

February 2016 DocID027273 Rev 2 1/26

 www.st.com

UM1848
User manual

Getting started with the software package for L6474 stepper
motor driver X-CUBE-SPN1 expansion for STM32Cube

Introduction
X-CUBE-SPN1 is a software package based on STM32Cube for the X-NUCLEO-IHM01A1 expansion

board. It is compatible with the NUCLEO-F401RE, the NUCLEO-F030R8, the NUCLEO-L053R8 and
NUCLEO-F334R8 boards equipped with one or more (up to 3) X-NUCLEO-IHM01A1 boards.

The software is based on the STM32Cube technology to facilitate portability across different STM32
MCU families. Information regarding STM32Cube is available on www.st.com at
http://www.st.com/stm32cube

Contents UM1848

2/26 DocID027273 Rev 2

Contents

1 Acronyms and abbreviations ... 5

2 What is STM32Cube? .. 6

2.1 What is STM32Cube? ... 6

2.2 STM32Cube architecture .. 6

3 X-CUBE-SPN1 software expansion for STM32Cube 8

3.1 Overview ... 8

3.2 Architecture ... 9

3.3 Folder structure ... 10

3.3.1 BSP folder .. 11

3.3.2 Projects folder ... 11

3.4 Software required resources ... 12

3.5 APIs .. 13

4 Getting started ... 15

4.1 Hardware description .. 15

4.1.1 STM32 Nucleo platform .. 15

4.1.2 X-NUCLEO-IHM01A1 stepper motor driver expansion board 15

4.1.3 Miscellaneous HW components ... 16

4.2 Software description .. 16

4.3 Hardware and software setup ... 16

4.3.1 Setup to drive one motor .. 16

4.3.2 Setup to drive 2 motors .. 18

4.3.3 Setup to drive 3 motors .. 21

5 Revision history .. 25

UM1848 List of tables

 DocID027273 Rev 2 3/26

List of tables

Table 1: Acronyms and abbreviations .. 5
Table 2: Required resources for the X-CUBE-SPN1 software ... 12
Table 3: Document revision history .. 25

List of figures UM1848

4/26 DocID027273 Rev 2

List of figures

Figure 1: Firmware architecture .. 6
Figure 2: X-CUBE-SPN1 software architecture .. 10
Figure 3: X-CUBE-SPN1 folder structure ... 10
Figure 4: STM32 Nucleo board ... 15
Figure 5: X-NUCLEO-IHM01A1 stepper motor driver expansion board ... 16
Figure 6: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive 1 motor 17
Figure 7: Configuration for 1 motor ... 18
Figure 8: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor ½ 19
Figure 9: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 2/2 19
Figure 10: Configuration for 2 motors ... 20
Figure 11: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 1/3 21
Figure 12: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 2/3 22
Figure 13: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 3/3 22
Figure 14: Configuration for 3 motors ... 23

UM1848 Acronyms and abbreviations

 DocID027273 Rev 2 5/26

1 Acronyms and abbreviations
Table 1: Acronyms and abbreviations

Acronym Description

API Application programming interface

BSP Board support package

CMSIS Cortex® microcontroller software interface standard

HAL Hardware abstraction layer

SPI Serial port interface

IDE Integrated development environment

LED Light emitting diode

What is STM32Cube? UM1848

6/26 DocID027273 Rev 2

2 What is STM32Cube?

2.1 What is STM32Cube?

STMCube™ represents the STMicroelectronics initiative to make developers’ lives easier
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube version 1.x includes:

 STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.

 A comprehensive embedded software platform specific to each series (such as the
STM32CubeF4 for the STM32F4 series), which includes:

 the STM32Cube HAL embedded abstraction-layer software, ensuring maximized
portability across the STM32 portfolio

 a consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

 all embedded software utilities with a full set of examples

2.2 STM32Cube architecture

The STM32Cube firmware solution is built around three independent levels that can easily
interact with one another, as described in the diagram below:

Figure 1: Firmware architecture

Level 0: This level is divided into three sub-layers:

UM1848 What is STM32Cube?

 DocID027273 Rev 2 7/26

 Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, IO expander, Touchscreen, SRAM
driver, LCD drivers. etc…) and composed of two parts:

 Component: is the driver relative to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the external
components of the BSP driver, and can be ported on any other board.

 BSP driver: links the component driver to a specific board and provides a set of
easy to use APIs. The API naming convention is BSP_FUNCT_Action(): e.g.,
BSP_LED_Init(), BSP_LED_On().

It is based on modular architecture allowing is to be easily ported on any hardware by just
implementing the low level routines.

 Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi-instance and function-oriented APIs to help
offload user application development time by providing ready to use processes. For
example, for the communication peripherals (I2S, UART, etc.) it provides APIs for
peripheral initialization and configuration, data transfer management based on polling,
interrupt or DMA processes, and communication error management. The HAL Drivers
APIs are split in two categories: generic APIs providing common, generic functions to
all the STM32 series and extension APIs which provide special, customized functions
for a specific family or a specific part number.

 Basic peripheral usage examples: this layer houses the examples built around the
STM32 peripherals using the HAL and BSP resources only.

Level 1: This level is divided into two sub-layers:

 Middleware components: set of libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction among the
components in this layer is performed directly by calling the feature APIs, while vertical
interaction with low-level drivers is managed by specific callbacks and static macros
implemented in the library system call interface. For example, FatFs implements the
disk I/O driver to access a microSD drive or USB Mass Storage Class.

 Examples based on the middleware components: each middleware component comes
with one or more examples (or applications) showing how to use it. Integration
examples that use several middleware components are provided as well.

Level 2: This level is a single layer with a global, real-time and graphical demonstration
based on the middleware service layer, the low level abstraction layer and basic peripheral
usage applications for board-based functions.

X-CUBE-SPN1 software expansion for
STM32Cube

UM1848

8/26 DocID027273 Rev 2

3 X-CUBE-SPN1 software expansion for STM32Cube

3.1 Overview

The X-CUBE-SPN1 software package allows complete management of the L6474 fully
integrated microstepping motor driver by providing complete APIs. It offers the following
features:

 L6474 registers read, write

 Nucleo and expansion board configuration (GPIOs, PWMs, IRQs, etc.)

 Speed profile configuration

 Motion commands

 FLAG interrupts handling (alarms reporting)

 Microstepping handling

 Daisy chaining handling

When initializing the L6474 driver, the user specifies the number of L6474 devices which
are connected to the STM32 Nucleo Board (i.e. the number of X-NUCLEO-IHM01A1
expansion boards). Once set, the number of devices must not be changed.

Depending on the number of devices, the driver:

 sets up the required GPIOs to handle the motor directions and the FLAG interrupt

 initializes the PWMs to act as step clock generators

 initializes the speed profile (acceleration, deceleration, min and max speed) from the

parameters in l6474_target_config.h

 starts the SPI driver to communicate with the L6474 devices

 releases the reset of each of the L6474 devices

 disables the power bridge and clears the status flags of the L6474 devices

 loads the registers of each L6474 device with the predefined values in
l6474_target_config.h

Once initialization is complete, the user can modify the L6474 registers and speed profile
configurations as desired. Most of the functions of the driver take a device ID (from 0 to 2)
as an input parameter so users can specify which device configuration to modify.

The user can also write a callback function and attach it to the Flag interrupt handler,
depending on the actions to be performed when an alarm is reported (read the flags, clear
and read the flags, etc.).

The user can then request the movement of one or more motors (via device IDs). This
request can be:

 to move for a given number of steps in a specified direction

 to go to a specific position

 to run until it receives a new instruction

On reception of this request, the driver enables the PWM which is used as the step clock of
the corresponding L6474.

For each pulse period, the motor performs one step and an ISR (interrupt service routine)
is triggered on the microcontroller side. This ISR is used by the firmware to count the
number of performed steps and to update the speed. Indeed, the motor starts moving by
using the minimum speed parameter. At each step, the speed is increased using the
acceleration parameter.

If the target position is far enough, the motor will perform a trapezoidal move:

UM1848 X-CUBE-SPN1 software expansion for
STM32Cube

 DocID027273 Rev 2 9/26

 acceleration phase using the device acceleration parameter

 steady phase where the motor turns at maximum speed

 deceleration phase using the device deceleration parameter

 stop at the targeted position

Otherwise, if the target position does not allow it to reach maximum speed, the motor will
perform a triangular move:

 acceleration phase using the device acceleration parameter

 deceleration phase using the device deceleration parameter

 stop at the targeted position

A move command can be interrupted at any time by either:

 a soft stop or softHiz which progressively decreases the speed using the

deceleration parameter. Once the minimum speed is reached, the motor is stopped.

 a hard stop or hardHiz command which immediately stops the motor.

When the motor is stopped using the softHiz or hardHiz command, the power bridge is

automatically disabled.

To inhibit the sending of a new command to a device before the completion of the previous

one, the driver offers the BSP_MotorControl_WaitWhileActive() command which

locks program execution until the motor stops moving. The driver also allows changing the
step mode (from full step to 1/16 microstep mode) for each device. When the step mode is

changed, the current position (ABS_POSITION register) is automatically reset, but the user

must update the speed profile (maximum and minimum speed, acceleration deceleration).

3.2 Architecture

This software is an expansion for STM32Cube, and as such it fully complies with the
architecture of STM32Cube and expands it in order to enable development of applications
using stepper motor drivers based on the L6474 component. Refer to the previous section
for an introduction to the STM32Cube architecture.

The software is based on the STM32CubeHAL hardware abstraction layer for the STM32
microcontroller. The package extends STM32Cube by providing a board support package
(BSP) for the motor control expansion board and a BSP component driver for the L6474
motor driver.

The software layers used by the application software to access and use the motor driver
expansion board are:

 STM32Cube HAL layer: provides a generic multi-instance simple set of APIs
(application programming interfaces) to interact with the upper layers (application,
libraries and stacks). It is composed of generic and extension APIs and is directly built
around a generic architecture so that layers built on top of it, such as the middleware
layer, can implement their functions without dependending on specific hardware
configurations for a given microcontroller unit (MCU). This structure improves
reusability of the library code and guarantees easy portability on other devices.

 Board support package (BSP) layer: provides support for all the peripherals on the
STM32 Nucleo board, apart from the MCU. It is a limited set of APIs which provides a
programming interface for certain board specific peripherals, e.g. the LED, the user
button, etc. This interface can also help identify the specific board version. For motor
control expansion boards, the motor control BSP provides the programming interface
for various motor driver components. In the X-CUBE-SPN1 software, it is associated
with the BSP component for the L6474 motor driver.

X-CUBE-SPN1 software expansion for
STM32Cube

UM1848

10/26 DocID027273 Rev 2

The figure below outlines the software architecture of this package:

Figure 2: X-CUBE-SPN1 software architecture

3.3 Folder structure

Figure 3: X-CUBE-SPN1 folder structure

The code of the software package is located in two main folders:

 A “Drivers” folder, with:

 The STM32Cube HAL files to run the motor driver examples are located in the
STM32L0xx_HAL_Driver, STM32F0xx_HAL_Driver, STM32F4xx_HAL_Driver or
STM32F3xx_HAL_Driver sub-folders. These files are not specific to the X-CUBE-
SPN1 software, but derive directly from the STM32Cube framework.

 A CMSIS folder with the CMSIS (Cortex® Microcontroller Software Interface
Standard) vendor-independent files from ARM.

 The hardware abstraction layer for the Cortex-M processor series.

 A BSP (board support package) folder with files containing the codes for X-
NUCLEO-IHM01A1 configuration, the L6474 driver and the motor control API.

 A “Project” folder, with several usage examples of the L6474 motor driver for different
Nucleo platforms.

UM1848 X-CUBE-SPN1 software expansion for
STM32Cube

 DocID027273 Rev 2 11/26

3.3.1 BSP folder

The X-CUBE-SPN1 software uses the BSPs described in this section.

3.3.1.1 STM32L0XX-Nucleo, STM32F0XX-Nucleo, STM32F4XX-Nucleo or
STM32F3XX-Nucleo BSP

Depending on the STM32 Nucleo used, these BSPs provide an interface to configure and
use the

Nucleo peripherals with the expansion board X-NUCLEO-IHM01A1. The relevant subfolder
contains the following ‘.c’ and ‘.h’ file pairs:

 stm32XXxx_nucleo.c/h: these files are directly from the STM32Cube framework and
provide the functions to handle the user button and the LEDs of the corresponding
STM32 Nucleo board.

 stm32XXxx_nucleo_ihm01a1.c/h: these files are dedicated to the configuration of the
SPI, the PWMs, the GPIOs and interrupt enabling/disabling required for the X-
NUCLEO-IHM01A1 expansion board functions.

3.3.1.2 Motor control BSP

This BSP provides a common interface to access the driver functions to configure and
control various motor drivers such as L6474 and Powerstep01, via the
MotorControl/motorcontrol.c/h files.

The functions are then mapped to the functions of the motor driver component used on a
given expansion board via the motorDrv_t (defined in Components\Common\motor.h.)
structure file. This structure defines a list of function pointers filled during instantiation in the
corresponding motor driver component. For X-CUBE-SPN1, the instance of the structure is
called ‘l6474Drv’ (see BSP\Components\l6474\l6474.c file).

As the motor control BSP is common for all motor driver expansion boards, not all its
functions are available for a given expansion board. In this case, during the instantiation of
the motorDrv_t structure in the driver component, the unavailable functions are replaced by
a null pointer.

3.3.1.3 L6474 BSP component

The L6474 BSP component provides the driver functions of the L6474 fully integrated
microstepping motor driver in the stm32_cube\Drivers\BSP\Components\l6474 folder.

This folder has 3 files:

 l6474.c: core functions of the L6474 driver

 l6474.h: declaration of the l6474 driver functions and their associated definitions

 l6474_target_config.h: predefines values for the l6474 registers and for the motor
devices context (speed profile)

3.3.2 Projects folder

Five sample projects are available in the
stm32_cube\Projects\Multi\Examples\MotionControl\ folder for each Nucleo platform:

 IHM01A1_ExampleFor1Motor: examples of control functions in configuration with 1
motor

 IHM01A1_ExampleFor2Motors: examples of control functions in configuration with 2
motors

 IHM01A1_ExampleFor3Motors: examples of control functions in configuration with 3
motors

X-CUBE-SPN1 software expansion for
STM32Cube

UM1848

12/26 DocID027273 Rev 2

 IHM01A1_ExampleForRegisterHandling: examples of L6474 registers handling in
configuration with 1 device

 IHM01A1_AutocheckWith1Motor: example where the motor is moved 8 steps when
the user button is pushed

Each example has a dedicated folder for the target IDE:

 EWARM with project files for IAR

 MDK-ARM with project files for Keil

 SW4STM32 with project files for OpenSTM32

Each example also has the following code files:

 inc\main.h: main header file

 inc\ stm32xxxx_hal_conf.h: HAL configuration file

 inc\stm32xxxx_it.h: header for the interrupt handler

 src\main.c: main program (code of the example which is based on the motor control
library for L6474)

 src\stm32xxxx_hal_msp.c: HAL initialization routines

 src\stm32xxxx_it.c: interrupt handler

 src\system_stm32xxxx.c: system initialization

 src\clock_xx.c: clock initialization

3.4 Software required resources

Communication between the L6474 and the MCU is mainly through the SPI interface. This
requires the use of the CS, MOSI, MISO and SCK (SPI clock) GPIOs. By default, the
STM32 Nucleo BSP “stm32f4xx_nucleo_ihm01a1.h” file uses SPI1, but you can use SPI2,

provided you declare the BSP_MOTOR_CONTROL_BOARD_USE_SPI2 preprocessor option.

The step clock for each L6474 device is generated by a PWM. The frequency of this PWM
can be updated at each pulse depending on the speed profile of the device. This is why the
library requires one timer and its corresponding ISR by device.

For flag interrupt handling, the X-CUBE-SPN1 software uses only one external interrupt for
all devices, as all flag pins are connected together.

One GPIO per device is also required for the handling of the direction. And finally, one
common GPIO is used for the reset of the L6474 devices.

Table 2: Required resources for the X-CUBE-SPN1 software

Resources
F4xx

Resources
F0xx

Resources
L0xx

Resources
F3xx

Digital
pin

Features Device

Ext Line 10

GPIO PA10

Ext Line 10

GPIO PA10
2

Flag
interrupt

All

GPIO PA9

GPIO PA9 8 L6474 reset All

CS

GPIO PB6

CS

GPIO PB6
10

SPI chip
select

All

MOSI

GPIO PA7 for
SPI1

GPIO PB15
for SPI2

MOSI

GPIO PA7 for
SPI1

GPIO PB15
for SPI2

11
SPI master
out slave in

All

UM1848 X-CUBE-SPN1 software expansion for
STM32Cube

 DocID027273 Rev 2 13/26

Resources
F4xx

Resources
F0xx

Resources
L0xx

Resources
F3xx

Digital
pin

Features Device

MISO

GPIO PA6 for
SPI1

GPIO PB14
for SPI2

MISO

GPIO PA6 for
SPI1

GPIO PB14
for SPI2

12
SPI master
in slave out

All

SCK

GPIO PA5 for
SPI1

GPIO PB13
for SPI2

SCK

GPIO PA5 for
SPI1

GPIO PB13
for SPI2

13
SPI serial
clock

All

Timer 3 Ch2

GPIO PC7

Timer 3 Ch2

GPIO PC7

Timer 22
Ch2

GPIO PC7

Timer 3 Ch2

GPIO PC7
9 PWM 1 0

GPIO PA8

GPIO PA8 7 Direction 1 0

Timer 2 Ch2

GPIO PB3

Timer 14 Ch1

GPIO PB3

Timer 2 Ch2

GPIO PB3

Timer 14 Ch1

GPIO PB3
3 PWM 2 1

GPIO PB5

GPIO PB5 4 Direction 2 1

Timer 4 Ch3

GPIO PB10

Timer 15 Ch1

GPIO PB10

Timer 21
Ch1

GPIO PB10

Timer 16 Ch1

GPIO PB10
6 PWM 3 2

GPIO PB4

GPIO PB4 5 Direction 3 2

Of course, if device 2 and/or 1 are unplugged, the corresponding resources are free.

Due to pinning constraints on the STM32F401 MCU (only Timer 2 is available on GPIO
PB10) and to have an independent frequency for each PWM, PWM3 is not handled by
hardware. Indeed, GPIO PB10 is toggled by software from the ISR of Timer 4.

Due to pinning constraints on the STM32F334 MCU (only Timer 16 is available on GPIO
PB10) and to have an independent frequency for each PWM, PWM3 is not handled by
hardware. Indeed, GPIO PB10 is toggled by software from the ISR of Timer 16.

Due to pinning constraints on the STM32F030 MCU (no Timer is available on GPIOs PB3
and PB10) and to have an independent frequency for each PWM, PWM2 and PWM3 are
not handled by hardware. Indeed, GPIO PB3 is toggled by software from the ISR of Timer
14 and the GPIO PB10 is toggled by software from the ISR of Timer 15.

Due to pinning constraints on the STM32L053 MCU (only Timer 2 is available on GPIO
PB10) and to have an independent frequency for each PWM, PWM3 is not handled by
hardware. Indeed, GPIO PB10 is toggled by software from the ISR of Timer 21.

3.5 APIs

The API of the X-CUBE-SPN1 software is defined in the motor control BSP. Its functions

are prefixed by BSP_MotorControl_. Incidentally, not all the functions of this module are

available for the L6474 device and hence for the expansion board X-NUCLEO-IHM01A1.

Technical descriptions of the API functions and parameters available to the user can be
found in a compiled HTML file located inside the package “Documentation” folder.

X-CUBE-SPN1 software expansion for
STM32Cube

UM1848

14/26 DocID027273 Rev 2

These functions are divided in two groups:

 Motor control: high level functions for simple motor movement handling.

 L6474 control: low level functions for L6474 device configuration.

UM1848 Getting started

 DocID027273 Rev 2 15/26

4 Getting started

4.1 Hardware description

This section describes the hardware components which are required to execute the
XCUBE-SPN1 software and to successfully drive one or several stepper motors. The
following sub-sections describe the individual components.

4.1.1 STM32 Nucleo platform

The STM32 Nucleo boards provide an affordable and flexible way for users to try out new
ideas and build prototypes with any STM32 microcontroller lines. The Arduino™
connectivity support and ST morpho headers make it easy to expand the functionality of
the STM32 Nucleo open development platform with a wide range of specialized expansion
boards to choose from. The STM32 Nucleo board does not require any separate probe as
it integrates the ST-LINK/V2-1 debugger/programmer. The STM32 Nucleo board comes
with the comprehensive STM32 software HAL library together with various packaged
software examples.

Information regarding STM32 Nucleo boards is available on www.st.com at
http://www.st.com/stm32nucleo

Figure 4: STM32 Nucleo board

4.1.2 X-NUCLEO-IHM01A1 stepper motor driver expansion board

The X-NUCLEO-IHM01A1 is a stepper motor driver expansion board based on the L6474.
It provides an affordable and easy-to-use solution for driving a stepper motor in your
STM32 Nucleo project.

The X-NUCLEO-IHM01A1 is compatible with the Arduino UNO R3 connector, and supports
the addition of other boards, which can be stacked to drive up to three stepper motors with
a single STM32 Nucleo board.

Getting started UM1848

16/26 DocID027273 Rev 2

Figure 5: X-NUCLEO-IHM01A1 stepper motor driver expansion board

Information about the X-NUCLEO-IHM01A1 expansion board is available on www.st.com
at http://www.st.com/x-nucleo.

4.1.3 Miscellaneous HW components

To complete the HW setup, you will need:

 1 to 3 stepper motors

 an external DC power supply with 2 electric cables for the X-NUCLEO-IHM01A1 board

 a USB cable type A to mini-B to connect the STM32 Nucleo to a PC

4.2 Software description

The following software components are needed in order to set up a suitable development
environment for creating applications based on the motor driver expansion board:

 The X-CUBE-SPN1 expansion for STM32Cube dedicated to L6474 motor driver
application development. The X-CUBE-SPN1 firmware and related documentation is
available on www.st.com.

 A development toolchain and compiler. Three toolchains are supported:

 Keil RealView Microcontroller Development Kit (MDK-ARM) toolchain V5.12

 IAR Embedded Workbench for ARM (EWARM) toolchain V7.20

 OpenSTM32 System Workbench for STM32 (SW4STM32)

4.3 Hardware and software setup

This section describes the hardware and software setup procedure for executing the
examples provided and to develop new applications based on the motor driver expansion
board.

4.3.1 Setup to drive one motor

The STM32 Nucleo must be configured with the following jumper positions:

 JP1 off

http://www.st.com/x-nucleo

UM1848 Getting started

 DocID027273 Rev 2 17/26

 JP5 (PWR) on UV5 side

 JP6 (IDD) on

The X-NUCLEO-IHM01A1 expansion board must have:

 Resistors R1, R4, R7 and R12 mounted (0R)

 Resistors R2, R3, R5, R6, R8, R9, R10 and R11 not mounted

Figure 6: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive 1 motor

Once the boards are properly configured:

 Plug the X-NUCLEO-IHM01A1 expansion board onto the STM32 Nucleo by using the
Arduino UNO R3 connectors

 Connect the STM32 Nucleo board to a PC with the USB cable through USB connector
CN1 to power the board

 Power on the X-NUCLEO-IHM01A1 expansion board by connecting the Vin and GND
connectors to the DC power supply. The DC supply must be set to deliver the required
voltage to the stepper motor.

 Connect the stepper motor to the X-NUCLEO-IHM01A1 bridge connectors A± and B±.

Getting started UM1848

18/26 DocID027273 Rev 2

Figure 7: Configuration for 1 motor

Once the system setup is ready:

 Open your preferred toolchain (MDK-ARM from Keil, EWARM from IAR, or
SW4STM32 from OpenSTM32)

 Depending on the STM32 Nucleo board used, open the software project from: In order
to adapt the default parameters which are used by the L6474 to your stepper motor
characteristics, open the file: stm32_cube\Drivers\BSP\Components\l6474\
l6474_target_config.h. and modify the parameters ending in “_DEVICE_0”.

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor1Mot
or\YourToolChainName\STM32F401RE-Nucleo for Nucleo STM32F401

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor1Mot
or\YourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F030

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor1Mot
or\YourToolChainName\STM32F334R8-Nucleo for Nucleo STM32F334

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor1Mot
or\YourToolChainName\STM32L053R8-Nucleo for Nucleo STM32L053

 Rebuild all files and load your image into target memory

 Run the example; the motor starts automatically (see main.c for the detailed demo
sequence).

4.3.2 Setup to drive 2 motors

The STM32 Nucleo has to be configured with the following jumper positions:

 JP1 off

 JP5 (PWR) on UV5 side

 JP6 (IDD) on

The X-NUCLEO-IHM01A1 expansion board must have, for the first motor:

UM1848 Getting started

 DocID027273 Rev 2 19/26

 Resistors R1, R4, R7 and 10 mounted (0R)

 Resistors R2, R3, R5, R6,R8, R9, R11 and R12 not mounted

Figure 8: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor ½

The X-NUCLEO-IHM01A1 expansion board must have, for the second motor:

 Resistors R2, R5, R8 and R12 mounted (0R)

 Resistors R1, R3, R4, R6, R7, R9, R10 and R11 not mounted

Figure 9: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 2/2

Once the boards are properly configured:

Getting started UM1848

20/26 DocID027273 Rev 2

 Plug the X-NUCLEO-IHM01A1, for first motor, onto the STM32 Nucleo by using the
Arduino UNO R3 connectors

 Plug the X-NUCLEO-IHM01A1 for the second motor onto the one for the first motor

 Connect the STM32 Nucleo board to a PC with the USB cable through USB connector
CN1 to power the board

 Power on the X-NUCLEO-IHM01A1 expansion boards by connecting the Vin and Gnd
connectors to the DC power supply. The DC supply must be set to deliver the required
voltage to the stepper motors.

 Connect each stepper motor to the bridge connectors A± and B± of their dedicated X-
NUCLEO-IHM01A board

Figure 10: Configuration for 2 motors

Once the system setup is ready:

 Open your preferred toolchain (MDK-ARM from Keil, EWARM from IAR, or
SW4STM32 from OpenSTM32)

 Depending on the STM32 Nucleo board used, open the software project from:

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor2Mot
ors\YourToolChainName\STM32F401RE-Nucleo for Nucleo STM32F401

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor2Mot
ors\YourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F030

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor2Mot
ors\YourToolChainName\STM32F334R8-Nucleo for Nucleo STM32F334

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor2Mot
ors\YourToolChainName\STM32L053R8-Nucleo for Nucleo STM32L053

 In order to adapt the default parameters which are used by the L6474s to your stepper
motor characteristics, open the file
stm32_cube\Drivers\BSP\Components\l6474\l6474_target_config.h. and modify the
parameters ending in “_DEVICE_0” for the first motor, and “_DEVICE_1” for the
second motor

UM1848 Getting started

 DocID027273 Rev 2 21/26

 Rebuild all files and load your image into target memory

 Run the example; the motor automatically starts (see main.c for the detailed demo
sequence).

4.3.3 Setup to drive 3 motors

The STM32 Nucleo must be configured with the following jumper positions:

 JP1 off

 JP5 (PWR) on UV5 side

 JP6 (IDD) on

The X-NUCLEO-IHM01A1 expansion board must have, for first motor:

 Resistors R1, R4, R7 and 10 mounted (0R)

 Resistors R2, R3, R5, R6,R8, R9, R11 and R12 not mounted

Figure 11: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 1/3

The X-NUCLEO-IHM01A1 expansion board must have, for the second motor:

 Resistors R2, R5, R8 and R11 mounted (0R)

 Resistors R1, R3, R4, R6,R7, R9, R10 and R12 not mounted

Getting started UM1848

22/26 DocID027273 Rev 2

Figure 12: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 2/3

The X-NUCLEO-IHM01A1 expansion board must have, for the third motor:

 Resistors R3, R6, R9 and R12 mounted (0R)

 Resistors R1, R2, R4, R5, R7, R8, R10 and R11 not mounted

Figure 13: X-NUCLEO-IHM01A1 stepper motor driver in configuration to drive motor 3/3

Once the boards are properly configured:

 Plug the X-NUCLEO-IHM01A1 for the first motor onto the STM32 Nucleo by using the
Arduino UNO R3 connectors

UM1848 Getting started

 DocID027273 Rev 2 23/26

 Plug the X-NUCLEO-IHM01A1 for the second motor onto the one for the first motor

 Plug the X-NUCLEO-IHM01A1 for the third motor onto the second one

 Connect the STM32 Nucleo board to a PC with the USB cable through USB connector
CN1 to power the board

 Power on the X-NUCLEO-IHM01A1 expansion boards by connecting the Vin and Gnd
connectors to the DC power supply. The DC supply must be set to deliver the required
voltage to the stepper motors.

 Connect each stepper motor to the bridge connectors A± and B± of their dedicated X-
NUCLEO-IHM01A1 board

Figure 14: Configuration for 3 motors

Once the system setup is ready:

 Open your preferred toolchain (MDK-ARM from Keil, EWARM from IAR, or
SW4STM32 from OpenSTM32)

 Depending on the STM32 Nucleo board used, open the software project from:

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor3Mot
ors\YourToolChainName\STM32F401RE-Nucleo for Nucleo STM32F401

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor3Mot
orsYourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F030

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor3Mot
ors\YourToolChainName\STM32F334R8-Nucleo for Nucleo STM32F334

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM01A1_ExampleFor3Mot
ors\YourToolChainName\STM32L053R8-Nucleo for Nucleo STM32L053

 In order to adapt the default parameters used by the L6474s to your stepper motor
characteristics, open the file: stm32_cube\Drivers\BSP\Components\l6474\
l6474_target_config.h. and modify the parameters ending in “_DEVICE_0” for the first
motor, “_DEVICE_1” for the second motor and “_DEVICE_2” for the third motor

Getting started UM1848

24/26 DocID027273 Rev 2

 Rebuild all files and load your image into target memory

 Run the example; the motor starts automatically (see main.c for the detailed demo
sequence).

UM1848 Revision history

 DocID027273 Rev 2 25/26

5 Revision history
Table 3: Document revision history

Date Version Changes

12-Mar-2015 1 Initial release.

19-Feb-2016 2

Text changes throughout document

Added STM32F3xx support information

Replaced references to TrueStudio by System Workbench with STM32
(SW4STM32)

Removed section "Motor control functions"

Removed section "L6474 Control functions"

 UM1848

26/26 DocID027273 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

