
7602B–USB–07/08

8-bit  
Microcontrollers

Application Note
AVR271: USB Keyboard Demonstration

Features
• Supported by Windows®98 or later, Linux and MAC OS
• No driver installation
• Display a simple text message
• Does not support keyboard LEDs management

1. Introduction
The PS/2 interface is disappearing from the new generation PCs being replaced by
the USB interface, which has become the standard interface between the PCs and
peripherals. This change must be followed by keyboard designers, who must integrate
the USB interface to connect the keyboard to the PC.

The aim of this document is to describe how to start and implement a USB keyboard
application using the STK525 starter kit and FLIP in-system programming software.

A familiarity with USB Software Library for AT90USBxxx Microcontrollers (Doc 7675,
Inc luded in  the  CD-ROM & Atmel  webs i te )  and the  HID spec i f i ca t ion
(http://www.usb.org/developers/hidpage) is assumed.

Figure 1-1.  PC to Keyboard Interface



2. Hardware Requirements
The USB keyboard application requires the following hardware:

1. AVR USB evaluation board (STK525, AT90USBKey, STK526...or your own board)

2. AVR USB microcontroller

3. USB cable (Standard A to Mini B)

4. PC running on Windows® (98SE, ME, 2000, XP, Vista), Linux® or MAC® OS with USB 
1.1 or 2.0 host

3. In system programming and Device Firmware Upgrade
To program the device you can use the following methods:

• The JTAG interface using the JTAGICE MKII

• The SPI interface using the AVRISP MKII

• The USB interface thanks to the factory DFU bootloader and FLIP software 

• The parallel programming using the STK500 or the STK600

Please refer to the hardware user guide of the board you are using (if you are using Atmel starter
kit) to see how to program the device using these different methods. 

Please refer to FLIP(1) help content to see how to install the USB driver and program the device
through the USB interface.

Note: 1. Flip is a software provided by atmel to allow the user to program the AVR USB devices through 
the USB interface (No external hardware required) thanks to the factory DFU bootloader.

4. Quick start
Once your device is programmed with usb_keyboard.a90 file, you can start the keyboard dem-
onstration. Check that your device is enumerated as keyboard (see Figure 4-1), then you can
use the kit to send characters to the PC.
2
7602B–USB–07/08

AVR271



AVR271
Figure 4-1. Keyboard enumeration

The figure below shows the STK525 used by the demo (you may use another kit: AT90USBKey,
STK526, depending on the AVR USB product you are working with):
3
7602B–USB–07/08



Figure 4-2. STK525 kit

The purpose of the keyboard demonstration is to send a character string to the PC. 

Follow the instructions below to start the demo:

1. Open the Notepad application or any text editor.

2. Set your keyboard to QWERTY configuration (Otherwise, you’ll see the wrong charac-
ters on your text editor).

3. Connect the STK525.

4. Push the joystick button.

Joystick
4
7602B–USB–07/08

AVR271



AVR271
Figure 4-3. Keyboard Demo
5
7602B–USB–07/08



5. Application overview
The USB Keyboard application is a simple data exchange between the PC and the keyboard. 

The PC asks the keyboard if there is new data available each P time (polling interval time), the
keyboard will send the data if it is available, otherwise, it will send a NAK (No Acknowledge) to
tell the PC that there is no data available. 

The data exchanges between the PC and the keyboard are called reports. The report which con-
tains the keys pressed is the report IN (Keyboard to PC). The report which contains the LEDs
status (NUM LOCK, CAPS LOCK, SCROLL LOCK...) is the report OUT (PC to Keyboard). The
figure below shows the structure of these reports:

Figure 5-1. USB Report Structure

Note: This demonstration manages the report IN only. 
6
7602B–USB–07/08

AVR271



AVR271
Figure 5-2. Application Overview

6. Firmware
As explained in the USB Software Library for AT90USBxxx Microcontrollers (Doc 7675), all USB
firmware packages are based on the same architecture (please refer to this document for more
details).
7
7602B–USB–07/08



Figure 6-1. USB Keyboard Firmware Architecture

This section is dedicated to the keyboard module only. The customization of the files described
hereafter allow the user to build his own keyboard Application.

 

 

main.c

scheduler.c

usb_task.c

usb_standard_
request.c

usb_specific_
request.c

conf_scheduler.h

keyboard_task.h

usb_descriptors.c

usb_drv.c

config.h

usb_standard_request.h usb_specific_request.h
usb_descriptors.h
conf_usb.h

Should not be modified by user Could be modified by user Added by user

K
ey

b
o

ar
d

 a
p

p
lic

at
io

n
A

P
I

D
ri

ve
rs

usb_drv.h

H
ar

d
w

ar
e

USB hardware interface

Enumeration
management

Keyboard
application

management

usb_task.h

S
ta

rt
 u

p

stk_525.c

stk_525.h

keyboard_task.c
8
7602B–USB–07/08

AVR271



AVR271
6.1 keyboard_task.c
This file contains the functions to initialize the hardware which will be used as a keyboard, collect
the report data and put it in the endpoint FIFO to be ready to be sent to the PC. 

Figure 6-2. Keyboard Application

6.1.1 keyboard_task_init
This function performs the initialization of the keyboard parameters and hardware resources
(joystick...). 

6.1.2 kbd_test_hit
This function checks if there is a key pressed and sets the key_hit variable to true.

6.1.3 keyboard_task
This function checks if any key is pressed (key_hit == true). If it is the case, the report IN is filled
out with the related values and loaded in the USB endpoint FIFO to be transmited to the host. 

6.2 stk_52x.c
This file contains all the routines to manage the STK52x board resources (Joystick, potentiome-
ter, Temperature sensor, LEDs...).The user should not modify this file when using the STK52x
board. Otherwise he has to build his own hadware management file.

6.3 How to manage the CAPS, NUMLOCK... LEDs
The keyboard LEDs (CAPS, NUMLOCK...) are managed by the host when the corresponding
key is pressed. When receiving the keycode of CAPS or NUMLOCK... the host sends a
Set_Report request (Out Report) to turn on/off the related LED of the keyboard.

This request is send through the endpoint 0 (control transfer) and has to be managed as a
Set_Configuration request, as shown below:

First the host will send the set_report as showing below:
9
7602B–USB–07/08



bmRequestType 00100001

bRequest SET_REPORT (0x09)

wValue Report Type (0x02) and Report ID 0x00)

wIndex Interface (0x00)

wLength Report Length (0x0004)

Data Report (1 byte)

This  request  is  speci f ic  to the HID c lass,  th is  is  why i t  is  not  managed by the
usb_standard_request.c file but with the usb_specific_request.c. In this file the request is
decoded fo l l ow ing  the  va lue  o f  t he  bmReques t  and the  bReques t  us ing  the
usb_user_read_request() function. The report type (0x02) corresponds to an Out Report. To
handle this request the usb_user_read_request() will call the hid_set_report() function. This
function will acknowledge the setup request and than allow the user to get the one byte data
(you can check the size using the wLength parameter) to know which LED has to be turned
on/off (please refer to the HID specification for further information regarding the LEDs usage
values).

void hid_set_report (void)

{ U16 wLength;

  U8 CAPS_LED = 0;

  U8 REPORT_ID;

   LSB(wInterface)=Usb_read_byte();

   MSB(wInterface)=Usb_read_byte();

   LSB(wLength) = Usb_read_byte();      //!< read wLength

   MSB(wLength) = Usb_read_byte();

   Usb_ack_receive_setup();

   while(!Is_usb_receive_out());

   REPORT_ID = Usb_read_byte();

   CAPS_LED = Usb_read_byte();// get the value of the CAPS LED status sent 
by the host

   Usb_ack_receive_out();

   Usb_send_control_in();

   while(!Is_usb_in_ready());

   //Send a report to clear the CAPS request

   Usb_select_endpoint(EP_KBD_IN);

 Usb_write_byte(0);// Byte0: Modifier

   Usb_write_byte(0);   // Byte1: Reserved

   Usb_write_byte(0);      // Byte2: Keycode 0

   Usb_write_byte(0);   // Byte2: Keycode 1

   Usb_write_byte(0);   // Byte2: Keycode 2

   Usb_write_byte(0);   // Byte2: Keycode 3

   Usb_write_byte(0);   // Byte2: Keycode 4

   Usb_write_byte(0);   // Byte2: Keycode 5
10
7602B–USB–07/08

AVR271



AVR271
   Usb_ack_in_ready();

   //Turn ON/OFF the LED0 following the host reuqest

   if(CAPS_LED == 0)

   Led3_off();

else 

Led3_on();

}

6.4 How to modify my device from non-bootable to bootable device
Please note that HID device may be bootable or non-bootable. By default, the HID demo pro-
vided by Atmel are non-bootable device. If your application need to be bootable, you have to
modify the sub-class parameter (usb_descriptors.h):

// USB Interface descriptor Keyboard

#define INTERFACE_NB_KEYBOARD 0

#define ALTERNATE_KEYBOARD 0

#define NB_ENDPOINT_KEYBOARD 1

#define INTERFACE_CLASS_KEYBOARD 0x03    // HID Class

#define INTERFACE_SUB_CLASS_KEYBOARD 0x00 // Non-bootable

#define INTERFACE_PROTOCOL_KEYBOARD 0x01 //Keyboard

#define INTERFACE_INDEX_KEYBOARD 0

Set the INTERFACE_SUB_CLASS_KEYBOARD to 1 to convert the keyboard to a bootable
device.

7. PC Software
The USB keyboard application doesn’t require any PC software. Limitations

The demonstration does not manage the OUT report.You have to add the required code to han-
dle this feature (refer to the section 6.3 for further details)

8. Related Documents
• AVR USB Datasheet (the related to the part number you are using)

• USB Software Library for AT90USBxxx Microcontrollers (Doc 7675)

• USB HID class specification
11
7602B–USB–07/08



Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00 
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
7602B–USB–07/08


	Features
	1. Introduction
	2. Hardware Requirements
	3. In system programming and Device Firmware Upgrade
	4. Quick start
	5. Application overview
	6. Firmware
	6.1 keyboard_task.c
	6.1.1 keyboard_task_init
	6.1.2 kbd_test_hit
	6.1.3 keyboard_task

	6.2 stk_52x.c
	6.3 How to manage the CAPS, NUMLOCK... LEDs
	6.4 How to modify my device from non-bootable to bootable device

	7. PC Software
	8. Related Documents

