
7603A–USB–02/06

8-bit
Microcontrollers
AVR329: USB Firmware Architecture

Features
• Low Speed (1.5Mbit/s) and Full Speed (12Mbit/s) data rates
• Control, Bulk, Isochronuous and Interrupt transfer types
• Standard or custom USB device classes with AVR USB software library
• Up to 6 data endpoints
• Single or double buffering

1. Introduction
The aim of this document is to describe the USB firmware and give an overview of the
architecture. The main files are described in order to give the user the easiest way to
customize the firmware and build his own application. A minimun knowledge of chap-
ter 9 of USB specification 2.0 (www.usb.org) is required to understand the content of
this document.

2. USB Descriptors
During the enumeration process, the host asks the device several descriptor values to identify it
and load the correct drivers. Each USB device should have at the least the descriptors shown in
the figure below to be recognized by the host:

Figure 2-1. USB Descriptors
 2
7603A–USB–02/06

AVR329

 AVR329
2.1 Device Descriptor
The USB device can have only one device descriptor. This descriptor displays the entire device.
It gives information about the USB version, the maximum packet size of the endpoint 0, the ven-
dor ID, the product ID, the product version, the number of the possible configurations the device
can have, etc.

The table hereunder shows the format of this descriptor:

2.2 Configuration Descriptor
The USB device can have more than one configuration descriptor, however the majority of
devices use a single configuration. This descriptor specifies the power-supply mode
(self_powered or bus-powered), the maximum power that can be consumed by the device, the
interfaces belonging to the device, the total size of all the data descriptors , etc.

For example one device can have two configurations, one when it is powered by the bus and the
other when it is self-powered. We can imagine also configurations which use different transfer
modes.

Table 2-1. Device descriptor

Field Description

bLength Descriptor size

bDescriptorType Device descriptor

bcdUSB USB version

bDeviceClass Code class (If 0, the class will be specified by each interface, if 0xFF, it is
specified by the vendor)

bDeviceSubClass Sub class code (assigned by USB org)

bDeviceProtocol Code protocol (assigned by USB org)

bMaxPacketSize The maximal packet size in bytes of the endpoint 0. It has to be 8 (Low
Speed), 16, 32 or 64 (Full Speep)

idVendor Vendor identification (assigned by USB org)

idProduct Product identification (assigned by the manufacturer)

bcdDevice Device version (assigned by the manufacturer)

iManufacturer Index into a string array of the manufacturer descriptor

iProduct Index into a string array of the product descriptor

iSerialNumber Index into a string array of the serial number descriptor

bNumConfiguration Number of configurations
 3
7603A–USB–02/06

The table hereunder shows the format of this descriptor:

2.3 Interface Descriptor
A single device can have more than one interface. The main information given by this descriptor
is the number of endpoints used by this interface and the USB class and subclass.

The table hereunder shows the format of this descriptor:

Table 2-2. Configuration descriptor

Field Description

bLength Descriptor size

bDescriptor Configuration descriptor

wTotalLength Total descriptors size

bNuminterface Number of interfaces

bConfigurationValue Number of the configuration

bmAttributes self-powered or bus-powered, remote wake up

bMaxpower 2mA by unit

Table 2-3. Interface descriptor

Field Description

bLength Descriptor size

bDescriptorType Interface descriptor

bInterfaceNumber interface number

bAltenativeSetting Used to select the replacing interface

bNumEndpoint Number of endpoints (excluding endpoint 0)

bInterfaceClass Class code (assigned by USB org)

bInterfaceSubClass
Subclass code (assigned by USB org)
0 No subclass
1 Boot interface subclass

iInterface Index into a string array to describe the used interface
 4
7603A–USB–02/06

AVR329

 AVR329
2.4 Endpoint Descriptor
This descriptor is used to describe the endpoint parameters such as: the direction (IN or OUT),
the transfer type supported (Interrupt, Bulk, Isochronuous), the size of the endpoint, the interval
of data transfer in case of interrupt transfer mode, etc.

The table hereunder shows the format of this descriptor:

Table 2-4. Endpoint descriptor

Field Description

bLength Descriptor size

bDescriptorType Endpoint descriptor

bEndpointAdress

Endpoint adress
Bits[0..3] Number of the endpoint
Bits[4..6] reserved, set to 0
Bit 7: Direction: 0 = OUT, 1 = IN

bmAttributes

Bits[0..1] Transfer type:
00=Control,
01=Isochronous,
10=Bulk,
11=Interrupt
Bits [2..7] reserved, except for Isochronous transfer
Only control and interrupt modes are allowed in Low Speed

wMaxPacketSize The maximum data size that this endpoint support

bInterval

It is the time interval to request the data transfer of the endpoint. The value is
given in number of frames (ms).
Ignored by the bulk and control transfers.
Set a value between 1and 16 (ms) for isochronous
Set a value between 1 and 255 (ms) for the interrupt transfer in Full Speed
Set a value between 10 and 255 (ms) for the interrupt transfer in Low Speed
 5
7603A–USB–02/06

3. Firmware Architecture
As shown in the figure below, the architecture of the USB firmware is designed to avoid the cus-
tomer any hardware interfacing (Drivers layer should not be modified by the user). The user has
to interface with the API (usb_standard_request.c file should not be modified) and User applica-
tion layers to build his own application.

Figure 3-1. USB Firmware Architecture

main.c

scheduler.c

usb_task.c

usb_standard_
request.c

usb_specific_
request.c

app_user_task.c
1...n applications

conf_scheduler.h

app_user_task.h

usb_descriptors.c

usb_drv.c

user_api.c

config.h

usb_standard_request.h usb_specific_request.h usb_descriptors.h
conf_usb.h user_api.h

Should not be modified by user Can be modified by user Added by user

U
se

r a
pp

lic
at

io
n

A
PI

D
riv

er
s

usb_drv.h

H
ar

dw
ar

e

USB hardware interface

Enumeration
management

User application
management

usb_task.h

St
ar

t u
p

 6
7603A–USB–02/06

AVR329

 AVR329

Hereunder the description of the main files:

main .c , con f ig .h , schedu le r .c , con f_schedu le r .h , usb_ task .c , usb_ task .h ,
usb_s tandard_ reques t .c , usb_s tandard_ reques t .h , usb_spec i f i c_ reques t .c ,
usb_specific_request.h, usb_drv.c, usb_drv.h, app_user_task.c, user_api.c

4. Start up
The Start up contains two files which are: main.c and scheduler.c. These files manage the
launch and the progress of the tasks.

4.1 main.c
This file is the main entry point for the application. It also performs the launch of the scheduler.

4.2 config.h
This file contains the system configuration definition, such as the clock definition. For example to
define a 16Mhz clock frequency you have to declare:

#define FOSC 16000 // Oscillator frequency(KHz)

4.3 scheduler.c
This file should not be modified by the user. It manages the routine to call the tasks. Each task
will be called following the order specified in conf_scheduler.h.

4.4 conf_scheduler.h
The tasks called by the scheduler have to be defined in this file. The initialization tasks will be
called just once, the others will be called continuously. To add his own tasks, the user has to
declare them in this file.
Example:

#define Scheduler_task_1_init usb_task_init

#define Scheduler_task_1 usb_task

#define Scheduler_task_2_init mouse_task_init

#define Scheduler_task_2 mouse_task

Using the declaration of the example above, the scheduler will start by calling the usb_task_init
then mouse_task_init once, and after it will continuously call usb_task followed by mouse_task.

5. User application
The User application layer manages the end-user interface. The user should add the several
application tasks. The USB task is provided by Atmel and the user should not modify it.

5.1 usb_task.c
This file performs all USB requests (Standard and Specific). It manages the USB enumeration
process and all asynchronuous events (Suspend, Resume, Reset, Wake up...). This file should
not be modified by the user.
 7
7603A–USB–02/06

5.2 app_user_task.c
The user can add more than one task, it depends of his application.These tasks will manage the
higher level of the user application (the interface with the end user).

For example, for a mouse application, the user has to add the button and the sensor manage-
ment as a app_user_task.c.

6. API
The API layer permits the interfacing between the user application layer and the drivers layer. It
hides the drivers peculiarity to the user.

6.1 usb_standard_request.c
This file manages all the USB standard requests. These requests are the same for any USB
class enumeration. The user should not modify this file.

6.2 usb_standard_request.h
This file defines the values of the standard requests parameters.

6.3 usb_specific_request.c
This file manages the specific requests. These requests depend of the application, the user has
to add the related functions to manage them.

6.4 usb_specific_request.h
This file defines the values for the parameters of the specific requests. If the application has spe-
cific requests, the user has to add the values/parameters of these requests in this file.

6.5 usb_descriptor.c
In this file we filled out all parameters/values of the enumeration descriptor structures defined in
usb_descriptor.h. This file is important for the user to make his own application. Any descriptor
values added in usb_descriptor.h have to be filled out in this file.

6.6 usb_descriptor.h
This file contains all parameters/values and the structures of the descriptors. Before adding any
descriptor to the usb_descriptor.c, the user has to add the related stucture type and value defini-
tion in this file.

6.7 conf_usb.h
This file defines the definition of the endpoints numbers used by the application

For example, if you want to use the endpoint 1 as mouse application endpoint, you should define
it in conf_usb.h file as below:

#define EP_MOUSE_IN 1 //! Number of the mouse interrupt IN
endpoint

6.8 user_api.c
This file will be added by the user. It will make the interfacing between the driver level and the
user application.
 8
7603A–USB–02/06

AVR329

 AVR329

For example, this file could manage the tansfer of data between the PC and the device.

7. Drivers
The driver layer permits to hide all the hardware complexity to the user.

7.1 usb_drv.c
This file presents the interface between the user and the USB hardware, it contains all the USB
drivers routines. The user should not modify this file.

7.2 usb_drv.h
This file contains the USB low level driver definition.
 9
7603A–USB–02/06

8. FAQ

8.1 How to change the VID & the PID?
The VID (Vendor ID) and the PID (Product ID) allow the identification of the device by the host.
Each manufacturer should have its own VID, which will be the same for all products (it is
assigned by USB org). Each product should has its own PID (it is assigned by the
manufacturer).

The value of the VID and the PID are defined in usb_descriptor.h. To change them you have to
change the values below:

// USB Device descriptor

#define VENDOR_ID 0x03EB // Atmel vendor ID = 03EBh

#define PRODUCT_ID 0x201C

8.2 How can I change the string descriptors value?
The value of the string descriptors are defined in usb_descriptor.h. For example to change the
product name value, you have to change the following values:

The length of the string value:

#define USB_PN_LENGTH 18

The String value:

#define USB_PRODUCT_NAME \

{ Usb_unicode('A') \

 ,Usb_unicode('V') \

 ,Usb_unicode('R') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('U') \

 ,Usb_unicode('S') \

 ,Usb_unicode('B') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('M') \

 ,Usb_unicode('O') \

 ,Usb_unicode('U') \

 ,Usb_unicode('S') \

 ,Usb_unicode('E') \

 ,Usb_unicode(' ') \

 ,Usb_unicode('D') \

 ,Usb_unicode('E') \

 ,Usb_unicode('M') \

 ,Usb_unicode('O') \

}

 10
7603A–USB–02/06

AVR329

 AVR329
8.3 How can I configure my device in self-powered or bus-powered mode?
The parameter to configure the device in self-powered or bus-powered mode is defined in
usb_descriptor.h file. Hereunder the definition of each mode

bus-power mode:

// USB Configuration descriptor

#define CONF_ATTRIBUTES USB_CONFIG_BUSPOWERED

Self-power mode:

// USB Configuration descriptor

#define CONF_ATTRIBUTES USB_CONFIG_SELFPOWERED

8.4 How can I add a new descriptor?
To add a new descriptor to your application, you have to follow the steps below:

1. Define the values of the descriptor parameters and its stucture type in
usb_descriptors.h file.

For example the HID descriptor and its structure should be defined in usb_descriptors.h file as
shown below:

/* ____HID descriptor___*/

#define HID 0x21

#define REPORT 0x22

#define SET_REPORT 0x02

#define HID_DESCRIPTOR 0x21

#define HID_BDC 0x1001

#define HID_COUNTRY_CODE 0x00

#define HID_CLASS_DESC_NB 0x01

#define HID_DESCRIPTOR_TYPE 0x22

/*_____ U S B H I D D E S C R I P T O R _________________________________*/

typedef struct {

 U8 bLength; /* Size of this descriptor in bytes */

 U8 bDescriptorType; /* HID descriptor type */

 U16 bscHID; /* Binay Coded Decimal Spec. release */

 U8 bCountryCode; /* Hardware target country */

 U8 bNumDescriptors; /* Number of HID class descriptors to follow */

 U8 bRDescriptorType; /* Report descriptor type */

 U16 wDescriptorLength; /* Total length of Report descriptor */

} S_usb_hid_descriptor;

2. Add the new descriptor to the s_usb_user_configuration_descriptor structure in
usb_descriptors.h file:

typedef struct

{

 11
7603A–USB–02/06

 S_usb_configuration_descriptor cfg_mouse;

 S_usb_interface_descriptor ifc_mouse;

 S_usb_hid_descriptor hid_mouse;

 S_usb_endpoint_descriptor ep1_mouse;

} S_usb_user_configuration_descriptor;

3. In the File usb_descriptors.c, add the size of the new descriptor to the wTotalLength
parameter of the configuration descriptor and add the descriptor value (see the example below):

code S_usb_user_configuration_descriptor usb_conf_desc = {

 { sizeof(S_usb_configuration_descriptor)

 , CONFIGURATION_DESCRIPTOR

 , Usb_write_word_enum_struc(sizeof(S_usb_configuration_descriptor)\

 +sizeof(S_usb_interface_descriptor) \

 +sizeof(S_usb_hid_descriptor) \

 +sizeof(S_usb_endpoint_descriptor) \

)

 , NB_INTERFACE

 , CONF_NB

 , CONF_INDEX

 , CONF_ATTRIBUTES

 , MAX_POWER

 }

 ,

 { sizeof(S_usb_interface_descriptor)

 , INTERFACE_DESCRIPTOR

 , INTERFACE_NB_MOUSE

 , ALTERNATE_MOUSE

 , NB_ENDPOINT_MOUSE

 , INTERFACE_CLASS_MOUSE

 , INTERFACE_SUB_CLASS_MOUSE

 , INTERFACE_PROTOCOL_MOUSE

 , INTERFACE_INDEX_MOUSE

 }

 ,

 { sizeof(S_usb_hid_descriptor)

 , HID_DESCRIPTOR

 , HID_BDC

 , HID_COUNTRY_CODE

 , HID_CLASS_DESC_NB

 , HID_DESCRIPTOR_TYPE

 , Usb_write_word_enum_struc(sizeof(S_usb_hid_report_descriptor_mouse))

 }

 ,

 { sizeof(S_usb_endpoint_descriptor)

 , ENDPOINT_DESCRIPTOR

 , ENDPOINT_NB_1

 , EP_ATTRIBUTES_1
 12
7603A–USB–02/06

AVR329

 AVR329

 , Usb_write_word_enum_struc(EP_SIZE_1)

 , EP_INTERVAL_1

 }

};

4. Do not forget to add all functions related to manage this new descriptor.

8.5 How can I add a new endpoint?
to configure a new endpoint, you have to follow the steps below:

1. As explained in the USB descriptors section, an endpoint belongs to an interface. The
first thing to do to add a new endpoint, is to increment by one to the NB_ENDPOINT
parameter value. This value is defined in usb_descriptor.h file and it belong to the inter-
face descriptor prameters.

// USB Interface descriptor

#define INTERFACE_NB xx

#define ALTERNATE xx

#define NB_ENDPOINT xx//This parameter=the endpoints number of the
interface

#define INTERFACE_CLASS xx

#define INTERFACE_SUB_CLASS xx

#define INTERFACE_PROTOCOL xx

#define INTERFACE_INDEX xx

2. The next step is to define the endpoint descriptor values . These values have to be
defined in usb_descriptors.h.

// USB Endpoint 1 descriptor FS

#define ENDPOINT_NB_1 (EP_MOUSE_IN | 0x80)

#define EP_ATTRIBUTES_1 0x03 // BULK = 0x02, INTERUPT = 0x03

#define EP_IN_LENGTH_1 8

#define EP_SIZE_1 EP_IN_LENGTH_1

#define EP_INTERVAL_1 0x02 // Interrupt polling interval from host

EP_MOUSE_IN is defined in conf_USB.h to specify the endpoint numeber used by the
application.

3. Add the new endpoint descriptor to the configuration descriptor (proceed as explained
in the previous FAQ point).

4. Add the hardware initialization call in usb_specific_request.c
void usb_user_endpoint_init(U8 conf_nb)

{

 usb_configure_endpoint(EP_MOUSE_IN, \

 TYPE_INTERRUPT, \

 DIRECTION_IN, \

 SIZE_8, \

 ONE_BANK, \

 NYET_ENABLED);

}

 13
7603A–USB–02/06

9. Coding Style
The coding style explained hereunder are important to understand the firmware:

• Defined contants use caps letters.
#define FOSC 8000

• Macros Functions use the first letter as cap
#define Is_usb_sof() ((UDINT & MSK_SOFI) ? TRUE: FALSE)

• The user application can execute its own specific instructions upon each usb events thanks
to hooks defined as following in usb_conf.h.
#define Usb_sof_action() sof_action();

Note: The hook function should perform only short time requirement
operations !

• Usb_unicode() macro function should be used everywhere (String descriptors...) an unicode
char is exchanged on the USB protocol.
 14
7603A–USB–02/06

AVR329

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectu-
alproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF
SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-
RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL
OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMA-
TION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make
changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.
Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,

Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2006. All rights reserved. Atmel® , logo and combinations thereof, Everywhere You Are® , AVR® and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft Corporation. Other terms and product names
may be trademarks of others.
 Printed on recycled paper.

7603A–USB–02/06

	Features
	1. Introduction
	2. USB Descriptors
	2.1 Device Descriptor
	2.2 Configuration Descriptor
	2.3 Interface Descriptor
	2.4 Endpoint Descriptor

	3. Firmware Architecture
	4. Start up
	4.1 main.c
	4.2 config.h
	4.3 scheduler.c
	4.4 conf_scheduler.h

	5. User application
	5.1 usb_task.c
	5.2 app_user_task.c

	6. API
	6.1 usb_standard_request.c
	6.2 usb_standard_request.h
	6.3 usb_specific_request.c
	6.4 usb_specific_request.h
	6.5 usb_descriptor.c
	6.6 usb_descriptor.h
	6.7 conf_usb.h
	6.8 user_api.c

	7. Drivers
	7.1 usb_drv.c
	7.2 usb_drv.h

	8. FAQ
	8.1 How to change the VID & the PID?
	8.2 How can I change the string descriptors value?
	8.3 How can I configure my device in self-powered or bus-powered mode?
	8.4 How can I add a new descriptor?
	8.5 How can I add a new endpoint?

	9. Coding Style

