

Early praise for Forge Your Future with Open Source

This book has needed to exist for a long time. Newcomers to free and open source
software now have a thorough guide to participation, and the author’s real-world
experience shows on every page. Among the book’s strengths is that it not only
explains what steps to take (and their variants), but also shows new contributors
how things look from the project’s point of view. I hope and expect to see this book
referred to by contributors to projects across the internet.

➤ Karl Fogel
Partner, Open Tech Strategies, LLC

If you ever wished you could have a compendium of HOWTO open source from one
of the most knowledgeable folks in this biz, this is the book for you. Vicky is an
absolute gem and has successfully distilled decades of knowledge into an easy-to-
access format that should be required reading for anyone wanting to get into FOSS.

➤ Katie McLaughlin
Director, Django Software Foundation, Python Software Foundation

The next time someone tells me they want to learn more about open source, I’ll
have the perfect book recommendation. Vicky has written the concise, practical
guidebook we were missing. Forge Your Future with Open Source is an excellent
quick-start guide for anyone stepping into the world of open source.

➤ Rikki Endsley
Community Manager, Opensource.com, Red Hat

Wonderfully readable, not only as a practical manual, but as an engaging and
inspirational introduction to the world of free software, one practical and people-
oriented example at a time. This is the book I wish I had read many years ago.

➤ Chris Lamb
Debian Project Leader

I’ve been working in open source for almost two decades. I went to Microsoft a
decade ago to open-source .NET and C#. I wish I’d had a copy of VM’s book. This
book offers valuable historical context and practical guidelines on how and when
to work on an Open Source project. Forge Your Future with Open Source will no
doubt empower the next generation of contributors and I’m envious of their bright
futures!

➤ Scott Hanselman
Program Partner Manager, Open Source .NET, Microsoft

Vicky’s book is the “Goldilocks” guide to participating in open source: just the
right information, with neither too much obscure detail nor too little actionable
advice. I look forward to recommending it to others.

➤ Cat Allman
Board Member, USENIX

Contributing to a free software project is one of the best ways to help the free
software movement, and this book is the comprehensive, self-contained guide you
need to get started. Brasseur skillfully balances depth and breadth, homing in
on key points around the mechanics of contributing as well as the oft-neglected
meta areas of effective communication, licensing, and employment ramifications.

➤ John Sullivan
Debian Developer

Forge Your Future with Open Source goes where no book has gone before, clearly
teaching how to get started as a contributor to open source, explaining why con-
tributing is valuable and rewarding, and exploring the technical and social challenges
both new and experienced contributors face, in an honest and practical way.

➤ Allison Randal
Board Member, Open Source Initiative

In her inimitable style, VM Brasseur brings a useful cheat sheet for contributing
to free and open source software. There is probably something in this book for
everyone to learn.

➤ Karen Sandler
Co-Organizer, Outreachy

Vicky unflaggingly reminds us that creating software is a liberal art—and the
foundational art of Open Source is courtesy. If every reader were to practice some
of the advice in this book, the software world would be a more welcoming place.

➤ Robert “r0ml” Lefkowitz
Distinguished Engineer, ACM

Open Source runs most of the technology world, from mobile phones to the inter-
net. Despite it being open, there are many hidden rules in how teams work togeth-
er. Vicky’s glorious book removes the arcane barriers surrounding this field and
takes us along a journey into Open Source from the practice, the culture, the
community, the history, the motivation, and even how we talk to each other. It is
a book built on years of practice that not only needed to be written but deserves
to be read by anyone wanting to contribute to this field.

➤ Simon Wardley
Researcher, Leading Edge Forum

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Forge Your Future with Open Source
Build Your Skills. Build Your Network.

Build the Future of Technology.

VM (Vicky) Brasseur

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-301-2
Book version: P1.0—October 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Preface xi

1. The Foundations and Philosophies of Free and Open
Source 1

It’s About the People 1
Why Learn About the Philosophies? 2
Free and Open Source Software Is Everywhere 2
Other Open Movements 4
The Origins of Free Software 5
The Origins of Open Source 6
Difference Between Free Software and Open Source 8
An Aside About Terminology 9
A Brief Introduction to Copyright and Licensing 10
Types of Free and Open Source Software Licenses 13
Now You Have a Strong Foundation 14

2. What Free and Open Source Can Do for You 15
FOSS Benefits to Your Skillset 15
FOSS Benefits to Your Career 20
FOSS Benefits to Your Personal Network 22
Benefit from Preparation 23

3. Prepare to Contribute 25
Ways to Contribute 26
Common Project and Community Roles 27
Files You Should Know About Before You Start 29
Issue Tracking 34
Common Communication Routes 34

Contributor License Agreement/Developer Certificate of
Origin 36
You’re Ready to Find a Project 37

4. Find a Project 39
Set Your Goals 39
Collect Your Requirements 42
Collect Candidate Projects 45
Select a Project 47
Select a Task 49
What Is “Success”? 51

5. Make a Contribution 53
Prepare for Your Contribution 53
Craft Your Contribution 57
Gotchas 58
Clone and Branch 59
Atomic Commits 61
Test Your Contribution 62
Submit Your Contribution 64
Review, Revise, Collaborate 68
Tidy Up 70
Special Considerations for Windows-based Contributors 71
There’s More to Contributing Than Just Code 72

6. Make a Difference Without Making a Pull Request . . . 73
Review Contributions 74
Provide Testing 80
Triage Issues 83
Volunteer for the Less Interesting Things 85
There Are So Many Options 86

7. Interact with the Community 87
After Your First Contribution 87
Get Help 90
General Tips for Participating in Discussions 92
The Importance of Setting Up and Maintaining Expectations 94
Communication Channels and How to Use Them 95
Mailing List 96
Issue Tracker 102
Real-Time Chat 107

Contents • viii

Conference Call 110
Only the Tip of the Iceberg 111

8. It’s About the People 113
Get Together 113
Tips for Coping at a Conference or Meetup 116
Form Your Own Meetup 122
Moving up in the Community 124
FOSS Is People 126

9. When It Goes Wrong 127
Intimidated by FOSS’ Reputation 127
Can’t Find a Project 128
Company Policies 129
Contribution Process Is Unclear 132
Language Barriers 134
Your Contribution Is Declined 136
Community Problems 138
Sometimes You’re the Problem 146
How to Exit a Community 148
You Don’t Have to Feel Trapped 149

10. Start Your Own Project 151
Quick Start Guide to Releasing Your Own Project 151
What Is Your Goal? 152
Optimize for Community 153
Work in the Open 155
Keep It Simple, Silly 156
Share the Burden Early 157
Select Communication Routes 157
What About Issue Tracking? 158
Styleguides 159
Select a License 160
How to Apply a License 162
Publish the Project and You’re Done! 166

11. Contribute for Your Job 167
Contributing to External FOSS Projects 167
Contributing to Your Company’s FOSS Projects 170
Convincing Your Employer to Support FOSS 171
Forge Your Future 178

Contents • ix

A1. Glossary 179

Bibliography 195
Index 197

Contents • x

Preface
Here we are—forty years on from the launch of the Free Software movement
and twenty years since the “open source” and its related movement were
created—and it’s still really hard to contribute to most free and open source
software projects. There are all of these unspoken rules, unfamiliar language,
and a lack of documentation that would be impressive were it not so unfortu-
nate. The web is full of articles about how to contribute, but none of them
cover everything you need to make your first contribution. You end up playing
contribution Whac-a-Mole,1 with a new problem or unspoken rule popping
up the moment you think you know what’s going on. It’s all so frustrating
sometimes.

Don’t Panic, I’m here to help. Welcome, my friends, to the book that finally
makes sense of contributing to open source.

What’s in This Book?
In these pages, you’ll find everything you need to start contributing to free
and open source projects. First, we’ll cover the history and philosophies of
these movements, since without that knowledge, you’ll trip and fall on the
very first step of your journey to becoming a contributor. After that, we’ll
investigate the benefits of contributing to free and open source and help you
select a project that suits your needs, so both you and the project can benefit
from your contribution. Obviously we’ll cover how to make the contribution
itself, but we’ll also discuss the many ways you can contribute without writing
a line of code. All of those unspoken rules will be revealed, and we’ll even talk
about how to start your own open source project.

What’s NOT in This Book?
This book will not hand you a list of free and open source projects where you
should start contributing. Not only would such a list be out of date the moment

1. https://en.wikipedia.org/wiki/Whac-A-Mole#Colloquial_usage

report erratum • discuss

https://en.wikipedia.org/wiki/Whac-A-Mole#Colloquial_usage
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

it was published, but it also wouldn’t be the right list for everyone. Thousands
of free and open source software (FOSS) projects exist in the world today. It
would be silly to list a few, then send all of you stampeding off to contribute
to just those. With so many projects to choose from, you can find a project
that matches your specific skills and interests. In fact, there’s an entire
chapter to help you do just that.

This book also does not recommend which tools to use for contributing. The
most effective tool is the one that works for you (as long as the end product
meets the requirements of the project).

I’ve gone to great lengths to try not to influence your choice of project or tools,
while giving you the information and support you need to make your own
decisions. You do you, honey.

Who Should Read This Book?
From experienced software professional to new student, anyone who wishes
to contribute to FOSS will find value in this book. While most people think
FOSS contributions are only the realm of programmers, nothing could be
further from the truth. Software development is a multidisciplinary undertak-
ing. Writers, testers, designers, project managers, marketers… There’s a place
for everyone in free and open source software.

While this book contains some technical concepts, it does not assume that
you are a programmer, that your contribution will be code, or even that you’re
overly familiar with software development. Free and open source software
needs all sorts of contributions, submitted by all sorts of people.

Why Is This Book Not Openly Licensed?
Yeah, I thought someone might ask that.

With the growing awareness and importance of open source along with the
explosion of new projects released every year, it’s more important than ever
that there be a resource to enable and support the immense number of new
contributors we’re going to need to help maintain that software. This book is
that resource.

While this book needed to exist, and I was well equipped and well placed to
write it, it wasn’t going to happen if I did it on my own. Without external help
or motivation, I know that I would never finish a project this huge. I mean:
writing a book? That’s really intimidating.

Preface • xii

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

To make this happen, I needed help. Enter Pragmatic Bookshelf. Their expe-
rience and support could guide and motivate me to create this book, but only
if they administer the copyright of it. This allows them to do things like
negotiate translations and similar administrative duties, with which I have
no experience whatsoever.

The choices were:

1. I assign copyright of the book to Pragmatic, then have their invaluable
support to help bring it into the world, and Pragmatic chooses a book
license based on their current business practices.

2. I retain copyright, but I do it alone and unsupported, so the book is never
started, finished, nor released under any license at all.

This book is an important resource that is long overdue and will help thou-
sands of people and free and open source software projects. That it finally
exists is more important to me than my copyright. So I chose Option 1. I have
no regrets. Pragmatic are great people.

Suggestions, Errata, or Questions?
Free and open source software is all about the community coming together
to collaborate and build something amazing. This book is no different. Do
you have suggestions for how to improve the book for future generations of
contributors? Problems with the content? Share your thoughts using the
errata submission form on the book’s catalog page on the Pragmatic Bookshelf
website.2

Also, if you have any questions at all about contributing to free and open
source software, join us on the #fossforge channel on the Freenode Internet
Relay Chat (IRC) network. A web interface3 is available to make joining easy,
as well as a quickstart guide4 if you’re not familiar with IRC. The channel
community will gladly help support you in your journey from novice to con-
tributor.

Credits
I mostly wrote this book on a 2016 MacBook Pro, in Markdown, using MacVim
as my text editor and git as my version control, though more than a few
pages were written on a 9.7" iPad Pro using the Textastic text editor and

2. https://pragprog.com/titles/vbopens/errata
3. https://webchat.freenode.net/?channels=%23fossforge
4. https://opensource.com/life/16/6/irc-quickstart-guide

report erratum • discuss

Suggestions, Errata, or Questions? • xiii

https://pragprog.com/titles/vbopens/errata
https://webchat.freenode.net/?channels=%23fossforge
https://opensource.com/life/16/6/irc-quickstart-guide
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

WorkingCopy git client. The diagrams are my creation, using OmniGraffle.
The font in the diagrams is Open Sans, created by Steve Matteson and licensed
under the Apache 2.0 open source license. The handwriting font used in
several examples is Nothing You Could Do, created by Kimberly Geswein and
licensed under the Open Font License. The Kannadan font used in When It
Goes Wrong is Kedage by the Indian Language Technology Solutions Project
and is licensed under the GNU General Public License version 2.

Acknowledgments
Books don’t happen easily, and they don’t happen solely through the force of
will of their authors. True to the spirit of free and open source software, a lot
of people contributed to the creation of this work.

To every free and open source community member and leader who was patient
and generous with their guidance and advice over the years and who helped
me learn what was necessary for this book: Thank you.

To the Opensource.com community moderators, whose brilliance and insight
never fail to inspire me to be a better human and contributor: Thank you.

To the technical reviewers, and particularly to those who gave up part of their
2017 holiday to review the first half of the book: Thank you. The reviewers
were (in alphabetical order by first name): Alessandro Bahgat, Andrea Goulet,
Ashish Bhatia, Ben Cotton, Daivid Morgan, Derek Graham, Donna Benjamin,
Emanuele Origgi, Fabrizio Cucci, Glen Messenger, John Strobel, Johnny
Hopkins, Karen Sandler, Karl Fogel, Katie McLaughlin, Máirín Duffy, Maricris
Nonato, Mark Goody, Matthew Oldham, Michael Hunter, Mitchell Volk, Nick
McGinness, Nouran Mhmoud, Peter Hampton, Raymond Machira, Rikki
Endsley, Robin Muilwijk, Scott Ford, Stephen Jacobs, Tibor Simic, and Zulfikar
Dharmawan. If any errors or omissions still exist in the book, the fault is
entirely mine for ignoring their advice.

To Chethan R Nayak, for providing the Kannadan translation used in When
It Goes Wrong: Thank you.

To Sage Sharp, for wisely suggesting I add a section to Prepare to Contribute
about roles commonly found in FOSS projects: Thank you.

To Ben, John, Katie, and Rikki, for their invaluable counsel during the title
selection process: Thank you.

To the Pragmatic team, for believing this book was a good idea and providing
a happy and supportive home for it: Thank you.

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

To Brian, my editor and my friend, who came to me with a crazy idea and
who helped me turn it into reality, without whom I literally could not have
done this (pun intended): Thank you.

To everyone on the channel, who knows who they are and who are there for
me through it all: Thank you. I love each and every one of you and I will
never tire of saying so.

And finally to you, who will help shape the future of technology through your
free and open source contributions: Thank you.

report erratum • discuss

Acknowledgments • xv

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 1

The Foundations and Philosophies
of Free and Open Source

When we think or talk about free and open source software, there’s a strong
tendency to focus on that last bit: the software. Software, as we all know, is
just made out of code, right? So isn’t free and open source software, therefore,
all about the code? It’s all programming, but it’s programming that anyone
can use, like, for FREE, man. After all, that’s what the free means in “free
and open source”, right? You can use it, but there’s no cost. Yup, that’s open
source. Book done. We can all move along.

You’ve probably already guessed that the previous paragraph was a steaming
pile of misinformation. Unfortunately, it’s based on a lot of the common miscon-
ceptions about free and open source software. These fallacies are repeated and
perpetuated to the point of being seen as common knowledge. As is often the
case with things like this, not everything that is common qualifies as knowledge.

It’s About the People
For instance, despite what many believe, free and open source software is
not only about the software; it’s also about the people. People build the soft-
ware, employing varied skills like writing, testing, designing, and (yes) pro-
gramming. People maintain the software and form tight-knit communities to
support both the software and its users. It was through the vital and deep-
seated convictions of people that free and open source software exists at all.
Those convictions form the basis of a philosophy of freedom and sharing that
enabled the world-changing idea, “software should be Free,” to evolve into
the massive social movement that we today know as open source.

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

To participate in free and open source software, it’s critical that you under-
stand that, while it’s tightly entwined with software and technology, it is
fundamentally a social movement. Social movements are composed of people,
and as we know, people are difficult, squishy, amazing things. Contributing
to free and open source is not simply a mechanical process of pushing code
from here to there. To contribute, you must understand the underlying social
constructs and philosophies that are common to all free and open source
software projects.

Why Learn About the Philosophies?
“But!” you interject, “I’m not here to learn about philosophy and stuff. I just
want to contribute! Why tell me all this?”

Without these philosophies, there would be no free and open source software.
While it may not always be obvious, the freedoms and beliefs of the founders
of the free and open source movements underpin everything in each project
you use and contribute to. The participants in most free and open source
projects are aware of these philosophies and will expect you to be, as well.
The few minutes you spend reading this chapter will provide valuable context
that allows you to better understand the motivations behind many of the
actions you’ll see taken in open source projects.

It could be that after learning the basic philosophies, you find you’re either
drawn to or repelled by them. This is an important realization to have at this
point. It will guide you toward those projects that best suit your own beliefs,
away from those that don’t, or perhaps away from contributing at all. If that’s
the path you choose: Congratulations! Few people are self aware enough up
front to avoid devoting so much of their free time to a pursuit that doesn’t
appeal to them. The time you spend learning and thinking about these
philosophies now can save you days, weeks, months, or more in the future.

Free and Open Source Software Is Everywhere
Free and open source software is everywhere. Your car, TV, and even your
light bulbs probably run software using the Linux kernel and related operating
system. Your phone either runs on an open source platform—Android—or it
has a proprietary platform but runs apps written in an open source lan-
guage—Swift. The movies you watch may have been created using the Blender
free and open 3D rendering suite, and they certainly were converted or edited
with the help of ffmpeg, a free software tool for manipulating digital media
files. You may open your open source browser—Firefox—to watch a live stream

Chapter 1. The Foundations and Philosophies of Free and Open Source • 2

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

delivered by the free Open Broadcaster Software. You may then place an order
from an online merchant, who built their website using the free and open
Wordpress, Drupal, or Joomla. Thanks to the OpenSSL cryptographic library
and tools, you know that your financial information will remain secure.

Free and open source software (FOSS) has become the default choice for
programming languages, infrastructure, databases, content management
systems, and web servers among many other categories of technology. There
are millions of free and open source projects, performing billions of different
tasks. Every year GitHub, an online service for hosting and developing software
and a major supporter of open source, releases a report of the GitHub and
open source world. It calls this study The Octoverse. The 2017 Octoverse
report1 shows more than 25 million open repositories on GitHub alone, and
this number is just a fraction of the open projects available.

As mentioned earlier, free and open source is more than just software: it’s
people. Each project is built by people for people. People use, contribute to, and
support the projects. And people form organizations dedicated to cultivating and
advancing the free and open source software movements. These organizations
exist all over the world, in nearly every region. In the USA, you can support
the Free Software Foundation,2 the Software Freedom Conservancy,3 the Open
Source Initiative,4 or Software in the Public Interest,5 among others. In Europe,
you have Free Software Foundation Europe,6 Open Source Projects EU OSP),7

and Open Forum Europe (OFE). Australasia is supported by Linux Australia,8

Opensource.asia,9 and FOSSAsia.10 Groups like Free and Open Source Soft-
ware For Africa (FOSSFA)11 and OpenAfrica12 support, teach, and spread free
and open source technologies across many countries in Africa. Central and
South America are also highly active in the free and open source world, thanks

1. https://octoverse.github.com
2. https://www.fsf.org
3. https://sfconservancy.org
4. https://opensource.org/
5. https://www.spi-inc.org
6. https://fsfe.org/index.en.html
7. https://opensourceprojects.eu
8. https://linux.org.au
9. http://opensource.asia
10. https://fossasia.org
11. http://www.fossfa.net
12. https://africaopendata.org

report erratum • discuss

Free and Open Source Software Is Everywhere • 3

https://octoverse.github.com
https://www.fsf.org
https://sfconservancy.org
https://opensource.org/
https://www.spi-inc.org
https://fsfe.org/index.en.html
https://opensourceprojects.eu
https://linux.org.au
http://opensource.asia
https://fossasia.org
http://www.fossfa.net
https://africaopendata.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to groups like Software Livre Brasil,13 FLISOL,14 and Grup de Usuarios de
Software Libre Perú15 among dozens of others.

Other Open Movements
The open ethos isn’t limited to software. A number of related movements have
sprung up in the past few decades, each dedicated to sharing, transparency,
and collaboration.

Wikipedia16 is the most well-known and highly trafficked of these open
movements. Anyone in the world is encouraged to contribute to its ever-
growing knowledge base. The majority of the content on Wikipedia is available
under a license furnished and maintained by Creative Commons.17 Creative
Commons is an organization that promotes the free sharing and reuse of
creative works like music, writing, art, and data by providing copyright
licenses that can be applied to them. This standard and well-understood body
of licenses helps people share their works while still protecting their valuable
copyright.

Wikipedia and Creative Commons are far from the only non-software open
movements. Open Knowledge International18 empowers society through open
data. Internet Archive19 aims to provide free and open access to all the world’s
knowledge. Open access academic journals ensure the free and open flow of
fundamental research. The Open Source Seed Initiative20 maintains open
access to plant genetic resources that might otherwise be locked behind
patents. These are just a few of the many ways that the free and open ethos
has permeated our culture.

This philosophy of open access and sharing goes back thousands of years,
but how did it become so prevalent in software?

13. https://softwarelivre.org
14. https://flisol.info
15. https://www.softwarelibre.org.pe
16. https://wikipedia.org
17. https://creativecommons.org
18. https://okfn.org/about/
19. https://archive.org
20. https://osseeds.org

Chapter 1. The Foundations and Philosophies of Free and Open Source • 4

report erratum • discuss

https://softwarelivre.org
https://flisol.info
https://www.softwarelibre.org.pe
https://wikipedia.org
https://creativecommons.org
https://okfn.org/about/
https://archive.org
https://osseeds.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The Origins of Free Software
Before you start to contribute to free and open source software projects or
join their communities, you should probably know something about the nature
and philosophies of FOSS and how it got where it is today.

In the early days of computers, all software was free to acquire, use, inspect,
modify, and share. Researchers, computer operators, and computer hardware
manufacturers all gladly distributed their software works to others. At the
time, the profits were in the hardware sold, not in the software that ran on
it. No one had yet considered that software could be a revenue stream,
largely because each model of hardware was highly specialized, such that the
software written for one model would not run on another. A single piece of
software could not be widely used, so there was no profit from selling it. If
the software enabled the sale of more of the highly profitable hardware, then
computer manufacturers were thrilled that people would share that software
with each other. It was exactly like today– when you might buy a game console
because it’s the only platform with the game you want to play–but with
mainframes instead of gameframes.

All good things come to an end. Eventually manufacturers recognized not
only the value the software provided to users but also the amount of effort
that went into developing it. Where there’s value there’s profit, so these com-
panies started software development as its own industry distinct from the
creation of the computer hardware on which it ran. As the profits began to
roll in for the software developers, some operators—who were used to using
and sharing software—started to resent not only the new cost of acquiring
software but also that they could no longer modify it for their needs and then
share the updated software with others.

In 1983 Richard M. Stallman (RMS),21 frustrated that software operators were
no longer free to inspect, modify, and share software, announced the launch
of the GNU Project.22 This project is dedicated to the creation of a UNIX-
compatible operating system built of components that are entirely free to use,
modify, and distribute. Two years later, the GNU Manifesto23 followed. It
declared the fundamental beliefs of the project and launched Free Software
as a movement.

21. https://en.wikipedia.org/wiki/Richard_Stallman
22. https://en.wikipedia.org/wiki/GNU_Project
23. https://en.wikipedia.org/wiki/GNU_Manifesto

report erratum • discuss

The Origins of Free Software • 5

https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/GNU_Manifesto
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The Four Freedoms are the core of the free software movement. Those free-
doms—which in standard programming fashion, are numbered starting from
zero—are:

0. The freedom to run the software however you wish and for whatever reason
you wish.

1. The freedom to study the software source code and make whatever changes
you wish.

2. The freedom to copy and distribute the software (modified or not) however
you wish.

3. The freedom to make improvements to the software and then share the
improved version however you wish.

Any software that does not guarantee these freedoms to its users cannot be
considered “free” because it limits the users’ rights in some way. To help
guarantee these rights and freedoms, RMS, the GNU Project, and the newly
formed Free Software Foundation (FSF)24 created software licenses that
leverage the pre-existing concepts of copyright. The FSF copyleft licenses (a
play on the word copyright) provide more than just the permission to use
software released under them; they ensure that software can never violate
the Four Freedoms. While many people believe that the Four Freedoms are
Stallman’s greatest invention, in fact his most far-reaching and brilliant
contribution to software is the recognition that copyright can be used in this
way, and that careful copyright licensing can enforce software freedom. This
invention paved the way for the open source movement that followed.

The Origins of Open Source
The free software movement grew in popularity and awareness throughout
the 1980s and 1990s and attracted the attention of business interests. The
release of the Netscape web browser as free software in 1998 amplified this
attention. While businesses were intrigued by the potential of open software
development, many were less thrilled with the strong political, philosophical,
and activist nature of the free software movement and its supporters.

In early 1998, soon after the release of the Netscape code, several free software
supporters gathered to discuss how the movement might make itself more
palatable to business interests, in hopes of increasing the scope, reach, and
contributors for open software development. They decided a rebranding was

24. https://www.fsf.org

Chapter 1. The Foundations and Philosophies of Free and Open Source • 6

report erratum • discuss

https://www.fsf.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

in order and chose the term open source—coined by Christine Peterson25—as
the name for this version of the movement. Many members of the group then
created the Open Source Initiative (OSI)26 as a focal point for their efforts.

One of the first tasks of OSI was codifying what it means to be an open source
software project. The Open Source Definition describes the ten responsibilities
and requirements a project must fulfill if it wants to qualify as an “open
source” project. The OSI has a detailed description of the definition on its
website,27 but the definition can be summarized as:

1. The project must be freely redistributable—even if sold and even if it’s
part of a larger collection of software.

2. All source code must be available and distributable.

3. Modifications and derived works must be allowed and distributable under
the same license terms.

4. If distribution of modified code isn’t allowed, it cannot prevent distribution
of patch files (snippets of source code that can be applied to include new
fixes or functionality) along with the unmodified code.

5. In no way can the license under which the code is distributed discriminate
against any person or group. All people must be allowed to use the code
on the same terms, even if they’re bad people like Nazis.

6. Similarly, the license also can’t single out industries, companies, or other
types of undertakings. All groups and ventures must be allowed to use
the code on the same terms, even if those groups support horrible things
(again, like Nazis).

7. The license applies to anyone who receives a copy of the software without
needing any additional permissions.

8. The license can’t restrict someone from extracting the project or code from
a larger collection. If they do extract it, it’s available to them under the
same license terms as the whole, larger collection.

9. If the software is distributed as part of a larger collection of code, the
license can’t put any restrictions or requirements on that other code.

10. The license applies to all technology and UI applications of the software
to which it’s applied.

25. https://en.wikipedia.org/wiki/Christine_Peterson
26. https://opensource.org/
27. https://opensource.org/osd

report erratum • discuss

The Origins of Open Source • 7

https://en.wikipedia.org/wiki/Christine_Peterson
https://opensource.org/
https://opensource.org/osd
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The OSI provides an annotated version28 of the Open Source Definition. This
version is valuable for understanding the meaning and importance of the
definition. It details rationales and supporting information for each of the
criteria for a project to qualify as “open source.”

Most of these criteria apply to the license under which a project is distributed.
To aid people in selecting a license that meets all of the criteria, OSI reviews
licenses and maintains a list of OSI-approved open source licenses.29 If a
project claims to be “open source” but is not released under an OSI-approved
license, then the project cannot call itself “open source.”

This focus on license is a critical part of free and open source software. It’s
the license and its directives that make a piece of software open source, not
merely the availability of the source code. Without the application of an OSI-
approved license, code can be at best “source available” but not open. The
legal mandates contained in the license ensure that the code is available and
that people are free to do with it what they wish (within the constraints of the
license). Code and projects that do not have license files, even if they have
been bequeathed to the public domain, are not open source.

Difference Between Free Software and Open Source
One question that everyone asks when they first discover FOSS: “What’s the
difference between Free and Open Source?” This is a surprisingly contentious
question, but a very good one to ask. From a code and project perspective,
there’s very little effective difference between the two. Most of the licenses
that the FSF considers “Free” are also OSI-approved, and many of the OSI-
approved licenses support the Four Freedoms and therefore, are also consid-
ered “Free” by the FSF. There are some outliers on each side, but there is far
more similarity than difference between the two families of licenses. In most
cases, Free Software is also Open Source. In slightly fewer cases, Open Source
is also Free Software.

The difference between Free and Open Source comes down to one of philosophy
and motivation. For supporters of Free Software, the effort has a strong moral
purpose. Just as all people should be free from oppression and abuse, all
software should be free from any restrictions of use, reuse, and distribution.
To do otherwise is to limit the potential of the software and the people who
use it. This is the driving force behind the Free Software movement: Freedom.

28. https://opensource.org/osd-annotated
29. https://opensource.org/licenses

Chapter 1. The Foundations and Philosophies of Free and Open Source • 8

report erratum • discuss

https://opensource.org/osd-annotated
https://opensource.org/licenses
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Open Source, on the other hand, finds its motivation in what it deems more
practical matters. To supporters of open source, business, science, art, and
all other endeavors that employ software are better served if the source for
that software is publicly available. To them, it’s simply logical that opening
the source enables types and levels of innovation that would be impossible
with proprietary (closed source) software. This logic appears to be supported
by the explosion of open source-based software companies and services in
the nearly twenty years since the advent of “open source” as a movement.

To dramatically oversimplify it: Free software sees software freedom as a moral
matter; open source sees it as a practical one. This is not, however, a hard
and fast rule, nor is it a matter of two separate and disagreeing factions. The
“difference” between free and open source software is actually a spectrum of
a single belief that humanity is better served when software is freely and
openly available. Supporters of free and open source software all fall some-
where on that single spectrum, but they all believe that freely and openly
available software is a very good idea indeed.

From the perspective that matters most for this book—the nuts and bolts of
contributing to a project—there is virtually no difference between free and
open source software. Looking solely at contribution processes, there’s usu-
ally no way to tell whether a project is free software or open source until you
look at the LICENSE file.

An Aside About Terminology
As you participate in free and open source software projects, you’ll find that
people sometimes are a bit sensitive about the terminology used to refer to
their movement of choice. While from a contribution point of view, there isn’t
much effective difference between free or open source projects, from a philo-
sophical point of view, there is. The Freedoms guaranteed by free software
form a fundamental belief system for many free software advocates. Therefore,
some of them become sensitive to free software projects being referred to as
“open source.” To them, doing so dilutes the emphasis on Freedom embodied
in the movement and removes the opportunity to teach new people about the
freedoms and their moral importance. Regardless of your personal opinion,
respect the Free Software movement and do not call free software projects
“open source.”

Also, you’ll often see Free Software referred to as Free/Libre Software. This
stems from the ambiguity of the word “free” in the English language. To those
who are unfamiliar with the philosophy that underlies the movement, “free”
may mean purely “free of charge” or “gratis.” Because it’s unlikely these people

report erratum • discuss

An Aside About Terminology • 9

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

paid for the software, it’s perfectly reasonable for them to think that there’s
no deeper meaning behind the word. “Libre,” on the other hand, is not bur-
dened with the multiple meanings that “free” carries. Stemming from “liber,”
the Latin word for “free” (as in freedom), Libre in modern languages is
unambiguous in its meaning…for those who know its meaning, that is.
Whether using “free” or “libre,” the free software movement must educate
those who use it in the underlying philosophy of the software they use, con-
tribute to, and perhaps distribute.

Whichever type of project you join—free/libre or open—take note of how it
prefers to be labeled and respect that choice.

Because the contributing process is similar for both free and open source
projects (inasmuch as there is similarity between projects at all), and because
I support both the free and the open source philosophies, in this book I use
“free,” “open source,” and “FOSS” (“free and open source” abbreviated) inter-
changably with a preference for “free and open source.” I don’t use “free/libre
and open source” or “F/LOSS”, because I find these terms clumsy, and after
the introduction to free and open source above, entirely unnecessary. There
is no ambiguity when “FOSS” is used in this book, so there’s no need for
“F/LOSS.”

A Brief Introduction to Copyright and Licensing
A lot of the content above has been all “license” this and “license” that without
a lot of context on what a license actually is and why it’s such a big deal,
particularly for free and open source software.

So it’s time for a very brief introduction to copyright, a complicated matter
without which free and open source software wouldn’t exist. As you saw above,
Richard Stallman realized that he could use the existing copyright laws and
systems to ensure software would always remain Free through careful
licensing. Copyright therefore underpins everything in FOSS. Without it, and
without an understanding of it, FOSS is not possible. Keep in mind: copyright
law is a complex subject, so this is only a rudimentary introduction. Also, I
am not a lawyer. What follows is not legal advice, only guidance to help you
understand some of the basic concepts and complications of copyright.

When you create something, be it artwork, music, writing, software code, or
any other creative endeavor, by default you own the copyright over that thing.
This is an oversimplification, because in some countries and jurisdictions,
you have to register something to get copyright. It’s not as common anymore,

Chapter 1. The Foundations and Philosophies of Free and Open Source • 10

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

but it’s common enough that you might want to check on how copyright is
assigned in your country.

However the assignment happens, as the copyright owner, you have the right
to control how that thing can be used. This control comes through licensing
the work. A license is a legal document used to give people or entities permis-
sion to use copyrighted material. If someone else would like to use your work
in any way, you can provide them a license that details the specific ways they
may use your creation. A creator can apply the statement “All Rights Reserved”
to their work to indicate that they don’t want anyone to reuse or repurpose
their work in any way; the creator has reserved the reuse or repurposing
rights for themselves alone.

Things become complicated when there are multiple creators of a work. Each
one of the creators, by default, retains copyright over the portions that they
contributed to the whole work. If you program a piece of software, you have
copyright over the code you wrote for it. If I come along and add a unit test
for your software, I have copyright over the code I wrote for that test. The
entire piece of software now has two copyright holders involved somehow.

Free and open source software licenses can help when there are multiple
copyright holders for a single piece of software. These licenses often (but not
always) contain a statement requiring contributions to a project (the unit test
in the above example) to be contributed and released under the same license
as the original work. This helps to keep the copyright and licensing complex-
ities more comprehensible. As you can imagine, in a large project, questions
of copyright could easily become mind-bendingly complicated.

Whatever creative work you contribute to a project, unless you agree to assign
your copyright elsewhere (as can happen in a work for hire or a Contributor
License Agreement situation, both covered later in the book), you retain
copyright over your contribution and—if the project is released under an OSI-
Approved License—your contributions will be publicly available. This means
you can build a professional portfolio without fear of breaking copyright law
or violating someone else’s copyright.

This is not the case for creative work you contribute for your employer.
Internships, freelance, hourly, and full-time jobs are all what is called work
for hire. Unlike FOSS contributions, by default, the copyright on any work
you contribute to a work for hire situation belongs to the organization paying
you. Once you contribute that work to the organization, you no longer have
any rights over it at all, and you may not share it in any form without very
express and very written permission. It is illegal to share any creative work

report erratum • discuss

A Brief Introduction to Copyright and Licensing • 11

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

for which you do not have copyright or that is not licensed in such a way that
it may be made public. This holds true for code, designs, documentation,
project plans, or anything else that you create in a work-for-hire situation.

If you are interviewing or applying for a new position, and the prospective
employer asks for work samples, you must not share anything that you created
for past or current employers unless you can demonstrate that they have
given you permission to do so. If you share private and proprietary work of
past employers, how do you think that makes you look to your potential
employers? Answer: Like a thief. You will have just proven to them that you
cannot be trusted to keep their secrets. Why would they want to hire someone
like that?

A portfolio comprising contributions to free and open source software contri-
butions avoids the legal, moral, and reputational risks of sharing samples
from proprietary work-for-hire creations. It not only allows you to highlight
your skills, but it also demonstrates that you are ambitious and passionate
enough about technology that you’re willing to dedicate time outside of work
to learn and contribute back to the community.

Because nothing is simple where copyright law is involved, there are, of course,
exceptions to the work-for-hire copyright ownership rule. This comes in the
form of employment agreements, proprietary information assignment agree-
ments, and similarly named and intentioned legal documents. These usually
come into play when you start employment with an organization, and they
detail who owns the intellectual property (has the copyright) for what creations
in which situations. Often these will declare that anything created on company
property (computers) and/or on company time is the property of the company.
However, thanks to the rise of free and open source software, some companies
such as GitLab30 and GitHub31 have employment agreements that allow
employees to retain copyright over their free and open source software contri-
butions for the duration of their employment, regardless of when or how these
contributions were created. This practice isn’t yet common, and you should
carefully read and review your employment agreements before signing them,
regardless.

On the other side of the copyright ownership exception coin, we have Contrib-
utor License Agreements (CLA). These are discussed further in Chapter 3.
Some (but not all) CLAs include the requirement that the contributor assign
the copyright of all of their project contributions to the organization that

30. https://about.gitlab.com/2017/12/18/balanced-piaa/
31. https://github.com/blog/2337-work-life-balance-in-employee-intellectual-property-agreements

Chapter 1. The Foundations and Philosophies of Free and Open Source • 12

report erratum • discuss

https://about.gitlab.com/2017/12/18/balanced-piaa/
https://github.com/blog/2337-work-life-balance-in-employee-intellectual-property-agreements
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

oversees the project. This gives the organization the ability to enforce that
copyright, or even to change the license under which the project is distributed,
without having to bother every contributor to ask their permission. CLAs are
legal documents, and like all legal documents, it’s important that you read
them before you sign so you know what you’re getting yourself into.

Types of Free and Open Source Software Licenses
The best place to learn about the various types of free and open source soft-
ware licenses is the Open Source Initiative Licenses list.32 It can be a little
overwhelming at first, so to get you started, here’s a quick introduction to the
two basic types of FOSS licenses: copyleft and permissive.

Per the Open Source Definition, mentioned in The Origins of Open Source,
both types of licenses share the requirement that anyone who uses works
licensed under one of them must be able to view, modify, and share the source
of the work. The difference comes after that: What can the user then do with
the work? Can they change the terms under which people can use it? Or must
the work be redistributed under the same terms by which the user received
the original work?

For software distributed under a permissive license, someone who makes a
change and redistributes the software is permitted to change the terms and
conditions under which someone can use the new distribution (also known
as a derivative work). In other words, the creator may change the license of
the derivative work to one that’s different from the original work. This affords
the person releasing the new distribution a lot of flexibility in defining how
the derivative work may be used. Permissive licenses also allow a creator to
use a work released under this type of license in a proprietary work. When
that proprietary work is released, it can remain proprietary. The permissive
license of its component(s) does not force the creator to release the work under
any sort of free or open source license. Two popular permissive licenses are
the Apache License33 and the MIT License.34

While permissive licenses allow a creator a lot of flexibility when distributing
a derivative work, copyleft—or reciprocal—licenses protect a work from being
relicensed under what may end up being a more restrictive set of terms and
conditions. Once a work has been released under a copyleft license, the license
ensures that the work can never be released under a license that may in any

32. https://opensource.org/licenses
33. https://opensource.org/licenses/Apache-2.0
34. https://opensource.org/licenses/MIT

report erratum • discuss

Types of Free and Open Source Software Licenses • 13

https://opensource.org/licenses
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/MIT
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

way remove or diminish any of the original rights and freedoms (specifically,
the Four Freedoms mentioned in The Origins of Free Software) granted to the
user by the license. A redistributed or derivative work released under a
copyleft license must also not add new restrictions to what the user may do
with the work. This ensures that this work, once freed, will forever be free.
Copyleft licenses also have a requirement that any derivative works made
from software licensed under one of them and distributed must be released
under the same terms and conditions as the copyleft-licensed work. This is
the reciprocal nature of this type of license: if your creation benefits from a
copyleft licensed work, then anyone who receives your creation must similarly
benefit from your work. The GNU General Public License (GPL)35 is the most
common copyleft license. Other copyleft licenses include the GNU Lesser
General Public License (LGPL)36 and the Mozilla Public License.37

It probably won’t surprise you to hear that, as with every other legal issue
discussed in this book, what you’ve just read is an oversimplification of how
these two different types of licenses actually work. Each type contains
licenses that are more or less permissive and more or less reciprocal. Gener-
ally speaking, of the OSI-approved licenses, the MIT License is considered
the most permissive and the GPL one of the most reciprocal. All other
licenses fall somewhere along the spectrum between these two.

Now You Have a Strong Foundation
All of this history, philosophy, and law is complicated, I know. Don’t feel you
have to understand it in depth to contribute to free and open source software.
Having the background knowledge of the philosophies, knowing that there
are two basic types of licenses and the general characteristics of each type,
is more than enough. There are millions of FOSS contributors in the world,
and most of them get by very well with no more license knowledge than what
you’ve just learned in this chapter.

Now that you have some sense of what FOSS is and what it’s done for the
world, you may be wondering what it can do for you. The next chapter fills
in that blank.

35. https://opensource.org/licenses/gpl-license
36. https://opensource.org/licenses/lgpl-license
37. https://opensource.org/licenses/MPL-2.0

Chapter 1. The Foundations and Philosophies of Free and Open Source • 14

report erratum • discuss

https://opensource.org/licenses/gpl-license
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/MPL-2.0
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 2

What Free and Open Source Can Do for You
The previous chapter explained the history and philosophies behind free and
open source software (FOSS). For many people, this philosophy is reason
enough to contribute, but others need more motivation to devote their free
time to participate in FOSS projects. If you’re reading this book, you obviously
have some interest in contributing, but do you really know what you hope to
get out of it? Why would you invest your precious time in something for which
you don’t get paid?

Contributing to free and open source software doesn’t have to be a purely
altruistic pursuit. Contributors gain a lot for the effort they invest, and all of
those advantages will pay off as their careers evolve.

FOSS Benefits to Your Skillset
Most obviously, contributing to free and open source software allows you to
learn and practice new skills in a safe environment. It’s possible to learn these
skills on the job or in the classroom, but FOSS allows you a larger variety of
options not only in skills to learn, but also in opportunities to practice them
and gain experience. Sometimes, it may even be a safer place to practice those
skills. If you do something wrong on the job, you may be reprimanded or
possibly fired. If you do something wrong in class, your grade could suffer.
In FOSS, if you do something wrong, you apologize and seek help to learn
how to do it better.

This is, of course, an oversimplification of the matter. There still are repercus-
sions for making mistakes when contributing to free and open source software.
Thanks to the strongly social aspect of FOSS, sometimes these repercussions
can have sustained impact. While you can revert a bad contribution, you
can’t do the same for hurt feelings. Despite that risk, contributing to free and

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

open source projects is still a relatively safe way to learn new skills that you
can apply to your life and your career.

So, what are those skills, anyway?

Communication
Free and open source is composed of people, and therefore, contributing to
FOSS projects can do wonders for your communication skills. By necessity,
the community around a free and open source project will be distributed,
often worldwide. This poses interesting communication challenges for getting
anything done in the project. All communication usually is asynchronous
due to differences in time zones and maintainer availability. Asynchronous
communication often is impersonal communication, which can cause prob-
lems. The lack of real-time feedback like body language and facial expressions
can lead to misunderstandings and delays. These same problems are common
in “real-world” jobs, particularly for distributed teams. You gain experience
by contributing to FOSS projects, and this helps you interact better in your
day-to-day life and work.

Among the communication skills you can learn by contributing to free and
open source is how to ask questions. Blurting out an open-ended and context-
free query on the mailing list or issue tracker can lead to a lot of frustration
and additional back-and-forth before someone can provide an answer. For
instance, “Hey, is anyone else having problems running the latest version on
their MacBook?” is a question that can lead to a lot of inefficient back and
forth communication as people try to narrow down exactly what sort of a
problem you’re having. “I’m trying to run the latest version on macOS, but it
keeps crashing with a FILE NOT FOUND error. Is this a known issue?” is a much
better question and much easier for the community to answer. You’ve told
them the version of the software you’re running, the platform you’re running
it on, the behavior you’re seeing, and the error message that accompanies it.

You also can learn how to set up expectations. Will you deliver this feature
this weekend, or will it be delayed due to family obligations? Will you be able
to complete a task on your own, or will it require the assistance of someone
else? This type of communication prevents a lot of disappointment and delay
in a project where each person depends on the work of others to proceed with
their own.

While this asynchronous communication is necessary for a distributed team
of project maintainers, it can lead to an unintentional lack of knowledge of
or empathy for the people at the other end of the line. This often ends with

Chapter 2. What Free and Open Source Can Do for You • 16

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

someone accidentally saying something that’s offensive to others in the group.
What is intended as a joke can come across as a personal slight or attack.
This is particularly common in diverse communities, with equally diverse
cultures and social interaction styles. Paying attention to your words and
intentionally practicing your communication styles while contributing to a
FOSS project makes you a much more pleasant team member for all of your
jobs from there on out.

Finally, the distributed and asynchronous nature of a free and open source
project requires that all communication be not only effective but also efficient.
You enhance your value to any team by learning things like which types of
messages are best suited to which medium: short and ephemeral? use chat;
discussion and archived? mailing list; benefit from immediacy? conference
call. Knowing how to write a good bug report—one that provides the context,
expectations, and actual behavior witnessed—also helps you learn how to
write other documents and messages more effectively. Paying attention to
how to use your words more effectively and efficiently will make you a more
productive communicator overall. The training that contributing to free and
open source software provides in how to communicate effectively and efficiently
will pay dividends throughout your career. Interact with the Community goes
into the topic of communication in detail.

Collaboration
If you take courses at a college or university, you undoubtedly have had the
experience of doing a group project. You and several of your teammates are
partnered up to complete a task. The goal of this is to teach you how to break
down a project and collaborate on it with each person sharing the load. The
reality usually is that the attempt at collaboration is contrived, and one or
two people end up shouldering most of the load for the others.

You’ll be happy to hear that this is not what true collaboration is. Free and
open source software, due to its inborn distributed nature, requires true col-
laboration to work well. If there’s more than one person involved in the project
development, then some sort of collaboration processes emerge. The processes
themselves vary from project to project, and they won’t always work smoothly,
but they typically will be far more effective than those you learned in school.
So what are some of these collaboration processes?

For starters, there’s the division of labor. Whereas in school you may have
been stuck doing the lion’s share of the work on an assignment, that’s
unlikely to happen on a collaborative FOSS project. There are multiple reasons
for this. For one thing, as someone starts a task and realizes that it may be

report erratum • discuss

FOSS Benefits to Your Skillset • 17

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

larger than they originally thought, in open source they usually start a dis-
cussion about the task and how it can be broken up or otherwise staged in
smaller parts. This public discussion encourages others to chime in, not only
with their thoughts but also with their time to help work on some of those
smaller parts. There’s no shame in FOSS for saying that a task is too large
for one person to tackle alone.

Another reason for dividing the work into smaller pieces is risk management.
We’ll cover atomic commits later on in Make a Contribution, but summarized:
commiting smaller, discrete pieces of work rather than huge chunks makes
the work much easier to review; a small commit has a better chance of
receiving a thorough review, and therefore bugs are easier to spot. Atomic
commits are also simpler to roll back should something go wrong. Both the
review and the easy rollback mitigate the risk of fatal bugs slipping into the
project.

Finally, there’s the matter of bus factor. This is a term you may hear frequently
in software development.

Bus Factor is a number equal to the number of team members who, if run over
by a bus, would put the project in jeopardy.

A macabre metric, no doubt, but also a helpful one. The worst possible bus
factor for a project (or part of a project) is one. If only one person is familiar
with that piece of the project, and that person goes away, the project will find
itself in an uncomfortable position. Therefore, dividing up the labor on a fea-
ture or task increases the bus factor for that part of the project. Now, rather
than just one person being familiar with that piece of the project, two, three,
or more people are. When more than one person is familiar with the work,
someone is always there as a backup should one of those people move on for
some reason (hopefully on a bus rather than under it).

Tools
Almost as important a lesson as collaboration itself are the tools that make
that collaboration possible. While the tools vary from project to project, the
general project management, communication, and collaboration ideas those
tools represent remain the same both across free and open source projects
and even into the private sector. For instance, issue tracking not only allows
a project to track its bugs and features, but it also helps provide oversight
and accountability for the work being performed. If used properly by the
addition of copious notes, issue tracking also forms a valuable historical
resource that can enable future generations to learn from the experiences of
those who came before them.

Chapter 2. What Free and Open Source Can Do for You • 18

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Without version control, real collaboration on free and open source would be
nearly impossible. Version-controlled files can be edited by multiple peo-
ple—sometimes even simultaneously—and then have all of the edits merged
into a canonical version of the file. The messages included whenever a change
is committed to a version controlled project (commit messages) themselves
are another valuable historical resource. It’s best practice for a commit mes-
sage to provide details not only of what is changed in the commit but also
why it was necessary and what problem the commit fixes. By reviewing a
series of good commit messages, it’s possible for other contributors to the
project to follow its evolution and better determine how to engage with the
project and the community around it.

Issue tracking and version control commit messages are two forms of asyn-
chronous communication. Free and open source software collaboration would
not function without async communication. The community of contributors
for a project may span the globe and certainly will span a variety of personal
schedules. Were collaboration to rely purely on real-time communication, no
one would ever get anything done. For this reason, many free and open source
projects rely heavily on asynchronous discussion methods such as mailing
lists. People can read and collaborate on their schedules, and the project can
keep moving forward. The ability to express your ideas efficiently in a textual
method like a mailing list is a skill that will serve you throughout your career,
and few opportunities to learn it will be as practical as participating in a
mailing list for a free and open source project.

Best Practices
School is a great place to learn about Big O Notation or the golden ratio, but
it’s usually not as good for learning about current industry best practices.
College graduates entering the workforce often find that while their coursework
was heavy on theory, it was relatively light on the practice, technologies, and
trends that are required for success on the job. Schools aren’t to be faulted
in this. They do a great job, but are time constrained in a way that industry
is not. Curricula take time to develop, so institutions of higher education
often must teach technologies and practices that are at the tail end of current
industry usage.

Not so with free and open source software. Because FOSS is constantly
moving, evolving, and innovating, many of the current industry best practices
either originated in free and open source software development or were per-
fected by it. Version control, feature branches, unit and integration tests,
continuous integration and deployment (CI/CD), design patterns… When you

report erratum • discuss

FOSS Benefits to Your Skillset • 19

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

contribute to FOSS, you master many concepts and best practices that you
may never get to learn in another environment. More importantly, because
you’re hands on with these concepts, you have the opportunity to learn not
only how they work, but also why they’re important to do at all, and learn
first hand the difference they make to a successful software project.

Technologies
Despite the fact that it’s the very first skill benefit most people consider when
they start thinking of contributing to FOSS, new technologies are in fact the
least important skill you can learn. Of all of the benefits you can gain by
participating in free and open source software development, the technology
used by a project—while interesting—may be the benefit with the least staying
power across the course of your career.

If you have a career in tech—at a software firm, or working with technology
in a different context—your entire career will become a continuous parade of
new technologies. Some people are able to build an entire career around a
single technology (COBOL, for instance), but the majority of us must constantly
be learning The Next Big Thing to stay relevant and employable.

Therefore, the technologies you know and use on a daily basis will be con-
stantly shifting. Not so, all of the other skills mentioned in this section. So
once you learn how to collaborate well with a group of distributed and diverse
individuals, that’s information you’ll use for the rest of your life. The people
skills you can learn from participating in free and open source software can
serve you far better than the technological skills.

That said, you will have plenty of opportunities to learn new technologies with
FOSS. Heck, considering how integral free and open source solutions have
become to the infrastructure underlying most software and technology today,
you may even get the opportunity to help build The Next Big Thing that you
would otherwise have to learn from books and blog posts.

FOSS Benefits to Your Career
Many people in technology forget that software isn’t the only thing that needs
developing; their careers do, too. While your managers and mentors can help
here, your career development is your responsibility. It’s up to you to make
sure you’re always learning and moving your career in a direction that makes
the best sense for your goals and needs.

Free and open source software can be invaluable here. At work, you learn
and use the technologies and architectures that are required for work projects.

Chapter 2. What Free and Open Source Can Do for You • 20

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

These technologies may help pay the bills but may not be what you need to
move your career in the direction you want. FOSS, however, offers you endless
options for technologies and architectures. Once you determine your goals,
you can turn to FOSS to see which projects will help you reach them.

Public Portfolio
Your contributions to free and open source software projects become a public
portfolio of your skills and how you’ve advanced them over the years. As you
start contributing to projects, start a log or portfolio for tracking all of your
contributions. Don’t simply rely on the projects’ version control systems and
hosting providers, as those can change. If you don’t keep your own log of
contributions, you can easily lose track of the smaller but still important
contributions you make to projects. Finally, maintaining your own portfolio
allows you to track those types of contribution that can’t appear in a version
control system, such as acting as a volunteer coordinator at a community
event or mentoring new contributors. Maintaining your own record of all types
of contributions makes it very easy to share your contribution portfolio with
prospective employers.

Portfolio as Resume?
It is important to stress, however, that despite what many in our industry
would like to believe, at no point does this portfolio of FOSS contributions
replace a resume; it supplements it. A curriculum vitae (CV) or resume shows
prospective employers two things: what you’ve done for past professional
positions and what difference you made with those actions. This last point—the
difference you made—is very important to communicate to prospective
employers. They don’t want new team members who have simply done things.
They want team members who have done the right things, for the right rea-
sons, and moved the entire team and company forward in some way: someone
who made a difference.

While your resume will show your potential employer what you’ve done, your
portfolio reveals how you did it. This is important, of course, but it’s not as
important as the what. That’s because every team has its own particular
preference for the how. Your portfolio may show them that you can create
effective technical documentation for multiple audiences, but your resume
will show them that your documentation reduced contact to the company call
center, saving tens of thousands of dollars in support representative time in
the first year alone. Therefore, don’t give in to the trend to replace your resume

report erratum • discuss

FOSS Benefits to Your Career • 21

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

with a portfolio. By preparing both, you’ll make a strong and positive impact
on potential employers.

FOSS Benefits to Your Personal Network
When you mention the word “networking” to many in software development,
often they’ll do one of two things. Either they’ll start telling you about this
one time they had to fix their family’s router, run their own DNS server, or
brought down the entire work subnet because of a typo. Or, if they realize
that by “networking” you mean interfacing with other humans, they may
blanch and start nervously scanning the room for the closest exit.

Unfortunately, much of our popular and technological culture has trained
us to think of networking as an Intimidating Event: a bunch of people gather
in a room, shake hands, introduce themselves, and then say smarmy things
to each other to drum up new business leads or sell something. While, yes,
this sort of thing can qualify as networking, it’s more of the exception than
the rule. At its most basic, just as computer networking is simply a method
for computers to communicate, human networking is simply people commu-
nicating with other people. That’s it. It doesn’t require a special event and it
doesn’t require special skills or tools beyond what’s required to interact with
the clerk at your local shop.

Besides some of the negative connotations and misinformation under which
many of us work where networking is concerned, there’s also the problem
that a lot of us are more comfortable interfacing with computers than with
other people. Our educations are focused more around solving equations,
diagraming sentences, or memorizing dates than about how to hold extempo-
raneous conversations with our fellow humans. Communicating well requires
practice, intention, and attention. If you haven’t had the training or opportu-
nities to get that practice, then that communication can be a very scary and
uncomfortable thing to approach at first. Don’t worry: it gets better once you
start getting that practice.

If it’s so difficult and uncomfortable for many people to network with others,
why should they bother? What’s in it for them?

You’ve probably heard the old phrase, “It’s not what you know, it’s whom you
know.” This is networking in an oversimplified nutshell. As you progress
through your career, the people you meet along the way can have a marked
impact (hopefully in a good way). This doesn’t necessarily mean they’ll hand
you a job, though that does sometimes happen. The most important benefits
of these relationships are the discussions, introductions, and information

Chapter 2. What Free and Open Source Can Do for You • 22

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

sharing that happen in them. The information could be a pointer to a new
technology that will solve a problem that’s been vexing you, a what-if question
that leads to the launch of a new product, an introduction to a new collabo-
rator or mentor, or a lead on a new position. These benefits and more can
come from building and maintaining collegial professional relationships. More
than any technology you will ever use or create, the relationships you foster
will help you thrive in your career.

Free and open source project participation provides the opportunity for you
to meet a broader variety of people than you’re likely to in your day-to-day
professional life. Many projects include contributors from all over the world
and of all culture, skill, and experience types. Contributing to and becoming
a member of the communities around these projects gives you instant and
easy networking. Simply by listening to and respecfully engaging with the
people in the community, you have successfully networked. Congratulations!
That wasn’t so bad, was it? That’s because participation in a FOSS project
provides a ready-made shared context and conversation starter. It’s very easy
to open a dialogue with a stranger when you know that they share an interest
and are working toward the same goals as you.

The relationships formed through contributing to free and open source projects
may be the most valuable and lasting benefit. These are people who can be there
for you when you need advice, feedback, collaborators, or just a good laugh.

Benefit from Preparation
Now that you have a better idea of how contributing to FOSS can benefit your
life and your career, there’s one more thing to do before you can start looking
for a project to contribute to: learn the lay of the land. Your project hunting
will go a lot better if you know what files and social structures to look for.
The next chapter will prepare you with everything you need to get started.

report erratum • discuss

Benefit from Preparation • 23

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 3

Prepare to Contribute
You’ve probably already figured out that contributing to free and open source
isn’t quite as easy as slinging some code at a project. After all, if it were that
easy, there wouldn’t be any need for this book. While the steps required for
contribution can vary by project and by type of contribution, they generally
follow this sort of progression:

1. Realize you want to contribute

2. Find a project

3. Find a task

4. Set up your environment

5. Work on your contribution

6. Submit your contribution

7. Receive feedback and iterate on your contribution

8. Contribution accepted!

9. GOTO 1

You’ve already realized you want to contribute, otherwise you wouldn’t be
reading these words. Congratulations on completing step 1 of the process!
Look at how far you’ve come already!

Before we get started finding a project and a task for your first contribution,
there are some concepts and terms that you should know. Learning these
now will make it much easier to understand what you’re seeing when you’re
reviewing projects. Think of this chapter as setting up some familiar guideposts
on your path toward your first contribution.

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Ways to Contribute
Throughout most of its history, when people have spoken about contributing
to free and open source software, they’ve mostly meant making programming
changes. This led many people to believe that contributions are all about the
code, and non-coders are neither needed nor welcome.

Nothing could be further from the truth!

Free and open source software is…well…software, so naturally rather a lot
of code is involved. But anyone who’s ever used software (all of you) realize
that there’s more to a successful software project than simply the code behind
it. There’s user interface and user experience design, and documentation as
well. That documentation and user interface may require translation to other
languages. All of this—code, user interface, documentation—requires testing
and review for potential bugs and for stylistic consistency. Testing—either by
the team or by end users—leads to bug reports. Bug reports mean that
someone needs to triage those bugs to determine reproducibility and severity.
And, of course, none of this is possible if there aren’t people who are dedicated
to organizing and managing the entire process, or people whose focus is to
spread the word about and market the software.

To help you visualize the many different ways you might contribute to FOSS,
check the tasks below that you think you could do for a project:

☐ Accessibility design☐ Programming (any language)

☐ UX design☐ UI design

☐ Graphic design☐ Web design

☐ Documentation editing☐ Documentation writing

☐ Code testing☐ Translation (any language)

☐ Accessibility testing☐ User interface testing

☐ Release management☐ Bug triage

☐ Community management☐ Project management

☐ Public relations and outreach☐ Event organization and coordination

☐ Security review and testing☐ Marketing

While this list has a lot of items, it’s not complete. Some projects may have
needs that aren’t represented here. For instance, an open hardware FOSS
project may need people who understand electrical engineering, while an open
education project needs contributors who have a strong pedagogical back-
ground to write and review lesson plans.

Chapter 3. Prepare to Contribute • 26

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Please don’t feel you have nothing to contribute to free and open source
software if you aren’t a programmer. As you can see from the list above, FOSS
requires many more skills than simply coding. There’s a place for everyone
to contribute in free and open source.

Common Project and Community Roles
As you saw in the chart in the previous section, the world of free and open
source software needs many different skill sets to create successful projects.
It also needs people to take on several different roles. Often you’ll find a single
person who has taken on a number of roles (especially in smaller projects);
other times a project has multiple people taking on a single role to share the
responsibility. However it ends up organized in the project, several roles are
always at work at any one time.

What exactly are these roles? You’ve probably already guessed that they vary
from project to project, but they typically fall into a few fairly standard cate-
gories. Academic authors Walt Scacchi [Sca07] and Y. Ye and K. Kishida [YK03]
found it useful to use the onion metaphor to describe the categories of roles
in free and open source software projects, where the most active and/or
invested roles of the community are in the center, and the level of activi-
ty/investiture decreases as you work your way outward through the layers
of the onion. Following is an example of a generalized onion model for free
and open source community roles:

Founder/
BDFL/

Leadership

Core Contribs

Contributors

New Contributors

Users

We’ll go into a description of each of these roles in a moment, but first it’s
worth reinforcing that there’s more than one way to organize a project, leading
to different roles or categories of roles. Which roles a project has and needs
are dictated by the project’s technical and community needs and its gover-
nance structure, not by implied external pressures nor by best practices.

report erratum • discuss

Common Project and Community Roles • 27

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Therefore, for any given project, you may not see all of these roles represented.
They are, however, the ones most commonly found in FOSS.

At the core of nearly every project, you find the leadership. While the project
founder often is a part of the leadership, it’s not uncommon that the founder
has gone on to other things and left the project in the capable hands of other
people. Sometimes a founder takes on the role Benevolent Dictator For Life,
or as its more commonly known, BDFL. If the project has a BDFL, then when
someone says, “The buck stops here,” the role of “here” is played by the BDFL.
This person has final say in and can veto all decisions. Typically, though, all
leaders of FOSS projects—BDFL or otherwise—work toward consensus rather
than impose their authority (hence the benevolent part of the title).

One step removed from the core of the community onion, you’ll find the core
contributors. These are typically the most senior or most experienced people
in the project. Usually few in number, they provide guidance and mentorship
for all other community members, and each one of them is a holder of a
commit bit. This means they have the authority to approve a contribution
(commit) to be merged into the main repository of the project. Having a commit
bit is a big responsibility, and it’s only given to the most trusted community
members. If a core contributor gives you advice or feedback, you can trust
that it comes from a place of experience and should be heeded.

Next in the onion are the non-core contributors. These folks provide somewhat
regular contributions to the project and are fairly actively involved in most of
the discussions. Frequently these contributors pitch in to review contributions
from others, as well as provide advice and mentoring for newer contributions.
While the BDFL and core contributors may be the heart of the project, these
non-core contributors are the lifeblood.

Your onion layer is next! New contributors are, yes, contributors like those
in the previous layer, but you’re a special group that deserves a layer of your
own. New contributors like you are still in their apprenticeship, still learning
the ropes of how to operate within the project and its community. Given time
and practice, you and the others in your layer will transition to being normal
contributors and will be able to provide advice and mentoring for the new
contributors who come after you. Projects that pay attention to their new
contributor layer—making sure that it’s easy for people to join that layer, the
layer is well-populated, and these people are given the support necessary to
become successful contributors—typically have very strong communities.
These projects aren’t as common yet, but they’re worth seeking out.

Chapter 3. Prepare to Contribute • 28

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

On the outer layer of the onion are the users of the project. These folks are
just as important as any other layer of the community. Without people using
the project, there isn’t much reason for the project to exist at all. Users also
provide invaluable feedback, bug reports, and feature ideas to help keep the
project alive and evolving. If the project starts adding features that the users
didn’t ask for or don’t agree with, it might be a red flag that the leadership
way down in the core of the onion has lost sight of what the project is about
and what the users need. The project’s vitality depends upon meeting the
needs of the users and helping to solve their problems. In that way, the users
are possibly the most important layer of all.

These are just the most common roles found in free and open source projects,
but knowing these few should help you navigate the hierarchy of most of the
projects you’ll interact with as you enter the world of FOSS contributing.

Files You Should Know About Before You Start
Before you start searching for and reviewing potential projects for your con-
tribution, you should have some familiarity with what files and features you
may see. Not all of the files mentioned here exist in all projects, but they’re
common enough that knowing about them makes it much easier for you to
navigate projects.

Most of these files are located in the root directory of a project, but once in a
while, you come across a project that placed these files elsewhere. If you don’t
see one or more of these files in the root directory, see whether the project
has a docs or similarly named documentation directory. You may find the file
you’re looking for there. It’s also possible, again, that the file simply does not
exist in that project.

README
Typically the very first thing you see for a project is its README file. This is the
project’s face to the world. The README file tells you the name of the project
and what it’s intended to do, giving you a quick snapshot to see whether it’s
a project that might be useful or interesting to you.

The contents of README files vary. Some projects use the file simply to name
the project and point you to other resources. Others include those other
resources—installation instructions, developer setup, example usage—in the
README file itself. The contents of this file are entirely up to the project.

report erratum • discuss

Files You Should Know About Before You Start • 29

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Regardless of the contents, the README file should be your first stop when you
visit any project. It can give you a very good sense of what the project is and
where to look for more information about it.

LICENSE (also COPYING)
The LICENSE file (also spelled LICENCE) declares the terms under which folks are
permitted to use, modify, and distribute the project. This file is also sometimes
called COPYING, particularly for projects that use a version of the GNU Public
License (GPL),1 but the purpose remains the same.

As you recall from The Foundations and Philosophies of Free and Open Source,
if a project is not licensed under an OSI-approved license,2 it cannot call itself
an “open source” project. Doing so violates the definition of the term “open
source.” If a project is not licensed at all, then it is not “open source;” it is
merely “source available.” Furthermore, those who use or distribute projects
that have no license are infringing on the copyright of the project’s creators
and putting themselves at risk of legal action.

It’s only through that LICENSE file that a project can be “open source,” and only
through that LICENSE file that the project can legally be used, modified, and
distributed. If you come across an interesting project that isn’t licensed at all
or has a license that isn’t OSI-approved, be very careful before you contribute
to it and throw yourself into a complicated and suspect copyright situation.

CONTRIBUTING
As a first-time contributor to a project, the CONTRIBUTING (also sometimes called
CONTRIBUTORS) file is your best friend and bosom buddy, one you disregard at
your peril. The CONTRIBUTING file sets out how the project prefers to receive
contributions, the requirements and parameters a contribution must meet
to be accepted into the project.

When you make a contribution to a project—whether it’s your first contribution
or your forty-first—always follow everything that the CONTRIBUTING file tells you
to do. If you have any questions about its contents, always ask the community
before you proceed. Once you receive an answer, be a good citizen and update
the CONTRIBUTING file with the new information.

There’s no standard format or contents for a CONTRIBUTING file. Each project
includes what it thinks its contributors need to know about its particular

1. http://gplv3.fsf.org
2. https://opensource.org/licenses

Chapter 3. Prepare to Contribute • 30

report erratum • discuss

http://gplv3.fsf.org
https://opensource.org/licenses
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

contribution process. Some projects have separate contributor guidelines
depending on the type of contribution. For instance, the Apache HTTPD web
server has separate guidelines for reporting bugs, for contributing code
patches, and for contributing documentation.3 Other projects have all
instructions in a single CONTRIBUTING file. The Public Speaking Resource project4

handles their contribution guidelines in this way. There’s no way to predict
what contribution guidelines a project will emphasize or what processes a
project follows, so always be sure to look for a CONTRIBUTING file before you get
started with your contribution.

If a project does not yet have a CONTRIBUTING file, but you want to make a contri-
bution, what do you do then? For starters, you can look at past contributions
to see how those were implemented and handled. Once you have that informa-
tion, ask the community. “I’m going to make a contribution in this way. Is that
OK?” If you always verify before simply tossing a contribution to the project,
you’ll always have a much better chance of your contribution being accepted.
Once you’ve verified the process with the community and made your contribution,
be a community superhero by writing it up in the first version of the project’s
CONTRIBUTING file. You’ll be doing the community and its future contributors a
huge favor, and you’ll rack up yet another contribution.

Code of Conduct
The Code of Conduct (CoC) is a document that—thankfully—is appearing in
more and more projects every year. The CoC sets forth the types of behavior
that are both welcome and unwelcome in that project community, the conse-
quences for unwelcome behavior, and where and how community members
can report it. The intention of the CoC is to encourage behavior that creates
a welcoming and safe place for all contributors, regardless of their gender,
race, religious beliefs, age, or other characteristics and to provide recourse
to those who have been victims of or witness to unwelcome behaviors. The
existence of a Code of Conduct is a sign that a project values the safety of its
community and welcomes contributors of all stripes.

Implementing a Code of Conduct on a project often is the cause of a lot of
(sometimes not very friendly) conversation across the community. Because
of that, the document is rarely the same across projects. To appease commu-
nity members who are nervous about applying any limitations on interactions,
some projects create a very minimal, “Be excellent to each other” Code of
Conduct. Others create detailed documents that list behavior expectations,

3. https://httpd.apache.org/dev/
4. https://github.com/vmbrasseur/Public_Speaking

report erratum • discuss

Files You Should Know About Before You Start • 31

https://httpd.apache.org/dev/
https://github.com/vmbrasseur/Public_Speaking
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

examples of unwelcome behavior, and enforcement instructions. While there’s
no standard for a project Code of Conduct, many projects now use some
derivative of the Contributor Covenant,5 originally created by Coraline Ada
Ehmke.6

A Code of Conduct is a valuable document, but it’s only as strong and as
useful as its enforcement. Without a community that stands by the words in
the document, a CoC is no more than a writing exercise. When first viewing
a project and its community, it’s usually difficult to tell whether it’s able to
enforce its CoC in an effective and empathetic way. This shouldn’t stop you
from contributing to or joining a community. Having a Code of Conduct at
all is a sign that the community is at least willing to do the right thing, a sign
that is very welcome and welcoming to prospective community members.

Styleguides
It’s probably no surprise to hear that free and open source software projects
often have Very Strong Opinions™ on how things should be done, at least on
their turf. We’ll get into some of those Opinions in Make a Contribution. For
now it’s enough to know that these Opinions exist, and submitting a contri-
bution that ignores those Opinions is a good way to irritate the project
maintainers and community.

Projects that have these Very Strong Opinions usually take the time to codify
them in styleguides. Depending on the project, you may find a styleguide for
programming, for writing, for graphic design… It all depends upon the needs
and preferences of the project. Sometimes these guides are included directly
in the CONTRIBUTING file, other times they’re standalone documents. Whichever
way they’re implemented, you must always read and follow these guidelines
if they exist.

Knowing that styleguides usually spring from project-specific Very Strong
Opinions, you probably won’t be surprised to hear there’s no standard at all
for them. You never know what will or won’t be included in a styleguide, so
it’s very important to read them (assuming they exist for a project). Sometimes
you’ll see styleguides reused between projects or used as a basis for a project’s
own styleguide. For instance, many projects use the Google Styleguides7 for
their coding guidelines. Others, like the OpenStack family of projects, rely on

5. https://www.contributor-covenant.org
6. https://where.coraline.codes
7. https://github.com/google/styleguide

Chapter 3. Prepare to Contribute • 32

report erratum • discuss

https://www.contributor-covenant.org
https://where.coraline.codes
https://github.com/google/styleguide
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

documentation styleguides such as that from IBM.8 Until you check the
styleguide, you won’t know what style the project prefers for its contributions.

If a project does not have any sort of styleguide, it doesn’t mean that the
project lacks those Very Strong Opinions. It’s more likely that they simply
haven’t yet gotten around to writing down those Opinions. Therefore, as you
work through your contribution, try to note any stylistic preferences the
project maintainers express. Once you’ve completed your contribution, you
have yet another opportunity to don your FOSS superhero cape by writing
up the project’s stylistic preferences in their very first styleguide(s) and then
linking to it in the CONTRIBUTING file.

Other Handy Files You May See
Those were the files you’re most likely to encounter when browsing free and
open source projects, but a few more are relatively popular, particularly in
older or very well-established projects.

The INSTALL or INSTALLATION file is pretty much exactly what you would expect:
instructions for how to install and optionally configure the project for use.
This file is more common in projects that use make9 for compiling and installing
the software, but there’s no reason it couldn’t be included in any project (and
it often is).

CHANGES or CHANGELOG is, again, fairly self-explanatory. This file contains a
human-readable summary of all of the releases for the software and the
changes that comprise each. The CHANGES file can be very handy if you’re trying
to determine whether the version of the software you’re using includes a cer-
tain bug fix. It’s also helpful for new contributors to see the development
trajectory of the project.

The AUTHORS file is becoming less common in free and open source projects
as they instead rely on version control logs to fulfill a similar purpose. It’s
still common enough (and valuable enough a tool) to warrant mention. The
AUTHORS file lists all people or entities/companies who have made copyrightable
contributions to the software. This file may include contact information for
these people, but since that can violate a contributor’s privacy, this information
isn’t often included anymore. Having a single, canonical list of copyright
holders for the software can simplify copyright statements (that can now say
merely, “Copyright 2018, The Authors”) and also ease the process of changing
a project’s license. All copyright holders agree to provide their contributions

8. https://docs.openstack.org/doc-contrib-guide/writing-style/general-writing-guidelines.html
9. https://www.gnu.org/software/make/

report erratum • discuss

Files You Should Know About Before You Start • 33

https://docs.openstack.org/doc-contrib-guide/writing-style/general-writing-guidelines.html
https://www.gnu.org/software/make/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

under a certain license; changing it requires that they all approve to relicense
their contributions. Without a list of all copyright holders, this already complex
relicensing process can become nightmarish.

Issue Tracking
One of the key characteristics of free and open source software projects is
that they are just that: projects. As projects, some form of project management
is usually required to make sure all development proceeds smoothly. One of
the most important of these is the issue tracker.

Issue tracking, bug tracking, ticketing system… Different terms but all the
same concept: an issue tracker is where a project tracks individual issues in
the project. Yeah, I know, with functionality like that, how did they ever come
up with the name “issue tracker?” It’s a mystery. Jokes aside, issue trackers
are vital for making sure the project knows what is going on, when, and
by whom.

The features of issue trackers vary by tracker provider, and many projects
don’t even use all of the features available. Some projects use the tracker
solely for logging bugs in the software. Others use it for bug tracking, feature
requests, support questions, design discussions, team conversations and
debates… It all depends on the needs and workflow of the project.

The only wrong way to use a project’s issue tracker is “anything different from
how the project uses it.” Don’t inject your own preferences or workflow into
a project’s issue tracker. Sometimes a project documents its issue workflow.
If it does, follow it. If it doesn’t, have a look at completed (“closed”) issues to
see which workflow was used for them. As always: ask the community if you
have any questions or even just to verify your assumptions. It’s better to ask
now than to do the wrong thing and make a lot more work for you and for
the community.

Common Communication Routes
Since nearly every free and open source project has contributors spread all
over the world, communication is vital to success. Over the decades, FOSS
has evolved a series of tried and true communication routes that enable effi-
cient, persistent, and effective communication across a variety of use cases.
These routes fall into three basic categories: entirely asynchronous (email,
issue tracking), semi-asynchronous (real-time chat), and synchronous
(audio/video calls, in-person meetups). Interact with the Community goes into
detail about each of these communication routes.

Chapter 3. Prepare to Contribute • 34

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

For some FOSS projects, the selection and use of communication routes fall
into that bucket of Very Strong Opinions that I mentioned previously. Each
project uses their own combination of routes and process to meet their own
needs, so make sure you seek out documentation and advice about this before
you participate in any project discussions. Incorrectly using communication
routes is a common way new contributors leave a poor first impression on a
community they hope to join.

If you’re going to participate in FOSS, you need to be comfortable with email.
Many free and open source projects rely heavily on mailing lists. A mailing
list allows a project with contributors distributed across time zones to receive
and reply to conversations when it’s most convenient for them. Mailing lists
also allow people to take the time to think through and craft their responses
for a discussion. This is particularly helpful and welcoming to community
members whose primary language is not the same as that of the project.
These people make insightful and valuable contributions to discussions but
require a little more time to translate those thoughts into, for instance, English
from Polish. Add to that the archivability and searchability of email threads,
and mailing lists become a powerful tool for collaboration in free and open
source software projects.

While mailing lists can allow for rich and nuanced conversations, there’s
nothing like a real-time chat for building comraderie and helping to coordinate
a complex process. Many FOSS projects use a real-time chat system of some
sort. Internet Relay Chat (IRC)10 is a very popular option, but far from the
only one. Other options include Matrix,11 RocketChat,12 and Mattermost.13

The selection and use of a real-time chat system has taken on nearly religious
significance in some free and open source software communities of late. Rest
assured that no matter what chat system is in use by the projects in which
you participate, a great deal of conversation (and possibly arguments) went
into its selection and maintenance.

Respect the communication routes chosen and used by the project, as well as
rules and guidelines they’ve set forth for their use. If you strongly object to the
routes a project uses, rather than complain about it (passive-aggressively or
otherwise), I advise you to select a different project to which to contribute. Your
complaints will fall on deaf ears, and you’ll simply alienate the community you’d
wish to join. Respect their choices and the process that went into making them.

10. https://opensource.com/life/16/6/irc
11. https://matrix.org
12. https://rocket.chat
13. https://about.mattermost.com

report erratum • discuss

Common Communication Routes • 35

https://opensource.com/life/16/6/irc
https://matrix.org
https://rocket.chat
https://about.mattermost.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Contributor License Agreement/Developer
Certificate of Origin
A few free and open source software projects require all contributors to agree
to either a Contributor License Agreement or a Developer Certificate of Origin
before their contributions can be merged and distributed with the software.
While the number of projects that require this is still relatively small, it’s
increasing every year, as more projects join free and open source software
foundations. Before you get started, it’s worth knowing about these documents
and how they might impact your contributions.

Some projects—especially but not exclusively, those developed under the
aegis of a large corporation—require all contributors to sign a Contributor
License Agreement (CLA). A CLA is a document resplendent with intellectual
property implications and therefore, a controversial matter for some free and
open source software practitioners.

The contents and prescriptions vary by CLA, but basically, one exists to make
sure that you (or your company, if you’re contributing on their behalf) have the
right to share your contributions, agree that the project has a license to alter,
distribute, and administer those contributions, and you agree that you will
never revoke that license. Sometimes the document also includes a transfer
of copyright from the contributor to the project or project’s organizing body.
The intention of the CLA is to minimize potential legal complications of dis-
tributing the work, as well as to potentially make it easier to change license.

As mentioned, CLAs are controversial for some people and projects. Many
object that the requirement to sign a CLA before making a contribution not
only slows down the entire contribution process and adds administrative
overhead to the process, but also discourages many people from contributing
at all. Other people object to the idea of signing over their copyright to
another entity (again, that’s not a feature of all CLAs).

Recently, the Developer Certificate of Origin (DCO)14 has become a more pop-
ular alternative to CLAs. A short and simple document, the DCO ostensibly
achieves the results of a CLA without the administrative overhead or related
slowdown in contributions. A DCO relies upon a contributor signing their
contribution using the -s or --signoff flags of the git version control system. This
signing denotes that they have the right to distribute their contribution and
do so under the same conditions as the project license. This means that the

14. https://developercertificate.org

Chapter 3. Prepare to Contribute • 36

report erratum • discuss

https://developercertificate.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

DCO can only be applied to contributions that can be committed to the
project’s git version control system…assuming the project uses git at all. If
the project uses Subversion, CVS, or another version control system, it may
not be able to use the DCO. So the DCO is not the right solution for all projects
nor all contributions, but some projects find it a welcome change from CLAs.

You’re Ready to Find a Project
OK, you’re now equipped with the guideposts you need for a very basic navi-
gation of a free and open source project. The next step is a fun one: Find a
project where you can make your first contribution!

report erratum • discuss

You’re Ready to Find a Project • 37

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 4

Find a Project
The question I hear most often from people wanting to contribute to free and
open source software is, “How can I find a project to contribute to?” or even
just, “Where do I start?” You may have heard of open source and know that
it’s possible to contribute. You may even know why you want to contribute and
what you want to get out of it, but it’s rare for people to have recognized that
a lot of thought needs to go into the choice of where to contribute. Mostly, what
all potential new contributors know is that they want to contribute in some
way. You’re probably in this camp, and that’s better than OK—it’s great. You’ve
passed the first milestone for contribution: wanting to contribute at all. The
second milestone is finding the project that’s right for you.

Finding a free and open source project to which to contribute isn’t as simple
as choosing a random bug in a random project. You can do it this way, sure,
but you’re unlikely to be successful or to have a positive experience. Before
you dive in, give yourself a better chance of success: take the time to find a
project that matches your goals and values. This, of course, implies you can
actually articulate your goals and requirements, so that’s where we’ll start.

I won’t lie: defining your goals and requirements and finding the right first
project can take some time to do properly, but it’s a very good investment.
What isn’t a good investment? Spending days, weeks, or months trying to
contribute to a project that isn’t a good fit for you.

Set Your Goals
You may know that you want to contribute to free and open source software
in some way, but can you put your finger on exactly why you want to do this?
The answer is a lot harder than it seems at first. Some people may answer,
“to get experience,” or “I believe software should be Free,” or “my teacher/men-
tor told me it would be a good idea.” While these might be motivations, they’re

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

not goals. These statements are vague and difficult to pin down, therefore,
it’s also difficult to tell whether you’ve succeeded in them. Goals must be
specific and actionable, otherwise they’re just smoke in the wind.

After reading the past few chapters, you may have some more thoughts about
why you want to contribute to free and open source software. The Foundations
and Philosophies of Free and Open Source covered the philosophies underlying
FOSS. These may resonate well with your own philosophies, values, and
ethics in such a way that cultivating and spreading these philosophies may
factor into your personal goals for contributing to free and open source. What
Free and Open Source Can Do for You detailed some of the many professional
benefits you might reap when contributing to FOSS. Some of these benefits
may suit your own purposes, and may even have inspired you to think of
personal benefits that were not mentioned (it was far from an exhaustive list).

Regardless of whether you feel you have a firm grasp on your reasons and
goals for contributing, collect your thoughts and write them down. Doing so
not only gives you a snapshot of your current state of mind, but it also gives
you something to which you can refer later on. You might revisit your goals
to update them, or—if you’re having a bad day—to remind yourself why you’re
putting up with all of this in the first place.

Grab your favorite writing device and a cup of a tasty beverage and sit down
to collect those thoughts. Give yourself permission to write anything that
comes to mind, in whatever order those thoughts fall out of your head. There
are no wrong answers or thoughts here, so collect them all in this brainstorm-
ing session without passing judgment or trying to organize them. The time
to organize is later, after you’ve gotten all of your goal-related thoughts out
of your brain and into the open where you can view them all at once. An
example of a possible brainstorm is shown in the figure on page 41.

Once you’ve collected all of your goal-related thoughts, set them aside for a
short while before you move on to the next step. Allowing your brain to rest
will help give you a better perspective when you start to organize your
thoughts, and may even allow a few straggling thoughts to bubble up and be
captured in your brainstorm. So take a break: mow the lawn, do the dishes,
play a game with your kids, watch a movie, or even just sleep on it.

OK, is your brain all rested? Good, because now we get to the hard part:
taking all of those thoughts and organizing, consolidating, and focusing them
into a list of goals.

Look at your list of thoughts. Are there any that are vague? Expand on them
until they’re specific. Are there any that are similar? Collect them together.

Chapter 4. Find a Project • 40

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

As you review them, make sure you understand the why behind every thought.
If there are any for which you have no discernable reason beyond, “it seemed
like a good idea at the time,” disqualify them from the goal process and set
them aside. Iteratively refine and collect your thoughts into categories until
you’ve consolidated them into the few core things you would like to achieve
by contributing to free and open source software. How many of these core
goals constitute “a few” is up to you and your needs. Each goal should be
specific, concise, and actionable, something you can state to someone and
have them immediately understand what you hope to achieve. Vague goals
are difficult to make progress on. For instance, “Practice programming” is a
vague goal. Programming what? In what language? How will you tell when
you’ve accomplished this goal? On the other hand, “Become more proficient
and fluent at server-side Javascript” is specific and actionable. This is a goal
that is easy for you to focus on and just as easy to see whether you’re making
progress toward it. See the figure on page 42.

report erratum • discuss

Set Your Goals • 41

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Remember: These are your goals, sprung from your own thoughts and needs.
While they may possibly resemble those of others, these goals are entirely
unique to you. Be true to your personal needs and goals; don’t simply take
the goals handed to you by a teacher or mentor. Own your goals, take
responsibility for meeting them, and you are much more likely to be successful
in your FOSS contributions.

An advantage of these being your own, personal goals is that you are free to
change them as needed. These goals are not carved in stone. As your life and
career evolve, your goals should as well. Revisit this page from time to time
and review the goals you’ve written here. Do your goals still ring true? Do
they still meet the needs of your life? If not, how should your goals change
and, more importantly, why? If necessary, go through the entire exercise
again from brainstorm to goals to ensure that you’re still targeting goals that
are good for you, your life, and your career. Don’t spend years driving yourself
toward goals that no longer serve your needs.

Collect Your Requirements
You have your goals figured out, so you’re ready to go out into the FOSS world
and find a project to contribute to, right? Nope, not quite yet. Your goals are
only one piece of the puzzle. You also need to know your personal requirements
for the project you select. Think of these as the criteria the project must meet
to be a good fit for you. Contributing to a project that isn’t a good fit is like
wearing the wrong size shoes: They may look cute, but after taking a few
steps, you’ll be in quite a lot of pain. To maximize your chances of success
with your first contribution, take a few minutes to figure out what size you
should wear.

Chapter 4. Find a Project • 42

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

What do I mean by requirements? These are project characteristics that meet
your own particular needs. Only you know what sort of characteristics are
required for you to be successful, but I’ll list some of the most common things
that people should consider when looking for a free and open source project
to which to contribute.

Skills
For starters, what are your skills? What can you offer to a project? Are you
a great writer or editor? How about translation? Graphic design? User experi-
ence specialist? Know certain programming languages? Have experience with
electronics? Maybe you have experience managing people, writing technical
specifications or grants, or organizing events? All these skills and more are
in demand for free and open source projects and communities. Take a few
minutes to write down all of your skills that may be potentially relevant to
contributing to FOSS.

Those are the things you can do, but what about the things that interest you?

Interests
You’re much more likely to enjoy and stick with contributing to free and open
source software if you’re working on a project that interests you, rather than
working on the first one you come across. Besides enjoying it more, if you
choose a project for an interest you already know something about, then you
have domain knowledge. This is knowledge about how things operate in that
interest area. For instance, if you sew, knit, or fix cars, then you already know
all of the terminology for sewing, knitting, or car repair. If you find a project
related to one of these areas of interest, you’ll more easily understand what
the project does and perhaps even how it works.

report erratum • discuss

Collect Your Requirements • 43

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

There’s a free and open source project for every hobby and interest area.
When most people think of FOSS they immediately think of operating systems
(Linux), infrastructure, databases, or web development. If these are your
interests, you’re in luck, since there’s always a lot of work that needs to be
done on these projects. But there are also projects for ham radio, sewing,
game development, digital art, machine learning, astrophysics, geography,
3-D printing, education… The list goes on and on.

What sorts of things interest you? What are your hobbies? What classes did
you enjoy in school? Take a few more minutes to write down all of your areas
of interest.

Time Availability
Another very important requirement is your time availability. A single parent
with three young children will have much different time availability than a
second year university student. Before you start looking for a project to which
to contribute, be honest with yourself about how much time you think you
can devote to contributing to free and open source software. Some projects
have a much steeper learning curve than others, so if you have only a little
bit of time, you may need to limit your project selection to one that has a
reputation as being very supportive of and helpful to new contributors.

No matter which project you choose, it’s very possible to contribute even if
you have only a couple hours a week to devote to it. Every contribution is

Chapter 4. Find a Project • 44

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

valuable, even the small ones. Be realistic about your time investment and
take on only what you can manage. You can always ramp up your contribu-
tions later should more time become available to you.

Goals
The goals you defined earlier are also a part of your requirements for project
selection. It doesn’t make a lot of sense to contribute to a project if it’s not
going to help you move toward your goals in some way. Take the time to
revisit them if it’s been a while since you last did.

Skills, interests, time availability, and goals. These are your specific require-
ments, and they are unique. If you compare your lists to anyone else’s, you
may find some overlap, but you’re more likely to find more differences. These
requirements are yours and yours alone, and only you can define them.
Others may be able to help you brainstorm or refine your lists, but no one
can tell you what your personal requirements are.

And remember: all of these requirements can and will change over time as
your life situation evolves and professional experience grows. Don’t be afraid
to revisit these requirements and refresh or alter them later. Doing so can
help provide a lot of clarity if you’re ever feeling a bit lost about where to look
for your next project or challenge.

Collect Candidate Projects
OK! You have goals! You have interests! You have requirements! Now all you
need is a project. How hard could it be, right? Welllll…

As I mentioned in The Foundations and Philosophies of Free and Open Source,
millions and millions of free and open source projects are in existence today.
How are you supposed to apply those goals/interests/requirements to millions
of projects? Answer: by limiting the pool of candidates.

Start by looking at the projects you already use and enjoy. If you’re a Linux
user, then you probably have a lot of free and open source software projects
that you use on a daily basis. Blender,1 GIMP,2 KDE3 or GNOME,4 and all of
the tools associated with them are all FOSS projects. But daily use of free
and open source isn’t limited just to those who run Linux on their machines.

1. https://www.blender.org
2. https://www.gimp.org
3. https://www.kde.org
4. https://www.gnome.org

report erratum • discuss

Collect Candidate Projects • 45

https://www.blender.org
https://www.gimp.org
https://www.kde.org
https://www.gnome.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

FOSS projects are everywhere: Drupal,5 Moodle,6 Visual Studio Code,7 iTerm,8

and more! Look at the software you use every day, then check to see whether
it’s a FOSS project. While these large and very visible projects may not be the
best starting point for someone new to FOSS contributions, they may have
smaller satellite projects (such as libraries, plugins, extensions) that are
perfect for someone who’s just starting out.

Even if the software itself is not free or open source, it’s possible that an
ecosystem has sprung up around it that is. For instance, if you use the Unity9

engine for game or video development, you’ll find that a lot of the plugins for
it are released under OSI-approved licenses. If you’re a Mac or an iOS devel-
oper, you’re probably using tools or libraries that are released as open source.
Nearly all browsers allow for third-party extensions now. Many of those
extensions are available as FOSS projects. So take the time to inspect your
software and its ecosystems. You’re likely to find you’ve been using and
enjoying free and open source software and didn’t even know it.

All of those interests you listed previously make for a great starting point for
locating free and open source projects. Open your favorite web browser, fire
up your favorite web search engine, and type an interest name followed by
the words “open source” into the search field. The results will undoubtedly
point the way to a lot of FOSS projects that you never knew existed. For
instance, if I type woodworking open source into my search engine today, I receive
772,000 search results. sewing open source returns 1,920,000 results. painting
open source returns an eye-popping 7,880,000 results from this search engine.
Enter each of your interests into a search engine in this way and see whether
any intriguing free and open source projects are revealed. If they are, add
them to your list of candidates.

Another way to locate interesting free and open source projects is to browse
popular version control service providers. As I write this, the most popular
of these providers for free and open source software are GitHub,10 GitLab,11

and BitBucket,12 but there are others (including self-hosting by the projects
themselves). Most of these services offer a way to explore the public repositories

5. https://www.drupal.org
6. https://moodle.org
7. https://code.visualstudio.com
8. https://iterm2.com
9. https://unity3d.com
10. https://github.com
11. https://gitlab.com
12. https://bitbucket.org

Chapter 4. Find a Project • 46

report erratum • discuss

https://www.drupal.org
https://moodle.org
https://code.visualstudio.com
https://iterm2.com
https://unity3d.com
https://github.com
https://gitlab.com
https://bitbucket.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

they serve. Sometimes the service provides a special page for this purpose,
highlighting and categorizing projects by topic, programming language, pop-
ularity, or some other characteristic. These services and pages can be a great
way to discover projects you might not locate otherwise.

Your network and local community can be a great resource for finding free
and open source projects to which to contribute. Do you have friends who
have contributed to FOSS? How about your social network (Twitter, Facebook,
and the like)? Ask them about their experiences and whether they can recom-
mend projects that might be a good fit for you. Nearly as important, ask them
whether they’ve had any bad experiences with projects. It’s much better to
learn now that a project has a toxic community or is difficult to contribute to
than to learn it later the hard way. You can also just put yourself out there
on social media and offer your services. “I would like to contribute to a FOSS
project! My skills are… Does your project need my help?” I have seen this
work to good effect, but the success of this method depends a lot upon the
reach of your message. If it doesn’t get in front of the right people, you’re
unlikely to receive many helpful responses.

While you’re doing your research to locate candidate projects, simply add
them to your list as shown in the figure on page 48. There’s no need to
research or compare them yet, and it’ll be easier to compare them once you
have a better idea of the options that exist for you. Also, it could be that a
few projects keep reappearing in your searches. The more often you come
across a project while doing searches that are targeted toward your require-
ments, the more likely it is that the project may be a good fit for you.
Regardless, invest an hour or two to collect a nice pool of candidate projects
and to familiarize yourself with the landscape of free and open source projects
that exist in the world.

Select a Project
You’ve done a lot of work by this point, so the next step may not take you
very long. It’s time to select a project where you can start contributing. You
could do this the old fashioned way by throwing a dart at a dartboard covered
in potential projects, or you could do it the smart way by comparing the list
of projects you’ve built with your list of requirements. It’s possible that there
won’t be a single project that meets all of the requirements on your list. That’s
OK. As long as it meets some of them, you’ll still be moving toward your per-
sonal goals.

While matching your requirements is a very important feature for any
potential project, it’s not the only one you should take into consideration.

report erratum • discuss

Select a Project • 47

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

There’s also the matter of how easy it will be for you to contribute. This will
be your first contribution, after all. Why not give yourself the best possible
chance of success by choosing a project that makes contributing more
straightforward? It may feel like stacking the deck in your favor…and you’d
be right. But there’s nothing wrong with that, is there? If you start your free
and open source software contributions with an easy win, you’ll be much
more motivated to continue down the path of contributing elsewhere.

Have a look at each project on your list, starting with the documentation.
Does the project have a CONTRIBUTING file or similar documentation guiding
people through the contribution process? Does it have robust documentation
for setting up a developer environment? Are the communication routes for
the project documented and active (people who ask questions receive answers)?
If so, you may have a good starter project on your hands. Next, have a look
at the project’s issue tracker. Are there any open bugs or features that you
think you might be able to tackle? Maybe some of them are tagged as Help
Wanted, First Timers Only, Newbie, Good First Issue, Up For Grabs, or some
similar flag to highlight them for people like you.

It’s certainly not required that a project do all of these things. Thousands of
very good projects are out there, supported by healthy communities, that do
not meet all of the criteria in the preceding paragraph. However, if you find

Chapter 4. Find a Project • 48

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

a project that has implemented even one of those criteria, you’ll find that it
will make your first time contribution experience much more pleasant than
contributing to a project that has not.

Once you’ve reviewed all of the projects on your list for how easy they may
be to contribute to, your choice of starter project may now be obvious to you.
If it’s not, don’t worry. For some people, it’s better to explicitly list the pros
and cons for each project, then analyze and review them all together this way.
There’s no right or wrong method for coming to your decision. Do what’s best
for you and the way your brain works.

Remember, though: when you decide on a starter project, that decision is not
carved in stone. You may find that the community is not as welcoming as you
hoped, or once you start contributing, you aren’t getting what you need out of
it. If that’s the case, it’s perfectly OK to stop contributing there and find another
project where you can devote your time. I caution you, though: before you quit,
consider whether you might be the problem. In your zeal to contribute, it may
be that you’re not doing as good of a job as you could in communicating or
understanding the contribution process. Ask the project community for feedback,
help, and mentoring (just don’t expect to be spoon-fed). If these things aren’t
forthcoming or don’t help you feel more comfortable with the project, don’t
hesitate to move on to something that is a better fit for you.

Select a Task
You have a project! Congratulations! Now you’re ready to get started on that
first contribution, right? Well…sorta. Before you can make that first contribu-
tion, you have to figure out what it will be. You have to decide upon a task.

It could be that you already have something in mind. You may have discovered
a bug or typo in documentation, or docs that are missing altogether and you’d
like to add. Perhaps there’s a bug in the software, something that’s been
bothering you for a while and which you can easily reproduce. Maybe you
use a certain library for a work project, but to continue, you need to add a
feature to the library API.

Whatever the task, before you start work on it, search the project’s issue
tracker to see whether it exists. Don’t limit your search purely to open or
active issues, either. Search the closed issues to see whether your idea was
proposed before, but the project decided not to pursue it for some reason.

If your idea doesn’t exist in the issue tracker, open a new issue. This serves two
purposes. First, it warns the project that a contribution may be on its way.
Second, it allows the project maintainers to review the task and confirm that

report erratum • discuss

Select a Task • 49

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

it’s something the project needs or wants. It can be very disheartening to put a
lot of work into a contribution only to learn afterward that it’s not a good fit for
the project, so do take the time to write it up in an issue in advance.

If you don’t already have a task in mind, a good source for one is the project’s
issue tracker. Most every project has one of these, though they may use a
different name for it; bug database and ticketing system are two other common
names for this. Most of these systems include some way to ‘tag’ issues to
make them easier to categorize and locate. The tags vary from project to
project, but often a project has a tag that’s used to mark certain issues as
suitable for new contributors to tackle. Examples of tags that may mean this
are: easy, starterbug, newbie, help wanted, or good first ticket. If a project
tags issues as suitable for new contributors, they usually mention that and
what tag to look for in their contributor guide, so look there as well. Whether
the project has tagged issues in this way or not, review the issues and select
one that looks achievable, considering your personal skillset and experience.

While working on finding a suitable task, never underestimate the power of
Just Asking. Do your own research to familiarize yourself with the project,
its needs, and its communication routes. Pick the most appropriate route—this
will vary by project—and introduce yourself. Let the community know who
you are, that you’re new and excited to help out, and briefly state your skills
so they’ll have some idea of your current capabilities. If you already have an
issue in mind, let them know which one and verify that it would be appropriate
for you to work on. If you haven’t chosen an issue yet, ask whether someone
can direct you to one or whether you might help someone with a task they’re
already working on. When you write to the community in this way, please be
patient and respectful of their time. They may not be able to reply to you very
quickly. It’s not personal; it’s just that they all have their own lives and obli-
gations to attend to as well and may be many time zones away.

As you filter through tasks to find a good one for you, I encourage you to start
small. Yes, you have goals you wish to fulfill through your contributions, but
free and open source participation is a marathon, not a sprint. Take the long
view, particularly when you’re starting out. Small tasks lead to a quicker
payoff and better chance of success than trying to tackle a large feature or
tricky bug. This payoff takes the form of the endorphin hit you’ll get when
your first contribution is accepted by the community, and it feels great. The
larger and more complicated the task you select, the longer you postpone
getting that payoff, so start small. Baby steps are still steps and still move
you toward your goal.

Chapter 4. Find a Project • 50

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Similarly, simple and repetitive tasks not only allow you to contribute quickly,
but they also help you make friends and influence people in the community.
By taking on these important but less fun tasks, you not only free up the
time of more experienced community members, but you also show them that
you’re willing to dig in and do what it takes to lend a hand and work your
way up through the ranks of the community.

What Is “Success”?
All through this chapter I’ve repeatedly said, “do this thing to maximize your
success” or similar statements to that effect, but I’ve never defined what
success is.

That’s because I don’t get to define what success is for you; only you can.
Without goals, without requirements, you can never truly know whether you’re
making the right choices for your own needs. Those goals and requirements
are very personal things. Your goals will not match my goals; your require-
ments will not match my requirements; your success will not match my suc-
cess. Despite that, some general characteristics of your contributions can
signal whether you are or are not on the path toward your success:

• You’re able to make a first contribution with minimal fuss
• You’re welcomed by your first community
• You learn and grow from your experience
• You gain the confidence to help others contribute, too

You will not see all of these characteristics at once. For instance, you won’t
necessarily have gained the confidence to help others contribute until you’ve
contributed a few times yourself and are more familiar with the process (at
least for that project). It’s possible to be welcomed by a community before
you make your first contribution to it. So if you don’t see a particular charac-
teristic, don’t worry. It may just be waiting around the next corner. However,
if after trying to contribute for a couple of months, you still don’t see any of
these characteristics, do consider whether the project you’ve chosen is the
right fit for you. Don’t be like Don Quixote, tilting at windmills to no end. If
you’re not making any progress, it’s OK to set that project aside, re-collect
your notes on project selection, and try another one. You won’t meet your
goals if you end up a crumpled heap at the foot of a windmill somewhere, so
stop tilting at them.

report erratum • discuss

What Is “Success”? • 51

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 5

Make a Contribution
At this point, it can be tempting to just jump in and start working on your
contribution. For some people and some contributions, this might even be
successful, but for the rest of us, it’s not usually that easy. Don’t worry,
though: you can do this, and by the end of this chapter, you’ll know what to
do to make your contribution successful.

Making your first contribution to a project can be complicated. If the project
isn’t well documented, if its community isn’t very communicative, if your
contribution is complex, if you don’t have a lot of time or other resources
available… Plenty of things could cause your first contribution to go a little
less smoothly than you’d wish.

It’s OK at this point to pause and think through the process and your contri-
bution before you submit it to the project. Don’t dive in headfirst; wade in
instead. Basically, there are five large parts to any free and open source
contribution:

1. Prepare

2. Craft

3. Test

4. Submit

5. Revise

Let’s walk through each part of this process.

Prepare for Your Contribution
There’s plenty for you to do even before you can start in on your first contri-
bution. The more you prepare in advance, the more likely it is that your

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

contribution will be well received. There’s a reason that Fail to prepare? Prepare
to fail is such a commonly used phrase: it’s true. The time you invest before
you dive into your contribution will pay great dividends later on in the process.

Review the Issue Tracker
If you didn’t already do so in the prior chapter, invest some time to review
the issue or bug tracker for your chosen project (see Find a Project for more
information about the issue tracker). It’s an amazing resource for learning
what a project has done in the past, what it’s currently trying to accomplish,
what it’s looking to do in the future, and just as importantly as all those:
what it’s decided it doesn’t need to do at all.

Regardless of whether the project tags its issues as suitable for a new contrib-
utor, reviewing the open issues in its issue tracker can lead you to a number
of potential contributions. As you skim the issues, look for those that are
interesting in some way. Are bugs reported that have bitten you in the past?
Maybe there are issues that were opened but have no activity yet, or issues
marked as needing work but are not yet assigned to nor claimed by anyone.
Picking up tasks that no one else has had the time to do can be a great way
to make your mark in a community.

Set Up Your Environment
Creating and testing your contribution usually requires setting up a testing
environment of some sort. Often the project has documentation describing
how to do this. Sometimes the documentation is the steps to install the project
itself. Regardless, you’ll need some way to verify that your contribution
actually works or looks the way expected and intended.

Once in a great while, you’ll find a project that has provided a container or
virtual machine image to give you the ideal testing environment. This is quite
rare though; it can take a lot of time and effort to maintain those images, and
time/effort are two things in very short supply for most projects.

If the project doesn’t provide steps to set up a testing environment or otherwise
install the software, ask the community for help. It could be that the steps
for this are in a less obvious location. If the project does not have documen-
tation for this, take notes while you’re setting up your testing environment.
Once you’re done, convert these notes into documentation (and also your first
contribution to the project). Your efforts will help everyone from that point
forward.

Chapter 5. Make a Contribution • 54

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

This testing environment doesn’t only apply to code or technical writing con-
tributions. If you’re helping with the project website, its user interface, or
even performing translations, you need to test your changes before sharing
them with the community. Figure out what sort of testing environment you
need for your specific type of contribution and make sure it works before you
lift a finger to start crafting your contribution.

Text Editors
The workhorse of most FOSS contributions is the text editor. Without a good
text editor, it’s very difficult to make a contribution at all. It may seem like a
simple thing, but it turns out which text editor you use can make a big differ-
ence when doing software development.

The two text editors you hear about most in free and open source software
development are vi (vim) and emacs. Both are venerable and beloved to the
point of a near-religious rivalry between users of each editor. Both also have
well-earned reputations for being difficult to learn. I encourage you to become
familiar with them at some point, but it’s not necessary to learn either to
contribute to an open source project. Other text editors will do just fine.

There are many different text editors out there in the world, but not all of
them are good for software development. For instance, while it’s possible to
edit text in Microsoft Word or Microsoft Notepad, neither of these are suitable
editors for software development. The text output of these programs contains
control characters that can make your code or documentation unreadable by
many other programs. They also use different line endings (carriage returns)
than many programs expect, which can cause a lot of problems.

A good text editor for software development outputs nothing except Unicode
or ASCII characters. Which editors are available depends on your operating
system, but some popular ones are Notepad++,1 Sublime Text,2 Atom,3 Kate,4

and Geany.5 If you develop on a Windows system, the WordPad application
will work well for most text-based contributions like code or documentation.

There’s so much talk about text editors in some open source circles that you
might wonder whether it’s acceptable to use an integrated development

1. https://notepad-plus-plus.org
2. https://www.sublimetext.com
3. https://atom.io
4. https://kate-editor.org
5. https://www.geany.org

report erratum • discuss

Prepare for Your Contribution • 55

https://notepad-plus-plus.org
https://www.sublimetext.com
https://atom.io
https://kate-editor.org
https://www.geany.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

environment (IDE) such as Visual Studio Code,6 Xcode,7 or Eclipse.8 The
answer is: Yes, you can definitely use an IDE to create your free and open
source contributions. Just make sure the end product meets the criteria and
styleguide for the project. The bottom line is, the best tool for the job is the
one that you can use and that generates the output you need. Don’t let anyone
tell you otherwise. You do you, honey.

Do Issue Triage
Before jumping in and working on a fix for an issue, pause and do some triage
first. In a medical sense, triage is reviewing wounds to determine how severe
they are. In a technical sense, it’s reviewing issues to confirm you understand
the problem, can duplicate it, and that it’s not already fixed elsewhere. In
many projects, issue triage also includes setting a priority for fixing the issue,
but that is not usually possible for new contributors to determine, as they
lack the big picture view that more experienced contributors have. You will
learn a lot more about triaging bugs in Make a Difference Without Making
a Pull Request.

Doing issue triage takes time up front, but it saves much more time during
implementation of the fix for the issue. Triage allows you to confirm that the
issue you selected is still, well, an issue. It could be that the problem was
resolved in another commit or that the issue itself is just out of date. Triage
also allows you to confirm not only whether the issue can be duplicated, but
also that you fully understand the requirements of the fix. This understanding
leads to more efficient and effective fixes and a much smoother contribution
process.

To triage your issue, you must be able to duplicate it or view it in some way.
This usually means using that shiny new testing environment you just set
up. Review the issue for the steps to reproduce the problem or any other hints
about where to look to view the problem itself. If you’re able to reproduce the
problem, you have a much better chance of understanding what’s going on
and where to start looking to solve it.

As you triage your issue, document all of your discoveries: the steps to
duplicate the issue, what you expected to see, what you actually did see, and
any additional requirements (technical or otherwise) that aren’t listed in the
issue. Add this to a public note in the issue itself. Think of the issue as a lab

6. https://code.visualstudio.com
7. https://developer.apple.com/xcode/
8. https://www.eclipse.org/home/

Chapter 5. Make a Contribution • 56

report erratum • discuss

https://code.visualstudio.com
https://developer.apple.com/xcode/
https://www.eclipse.org/home/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

notebook and you’re the scientist seeking a discovery. Documenting everything
allows other community members to confirm your work and provide guidance
if necessary before you invest a lot of time in crafting a fix for the issue.
Documenting your triage notes also helps the next people who look at the
issue. Should your triage show that the issue fix is beyond your current skill
or interest level, your notes allow the next person who works on the issue to
make progress that much more quickly.

Read the Docs (or Write Them)
No matter what, as you’re working with issues, make sure you follow the
project’s workflow for them. This may be documented (in either the CONTRIBUTING
file or elsewhere), but often the workflow is a matter of tribal knowledge. If
you find this to be the case, ask a community member for advice and guidance
before making a clumsy faux pas with issue handling. Once you have that
advice and guidance, write it down for posterity. This important documentation
can not only help future contributors, but it can also be your first contribution
to the project!

Craft Your Contribution
Once you have some idea whether your contribution is needed for the project,
you’re ready to create it.

The specifics of how you create it naturally will vary depending on the type
of contribution: documentation, user experience, design, code, or other types.
Each contribution type obviously will have its own creation process.

Whatever that process is, before you start, do double-check whether the
project has already defined some guidelines for it. As covered in Prepare to
Contribute, many projects provide styleguides and contributor instructions.
For instance, if your contribution is code, the project may require it to include
both unit and integration tests or perhaps that it pass certain linter rules. If
documentation, the project may follow a certain writing styleguide such as
AP9 or IBM, or may require contributions to be written in a specific dialect
(British English instead of American English, for instance). Website or
graphic design contributions may need to stick to the project’s branding guide
or to an accessibility style guide.10 Always double-check the contribution
guidelines before you get too far with your work. Doing so may save you a lot
of time later on.

9. https://www.apstylebook.com
10. http://a11y-style-guide.com

report erratum • discuss

Craft Your Contribution • 57

https://www.apstylebook.com
http://a11y-style-guide.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Gotchas
If you haven’t spent much time in free and open source yet, you may be
blindsided by some topics that you wouldn’t think should matter, but for
various historical and social reasons matter a great deal. Two of those topics
are spaces versus tabs, and tab sizes.

Spaces, Tabs, and Tab-size
The controversy between using tab characters or space characters for indenting
your (typically code) contribution often catches new contributors off guard.

A single space character looks more or less the same on every screen, in every
text editor, and on every platform.

A single tab character, however, can be interpreted and displayed differently
by every text editor. Some editors display a tab as eight spaces, others as
four. Most good text editors allow the user to define how many spaces to use
when displaying a tab character, also known as “set the tab-size”. Some text
editors allow the user to enter a tab character but then replace it in the text
with space characters equivalent to the user’s preferred setting.

So why is this such a big deal?

Many projects value consistency in appearance across all editors and platforms.
For them, it’s very helpful to know editing a file on Windows will present a display
similar to editing it on Linux. This prevents surprises when editing files and
allows peoples’ brains and eyes to learn where to look on the screen for what
information. It provides for a visual consistency in the same way a linter or
styleguide provides for consistency in content. Projects that prefer this consis-
tency will dictate that contributions use spaces for indentation. They also will
dictate the preferred tab-size or indentation size (usually 4 spaces, but 2 and 8
are sometimes found as well; people who use other sizes might be monsters).

Other projects prefer to allow their contributors to control how their display
looks. Contributors who would rather work in a more compact editor window
can set their tab-size to 2 spaces, for instance, while contributors who desire
a larger visual difference between indent levels can set their tab-size to 4 or
8 spaces. Projects that prefer this visual flexibility will dictate that contribu-
tions use tabs instead of spaces for indentation.

Finally, some projects use programming languages, such as Python,11 where
the whitespace is significant: If you indent in one of these languages, that

11. https://www.python.org

Chapter 5. Make a Contribution • 58

report erratum • discuss

https://www.python.org
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

indentation affects the program. And if your indentation is a different size
from other peoples’ indentations, it can cause a lot of chaos. Paying attention
to tabs, spaces, and whitespace is critical to projects that use these program-
ming languages.

While we all end up having our own preferences between spaces and tabs,
when contributing, the only right way to do it is that defined by the project.
Even if the project’s preferences are not your own, always respect and follow
the project’s rules. If the project to which you’re contributing prefers either
spaces or tabs, stick to their preference or risk offending the project commu-
nity and having your contribution rejected. If the project has not expressed
a preference, ask the community about it before starting work. If nothing
else, you often can default to indenting with spaces with a tab-size of 4.

Clone and Branch
The first step in any contribution is to retrieve a local copy of the repository
(repo). In git terminology, this local copy is known as a clone, but some hosting
services use the term fork instead. In the git contribution process, both words
refer to the same step, though the two words can mean different things in a
FOSS context.12

FOSS Project
(origin)

FOSS Project
(your clone)

fix_bug
(your branch)

fix_bug
(changed branch)

FOSS Project
(origin + your

changes)

Feedback
Loop

Clone Repository

Create
branch

Make
changes

Send
pull

request

Work
continues…

Merged

12. https://opensource.com/article/17/12/fork-clone-difference

report erratum • discuss

Clone and Branch • 59

https://opensource.com/article/17/12/fork-clone-difference
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The next step after cloning the repository is to create a branch. When you
create a branch, you name it and figuratively plant a flag in the repository to
say, “I hereby claim everything from here forward in the name selected for
the branch.” As long as you stay on that branch, all of your work will be iso-
lated from every other branch. This allows you to work on multiple different
issues at once (by creating multiple branches), but most importantly, it pre-
vents you from sharing changes that you don’t want to. In the background,
a branch is just a named pointer to a certain git commit, but that’s a level of
detail that you can read up on later if you want.13 The important part is that
a branch is just a pointer, not a copy of the repository. Therefore, branches
in git are cheap, quick, and easy to create and destroy. Easy branches are
one of the big advantages of git over earlier version control systems like
Subversion or CVS.

A common mistake at this point (and one I’ve made myself in the past) is to
start making changes and working directly on this new copy of the repo. While
this can be OK, the best practice is instead to create a new branch of your
copy of repository and then perform your work on it. This is called using a
feature or topic branch. Feature branches are just branches of a repository
where you perform work on only one thing—one feature—at a time. For
instance, if you’re working on an issue, you would create a branch just for
fixing that issue. Once the issue is complete and the pull request has been
accepted, it’s no longer needed. You can delete the branch.

Here’s an example of a new branch created for this chapter of the book:

Pliny:Book brasseur$ git checkout -b makeacontribution
Switched to a new branch 'makeacontribution'

Working in this way enables you to work on multiple features or topics at
once without contaminating the work for one with the work for another. It
allows for a very rigid separation of concerns that prevents committing
unneeded or prototype work. It also allows for much easier updates should
your pull request require some changes before it can be merged. Simply
commit and push new changes to the pull request’s feature branch, and
they’re automatically applied to the request. It’s a tidy and efficient process.

While this is currently the most common approach to making a contribution
to a FOSS project’s repository, it’s by no means the only one. Before you start
your cloning-branching, always make sure to verify the process against the
project’s CONTRIBUTING file.

13. https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Chapter 5. Make a Contribution • 60

report erratum • discuss

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Atomic Commits
OK, so now you can start working on your contribution. As you do so, make
sure to follow the old adage: Commit early; commit often. Tightly scoped—also
known as atomic—commits are safer commits. With an atomic commit, you
easily can see what you’ve changed, because your commits are scoped to a
single (usually small) topic, feature, or bug fix. This reduces the risk of con-
tributing unnecessary changes. Atomic commits are also much easier to
review afterward and to back out should something go wrong. When you make
atomic commits, they affect and touch as little of the project as possible,
therefore reducing the potential ripple effects of your changes.

Let’s get metaphorical: Think of your complete contribution as an essay. It’s
composed of different paragraphs, each containing a complete thought, but
each also requiring the context of the other paragraphs to meet the overall
goal of the essay. An atomic commit is like a paragraph: it’s a complete
thought. Each time you finish a thought, commit it to the repository. If your
contribution requires several different steps to complete (rename variables,
pull duplicate code into a new function, call the new function in the correct
locations), each step should be a separate, small commit. You may end up
with several commits before your contribution is complete, but that’s OK. It’s
much better to commit your work at the end of each thought than to risk
losing all your work by waiting until the end of the contribution to save it to
the repository. Some projects want you to use a squash or rebase feature in
the version control software to consolidate all of those small commits into a
single, larger atomic commit, so make sure to read the CONTRIBUTING file before
submitting your contribution to the project.

Using Version Control for Non-Code Contributions
“But,” you ask, “what if my contribution isn’t code? Do I have to care about
version control systems?”

A very good question! The answer, as you have probably already guessed,
is “Yup.”

Depending on the project, non-code contributions may not be maintained in
the version control system (VCS). Documentation may be in a wiki, for
instance. Designs may be in a shared drive system. It could be that you never
have to use git, Subversion, Mercurial, or any of the other version control
systems that are common across free and open source as well as proprietary
software development.

report erratum • discuss

Atomic Commits • 61

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

However, considering how helpful it can be for any project to maintain all its
related files in a single repository, it’s likely that even if your contribution is
not code, you’ll still have to submit it to the VCS. Documentation, test plans,
designs, and all other digital resources can be stored and shared using a version
control system. You can even use one for your own personal writing or design
projects. Doing so not only provides off-site backup of these important files,
but it also kills off the Frankenstein’s Monster file naming schemes, such as
logo-new-FINAL-FINAL2-FINALwithedits-FINALapproved-OKreallydonenowhonest.ai. Instead of
changing the file name, you simply commit it to the VCS. All previous versions
are still there for you to access later if needed.

Even if the project does not use a version control system for non-code contri-
butions, it’s still helpful for you to learn about them. You are likely to find
that the majority of community members for most projects are programmers.
Learning the VCS terminology and how it is used builds empathy with the
programmers, which will make it easier for you to communicate with the
programmers in the project, and for you to understand the overall software
development process. This is particularly helpful if your career path will have
you working with programmers in the office.

So while it may not be necessary for you to learn the details of using a version
control system for your own contributions, learning at least the basics will
make you a more effective contributor and community member.

Test Your Contribution
As you’re creating your contribution, make sure you test to confirm that it
works at all (let alone does what you think it will). You might laugh, but a lot
of highly skilled and experienced contributors have been tripped up by
assuming their contribution will work only to learn after submitting it that
the contribution is broken or totally wrong. Testing adds time up front but
saves it later on. Testing should be continuous throughout the development
of your contribution, but is especially important before you submit your
contribution to the project.

Regardless of the type of contribution you’re creating, test it against the
appropriate version of the project to make sure it works as expected. If your
contribution is code, provide both unit and integration tests as well as man-
ually testing yourself. If your contribution is documentation or some other
type, test how your change will appear in the official documentation repository,
website, or wherever it may appear. No matter what, don’t assume it’s right.
Even if it’s just a small change, take the time to confirm not only that your

Chapter 5. Make a Contribution • 62

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

change is correct, but also that you haven’t accidentally jostled something
else on your way.

Many projects have a continuous integration and deployment (CI/CD) service,
such as Travis14 or CircleCI.15 This service runs all unit, integration, linter,
and other tests on all submissions to confirm they meet project standards.
If your selected project uses such a service, always pay attention to its results.

It is, by the way, completely OK if your contribution causes CI/CD to fail
(break the build). This is actually very good news! Your contribution had a
problem, but it hasn’t been merged, so there’s no harm done. You get the
opportunity to fix your contribution and to improve in the process. You can
learn a lot about a project by reviewing the different ways your contribution
breaks the build.

To help others learn from your mistakes, consider documenting the build
errors and the things that trigger them. This can be a great aid to new con-
tributors who follow after you.

Diff Your Work
Before you submit your contribution, always do a diff on it. diff is a very old
and very useful utility that’s now built into most version control systems and
IDEs. It simply shows you the differences between two files. In the case of
version control, it typically shows you the differences between the files cur-
rently in your repository and the most recently committed versions of those
files. It’s also relatively easy to diff your repository or branch against other
repositories, branches, or commits. This means you can see precisely how
your branch differs from another branch (even one not on your computer),
allowing you to confirm that your contribution will include only the changes
necessary to complete your contribution.

You’ll find some type of diff functionality in all version control systems and
in most IDEs. Many operating systems also provide a diff utility. Check the
documentation for your tools to see what options are available and how to
use them.

Here’s an example of what a diff looks like from the git version control system.
In this diff, I changed a setting so the Glossary (included at the end of the
book) would be included in the build:

14. https://travis-ci.org
15. https://circleci.com

report erratum • discuss

Test Your Contribution • 63

https://travis-ci.org
https://circleci.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Pliny:Book brasseur$ git diff ffcb48d e590486 jargon.pml
diff --git a/Book/jargon.pml b/Book/jargon.pml
index d0d452c..9a6ae33 100644
--- a/Book/jargon.pml
+++ b/Book/jargon.pml
@@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- -*- markdown -*- -->
<!DOCTYPE appendix SYSTEM "local/xml/markup.dtd">

-<appendix stubout="yes">
+<appendix stubout="no">

<title>Glossary</title>
<markdown>

It looks like there’s a lot going on here, but once you get the hang of it, reading
diffs can be pretty easy. I asked git to show me the differences between two
versions of the file by using their commit hashes: git diff ffcb48d e590486. Because
these commits included other files, and I only wanted to see the changes in
the jargon file, I included its file name (jargon.pml) in the diff command. The
diff returned a list of lines that changed between those two versions of the
file. The line that was in the first version of the file (ffcb48d) but changed in
the second (e590486) is prepended with a - character. The line that was changed
or added in the second version of the file is prepended with a + character.
Usually, unchanged lines are included on either side to help provide context.

There’s obviously more happening in that diff, but these two +/- lines are the
most important part. There are options you can pass to the diff command to
make it display things differently,16 but this is the gist of it and pretty much
all you need to get started.

Submit Your Contribution
You may have crafted the Best Fix In The World, but it doesn’t become a contri-
bution until you actually submit it to the project. So how do you do that?

The contribution submission process is going to vary depending upon your
contribution type (document, design, code, or another type) and the require-
ments and constraints of the project to which you’ve chosen to contribute.

Read the Docs
Each project will have a different preferred workflow for contributions, so
remember to check the CONTRIBUTING file (see Prepare to Contribute) before trying
to submit your contribution. This file probably contains some sort of directions

16. https://git-scm.com/docs/git-diff

Chapter 5. Make a Contribution • 64

report erratum • discuss

https://git-scm.com/docs/git-diff
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

for how to submit a contribution to the project. If it doesn’t, ask the commu-
nity for instructions or guidance. Once you’ve learned how the process works,
share that knowledge with the community by updating the CONTRIBUTING file
to help those who follow after you.

Lucky for you, you’re looking to submit a contribution in a world where the
git version control system is the most common way to contribute. BitBucket,
GitLab, and especially GitHub are the reigning champions in the open source
repository hosting world, each of them support git, and each of them make
contributing a lot easier. While there are other hosting options, you’ll find the
overwhelming majority of projects on one of these services. This leads to a
more or less standard set of processes for contributions, code, or otherwise.
Isn’t it nice to read that something is somewhat standardized, after all these
pages of “every project does it differently”?

Introducing the Pull Request
The primary mechanism for submitting a contribution to these services is
called a pull request. Some services call it a merge request, but this refers to
more or less the same process. We’ll use “pull request” or “PR” here, since
these are what you’ll hear people use most often.

The term “pull request” comes from the git commmand request-pull and was
popularized in its current form by GitHub. In git, as a distributed version
control system, each person can have their own copy of a repository, and
each copy could be the source of other copies. One of these repositories is
considered canonical. This repository often is called origin or master in the git
documentation. To have a change in your version of the repository included
in the canonical version, you make a request for the maintainers of origin to
pull your changes into the canonical repository.

The pull request process is very well documented elsewhere,17 therefore I
won’t go into it in detail, but I do think it’s valuable to spend a few minutes
giving you an overview. This will help you know what to expect when the time
comes for you to submit your contribution.

Remember that diagram of the contribution process? No? That’s OK, you can
find it over on page 59. It’ll be handy for you to refer back to it during the
following explanation.

Starting from the origin in the upper left corner and working clockwise: you
clone the repository, create your feature branch, and then make the changes

17. https://git-scm.com/docs/git-request-pull

report erratum • discuss

Submit Your Contribution • 65

https://git-scm.com/docs/git-request-pull
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

necessary for your contribution. As you’re working on your contribution,
other people are continuing to submit and merge other changes into origin and
evolving the project. Once you submit your pull request, you enter a feedback
loop with community members, working with them to refine your contribution.
After you’ve collaborated with them to put the final shine on it, a community
member will pull (merge) your contribution into the project.

Make the Pull Request
Now you’re ready to open that pull request to the origin repository. The
actual steps for this vary by tool and by repository provider, so make sure to
read their instructions before going forward. Whatever provider is used, the
process will require some sort of a commit message. Chris Beams has an
excellent article18 detailing not only how to write a good commit message, but
also why it’s so important to do so. I recommend you read it, but I’ll summarize
some of the highlights here.

The individual steps may vary, but each process will ask for a description
and some, for a title as well. Be descriptive. A title of “fixed stuff” with a blank
description is not helpful to anyone. You want to make your pull request as
easy as possible for the reviewer to understand. Titles should be brief (50 or
so characters if you’re using English) and should summarize the contents
and intents of the contribution. Descriptions should be as detailed as neces-
sary: don’t skimp on words. Descriptions should include not only what you
changed, but also why you changed it. If you’re working on an issue, the
description should reference that issue number. If you format the issue
number with a hashtag at the front of it (“#42”), then many issue tracking
systems will automatically link the issue with the pull request. This is very
handy for contributor and reviewer alike.

An example of a pull request for the fixes on my book repository:

TITLE:
Add jargon file to the build

DESCRIPTION:
The jargon file has been commented out of the
build because we were in beta and doing a drip
of one chapter per beta release.

We've finally reached a point where all other
chapters are released, so it's time to include
the jargon file into the build so it can be
released as well.

18. https://chris.beams.io/posts/git-commit/

Chapter 5. Make a Contribution • 66

report erratum • discuss

https://chris.beams.io/posts/git-commit/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Flipped the stubout value accordingly.

Resolves issue #42

Before you actually submit your pull request, check the contributions
guidelines one more time to make sure you’re formatting and submitting your
PR in the manner the project prefers. For instance, some projects prefer that
you squash all of your commits for your contribution into a single commit.19

Also, just to be completely sure you’re only submitting changes required for
this contribution, do one more diff of your work. This is especially important
if you were working on multiple branches in your clone. Doing a diff before
you send your pull request helps you confirm not only that you’re sending
the PR from the correct branch, but also that you’re sending to the correct
branch on the other side.

Patch: The Other Contribution Method
While the pull request process is the most common method for submitting a
contribution to a free and open source project, it’s not the only one. Free software
came into being in 1983. Open source has existed since 1998. Git and the pull
request process joined the world in 2005 and didn’t become standard operating
procedure until GitHub popularized it after the company was founded in 2008.

From 1983 until now, as you can imagine, there have been different processes
for contributing to free and open source projects. At least one is in use today,
so while I won’t go into detail (abundant documentation is available on the
internet), it’s helpful for you to know about the other option that exists.

The predominant form of contributions prior to the invention of pull requests
was patch files. A patch is a specialized diff that is dumped to a file and can
then be shared to others and applied to a project. The process for creating
and applying a patch file varies by version control system and by project.
Because patch files were used extensively for so many years, you’ll often hear
people refer to all contributions as “patches,” even if the contribution is sub-
mitted as a pull request.

While pull requests are the most common form of submission used today,
some projects still rely on patch files for receiving contributions, including
the Linux kernel. No matter which version control system your selected project
uses (even if it’s git), always review the project’s contribution guidelines before
assuming the submission process. Patch or pull request or passenger pigeon,
always know the method for submitting a contribution before you get started.

19. https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

report erratum • discuss

Submit Your Contribution • 67

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Review, Revise, Collaborate
Before your contribution is merged (pulled) into the origin repository, someone
will review it to confirm that it does what you think it does, that it does
something the project needs, and that it conforms to all project styleguides
and standards. They probably will have questions, feedback, and suggestions
about your contribution. Collaborate with them to get your contribution into
an acceptable state. When you apply their feedback, use atomic commits to
your feature branch. As you push these changes, they automatically appear
on the pull request. This means you won’t have to do anything special once
you’ve applied all of the feedback and suggestions. Your contribution can
simply be merged into the origin repository.

Congratulations! You’ve just made your first contribution! High fives all around!

Submit Work in Progress for Early Feedback
The process I just described implies that you should wait until your contribu-
tion is complete before sending a pull request to the project, but that’s not
always the case. Sometimes it can be very helpful to send a work in progress
pull request while you’re still creating your contribution. Just put WIP: at the
start of your request title to let the reviewer know that you haven’t finished
the work quite yet. Also mention in the description that this is a work in
progress and include any questions you have.

Why would you submit a pull request before your work is complete? For
starters, doing so allows you to receive feedback early in the creation process.
This can help you avoid going down some dark, thorny paths. Also, higher
quality contributions come from receiving early feedback. The earlier and
more often you receive feedback, the more likely it is that your contribution
will be of a high quality. Finally, sending a work in progress pull request
allows the project to see that someone is working on something, so they won’t
be surprised when a contribution appears in their pull request queue.

An example of a work in progress pull request:

TITLE:
WIP: Testing new section ordering

DESCRIPTION:
I've re-ordered the sections of this chapter in hopes
they'll flow better. WIP PR so Brian can have a look
and let me know what he thinks before I go much further
with the writing.

For issue #40

Chapter 5. Make a Contribution • 68

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

A Note on Feedback
This is a good time to pause and talk about feedback.

Not to put it too lightly, but feedback is great. Without feedback we keep making
the same mistakes. Without feedback we can’t learn and grow and evolve. It’s
one of the keys that makes free and open source collaboration work.

Unfortunately, most of us have a very hard time receiving feedback, let alone
accepting it. We identify too closely with our contribution, such that criticisms
of it—no matter how valid—are taken personally and put us on the defensive.

It doesn’t help that most of us also have a hard time giving feedback, often
delivering criticisms without empathy or in ways that are directed more at
the person than at their contribution.

Both receiving and giving feedback are skills that can be learned and honed
through practice. As you enter into this world of free and open source contri-
butions, I encourage you to remember these tips:

• You are not your contribution. Even if the person providing the feedback
is unskilled at it, and their criticisms come across as personally directed,
try not to take their comments in that way. Try to focus on the aspects
of their feedback that relate directly to your contribution, then guide the
feedback conversation toward these elements.

• It’s not personal. Problems found with your contribution are not problems
found with you. You’ve put a lot of time and effort into that contribution,
so naturally you feel a bit attached to it and that’s OK. It’s right to feel
pride in what you’ve created and accomplished. But it’s better to recognize
that there’s always a way to improve your contribution. Collaborate with
those providing feedback to help evolve the contribution, the project, your
knowledge, and your skills.

• Feedback is a gift. When people provide feedback on your contribution,
they are freely sharing their knowledge and experience with you. You can
use this feedback to grow into a more skilled contributor, then one day
pay that gift forward as you provide feedback to others. This is part of the
beneficial cycle that allows free and open source to grow.

• Feedback and questions help make you better at what you do. That’s
because feedback and questions help you see things you never have before
and expand your mind and experiences in ways you never anticipated.
None of us are perfect. None of us are all knowing. All of us have been in
your position before: feeling excited at the newness but more than a little

report erratum • discuss

Review, Revise, Collaborate • 69

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

lost in it as well. It’s OK. Ask questions. Ask for feedback. It’s the only
way not to feel lost, and we all want to help you.

• If you get angry at some feedback, step away for a bit to cool off before
responding. It happens: a piece of feedback will get under your skin. Per-
haps it was the way it was phrased. Maybe it’s dismissing an implemen-
tation about which you have very strong opinions. Or maybe the person
who gave the feedback is just an indelicate chowderhead. Like I said: it
happens. Just because you’re angry does not mean you have to react
immediately. Replying in the heat of the moment rarely ends well for
anyone involved. Take some time to cool off before responding. Go for a
walk. Play with your pets or your kids. Spend some time on a hobby or
other project. Fire up a good movie or video game. Whatever it takes, give
yourself some space from the offending comment. Once you’ve had the
time to cool off and think it over some more, then you can respond rather
than react.

• Always Assume Good Intent. Above all, always assume good intent with
all feedback. No matter how poorly a piece of feedback may be delivered,
the person providing it is still giving you that gift of their knowledge and
experience. They’re not (usually) doing it to show off; they want the best
for the project, for the contribution, and for you. Respect that and them
and help them help you provide the best contribution you can. They mean
well. Do you?

Tidy Up
Now that the project merged your contribution, you no longer need that feature
branch that you created. It won’t hurt anything if you leave it lying around,
but it doesn’t take long for these branches to build up and make a lot of
clutter. Deleting it right after your pull request is accepted not only tidies up
your testing environment, but it also makes it easier to locate the branches
you need later and reduces the chance that you’ll accidentally work on this
now-dead branch. Removing a branch is quite easy from the command line.
Here’s an example where I removed a branch from my book repository:

Pliny:Book brasseur$ git branch -d makeacontribution
Deleted branch makeacontribution (was 74da8bc).

Note: This was a local branch. It’s also possible to push a branch to the remote
origin repository. An example of a command to delete a remote branch:

Chapter 5. Make a Contribution • 70

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Pliny:Book brasseur$ git push origin --delete makeacontribution

Check the documentation for git for further instructions on branch use.20

Special Considerations for Windows-based Contributors
Is Microsoft Windows your jam? If so, you should know that you’ll unfortu-
nately have a much harder time contributing to most free and open source
projects. Due to a couple of decades of Microsoft fear-mongering against open
source, the majority of projects evolved such that they don’t support Windows
at all, not for building, contributing, nor using. While Microsoft has realized
the error of its ways and embraced free and open source software, the FOSS
legacy of not supporting Windows will take a lot longer to fade away. As you
look at free and open source software projects, you’ll find that most of them
assume you’re using a computer running Linux, one of the BSDs, or macOS.
It’s rare that a project has documented support for Windows and its users.

As a Windows user, you’ll likely hit one or more of these common problems
when you try to contribute:

• Installation and other scripts are written for shell/bash only.

• Path separators in scripts or the software itself assume Linux/BSD/
macOS.

• Differences in the case sensitivities of file names (Linux: case-sensitive;
Windows: case-insensitive). This is particularly a problem when using git.

• Windows defaults to a shorter maximum path length than Linux.

• Windows is rarely or poorly supported as a build platform.

• In general, the Windows development tooling is much different from Linux,
the BSDs, or macOS.

• Merely being a Windows user or creating on Windows is seen as an impo-
sition to the project.

With effort, you can overcome nearly all of these problems. Thankfully,
Microsoft itself has done a lot of work lately specifically to support Windows
users who wish to contribute to free and open source projects. Some of the
solutions you may need are:

20. https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

report erratum • discuss

Special Considerations for Windows-based Contributors • 71

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• Use a cross-platform development tool such as Visual Studio Code.21

• Leverage the new tools available in the Windows Subsystem for Linux,22

(WSL).

• Make sure you are using the latest Microsoft build tooling, which is
c99/c++14 compliant.

• Use a virtual machine of a Linux or BSD variant.

• Use a container image of a Linux or BSD variant.

These things will help a lot with the technical hurdles to contributing, but
what about the social? What if you come across one of those projects where
merely being a Windows user makes you a second-class citizen? If all you
have is Windows, and you meet resistance for your Windows-based contribu-
tions of any sort, there may not be much you can do. Those project maintain-
ers have an operating system prejudice. You can try your best to convince
them that your Windows-based contribution is a valuable addition to the
project, but you may not be successful. Even if you are, you’re unlikely to
root out the technical prejudice ingrained in the project. Rather than deplete
yourself by fighting a losing battle, consider thanking the project maintainers
for their time and then finding a more welcoming and open-minded project
and community.

There’s More to Contributing Than Just Code
Choosing your contribution, triaging issues, creating and testing your work,
submitting pull requests… Now you know exactly what to expect when you
submit your first contribution to a free and open source project. Of course
the details will vary a bit, but the overall picture will probably look a lot like
what you’ve just read. It may seem like a lot, and you’re right: it really is.
Despite that, I know you’ll get the hang of it. Your contributions may still
take a lot of time—some contributions can be quite complex—but the process
itself will become smooth. As with all other skills, all you need is practice.

While everyone who wants to participate in FOSS should be familiar with the
contribution process in this chapter, it doesn’t apply to all of the different
types of contributions. What if, for example, you want to contribute but aren’t
a programmer? What types of contributions can a person make if they don’t
(or don’t want to) code? The answer is: plenty, and the next chapter will detail
a few of them.

21. https://code.visualstudio.com
22. https://blogs.msdn.microsoft.com/wsl/

Chapter 5. Make a Contribution • 72

report erratum • discuss

https://code.visualstudio.com
https://blogs.msdn.microsoft.com/wsl/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 6

Make a Difference Without Making
a Pull Request

When most people think of contributing to free and open source software
projects, they usually think of the sort of thing we covered in the prior chapter:
changing files to fix bugs or add features. These changes are then committed
to the repository that holds the project’s files. While this type of contribution
certainly holds the greatest mindshare, it’s far from the only way you can
contribute to FOSS projects. It may not even be the most common type of
contribution.

Some folks might tell you that programming or committing files is required
for contributing to free and open source software projects, but you’re smart
enough to know that can’t possibly be the case. A successful project requires
many more types of contributions than writing code and documentation,
designing user interfaces, providing translations, or any other type of contri-
bution that requires committing files to the repository. All types of contribu-
tions are vital for the healthy growth and operation of a FOSS project and its
community. Without help on non-committing contributions, the project would
drown in administrative tasks, lack product direction, and be an unwelcoming
space for community members. Those who supply non-commit contributions
are the unsung heroes of the free and open source software world. If you’re
hoping to provide this type of contribution: Thank you! We in FOSS may not
say it often enough, but we’re grateful you’re here.

So, what are these contributions that you can make without ever having to
commit a file to the repository or to version control? I’m so glad you asked!
There are a lot of different answers, but three of the most common are contri-
bution review, contribution testing, and issue triage.

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Review Contributions
Reviewing contributions is one way to contribute without committing a single
file to version control, but it likely will require you to use version control to
retrieve and view the contributions up for review.

We’ll go through code reviews later in this chapter as a separate topic, but
all types of contributions can benefit from another set of eyes on them.
Reviewing a contribution helps locate defects early on in the process, when
it’s still relatively easy to fix them. It also helps to confirm that the work that
was committed is actually the work that needs to be done. Very often either
the issue is vague in describing the requirements or the contributor misun-
derstands them somehow. Catching these problems during review helps to
get development back on track sooner.

Don’t feel you have to be an expert in the contribution type to review the
contribution. A less experienced designer can spot oversights in the work of
someone who’s been doing this for years. Everyone can read documentation
to determine whether it flows well and provides answers users will need in a
manner that makes sense. It doesn’t take years of experience to test a contri-
bution to make sure the feature or bug works as expected. Even new or
amateur programmers can read a code contribution and ask why it was
written a certain way. Never forget that asking questions during a review is
a valuable way of revealing potential assumptions in any type of contribution.

For example, if you’re reviewing API documentation, you might notice that
the sample project referenced by some newly added sections is different from
elsewhere in the documentation. It’s possible that the other sample project
didn’t provide the functionality required to demonstrate what the author
needed, but it’s also possible that the author just didn’t realize that the doc-
umentation was using a single sample project to help guide the reader through
the process. Adding a comment to ask, “The rest of the doc uses a different
sample project than this section. Is this intentional?” can help lead to clarifi-
cations in the documentation as well as in your understanding of it.

Reviews also are a wonderful way to learn a great deal about the project, its
architecture, and its priorities. By reviewing the work of someone more
experienced than you, you can see firsthand how they apply the best practices
and knowledge they’ve gained through years of experience. Think of it as
passive mentoring: you’re learning from someone without them having to be
there at all.

Chapter 6. Make a Difference Without Making a Pull Request • 74

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Aside from adding to your knowledge, reviewing is also a very important con-
tribution to any project. While the final say in whether a contribution is
accepted into the project repository typically lies in the hands of the core
contributors, they often don’t have the time to do the preliminary review and
feedback of every single contribution. Having other (even new) contributors
chip in on review can save core contributors a great deal of time. The first pass
of reviewing is likely to catch a lot of the more obvious problems. If someone
other than a core contributor can do that work, it frees the cores up for the
more advanced reviews.

Please note, though: not all projects welcome contribution reviews from less
experienced contributors. Before you invest a lot of time reviewing a contribu-
tion, check with the project community to verify that your help is needed.

No matter what type of contribution you review, do it in small chunks rather
than in one big piece if at all possible. Atomic commits help with this, partic-
ularly for code or documentation contributions. Reviewing in the smaller
segments provided by each atomic commit helps you to focus a little better
and to take your time with the review rather than skimming it and moving
on. Rushing through a contribution review misses not only potential bugs,
but also the entire point of review: helping to ensure a quality contribution.

That doesn’t mean that a contribution review should take forever though. If
you’re struggling with reviewing a contribution, and it feels like it’s taking you
more time than you think that type of review should, it’s a sign that something
might not be right. It could be that the contribution is more advanced than
you’re currently prepared to handle, or perhaps that you’re getting mired in
the minutiae like checking for consistency in variable naming schemes rather
than whether the code makes sense. Or it could be that the contribution you’re
reviewing is unnecessarily complex and could use some refactoring to make it
easier to understand and maintain in the future. Recognize when you might
be spending too much time on a review and pause to ask another contributor
whether they could have a look and give you a second opinion or help you
understand what you’re seeing.

As you’re reviewing a contribution, you might feel tempted to point out some
stylistic things that just aren’t the way you would have done stuff. Here’s how
you handle those stylistic things: DON’T. If the contribution uses styles that
violate the project’s official styleguide, then definitely make a note of those,
but otherwise try to stay away from stylistic comments. Your personal
stylistic preferences don’t matter here unless it’s your contribution or your
project, and even then, your preferences take a back seat to the styleguide,
so stick to the styleguide for all stylistic review comments.

report erratum • discuss

Review Contributions • 75

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

About Providing Feedback
We talked about receiving feedback in Make a Contribution. This is where we
get to talk about the other side of that same coin: providing feedback.

If I tell you that something you did in your contribution is “stupid” or “naive,”
how would you feel? You’d probably be angry, hurt, or both, and rightfully
so. These are mean-spirited words that when directed at people, can cut like
knives. Words matter, and they matter a great deal. Therefore, put as much
thought into the words you use when leaving feedback for a contribution as
you do into any other form of contribution you give to the project. As you
compose your feedback, think to yourself, “How would I feel if someone said
this to me? Is there some way someone might take this another way, a less
helpful way?” If the answer to that last question has even the chance of being
a yes, backtrack and rewrite your feedback. It’s better to spend a little time
rewriting now than to spend a lot of time apologizing later.

When someone does make a mistake that seems like it should have been
obvious, remember that we all have different experiences and knowledge.
What’s obvious to you may not be to someone else. And, if you recall, there
once was a time when that thing was not obvious to you. We all make mis-
takes. We all typo. We all forget commas, semicolons, and closing brackets.
Save yourself a lot of time and effort: point out the mistake, but leave out the
judgement. Stick to the facts. After all, if the mistake is that obvious, then
no critique will be necessary, right?

Remember to review only the contribution and not the person who contributed
it. That is to say, point out, “the contribution could be more efficient here in
this way…” rather than, “you did this inefficiently.” The latter is ad hominem
feedback. Ad hominem is a Latin phrase meaning “to the person,” which is
where your feedback is being directed: to the person who contributed it rather
than to the contribution itself. By providing feedback on the person you make
that feedback personal, and the contributor is justified in taking it personally.
Be very careful when crafting your feedback to make sure you’re addressing
only the contents of the contribution and not accidentally criticizing the person
who submitted it for review.

Not all of your feedback has to (or should) be critical. As you review the con-
tribution and you see something that you like, provide feedback on that as
well. Several academic studies—including an important one by Baumeister,
Braslavsky, Finkenauer, and Vohs [BBFV01]—show that humans focus more
on negative feedback than positive. When your feedback is solely negative, it
can be very disheartening for contributors. Including positive reinforcement

Chapter 6. Make a Difference Without Making a Pull Request • 76

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

and feedback is very motivating to people and helps them feel good about
their contribution and the time they spent on it, which all adds up to them
feeling more inclined to provide another contribution in the future. It doesn’t
have to be some gushing paragraph of flowery praise, but a quick, “Huh,
that’s a really smart way to handle that. It makes everything flow really well,”
can go a long way toward encouraging someone to keep contributing.

Praise is one less common but valuable type of review feedback. Questions
are another. If you’re looking at a contribution and can’t tell why the submitter
did things the way they did, or if the contribution just doesn’t make a lot of
sense to you, asking for more information acts as feedback. It tells the sub-
mitter that something they contributed isn’t as clear as they thought and
that it may need some work to make the approach more obvious, or if it’s a
code contribution, a comment to explain what’s going on and why. A simple,
“I don’t understand this part here. Could you please tell me what it’s doing
and why you chose that way?” can start a dialogue that leads to a contribution
that’s much easier for future contributors to understand and maintain.

Using questions as a form of feedback implies that there will be answers to
those questions…or perhaps other questions in response. Whether your
feedback is in question or statement format, you should expect to generate
some sort of dialogue throughout the process. An alternative is to see your
feedback as incontrovertible, your word as law. While this is definitely one
approach you can take, it’s rarely a good one. When providing feedback on a
contribution, it’s best to collaborate rather than dictate. As these dialogues
arise, it’s important to embrace them as opportunities for conversation and
learning on both sides. Be willing to discuss their approach and your feedback,
and to take the time to understand their perspective.

The bottom line is: Don’t be a jerk. If you’re not sure whether the feedback
you’re planning to leave makes you sound like a jerk, pause to have someone
else review it before you click Send. Have empathy for the person at the
receiving end of that feedback. While the maxim is thousands of years old, it
still rings true today that you should try to do unto others as you would have
them do unto you. Put yourself in their shoes and aim to be helpful and
supportive rather than simply being right.

Code Review
Even new programmers can provide a lot of value with their code reviews.
You don’t have to be a Rockstar Ninja 10x Unicorn Diva programmer with
years and years of experience to have valuable insights. In fact, you don’t
even have to be a programmer at all. You just have to be knowledgable enough

report erratum • discuss

Review Contributions • 77

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to spot patterns. While you won’t be able to do a complete review without
programming knowledge, you may still spot things that could use some work
or clarification.

If you’re not a Rockstar Ninja 10x Unicorn Diva programmer, not only is your
code review feedback still valuable, but you can also learn a great deal in the
process: Code layout, programming style, domain knowledge, best practices,
neat little programming tricks you’d not have seen otherwise, and sometimes
antipatterns (or “how not to do things”). So don’t let the fact that you’re
unfamiliar with the code, the project, or the language hold you back from
reviewing code contributions. Give it a go and see what there is to learn and
discover.

“But,” you may wail, “how is that even possible?! I don’t know how to program
very well! How could I ever do anything valuable on a code review?” Calm
yourself, friend. You have a lot to offer here. Earlier I mentioned pattern-
spotting, and that’s a good place to start. If the contribution you’re reviewing
looks a lot more complicated than everything around it, you’ve just spotted
a potential problem. Does the code use different indentations or variable
naming than elsewhere in the file? That’s another potential problem. Is the
code contribution really long, when everything else in the file is much shorter?
That could be a sign something is wrong. You don’t have to be that Rockstar
Ninja 10x Unicorn Diva programmer to spot these things; you only have to
be familiar with programming and—most importantly—you only have to be
looking at the code.

Do be careful as you start code review for a project with which you’re not very
familiar. Some projects would rather not receive reviews from people who
aren’t yet skilled in the code in question, as those reviews often can contain
errors or inconsistencies with how the project typically operates. Inexperienced
reviewers also can confuse inexperienced contributors, who might not know
that the person providing feedback to them is not very familiar with the code
or the project. Always check the CONTRIBUTING file or ask a core contributor
before you start reviewing code contributions, rather than risk stepping on
toes or providing feedback when none is wanted.

What to Look for in a Code Review
If you do decide to review code contributions, what kind of things should you
look for? The answer, as you probably expect, is “it depends on the project.”
That said, there are several things you can keep in mind regardless of the
project, the code, or the programming language being used. While it may
seem like these tips are only for people earlier in their programming career,

Chapter 6. Make a Difference Without Making a Pull Request • 78

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

nothing could be further from the truth. What follows are best practices for
code reviews by people of any experience level. Whether you’re a neophyte or
a master, these tips can help you spot potential problems in any code review.

• Does the code even pass the build? Does the project use continuous inte-
gration/continuous deployment (CI/CD) or otherwise have its test suite
run automatically? If the test suite doesn’t pass after the code contribu-
tion… You’re a smart person. I don’t need to tell you that this is a big red
flag that something may be wrong with that code. Politely ask the contrib-
utor to study the build/test errors and correct them before you continue
to invest your time in reviewing the contribution.

• Is the code even readable? You don’t have to be an expert in a program-
ming language to tell whether the code is readable. Strange loops, short
and vague variable and function names, inconsistent use of whitespace
or brackets, large blocks of commented out code… Many things could
make a piece of code difficult to read, but the end result is the same:
unreadable code is unmaintainable code.

• Do one thing and do it well. It’s best practice that each class, method, or
function in a program do one thing and do it well. This reduces the com-
plexity of any one piece of code, making it shorter and much easier to
understand, maintain, and test. Be on the lookout for any piece of code
that’s overloaded and trying to do too many things. A good clue for this
can be that the code has a complicated or long conditional statement.

• The DRY Principle: Don’t Repeat Yourself. Is there any code that occurs
more than once, even if it’s doing similar but not entirely identical things?
If so, it should be refactored out into a separate class, method, or function.
Repeated code means changes have to be applied in multiple places,
leading to a higher chance of error. Plus, refactoring it out can make it
easier to test.

• How is the error handling? Are errors explicitly handled? Are they even
handled at all? Do errors include descriptive messages or are they vague,
“an error has occurred”-type things? Proper error handling doesn’t only
make debugging a lot easier; it improves the experience for everyone who
uses the program.

• Is the code efficient? More advanced programmers will have an easier time
of determining this for a new piece of code, but even new programmers
can have a feeling for whether code appears unwieldy, or whether it looks
like it’s working harder than it should to accomplish what it does. If your

report erratum • discuss

Review Contributions • 79

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

instinct tells you that the code may not be efficient, it may be worth flag-
ging for more explanation.

• How is the test coverage? Does the code come with any tests? Both unit
and integration? If the code was covered by existing tests, were they
updated to make sure they’re still valid? If it’s new code or there were no
tests before, did the author add any? If there are tests, don’t forget to
review those as well as the rest of the code.

• Does the code actually do what it’s supposed to? If the code is intended
to add a feature or fix a bug, compare the code against the issue it’s
supposed to close to make sure the code does what’s expected of it. It’s
very easy to misunderstand expected functionality, forget to include a
piece, or include more than is expected (more is not always better).

• Is the code documented? Code comments, installation instructions, user
docs, API docs, troubleshooting docs… There are so many different ways
a piece of code could or should be documented. Because documentation
is so difficult, yet so important, it’s usually easier to do it piecemeal as
each new feature or bug fix is added to the repository. If the code you’re
reviewing doesn’t come with changes to the documentation, you may want
to suggest the author add some to help avoid the technical and usability
debt that can accrue by skipping documentation.

As you can see, while knowing about code is very helpful when doing code
review, there are a lot of things you can see and provide feedback on even if
you’re just getting started with programming. If the project is supportive of
it, even less experienced programmers can provide a lot of valuable insights
while also learning more about the project code and how it all fits together.

Provide Testing
Testing is a great way to contribute to a project without writing a single line
of code. Providing a bit of testing kicks off a beneficial cycle. The more testing
a contribution receives, the more problems are spotted earlier in the process.
The more problems are spotted, the higher the quality and therefore also the
higher the reputation of the project. Projects with great reputations attract
more users and from there, also more contributors, and the testing and
quality cycle begins all over again.

When I say “testing,” I don’t mean writing unit or integration tests (though those
are certainly welcome, too). As I mentioned earlier, all types of contributions
can benefit from having another set of eyes on them, and testing provides those
eyes. Documentation, design, interfaces, bugs, features, usability, accessibility:

Chapter 6. Make a Difference Without Making a Pull Request • 80

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

These things and many more need review and testing to make sure they work
as expected and provide value to the end user.

Test the Docs
One project element that’s relatively easy to test but even easier to overlook
is the documentation. So often we fire off a little piece of docs with our contri-
butions but don’t take the time to confirm that the docs are accurate, make
sense, flow well, or even describe what we think they’re describing. More often
we don’t write docs at all, so the people who follow after us are left scratching
their heads wondering whether a feature exists, and if it does, how to use it.
Documentation testing includes looking for things like:

• Does the documentation exist at all? If it doesn’t, should it? (Hint: the
answer is probably yes.)

• Is it readable? Or does the grammar, spelling, and organization need some
work?

• Is it consistent, or does the style and organization change from author to
author?

• Relatedly, if there is a documentation style guide, does the documentation
follow it?

• Is it useful for the target audience? Will it allow them to accomplish their
goals?

• Is it comprehensive? Does it cover all of the questions a reader may have?

These items are about the content of the documentation, but the structure
is important as well. For instance, do all of the links work and do they go to
the sites or other documents that they should? Should there be more or
fewer links? If there are images, do they display well? How does the documen-
tation look on different devices or in different browsers? Each one of these
can have a big effect on the effectiveness and the usability of the project.

Test the Interfaces
Documentation is only one aspect of the usability of a project. As you can
imagine, several others also need attention and testing if the project wants
to be easy for people to use. Interfaces—command line, graphical, and pro-
gramming—all need people to review them and make sure they’re consistent
and logical. All interface actions should include user feedback so people know
that something is happening. If it’s a graphical interface, the purpose of all
the elements should be clear, even if that requires explanatory text in tooltips.

report erratum • discuss

Provide Testing • 81

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Whatever the interface, it should meet the user where they are, taking advan-
tage of common interface idioms rather than creating novel, unexpected, and
undocumented ways to interact with the software. By testing for and revealing
usability issues, you can help the project become more friendly for new people
to try, increasing its user (and potential contributor) base.

Test the Accessibility
A specialized and unfortunately easily overlooked aspect of usability is the
accessibility of the project, that is, ensuring it’s designed and programmed
in such a way as to provide access to as many different people as possible,
including those with disabilities. While a bit harder to test on the command
line side of things, there are several standard accessibility tests that you can
perform on graphical interfaces:

• All images have descriptive alt attributes.

• All form elements have associated and descriptive label elements.

• When you turn the contrast on your monitor all the way down (a very rough
simulation of color blindness), the interface is still readable and usable.

• When you increase the font size, the interface is still readable and usable.

There are many other interface elements you can test for accessibility. The
WebAIM1 project maintains resources and a handy list2 to help you learn
more about web accessibility.

If you have experience or an interest in information security, you’ll find that
your skills are in demand in FOSS projects. More experienced security spe-
cialists will be able to review project code to determine whether it leaks or
exposes sensitive information or whether it performs adequate validation on
all inputs. Less experienced security enthusiasts can be very helpful by per-
forming manual input validation tests, or even automated fuzz testing, to test
for vulnerabilities in the project’s interfaces.

While these are the most common types of testing you may come across in
FOSS projects, it’s still not a complete list. As you navigate, contribute to,
and participate in the community for your free and open source project, be
on the lookout for other ways where you could add another pair of eyes to
help ensure the quality of the project and a good experience for those who
use and contribute to it.

1. https://webaim.org
2. https://webaim.org/resources/evalquickref/

Chapter 6. Make a Difference Without Making a Pull Request • 82

report erratum • discuss

https://webaim.org
https://webaim.org/resources/evalquickref/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Triage Issues
We talked a bit about issue triage back in Make a Contribution, but that was
in the context of an issue or feature you wanted to work on yourself. While
this is useful, you don’t have to be the one to fix the bug to be the one to test
whether it’s actually a problem. Bugs and feature requests come in all the
time for FOSS projects, and it can be helpful to have people reviewing them
as they come in, exposing the signal amidst the issue noise. While some
projects prefer that more experienced contributors triage issues, others are
thrilled to have less experienced people lend a hand as the first responders
to any new issues that arrive.

Before you start triaging issues, take a moment to confirm not only that the
project welcomes this type of contribution from people of your skill level
(whatever that may be) but also how they prefer triaging be handled. One of
the reasons projects avoid having less experienced people triage their issues
is that those folks aren’t as familiar with the project’s issue tags, severities,
priorities, or workflow. For instance, in some projects issue triage includes
defining each issue’s severity and its priority on the roadmap. Less experienced
contributors often lack the big picture view necessary to make these severity
and priority determinations, so some projects prefer that only very experienced
contributors perform triage. Mis-tagged issues can cause a delay in fixing
issues and require a lot of time to clean up, so some projects avoid this by
limiting the people who may triage and tag issues. Check to see whether your
project is one of those before you spend a lot of time trying to duplicate a
newly reported bug. As always, if a project has guidelines or documentation
for bug triage, read and obey these guidelines.

While you probably won’t need to commit any changes to the repository to
triage issues as they come in, you will almost assuredly need to have a test-
ing/development environment set up, if not also need to be running a local
copy of the project. This can take a fair amount of time to prepare, and will
require maintenance to keep up to date. If you’re already contributing changes
to the repository, this setup and maintenance time may not be that big of a
deal. If you’re not, be prepared to invest time in this. Triaging and testing
issues against an out-of-date setup or install only wastes your time.

Don’t Forget to Read First
The first step of any issue triage is to read through the issue. Yes, I know:
groundbreaking revelation, right? In all seriousness, though, you’d be sur-
prised at how many people dive in attempting to duplicate an issue before

report erratum • discuss

Triage Issues • 83

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

they fully understand what it is that the issue is trying to describe. This can
lead to a lot of frustration and wasted time on all sides, but is relatively easy
to avoid simply by taking a “read first, understand second, act third” approach.

As you’re reading through the issue, if it appears to be reporting or is at all
concerned with a matter of privacy or security, escalate it immediately.
Security should never be taken lightly, and it’s always far better to be safe
rather than sorry where information security (infosec) is involved. Even if
you’re a seasoned infosec specialist, always notify the core project developers
that there may be a security problem. This is not the sort of thing you want
to surprise people with at the last moment. Notify the team and allow them
to prepare to fix the issue, should it prove to be a legitimate concern.

Tips for Triage
While the actual steps for triage will vary from bug to bug and issue to issue,
the following guidelines can apply to nearly every issue you look at.

• Does the issue even make sense? Be it a difference in perspective, under-
standing, or language, sometimes an issue will arrive and you simply
can’t comprehend what the reporter is trying to say. That’s OK; commu-
nication problems happen. Reply back asking for a clarification. It can
help to guide the conversation with a statment such as, “I think you
mean… Do I have that right?”

• Do you understand the issue? Can you tell what the problem is, or is more
information required? If the latter, politely request it from the person who
filed the issue.

• Is it formatted correctly? Many projects have an issue template or provide
issue-creation guidance in their CONTRIBUTING file. If your project does this,
check to make sure the person who opened the issue followed the template
or guidance. If they haven’t, politely direct them to the instructions and
ask for corrections to the issue they filed.

• Is the issue for a platform the project supports? Some projects don’t work
(or aren’t supported) on all platforms. If the person who wrote the issue
doesn’t mention platform, politely ask for it. If the platform is mentioned
but is one the project doesn’t support, close the issue with a polite note
explaining the reason.

• Is the reporter using the latest version of the project? If the reporter doesn’t
mention the version of the project they’re using, politely reply back and
ask for this information. It can be difficult to troubleshoot issues that are

Chapter 6. Make a Difference Without Making a Pull Request • 84

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

made against older versions of the project. It’s also possible that the
reporter’s issue is resolved in more recent versions. If the project doesn’t
explicitly state that it supports older versions, politely ask the issue
reporter to upgrate to the latest version of the project and try to duplicate
what they reported.

• Is the issue a duplicate? Search the issue tracker (for both open and closed
issues) to see whether this issue has been reported before. If it has,
politely close the issue as a duplicate. Some projects track duplicates
through tagging and/or cross-referencing, so be sure to follow the correct
procedure for your project.

• What category is the issue? Is it a bug? A support request? A feature
request? Noise/spam? Tag the issue accordingly to make it easier to find
in the future (or close the issue if it’s just spam).

• Are there steps to duplicate the problem? If the issue is reporting a bug or a
problem with the project, has the reporter included steps for how to repro-
duce the problem? If not, politely reply asking them to provide these steps.

• Can you reproduce the problem? If the issue is reporting a problem, can
you reproduce it? If so, add a note to the issue including the steps that
you used to reproduce it and anything new you learned in the process. If
you can’t reproduce the problem, it may be that you don’t know enough
to duplicate it. That’s perfectly OK. Make a note that you can’t reproduce
the problem, then either politely ask someone for help or move on to
triaging another issue.

While these tips are for triaging issues you don’t intend to work on, they apply
just as well to those you do. So if during your triage you find that you’d like
to fix an issue that you’re looking at, don’t hesitate to follow your project’s
steps and guidelines for contribution.

Volunteer for the Less Interesting Things
Every project has tedious tasks that need to be done but no one really enjoys
doing: data entry, data cleanup, small repetitive tasks, things like that. These
are activities that don’t seem like a big deal but add up quickly…in good ways
when the activities are completed, in bad ways when they’re neglected.

Tasks like these are excellent for people who are new to a FOSS project. As
a new contributor, taking on this sort of task enables you to learn a lot about
how the project is organized and operates, which can help when you’re making
other types of contributions. More importantly, tasks like these make a big

report erratum • discuss

Volunteer for the Less Interesting Things • 85

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

difference to the community. They may be small and less interesting, but
they’re valuable. When a newer contributor takes on these tasks, it frees up
experienced contributors to tackle the more advanced duties of maintaining
a free and open source project. Volunteering for the grunt work demonstrates
that you, as a new contributor, are willing to commit to the community as a
whole, rather than simply to the project, which does wonders for your repu-
tation within that community. If you’re willing to help in this way, people will
be much more willing to help you in return later.

This sort of less interesting task isn’t usually written up in the issue tracker,
so how can you, enterprising new contributor, locate them? There are two
ways to go about this: the passive way and the active way. For the passive
way, you simply pay a lot of attention to the various communication media
for the project (usually real-time chat and mailing list). As you see a less
interesting task mentioned, raise your hand and volunteer to help with it.
For the active way, you don’t wait to see a less interesting task mentioned
before raising your hand to volunteer. Instead, ask people directly whether
there’s anything with which you could help. A quick question of, “Hey, I’m
new here and would love to help out with some of the tedious administrative
things while I learn. Where should I start?” can do wonders for turning up
the less interesting tasks that the more experienced contributors would rather
off-load to someone else.

There Are So Many Options
By now you’ve probably figured out that, yes, it’s not only possible to con-
tribute to a free and open source project without ever having to write a line
of code or submitting a single file to version control, but often these types of
contributions can also be some of the most important. Plenty of people commit
to the community without a commit to version control, and their contributions
are priceless. The types of contributions in this chapter aren’t a complete list,
of course, and naturally each project will have different requirements and
needs—for instance, project management, translation, marketing, advocacy,
and customer support are some of the many ways to contribute to a FOSS
project without committing a single file to the repository. Always be on the
lookout for the ways you might lend a hand to the project, and you’ll be sur-
prised at the diverse ways you can help and join the community.

Chapter 6. Make a Difference Without Making a Pull Request • 86

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 7

Interact with the Community
You’ve overcome all the roadblocks in your way, you’ve followed all instructions
to the letter, and you’ve finally submitted your first contribution.

Congratulations!

In free and open source software, the only feeling more amazing than making
your first contribution is having it accepted as part of the project. When and
how does that happen? You probably won’t be surprised to hear the answer
is, “It Depends.” It’ll depend on the project itself, your contribution, whether
anyone is available to review your contribution, and any number of other
vague and mysterious variables.

After Your First Contribution
Once you submit your contribution, you must practice this little thing we like
to call Patience. There are any number of reasons that it might take a while
for the project members to get around to reviewing your contribution. Some-
times you’ll find a project that has a policy to try to review any contribution
within a certain amount of time, but few projects have the available people
power to make a promise like that. Your contribution will have to wait in line
with all the rest of them, until someone is available to have a look at it. If
someone hasn’t reviewed your contribution in a couple of weeks, feel free to
drop a gentle question into the project community’s preferred communication
route asking when you can expect someone to review it. And while you should
not need a reminder, always be polite.

After someone has the chance to review your contribution, they will undoubt-
edly have some feedback for you. I covered feedback in Make a Contribution,
so I won’t tread that ground again. However, it’s worth reiterating that if you
receive feedback you don’t understand, you should ask for clarification rather

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

than simply ignore it. Someone took the time to review your contribution and
provide feedback, but that doesn’t necessarily mean that the person is good
at writing feedback. They may assume you have knowledge or experience you
don’t have, or it could be that their primary language is not the one in which
they wrote the feedback. Asking, “I’m not sure I understand. Do you mean
that I should do this thing instead?” can go a long way in making sure your
contribution is successful.

Sometimes Your Contribution Is Not Accepted
No matter how good and worthwhile you think your contribution is, it’s pos-
sible that the project maintainers will not accept it. Don’t take this personally,
as it’s certainly not intended that way. There are plenty of reasons your con-
tribution may not be accepted:

• You’ve provided something the project simply does not need. You can avoid
this problem by working on only existing bugs or issues, or by writing up
an issue for your idea and discussing it with the project maintainers
before you spend a lot of time crafting your contribution.

• Your contribution is a duplicate of someone else’s. Once in a while, you’ll
have the same great idea as someone else, but they either beat you to it
or provide an implementation that the project maintainers prefer. If you
discuss your contribution idea with the maintainers before diving in, you
usually can learn whether someone else is already working on something
similar. If so, you can collaborate with that person and contribute it
together. You can learn a lot this way.

• Your contribution did not follow project guidelines. Perhaps you didn’t follow
the styleguide, you didn’t submit it in the format desired, or you otherwise
made a mistake with your contribution. This could be a sign of poor project
documentation…or that you simply didn’t read the documentation.

No matter the reason, if the maintainers don’t accept your contribution, you
should ask how you could improve so that your next contribution has a better
chance of being successful. Solicit feedback and take it to heart. That’s the
best way to improve.

What to Do While Waiting for a Review
While you’re waiting for someone to review your contribution, there’s no reason
to sit there idle. Did you learn anything during the contribution process? For
instance, did you overcome a problem during installation, discover a new
error condition, or find that the API documentation wasn’t as clear as you

Chapter 7. Interact with the Community • 88

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

hoped? Documenting those findings is a very valuable contribution, and right
after a contribution, while everything is still fresh in your mind, is the perfect
time to capture that knowledge and contribute it back to the community. Did
you find something during your contribution that you think could work more
smoothly? If you don’t have the time to fix or add the documentation yourself,
write it up in the project’s issue tracker, so there’s a good chance of someone
else adding it to the docs later.

But Usually: It’s Accepted! (Eventually)
Sure, rejection is possible. However, while it may take a few rounds of review
and revision, most of the time, your contribution will be accepted by the
project maintainers. In FOSS jargon, this is called landing your first patch,
and it feels great. Now that it’s accepted though, what do you do next?

The most obvious answer is: start working on your next contribution. Even
if you’re still waiting for your first patch to land, there’s no reason that you
can’t locate and work on another issue for the project. A tried but true
approach to finding a new contribution is to just ask. “While I’m waiting for
my patch to merge, does anyone need help with anything?” is a wonderful
way to signal to the community that you’re not only available to help, but
most importantly are willing to do so. Don’t wait for someone to signal they’d
like a hand; offer one yourself.

I caution you not to work on too many different issues at once if you can help
it, but starting a new one while you’re waiting to close out the first is perfectly
reasonable. Also reasonable is moving on to another project. It’s possible that
the contribution you submitted is the only one you wanted to make. This often
is the case when you’re contributing for a work project and just need to get
this one fix into the FOSS project, so you can keep making progress on your
work project that uses it. There’s nothing wrong with this and no obligation to
stick around in the community. Naturally it’s very nice if you do stick around,
but everyone understands that you have other things going on in your life, so
usually they don’t mind if you make one contribution and then move on.

Once your contribution is accepted—your patch lands—it’s part of the project
and usually is no longer your responsibility. You’re not required to maintain
it if you don’t want or aren’t able; the entire community is now there to help
keep it up to date and healthy. As the person who created it, and therefore,
the domain specialist for that piece, you may naturally be called upon to
answer questions, but it’s rare that anyone expects you to be the sole main-
tainer of that one piece of the project from there on out. You can feel free to
move on to working on something else.

report erratum • discuss

After Your First Contribution • 89

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Get Help
As you’re chipping away at your contribution, you’ll probably hit a few snags
and will need assistance to continue. Sometimes you have the resources
available to help yourself, and nearly every free and open source project
assumes that you’ll try this avenue first before asking someone for assistance.
In the tech industry, this is known as RTFM: Read The F’ing Manual. I’ll leave
it to you to choose which word to use for the F.

RTFM
The manual in question is generally defined as any sort of documentation
that the project makes available. This could be user docs, installation docs,
developer docs, the contributing guide, styleguides, or any number of other
types of documentation. You may find that most documentation in free and
open source projects needs a lot of work to be as useful as you’d like. It takes
a lot of time and effort to develop documentation, so unfortunately, it’s often
overlooked by the project developers. Even if your project of choice is very
sparsely documented, take the time to read the docs that do exist before
asking for assistance. If nothing else, the docs will provide more context so
you can better understand not only the answer you’ll receive, but also how
to ask your question more effectively in the first place.

Another great place to look for information about any problems you have is
the project’s communication archive. If the project has a mailing list, it will
be particularly helpful. Nearly every mailing list archive is both viewable and
searchable online, which makes researching your problem much easier. Often
the hardest part is locating the archives at all. If you subscribed to the mailing
list, you’ll often find a link to the archive in the footer of messages you received.
If you don’t see it there, dig up the confirmation email you received when you
subscribed. That typically includes a link to the interface where you can
maintain your subscription and usually also includes a way to view the list
archives. If the project uses real-time chat (IRC, for instance), it may log and
archive conversations from the chat system. If these logs exist, they will be
either linked in the topic or subject of the chat system or documented some-
where. Searching all of these archives may lead to the answer to your problem.

You can also learn a lot from past contributions to the project. If you have a
local clone of the project’s repository, you can use the version control system
to search the past commits. If the project uses a forge like GitLab, GitHub,
or BitBucket, it can be very easy to search all past commit logs as well as
closed issues (sometimes all at once). These searches can turn up valuable

Chapter 7. Interact with the Community • 90

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

information about previous problems people have faced and point you toward
potential fixes.

How to Ask a Question
If after all of your reading and searching, you still haven’t overcome your
roadblock, don’t hesitate to ask the community for help. Asking, however,
should be done properly. No matter how frustrated you may feel, don’t blurt
out an irritated question in the chatroom or on the mailing list. If you come
across as unfriendly, you can expect to receive very little help. No one wants
to donate their time to help a grump. There are five steps to asking a good
question of a free and open source project community:

1. Verify you’re asking in the appropriate venue. Some projects want you to
ask on the mailing list. Others in the issue tracker. Still others in the
chatroom or by some other mechanism. Make sure to review the CONTRIBUT-
ING file to verify the correct way to ask questions for that project.

2. Drop the attitude. Even if you’ve contributed to other projects before, even
if you’ve been in software development for thirty years, even if you’re Linus
Torvalds1, Larry Wall2, and Tim Berners-Lee3 all rolled into one: Get over
yourself. It’s entirely possible to phrase a question that is confident and
competent yet does not make you sound like an arrogant twit. For
instance, when asking about a programming optimization, rather than
pointing out that you have a PhD in computer science and have been
programming in that language for twelve years (information which is
irrelevant to the suggestion at hand), simply state the problem you’ve
noticed, how the code could be improved, and ask whether anyone would
have a problem with you making the change. Take the time to craft your
question accordingly. Run a draft past a friend just to be sure you don’t
come across as a conceited jerk.

3. Always be polite. Again, no matter how frustrated you may feel, be polite
when asking your question of the community. It’s OK to let your exasperation
come through, as long as you don’t direct it toward the project or the com-
munity. “I’ve read all the docs and the mailing list and tried everything I
could think of, but it still doesn’t work,” is an entirely acceptable statement.
“These docs are useless, the code is a mess, and the error messages are
horrible,” is a statement that—no matter how true it may be—is unlikely to

1. https://en.wikipedia.org/wiki/Linus_Torvalds; The inventor of Linux.
2. https://en.wikipedia.org/wiki/Larry_Wall; The inventor of rn, patch, Perl, and Perl 6.
3. https://en.wikipedia.org/wiki/Tim_Berners-Lee; The inventor of the World Wide Web.

report erratum • discuss

Get Help • 91

https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Larry_Wall
https://en.wikipedia.org/wiki/Tim_Berners-Lee
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

win you any friends. Say please and thank you and make sure that your
words express only the problem and not any directed negativity.

4. Succinctly but clearly state your problem. State what you are trying to
accomplish, what you are experiencing instead, and the full text of any
error messages you see. Be brief, but make sure to include all relevant
details. If you have a log file or stack trace, drop it into a pastebin4 or
similar service, then provide a link to it in your question. It can be helpful
to summarize the steps you took to troubleshoot the problem, as well as
any research you’ve done. This will allow people to suggest new solutions
rather than those you’ve already tried.

5. Be patient. Remember: nearly every member of a free and open source
software community is a volunteer. Each will have their own life and all
of the complexities that accompany it. Give them a few days to reply to
your question before you ping to ask whether anyone saw it. While you’re
waiting, you could help the entire community by documenting anything
you learned in your research while troubleshooting your problem (such
as error messages and what they mean).

General Tips for Participating in Discussions
Across all of the FOSS contribution process, communication is probably where
the most unwritten rules hide. Over the decades, the free and open source
software world has developed a lot of habits and expectations about how to
communicate. Naturally, as with all other aspects of contributing, these habits
and expectations vary from community to community. By now, it probably
won’t surprise you that however much these things vary, there are still some
guidelines that apply to most situations.

We’ll get into guidelines for specific types of communication channels in a
moment, but first, there are some guidelines that apply across all forms of
communication. Practicing these will help your communications be much
more effective.

• Listen and read more than you speak and write: A civil discussion can
quickly turn heated through simple misunderstandings. Often these
misunderstandings come from not taking in all of the information being
presented to us. You may reply having only seen part of the whole picture,
and your reply can spark flames. Take the time to read or listen to the
complete set of information before you reply.

4. https://en.wikipedia.org/wiki/Pastebin

Chapter 7. Interact with the Community • 92

report erratum • discuss

https://en.wikipedia.org/wiki/Pastebin
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• Comprehend, then act rather than react: There’s a difference between lis-
tening and hearing. When reviewing a discussion, pause to make sure
you absorb it. Listen to what the other participants are trying to say; don’t
simply hear their words. If you have a strong emotional reaction, either
positive or negative, try to wait a bit before responding. Think your
response through, including the impact that it may have on the others
in the discussion. Knee-jerk reactions are rarely an effective way to collab-
orate with others.

• Try to understand other perspectives (ask for more information if you don’t):
As you’re working to comprehend the technical aspects of the discussion,
take the time to consider the perspectives of the other people participating.
Free and open source software is populated by brilliant people just like
you, and those people rarely do anything without what they believe is a good
reason (even if you don’t agree with it). If you don’t understand the perspec-
tive or reason for a suggestion, ask. A simple, “I think you’re suggesting
this thing, but I’m still not clear on your reasoning. Could you please give
me more information?” can avoid miscommunication and flaring tempers.

• It’s not a competition: No one is keeping score in these discussions. There
is no race to be the first one to have a suggestion accepted. A dialogue is
not a competition, and there’s no reason to treat it as one. If you’re usu-
ally a very competitive type of person, keep that in mind while participating
in the discussion and be very aware of your responses. Who are you trying
to benefit with them? Are you working for the good of the project, or are
you trying to “win” the discussion? Be honest with yourself, and try to
craft your responses to help the project rather than draw attention or
praise to yourself.

• It’s not about you: Relatedly, it’s going to be pretty rare that a discussion
in a free and open source project is about you, but if it is, then it’s possible
something may have gone hideously awry. Aside from those rare occasions,
these discussions are not personally directed and should be about matters
that concern the project. If your suggestions or questions are not accepted
during the discussion, it’s not an attack against your skills or worth as
a human or as a contributor. It’s simply that the suggestions or questions
are not accepted; don’t take it personally. If it turns out that it is an
actual attack against your skills or worth as a human…well, we’ll cover
that in the next chapter.

• Keep it public: Above all, remember: these are public projects with dis-
tributed communities, perhaps globally so. Conversations related to the
project should occur in the public space, be it issue tracker, mailing list,

report erratum • discuss

General Tips for Participating in Discussions • 93

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

real-time chat, or in person. If sometimes a smaller group needs to split off
to discuss a specific topic, the results of that discussion should be reported
to the entire community in some way. While there are exceptions (discussions
about Code of Conduct violation reports, for instance), private discussions
and decisions have little place in a FOSS community or project.

Keep these guidelines in mind whenever you’re participating in discussions
in free and open source communities. By using these tips, you’ll exhibit
respect for the community and its members and gain a lot of respect yourself.
As a respected member of the community, your contributions will gain in
their effectiveness and impact, all because you took the time to learn how to
communicate well.

The Importance of Setting Up and Maintaining
Expectations
Many of the communication problems that any group of people face come
from not paying attention to the expectations we have or we create in the
minds of others. As we share our words and thoughts, those who experience
them construct a series of assumptions and expectations based upon our
words. When the actions we take end up not meeting the expectations
someone else holds, disappointment usually follows.

When working on a contribution, the best way to avoid disappointment is to
take the expectation setting into your own hands. You can do this by being
very clear about what you will do in your contribution, why, and by when.
Think of this as the communication version of the Principle of Least Astonish-
ment, commonly used in user interface design. If you take actions that are
expected, no one will be surprised (or disappointed).

When setting up contribution expectations, you can’t always be sure that
those expectations are actually seen or understood by the other participants
of the discussion. Assuming that everyone took the same information away
from a conversation is a good way to set yourself up for failure and arguments.
As it’s unlikely you’re a mind reader, how can you tell whether the entire
group now shares the same set of expectations? You ask. For instance: “OK,
just to verify, I’m going to remove that feature in the next release. Is that
correct?” You may be surprised how often a simple confirmation like this can
uncover misunderstandings and avoid conflicts.

Setting up and confirming expectations in this way has another benefit: it
sets up clear boundaries for contribution tasks. By defining what you will do,
why, and by when, you create explicit limits for the deliverable. This helps to

Chapter 7. Interact with the Community • 94

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

reduce scope creep on projects. Everyone knows what work needs to be
completed for the contribution, and everyone knows what “done” looks like
for that work. There’s much less opportunity for adding new requirements to
a task that has already been well defined through good communication and
expectation setting.

As important as it is to set up and confirm expectations with the other
members of the FOSS community, it’s equally important to maintain those
expectations. The world is a complicated place, often leading to expectations
needing to change. Sometimes as you get going on a task, you learn that it’s
more complex than originally thought. Sometimes something happens in your
personal or work life that requires you to set your free and open source con-
tribution aside for a while.

The least helpful thing you can do when, for whatever reasons, you can’t meet
the established expectations of the community? Disappear and say nothing.
Radio silence only amplifies the frustration and disappointment the commu-
nity will feel when you don’t meet their expectations. You may be quietly
hammering away, trying to solve the problem, hoping that you can make
some sort of progress that won’t let them down, but what you’re most likely
doing is delaying the inevitable, making the community wonder what’s going
on, and depriving them of the chance to pitch in and work together to meet
expectations. Staying silent about a need to change expectations wastes
everyone’s time and energy. Don’t do it.

When you’re working on a task and you learn that there’s a question or problem
that may lead to not meeting the established expectations, immediately stop
and communicate that. Tell people when you have to push a due date by a
week due to unexpected crunch time at work. Let them know that the feature
you’re removing will impact the project in unanticipated ways. Ask for help
when you uncover something with which you’re not familiar. The sooner you
let the community know, the sooner the issue can be addressed and expecta-
tions can be reset, and the sooner everything will tick along smoothly.

Free and open source projects are built by people for people. They’re all in
this together and all there to help, but they can’t if you don’t let them know
there’s a problem. Do the right thing by setting up, confirming, and maintain-
ing expectations in all your communications with the community.

Communication Channels and How to Use Them
OK, now that we have the general tips out of the way, let’s start talking about
some of the (mostly) unwritten rules of the various types of communication

report erratum • discuss

Communication Channels and How to Use Them • 95

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

channels in use by free and open source projects. While every project does it
differently (remember those Very Strong Opinions™ mentioned in Prepare to
Contribute?), the majority of them use most of these channels in some form:

• Mailing list (listserv)
• Issue tracker
• Real-time chat
• Conference call

I’ll provide you some general best practices for each method, so you won’t
have to start completely from zero, but always remember to check the project’s
documentation and CONTRIBUTING file to see which channel(s) that project uses
and their preferred interaction styles on each one. If you can’t find any
information on how the project community prefers to communicate, send an
email or open an issue asking this. Once you receive an answer, update the
documentation accordingly. If you had that question, you can be sure the
next new contributor will have it as well. By updating the documentation,
you’ll be helping the project and new contributors alike.

Mailing List
Most projects use a mailing list (listserv) of some variety. Very large projects
use multiple mailing lists, depending upon their needs. They may have one
for overall development of the project, another for user support, and then one
just for announcements or community matters. However a project organizes
its mailing list(s), you typically will find the information listed in the CONTRIBUT-
ING or README file.

Mailing lists are a great channel for long-form discussion, particularly among
the members of a distributed community. Not only does a mailing list encour-
age more thorough answers, but by slowing down the conversation, mailing
lists help to level the playing field for all participants. The asynchronous
nature of mailing lists gives participants the freedom to take their time to
craft their interactions. People can read and respond to discussions on their
own schedule, without the always-online pressure that sometimes comes
with a channel like real-time chat (discussed later). Mailing lists are especially
useful when a community is globally distributed or otherwise includes people
whose primary spoken or written language is not the same as the primary
language of the project. The typically slower pace of a mailing list puts these
people—who need more time to translate their ideas—on a similar footing to
those who fluently speak the primary language of the project and community.

Chapter 7. Interact with the Community • 96

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

A project mailing list also is a remarkable historical resource for all community
members and users of the project. While the feature can be disabled, nearly all
mailing lists are archived by default, and those archives usually are publicly
available and searchable. If you ever wonder, “Why does the project do things
this way?” you usually can find the answer in the mailing list archives.

As I mentioned earlier, some projects have multiple mailing lists. This might
seem like overkill, but what it does is allow people to get only the information
they need rather than the firehose of all emails related to a project. These lists
usually share a common name but have suffixes to help tell them apart and
denote what sort of content that mailing list contains. Some common suffixes
are -dev for lists dedicated to discussion about the technical development of
the project, -user for questions and discussions about and by end users of the
project, and -announce as a low-traffic list containing important announcements
about things like new releases, conference information, security warnings,
and similar things, but no discussions at all. Check the project’s documenta-
tion to see what mailing lists it offers and sign up only for those that are rel-
evant to you. You can certainly sign up for all of them, but you may find
you’re receiving a lot more email than you want or can handle.

Writing a Good Email
Over the decades, a lot of (mostly unspoken) practices and etiquette have
sprung up around FOSS mailing lists. With mailing lists being such an
important part of the communication strategy for most free and open source
software projects, being able to write an email that adheres to these practices
is a skill that will help you communicate while also avoid annoying people by
transgressing email etiquette. Here are some tips to follow when writing a
new message to the listserv (starting a thread):

• Limit your message to a single topic and stick to it throughout the con-
versation.

• Use a good subject line. As they say in journalism: don’t bury the lede.
The subject should mention the topic you wish to discuss. Be brief and
descriptive. If your question is about a specific issue, include the issue
number in the subject line.

• Start the message with your question, proposal, or thesis and then (if
necessary), spend the rest of the message supporting it.

• Keep your message text-only with minimal formatting.

report erratum • discuss

Mailing List • 97

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• If you require additional resources for your message, save these resources
elsewhere and then link to them rather than cut and paste the content into
the body of the email. These resources can include images or screenshots,
source code, error messages, stacktraces, among other lengthy or space-
consuming things.

• While you can link to these resources inline where they’re mentioned in the
body of your message, it’s usually preferred the links be referenced as foot-
notes in your message to help maintain the flow of the body of the text.

• Do not include attachments in your message. Many mailing list software
packages have a maximum message size setting, and attachments will
cause your message to violate that setting and therefore, not be delivered.
Instead, link to the resource as described above.

Here’s an example of a good mailing list message:

FROM: webdev@fossforge.com
TO: webframework-api-listserv@example.com
SUBJECT: page.lastupdate.datetime returns the wrong thing?

We're updating the theme for the website[0] and thought
it would be helpful for our visitors if each page showed
when it was last updated. I checked the documentation and
there doesn't seem to be an API method for getting this
information?

Then I dug into the source code for the page module[1]
and found that there's an undocumented method named
page.lastupdate.datetime.

When I called that method I got back a POSIX epoch
instead of a UTC timestamp like every other .datetime
method in the API. I dropped an example into pastebin.[2]

Should it be doing that? It's not documented, so it's
a little hard to tell.

--V

[0] https://fossforge.com
[1] https://gitlab.com/webframework/blob/master/source/
page/page.py
[2] https://pastebin.com/4cbeN8zj

Replying to a Mailing List Message
You would think that replying to a mailing list message is a relatively simple
matter, but you’d be wrong. Many FOSS communities have strongly held
opinions about what does and does not constitute a correctly formatted reply
on a mailing list. It’s very easy to transgress these rules, and it’s very rare

Chapter 7. Interact with the Community • 98

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

that they are ever written down. What follows are some of the most common
rules for listserv replies, but as with everything with FOSS projects, you
should do a little research before diving in. Have a look at the project’s mailing
list archives to see how most people typically reply and then use that as a
rule of thumb for how to proceed with your own responses on mailing list
threads.

First of all, there’s the matter of top post versus inline replies. For various
probably-not-nearly-as-important-as-they-seemed-at-the-time reasons, lots
of FOSS participants have strong opinions about these two email formatting
options.

You are likely most familiar with top-posting email replies. In a top post, you
select a message, click Reply on your email client. The entire content of the
selected message is copied into the new message buffer, you type your response
above this without making any modifications to the rest of the buffer below
your reply, and then you click Send. The user interfaces of several popular
email services—such as Gmail and therefore, also Google Groups—encourage
this type of message reply formatting. The email client handles hiding the
copied content in the new message, typically behind some sort of click here
to see more-type interface.

FROM: coredev@webframework.org
TO: webframework-api-listserv@example.com
SUBJECT: Re: page.lastupdate.datetime returns the wrong thing?

Huh. Yeah, that's a bit weird. Could you open an issue for that
(and one for the missing documentation)? We'll have a look.

Thanks for finding this for us!

Cheers,

Subha

On Tue, Jan 23, 2018, at 10:45 AM, VM Brasseur wrote:
> We're updating the theme for the website[0] and thought
> it would be helpful for our visitors if each page showed
> when it was last updated. I checked the documentation and
> there doesn't seem to be an API method for getting this
> information?
>
> Then I dug into the source code for the page module[1]
--click to see more--

Fans of top-posted replies appreciate that for any given message in a mailing
list thread, they can always see the entire conversation that led to that mes-
sage by clicking that click here to see more. There’s no need to navigate to any
other user interface to find the information they need.

report erratum • discuss

Mailing List • 99

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

On the other side of the email reply formatting coin you have inline replies.
With an inline reply, you still select a message and click Reply to have the entire
content of the selected message copied into the new message buffer. Instead
of typing your response at the top leaving the rest of the message buffer intact,
you edit the message buffer to type your responses inline, beneath the bit of
the message to which your response applies. If there’s buffer text that does not
apply to your response, you remove it from your reply.

Fans of inline replies appreciate that placing the response directly beneath
the statement provides clear and explicit context for each statement. They
also appreciate that removing unnecessary text from the response creates an
email message that’s smaller and easier for them to skim. They often rely on
the mailing list (or their own email) archive, should they require additional
context or history for the thread.

FROM: coredev@webframework.org
TO: webframework-api-listserv@example.com
SUBJECT: Re: page.lastupdate.datetime returns the wrong thing?

On Tue, Jan 23, 2018, at 10:45 AM, VM Brasseur wrote:
> Then I dug into the source code for the page module[1]

That was clever of you. :-)

> When I called that method I got back a POSIX epoch
>
> Should it be doing that? It's not documented so it's
> a little hard to tell.

lolno. It totally shouldn't be doing that. Could you open
an issue for that (and one for the missing documentation)?
We'll have a look.

Thanks for finding this for us!

Cheers,

Subha

Many project communities culturally prefer one type of reply over the other,
but few make that preference explicit in their documentation. Check the
archives for the mailing list to see which of the two predominates in replies.
If there doesn’t appear to be a preference, use whichever of the two response
formats feels most natural to you for the message you’re trying to convey.

When replying to a message on a mailing list thread, keep the subject line as
is. This allows people to skim their inbox for messages related to threads
they’re interested in. Yes, most email clients handle threading these days,
but you can’t assume how the reader has configured their client. There’s an
exception to this rule—when you want to start a new thread based upon an

Chapter 7. Interact with the Community • 100

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

existing thread. In that case, change the subject line accordingly, but put the
original subject in parentheses accompanied by was:. For example:

FROM: doclead@webframework.org
TO: webframework-api-listserv@example.com
SUBJECT: Time for a doc audit? (was: Re: page.lastupdate.
datetime returns the wrong thing?)

On Tue, Jan 23, 2018, at 10:45 AM, VM Brasseur wrote:
> Then I dug into the source code for the page module[1]
> and found that there's an undocumented method named
> page.lastupdate.datetime.

We've had a few of these reports in the past few months.
Is it maybe time to do an audit to make sure everything
is doc'd and that the docs are correct?

~Lew

Managing the Email Load
A common criticism of mailing list email is that there’s just so darn much of
it. A large project with several mailing lists can easily generate several dozen
or more emails a day. This is a lot of noise, which generates a cognitive burden
(a drain on your mental resources), decreasing your productivity and effective-
ness. How can you subscribe to mailing lists without being overrun by all the
noise? Simple: you reduce the noise that directly impacts you.

The first way you can reduce the noise is by subscribing to only those mailing
lists that actually impact you. Modern technology has made it a lot easier for
us to be plugged in to many different streams of information. This can lead
to amazing insights, but it also leads to information overload. It can be
tempting to subscribe to every mailing list that is even slightly interesting to
you, lest you miss out on that one or two nuggets of wisdom that precipitate
out every once-in-a-0000while. Before doing so, take stock of the impact the
additional noise of that mailing list will have on your life. You have a limited
amount of time in this world. Do you really want to invest some of it on the
noise of a mailing list that doesn’t really apply to you very much? Only you
can make that decision.

If you must subscribe to mailing lists, the second way to reduce the cognitive
burden is to get that listserv traffic out of your inbox. Every modern email
service provides some sort of filtering mechanism, and if the one you use
somehow does not, then you can often rely on a filtering feature in your email
client. How you organize the filters, folders, tags, or whatever mechanism you
use does not matter. The important part is to get those messages out of your
inbox—which usually demands the highest level of your email attention—and

report erratum • discuss

Mailing List • 101

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

into an organizing system that’s easy to find, easy to skim, and most impor-
tantly easy to ignore when you have more important things to worry about.
This compartmentalization helps immensely to reduce your cognitive burden
and free up your brain for other things. Out of sight, out of mind.

The third way to reduce the cognitive burden of mailing lists is through
selective participation (skimming). Do you really need to read every single
mailing list message in detail? If you’re just starting out in the project, you
may want to. This can give you a good sense of the members of the commu-
nity and how each interacts, as well as a sense of the challenges faced by the
project and its community. However, once you’re more familiar with the
environment, you may wish to switch to skimming message subject lines
rather than reading every message on every thread.

Either way, read or skim, you should spend more time on those activities
than on replying to messages until you have enough experience and knowledge
to make the good impression you’d like to make. Speaking when you don’t
understand just makes you look foolish. One exception is questions: If people
are discussing a concept or topic you don’t understand or for which you don’t
have enough context, ask for more information. Don’t expect to be spoon-fed
that information. Instead, ask for pointers to where you can find resources
to help you learn more.

No matter what, try to participate only in discussions that apply to you. We
sometimes put a lot of pressure on ourselves to participate in every single
conversation, but there’s rarely any need to do that. Again, remember that
time is not a renewable resource. Where is your time better spent? It may
seem blasphemous to say so, but just because someone may be wrong on
the internet5 does not necessarily mean you have to be the one to correct
them. So skim those subject lines and only pay attention to the mailing list
threads that apply to you. Don’t worry: if your input is needed on another
thread or list, someone will tell you.

Issue Tracker
While it’s not typically considered a communication channel, a great deal of
information is communicated through a well-maintained issue tracker. Each
popular version control system—GitHub, GitLab, and BitBucket—offer their
own issue tracker integrated into the rest of their service. Other issue trackers
you may see include but are not limited to Jira, Bugzilla, Redmine, Trac, and
OTRS. Some project communities prefer this communication channel to all

5. https://www.xkcd.com/386/

Chapter 7. Interact with the Community • 102

report erratum • discuss

https://www.xkcd.com/386/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

others and will ask people to open issues for all questions and discussions.
For them, the issue tracker provides a public record that’s easy to search.
Maintaining all discussions in the issue tracker means that a discussion can
quickly and easily be converted into an action item, bug report, or feature
request. By assigning issues to people, they’re able to add accountability to
discussions and tasks and help their community members track the discus-
sions and tasks that they’re participating on. Should an issue spark a heated
or controversial discussion, many issue trackers have features, such as
moderation or issue-locking, to help prevent the conversation from spiraling
out of control.

This use of issue trackers, while gaining in popularity, is still the exception
to the rule in free and open source software projects. The majority of projects
reserve issues for action items, bug reports, and feature requests. No matter
what, always read the CONTRIBUTING file and other documentation before using
a project’s issue tracker.

Opening a Good Bug Report
This is as good a time as any to broach the subject of issue quality: it usually
stinks. We in technology seem to have a preternatural ability to write bad
bug reports that is surpassed only by our irritation when faced with having
to resolve and fix a bad bug report. That’s OK; this is a fixable problem. I’m
going to give you guidelines for opening a good issue, bug report, or otherwise.
This is something you’ll need to do for any project, so it’s best that you start
learning it now.

First of all, before you open a new issue for a free and open source project,
search their issue tracker to see whether your issue has already been reported.
It can be helpful to search both open (work not yet completed) and closed (work
completed) issues, as it’s possible that your issue either was fixed already but
is not yet released or someone reported it, but the project maintainers decided
it wasn’t something that needed fixing. If you locate an open issue, add your
information as a comment to it. If you locate a closed issue, consider whether
you need to open yours at all. If you decide that, yes, this is still an issue that
you’d like someone to work on or discuss, then open a new issue per the
guidelines that follow and reference the closed issue in it. Do not re-open the
closed issue or add a comment to it unless the project maintainers have
directed you to do so. Comments on closed issues get lost or ignored, and re-
opening closed tickets upsets project maintainers as well as their workflow.

Once you’ve determined that you need to open a new issue, give it a brief
descriptive title. “API problem” is vague and not helpful to the maintainers

report erratum • discuss

Issue Tracker • 103

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

who are reviewing and triaging the issue queue. “API method page.lastup-
date.datetime returns epoch timestamp” is very descriptive. The title should
briefly and uniquely summarize the detailed account that you’ll include next.
It shouldn’t be too much longer than 50 or so characters (if you’re using
English). Longer than that and it becomes a burden to read. A maintainer
should be able to skim through a list of issues and immediately understand
an issue’s general nature without having to drill down for more details.

The hard part is next: writing up the bug report description. These fields
usually have no character or word limit (or have limits so large as to be
effectively nonexistent), so feel free to take the space necessary to describe
your issue completely. What does “completely” mean? That will vary by issue
purpose. A support question may need one set of information, a feature request
another. Generally speaking, the following information is always useful:

• What you did, what you expected, what you saw instead

• Steps to reproduce (if a bug)

• Platform, browser, or equivalent technical information

• Exact text of any error messages and codes received. Screenshots aren’t
searchable, so reproduce the error message in text form.

• If applicable, a screenshot of the bug to help provide additional context

Note: Each issue should cover only one problem or question. One issue, one
question. If you see multiple problems or have multiple questions, open an
issue for each of them. For instance, if you’re having problems with a project’s
API, you’d open one issue for the API returning inconsistent data and a sepa-
rate issue for the API method you’re calling not being documented.

An example of a good issue:

TITLE: API method page.lastupdate.datetime returns
epoch timestamp

DESCRIPTION: The page.lastupdate.datetime method returns
a POSIX epoch timestamp. All other datetime methods in
the API (page.creation.datetime, user.creation.datetime,
etc.) return a UTC timestamp. This problem occurs when
the API is called on any page in the application.

EXPECTED TO SEE: page.lastupdate.datetime return a UTC
timestamp, consistent with other related API methods.

STEPS TO REPRODUCE: Call the page.lastupdate.datetime
method, passing it the name of page in the application.

Chapter 7. Interact with the Community • 104

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

At all points, be precise, polite, and respectful with your words, even if the
software has crashed and lost you a week of work. Until the maintainers have
had a chance to dig into your issue, you have no evidence that the software
is to blame for the crash (it could have been the configuration of your comput-
er), and really, you can’t get angry at the software or the maintainers if you
haven’t learned to save your files more frequently. Always work to maintain
a respectful demeanor when reporting and commenting upon issues. These
people are volunteering their time, after all, and one day you may be the one
on the receiving end of the issues for the project.

Many projects have their own specific guidelines for opening issues. Some
issue tracker software allows project maintainers to define issue templates
to ease and enforce those guidelines. If a project has taken the time to
establish guidelines and/or issue templates, use them and follow all
instructions per the community’s preferences. Neglecting to do so will just
annoy the project maintainers and make it much more likely your issue will
be ignored rather than resolved.

Maintaining an Issue
Issue maintenance is an important but often neglected facet of the software
development process. Each issue reflects a hypothesis, followed by a series
of experiments that either meet the goal of the issue or do not. Therefore,
when working with issues, think of yourself as a scientist and the issue as
your lab book. Scientists track everything they learn throughout the course
of their experiments, not only for their own future reference, but also so that
other scientists can learn from and potentially contribute to their findings.
What sorts of things does a scientist track?

• The hypothesis to test and the method they plan to use to test it
• How to perform the test, what the outcome was, and why it happened
• The current state of the hypothesis after the test and the expected next

steps

Much like a scientist, you should track your hypotheses, tests, and results
when you work on an issue. By doing this, you build a body of information
from which others can learn. You also enable an easier handoff of an issue.
The next person to work on it can see what was done, why, and how it worked
out. This minimizes duplicate effort, making the best use of everyone’s time.
If you hit a problem you can’t overcome, having good notes of what you’ve
already tried makes it much easier for another community member to join
you on the issue to help troubleshoot. They can review your previous work
and point out any incorrect assumptions you may have made along the way.

report erratum • discuss

Issue Tracker • 105

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

And let’s not forget the most frequently used feature of good issue notes:
allowing you to remember what in the heck you were doing before you got
distracted by something else. Be it a day, a week, a month, or even just an
hour that you’re away, having your train of thought and progress documented
will save you a lot of frustration.

Tracking this information is as simple as adding a note in a comment field
on the issue you’re working on. It doesn’t have to be anything formal. Just
make note of what you’re trying, why, and the results you see. For instance:

Testing on my local install. Just using curl because it's
quick and easy and I just want to see what the method
returns.

Pliny:webframework brasseur$ curl http://localhost/index/
lastupdate/datetime
{

"name": "index",
"type": "page",
"properties": {

"lastupdate": 1062313200
},

}

Yup, that's definitely an epoch right there. OP is right
that this should be a UTC like all the other datetime
methods. I'll have a look at the code after lunch.

Is it a lot of work maintaining an issue in this way? Maybe. It can be difficult
for some people to get used to adding this issue maintenance step to their
existing workflow. Will you ever regret the effort required to fully document
your work on an issue? Never once. Will you regret not doing it? All the time.

When Is an Issue “Done”?
The answer to the question, “Is this issue done?” may seem obvious. I mean,
there’s a problem, and then you fixed the problem, and then you submitted
the contribution, and now the issue is done, right? You can close it and move
on, yes?

No.

Unless you’re already familiar with a project’s issue life cycle, never close an
issue unless someone has told you to. While your piece of the issue may be
complete, there may yet be more work to do. The fix may need to go to
someone to document, or it may need to be packaged up for distribution. It
may need a security review. Perhaps the project keeps issues open until the
fixes in them are shipped in a release. No matter what, there’s always the

Chapter 7. Interact with the Community • 106

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

reality that your fix will probably need to be reviewed. Each of these things
(and possibly many other project management-related events) may require
that issue to remain open and active.

So, you see, the question of “Is this issue done?” is actually a complicated
one, and the answer will vary from project to project and from issue to issue.
Therefore, never close an issue unless you know for sure that doing so is
entirely in line with the project’s workflow.

Real-Time Chat
Internet Relay Chat (IRC)6 was invented in 1988 by Jarkko Oikarinen, and
real-time online chat has been a cornerstone of free and open source software
communities ever since. While IRC was probably the first chat system used
by FOSS communities—and is still very popular—it’s far from the only option
available. Mattermost, Matrix, Rocketchat, gitter, Zulip, and Riot.im are a few
of the many chat options used by free and open source projects.

Real-time chat enables…well, it enables chatting with people in real time (no
big surprise there). Despite that, chat is actually both synchronous and
asynchronous in nature. While you can use chat to have very involved real-
time conversations with someone on the other side of the world, you also can
leave messages to which others can reply later when they’re available. This
dual nature of real-time chat makes it a very powerful and flexible tool for
coordinating a community of people distributed across time zones and
schedules.

The synchronous-asynchronous duality of real-time chat means that it can
be hard to tell whether or when someone will be available for a conversation.
The “real-time” in “real-time chat” is somewhat deceiving, since in the case
of free and open source community chat systems, it’s usually safest to assume
that all conversations will be asynchronous. You never know when someone
has to step away from chat to take a call, a meeting, or their child to school.
Often they’ll be in a far flung time zone from you, so you may have a question
while they’re sleeping soundly in their bed. None of this means you can’t still
start the conversation and leave it there in the chatroom, ready for them to
see when they return. Simply mention their chat username in your message,
and it’ll notify them so they won’t miss it.

As I mentioned in Prepare to Contribute, the selection and use of a real-time
chat system has taken on nearly religious significance in some free and open

6. https://opensource.com/life/16/6/irc

report erratum • discuss

Real-Time Chat • 107

https://opensource.com/life/16/6/irc
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

source software communities of late. Respect the chat option that your com-
munity has selected and do not start a contentious discussion by suggesting
they switch to another, unless you have a very good reason for doing so. Rest
assured that no matter what chat system is in use by the projects in which
you participate, a great deal of conversation (and possibly arguments) went
into its selection and maintenance.

How to Use Real-Time Chat Effectively
You may think you’re familiar with how to use a chat system, but there are
a number of points of chat etiquette that FOSS project communities have
developed over the years, and they may not match what you’re used to with
other chat systems.

If the chat system in use offers multiple chatrooms or channels for the project,
pay attention to the topic of each chatroom and stick to that topic during all
of your conversations in that room. Off-topic conversations can make it difficult
for people to keep track of the important conversations going on in that chat-
room, so if you must have an off-topic conversation, move it to a different room
or channel.

Some chat systems such as IRC feature the ability to include URLs in the
topic for a chatroom or channel. If a topic contains URLs, click through and
read those pages. These typically point to documents relevant to the chatroom,
including documents for discussion, rules for engaging on the chatroom, or
the Code of Conduct for the project. Disregarding these URLs may lead you
to violate chatroom policy and may get you kicked out.

The first time you enter a chatroom or channel for a FOSS project, take time
to lurk silently before you participate in discussions. In a chatroom context,
lurking means joining the chatroom and reading what’s said there but not
participating in the conversation yourself. This quiet observation will allow
you to get a sense of the chatroom culture, its mores, and its interaction
styles. Think of it as getting to know the language when you visit a foreign
land. Even a little bit of effort to learn how the locals communicate enables
you to navigate the environment more easily.

It’s common for the first chatroom messages from people new to free and open
source to be something like, “May I ask a question?” To most of us, this is
simply being polite, the chatroom equivalent of raising your hand to speak
in class. For experienced FOSS chatroom or channel members, your polite
question is unnecessary noise. The purpose of chatrooms is to encourage
questions and dialogue around them, so the permission to ask a question is

Chapter 7. Interact with the Community • 108

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

assumed and therefore unnecessary. The phrase you may see used is, “Don’t
ask to ask; just ask.” In other words, rather than politely asking for permission
to ask your question, simply politely ask your question instead.

Because of the synchronous-asynchronous duality I mentioned earlier, chats
will continue even when you’re not around. Those accumulated chats are
known as the scrollback. Depending upon the chatroom and the conversations,
scrollback can sometimes reach several hundred lines or more in length.
You’re not obligated to read all of that scrollback if you don’t wish. You may
miss something, yes, but if there’s something important for you specifically
in there, then someone will have mentioned you in that message. This mention,
also known as a ping, typically notifies you that you have a message waiting.
Most real-time chat clients have a way for you to jump directly to your mention
in the scrollback, so you don’t necessarily have to go through all of it to find
the relevant parts. However, you may find you need to read the scrollback
anyway so you can get the context of the conversation.

When engaging in a discussion in a chatroom or channel, use complete sen-
tences and spell out words rather than use abbreviations or “text speak.”
Also, try to use as good of grammar as you can, including correct capitalization
and punctuation (it’s OK; none of us are perfect on this front). Real-time chat
is a textual communication channel, and the people sharing the chatroom or
channel with you may not understand you well or respect your input if it
doesn’t appear that you even tried to construct it to be as readable and as
understandable as possible. It’s also likely that their primary written language
is not the same as that used in the chatroom. Using poor grammar or
abbreviations makes it difficult if not impossible for these valuable people to
help answer your questions.

While we’re on the subject of how to format your communications in a chat-
room, PLEASE DO NOT USE ALL CAPS UNLESS YOU INTEND YOUR WORDS
TO BE SEEN AS SHOUTING. We all need to yell from time to time, but try to
keep it to a minimum. You don’t want to become known as that mean shouty
person.

Above all, when engaging in discussions on a FOSS real-time chat system,
be patient. The community members of the project are most likely all volun-
teers, each with their own life and obligations outside of the project. A large
percentage of them may even be in completely different time zones from you,
such that your waking time is while they’re fast asleep. Ask your question,
then if you must, wait several hours for someone’s schedule and life obligations
to allow them to check the chatroom and reply to you. If after several hours,
you still have not heard from anyone, ask your question again. If you still

report erratum • discuss

Real-Time Chat • 109

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

don’t hear from someone in a few hours, it could be that the chatroom is not
the best way to communicate with the members of that community. Check
the CONTRIBUTING or README files for other communication channels for the
project.

Conference Call
Once in a while, it makes sense for a project community to get people
together for real-time, high-bandwidth communication. While meeting in
person is great for this, it’s also cost and schedule prohibitive. When you have
community members distributed not only across the globe but also across
the life-obligation and expendible-income strata, you can’t really bring them
all to a single location so you can have some quality brainstorming time.

While time zones are still a complication (which, if you work with software,
is something you should get used to), a conference call allows the distributed
community members of a project to come together and share their thoughts
while also getting to know their fellow contributors in a way they never could
through any other communication channel.

The tool used for these calls will vary by project and also by the bandwidth
requirements of the members. It may not make sense to hold a video confer-
ence if many of the community members live in a bandwidth-constrained
region or must pay a great deal for data plans for their mobile devices.
Therefore, you’ll usually find that conference calls for free and open source
projects feature the option for voice-only participation so as to include as
many of the community members as possible. Without this, it would be diffi-
cult to meet the goal of the call: to enable the community members to collab-
orate and discuss matters both remotely and in real time.

Conference Call Etiquette
As you can imagine, getting people together on a conference call is a fairly
special event for most FOSS projects. There are a few things you can do to
make sure the group is able to make the most of the limited voice-/face-time
that they’ll have together during the call.

Dial into the call itself several minutes before it’s due to start. This allows
you to confirm that you have the correct dial-in information with enough
minutes to spare to frantically email or message people in case you don’t. If
the call is using an online service of some sort, connecting a few minutes
early gives you the chance to download any necessary software or updates
and have everything running smoothly before the call starts.

Chapter 7. Interact with the Community • 110

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

If you’re the one organizing the call, always have an agenda for it. This lets
people know what you plan to discuss so they can prepare in advance. It also
lets people who aren’t interested in those topics opt out and skip the call
entirely. If you’re not the one organizing the call, pay attention to the call agenda.
Prepare information you might need in advance. Don’t derail the call by changing
the conversation to a different topic. Doing so is disrespectful of the time of
everyone else on the call, who joined expecting to discuss what’s on the agenda.

When you’re on the call, always mute your microphone unless you’re speaking.
Even the tiniest background noises can disrupt a call, which wastes the time
of everyone who’s participating. If you’ve joined the call audio-only, without
a video component, always state your name when you start speaking: “This
is Vicky. I understand what Percy is suggesting, but I have concerns…” The
community probably doesn’t get the chance to get together very often, so don’t
assume that they can recognize your voice.

Only the Tip of the Iceberg
This chapter has covered a lot of the mostly unwritten rules about how to
interact in free and open source software communities. By now you can
probably guess that the applicability of these rules depends upon the project,
the community, and its culture and preferences. Use this chapter as a
guideline, but always follow the established communication norms for the
project.

Now that you know how to communicate with others in a FOSS community,
it’s time to get to know them, and what better way to do that than getting
together in person?

report erratum • discuss

Only the Tip of the Iceberg • 111

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 8

It’s About the People
By now you’ve noticed a large part of the book is dedicated to methods and
tips for interacting with others. That’s because the most important aspect of
free and open source software isn’t the code; it’s the people. Contribution to
FOSS is about so much more than simply code, design, or documentation;
it’s about participation and community. The licenses make the software avail-
able, but the people make the software, and the community supports the people.
Remove one piece from this equation, and the entire system falls apart.

The interactions between contributors lead to innovations, true, but more
importantly, they lead to lifelong collaborations and friendships, often with
people who live on the opposite side of the world from you. While these rela-
tionships can be fulfilling and inspiring, they take work to get right. This
chapter will help you learn how to get together with and relate to your FOSS
community. Those get-togethers can be a casual meetup or a big international
conference and everything in between, and each type will have its own
guidelines. Most importantly though, this chapter will help you navigate the
mostly uncharted waters of FOSS communication. A lot of shoals lie just
below the surface, and if you don’t know to look for them, you and your FOSS
career may end up a complete wreck.

Get Together
One of the best parts of contributing to FOSS projects is getting the chance
to meet up with your fellow community members. These gatherings sometimes
draw people from all over the world. They give you the opportunity to meet
people and learn from them. Face-to-face meetings help to build trust, create
and strengthen friendships, and increase empathy with others. This last point
is often overlooked but very important. According to an article by Laura
Delizonna [Del17], empathy among team members has been shown to improve

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

communication and productivity by creating a space of psychological safety.
It also has a welcome side effect of helping us become better human beings,
which is something we all need.

Sometimes these meetups take the form of a conference or event. Not all large,
free and open source projects will hold a conference, but if they do, the event
tends to be quite large and international in scope. DebConf—for the Debian
Linux distribution—and ApacheCon—for projects supported by the Apache
Software Foundation—take place yearly and draw several hundred attendees
each. The OpenStack community holds multiple events each year. The
OpenStack Project Teams Gathering (PTG) also occurs twice a year. Focused
purely on design and development of the next version of OpenStack, the PTG
attracts many hundred community members and contributors. The OpenStack
Summit—held twice a year—regularly hosts many thousand attendees and is
one of the largest FOSS-related events in the world. The actual largest event
of that kind is FOSDEM. Unlike the other events, FOSDEM does not focus on
a single community or technology. Instead, it welcomes all people interested
or participating in free and open source software. Each year, more than 6000
attendees from all over the globe migrate to Brussels, Belgium at the start of
February to learn from and meet with their fellow FOSS enthusiasts.

A meetup doesn’t have to be a large undertaking with hundreds or thousands
of participants. Many towns and regions are home to local meetups or user
groups dedicated to FOSS projects and technologies. These groups can be
very helpful. Not only can they introduce you to new projects, the group
members are usually glad to help should you get stuck while contributing.
Where do you find these groups? Meetup.com1 is a good place to start. Select
the closest city or region and search for open source. You also can search for a
specific project or technology, like Linux or Python. This may turn up a few
options for you, but if it doesn’t, don’t worry. There are other ways to locate
groups. Most public libraries have community spaces where groups not only
meet but also can advertize. If your library doesn’t have such a space, ask
the librarian whether they know of any local technology groups. Librarians
are an amazing and under-appreciated source of local information like this.
If your area has universities, colleges, or other learning institutions, drop by
sometime and check out the bulletin boards near the department offices,
career development center, student union, and library. These learning insti-
tutions may also offer online postings for groups. Online or off, the learning
institutions in your area will likely provide many options for groups you can
check out.

1. https://meetup.com

Chapter 8. It’s About the People • 114

report erratum • discuss

https://meetup.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Sometimes you can find a mixture of the two: smaller, more specialized, or
more localized events collocated at a much larger conference. Linux.conf.au
(LCA) and PyCon AU each host smaller events (called “miniconfs” by LCA and
“specialist tracks” by PyCon AU) in the days before the main conference.
Linux Foundation’s Open Source Summit conferences, which occur multiple
times a year at different locations across the world, frequently encourage
collocation by smaller events, such as single-day summits devoted to diversity,
business, or networking. Southern California Linux Expo (SCALE) typically
hosts smaller specialized events before the main conference begins. Most free
and open source-related or other technical-type conferences will also
encourage smaller groups to use the event facilities in the evenings. These
smaller meetups often go by the name Birds of a Feather (BoF) or Open Space
sessions. So if there’s a conference happening near you, have a look at its
schedule. Even if you don’t wish to attend the conference itself, the satellite
events orbiting around it may be worth checking out.

Benefits of Face-to-Face Meetups
Small or large, local or global, regularly or just once, however you do it, I
encourage you to attend some sort of face-to-face meetup with your commu-
nity if you can manage it. You can learn a lot from online interactions, but
there’s nothing quite like sitting next to someone and chatting while sharing
a basket of chips.

While face-to-face meetups are definitely a great opportunity to meet new
people and make new friends (and eat chips), they offer a lot of practical
benefits as well. For starters, these meetups will be the best place to meet
the core or experienced contributors for the project. Large meetups such as
conferences are where you’ll find the highest concentration of contributors,
and therefore, the most opportunities to learn. Meeting these people face to
face is a great opportunity to receive mentoring. Many events feature hands-
on hacking sessions, where you can collaborate and learn from the experiences
of those around you.

In What Free and Open Source Can Do for You, I talked about how FOSS can
benefit your personal network. Face-to-face meetups are the ideal place to
make that benefit a reality. Large event or small, you’ll have the opportunity
to meet people you’d never have had the chance to, otherwise. Large events
in particular can expose you to community members from all over the world.
The diversity of people you can add to your personal network is truly incred-
ible and can lead to many inspiring conversations and brainstorms. It also
can lead to finding your next job, or if you’re hiring, your next team member.

report erratum • discuss

Get Together • 115

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Overall, any sort of gathering of the project community provides the opportu-
nities for planning, working, learning, and bonding that purely online inter-
actions can’t equal.

Down Sides of Face-to-Face Meetups
However great they are, face-to-face meetups aren’t all sunshine and puppy
dogs. There are some down sides to them, especially to the large conference-
type events.

The primary downside is that these events can be very expensive to attend,
putting them far out of reach of the majority of the community. Expenses can
include travel to get to the event, hotel during the event, food while you’re
there, and registration fees even to get in the door. These are just the obvious
expenses; others like childcare may also come into play. Often a community
can provide some sort of financial assistance to help a few people attend, but
if that assistance exists, it’s likely to be quite limited.

There is no assistance program for the less obvious and often more difficult
expense required for attendance: time. Many people aren’t able to step away
from their jobs, school work, or families to attend a meetup of any sort, large
or small. Some smaller meetups and conferences try to schedule events in
the evening or on weekends in an attempt to include more people, but there
will never be a way to satisfy the schedules of every community member who
wants to attend.

Another downside of face-to-face meetups is that often, they’re just so darn
overwhelming. There’s so much to see and do, so many people around, and
for new community members, so much that’s unfamiliar. Combine all of these
factors and a face-to-face meetup can be very intimidating and uncomfortable
for some people.

Tips for Coping at a Conference or Meetup
There’s not much to be done about some of the downsides of a face-to-face
meetup (such as the various expenses involved in attending), but tips for how
to cope with and thrive at one are many.

Even if you’re used to them, larger meetups like conferences can be quite
overwhelming. Some people can dive right in with no problems at all, but
others are less comfortable and need a bit more time to acclimate. There’s
absolutely nothing wrong with either approach, so use whichever works best
for you. The goal of these community meetups is to learn, get work done, and
get to know people. You can’t do that if you’re forcing yourself to approach

Chapter 8. It’s About the People • 116

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

the event in a way that doesn’t work for you. Whatever your approach, the
following are tips that can help you get the most out of your community
conference.

Use the Buddy System
If you’re relatively new to the project and the community, or if you’ve never
attended this event before, rest assured that you’re probably not the only one.
Consider using the buddy system to make the community conference more
enjoyable. Having a buddy (or buddies; there’s no need to limit it to just one)
makes the event less intimidating and easier to navigate. Even if you know
no one else there, you and your buddy can share tips, advice, leads on con-
ference events and can conspire to find all the best conference sessions. With
the buddy system, you’ll always have someone to eat with and walk with, which
can make attending a new event much more accessible. Buddies can also keep
an eye on each other and call attention to potentially unwise choices, like
staying up too late the night before an early flight or drinking too much.

Finding a conference buddy is easy: just reach out to the community, let them
know you’re new, and ask whether anyone would like to be conference buddies
with you. You’re likely to find that others are eager to have a little extra sup-
port for their first community conference, too. Depending on the community,
you may even have experienced community members offering to become
buddies with people who have never attended their conference before. This
type of community collaboration leads to a much better experience and a
stronger, more tightly knit community, and the friends you make in this way
are often with you for life.

Networking Trumps Sessions
Officially, the primary purpose of all FOSS project conferences is for the
community to get together, learn, and get some work done. This typically
takes the form of a schedule of breakout sessions for active or passive learning
in the form of tutorials, workshops, lectures, or led discussions, often arranged
so sessions on similar topics are grouped into tracks. When you first attend
a community conference, there’s a very strong temptation to attend a session
in every single slot on the schedule. This can work, but I’m here to tell you a
secret: You don’t have to go to everything. It’s perfectly OK to skip sessions,
if what you’re doing instead is more valuable. What could that more valuable
thing be? It’s what’s known as The Hallway Track.

The hallway track is what we call all of the learning that happens outside of
the officially scheduled sessions. These are the conversations you have in the

report erratum • discuss

Tips for Coping at a Conference or Meetup • 117

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

hallway, at the sponsor booths, or at the coffee station. Many people who
attend conferences get so much out of the hallway track that they think it’s
the most valuable part of the event. You can learn a lot from the main sessions,
but the hallway track is where you meet people and fall into interesting con-
versations that aren’t as possible while you’re sitting through a session. These
conversations teach you a lot about the community, the project, and the
industry. This is where you make friends, meet mentors, and maybe even get
introduced to your next employer. While the main sessions can teach you a
lot about the technical aspects of the project, the hallway track teaches you
a lot about the people aspects, and as such, should not be missed. The most
effective conference experience will include a healthy mix of both breakout
session attendance as well as the hallway track.

Another name for the hallway track is networking. We talked about networking
back in What Free and Open Source Can Do for You when discussing the
benefits to your career. As a reminder: while computer networking is simply
a method for computers to communicate, human networking is simply people
communicating with other people. There’s nothing special or tricky about it,
but there are some things that you can do to make it easier.

For starters, carry and hand out business or personal calling cards containing
your contact information. Yes, I know, this sounds a bit old fashioned in our
digital age, but trust me: business cards are still very handy. They’re highly
efficient for sharing information quickly, effectively, without typos, and even in
loud and crowded situations. Unlike mobile phones, a business or calling card
will work when you don’t have a signal or network. While a basic card is great,
if you go that extra mile to get a good or clever design, it can help people
remember you and encourage them to hold onto your card. Calling cards are
also more secure. As the person designing and ordering the card, you get to
control what information appears on it. Don’t want to share your primary
email address? Don’t include it on the card. Don’t want to share your phone
number? There’s no requirement to list it. Name, website, social networking
usernames, PGP key fingerprint… Whatever information it is, you control
what you share and with whom when you design your own calling card.

Another tip to ease the networking process is to keep some “canned” questions
in mind, so you’re always prepared to start a conversation when you meet
someone new. These should be situationally appropriate, of course. While
you certainly can start a conversation at a FOSS event by walking up to
someone and asking, “If you were a tree, what sort of tree would you be?”,
the conversation may not go as well as you’d like. Innocuous but effective
conversation starters should be simple, open-ended questions that prompt

Chapter 8. It’s About the People • 118

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

the other party to tell you something about themselves and hopefully give
you some information you can follow up on. For example, here’s the start of
a possible conversation:

You: Hi! I’m Anwar and this is my first time at this conference. How many times
have you attended before?

Them: Hi, Anwar! My name is Zikri. This is my third time here, but I’ve been
contributing for about five years now.

You: Wow, five years? I’m still pretty new to the project. What parts of it do you
work on?

Other simple canned questions you could try include:

• “How far did you travel to get to the event?”
• “Do you contribute to any other projects?”
• “What’s been your favorite session so far?”

As you’re standing around in the hallway track, meeting new people and
starting new conversations, consider using the Pac-Man Rule.2 Popularized
by Eric Holscher, a founder of the ReadTheDocs open source documentation
service and the WriteTheDocs technical writing conference, the Pac-Man Rule
simply states that for any conversation circle, the participants leave a gap.
This makes the circle look like the Pac-Man video game character, which
encourages other people to drop into the conversation. The Pac-Man Rule is
a very low-key but effective way to make people feel welcome and included at
busy events like free and open source community conferences. If you see a
conversation Pac-Man, feel free to step in and listen to what folks are saying,
then contribute to the conversation yourself once you’re up to speed.

As useful as it is to learn how to start a conversation at an event, it can be
just as useful to be prepared with ways to end one. We may all want endless
time and attention span, but none of us have it. While you may wish to stand
around all day talking about the technical, social, or political details of the
FOSS project, you still need to get stuff done. And let’s face it, not every
conversation is going to be interesting. That’s OK! It’s perfectly fine to extract
yourself from a conversation (be it pleasant or not) to move on to the next
session or conversation, as long as you do so politely. Abruptly turning around
and walking away may seem efficient, but it usually sends an unfriendly
message. There are plenty of polite ways you can exit a conversation. For
example:

2. http://ericholscher.com/blog/2017/aug/2/pacman-rule-conferences/

report erratum • discuss

Tips for Coping at a Conference or Meetup • 119

http://ericholscher.com/blog/2017/aug/2/pacman-rule-conferences/
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• (Check the time) “Oh, I want to go to a session soon. I’ll catch up to you
later, OK?”

• “Do you know where the toilet is?”

• “I have some work I need to look at today. Hopefully I’ll see you around
later?”

• (Check phone, whether you received a message or not) “Oh, I need to take
this message. Thanks for the chat!”

Ideally you’ll tell the truth as you withdraw from the conversation, but if a
little white lie gets you out of talking about a boring or uncomfortable topic,
then by all means do what you need to do to take care of yourself while not
burning bridges with the others in the group.

But Self Care Trumps Everything
Which brings us to the topic of self care. It’s tempting to spend every moment
engaging with your fellow community members, but doing so would be a
mistake. Sure, you can power through the event on minimal sleep, minimal
food, minimal bathing, minimal breaks, and maximal alcohol, but I guarantee
you won’t have nearly as good of an experience. You’ve probably invested a
lot of time, effort, and money getting to this event. Why throw that all away
by unnecessarily overextending yourself? You won’t make a good impression
if you’re looking, acting, and smelling like a zombie while you’re speaking
with others. You won’t retain information if you’re running on no more than
a catnap and good intentions.

Therefore, be sure to take care of yourself while you’re at the event so you
can perform at your best. FOSS community conferences and events should
be approached like an athlete running a marathon, not one running a sprint.
Pace yourself and give yourself the energy you require to reach the finish line.
There are many ways to do this, but the four most neglected elements of
conference self care are food, water, sleep, and mental space. Each one is
necessary to keep your brain running strong.

There are calories and then there are calories. Any sportsperson will tell you
that there’s a difference between how much you eat and what you eat. While
the scone you grabbed at the coffee vendor on the way to the event and all
the beer you drank the night before do provide you energy to keep going, it
doesn’t exactly make for a high quality meal. Your brain needs more than
sugar, fat, and alcohol to operate efficiently. A great way to ensure you eat
at least one decent meal a day is to take it with others. Food is a great way

Chapter 8. It’s About the People • 120

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to meet and bond with people you meet at the event. Not only can you
strengthen the relationships you’re building, but you also get to strengthen
your brain at the same time.

Water intake is the next element that most people neglect when participating
in a FOSS conference environment. Drinking enough water can make up for
a lot of other self-care oversights, such as not eating, not sleeping, and
drinking too much alcohol or caffeine. I’m not going to get into the definition
of what “enough water” is, as I’m a FOSS specialist and not a healthcare
professional. If you carry a bottle of water with you and sip from and refill it
a few times a day throughout the event, you’ll probably be in good shape. You
can either bring your own reusable water bottle (they’re very handy to keep
around), or if it’s an event that has an area for sponsors to exhibit, it’s possible
you may be able to pick one up at the event. If nothing else, you can always
pick up a bottle of water at a shop on the way to the event and reuse that
bottle. Once you start hydrating properly, you’ll find your event energy is a
lot more steady and reliable, allowing you to get through the day more easily.

While food and water will go a long way toward getting you across the confer-
ence finish line, nothing gives you energy quite like a good recharge. Some-
times you just can’t resist staying up all night having wonderful conversations
with brilliant and hilarious people. I encourage you to embrace those oppor-
tunities, but also to balance them with the rest you need so you can meet
those people in the first place. No one gets as much sleep at a FOSS conference
or event as they do at home, but that doesn’t mean you shouldn’t at least try
to get several hours of rest every night.

Just as it’s OK to skip a session to participate in the hallway track, it’s also OK
to skip out on events to give yourself a bit of a mental break. Free and open
source conferences and events can be very busy endeavors. You’re going to meet
a lot of people and learn a lot of information, all in a very short period. To make
sure you retain that information and don’t burn out, take some time for yourself
once in a while. Return to your room for a nap; go for a walk; find a quiet corner
and write down some thoughts. Taking the time to process what you’re learning
will ensure that you’re getting the most out of your time at the event. Some
people also find so much condensed interaction to be very exhausting. Whether
you’re one of those folks or not, it’s OK to withdraw for a little while to recharge
your mental batteries before returning to the event. You don’t need my per-
mission for this, but now that you have it, feel free to take some “you time.”

Some people may read the paragraphs above and think they’re obvious. If
you’re one of those people: Excellent! It’s rare to find people so in touch with
themselves that they know and respect their own limits. Whether the tips are

report erratum • discuss

Tips for Coping at a Conference or Meetup • 121

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

obvious or not, you must accept the consequences of your actions. If you
don’t eat, drink, or sleep well during the event, you probably have only yourself
to blame for how miserable you feel both during and after it. You do you,
honey.

Codes of Conduct
And speaking of freedom of action conjoined with consequences, let’s talk a
little more about Codes of Conduct. If you read Prepare to Contribute, you
already know what a Code of Conduct is. If you didn’t read Prepare to Con-
tribute, I encourage you to do so now.

Not every free and open source conference or event will have a Code of Con-
duct, but it’s generally a good idea to act as though they do. Many presenters
and attendees (including me) avoid events that lack a Code of Conduct. I
encourage you to follow your heart on that decision, as there is no right or
wrong way to approach it. You have to do what’s right for you.

If the event is covered by a Code of Conduct, it’s very important that you read
it, understand it, obey it, and if necessary, use it to ensure the safety of
yourself and others. If you’re ever at an event and find yourself wondering
whether something you’re about to say or do might violate the Code of Con-
duct, I encourage you to assume the answer is “yes” and either not say/do
that thing or find a less controversial way to do so.

Even if you’re someone who is positive that you’d never violate the Code of
Conduct, it’s worth taking a moment to review it. We all need reminders from
time to time, not only of what’s acceptable behavior, but also of why a Code
of Conduct is necessary in the first place. It’s not there to silence opinions.
It’s there to ensure that the event provides an environment that’s welcoming
to all, and that’s a very good thing.

Form Your Own Meetup
Sometimes you can’t make it to community events or conferences, and there
are no meetups in your area. How can you engage with the community? By
creating one yourself. You can always form your own group dedicated to
learning about, sharing, and contributing to free and open source software.
It’s a lot easier to do than you’d think and can be very rewarding.

Local meetups are an excellent way to learn more about the project and its
community. The members of a local meetup will have a unique perspective
that you may not find in the greater community for your FOSS project. For
starters, the local meetup members may share a language and culture different

Chapter 8. It’s About the People • 122

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

from the primary one of the project. This can make it a lot easier to share
knowledge and support as you all learn about the project together.

Starting a local meetup doesn’t have to be some big production. Sure, you’ll
probably see local meetups that occur regularly, host presentations by out-
of-town speakers, and have companies sponsoring food and drinks for the
event, but your meetup doesn’t have to be that involved, especially not at
first. Start small, if only to gauge local interest in the meetup before you invest
a lot of time in organizing a more complicated and regular event. Start with
a one-off meetup, gathering people at a local pub, library, or cafe to chat and
see how that goes. This is a good way not only to gauge interest, but also to
find people to help you organize something that occurs more regularly. It’s
good to have multiple people doing this sort of thing, as it distributes the
responsibility and burden so no one person becomes overloaded and burns
out. If only a few people show up: congratulations! That’s a few more people
than were gathering before, so you’ve successfully created a meetup!

If you’ve been to a FOSS meetup or conference before, you may have a picture
in your head that your new meetup should follow exactly the same format:
presentations by community members. Presentations are a good way to learn
more about the project from your peers, and they can be as formal or informal
as the group wants or needs. If you’re just starting out with the meetup
though, it can be difficult to line up presenters or a space that’s appropriate
for presenting. It often can take some time to get these things arranged, but
that doesn’t have to limit your ability to have a meetup.

“Hack nights” can be an easy-to-arrange and low-key format for a meetup.
The basic idea is that the meetup members gather in a single location and
work on contributions for the project or otherwise play around with it. Orga-
nizing an event like this is as simple as putting out a call to the community,
letting them know where and when to meet, and possibly creating a theme
for the event. A specialized theme you might consider is “New Contributors,”
where people who want to learn how to contribute to the project can get
together, get their questions answered, and be supported by other members
of the community.

Bug squashing, documentation writing, and testing a new release are all fun
and easy themes, but there’s really no need to have a theme at all. Sometimes
the best type of meetup is purely social, with everyone getting together to
chat and get to know others in the community. Having a shared FOSS project
and community is a great ice breaker for this type of event, making it a lot
easier for people to relax and hang out. Presentations, hack nights, social,

report erratum • discuss

Form Your Own Meetup • 123

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

or otherwise, feel free to mix, match, and combine meetup types to serve the
needs of your local community.

As a new contributor, the thought of showing up to a hack night may be
intimidating. There will be all of these people there, who all know more than
you, right? I mean, you’d just be in the way, wouldn’t you? You’ll just slow
them down. Nothing could be further from the truth. Hack nights are usually
very informal, low-key affairs. While it’s possible that there’s a plan for what
people wish to accomplish during the event, that plan is much more of a
guideline than a rule. Because of the casual nature of a get-together like this,
as well as the ready availability of skilled help, they tend to attract more
newcomers and fewer experienced contributors. The people who show up to
hack nights are always ready to answer questions and help other community
members, even if they’re new to the project. Simply grab your laptop, drop
into the event, and tell people you’re new. You’ll be pleasantly surprised at
the warm reception you receive at most hack night events.

Moving up in the Community
If you recall from Prepare to Contribute, projects often have a rough hierarchy
of experience and responsibilities, which is sometimes represented as an
onion:

Founder/
BDFL/

Leadership

Core Contribs

Contributors

New Contributors

Users

As a new contributor, you’ll probably start out there near the outer edge of
the onion, but there’s no reason you have to stay there. Some people are
motivated to progress actively through a hierarchy, while others are satisfied
with a more casual approach. Both approaches are equally valid, so don’t
worry if you don’t feel compelled to pursue a particular path. Whatever speed
you prefer, if moving through the layers toward the center of that onion is

Chapter 8. It’s About the People • 124

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

important to you, there are some things you can do to help improve your
chances (aside from the obvious step of “keep on contributing”).

The best thing you can do to move up in the community hierarchy is to try
not to do it all on your own. Communities are composed of people, and those
people are there to help each other reach their goals. However, you can’t
necessarily expect people to notice that you need or want help. FOSS project
development can be pretty hectic sometimes, and all of those people also have
lives and jobs outside of the project. They’re probably willing to help out but
have not noticed that it’s needed. The solution is for you to ask. This is pretty
important: It’s not their responsibility to lead you toward the center of that
onion. It’s your responsibility to take ownership for your own personal
development. You don’t inherently deserve to be in the center of the onion;
you must earn it.

When asking for help, you can make a general request like, “Hey, does someone
want to mentor me?” but you’re more likely to get a better response if you’re
specific. Think about how you think you could improve your contributions;
then ask for assistance with that well-defined problem. For example: “I would
like to get better at doing code reviews. Could I pair with someone on one so
I can learn what you look for when doing a review?” That’s a well-defined
request, and it has both beginning and ending conditions. Those busy people
will really appreciate that, since they’ll know they can help out without risking
getting involved in an open-ended and potential time-sink of a situation.

As you’re receiving help from others in the project, use that opportunity to
ask them for feedback on how you’re doing as a contributor and a community
member, and ask them what they think it would take for you to reach the
next level (whatever that may be for that project). Before you do that, you
may want to go back to Make a Contribution and re-read the section about
receiving feedback, since you may not necessarily be prepared to hear people
listing your shortcomings. If you ask people for feedback in good faith, they
will most likely provide it on the same terms. So do pay attention to what
they have to say and try not to take it personally if you hear something you
don’t like very much.

During your path through the layers of the onion, make sure to speak with,
ask assistance of, and in particular, be of assistance to the entire community.
Don’t simply aim your focus at those closer to the center of the onion and
ignore everyone else. That sort of currying favor is not a community-minded
action, and you’ll probably offend most of the community by doing it. While
the project cores are equipped to help and provide guidance, they’re not the
only ones. Everyone in the project community has experience to share and

report erratum • discuss

Moving up in the Community • 125

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

lessons to teach. You never know when a casual conversation with someone
will turn up a recommendation for a handy new tool or a tip for a mind-
blowing CSS hack. Keep your eyes open to help out with various tasks across
the entire project and you’ll gain a deeper familiarity with both the project
and the community that supports it. This type of familiarity, more than any-
thing else, is what will help you travel through the layers toward the center
of the onion.

FOSS Is People
You’ll hear it said frequently: Free and Open Source Software is People. No,
this isn’t some macabre reference to Soylent Green. While some communities
are known for chewing people up (figuratively speaking), no humans are liter-
ally consumed in FOSS creation or maintenance. Without the people, though,
FOSS is simply a bunch of lifeless code. The community is what gives that
code life. People are the soul of free and open source software. Never forget
that, and always try to think of the people when contributing. You’re one of
them now, after all. Welcome!

Sometimes, unfortunately, you’ll find that your interactions with these people
don’t go as smoothly as you hoped. What do you do when it all goes wrong?

Chapter 8. It’s About the People • 126

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 9

When It Goes Wrong
Contributing to free and open source software projects is not all sunshine,
puppy dogs, and roses. Plenty of things can (and will) go wrong along the
path toward contribution. Some of these things are technical, such as build
errors, difficulty in setting up the development environment, or having to
learn a new technology. But it’s more common for the roadblocks on that
path to be human in nature, such as language barriers or hostile community
members. In this chapter, we’ll have a look at some of the most common
things that can go wrong when trying to contribute to FOSS projects, as well
as some ways you can overcome or avoid those problems.

Intimidated by FOSS’ Reputation
The first roadblock you may face is that you may not feel up to contributing
at all. Across its decades of life, FOSS has developed a bit of a reputation: It’s
difficult to contribute. You won’t receive help even if you ask. The community
members are unfriendly, judgmental, and unwelcoming. There’s a pervasive
attitude of “suck it up, buttercup, we did it the hard way and so should you.”
Community members are aggressive and insulting when faced with opposing
opinions or imperfect contributions. The only way to thrive in FOSS is by
having a thick skin and by “looking out for number one.”

This is the reputation, and I’m sorry to report that it’s based in reality. All of
the bad characteristics I listed have occurred in free and open source software
communities and undoubtedly will occur again. As you learned in It's About
the People, FOSS is composed of people. As you’ve learned across your entire
life, people can be difficult, complicated, squishy, and downright unpleasant
at times. Therefore, any endeavor that involves people (so…you know…all
endeavors) has the potential itself to become difficult, complicated, squishy,
and downright unpleasant. FOSS is no exception.

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

It’s true that many free and open source software communities have and do
tolerate the sort of behavior that leads to all that unpleasantness, but it’s
unfair to paint all of FOSS with that ugly brush. Remember that academic
study [BBFV01] I referenced back in Make a Difference Without Making
a Pull Request? The one that shows that humans are more likely to focus on
the negative than the positive? That same tendency is at play here. The
overwhelming majority of FOSS project communities are helpful, supportive,
welcoming, and grateful for their contributors, yet the few communities that
tolerate negative behaviors become the bad apples that spoil the entire barrel
and contribute more heavily to the overall reputation of free and open source
software communities. Most communities, however, recognize that it’s a bad
idea to be jerks to other people and discourage and guard against the sort of
behavior that’s led to the poor reputation FOSS has gained over the years.

So, yes, there are FOSS communities that are nasty, brutish, and short-
tempered. Overall though, you’ll find that communities are composed of
people just like you: normal folks just trying to improve the project and make
a difference in their own small, yet significant ways. Don’t be scared off by
the poor reputation of free and open source software communities and be
encouraged by the fact that your contribution is needed and valuable. If in
your FOSS explorations, you discover a community that tolerates negative
behaviors, the most effective thing you can do is to get out of there. You don’t
deserve to be treated that way, and they don’t deserve your time, loyalty, or
contribution if they think it’s OK for their community members to be jerks.

Can’t Find a Project
Another problem you may experience is not being able to find a project to
which to contribute. You’ve read all of Find a Project, and you’ve done all of
the exercises there, yet there don’t seem to be any projects that meet your
requirements and criteria.

If you think there are no FOSS projects that are a match for you, I confess
that my first reaction is to raise a skeptical eyebrow à la Spock in Star Trek.
Out of the millions of projects available today, there isn’t a single one that
meets your needs? While it’s possible that this is the case, it’s also unlikely.
The odds are against you on this one, sorry. Yet the fact remains that you
haven’t located a project to which to contribute. So what’s going on here?

Without sitting down and talking through the process with every one of you
who have this problem—which you’ll agree is an approach that isn’t going to
scale well—my suspicion is that your criteria and requirements are defined
far too narrowly. Alternatively, you may be looking for a project that meets

Chapter 9. When It Goes Wrong • 128

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

all of your criteria rather than just most (or even some) of them. Either of
these constraints could lead to a very shallow pool of candidate projects,
which is the opposite of what you want. While an entire ocean of candidate
projects would be too much to handle, a shallow pool is not enough. What
you’d ideally like to create is a decent little pond of candidates that you can
wade into and splash around in a bit.

To get that nice little pond of candidates, you may need to open up your
search criteria. For instance, if your criteria have you looking for projects only
in one area of interest, try adding related interests to your list. If you like
electronic music, maybe you’d enjoy working on a project for typesetting
musical scores, or perhaps on a project for converting audio files between
different file formats. Expanding your programming language options can
help as well. Sure, you may not know Python very well, but if you’re willing
to learn, you’ll find a whole new world of candidate projects opening before
you, filling your little pond of options to the brim.

Once you have that pond of options, try to be less particular about which
ones make your short list. Sure, it would be wonderful if you’re able to find
the Perfectest Project Ever, practically hand-crafted to suit your specific needs,
but it’s unlikely to happen. You’ll probably find that most projects meet only
a few of your criteria, and no projects meet all of them. That’s OK! Even
projects that only meet a few criteria still have the potential to help you move
toward your goals. Just be sure you know which of your criteria are the most
important to you, and which are just nice-to-haves. Try to focus your attention
on the projects that meet the more important criteria, and you’re more likely
to be successful in finding a project that’s a good fit for you.

Company Policies
As you learned in The Foundations and Philosophies of Free and Open Source,
copyright is a complicated thing, but its concepts and those of intellectual
property underlie every free and open source software project and contribution.
You also learned that while sometimes you automatically have copyright over
your creations, in some countries you must apply for it, and other times your
employer retains copyright over anything you create while employed by them.
This can be a big hurdle when you’re trying to contribute to a FOSS project,
because depending on your employment agreement, the work you submit to
the project may not be yours to give. Submitting a contribution over which
you hold no copyright is a recipe for legal disaster for you, for the project,
and for your employer.

report erratum • discuss

Company Policies • 129

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Who Owns the Copyright?
Before you start contributing to any free and open source project, it’s imper-
ative that you review your employment agreement first. If you can’t locate
your agreement, ask your HR department for a copy. Once you have it, confirm
who owns your work when it’s created in each of these situations:

• On company time and company equipment
• On company time but your own equipment
• On your own time but company equipment
• On your own time and your own equipment

Use this grid, marking in each box who owns your copyright for work created
under each condition. Do you own it, or does your company?

Equipment

Ti
m
e

Yours Company’s

Yo
ur
s

Co
m
pa
ny
’s

If it’s unclear who owns the copyright in a certain condition, you have two
options. First, you can take the safe route and assume that your employer
always owns copyright to your work under that condition. You could try your
luck by gambling and assuming that you retain copyright in that condition,
but assuming in this direction could end up being very expensive for you.
Your second option also costs money, but considerably less: take your
employment agreement to a contract or employment lawyer and ask them to
figure out who owns the copyright in each of the conditions in the grid. Ideally,

Chapter 9. When It Goes Wrong • 130

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

you’ll have done this before you start your employment. That’s usually the
best time to be negotiating any changes should you discover that each of the
boxes in the grid come out saying, “Company owns”, but it’s sometimes pos-
sible to speak to your employer and receive permission to retain copyright
over your FOSS contributions under one or more of the conditions in the grid.
I’ll talk more about that in a moment.

Once you fill in the grid and have a good understanding of who owns the
copyright to your work and under what conditions, speak with your manager
or supervisor and let them know you would like to contribute to a FOSS
project. Even if you’re contributing under a condition where you retain copy-
right, it’s a good idea to let your manager know so they don’t get surprised
by this later. They also may not know who owns the copyright and under
which condition, so it’s best to get in front of that before it becomes an issue.
It could be that your manager doesn’t really care whether you contribute or
not, but it’s best not to assume (especially if you hope to contribute using
company time or equipment).

Getting Buy-in
When you’re speaking with your manager, ask them whether the company
has an overall policy about contributing to free and open source projects.
Sometimes, even if your employment agreement says otherwise, a company
will allow its employees to retain copyright and contribute to certain projects.
Other times a company may be OK with you contributing, but only if its done
in the company’s name or from the company’s account. You’ll never know
until you ask, so do take a moment to gather this information.

If it turns out that, after all of this work, there’s still no official way for you
to retain copyright over your work and contribute it to a FOSS project, you
may need to ask your manager whether it’s possible to get an exception to
your employment agreement and/or to the company contribution policy.
Before you ask for this, prepare all of the business reasons that it’s to your
company’s benefit to grant this exception. They’re unlikely to do it out of the
goodness of their hearts, because contributing is the right thing to do. You’ll
have to prove that the company will get something out of this arrangement
and that your contributions will not put them at legal risk. If you’re able to
get them to grant this exception, get it in writing. Even an email confirming
that you’re allowed to contribute (and under what conditions) is enough to
provide some protection should situations change later. For instance, you
may move to a different team, and that manager may not know that you’ve
been granted an exception to contribute. It’s very helpful to have written proof

report erratum • discuss

Company Policies • 131

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

of the exception so you don’t get in trouble. However, don’t rely on that
exception not being rescinded in the future. Your past manager may have
agreed to allow you to contribute, but your new manager may need you to
spend your time in other ways.

CLA or DCO
This question of who owns the copyright to your potential contribution is
particularly important when the project to which you wish to contribute has
a Contributor License Agreement (CLA) or a Developer Certificate of Origin
(DCO) that you must sign before your contribution will be accepted. If you
recall from Prepare to Contribute, the CLA and DCO are legal documents used
by some projects to help manage the copyright madness that can occur when
multiple people hold copyrights in a single project. Each one of these docu-
ments requires that you agree that you have the legal right to provide your
contribution to the project. It’s very important that you be clear about whether
you actually have copyright on your contribution before you sign one of these
documents. Signing when your employer actually has the copyright can lead
to a lot of very expensive headaches for you, the project, and your employer,
and it may even lead to you losing your job.

It may not seem like that big of a deal who owns the copyright to the work
you create, but as you read above, it can matter a great deal. It’s not wise to
play fast and loose with copyright law, and it’s always a good idea to err on
the side of caution. If you’re not one-hundred percent sure that you have the
copyright to something you wish to contribute—and if you don’t have that in
writing somewhere—do not take the risk and make that contribution.

Contribution Process Is Unclear
You’ve found a project, you’ve confirmed that it’s OK with your employer for
you contribute to the project, and now you’re ready to dive in and get started!
This is usually an exciting moment; you’re all energized, motivated, and eager
to start making a difference in the project. Unfortunately and all too often,
all that energy fizzles away the instant you discover that the project doesn’t
have good documentation for new contributors.

The most immediate sign that a project’s new contributor documentation is
lacking is that it doesn’t have a CONTRIBUTING file at all, or it has a file, but it’s
entirely empty (a common trend lately for projects hosted on GitHub in par-
ticular). That’s a red flag that it may be difficult for you to make a contribution,
but it doesn’t necessarily mean that the project hasn’t documented the new

Chapter 9. When It Goes Wrong • 132

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

contributor process at all. Some projects put this information in their README
file, so be sure to read that in its entirety before you get started.

Sometimes a project has a CONTRIBUTING file, but it’s so sparsely populated that
it doesn’t provide much guidance to people who aren’t already familiar with
the project or with contributing to free and open source software. This is
common in smaller projects and projects with contributors who’ve been doing
this for a while. They’ve been contributing for so long that they’ve forgotten
what it’s like to be new to the entire experience, so they may no longer know
what sort of information is needed to document the process for new contrib-
utors. For example:

Contributing

If you want to contribute, just send a pull request.

Coding standards

Lint your code and make sure it's PEP 8 compliant before
sending it to us.

This CONTRIBUTING file is meaningful (somewhat) if you have a lot of experience
with programming or contributing, but isn’t very useful otherwise. It expects
that you know how to send a pull request, what linting is (let alone how and
why to do it), what PEP 8 means, and how to check that your code is compli-
ant. It also doesn’t provide any guidance about where to go if you need help
or have any other questions, since it assumes you already know that the
project uses its issue tracker for that sort of stuff.

What do you do in a situation like this, where the CONTRIBUTING file is light on
details but heavy on assumptions and jargon? Start by researching all of the
terms and processes with which you’re not familiar. For this example, you
might hit up your favorite search engine and learn about linting and PEP 8,
or you may re-read Make a Contribution to refresh your memory on pull
requests. There’s also a glossary appendix at the end of this book that may
come in handy. This research won’t only teach you about unfamiliar concepts,
it also will prepare you with the vocabulary necessary for further searches or
to ask good questions of the other project members.

Asking questions is the next step in clarifying the contribution process. The
research may give you enough information that you’re able to start contribut-
ing, but it’s likely there’ll still be some gaps in your understanding (especially
if there’s no CONTRIBUTING file at all). You’ll have to ask questions to fill in those
gaps, but that can be a little tricky if the CONTRIBUTING file doesn’t tell you where
to go to ask those questions. Check the README file to see whether it mentions
any mailing lists, real-time chat rooms, or other communication routes favored

report erratum • discuss

Contribution Process Is Unclear • 133

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

by the project community, then use that preferred route for your questions.
If after checking CONTRIBUTING, README, and any other documentation, you still
can’t figure out how to ask questions of the project maintainers, open an
issue in the project’s issue tracker and ask your questions there.

No matter the communication route or the answers you receive, try to capture
what you learn through your questions and your research in the CONTRIBUTING
file. This helps reduce the questions that the next new contributor has when
they start working on the project, not only making it easier for them to con-
tribute but also saving time for the maintainers who now won’t have to answer
the same questions all the time.

If the project has no CONTRIBUTING file (or it’s not useful) and if your questions
about how to contribute go unanswered, consider finding another project to
which to contribute. Your time and skills are valuable. Don’t waste them on
a project that makes it difficult for you to contribute. There are millions of
free and open source software projects in the world. Share your time and
skills with one that will appreciate and respect them.

Language Barriers
Sometimes the problem is less procedural and more lingual in nature. For
example, what does the text below say?

Ě#"] #V$] % %C &"]ZdOÀ
(Niṅge Bhāṣe Artha Āgōlla)

Unless you read Kannada, a language spoken primarily in southwestern India
and used by millions all over the world, it’s unlikely that you knew that this
text says, “You don’t understand the language.” If the image above just looked
like a lot of lovely squiggly lines to you, then you have a sense of what it’s
like for the billions of people who could contribute to free and open source
software but hit the human language barrier.

While FOSS is a worldwide phenomenon, the majority of projects use English
as their primary spoken and written human language. It’s the language most
used for the documentation, code comments, mailing lists, real-time chat,
and other textual communication for projects, but it’s not the only language.
If you search, you’ll probably uncover projects that use your native language

Chapter 9. When It Goes Wrong • 134

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

as their primary communication language, but right now your options will
be limited if you look outside of English language-based projects.

No matter the human language of the project, if it’s not one you understand,
then you’ll be at a disadvantage when trying to contribute. Your options for
dealing with this issue are fairly limited: either you find a project based in a
language you understand better, or you learn the language that your project
of choice uses. I won’t give you advice for how to learn a new language, since
that’s outside the scope of the book, but I will give you some advice on how
to interact with and contribute to a project that doesn’t use a language you
understand very well.

For starters, it helps to set expectations by letting the community know that
you’re still learning the language. Usually people can tell if someone is not a
native speaker, but it never hurts to be explicit about this. It doesn’t have to
be a separate message to the community (and is probably better if it’s not),
and it doesn’t have to be anything complicated. As you first start communi-
cating with the community, whether by the issue tracker, mailing list, or
whatever makes the most sense for what you’re trying to accomplish, just
include a short line mentioning that you’re learning the language. For instance:

I have a question about running the test suite. Apologies for any errors in my
wording. I’m still learning English. Please be patient with me. My question is…

As you’re working to become more comfortable with the language used by the
project, try to use asynchronous communication methods as much as possible.
Email, issue trackers, and sometimes even real-time chat systems can all
provide you with the time to think about and compose your questions and
responses in a way that face-to-face conversations will not. This can help you
gain fluency and practice in the language without adding the extra pressure
of remembering the right word or form immediately.

It can be very helpful not to assume that you understand a question or
statement. Before taking action on something, restate the question or state-
ment and ask for confirmation. “I understood that we need to reorganize the
documentation files into a single directory. Is that correct?” Taking a few
minutes to confirm your understanding and the actions required can save
everyone hours of work and many headaches later. If it turns out that you
misunderstood what’s needed, don’t feel bad. It could be that the original
statement or question was not clearly stated.

Relatedly, don’t assume that your writing is as clear as you think it is. Lan-
guages and communication are complex things, and we all get them wrong
from time to time. If you have a longer or a more important message you wish

report erratum • discuss

Language Barriers • 135

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to send to the community, have a friend or another community member review
it and make sure it actually says what you think it says before you send it
off to everyone. Not only can this help your message be more effective, but it
also gives you a safe space to practice and learn the language as you incorpo-
rate feedback from the reviewers.

It’s worth noting that many of the tips apply even if you’re fluent in the pri-
mary language used by the free and open source software project you’ve
chosen. None of us are perfect and all of us need editors. Don’t be afraid to
double-check your understanding or your phrasings, even if you know the
language. Doing so can help avoid a lot of confusion and streamline the soft-
ware development process.

Your Contribution Is Declined
You’ve spent a long time thinking about and crafting your contribution. You’re
proud of your work here, or at the very least, you’re eager to get it accepted
so you can go on with your life. So you gather all the bits for your contribution,
submit them to the project, and then…it gets declined. What gives? Why are
they turning their back on your fine, hand-crafted contribution?

Before you get angry: Don’t worry. Everything will be OK. It’s not you, it’s
them. Or maybe it’s you, but it’s still OK (usually). There are plenty of reasons
that your contribution may have been declined, and very few of them have
anything to do with you personally or the quality of your work.

As I said in Interact with the Community, there are many reasons that a project
may decline your contribution. Usually, the reason for declining it won’t be
a mystery. The project maintainers will probably leave a comment on the
contribution or email you to let you know why they’re unable to accept your
contribution at that time. Some of the most common reasons for declining a
contribution are:

• The contribution appeared out of nowhere. With very little to no advance
communication with the project, they were caught by surprise by a con-
tribution they didn’t expect.

• The contribution was good, but it wasn’t necessary. Perhaps you contribut-
ed something that’s not on the project roadmap, something that the project
maintainers had already decided they didn’t wish to include, or something
that someone else in the project had already contributed or was already
working on.

Chapter 9. When It Goes Wrong • 136

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• The contribution was not to project standards. Does the project have coding,
testing, design, or writing standards? Did you check them before submit-
ting your contribution? For a contribution that diverges greatly from the
documented standards, it’s often easier for project maintainers to decline
it than to explain to the creator the many ways in which the contribution
falls short.

• The contributor has not signed the Contributor License Agreement (or a
commit for the Developer Certificate of Origin). Projects that require a
signed CLA or DCO will not be able to accept contributions from unsigned
contributors, no matter how good or useful those contributions may be.

• The project members are mean. It’s very rare, but once in a great while
you may come across project maintainers that won’t accept your contri-
bution simply because they don’t want to. They have no good reason to
decline it beyond not wanting to collaborate with others.

There are ways to prevent your contribution being declined or at least to
prevent the decline being a surprise. If you’ve read this far in the book, you
already know what they are: The three rules of free and open source software
contribution.

1. Read all contributor documentation (and actually follow them).

2. Communicate and confirm before contributing.

3. Ask for feedback before submitting your contribution.

When in doubt, in any FOSS contribution situation, return to these three
rules, and you’ll be able to handle nearly anything…including having your
contribution declined by a project.

Even after following these rules, your contribution may be declined, but you
disagree with the reasons. Pause before replying. It’s possible that you’re
feeling a bit emotional at that moment, and it’s typically better in FOSS to
act rather than react. Give yourself some time to calm down, then respond
to the matter using facts rather than feelings. You may feel that your contri-
bution is worthy of inclusion in the project, but if you can’t prove that with
facts then you’re unlikely to change any minds and your contribution will
remain declined. Remember though, that even if you do have what you feel
are relevant facts, your contribution still may be declined and that’s OK. Don’t
continue arguing simply because you have to be right, must win the discus-
sion. Accept the judgment with grace, thank the maintainers for their time,
and move on.

report erratum • discuss

Your Contribution Is Declined • 137

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Community Problems
People, as I’ve already pointed out, are very complex, difficult, squishy things.
Because communities are composed of people, they are similarly complex,
difficult, and squishy. These factors contribute to communities exhibiting a
lot of problems that, really, are common across most human endeavors. There
are no perfect communities; there are only communities that recognize there
are problems and work to fix them and communities that trundle along
blissfully ignorant of their issues.

No matter which of these two types of communities you join, you’re guaranteed
to come up against problems that are based in human interactions and
community culture. Often it’s possible to work around these issues; once in
a while it’s possible to apply commitment and empathy to help fix them, and
sometimes you may decide either just to deal with the problems or to leave
the community and its problems in your rearview mirror. Which approach
you take is entirely up to you, but it’s important to emphasize that you do
have a choice. At no point should you feel obligated to deal with or fix a
community’s problems. If you find that the community situation is uncomfort-
able to you, feel free to leave the community for a different one.

Unresponsive Community
One of the problems you may experience is that the community is completely
unresponsive. You’ll spend several very valuable hours creating a contribution,
submit it to the project, and then…nothing. The community members never
get around to reviewing your contribution, let alone acknowledging or
accepting it. It’s as though you tossed your contribution into a black hole,
never to be heard from again. Other times they may respond, but it will take
them weeks or months to do so.

There are plenty of reasons why a community may not be quick to engage
with you, and none of them have anything to do with you personally or with
the quality of your contribution. For one thing, there may not be very many
people in the community. The fewer people there are to maintain the project,
the more time it may take for any one of those people to review contributions
as well as to submit their own. Each of those community members, no matter
how many of them there are, is also busy trying to maintain their own life
and the many complexities that come with that. Adding FOSS project main-
tenance on top of that is a burden that leads many community members to
burn out and pay less attention to the project. This itself can lead to a project
falling out of active maintenance. Any of these factors may contribute to a

Chapter 9. When It Goes Wrong • 138

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

slow (or non-existent) response time when you submit a contribution or even
simply a question to a project.

So what can you do about it? Before you submit your contribution, you can
try to get a community member to acknowledge it and give you an estimation
for when you might expect a review of some sort. This acknowledgment is
usually easiest to get by email, real-time chat, or the issue tracker at the time
when you’re confirming that you understand the issue or that the project
needs your contribution. Doing this up front before you even submit your
contribution can help set up expectations on both the submitting and
receiving sides of the relationship and can help smooth the entire process.

After submitting your contribution, you can gently prod people to remind
them that a contribution is sitting there awaiting review. How long you wait
to do this prodding will depend upon your needs, the project community’s
usual turnaround time, and other factors that vary from situation to situation.
Typically it’s polite to wait at least a week before giving the maintainers a
nudge to see whether they’ve seen your contribution. However long you wait,
do be polite when asking people to take time out of their day to review. You’re
unlikely to get the response you want if you’re a jerk to the people whom you
want to accept your contribution.

If weeks pass without hearing from the community, and if no other activity
is happening on the project, it’s possible that the project has fallen dormant
for one reason or another. There are two options you can take here, but both
of them may require a lot of work on your part. The first option is to try to
contact the community and ask whether you can take over as lead maintainer
of the project. This can breathe new life into a project, particularly when the
existing maintainers are too busy or burned out. However, it’s important to
recognize that the project you’re asking to take over is the one that contributed
to that burnout. Think carefully before you take on that burden to make sure
that you can bear it.

The second option is to fork the project, then use your fork instead of the
original project: you create a separate copy of the project (a fork) and make
whatever changes you need without having to wait for anyone to approve your
contributions1. When you fork a project, there’s no requirement to contribute
your changes back to the original project as shown in the figure on page 140.

1. https://opensource.com/article/17/12/fork-clone-difference

report erratum • discuss

Community Problems • 139

https://opensource.com/article/17/12/fork-clone-difference
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Original
Project

(upstream)

Contribute
Work Back?
(optional)

Pull in
Changes?
(optional)

Your
Fork

Project
forked

Your
Fork

Original
Project

(upstream)

Work
Continues

Work
Continues

Work
Continues

Work
Continues

Repeat as needed

You might be thinking, “Great! I’ll just do that and then I don’t have to deal
with those slow losers who won’t acknowledge my contribution!” And, sure,
that’s one way to look at it. However, forking a project should be a last resort.
It is almost always better to work upstream (on the original project) than it is
to fork it to create your own version. If the project is still under active devel-
opment, then it can be a great deal of work to keep your project in sync with
upstream. Without this work, you’re likely to miss vital bug and security fixes,
as well as features that will make the project more useful.

Note as well that while some code forges like GitHub use the work “fork” as
equivalent to a simple git clone of a repository2, in this case, forking is a social
move and can be seen as a hostile move by the original project’s community.
It can come across as you saying, “You’re not doing a good enough job. I’m
going to create my own project based on yours and build a better project and
community, so there, take that.” If you absolutely must fork a project, be
careful how you approach it so you don’t unintentionally cause offense. It’s

2. https://opensource.com/article/17/12/fork-clone-difference

Chapter 9. When It Goes Wrong • 140

report erratum • discuss

https://opensource.com/article/17/12/fork-clone-difference
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

far preferable to try to work with the community on the upstream project than
create your own copy for your own personal use.

Overly Responsive Community
Once in a while rather than silent communities, you’ll experience the other
side of the communication coin: people just won’t shut up about your contri-
bution. Too many people communicating at once can be just as frustrating
as no communication at all. In the case of an overly responsive community,
you’ll end up with far too many cooks in the kitchen. Each contribution
received will have a host of people chiming in with feedback, each asking for
their own preferred changes, and potentially each with differing opinions.
This over-abundance of communication can make it impossible to get project
maintainer approval for your contribution as you try to reconcile conflicting
viewpoints.

While not always the case, an overly responsive community can sometimes
be a sign that the project community is experiencing political problems or
has little guidance or direction. Rather than collaborating to move the project
in a single, agreed-upon trajectory, the contribution reviewers are each
attempting to futher their own agenda or build support from other community
members. Your contribution, unfortunately, is caught in the middle.

What do you do about the case of an overly responsive community? First ask
yourself whether it appears they’re aware of the problem. It may just be that
there are no politics at play, and everyone is just trying very hard to be helpful
in their own special way. Politics or not, the community may not realize that
they’re giving you conflicting information, overloading you with perspectives,
or otherwise making it difficult for you to complete work on the contribution
so it’s ready for acceptance by the project. If this is the case, politely point
out that you’re getting conflicting information and ask them which way they
would like you to go with it. When doing this, it can be helpful to summarize
all of the perspectives. Often listing these in a single spot can show the
reviewers how silly things may have gotten. For example:

Hello! I appreciate all of your help and feedback, but I’m having a hard time rec-
onciling some of the changes folks are asking for. Could someone please prioritize
these requests or otherwise help me make sense of them?

• Make the buttons blue to match the logo
• Make the buttons the green accent color
• Remove the buttons in favor of links
• Merge this login page with registration and use those buttons

Thanks for any help you can give me!

report erratum • discuss

Community Problems • 141

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

After studying the community, you may decide that this sort of consensus
building isn’t going to do the trick because matters are too chaotic or politi-
cally charged. There are a few other options you could try in this case. You
could judge for yourself which is the most popular or prevailing opinion and
focus on satisfying just it. Beware that this may have the effect of taking sides
should there be a political struggle brewing, so make sure you’re comfortable
supporting the associated (or any) political agenda before deciding to go this
route. Another option is to speak with a core contributor, pointing out the
conflicting viewpoints you’re receiving, and ask them to arbitrate the matter.
Depending upon the project, the contribution, the conflict, and the overall
situation, you may even wish to ask a core contributor to collaborate with
you directly. This can help shield you from some of the politics and chaos
and potentially speed up the process of accepting your contribution.

Unfocused Community
Do you know someone (or maybe you are someone) who can’t seem to finish
anything? They’re constantly starting something new—new projects, new
hobbies, new thoughts—but never actually seeing them through to the end.
Some projects are like this as well. Lacking strong leadership or even a basic
project roadmap, the community finds itself constantly shifting gears from
one feature or initiative to another. There may be priorities, but they change
frequently, and that change takes with it the time and energy that had been
devoted to the previous “top” priority. People may be contributing a lot of
work, but none of it is leading anywhere. For instance, the community may
spend two months focusing its efforts on translating the user interface, only
to set that work aside uncompleted as it changes course to focus instead on
adding single-sign-on functionality. If your contribution is a part of that
translation initiative, then when those gears shift, you may find yourself with
a dormant contribution on your hands. It may be accepted, but it may never
be used if the initiative isn’t completed. This can be a problem if you need
that initiative or your contribution released so you can use it at work or in
one of your own projects.

When a community and a project lack focus, one way to handle it is to try to
add a little on your own. It may be possible to gather collaborators from the
community to complete the necessary initiative, or even to do so on your own
if you have the skills and experience needed. By focusing your own efforts on
a single piece of the project like this, you may be able to lead by example. As
others notice, it might become possible to evolve the project toward one that’s
more focused and more likely to complete initiatives rather than abandon
them for the next big thing. This will probably involve developing a project

Chapter 9. When It Goes Wrong • 142

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

roadmap and/or a release cycle, and it will require project management and
negotiation skills. Most importantly, it will require a large commitment in
time and patience from you. This sort of change effort cannot be rushed if it’s
to be successful.

If you don’t have the time (or patience) to lead or participate in the effort to
evolve the project toward one that’s more focused, your only other options
are to become comfortable with the chaos and learn to work within the
project’s shifting tides of priorities, fork the project as described above, or
leave that project in favor of another where your time and contribution will
make a more immediate and positive impact.

Community Politics
As you probably gathered from the Overly Responsive Community section,
free and open source software project communities can sometimes be politi-
cally charged. Frankly, any undertaking involving two or more humans can
be politically charged, but FOSS maintainers, contributors, and users can
be a particularly passionate bunch. That passion often leads to conflict, and
the conflict can lead to politics or other complications. It’s very true that not
all politics is bad. Humans are, after all, political creatures, and we’ve done
a lot of amazing things because of it. However, you all are probably also
familiar with some of the less pleasant things that politics can cause in the
world. FOSS project communities are no different and sometimes can suffer
from the ugly type of politics.

The most common form of negative politics will be in-fighting between factions
in a single project. This faction has one opinion, that faction has another, the
faction over there…well, it’s not clear what their opinion is, but they’re against
what the other two factions are trying to do. Another common form of FOSS
politics is empire building by ambitious community members. For some
people, being seen and acknowledged as important is a priority in their lives,
as is amassing power. Even the small amount of power found in a FOSS
project—such as setting a roadmap or approving changes—can lead some
people to manipulate others and use both contributors and contributions as
pawns to further their agenda.

When you join a project and discover that it chronically suffers from negative
politics, you can of course try to stay out of it. You can send in your contribu-
tions, review submissions, and answer questions without picking a side. This
can be very difficult, but it’s possible. It’s usually easier to evaluate the situ-
ation and then align yourself with a certain faction, but depending upon the
situation, that may not be a desirable option either. If you find you can’t

report erratum • discuss

Community Problems • 143

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

participate in a project without also being a part of its community politics,
but you don’t wish to get involved in those politics, then your best option may
be to withdraw from the community and go find one with less (or perhaps a
different type of) political turmoil.

Rude Community Members
As I mentioned at the start of the chapter, free and open source software does
not always have the rosiest of reputations. While part of that negative reputa-
tion comes from how difficult it is to contribute to some projects, the over-
whelming majority of it comes from the fact that over the years FOSS has,
does, and will play host to a lot of people popularly known as assholes. Some
of you may object to the use of this word and its derivatives, and to you I
apologize, but I will not change my vocabulary here. These people and their
attitudes cause immeasurable damage, and I will not diminish that by soften-
ing my language. In this book, I will not hesitate to call an asshole an asshole.
To do otherwise would trivialize how harmful they are to communities.

You’ll find folks like this wherever people gather, but the less structured
nature of free and open source software is fertile ground for these unsavory
people. Without a central authority, common and documented guidelines for
behavior, or a shared framework for dealing with unwelcoming behavior, these
assholes feel justified in throwing the Golden Rule away and practicing their
assholery with wild abandon.

This assholery takes many forms, but all of them act to make community
members—and especially new contributors—feel unwelcome and uncomfort-
able, even when the actions are not directed at any particular individual.
Some of the many different forms of assholery you may witness include:

• Ad hominem feedback that speaks to the person (“you’re stupid”) rather
than to the contribution (“this isn’t a good idea”)

• Unnecessary negativity in reviews, feedback, and discussions

• Tearing down other people for no reason beyond entertainment value

• “Punching down,” also known as attacking people that are lower in the
community hierarchy

If this sort of behavior makes people feel uncomfortable and unwelcome, why
don’t communities do something about it? After all, a community is what it
tolerates, so if that community tolerates assholes… Many communities have
existed in this uncomfortable, unwelcome state for so long that it’s become
normal for them. They’re no longer aware that this state is a problem, because

Chapter 9. When It Goes Wrong • 144

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

it’s simply “the way we do things around here.” Some members of the commu-
nity may be aware that there’s a problem, but are unable to get the rest of
the community to agree that it’s something that they need to address. If they
are able to gain consensus that something is terribly broken in their commu-
nity, they then hit the roadblock of being unable to reach a similar consensus
as to what to do to fix things.

Throughout this awareness-finding and consensus-seeking, the assholes are
there too. While not always the case, often these people have risen to positions
of power within the community. This position of power frequently has the
effect of amplifying their unpleasantness as their position increases their
confidence that they can do and say whatever they wish without repercussions.
“They can’t get rid of me,” they think, “I’m far too important.” Whether in a
position of power or not, assholes are usually the loudest voices in the con-
versations about what to do about them. They are often clever individuals
and are able to use rhetorical tricks to prevent the community from reaching
consensus or taking action. These people turn the already difficult problem
of community culture change into a nearly insurmountable task.

So what do you do when you come across a community like this, where certain
bad apples truly do spoil the lot? If no one is correcting this behavior, or if
the community does not have or enforce a Code of Conduct, the easiest thing
you can do is to get out; withdraw from the community and go find one where
assholes and assholery are not tolerated. As a new contributor, you’re
unlikely to have the power and influence to change a community that tolerates
behavior like this.

The good news is that while there may be a bad apple in nearly every commu-
nity, more and more communities are both implementing and enforcing Codes
of Conduct. They don’t tolerate assholes in their community, and they’re doing
something about it. There are plenty of projects of this sort where you’ll be
welcomed and your expertise and time will be respected.

How to Tell (Before You Join) That There May Be Community Problems
All that talk of assholes and assholery may be discouraging, but like I said,
there are loads of projects that don’t put up with that crap and where you
can participate without fear of being treated poorly. How do you find them,
though? How can you tell, without participating in the project, whether it’s
a good one or not?

Step one is to see whether the project has a Code of Conduct. If you remember
from Prepare to Contribute, a Code of Conduct (CoC) documents the types of

report erratum • discuss

Community Problems • 145

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

behavior that are both welcome and unwelcome in that project community,
the consequences for unwelcome behavior, and where and how community
members can report it. While a project having a CoC is not a guarantee that
it’ll be a welcoming and safe space for contributing to FOSS, it’s a very
encouraging sign. Alternatively, communities that don’t have a CoC, or where
the conversation about implementing one is very contentious, may be harbor-
ing and tolerating assholes. If a project doesn’t have a Code of Conduct, be
on your guard when joining the community.

Step two is to do your research and see for yourself how community members
treat people. Review conversations on issues, skim the mailing list, lurk on
their real-time chat system. These will give you an excellent view into how
the project maintainers communicate and whether they tolerate unwelcoming
behavior. You can see whether people are mean, impatient, or snarky when
they respond to questions from others, or whether they’re prone to ad hominem
attacks or comments. You also can see whether community members respond
to questions at all. While not responding may not be a sign that the commu-
nity is unwelcoming, it’s certainly not a sign that you’re likely to get much
help with your new contribution, either.

Step three is to ask around. If you know other people who participate in free
and open source software, check with them to see whether they know anything
about that community. You can learn a great deal about a community just
by asking others what they’ve heard about it, even if only through the
grapevine. Problematic communities get reputations, and often there’s a
whisper network that warns people away from the bad ones.

As you do this research, you may find that you’re not very comfortable with
what you learn about the community you’d planned to join. If that’s the case,
carefully consider whether you should still follow through on that plan or
look for a more welcoming and less frustrating project to which to contribute.
You pay for your FOSS contributions with your time, and that’s the most
valuable thing you have. Once you spend it, you never get more, so invest
some of that time in discovering whether a community will treat you with
respect. It’s perfectly OK to change plans and take your skills and time to
another project, one that will appreciate and respect you. You have the power
to choose. Use it.

Sometimes You’re the Problem
Sometimes, I’m sad to report, the asshole in the community is you. Some
people have made a hobby out of being rude and disrespectful. I would like
to think that you’re not one of those people, but we all have bad days when

Chapter 9. When It Goes Wrong • 146

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

we’re rude to others (intentionally or otherwise). If we don’t take steps to curb
this sort of behavior, then we become that person about whom everyone else
whispers behind their back, the one everyone dreads to have review their
contribution, and the one that only other assholes want to sit with at commu-
nity meetups. Do you really want to be that person? For most of us, the answer
is, “goodness, no,” but to avoid it, we all must be aware of our actions and
their potential effects on others.

As a new contributor to a FOSS project, several actions can make someone
look like a real jerk, on the fast track toward full-blown assholery:

• They don’t follow instructions. There’s a perfectly good CONTRIBUTING file
sitting right there in the repository, but they choose to ignore it and go
their own way with their contribution.

• They send a contribution without confirming it’s needed or wanted. Because
naturally no project community would be foolish enough to turn down
the chance to have a contribution from them, right?

• They work alone and isolated rather than collaborate with others. Other
people are such a drag, aren’t they? Always making suggestions and
questioning your judgment. They’re just the worst.

• They act on assumptions rather than facts. No one’s going to mind if they
completely rip out and rewrite the entire object model of the code, honest.
There’s no need to double-check making a change like that, nope. They
go ahead and assume everyone will be OK with it.

• They talk down to people. Look, folks, they’ve read every possible book on
this subject and they know best. Would you just listen to them? Why are
people so stupid?

In summary, any action in which a person comes across as arrogant, self-
absorbed, self-serving, or abrasive is an action that makes them look like a
Grade A Asshole. Every one of these actions comes from a lack of perception,
awareness, mindfulness, and perhaps even caring how actions affect others.
Once in a while, we all slip and do something insensitive like this, and that’s
not a problem as long as we’re aware of it and take steps to make sure it
never happens again. The problem comes when we don’t bother to inspect
our own behavior at all, let alone to learn from it.

This isn’t a self-help book, and teaching you how to become a better person
is outside of the scope here, so I won’t go into that in any detail. I will, how-
ever, encourage you at all points to Start With Yourself First. If you experience
a problem—personal, social, technical, or otherwise—when contributing to a

report erratum • discuss

Sometimes You’re the Problem • 147

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

FOSS project or community, before looking around for someone to blame or
somewhere to finger-point, turn that finger on yourself first. What in your
behavior or actions may have contributed to the problem? What could you
have done differently? How did your reaction to the problem improve or
worsen the situation? What should you be aware of so this won’t happen
again in the future? How can you change your own behavior to create a more
positive outcome the next time?

Ask yourself these questions regardless of whether your actions caused the
problem or not. Get into the habit of inspecting your own behavior before
looking for the other contributing factors to a problem. Ask for feedback from
others. Collaborate to improve the community, starting with improving
yourself. Be humble, be aware, and always be learning.

How to Exit a Community
For whatever reason—good, bad, or indifferent—sometimes you need to
withdraw from a project and its community. How do you do that? You may
be surprised to learn that the reason doesn’t actually matter and has no
impact on the steps you should take to be a good free and open source citizen
as you leave the community. These steps are similar to the ones you would
take if you were to leave a job, so they shouldn’t seem unfamiliar.

• Commit or submit all of your work in progress. If you’ve already started
working on an issue or feature and have made some progress on it, make
sure to submit those changes to the project so others can build upon your
work rather than having to start all over again.

• Leave all issues you’re working on in a good state. “Good state” here means
that it will be easy for someone else to pick up where you left off. This will
require you to restate the problem you’re working on, summarize the
progress you’ve made so far, list what remains to be done, and include a
pointer for where people can locate your work in progress.

• Transfer knowledge. If you haven’t done so already, update (or add) the
documentation with the knowledge and information that you gained
during your time with the project. Without this step, everything you
learned will be lost to the community when you leave.

• Transition access to resources. Do you have access to certain resources,
such as servers or administrative access to repositories? Make sure that
this access is transitioned so it’s not lost when you leave. This also can
help ensure the security of the project. After all, when someone is holding
the keys to the kingdom, you don’t want them to fall into the wrong hands.

Chapter 9. When It Goes Wrong • 148

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• Communicate expectations. If you don’t let people know that you’re leaving,
they may expect that you’ll still be available to answer questions or help
out with development. Drop a quick line to the mailing list (or whatever
communication channel makes sense), letting people know that you’re
leaving, that you won’t be contributing anymore, and how to contact you
should they have questions. There’s no requirement to go into details
about why you’re leaving.

• Leave all communication channels and repositories. Simply unsubscribe
from these things.

That’s all it takes. You’ve now withdrawn from the community. Of course,
depending on what you’ve been working on, this process could take a while
to complete, so don’t try to rush it. Regardless of your reason for leaving the
project and community, it’s always a good idea to be respectful as you with-
draw. Even if you’ve had a bad experience in the community, don’t get angry
and figuratively flip a lot of tables as you storm out. That’s not a good look
for anyone. Take the high road and leave calmly and quietly. Related to that
and to a point I made above: There is no requirement that you must tell the
community why you are leaving. A simple, matter-of-fact, “As of this date, I
will no longer be contributing” is perfectly fine. If the reason you’re leaving is
that the community was unwelcoming, unhelpful, or rude, you may feel
tempted to provide feedback about that on your way out the door. Before you
do so, ask yourself: Would a community that treated you like that care about
your feedback? Would it make any difference? Odds are the answer to both
of these questions is, “no,” so save yourself the time and just walk away from
the toxic environment, with your dignity intact.

You Don’t Have to Feel Trapped
All through this chapter I’ve emphasized that you have the power to get out
of a bad situation. I honestly cannot say this often enough: You do not need
to have a thick skin to contribute to free and open source software. You do
not need to tolerate demeaning or rude communities. You do not have to invest
your time in a project where the community does not respect you. You do
have the power to change your situation. As you come across problems when
contributing to a FOSS project, either the problems detailed here or others,
consider the return on your investment to overcome them. Consider whether
it’s actually worth your time to do so. Consider whether you might not have
other options for projects. And then, if you find that the investment will not
have a good return, withdraw from the project. If the project is unresponsive
or does not appreciate your contribution, withdraw from the project. If the

report erratum • discuss

You Don’t Have to Feel Trapped • 149

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

community tolerates assholes and assholery, withdraw from the project. There
are millions of free and open source software projects out there. Leave the
unhealthy ones behind you and seek out projects where you and your contri-
bution are respected, or if you prefer, you can always start a project and a
community of your own. This can be very fulfilling, but is easier said than
done. The next chapter gives you tips for how to launch your own project and
make it successful.

Chapter 9. When It Goes Wrong • 150

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 10

Start Your Own Project
Contributing to someone else’s project is all well and good, but what about
starting your own? While you could just whip up a project and throw it out
on a code forge somewhere, you’ll get a lot better results if you pay attention
to the small but important details that make a project worth using and worth
contributing to in the first place.

This chapter assumes you want to release a personal project. Releasing a
project for work may share a lot of the same steps, but it’s a different matter
entirely and is covered in the next chapter. Company-released projects often
differ in scope, but they always differ in risk tolerance, intellectual property
considerations, and strategic reasons for releasing the project. These charac-
teristics make a very large difference in how you approach releasing a FOSS
project, and messing them up can result in enormous costs.

Which is to say: This chapter is for your own personal use. If you would like
to release a project for your company, seek professional (FOSS, not psychiatric)
help. Your first stop should be Karl Fogel’s excellent book, Producing Open
Source Software.1 Whereas the book you’re reading tells you all about how to
contribute to a project, Karl’s does a masterful job of telling you how to release
one, especially (but far from exclusively) how to release one from within a
company.

Quick Start Guide to Releasing Your Own Project
I strongly encourage you to read and follow all of the tips in this chapter, but
if you’re in a big rush and simply must get your project out the door immedi-
ately, there’s a very short list of non-negotiable files you must include to
ensure projects of any size can be successful:

1. https://producingoss.com

report erratum • discuss

https://producingoss.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• A README file
• A user guide
• A CONTRIBUTING file
• A Code of Conduct (CoC)
• A license, properly applied

“A Code of Conduct? Really?” I hear you asking, and I answer, “Yes, really.”
Codes of Conduct didn’t used to be required for free and open source project
success, but now they’re table stakes; it’s just something you include, because
your project looks archaic without it. Many people will not participate in or
contribute to a project if it doesn’t have a Code of Conduct, and this mindset
is growing as more people start contributing to FOSS. A CoC is quickly
becoming one of the bare minimum things needed for your project to gain
adoption and contributors. Don’t shortchange your project’s potential by not
including one.

The other three items on the list—a license, a user guide, and a CONTRIBUTING
file—are obviously required. Without a license file, it’s illegal for anyone to
use (or perhaps contribute to) your project without speaking with you. Without
a user guide, it’s very difficult for anyone to gain value from using your project.
Without a CONTRIBUTING file, no one knows how to submit a contribution to the
project.

Overall, these four files tell the story, “I share my project with you under these
free and open conditions. Here’s how you can use it to get things done. If you
find a problem or want a new feature, here’s how you can help. You are wel-
come here and can feel safe in this community.” That’s a very compelling
story and more likely to attract both users and contributors. If attracting
those is appealing to you, make sure your project has these four things at a
bare minimum. However, if the bare minimum isn’t good enough for your
project and you’d like to do things the right way rather than simply right away,
read on.

What Is Your Goal?
You want to release your project as free and open source…but why? It seems
like it’s a silly question with an obvious answer, but is it, really? When you
pause to consider it, you may find that it’s not quite as easy to answer as you
first expected, but that answer can be very useful when considering the steps
that follow. Your goal may be to share the project, but otherwise to minimize
your involvement with it (what we call the “throw it over the wall” method).
This is common with very small projects like utility libraries that your company
doesn’t use often anymore but others may find useful later on. Perhaps you’re

Chapter 10. Start Your Own Project • 152

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

looking for help with development, so you need to build a community of users
and contributors. Projects that can be of use across an industry but don’t
expose any proprietary information can be useful to release in this way,
allowing competitors to become collaborators on non-differentiating function-
ality. Are you releasing it because it’s the right thing to do? Projects developed
using public funding should be accessible to the public who paid for them,
for instance.

Knowing the answer to the question, “What is my goal?” can help you focus
your efforts as you prepare the project for release. If all you want to do is
“throw it over the wall” and get it out there, you may be able to get away with
investing a bit less time and effort in the release preparations. If, instead, you
need to attract and keep users and contributors, then you know already that
you’ll need to spend a lot more time on documentation and procedures before
you release the project to the world. Releasing a well-documented project is
like saying, “Who wants cookies?” at a daycare: it gets attention and makes
you the most popular person in an otherwise crowded room. Just don’t assume
that you know why you’re releasing it or what will be required to do so. Pour
a nice cup of tea and take a few minutes to think it through before starting
work on releasing that project of yours.

Optimize for Community
Unless you are just throwing your project over the wall, you probably want
to attract users and contributors to it, which is to say: you want to build a
community. There are entire organizations2,3 dedicated to helping people learn
how to build communities, so I won’t cover it in detail here. However, if you’ve
gotten this far into the book, you already know a lot of the elements that can
help lead to a strong and effective community. Optimizing your new project
for these elements can put you on the right path toward attracting users,
contributors, and collaborators.

The elements necessary to optimize for community are also those that help
to establish, build, and maintain the trust of other people. It’s important when
implementing these elements that you remain entirely authentic and open.
If you dissemble in any way, even if you think you’re very clever about it,
people will know, and they will rescind any trust they had given to you and
your project. Once that trust is lost, it’s difficult bordering on impossible to
regain. It also undermines the project’s chances of having a good reputation,

2. https://communityroundtable.com
3. https://www.feverbee.com

report erratum • discuss

Optimize for Community • 153

https://communityroundtable.com
https://www.feverbee.com
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

meaning you’re less likely to attract new community members. Step carefully
when establishing these elements to make sure you’re not at risk of that sort
of unpleasantness.

So what are these elements that can help establish, build, and maintain trust
while simultaneously building community? You know them already:

• An enforced Code of Conduct: Having a Code of Conduct in your project
shows people that you care about their comfort, safety, and well-being,
as well as for the overall health of the project. It’s a sign that the commu-
nity is here to improve the project and that unprofessional or rude
behavior, which would sabotage that effort, is not welcome. People know
that they can make their contribution and join the community without
fear of personal and unwarranted attacks based upon attributes such as
gender, sexual orientation, religion, or age among others.

• A CONTRIBUTING guide: A CONTRIBUTING guide is a sign that the project com-
munity understands and has anticipated the needs and difficulties of new
contributors. The guide may have bugs when first launched, but that’s
to be expected. Doing your best to put yourself in the mindset of a new
contributor, understanding their perspective, and trying to provide the
information they need shows potential contributors that you care about
and respect their time.

• Abundant documentation: This entire book is about contributing and
contributors, but they’re not the only ones who require documentation.
Most often someone is a user of the project before they become a contrib-
utor; however, if the user documentation is nearly non-existent, then no
one will enjoy using the project and you’ll have lost a large pool of potential
contributors. Do your best to provide a guide for how to install, use, and
troubleshoot the project. If the project has an API, document that with
all parameters and return values and provide sample code. If you make
it easy for someone to use your project, you’ll be making it easy for them
to join the community as well.

• A responsive community: Users, contributors, and community members
all have the same limited time availability as you. It can be quite frustrat-
ing to have a personal project put on hold because you’re waiting to hear
back on a question or a contribution to a FOSS project. Respect the time
of others and try to build a community culture of quick communication.
That communication doesn’t have to be a detailed answer or review of a
contribution, but it should at least acknowledge receipt of the question
or contribution, express gratitude for it, and set up an expectation for

Chapter 10. Start Your Own Project • 154

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

when the sender can hope to receive a more detailed response…and then
follow through on that promise. Minimizing the times when your project
or community becomes a bottleneck for others helps to establish a very
good reputation.

All of these tips really come down to one thing: Have empathy for others. Put
yourself in their shoes and try to anticipate questions, problems, or needs
they may have. This empathy creates a culture and environment that’s
attractive to new users and contributors and can lead to building a commu-
nity more quickly than you anticipated. It also becomes a lead-by-example
sort of situation. As new community members see you being empathetic and
understanding to new users, new contributors, and new community members,
they themselves are likely to emulate this behavior and be empathetic and
understanding themselves. Empathy becomes, simply, “the way we do things
around here,” and generates a positive cycle of welcoming new members to
your community.

Work in the Open
Before releasing your project, you may have worked on it in secret or just for
your own purposes. Perhaps you enlisted the help of some folks, but in gen-
eral you worked behind closed doors and outside of the potentially critical
gaze of onlookers. That all changes the moment you release it; from there on
out it will be free, open, and public. All of the development processes around
it should similarly be free, open, and public; otherwise you will lose the trust
of your users and contributors both.

These processes are not limited to the mechanical “create contribution-review
contribution-merge contribution” development steps, though they’re certainly
important to perform openly and in the public eye. The processes also include
the product management and roadmap of the project. You may be used to
guiding the project in whatever direction makes the most sense for you and
your purposes, but once you release it and have users, that guiding must
shift to what makes the most sense for the community. While a few large
project communities are able to get away with having a Benevolent Dictator
for Life, even they don’t unilaterally impose their will upon the direction of
the project features and instead consider the overall good to the project and
the community.

Releasing a project implies to the community that you’re open to collaborations
of all sorts. They will expect to have input into the direction of the project and
the ability to shape that direction through their contributions. If you’re not
willing or do not have the time to collaborate or accept contributions from

report erratum • discuss

Work in the Open • 155

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

community members, I encourage you to rethink your decision to release the
project as free or open source.

Keep It Simple, Silly
We in the software world love to get mired down in the details. We’ll spend
hours thinking and arguing about the minutiae, whether we need to or not.
Add to that a tendency toward perfectionism and you have a recipe for what’s
called premature optimization, or trying to optimize a program or process
before you’ve had the chance to see whether that optimization is even needed.
When premature optimization occurs while trying to prepare a project to
release as FOSS, there’s a very good chance that the release will be delayed
indefinitely as everything is over-considered, over-architected, but undoubt-
edly under-documented.

If you’ve never released a FOSS project before, you naturally want to do
everything possible to make sure it goes smoothly. You want every single bug
to be fixed. You want all of the code to be pristine. While that’s admirable, it
does open the door to that premature optimization. Instead of focusing only
on the code, work to keep the entire process and all policies you establish for
the project very simple and as clear as possible. Use the time you would have
spent on premature optimization to make sure that the project and its policies
are well documented. The combination of a simpler, easier to follow process
and clear documentation about it not only encourages people to use and
contribute to your project, but it also saves you time from having to answer
relatively simple questions.

Starting out with simple processes and policies doesn’t preclude adding
complexity later, should you find it necessary. In fact, you’ll find that your
simplicity will scale and allow for modifications much more easily than any
complexity you would have implemented earlier on. This allows for a lot of
flexibility should the project community grow beyond just a few contributors.
Having simple processes also imposes less mental burden on you and the
project community members, who don’t have to work through decision trees
just to decide whether to approve a contribution.

There’s a time and a place for complexity, to be sure, but that time is not
right at the launch of your project into the FOSS world. Keep it Simple. You’ll
be glad you did.

Chapter 10. Start Your Own Project • 156

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Share the Burden Early
It’s becoming more common now to hear stories of FOSS maintainers burning
out and walking away from their projects. This isn’t a new phenomenon; for
as long as there have been free and open source projects, maintainers have
been burning out on them. What’s new is that people are recognizing that
burnout is bad, that they don’t have to put up with it, and that if they share
their stories, they may help inspire others not to burn out like they did.

Now—as you prepare to release your project—is a good time to start thinking
about how to prevent or minimize your own burnout as its maintainer. Much
of the advice in this chapter will help with that, as it will reduce some of the
burden you’ll have in answering questions of users and new contributors.
Setting up your own boundaries is also very helpful, as is sharing what those
boundaries are. For instance, if you can only spare a few hours every other
weekend, include that information in the CONTRIBUTING file to set up expectations
for when they might hear from you.

While documentation, boundaries, and other types of expectation setting will
go a long way toward avoiding burnout, nothing makes as large of a difference
as having other people to help you. By sharing the burden of project mainte-
nance, you reduce the impact on any one person while improving the project’s
bus factor and therefore, also its longevity and resilience. As early as possible,
look for contributors who communicate well, provide quality contributions,
participate in discussions, and are generally engaged with the community.
Then ask these people whether they would like to become a co-maintainer of
the project. You’ll naturally have to sort out exactly what “co-maintenance”
looks like for your particular project, in collaboration with your new partner.
This may take a few conversations or email threads to get right, but once
you’ve all figured out the details, make sure to document them in the project.
This sharing of the collaboration and the role that each maintainer plays in
the project is part of what makes FOSS such a powerful movement and
development philosophy. Open is better.

Select Communication Routes
If one of your goals for releasing the project as FOSS is to start building a
community of users and contributors around it, you’ll need to communicate
with those people. How do you do that? What’s the best communication route
for a FOSS project?

report erratum • discuss

Share the Burden Early • 157

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The glib but true answer is, “The best communication route is the one that
the community will use.” You’re just starting out here, though. How do you
know which communication route your community will use? How can you
make it easy for them to participate and join the community when you don’t
even know what the easiest way is for them to do that?

You could do real user and market research here, reaching out to potential
project users and contributors and asking them for their communication
route preferences. Yes, you surely could do that, or you could recognize that
any decision you make at this time is just going to change once the project
reaches a certain level of community involvement anyway, so you may as well
just start with whatever (reasonable) communication method is easiest for
you. After all, for a while at least you’re likely to be the one and only commu-
nity member on this thing. While considering your user and community
members’ needs is never wasted time, you also have to consider your own.
Maintaining a FOSS project takes a lot of time, so until you have help with
that, anything you can do to make the task a little less onerous on you is a
good move.

Prefer email? Set up a mailing list. Prefer that all communication go through
the issue tracker? OK! No problem! Do you want people to contact you through
a real-time chat system before opening an issue? Great, good to know.
Whatever communication routes and methods you prefer, document those
and share with the nascent community the expectations you have around
communication. It’s perfectly OK for you to have a preference, as long as you
express it and make it easy for people to accomplish their goals while still
meeting your communication expectations.

Whatever communication routes you prefer, keep in mind that if you select
a route that’s easy to locate and use, then people are much more likely
to…well…to locate and use it. While I do encourage you to discover your own
personal preferences as to communication route, I also encourage you to
balance that with the needs of your potential users and contributors. You are
always free to embrace your personal communication route preference of
encrypted messages shuttled by specially trained beagles, but if you do so,
you’re also free not to be surprised when no one bothers to communicate with
you or to use the project.

What About Issue Tracking?
It’s a very rare FOSS project that doesn’t use an issue tracker of some sort.
Yours is unlikely to be an exception to that rule, so if an issue tracker is in
play…how do you want people to use it? Sure, you may think you don’t care,

Chapter 10. Start Your Own Project • 158

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

but that not-caring will last only until someone submits an issue that doesn’t
at all adhere to your previously latent and unexpressed preferences for how
to write a good issue.

Before you release your project, take a few minutes to consider what you
would like to see in an issue, and then, to document those guidelines as well
as guidelines for the care and feeding of an issue. Walk people through the
stages an issue passes through on the way toward completion and/or closure.
If necessary, set up issue tags or statuses to help reflect where an issue is in
its life cycle. Tags such as awaiting review, duplicate, and in development (among
others) not only show people where an issue is in its life cycle, but they also
help reduce the number of questions you receive as people wonder what’s
going on with the issue they reported.

Some hosted version control systems like GitHub and GitLab support defining
templates that display whenever someone starts reporting a new issue. These
templates can be very helpful for gathering the information you’ll need to
reproduce the problem. For instance, if the platform or operating system is
a factor that can influence the performance of the project, you can set up an
issue template to request these bits of information. A template isn’t required,
but you may find that setting up a basic one will help improve the quality of
issues you receive for your new project.

Whatever life cycle you choose for the issues in your project, I encourage you
to keep it as simple as possible. Like I said before, simple is easy to understand
as well as being easy to change. Don’t get stuck in the premature optimization
trap by setting up a complicated Enterprise Grade Issue Workflow for a small
FOSS project. Making it difficult for people to report and work on issues
means you’ve also made it less likely that anyone would want to in the first
place. Do have and document your process preferences, but try not to go
overboard. Keep it lightweight for now and then add complexity later (and
only if it’s actually necessary).

Styleguides
While you should definitely keep things as simple as possible at launch time,
styleguides are one piece of complexity you may wish to add. You may not
have thought about it very much yet, but I suspect you have some pretty
strong opinions on how code, documentation, design, usability, accessibility,
or other elements of a project should be done. If you don’t tell people about
these preferences up front before they start to contribute, you’ll likely find
that the first contribution you receive will be in a style that grates on your
nerves like fingernails on a chalkboard. Why subject yourself to that—and

report erratum • discuss

Styleguides • 159

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

the contributor to having to re-style their contribution—if you can avoid it by
writing up a simple styleguide or two?

The key word there is, of course, simple. A styleguide doesn’t have to be
anything involved, and frankly it’s more likely to be read and followed if it’s
not. A list of preferences contained in a file named coding_styleguide.md or docu-
mentation_styleguide.md can be easy to create, maintain, and use. For instance:

Coding Styleguide

* Spaces not tabs
* 4-space indents
* Start and end curly brackets on own lines, not indented
* Use trailing commas
* Use semicolons

Not sure how to style something? Create an issue with your question.

There are standardized styleguides that you can use if you’d rather not
maintain one of your own. For instance, Google provides styleguides for a
large number of programming languages4. These are available under a Creative
Commons Attribution license and therefore free to use, modify, and redis-
tribute as long as you provide attribution to Google for the original work.
These styleguides are commonly used in software development teams around
the world, so you and your potential contributors may already be familiar
with them. Some of these styleguides are formatted such that they can be
imported or used by an Integrated Development Environment (IDE) or a con-
tinuous integration system, ensuring that the style is applied before someone
merges a non-compliant contribution into the project.

Whatever styleguide you decide to use—your own or one provided by another
group—make sure you enforce it. Rules that aren’t enforced aren’t rules;
they’re just noise and they add unnecessary cognitive burden on everyone
who encounters them. If you don’t have the time or inclination to enforce
styleguides, don’t include any when you launch your FOSS project. But if
you have even a few preferences, you may want to document them in a very
simple styleguide like the previous example.

Select a License
For most of this chapter you’ve probably been thinking, “We’re really concerned
about licensing. When is she going to talk about licensing? Because this is
free and open source software, and we know that means we need to talk about
licensing.” The answer to that is, “Now, at the end of the chapter, because

4. https://github.com/google/styleguide

Chapter 10. Start Your Own Project • 160

report erratum • discuss

https://github.com/google/styleguide
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

it’s the last thing you should do before releasing the project.” The license used
for the project may be influenced by the license on the component parts (for
instance if the project relies on something released under a copyleft or recip-
rocal license), or it may be influenced by business needs. There are many
things you need to consider before selecting a license, and all of those things
were covered earlier in this chapter. Only now, once you’ve completed those
steps, are you ready to start considering which license to apply to the project
before you release it.

Whether I’m speaking with new contributors, people interested in releasing
their projects, or companies engaging with FOSS for the first time, the same
questions come up over and over again: “Which free/open source license is
best? Which should I choose?” The answer to each of these questions—which
if you’ve gotten this far into the book, should not surprise you in the least—is,
“It Depends.”

Objectively speaking, there is no “best” free and open source software license.
Compared against each other, devoid of any other context, there’s no way to
rank them. They simply exist, and have no meaning or significance until
they’re compared with a person’s or project’s needs, beliefs, and preferences.
Once placed against such a backdrop, it can become much easier to see
whether a particular license is a good fit for what the project wishes to
accomplish.

Which is to say: before you choose a license, determine what you wish to
allow or constrain people to do with your project. That’s what licenses do:
define the conditions under which the project may be used by others. So…what
conditions do you wish to impose? Do you want to require anyone who uses
your project, should they distribute their own project, to do so under the
same terms as yours? Do you believe that people should share and share
alike, reciprocally? Do you want to encourage others to support the Four
Freedoms and for your software to be free forever? Then you want to use a
copyleft license like GPLv35. Alternatively, do you just not care at all and just
want to get the project out there under whatever license? Do you not care
what people do with the project after you release it, just as long as you receive
credit for it? Then you want the MIT6 or 3-Clause BSD7 licenses. If your project
is writing, art, or a similar creative work, then you’ll want to use a Creative

5. https://www.gnu.org/licenses/gpl-3.0.en.html
6. https://opensource.org/licenses/MIT
7. https://opensource.org/licenses/BSD-3-Clause

report erratum • discuss

Select a License • 161

https://www.gnu.org/licenses/gpl-3.0.en.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-3-Clause
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Commons8 license instead. The Open Source Initiative maintains a list9 of
the most popularly used licenses, which can serve as a helpful starting point.

If you remember from The Foundations and Philosophies of Free and Open
Source, there’s an entire spectrum of free and open source licenses, spanning
from very reciprocal to very permissive and everything in between. It’s worth
taking the time to think through license selection to make sure you’re
choosing one that reflects your beliefs and your preferences for how people
will use your project. You’ll usually find that once you figure out which license
fits your personal beliefs, you can use it for all projects you release from there
on out, so the selection process may be something you only have to do once.

Myself, I usually prefer to default to the very reciprocal GPLv3 or Creative
Commons Attribution-Share Alike licenses. Usually these suit very well for
what I’m trying to accomplish, but if I’m working with or for clients or others,
then I evaluate those licenses against their particular needs. Sometimes the
GPLv3 ends up being the final selection, other times the Apache or MIT
licenses are better. There’s no real way to tell until you take the time to think
things through.

How to Apply a License
Now that you’ve chosen a license…what do you do with it? You’ll be happy
to learn that you don’t have to do anything Very Official Indeed, such as reg-
istering use of the license with any organization. That’s not necessary, but
applying a license to your project isn’t as simple as slapping a LICENSE file into
the repository and calling it a day. Remember: the license is a legal document
and is tightly intertwined with copyright and intellectual property laws. You
didn’t really think that anything involving a legal document was actually going
to be easy, did you?

OK, that’s not fair of me. In fact, while applying a FOSS license to your project
may be a little tedious, the process itself is usually quite simple. This is one
of the advantages of using an OSI-approved10 license: a lot of the legal com-
plications are already managed by those reviewing and approving the licenses.
All you need to do is select one and do the small amount of work required to
apply it properly.

What exactly is the proper application of a FOSS license? You’re probably
sick of hearing this by now, but: It Depends. Each license has their own

8. https://creativecommons.org/choose/
9. https://opensource.org/licenses
10. https://opensource.org/licenses

Chapter 10. Start Your Own Project • 162

report erratum • discuss

https://creativecommons.org/choose/
https://opensource.org/licenses
https://opensource.org/licenses
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

preferred method for applying it to a project, so you need to do some research
to make sure you use the application method that’s preferred for your
selected license.

While each license varies as to the details of its proper application, the general
guidelines are fairly similar for all of them. What follows are those guidelines,
but they’re just to help you gain familiarity with the basic and bare minimum
required for the process. These guidelines also assume applying a license to
a brand new project, and they in no way cover changing a project’s license,
adding a license to an existing and already-licensed project, or any other
advanced scenario. For anything like that, seek legal counsel before applying
or changing any license. For the basic new-project scenario, use the following
guidelines, but again, always research the specific preferences for your
selected license.

License File
The first step in applying any license to your project is adding the license file
to the repository. This file is typically named LICENSE, LICENSE.TXT, LICENSE.md, or
similar, but the GPL family of licenses prefers that this file be named COPYING.
Whatever you call it, the file must contain an ASCII or Unicode copy of the
exact and complete license text. The only exception to “exact and complete”
is that you must modify the file to include your copyright information. For
instance, if I were to apply the 3-Clause BSD license to a project I was
releasing, I would update the file to include my copyright information as such:

Copyright 2018, VM (Vicky) Brasseur

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

report erratum • discuss

How to Apply a License • 163

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

(INCLUDING,BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVERCAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICTLIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The only change I made in the license above was the very first line. The
remainder of the license file must not be touched. Remember: this is a legal
document. If you’re not an intellectual property lawyer, don’t try changing
the document (and even then I’d recommend against it, as the 3-Clause BSD
is a well-established license).

Most people know to look for a license file in the repository if they wish to see
under which license a project is released, but it never hurts to be helpful in
small ways. I recommend adding a quick license and copyright statement to
the project’s README file to make it that much easier for people to find this
information. It doesn’t have to be anything nearly as formal and dramatic as
the license file above (which is actually quite laid back as licenses go). A
simple line or two is all you need:

Licensing

This project is copyright VM (Vicky) Brasseur and licensed under
the 3-Clause BSD license. Please see `LICENSE` for complete
information.

Copyright Notice
You have a license file, so you’re done, right? Your project is licensed and you
can move on to other tasks? Unfortunately, no. Like I said previously, this
process isn’t as simple as slapping that license file into the repo. The next
step is adding the copyright notices.

At a bare minimum, the copyright notice contains the word “Copyright” fol-
lowed by the name of the copyright holder, the year the work was copyrighted,
and a very brief license statement. This notice must be added to every file in
the repository.

Yes, really. Every file.

The repository is composed of multiple files, which means that there’s a chance
those files can and will be separated. If that happens and the copyright notice
isn’t added to each file, then there’s no way for a file’s recipient to tell either
who to credit for the work or, by virtue of that brief license statement, whether
they’re legally allowed to use your work at all. Therefore, yes, you must have
a copyright statement in each and every file. The task can be tedious, but,

Chapter 10. Start Your Own Project • 164

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

well… We’re in technology. You can probably figure out how to script this
rather than do it manually.

This statement should be placed at the top of every file and be encased in the
comment charaters for the appropriate language. Here’s an example:

<!--
Copyright VM (Vicky) Brasseur, 2018
Licensed under 3-Clause BSD.
Please see LICENSE for more information.
-->

Many people complain that a copyright notice takes up a lot of space at the
top of the file or otherwise complicates their development workflow, but in all
my experience, I’ve not seen a case of a properly formatted copyright notice
causing anything beyond a mild inconvenience, and even that is a rare
occurrence. If you find that you notice and dislike seeing the notice in the
files, most editors and IDEs have functionality or plugins for “folding” this
text so it’s both out of sight and out of mind.

Some licenses, such as Apache, recommend that rather than place your own
name in the copyright notice, you instead use the text Copyright The Authors, 2018,
and then list the project authors in a file named AUTHORS. This can be a very
efficient way to handle having multiple people holding copyright over a single
project file. This approach works even if you’re not using the Apache license,
so you may wish to consider it, if you have multiple contributors to the project
or expect you will have multiple contributors soon after releasing it.

A Note on Copyright Year
In the United States and other countries that are signatories to the Berne
Convention11, as soon as you create a copyrightable work, you automatically
have copyright. In these countries, there’s no need to register for copyright
or otherwise keep track of it unless you wish to sue to enforce your copyright.

Because there’s no need to register for a copyright, there’s also no need to
track the date for your copyright. It can be handy to have this information,
but since most copyrights expire based upon a length of time after the death
of the copyright holder, the date of creation doesn’t really matter. Despite
that, it’s best practice to include a date in your copyright statements and
notices…but which date should you use and when should you update it?

11. https://en.wikipedia.org/wiki/Berne_Convention

report erratum • discuss

How to Apply a License • 165

https://en.wikipedia.org/wiki/Berne_Convention
http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

The most common advice is to use the year of the most recent “release” of a
particular file. Guidance is a bit vague as to what “release” means here. Does
pushing a new version of the file to a repository constitute release of the file?
Or is it only considered a release when the file is bundled into what we in
technology call a “new release” of the entire software package?

To be safe, try this: When a file is first created, use the year that happens in
the copyright notice in the file. If the file is updated in a given year, update
the year in the copyright notice accordingly. If the file is not updated in a
given year, there’s no need to update the copyright notice year for that file.
This method keeps the copyright notices up to date only when they need to
be, and it removes the tedious burden of having to change the year in every
copyright notice in every file every year.

Publish the Project and You’re Done!
You’ve written the docs, you’ve selected and applied a license, you’ve jumped
through the somewhat irritating but necessary hoop of adding a copyright
notice to every file. All that remains in the process is to publish the project.
Since you’re acting on your own behalf here, you’ll most likely use a public
code forge, such as GitLab, GitHub, or BitBucket. Because each of these have
their own specific and well documented steps for publishing a project, I won’t
cover that here. Simply follow the appropriate steps, publish your project,
and stand back to admire your handiwork.

But what if you’re not acting on your own behalf? What if you’re one of the
millions of people who want to contribute to free and open source software
projects as a part of your job? That’s a different matter entirely, and the next
chapter will clear it all up for you.

Chapter 10. Start Your Own Project • 166

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

CHAPTER 11

Contribute for Your Job
Years ago, if you asked your boss whether you could contribute to free and
open source software on company time, they would probably have looked at
you like you had just sprouted another head. In certain cases—a database
or an operating system—you might be allowed to use FOSS in your job, but
it was highly unlikely anyone would allow you to use company resources to
give back to the community. Thankfully those days are starting to be behind
us. It’s now becoming more common for companies to allow staff to make at
least some contributions to the FOSS projects on which their products and
services rely, but we’re not yet to the point where you can take for granted
that your supervisor, team, or company will allow you to contribute while
you’re on the clock, or even while simply using their hardware and materials.

There are many factors that you need to take into account when you want to
start contributing to FOSS as a part of your work duties. You’ve already
learned about some of these factors in earlier chapters, but this chapter
expands on those while collecting all of this information in one place for easy
reference later on. Also, keep in mind that this chapter is only about contribut-
ing to FOSS for your job. It’s not about using FOSS on the job, as that holds
a different sort of risk profile for your organization. Before integrating a FOSS
project in your company’s product, be aware of your company policy as far
as compliance, security, and approved licenses. Some companies, for instance,
have a blanket ban on using the Affero GNU Public License (AGPL) or other
copyleft licenses. Because these FOSS usage policies are highly specific to
each company, I do not cover using FOSS for work in this book.

Contributing to External FOSS Projects
Later on I’ll briefly talk about how to contribute to FOSS projects released by
your company, but the majority of this chapter assumes that what you want

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to do is contribute to projects that are external to your company. These could
be libraries or tools that your company uses as a part of its products or ser-
vices, or it could be a project that you’re fond of for some reason. While the
tips are the same for both of these categories, you may find that you have
more luck gaining permission to contribute to projects that are somehow
important for your company to continue operating. Using company time to
contribute to projects that don’t impact the company, but that you find
interesting, may be a hard sell.

Contributing to external projects can be a risky proposition for your company,
thanks to the many complications that fall under the umbrella of Intellectual
Property Law. If you receive approval to contribute to these projects, you must
be careful not to make any missteps. Doing so can get your company into a
lot of legal problems, and that’s not a good career move for you. Dot all of
your i’s, cross all of your t’s, and be aware that even small contributions
carry a great burden of intellectual property responsibility.

Check Your Employment Agreement
Back in When It Goes Wrong, I spent a fair bit of time discussing the compli-
cations of contributing to FOSS when you’re employed. The short version is
that, depending upon your employment agreement, it’s possible that your
employer owns copyright over all work performed on their equipment, even
if that work isn’t done on company time. While this can cause obvious prob-
lems when you’re trying to contribute on your own time, it also complicates
contributing for work. That’s because a part of contribution, whether it’s
performed under a CLA or DCO or not, is confirming that you have copyright
over your contribution and therefore are allowed to give it to the project. When
you contribute for work, it’s very possible that your employer owns the copy-
right over your contribution, and therefore, without their permission, you
don’t have the legal right to give that work to anyone else.

Remember that copyright ownership grid from When It Goes Wrong? If you
haven’t done so already, get a copy of your employment agreement, read it
carefully, and fill in that grid with who owns the copyright to your work in
the following situations:

• On company time and company equipment
• On company time but your own equipment
• On your own time but company equipment
• On your own time and your own equipment

Chapter 11. Contribute for Your Job • 168

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Unless you’re in the very unlikely position where all of the squares associated
with Company’s show that you own copyright over what you create, you’ll
need to get permission from your company to contribute their copyrighted
work to another party (the FOSS project). When you do contribute that work,
unless your company has said in writing that it has assigned the copyright
back to you, you must put the company down as the copyright holder of the
contribution. The method for doing this varies by situation and project, so
make sure you get that straight before you submit your contribution.

Are There Existing Company Policies?
More often these days you’ll find that your company has a policy for contribut-
ing to FOSS projects. This policy often is based in the software development
department, so if you’re not already assigned there, you may need to ask
someone who is in that department to learn about the policy. Depending on the
company, this policy will define what types of contributions you may make, to
what types of projects, and under what conditions. For instance, some com-
panies may allow employees to contribute to projects that are on an approved
list, while others may allow employees to contribute to any project as long as
their contribution is reviewed by an internal committee prior to submitting
it to the project. Before you start working on a contribution on company time
and equipment, ask your supervisor about the company FOSS contribution
policy. It would be a shame to waste hours of your life working on a contribu-
tion that you’re not allowed to share with the project.

Speaking of your supervisor, even if the company policy allows for contribu-
tions to free and open source projects, do check with your supervisor before
starting work on that contribution. They’re responsible for how you spend
your time while on the job, and they may have higher priority tasks for you
to work on than fixing a bug on a FOSS project. That may not be something
you want to hear, but it’s the stark truth about a job: the company is paying
you for your time and expertise, so while you’re on the job, they get to deter-
mine how that time and expertise is applied. It’s possible that your supervisor
may allow you to spend some of that time on FOSS contributions if you ask,
but it’s guaranteed they’ll be irritated if you spend a lot of company time
contributing when they believe there are other tasks that need doing instead.

Confirming company policy is especially important when the project has a CLA
or DCO that you need to sign before you’re able to contribute. As I mentioned
earlier, in a work-for-hire situation, your employer owns the copyright on any-
thing you produce under the conditions specified in your employment agree-
ment, and under those conditions, you cannot legally sign a CLA or a DCO

report erratum • discuss

Contributing to External FOSS Projects • 169

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

without their permission. Some policies allow for you to sign the CLA or DCO,
others allow signing only after legal counsel reviews the CLA, the project, and
the contribution, and others don’t allow signing at all. It’s very important to
be clear about these policies before you contribute. While intellectual property
laws may not be very important to you personally, they are probably very
important to the organization that pays your salary. Don’t risk your job simply
for a FOSS contribution.

Contributing to Your Company’s FOSS Projects
If the company you work for has projects that it’s released as FOSS, the steps
to contribute to them are obviously going to be very similar to those for con-
tributing to any other free and open source project, with the addition of any
internal steps and processes that your company requires.

It can be very tempting, since the project was released by the company you
work for, to treat it as though it were simply another work product: you take
direction from internal stakeholders, perform the required development, and
then release the product to the public. Don’t do this. Once a project is released
as FOSS, it ceases to be the sole and exclusive domain of the company that
released it and now belongs to the community that forms around it. While the
company still gets a say in the roadmap of the project, the company is now
but one of many stakeholders who must all collaborate to evolve the project
in a direction that benefits everyone. The company cannot dictate its will and
yet remain a community member in good standing. That sort of behavior is
likely to lead community members to fork the project and start a new one
where your company has no influence. The company will have lost all the
advantages of releasing a FOSS project but will have gained a bad reputation.

Instead, it’s very important that the company perform all work on the project
in the exact same way that any other community member would. It must use
the same tooling, develop on the same roadmap, and work and collaborate
in the open. It must engage with the community as equals, not simply as
volunteer developers. How this looks in practice will depend on the company,
the project, and the community. Sometimes a company releases a project but
is unable (or unwilling) to form a community around it or gain any adoption
for the project outside of the company itself. In this case the company natu-
rally has no other collaborators and is free to shape the direction of the project
as it sees fit. Other times a company releases a project, and it gains a com-
munity that includes contributors from competing companies. In this situation,
it may make sense for the company to bequeath the project and its copyrights

Chapter 11. Contribute for Your Job • 170

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

on it to an external non-profit foundation to remove any perception of bias
in the governance of the project.

Because of these and many other potential complications, it’s often advisable
for a company to bring on professional assistance when releasing and man-
aging FOSS projects. Doing so can allow the company to gain all of the benefits
of releasing the software while also building and maintaining a healthy com-
munity and project ecosystem.

Convincing Your Employer to Support FOSS
The remainder of this chapter addresses how to convince your employer to
support free and open source software projects and communities. It’s a
question that I hear so often that not including it would have been negligent.
Note that I say “convince” here, not force, cajole, blackmail, whine, or complain
your way to getting your employer to support FOSS. Stamping your little
princess foot and demanding the company do something is unlikely to get
you the results you want. Instead, you’ll need to understand the company’s
perspective and help the company understand why supporting free and open
source software is in its best interests as well as those of the community.

What Type of Support?
While allowing you to contribute to FOSS is one way that the company can
provide support, it’s far from the only way. Some companies may value your
time more highly than other types of investment in FOSS. Consider all of the
possibilities, and you may discover forms of support that are helpful to the
community while also being palatable to the company. Some of the ways the
company can help to support FOSS projects and community are:

• Money: The most obvious and often the easiest form of investment that
a company can make in free and open source software is to provide
funding. As you know, most projects are developed by volunteers on their
own time, so there’s not a lot of extra cash lying around to pay for things
like meetups and conferences, T-shirts and stickers, bandwidth and
hosting, or any of the other incidentals that help to make a project suc-
cessful. Providing fiscal support to a project community can be a quick
and easy process and does not come with the intellectual property risks
involved with contributions.

• Contributions: Despite those risks, contributions are still a very good way
for a company to support a FOSS project, especially one on which the

report erratum • discuss

Convincing Your Employer to Support FOSS • 171

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

company relies for its own products and services. Providing documenta-
tion, development, design, testing, marketing, or other types of contribu-
tions can help the project evolve more quickly than it would without the
support.

• Staff: At the most extreme end of the contribution spectrum, a company
can dedicate headcount purely for working on the project. This can be
especially appealing if the project is a fundamental, core element of the
company’s product offering. Embedding company staff in the community
as dedicated developers can help ensure that vital piece of software and
its related community are always healthy and evolving.

Benefits to the Company
No matter how you personally feel about supporting FOSS, your employer is
unlikely to make any sort of investment if there isn’t something in it for the
company. They are, after all, in business, and they have a responsibility to
work toward the benefit of the company and its stakeholders. Therefore, before
you approach the company about supporting free and open source software,
consider the benefit that the company will get out of it. Following are some
of the many valuable business benefits from providing this support:

• Word-of-mouth marketing: The holy grail of marketing departments every-
where, word-of-mouth marketing is when people say nice things about the
company. The company doesn’t have to spend a penny on advertisements
or branding efforts, because the customers do all of the talking for them.
Of course, this only works if the customers like the company enough to
tell their friends about it, so the company has to provide good products,
service, and support while also appealing to the customers’ own values.

• Recruiting: Supporting the FOSS projects that are used in their products
and services is a great way for a company to find and recruit new
employees. These candidates are already familiar with the technology the
company uses, which can reduce onboarding times and allow the new
employees to be productive more quickly than someone who isn’t familiar
with the project at all.

• Customer support: The company can approach the community with
questions if it’s having problems using a project. Of course any project
user is free to do this for a FOSS project, but as a community member in
good standing, the company will be well positioned not only to receive a
prompt reply but also to shape any potential fix should one be needed.

Chapter 11. Contribute for Your Job • 172

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

• Research and development (R&D): By collaborating on a project on which
the company relies, the company (and all other community members) can
receive new features and security fixes much more quickly, efficiently,
and reliably than if they were to develop those features entirely on their
own. The community members become force multipliers for each others’
efforts and reduce the time it takes features to get to market.

• Project influence and power: While certainly the least altruistic of these
example benefits, there’s no denying that supporting a FOSS project and
community gives that company influence over the project and potentially
power to direct the project as best suits the company’s needs. Used
wisely, this influence and power can benefit the entire community, not
simply the company. Used poorly, the only thing the company will develop
is a poor reputation both inside and outside the FOSS community.

These are only a few of the benefits the company could see by supporting free
and open source software projects and communities. Obviously not every
company will experience every benefit, and not all benefits are valuable to all
companies. Which ones are best for your specific employer? That’s a question
you need to answer before broaching the topic of supporting a FOSS project.
The benefits don’t have to be anything large or dramatic; they simply have to
be commensurate with the investment you would like the company to make
in the project and/or valuable enough that the company is willing to make
that investment. Take the time to consider which benefits make the most
sense for your company’s situation.

You’ll Need a Plan
Now that you’ve considered what benefits the company should get from sup-
porting FOSS, it’s time to put together your plan for proposing that they do so.
Sure, you could just dive right in there and start pestering people, but you’re
more likely to be successful if you plan first. What you’re doing, essentially, is
asking a business to make an investment. It’s a business deal, and approaching
it in a more business-like manner gives your idea a better chance of being
accepted. This means you not only need to consider the company’s perspective,
but you also need to speak their language. If that means PowerPoint and
spreadsheets, then PowerPoint and spreadsheets it is, but unless you’re plan-
ning to propose a very large investment in supporting FOSS, you may not need
to go to such lengths. Still, knowing what you’re going to say in your pitch and
why will make the entire process go more smoothly.

Revisit those benefits you considered above, and list and format them into
something more easily understood by your audience of business-focused

report erratum • discuss

Convincing Your Employer to Support FOSS • 173

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

decision makers. Don’t turn it into buzzword bingo. Believe it or not, most
business-focused people don’t spend all of their time putting a pin in this so
they can circle around to ideate about leveraging the synergistic potentials of
this green field opportunity. They’re people just like you, they simply have
different priorities in their day-to-day work life than you may. Consider those
priorities when formatting the list of benefits and speak directly to them,
clearly and succinctly. For instance, if you know that your team will be growing
in the next year, rather than saying, “This support will make recruiting easier,”
say, “This support gives us ready access to a pool of highly qualified candidates
already familiar with our technology, making it easier for us to grow the team.”
Instead of, “It will give us a good reputation in the community,” try, “Joining
the community helps to build our company reputation among this group of
well-connected influencers in our industry.” If you’re not used to reframing
things into this sort of language, don’t be afraid to enlist the help of a friend
or colleague with more experience in this area.

Benefits are nice and all, but nothing comes for free. As you’re creating your
FOSS support pitch, you must be very clear about what sort of investment
you’re asking the company to make, in other words, “What’s it gonna cost
us?” You may find that some of your audience wants to know the answer to
this question first, but if possible, try to prime them for liking the overall idea
by leading with the benefits. Once you’ve done that, briefly detail how much
(or little) of an investment is required for the company to see those benefits.
This could be a statement as simple as, “If we sponsor this FOSS conference
for $2000, we get our logo on the website and on all the banners at the event,
plus we get a five-minute talk during the keynotes before an audience of 500
developers.” Or it could be as complex as a budget broken down by expenditure
per month. Be sure to list all of the potential costs, and recognize that they
may not all be monetary. In-kind contributions (for instance, donating the
company’s products and services) and staff time are all part of the investment
package and shouldn’t be overlooked.

The final part of your plan is the implementation details. List the very specific
steps, timings, milestones, and deliverables for the investment, as well as
who is responsible for making them happen and metrics to determine that
everything is still on track. It’s possible that a small investment won’t have
very much happening for implementation. The conference sponsorship, for
example, may not require a lot of coordination or activity beyond wiring
money, sending a logo, delivering a short talk. Alternatively, it could include
a brand awareness study before and after the event to see whether the
investment changed brand perception at all; it all depends on what the

Chapter 11. Contribute for Your Job • 174

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

company needs to justify whatever investment you’re suggesting they make
or to prove that they’re receving the expected benefits. Having implementation
details considered in advance shows your audience that you’ve thought things
through and are not just asking them to make an investment without any
real idea of how to pull off your crazy scheme to support a FOSS project. It
helps to reassure them that their investment is more likely to pay dividends
for the company as well as the community.

Play the Long Game
Depending upon your goals for convincing your employer to support FOSS
projects and communities, it may make sense to start with a very small plan.
Small plans are easier to implement, easier to prove they worked, and can
prove that you know what you’re talking about. Altogether, these characteris-
tics create small successes that can lead to larger forms of support later on.
Just as importantly, should the small plan fail, it’s unlikely to cause much
ill-will in the company. Small investments that provide little to no measurable
benefit are much easier to dismiss than a large investment that flops. For
instance, if your long-term goal is to have the company release some of its
critical utilities as FOSS projects, it may make sense to start by developing
the process to contribute bug or documentation fixes to a library or utility
that the company uses in its products or services. This not only has the effect
of easing the company into contributing to FOSS, but it also lays the
groundwork for the processes and policies that will be required for the com-
pany to release its own projects.

It’s very tempting to dive right in with an ambitious plan to have the company
support a community with development time, in-kind donations, and event
sponsorship, but it’s much more difficult to pull off a plan like that, and it
requires a considerably larger investment in company resources than allowing
people to submit bug fixes to a critical project. When an ambitious plan fails,
it typically fails dramatically and in a way that discourages further investment
in free and open source projects and communities. So even if your Grand Plan
involves several types of investment and involvement, break it up into smaller
bits and start with just one of them to give the plan the best chance of success.

Small or large, any plan takes time to see through to the end. Even with the
relatively simple example of having the company sponsor a small FOSS
community conference, it can take several months from proposing the plan
to seeing any sort of results. For more ambitious plans, it can take even
longer. As you’re creating your plan, take this long time frame into consider-
ation and build it into the implementation milestones. This will set up the

report erratum • discuss

Convincing Your Employer to Support FOSS • 175

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

expectation that, however worthwhile, it will take some time for the company
to see a return on its investment. Setting up that expectation up front can
minimize the pressure to deliver results immediately.

Check with Lawyer and Accountant
Depending upon the type of investment you wish your employer to make in
FOSS, it may make sense to check with the company’s lawyer and accountant
during the plan-making process. It’s smarter to do this up front rather than
being surprised by legal or regulatory problems after receiving approval. This
may not be possible, if these roles aren’t held by people who have full-time
jobs at the company. Some companies have a lawyer and accountant on
retainer, but you may not have access to them. That’s OK. There’s no
requirement to check with them in advance. If you think that their advice will
be helpful, it may suffice to note that in your plan, if only to let people know
that you’re considering all of the possibilities.

Some situations where consulting a lawyer may be wise include anything
having to do with company intellectual property, including FOSS contributions
created on company time or equipment. If the support you have in mind
includes an in-kind donation of company services or products, it can be
helpful to confirm that the company is not taking on a potential liability or
risk with the donation. For instance, if the company donates storage and
hosting to the FOSS project and then the project gets hacked and all of the
private data stored in the company’s service is stolen, will the company be
held liable? It’s good to make sure you know the answers to questions like
this before starting any company FOSS support program.

Accountants come into play whenever money enters the picture, but in par-
ticular, they are very helpful for understanding the potential tax implications
of any support the company provides to a FOSS project. Some of these projects
are members of registered non-profit foundations or are registered non-profits
in their own right. The company’s support may therefore be tax deductible,
which would be an extra benefit. On the other side of the coin, there are some
situations where the company may take on a tax burden with their support.
Were the company to pay a salary to a core project contributor and that person
is not based in the same locale as the company, depending on the location
of the contributor, it may create a new tax nexus for the company. That would
be an unfortunate surprise, so you may want to check with a friend on the
company’s finance team before finalizing your FOSS support plan.

It’s not always necessary to consult a lawyer or an accountant when creating
your plan, but the simple examples above show how valuable it can be to do

Chapter 11. Contribute for Your Job • 176

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

a little due diligence before proposing that the company commit itself to a
potentially risky FOSS support program.

Potential Pitfalls
You may convince your employer to start supporting FOSS projects and
communities in some way, but it’s still possible that things won’t work the
way you expected. As a matter of fact, the entire plan could fail, taking the
company’s investment in FOSS with it. Aside from the obvious reasons for
avoiding this, a side-effect of this failure can be that the company withdraws
from any sort of FOSS support. They may continue to use it, but having been
burned, they won’t again risk making an investment in free and open source
software communities.

These failures don’t occur in a vacuum, and usually you can see them coming
a mile away if only you know to look and prepare for them. Some of the most
common reasons for failure in a corporate FOSS support effort are:

• Lack of preparation: There’s a cliché that says, “if you fail to prepare,
prepare to fail.” It’s cheesy and doesn’t even belong on inspirational
posters, but it’s still a true sentiment. The majority of FOSS support efforts
that I’ve seen fail have been caused by people diving in without appropriate
knowledge of the community or the goals for company involvement.
Spending an afternoon thinking these things through can go a long way
toward ensuring success in the support effort.

• Lack of metrics: You’ve asked the company to invest in supporting a FOSS
project or community, but how can you tell whether the company is
actually getting anything out of it? While good intentions can get you
pretty far in this effort, if you’re not able to show a return on the company’s
investment, then this FOSS support project will be low-hanging fruit when
budget cuts come along.

• Wrong or over abundant metrics: If there’s one thing we’re good at in
technology, it’s collecting data. If there’s one thing we’re bad at in technol-
ogy, it’s using data. As you start the FOSS support project, make sure
you know what the company wants out of it. Without this information,
it’s impossible to find the relevant signal in the noise that is all the possible
data that could come in from the effort.

• Not allowing enough time: All too often, a company will start supporting
a FOSS project or community only to withdraw that support in a few
months because they haven’t yet seen a return on their investment. These
companies haven’t been primed to understand how much time it can take

report erratum • discuss

Convincing Your Employer to Support FOSS • 177

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to receive the benefits of supporting a free and open source project or
community, so they are understandably disappointed. Doing a better job
of setting up expectations about delivery of those benefits, as well as being
open and clear about the milestones of the support effort, can help prevent
that disappointment.

Obviously, these aren’t the only ways a FOSS support effort can fail, but they
are some of the most common. The point isn’t to list all of the various permu-
tations of failure that might beset your planned corporate FOSS support effort,
but to make you aware of some of the possible roadblocks you might face. If
you’re serious about this effort, pay some attention to how the process might
trip on its path and try to clear those roadblocks before you get there (or at
least to route around them). A little foresight really will go a long way.

While the benefits for your company will be a lot different from the benefits
to you as an individual contributor, they’re no less real. Despite the potential
risks, if you take the time to think through the benefits and plan the imple-
mentation of a company FOSS support effort, it can lead to a win-win situation
for company and community alike.

Forge Your Future
And now here you are, some 180 or so pages later, at the end of a long journey
toward learning how to contribute to free and open source software projects.
You may not yet know all there is to know about contributing, but you’ve
successfully learned more than enough to get started and be an effective
contributor and community member. You probably started this book thinking
that it was going to be very technical and were surprised when it was not,
but by now you’ve learned that while technical knowledge and skills are
usually necessary to contribute to FOSS, human knowledge and skills are
much more important for success.

These human skills of empathy and communication are not only more
important than the technical skills, they’re also more difficult to master.
However, you’ll find that while the required technical skills will vary from
project to project, these human skills will apply to all projects equally. Master
these and you’ll find you’re not only able to be a great FOSS contributor,
you’ll also excel in your job, hobbies, or any other undertaking that requires
interaction between people. In this way, contributing to FOSS truly does help
you forge your future.

Chapter 11. Contribute for Your Job • 178

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

APPENDIX 1

Glossary
While many of the terms below can have multiple meanings, the definitions
provided all assume the context of free and open source software projects,
communities, and contributions.

accessibility
The process of opening up access to the software to as many people as
possible. This could mean making sure the color scheme is good for people
who are color blind, confirming that the software is usable by a screen
reader, providing text alternatives to audio content, and other potential
actions that can enable more people to use the project.

ad hominem
A Latin phrase meaning, "to the person," ad hominem statements are those
that address qualities of the person at the receiving end rather than the
qualities of someone’s contributions. For instance, saying, "You’re dumb
for thinking that" is addressing the person and can rightfully be seen as a
personal attack. "That is not a good idea" addresses the concept being dis-
cussed rather than the person who proposed it. Avoid ad hominem state-
ments whenever communicating in FOSS projects and communities.

API
Short for Application Programming Interface. An API is the external “face”
of a piece of software. It details how to communicate with the software
programmatically and allows different software packages to connect and
interact.

atomic commits
A version control commit that addresses a single (usually small) topic,
fix, or feature. Atomic commits are considered safer than large, unwieldy
commits. The relatively small size and scope allow an atomic commit to

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

be reviewed more easily and thoroughly and is easier to roll back should
something go wrong. Both the review and the easy rollback mitigate the
risk of fatal bugs slipping into the project.

BDFL
Short for Benevolent Dictator For Life. BDFLs are rare in FOSS but they
do exist. For example, Guido van Rossum was the BDFL of Python and
Dries Buytaert is the BDFL of Drupal. A BDFL is typically the founder of
the project. They have final say in and can veto all decisions related to
the project, but it’s very rare that they use this power. Typically a BDFL
will lean on the Benevolent part of the title by seeking consensus and
always working toward what’s best for both the project and its community.

birds of a feather
Also known as BoF or Open Space. A BoF is an informal gathering of
people interested in a similar topic. Many FOSS conferences and events
provide BoF meeting space to give communities a way to gather, meet
each other, and discuss matters related to their specific topic.

branch
In a version control system, a branch is simply a pointer to a specific
commit in a repository, creating a new path for work on the repository.
Working on a branch allows you to isolate development from other parts
of the repository, so you can work without risk of affecting unrelated fea-
tures or code.

breakout session
Often called simply sessions, these are scheduled training events at FOSS
conferences. Each breakout session features one or more presenters who
deliver information to the audience. Sometimes a session will be a panel
of people answering questions posed by a moderator.

bug
Something that doesn’t look or act right in a system. Typically bugs are
found in software, but the term is also applied to things like human
interactions, FOSS governance, or other facets of FOSS development.

build
Refers either to the process of creating a distributable version of the FOSS
project or the distributable version itself. The build process will be different
for most projects. It may require compiling code, running a test suite, or
other steps. Causing an error in the build process is called “breaking the
build.”

Appendix 1. Glossary • 180

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

bus factor
A number equal to the number of team members who, if run over by a
bus, would put the project in jeopardy. The worst possible bus factor for
a project (or part of a project) is one. If only one person is familiar with
that piece of the project, and that person goes away for some reason, the
project will find itself in a very uncomfortable position.

CI/CD
Short for Continuous Integration/Continuous Deployment (or Delivery). In
a CI/CD process, merging a commit into a repository automatically starts
running the entire test suite. If all tests pass, then the repository
(including the newly merged change) are automatically deployed to either
a test or production system.

clone
A standalone copy of a repository, or alternatively, the process of copying
a repository.

commit
The process of submitting a change to a version control system, or alter-
natively, another name of the change itself.

commit bit
Having a commit bit means that someone is allowed to merge changes into
the project version control repository. There is no physical thing (bit)
involved. It’s simply a phrase that originates in the access control systems
of legacy version control systems, where a commit access was controlled
by the value of a single binary digit (a bit). Those bits are gone, but the
commit bit term remains.

commit message
Text describing what’s changed and/or fixed in a commit to a version
control system. The commit message should be as detailed as necessary
and include not only what was changed but also why. If the work in the
commit is associated with an issue, the issue number should also be
included in the commit message.

community
A self-organized and self-identified collection of people sharing a concern
or interest. Many FOSS projects have communities associated with them.

continuous deployment
The CD in CI/CD. See the entry for CI/CD for more information.

report erratum • discuss

Appendix 1. Glossary • 181

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

continuous integration
The CI in CI/CD. See the entry for CI/CD for more information.

contribution
Documentation, testing, design, programming, event coordination, or any
other action that helps a FOSS project.

Contributor License Agreement
Also known as CLA. This is a legal document intended to certify that the
person sharing a contribution has the right to do so, and that once the
contribution is accepted, the project has a license to alter, distribute, and
administer those contributions however it sees fit. Once in a while the
CLA will also transfer copyright for the contribution from the contributor
to the project or the project’s organizing body. The intention of a CLA is
to minimize potential legal complications of distributing the work.

copyleft
See the entry for reciprocal license.

copyright
The right given to the creator of a work to decide how and under what
conditions that work may be used by other people and organizations. In
most countries the creator automatically receives copyright over a work as
soon as it’s created, but in countries that have not signed the Berne Con-
vention, the creator may be required to apply for copyright over their work.

core contributor
Someone with extensive knowledge and experience in the FOSS project.
Core contributors usually hold some sort of leadership position in the
project, if only informally. They often are responsible for maintaining the
quality of the project and guide the project’s development roadmap.

design pattern
An accepted best practice for solving a certain type of software design
problem. A design pattern is a very general description of how the problem
is best solved. The generality of the description makes it applicable across
different programming languages and applications.

Developer Certificate of Origin
Also known as DCO. A confirmation by a developer that they have the
right to share their contribution with the project. The developer provides
their confirmation by “signing” their contribution using a -s flag on the
git commit. The DCO is intended as a paperwork-free and low hassle
alternative to the CLA. Because it requires use of git to sign a commit,

Appendix 1. Glossary • 182

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

the DCO can only be used by projects that use the git version control
system and on contributions that are tracked in version control.

diff
Either a specially formatted output showing the differences between two
files (or two versions of the same file), the process of creating the output,
or a utility that creates the output. Often used in conversations about a
contribution, such as “Did you diff this before commiting it?” and “Check
the diff and you’ll see it’s just whitespace changes.”

domain knowledge
Specialized knowledge about a certain topic, industry, or area of interest
(domain). People outside of the domain are unlikely to be familiar with
this knowledge. For instance, a knitter has domain knowledge about how
to read a knitting pattern, the different types of needles available, and
the different types of fibres used in yarns, among other related information.
Domain knowledge is important when making judgement calls about the
design and implementation of a project for a domain. People who have
relevant domain knowledge are known as subject matter experts.

DRY
Short for Don’t Repeat Yourself. DRY is a best practice in software devel-
opment. Any time you find yourself in a situation where you might need
to reuse a piece of code, design element, or other component, DRY
encourages you to pull it out into its own reusable fragment (function,
method, file, or whatever makes sense). In this way, if a change is needed,
it only needs to be made in a single place rather than in a series of
repeated components. This reduces the chance of introducing bugs.

employment agreement
Sometimes called an employment contract or simply contract. This is the
thing you sign or otherwise agree to when you start working for a person
or organization. The employment agreement defines details like how much
you’ll be paid, whether you get vacation time, and—most importantly in
the context of a FOSS contribution—who owns the copyright over what
you create while on the job or while using the employer’s equipment.

environment
In a FOSS context, environment doesn’t refer to trees, oceans, and the
like. It refers to the combination of software and hardware where a FOSS
project runs. If you’re developing the FOSS project, you may have a
developer environment composed of your laptop, a local installation of the
software, and your IDE or text editor. Once you’re done developing, you

report erratum • discuss

Appendix 1. Glossary • 183

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

may install the project in a testing environment running on a single server
in the cloud with limited network ability and a sample database. After
testing is complete, you may install the project in a production environment,
running on a large collection of cloud-based servers that are accessed by
many people and both reads from and writes to a large database.

feature branch
Also known as a topic branch. Simply a branch in the version control
system, created, used, and destroyed as you would any other branch.
What makes a feature branch a feature branch is that you’ve created it
specifically so you can work on a single feature. Once the feature is com-
plete and merged into the main branch of the version control system, you
can delete the feature branch.

forge
Also known as code forge. A web-based service for hosting the source files
for FOSS projects. A forge will usually provide features like access control,
version control, and an issue tracker. Some forges will also provide online
editing for the source files, a wiki, CI/CD services, and other features
related to software development. GitLab, GitHub, and BitBucket are three
popular forges.

fork
For such a short little word, fork carries an awful lot of baggage and
responsibility in FOSS. The original and primary meaning of the word in
this context is to take a copy of an existing project, rename it, and start
a new project and community around the copy. It could also be used as
a verb for that entire process. While this kind of fork requires some tech-
nical work (version control, renaming, things like that), it is primarily a
social action. Despite this existing use of the term in FOSS, in 2008
GitHub decided to use the word fork to represent the action of a git clone
command, instead of using the word clone. The word fork has now come
to mean both copying a project to start a whole new project and commu-
nity, as well as copying (cloning) a project simply to inspect or work on it.

FOSS
Short for Free and Open Source Software. Sometimes you’ll see the same
concept abbreviated F/LOSS for Free/Libre and Open Source Software,
OSS for Open Source Software, or OS for Open Source. This book uses the
abbreviation FOSS.

Appendix 1. Glossary • 184

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

“Free as in…”
Spend any time in FOSS and you’ll very soon see statements that start
with these three words. The three most common variations are “Free as
in Speech,” “Free as in Beer,” and “Free as in Puppy.” The speech and
beer variations are from a quote by Richard M. Stallman and are related
and play on the multiple meanings of free in the English language. “Free
as in Speech” uses free in its libre sense: few restrictions placed on the
thing. “Free as in Beer” uses free in its gratis sense: no monetary cost.
“Free as in Puppy” also plays on the gratis meaning of free, but with the
added complication that comes from bringing a living, breathing thing
into your life. The meaning here is that even if you pay nothing for the
software (or puppy), you are on the hook for its maintenance and welfare.
So while there is no up-front cost, there is an ongoing one.

free software
Software that provides the Four Freedoms. For supporters of free software,
just as all people should be free from slavery, oppression, and abuse, all
software should be free from any restrictions of inspection, use, reuse,
and distribution. For them, software freedom is a moral matter. Nearly
all free software is also open source software.

governance
The way that a FOSS project and its community are run and operated.
This can include the roles in the project (core contributor, contributor,
user), how decisions are made and communicated, whether there are
elections for certain roles and if so how to perform those actions, among
other social and political structures necessary for keeping the project and
its community running smoothly.

hallway track
All of the learning that occurs outside of scheduled sessions (that is, in
the hallway) of a FOSS community conference or meetup. Many people
find the hallway track to be the most valuable part of any conference.

IDE
Short for Integrated Development Environment. A usually complicated
piece of software used to develop other software. Most IDEs include a text
editor, a diff tool, and a debugger along with related software development
tools. Visual Studio and Xcode are two popular IDEs.

infosec
Short for information security. The practice of maintaining the privacy and
security of data and systems, including preventing unauthorized access

report erratum • discuss

Appendix 1. Glossary • 185

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to them, securely deleting data when it’s no longer needed, and being
careful with what data and access is necessary in the first place.

inline reply
When replying to an email, embedding your replies in the body of the
original message, immediately below the piece to which you’re responding,
and optionally deleting the parts of the original message you’re not
addressing in your response. Some FOSS communities prefer that people
use inline replies to mailing list messages.

integration test
Tests to determine whether the individual parts of a system will still work
as expected when you integrate them together. For instance, if you were
running a basic integration test on a car, the wheels may each roll well
individually, but when you attach them to the chassis and test again, you
learn that the wheel wells are too small and the wheels no longer turn.

intellectual property
Anything that’s the result of you using your mind (intellect). Writing,
drawings, technical inventions, music, and other creative works are a few
of the things that qualify as intellectual property. There’s a large body of
law dealing with intellectual property. It covers things like patents,
trademarks, and copyright. Because the work that goes into creating
FOSS is copyrightable, intellectual property is a pretty big deal in free
and open source software.

interface
An interface is how a person or system interacts with a piece of software.
This could be a user interface (UI), a graphical user interface (GUI), a
command line interface (CLI), or an application programming interface
(API). Interfaces are important to get right, as having a difficult interface
of any sort means it’s less likely someone will want to use the software.

IRC
Acronym for Internet Relay Chat, a real-time chat system invented in 1988
and commonly used in FOSS projects and communities. While IRC is a
popular avenue for communication in FOSS, it’s only one of many different
real-time chat options.

issue
Also known as ticket. A general term for all of the bug reports, feature
requests, and support questions related to a FOSS project.

Appendix 1. Glossary • 186

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

issue tracking
The process of maintaining and monitoring a collection of issues. Issue
tracking typically includes ways to comment on, tag, flag, or close/resolve
issues. Nearly every FOSS project will use some sort of issue tracking and
many forges include issue tracking functionality.

license
Also spelled licence. A legal document declaring the conditions under
which a piece of intellectual property may be used. Licenses are the
backbone of FOSS. Without an OSI-approved license, a FOSS project is
not considered “open source”. Without a license at all, it’s illegal for anyone
to use a software project, as doing so violates intellectual property laws.

linting
Static analysis of code (without needing to run it) to find common or
potential errors. There are automatic linting tools for most programming
languages. Linting often occurs as a part of the testing process. Sometimes
a FOSS project will have a linter set up as a part of the CI/CD system,
so each commit to the repository will be linted before it’s merged.

listserv
Another name for a mailing list. The original mailing list software—which
is still under active development today, but no longer used as frequently
by FOSS projects—is named LISTSERV (all caps, yes). The name of this
software became a general term often used for all mailing lists.

lurking
Joining a real-time chat room, mailing list, or other communication avenue
used by a FOSS project, but only listening to the conversations rather
than participating in them. Lurking is a good way to get a sense of the
community around a FOSS project: how they interact, who the key players
are, and whether they’re welcoming to new contributors.

mailing list
An email group on a specific subject. Most FOSS projects use a mailing
list (also known as a listserv) of some variety as one of its communication
routes, and some FOSS projects prefer the listserv to other forms of
communication.

meetup
A typically informal gathering of people. FOSS communities can be glob-
ally distributed, making it difficult to gather and collaborate. Frequently,
instead of a large global gathering, community members who live near
each other get together at meetups to discuss the FOSS project and get

report erratum • discuss

Appendix 1. Glossary • 187

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

to know each other. Sometimes the meetups can be quite large, but usu-
ally they’re no larger than a couple dozen people (and often much smaller
than that).

merge request
See the entry for pull request.

open source software
Software that is released under a license that has been reviewed by the
Open Source Intiative and certified as providing all the freedoms of open
source as detailed in the Open Source Definition. Software released under
a license that is not approved by OSI by definition cannot be “open source”
software, since it is not guaranteed to provide the freedoms defined in the
Open Source Definition.

Pac-Man Rule
When standing or sitting around in a circle having a conversation, leave
a gap in the circle. This gap—which if viewed from above would make the
circle resemble the Pac-Man video game character—provides an opportu-
nity for others to join in the conversation. The Pac-Man Rule is an effective
way to strengthen a community by creating a space that’s more inclusive
of people who may otherwise lack the confidence to step into a closed
circle.

pastebin
A web-based service for pasting then sharing large blocks of plain text.
Pastebins help to keep emails, issues, and real-time chats more readable.
Rather than, for instance, pasting a long log file into an email, you can
paste that log into a pastebin then share a link to it in the email. It’s best
practice in FOSS communities to use a pastebin to share plain text that’s
more than a few lines long.

patch
See the entry for pull request. This may also refer to the patch utility,
which is used for creating a patchfile that can be submitted as a contribu-
tion to a FOSS project.

permissive license
A type of open source license that states that someone who makes a
change and redistributes the software is permitted to change the terms
and conditions under which someone can use the new distribution (also
known as a derivative work). In other words, derivative work can be
released under a different license from the original work, even if that

Appendix 1. Glossary • 188

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

license is proprietary. The Apache License and MIT License are two popular
permissive open source licenses.

ping
Mentioning someone in a real-time chat system. So called because some
real-time chat clients notify the person of the mention with a sound or a
visible change to the client. Sometimes used as a verb for generally
reaching out to someone: “I’m going to ping Ioana about the high load on
the production server.”

platform
The environment that runs a piece of software. Platform can include
operating system, browser, chipset, and other relevant components of the
system. Which components are relevant depend on the software being
run. For instance, for a web-based Javascript application, the user’s
browser, browser version, and operating system may be the only relevant
components, whereas for compiled software, chip architecture and oper-
ating system may be the most relevant components of the platform.

premature optimization
Spending a lot of time and effort to “improve” something before you know
whether or what type of improvements are needed. Premature optimiza-
tions can devour a lot of valuable time and are considered a worst practice
in software development.

Principle of Least Astonishment
A convention in software and system design which says that if a design
has the chance to surprise people with an unexpected interface or result,
then that design should be thrown out in favor of one that will not surprise
anyone. While it’s usually applied to software development and user
interface design, the Principle of Least Astonishment works in all situations
where people might be caught off guard. For instance, if you would like
to institute a new rule or policy in a community, discuss it and its reasons
first, rather than simply popping it on people.

project
A collection of software and the people, policies, and procedures that come
together to build and maintain that software. If the software is released
under an OSI-approved license, then this collection is called an open
source project.

proprietary license
A software license that is not approved by the Open Source Initiative.
Most proprietary licenses are created by companies and organizations for

report erratum • discuss

Appendix 1. Glossary • 189

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

the software that they sell and release as a part of their product or service
offerings, and therefore are an important part of the business of software.

pull request
Also known as a merge request or a patch. A type of contribution to a
FOSS project. By submitting the contribution, you are requesting that
the project pull (merge) it into the main repository. Pull requests can be
code, documentation, designs, or anything else that is stored in the
project’s version control system.

real-time chat
An online service that allows people to communicate in real time using
text- and image-based messaging. Most FOSS communities use some sort
of real-time chat system as one of their communication routes. IRC,
Mattermost, Telegram, Discourse, and Rocket.chat are some popular real-
time chat options used by FOSS communities.

reciprocal license
Also known as copyleft license. The conditions of a reciprocal license
ensure that a work released under one can never be released under a
license that may in any way remove or diminish any of the original rights
and freedoms granted to the user by the license. A redistributed or
derivative work released under a reciprocal license must also not add new
restrictions to what the user may do with the work. This ensures that the
work, once freed, will forever be free. Reciprocal licenses also have a
requirement that if a work licensed under one of them is included in a
derivative work that is then redistributed, that derivative work must be
released under the same terms and conditions as the reciprocally-licensed
work. That is the reciprocal nature of this type of license: if your creation
benefits from a reciprocally licensed work, then anyone who receives your
creation must similarly benefit. The GNU General Public License (GPL) is
the most common reciprocal license. Some others are the GNU Lesser
General Public License (LGPL) and the Mozilla Public License (MPL).

repository
Often abbreviated as repo. A version-controlled collection of code, docu-
mentation, images, and any other files necessary for the operation of the
FOSS project. Repos usually have a single, central source. Each copy
(clone) of that central source is also called a repo, but may be called a
local repo to distinguish it from the central source.

Appendix 1. Glossary • 190

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

roadmap
An ordered plan for the development of a FOSS project. A roadmap usu-
ally includes a list of features and bug fixes, loosely organized into a
release schedule. Having a roadmap allows the FOSS project to plan the
resources and time required for development, while also allowing it to
establish feature delivery expectation for the users of the project.

RTFM
Short for Read The F’ing Manual. The meaning of the F in this acronym
is left as an exercise for the reader. The acronym is often used in FOSS
project communication as a not-so-gentle reminder to people that they
should read the documentation prior to asking questions. While it can
get the attention desired, using RTFM in conversation is often rude and
unhelpful. It’s far more effective to send a link to the appropriate docu-
mentation.

scope creep
When a feature or bug fix starts with a small set of requirements, but
over time accumulates more and more requirements, greatly increasing
the scope (and therefore also the risk as well as the time to complete) for
the feature or bug fix. Scope creep is an anti-pattern in software develop-
ment and should be avoided by any means possible.

scrollback
In real-time chat systems, the conversation that occurred while you were
away from the chat session. Some systems store this for you automatically,
while others (such as IRC) require a special setup to store and view
scrollback.

significant whitespace
In programming languages, whitespace (space and tab characters) that
has semantic and syntactic meaning in the code. This means that if you
get the whitespace wrong, the program will not work (or not work as you
expect). Python is the most popular programming language that uses
significant whitespace. Some others are Haskell and YAML.

source control
See the entry for version control.

squash
Taking a series of version controlled commits and condensing (squashing)
them into a single commit. Some FOSS projects require a commit squash
before you submit your contribution.

report erratum • discuss

Appendix 1. Glossary • 191

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

subject matter expert
Also known as SME. See the entry for domain knowledge for more infor-
mation.

test suite
A collection of unit, integration, and other tests run against software to
ensure that it does what is expected (and does it in the right way). Running
a test suite is typically an important step in CI/CD.

ticket
See the entry for issue.

top posting
When replying to an email, placing your replies at the top of the message
and leaving the original message untouched below it. Some FOSS commu-
nities prefer that people use top posting when replying to mailing list
messages.

topic branch
See the entry for feature branch.

triage
Reviewing an issue to confirm you understand the problem, can duplicate
it, and it isn’t already fixed elsewhere. Doing issue triage takes time up
front, but it saves time during the implementation of the fix for the issue.
While some FOSS projects prefer that more experienced contributors
triage issues, others are thrilled to have less experienced people lend a
hand as the first responders to any new issues that arrive.

unconference
A “conference” where the session schedule is emergent and defined by
the attendees, who also provide the material for each session. The entire
conference therefore is driven by its participants. The freeform schedule
of an unconference allows a FOSS community to discuss topics that are
most relevant to them at that very moment, unlike a regular conference
schedule that may be determined months in advance.

unit test
A test of one discrete piece of a software system. The unit being tested
should be the smallest reasonable piece of the overall piece of software,
for instance a method or function.

upstream
The primary repository for a FOSS project. All clones of that repository
are considered to be downstream. It’s best practice to push changes to

Appendix 1. Glossary • 192

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

downstream repositories back upstream, sharing them as contributions
to the FOSS project.

UX
Short for User eXperience. Every interaction that a person has with a
FOSS project and its community contributes to that user’s experience
with the project. Optimizing for a positive UX is the best way to increase
a project’s user base and therefore also its community.

version control
Also known as version control system, source control, and VCS. Processes
and tools for tracking and maintaining a collection of files as they are mod-
ified. Version control can be used for source code, configuration files, docu-
mentation, design artifacts, or any other digital file. Version controlled files
can be edited by multiple people—sometimes even simultaneously—and
then all of the edits can be merged into a canonical version of the file. At
the time of writing, git is the most popular version control system for free
and open source software projects. Examples of other VCSs are Subver-
sion, Mercurial, Perforce, and CVS.

whitespace
Space and tab characters. For some programming languages, the amount
of whitespace in the code can make a big difference to how the software
operates. See the entry for significant whitespace for more information.

word of mouth marketing
Marketing outreach that’s encouraged by a person or organization but is
implemented independently by individuals sharing their own opinions.
Also known as, “telling your friends and colleagues about things that you
like.” Word-of-mouth marketing is very effective for building a positive
brand; many companies participate in and support FOSS projects and
communities to gain a good reputation among the community members
who may then tell their friends about just how great the company is for
providing its support.

WSL
Short for Windows Subsystem for Linux. A method for running Linux
utilities and programs on the Microsoft Windows operating system. WSL
is a critical tool for people who wish to contribute to FOSS projects but
who do not have access to a computer that runs Linux or macOS, since
most FOSS projects assume that their contributors are not running
Windows and do not optimize their contribution processes for it.

report erratum • discuss

Appendix 1. Glossary • 193

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Bibliography

[BBFV01] Roy F. Baumeister, Ellen Bratslavsky, Catrin Finkenauer, and Kathleen
D. Vohs. Bad Is Stronger Than Good. Review of General Psychology. 323-
370, 2001.

[Del17] Laura Delizonna. High-Performing Teams Need Psychological Safety. Here’s
How to Create It. Harvard Business Review. https://hbr.org/2017/08/high-
performing-teams-need-psychological-safety-heres-how-to-create-it, 2017.

[Sca07] Walt Scacchi. Role Migration and Advancement Processes in OSSD Projects:
A Comparative Case Study. 29th International Conference on Software
Engineering (ICSE’07). 2007.

[YK03] Y. Ye and K. Kishida. Towards an Understanding of the Motivation of Open
Source Software Developers. 25th International Confererence on Software
Engineering (ICSE’03). 419-429, 2003.

report erratum • discuss

http://pragprog.com/titles/vbopens/errata/add
http://forums.pragprog.com/forums/vbopens

Index

A
accessibility, 57, 82, 179

ad hominem, 76, 144, 179

antipatterns, 78

Apache License, 13

API (Application Programming
Interface), 179

asynchronous communica-
tion, 16–17, 19

atomic commits, 61–62, 75,
179

AUTHORS file, 33, 165

B
BDFL (Benevolent Dictator

For Life), 28, 180

best practices, 19

BitBucket, 65

BoF (birds of a feather), 115,
180

book, Producing Open Source
Software (Fogel), 151

branch, 180
creating, 60
feature branch, 60, 184
removing, 70

breakout sessions, 117, 180

buddy system, 117

bugs, 180, see also issue
tracking

build, 63, 79, 180

burnout, avoiding, 157

bus factor, 18, 157, 181

C
career development, 20–22

CHANGES or CHANGELOG file, 33

CI/CD (Continuous Integra-
tion/Continuous Deploy-
ment), 63, 181

CLA (Contributor License
Agreement), 12, 36–37,
132, 169, 182

clone, 59–60, 140, 181

CoC (Code of Conduct), 31,
122, 145, 152, 154

code forge, see forge

Code of Conduct, see CoC

code reviews, 77–80

coding styleguide, 159–160

collaboration skills, 17–18

commits, 181
atomic, 61–62, 75, 179
commit bit allowing, 28,

181
commit message for, 19,

66, 181

communication
in conference calls, 110–

111
expectations, setting, 94–

95
guidelines for, 31, 91–

94, 122, 146–148
in issue tracker, 102–107
in mailing lists, 96–102
personal networking, 22–

23, 115, 117–120
in real-time chat, 107–

110

routes for, 34–35, 95–
111, 157–158

skills for, learning, 16–17

community, 181
building, 153–155
communication guide-

lines for, 31, 91–94,
122, 146–148

communication routes
for, 34–35, 95–111,
157–158

conferences, 114–115
evaluating before joining,

145–146
face-to-face meetings,

113–126
getting help from, 90–92,

108, 133–135, 157
language barriers in,

134–136
moving up in, 124–126
offering to help, 85, 89
politics within, 141–144
reputation of, 127–128,

144
responsiveness of, 138–

142, 155
roles within, 27–29, 124–

126
rude members in, 144–

148
unfocused, 142–143
withdrawing from, 148–

150

company, see employer

conference calls, 110–111

conferences, 114–115, see al-
so face-to-face meetings

contact information for this
book, xiii

Continuous Integration/Con-
tinuous Deployment,
see CI/CD

contract, see employment
agreement

CONTRIBUTING or CONTRIBUTORS
file, 30, 48, 57, 64, 132–
134, 152, 154

contributions
acceptance of, 89
choosing project and task

for, 39–51, 54
committing periodically,

61–62
to employer’s projects,

170
expectations for, setting,

94–95
to external projects, for

employer, 167–170
feedback on, providing,

76–77
feedback on, receiving,

68–70, 87
goals of, 39–42, 45, 51
maintenance of, 89
process for making, 53,

57, 132–134
rejection of, reasons for,

88, 136–137
review of, providing, 74–

80
review of, receiving, 68–

70, 87
simultaneous, limiting,

89
submitting, 64–67
success of, evaluating, 51
testing, 62–64
types of, 26–27, 73, 85,

182
whitespace in, 58–59
Windows-based, 71–72

Contributor License Agree-
ment, see CLA

contributors
benefits to, 15–23, 172–

173
burnout of, avoiding, 157
core contributors, 28,

182
interests of, 43
new contributors, 28
non-core contributors, 28
self care of, 120–122,

145–146, 149

skills of, 43
time availability of, 44

COPYING file, 30

copyleft, see reciprocal license

copyright, 10–13, 129–132,
168–169, 182

copyright notices, 164–166

copyright year, 165

core contributors, 28, 182

Creative Commons, 4

CV (curriculum vitae), 21

D
DCO (Developer Certificate of

Origin), 36, 132, 169, 182

design patterns, 182

Developer Certificate of Ori-
gin, see DCO

development environment,
see environment

diff utility, 63, 67, 183

division of labor, 17

documentation
as contribution, 26, 49,

54, 57, 61–62, 88
importance of, 154
for project, 29–34, 48, 64
reading before asking

questions, 90, 191
reviewing, 74, 80
styleguide for, 32, 159–

160
testing, 81

domain knowledge, 43, 183

Don’t Repeat Yourself,
see DRY

downstream, 192, see al-
so clones

DRY (Don’t Repeat Yourself),
79, 183

E
email, see mailing list

employer
external projects used by,

contributing to, 167–
170

policies regarding contri-
butions, 169–170

projects released by, con-
tributing to, 170

supporting FOSS, bene-
fits of, 172–173

supporting FOSS, legal
issues, 176

supporting FOSS, plan-
ning for, 173–176

supporting FOSS, poten-
tial problems, 177–178

supporting FOSS, types
of, 171

employment agreement, 129–
132, 168–169, 183

environment, 183
for testing, 54–55
text editor for, 55–56

error handling, 79

F
F/LOSS, 9, 184, see al-

so FOSS

face-to-face meetings
benefits of, 115
buddy system at, 117
Code of Conduct for, 122
down sides of, 116
hack nights, 123
personal networking at,

117–120
self care at, 120–122
starting your own, 122–

124
types of, 113–115

feature branch, 60, 184

feature requests, see issues

feedback on contribution
providing, 76–77
receiving, 68–70, 87

files for project, 29–34, see
also specific files

Fogel, Karl (Producing Open
Source Software), 151

forge, 184

fork, 59–60, 139–141, 184

FOSS (Free and Open Source
Software), 184, see al-
so community; contribu-
tions

benefits to contributors,
15–23, 172–173

history of, 5–8
misconceptions regard-

ing, 1
organizations supporting,

3
philosophies of, 2, 6–9
related movements, 4
reputation of, 127–128,

144
as social movement, 1, 3

Index • 198

terminology and naming
of, 8–10, 179–193

as ubiquitous, 2

founder, 28

Four Freedoms, 6, 185

Free and Open Source Soft-
ware, see FOSS

“Free as in…” statements,
185

free software, 5–6, 8–9, 185,
see also FOSS

Freenode IRC network, xiii

G
GitHub, 3, 12, 65, 132, 159

GitLab, 12, 65, 159

GNU General Public License,
see GPL

GNU Lesser General Public
License, see LGPL

governance, 27, 185

GPL (GNU General Public Li-
cense), 14

H
hack nights, 123

hallway track, 117, 185

I
IDE (Integrated Development

Environment), 55, 185

infosec (information security),
84, 185

inline replies, 100, 186

INSTALL or INSTALLATION file, 33

Integrated Development Envi-
ronment, see IDE

integration tests, 57, 62, 186

intellectual property, 186, see
also copyright; employment
agreement

interface, 186, see also API
design patterns for, 182
design principles for, 94,

189
testing, 81

IRC (Internet Relay Chat),
xiii, 35, 107–110, 186

issue tracking, 187
closing issues, 106–107
communication in, 102–

107
maintaining issues, 105–

106

opening issues, 103–105
project guidelines for, 34
searching for tasks, 49–

51, 54
setting up, 158
tools for, 18, 34
triage issues, 56–57, 83,

192
types of issues, 180, 186

J
job, see employer

L
language barriers, 134–136

leadership roles, 28

LGPL (GNU Lesser General
Public License), 14

LICENSE file, 30

licenses, 10–14, 152, 187
applying, 162–166
choosing, 160–162
file name for, 163
OSI-approved, 8
permissive, 13, 188
proprietary, 189
reciprocal (copyleft), 13,

190
types of, 13–14, 161–162

linting, 57, 187

listserv, see mailing list

lurking, 108, 187

M
mailing list (listserv), 35, 90,

96–102, 187

maintainers, see core contrib-
utors

marketing, word of mouth,
172, 193

meetups, 187, see also face-
to-face meetings

merge request, see pull re-
quest

Microsoft Windows-based
contributions, 71–72

MIT License, 13

Mozilla Public License, 14

N
networking, human, 22–23,

115, 117–120

O
The Octoverse, 3

onion metaphor for roles, 27

online resources, for this
book, xiii

open movements, 4

Open Source Definition, 7

Open Source Initiative,
see OSI

open source software, 6–9,
188, see also FOSS

Open Space, see BoF (birds
of a feather)

Opinions, see Very Strong
Opinions

OSI (Open Source Initiative),
6, 13

OSS (Open Source Software),
see FOSS

P
Pac-Man Rule, 119, 188

pastebin, 188

patch, 67, 188, see also pull
request

permissive license, 13, 188

personal network, 22–23,
115, 117–120

philosophies of FOSS, 2, 6–9

ping, 109, 189

platform, 189

politics within community,
141–144

portfolio of skills, 21

premature optimizations,
156, 189

Principle of Least Astonish-
ment, 94, 189

privacy issues, 84

Producing Open Source Soft-
ware (Fogel), 151

project, forking, 139–141

projects, 189
choosing which to con-

tribute to, 39–49, 128–
129

cloning and branching,
59–60

employer’s, contributing
to, 170

external, contributing for
employer, 167–170

files in, 29–34

Index • 199

finding, 45–47
goals of, 152–153
installing, 54
premature optimizations

of, 156, 189
releasing as FOSS, 155–

156
roles within, 27–29
starting for your compa-

ny, 151
starting your own, 151–

166
task for, choosing, 49–

51, 54
workflow for, 57

proprietary license, 189

public portfolio, 21

pull request, 65–67, 190

R
Read the F’ing Manual,

see RTFM

README file, 29, 164

real-time chat, 35, 107–110,
190

rebase, see squash

reciprocal (copyleft) license,
13, 190

repository (repo), 190
branch of, 60, 70, 180
clone of, 59–60, 181
feature branch of, 184

resources, for this book, xiii

resume, 21

reusable code, DRY best
practice for, 183

review of contribution
providing, 74–80
receiving, 68–70, 87

risk management, 18

roadmap, 191

roles within project communi-
ty, 27–29

RTFM (Read the F’ing Manu-
al), 90, 191

S
scope creep, 191

scrollback, 109, 191

security issues, 84

self care, 120–122, 145–146,
149

sessions, see breakout ses-
sions

significant whitespace, 58,
191, see also whitespace

skills
learning while contribut-

ing, 15–23
required by project, 43

SME (subject matter expert),
192, see also domain
knowledge

social movement, FOSS as,
1, 3

source control, see version
control system

spaces, see whitespace

squash, 61, 67, 191

Stallman, Richard M., 5–6,
185

styleguides, 32, 159–160

subject matter expert,
see SME

success, defining, 51

support questions, see issues

T
tabs, see whitespace

tasks for contribution, choos-
ing, 49–51, 54

technologies, learning, 20

test suite, 192

testing, 62–64
coverage for, reviewing,

80
environment for, setting

up, 54–55
integration tests, 57, 62,

186
linting, 187

providing, 80–82
unit tests, 57, 62, 192

text editor, 55–56

“throw it over the wall”
method, 152–153

tickets, see issues

top posting, 99, 192

topic branch, see feature
branch

triage issues, 56–57, 83, 192

U
unconference, 192

unit tests, 57, 62, 192

upstream, 140, 192

User eXperience, see UX

user guide, 152, see also doc-
umentation

users, 29

UX (User eXperience), 193

V
version control system (VCS),

19, 61, 159, 193, see al-
so repository

Very Strong Opinions, 32

W
whitespace, 193

project requirements for,
58–59

significant, 58, 191

Wikipedia, 4

Windows Subsystem for Lin-
ux, see WSL

Windows-based contribu-
tions, 71–72

word of mouth marketing,
172

word-of-mouth marketing,
193

work for hire, 11

WSL (Windows Subsystem for
Linux), 193

Index • 200

Thank you!
How did you enjoy this book? Please let us know. Take a moment to email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

Level Up
From daily programming to architecture and design, level up your skills starting today.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at
a job interview, you’re missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(220 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

https://pragprog.com/book/bhwb
https://pragprog.com/book/jwdsal

Better by Design
From architecture and design to deployment in the harsh realities of the real world, make
your software better by design.

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/mkdsa
https://pragprog.com/book/mnee2

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/vbopens
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/vbopens

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/vbopens
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/vbopens
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	What’s in This Book?
	What’s NOT in This Book?
	Who Should Read This Book?
	Why Is This Book Not Openly Licensed?
	Suggestions, Errata, or Questions?
	Credits
	Acknowledgments

	1. The Foundations and Philosophies of Free and Open Source
	It’s About the People
	Why Learn About the Philosophies?
	Free and Open Source Software Is Everywhere
	Other Open Movements
	The Origins of Free Software
	The Origins of Open Source
	Difference Between Free Software and Open Source
	An Aside About Terminology
	A Brief Introduction to Copyright and Licensing
	Types of Free and Open Source Software Licenses
	Now You Have a Strong Foundation

	2. What Free and Open Source Can Do for You
	FOSS Benefits to Your Skillset
	FOSS Benefits to Your Career
	FOSS Benefits to Your Personal Network
	Benefit from Preparation

	3. Prepare to Contribute
	Ways to Contribute
	Common Project and Community Roles
	Files You Should Know About Before You Start
	Issue Tracking
	Common Communication Routes
	Contributor License Agreement/Developer Certificate of Origin
	You’re Ready to Find a Project

	4. Find a Project
	Set Your Goals
	Collect Your Requirements
	Collect Candidate Projects
	Select a Project
	Select a Task
	What Is “Success”?

	5. Make a Contribution
	Prepare for Your Contribution
	Craft Your Contribution
	Gotchas
	Clone and Branch
	Atomic Commits
	Test Your Contribution
	Submit Your Contribution
	Review, Revise, Collaborate
	Tidy Up
	Special Considerations for Windows-based Contributors
	There’s More to Contributing Than Just Code

	6. Make a Difference Without Making a Pull Request
	Review Contributions
	Provide Testing
	Triage Issues
	Volunteer for the Less Interesting Things
	There Are So Many Options

	7. Interact with the Community
	After Your First Contribution
	Get Help
	General Tips for Participating in Discussions
	The Importance of Setting Up and Maintaining Expectations
	Communication Channels and How to Use Them
	Mailing List
	Issue Tracker
	Real-Time Chat
	Conference Call
	Only the Tip of the Iceberg

	8. It's About the People
	Get Together
	Tips for Coping at a Conference or Meetup
	Form Your Own Meetup
	Moving up in the Community
	FOSS Is People

	9. When It Goes Wrong
	Intimidated by FOSS’ Reputation
	Can’t Find a Project
	Company Policies
	Contribution Process Is Unclear
	Language Barriers
	Your Contribution Is Declined
	Community Problems
	Sometimes You’re the Problem
	How to Exit a Community
	You Don’t Have to Feel Trapped

	10. Start Your Own Project
	Quick Start Guide to Releasing Your Own Project
	What Is Your Goal?
	Optimize for Community
	Work in the Open
	Keep It Simple, Silly
	Share the Burden Early
	Select Communication Routes
	What About Issue Tracking?
	Styleguides
	Select a License
	How to Apply a License
	Publish the Project and You’re Done!

	11. Contribute for Your Job
	Contributing to External FOSS Projects
	Contributing to Your Company’s FOSS Projects
	Convincing Your Employer to Support FOSS
	Forge Your Future

	A1. Glossary
	Bibliography
	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

