-- ) 
#else 
   // There is only one memory MMC/SD or DataFlash (lun 0) 
   for( u8_i=0; u8_i!=0xFF; u8_i-- ) 
#endif 
   {    
      if( nav_drive_set(u8_i) )              // Select driver (not disk) 
      { 
         // Driver available then mount it 
         if( !nav_partition_mount() ) 
         { 
            // Error during the mount then check error status 
            if( FS_ERR_NO_FORMAT != fs_g_status ) 
               continue;                     // Disk fails (not present, HW error, system error,  
            // Disk no formated then format it 
            if( !nav_drive_format(FS_FORMAT_DEFAULT) ) 
               continue;                     // Format fails 
         } 
         return TRUE;                        // Here disk mounted 
      } 
   } 
   return FALSE;                             // No valid disk found   
} 

 



 AVR115
 

 7

8202A-AVR-01/09 

5.2.3 Create path file 

This part creates the following path file “Disk:\logxxx\logxxx.bin”. 

The datalogging_create_path_file() routine creates the directory “\logxxx\”. The 
“nav_setcwd()” routine searches and eventually creates the path (the third argument 
must be TRUE). 

Figure 5-5. datalogging_create_path_file() routine 
Bool datalogging_create_path_file(void) 
{ 
   char ascii_name[15]; 
   U16 u16_dir_num = 0; 
    
   if( !nav_dir_root() ) 
      return FALSE;           // Error FS 
    
   while( u16_dir_num < 30 )  // The limitation of number of directories is just an example 
   { 
      sprintf( ascii_name, "./log%03d/", u16_dir_num); 
 
      // Enter in sub directory and eventually create it if don't exist 
      if( !nav_setcwd( ascii_name, FALSE, TRUE) ) 
         return FALSE;        // Error FS 
          
      // Create a file 
      if( datalogging_create_file() ) 
         return TRUE;         // File created 
 
      // Here, the directory is full then go to parent directory to create the next sub directory 
      if( !nav_dir_gotoparent() ) 
         return FALSE;        // Error FS 
      u16_dir_num++; 
   } 
   return FALSE;              // Too many log directories and files 
} 

 

The datalogging_create_file() routine creates the file “\logxxx.bin” . This one limits the 
number of log file in a log directory to 10, because the exploration of a directory with 
many files may be too slow. 

Figure 5-6. datalogging_create_file() routine 
Bool datalogging_create_file(void) 
{ 
   char ascii_name[15]; 
   U16 u16_file_num = 0; 
 
   while( u16_file_num < 10 ) 
   { 
      // Create file 
      sprintf( ascii_name, "log%03d.bin", u16_file_num); 
      if( nav_file_create( ascii_name )) 
         return TRUE;   // Here, the file is created, closed and emptied 
      // Error during creation then check error 
      if( fs_g_status != FS_ERR_FILE_EXIST ) 
         return FALSE;  // Error FS (Disk full, directory full, ...) 
      // The file exists then increment number in name 
      u16_file_num++; 
   } 
   return FALSE;        // Too many log files in current directory 
} 



 

8 AVR115 
8202A-AVR-01/09 

5.2.4 File space allocation 

This section is not mandatory but allows increasing the data logging bandwidth. For 
more explanation, see §6.5 of AVR114 application note. 

Note: At the end of data logging, the remaining allocated memory (size allocated - final size) is 
freed up when the file is closed. 

Figure 5-7. datalogging_alloc_file_space() routine 
Bool datalogging_alloc_file_space(void) 
{ 
   Fs_file_segment g_recorder_seg; 
 
   // Open the file created in write mode 
   if( !file_open(FOPEN_MODE_W)) 
      return FALSE; 
    
   // Define the size of segment to alloc (unit 512 B) 
   // Note: you can alloc more in case of you don't know the total size 
   g_recorder_seg.u16_size = FILE_ALLOC_SIZE; 
    
   // Alloc in FAT a cluster list equal or inferior at segment size 
   if( !file_write( &g_recorder_seg )) 
   { 
      file_close(); 
      return FALSE; 
   } 
    
   // If you want then you can check the mimimun size allocated 
   if( g_recorder_seg.u16_size < FILE_ALLOC_SIZE_MIN ) 
   { 
      file_close(); 
      nav_file_del(FALSE); 
      return FALSE; 
   } 
    
   // Close/open file to reset size 
   // Note: This sequence doesn't remove the previous FAT allocation 
   file_close();                             // Closes file 
   if( !file_open(FOPEN_MODE_W))             // Opens file in write mode and forces the size to 0 
      return FALSE; 
   return TRUE;   //** File open and FAT allocated 
} 



 AVR115
 

 9

8202A-AVR-01/09 

5.2.5 File filling 

The “file_write_buf()“ is the best routine to fill a file. Using a multiple of 512 B as buffer 
size and current file position will give optimal speed performance, because the 
memory interface uses a block of 512 B. 

Buffers (2 * 512 B) are filled by timer0 interrupt routine. The maximum data logging 
bandwidth on ATmega32U4 at 8 MHz is 18 KB/s. This value has been measured with 
the following example. 

Figure 5-8. datalogging_file_write_sector() routine 
Bool datalogging_file_write_sector(void) 
{ 
   // !!!! Note : 
   // if the written buffer size has a multiple of 512 B 
   // and if the current file position is a multiple of 512 B 
   // then the "file_write_buf()" routine is very efficient. 
   if( g_b_buf_full[g_u8_cur_buf] ) 
   { 
      if( !file_write_buf( &g_data_buf[g_u8_cur_buf*FS_SIZE_OF_SECTOR], FS_SIZE_OF_SECTOR ) ) 
         return FALSE;  // Error write       
      g_b_buf_full[g_u8_cur_buf] = FALSE; 
      // Now wait new buffer 
      g_u8_cur_buf++; 
      if( NB_DATA_BUF == g_u8_cur_buf ) 
        g_u8_cur_buf = 0; 
   } 
   return TRUE; 
} 

 
 



 

8202A-AVR-01/09 

 
 

Disclaimer 
Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 Atmel Asia 
Unit 1-5 & 16, 19/F 
BEA Tower, Millennium City 5
418 Kwun Tong Road 
Kwun Tong, Kowloon 
Hong Kong 
Tel: (852) 2245-6100 
Fax: (852) 2722-1369 

 
 
 
 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 
 

 Web Site 
www.atmel.com 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts  
 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN Atmel’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON Atmel’S WEB SITE, Atmel ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR 
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL Atmel BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF Atmel HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® , STK®, AVR Studio®, DataFlash® and 
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks 
or trademarks of Microsoft Corporation in US and or other countries. Other terms and product names may be trademarks of others. 
 


	1 Introduction
	2 Hardware Requirements
	3 In-System programming and Device Firmware Upgrade
	4 Quick Start
	5 Application
	5.1 Behavior
	5.2 Firmware
	5.2.1 Enable/disable embedded FS
	5.2.2 Open disk
	5.2.3 Create path file
	5.2.4 File space allocation
	5.2.5 File filling



