

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 1 of 25

ARM® Cortex®-M for Beginners

An overview of the ARM Cortex-M processor family and comparison

Joseph Yiu September 2016

Abstract

The ARM® Cortex®-M family now has six processors. In this paper, we compare the features of

various Cortex-M processors and highlight considerations for selecting the correct processor for your

application. The paper includes detailed comparisons of the Cortex-M instruction sets and advanced

interrupt capabilities, along with system-level features, debug and trace features, and performance

comparisons.

1 Overview
Today, there are six members in the ARM Cortex-M processor family. In addition, there are many

other ARM processors in the ARM product portfolio. For many beginners, or even for experienced

chip designers who are not familiar with ARM architecture, this can be a bit confusing. Different

processors can have different instruction set support, system features and performance. In this

article, I am going to capture the key differences between various Cortex-M processors, and how

they compare to other ARM processors.

1.1 The ARM Processor family
Over the years, ARM has developed quite a number of different processor products. In the following

diagram (fig 1), the ARM processors are divided between the classic ARM processors and the newer

Cortex processor product range. In addition, these processors are divided into three groups based on

the application spaces:

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 2 of 25

Application Processors – High-end processors for mobile computing, smart phone, servers, etc.

These processors run at higher clock frequency (over 1GHz), and support Memory Management Unit

(MMU), which is required for full feature OS such as Linux, Android, MS Windows and mobile OSs. If

you are planning to develop a product that requires one of these OSs, you need to use an application

processor.

Real-time Processors – These are very high-performance processors for real-time applications such

as hard disk controller, automotive power train and base band control in wireless communications.

Most of these processors do not have MMU, and usually have Memory Protection Unit (MPU),

cache, and other memory features designed for industrial applications. They can run at a fairly high

clock frequency (e.g. 200MHz to >1GHz) and have very low response latency. Although these

processors cannot run full versions of Linux or Windows, there are plenty of Real Time Operating

Systems (RTOS) that can be used with these processors.

Microcontroller Processors – These processors are usually designed to have a much lower silicon

area, and much high-energy efficiency. Typically, they have shorter pipeline, and usually lower

maximum frequency (although you can find some of these processors running at over 200MHz). At

the same time, the newer Cortex-M processor family is designed to be very easy to use; therefore,

they are very popular in the microcontroller and deeply embedded systems market.

Application

processors

(with MMU,

support Linux,

MS mobile OS)

Real Time

processors

Microcontrollers

and deeply

embedded

System capability &

performance

ARM7TM series

ARM920TTM,

ARM940TTM

ARM946TM,

ARM966TM

ARM926TM

Cortex-M3

Cortex-M1

(FPGA)

Cortex-M0 Cortex-M0+

Cortex-M4

Cortex-R4

Cortex-R5

Cortex-R8Cortex-A8

Cortex-A9

Cortex-A5

Cortex-A15

Cortex-A7

ARM Cortex ProcessorsClassic ARM Processors

Cortex-A57

Cortex-A53

Cortex-A17

Cortex-A12

ARM11TM

series

Cortex-M7

Cortex-R7

Cortex-A35

Cortex-A32

Cortex-A72

Cortex-A73

Figure 1: ARM processor family

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 3 of 25

Table 1 summarized the main characteristics of the three processor ranges.

 Application processors Real-time processors Microcontroller

processors

Design High clock frequency,

Long pipeline,

High performance,

Multimedia support (NEON

instruction set extension)

High clock frequency,

Long to medium

pipeline length,

Deterministic (low

interrupt latency)

Short pipeline,

ultra low power,

Deterministic (low

interrupt latency)

System

features

Memory Management Unit

(MMU),

cache memory,

ARM TrustZone® security

extension

Memory Protection

Unit (MPU), cache

memory, Tightly

Coupled Memory

(TCM)

Memory Protection Unit

(MPU), Nested Vectored

Interrupt Controller

(NVIC), Wakeup Interrupt

Controller (WIC)

Targeted

markets

Mobile computing, smart

phones,

energy-efficient servers,

high-end microprocessors

Industrial

microcontrollers,

automotives,

Hard disk controllers,

Baseband modem

Microcontrollers,

Deeply embedded

systems (e.g. sensors,

MEMS, mixed signal IC),

Internet of Things (IoT)

Table 1: Summary of processor characteristics

1.2 The Cortex-M Processor family
The Cortex-M processor family is more focused on the lower end of the performance scale.

However, these processors are still quite powerful when compared to other typical processors used

in most microcontrollers. For example, the Cortex-M4 and Cortex-M7 processors are being used in

many high-performance microcontroller products, with maximum clock frequency going up to over

200MHz.

Of course, performance is not the only factor when selecting a processor. In many applications, low

power and cost are the key selection criteria. Therefore, the Cortex-M processor family contains

various products to address different needs:

 Descriptions

Cortex-M0 A very small processor (starting from 12K gates) for low cost, ultra low power

microcontrollers and deeply embedded applications

Cortex-M0+ The most energy-efficient processor for small embedded system. Similar size and

programmer’s model to the Cortex-M0 processor, but with additional features like

single cycle I/O interface and vector table relocations

Cortex-M1 A small processor design optimized for FPGA designs and provides Tightly Coupled

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 4 of 25

Memory (TCM) implementation using memory blocks on the FPGAs. Same

instruction set as the Cortex-M0

Cortex-M3 A small but powerful embedded processor for low-power microcontrollers that has

a rich instruction set to enable it to handle complex tasks quicker. It has a

hardware divider and Multiply-Accumulate (MAC) instructions. In addition, it also

has comprehensive debug and trace features to enable software developers to

develop their applications quicker

Cortex-M4 It provides all the features on the Cortex-M3, with additional instructions target at

Digital Signal Processing (DSP) tasks, such as Single Instruction Multiple Data

(SIMD) and faster single cycle MAC operations. In addition, it also have an optional

single precision floating point unit that support IEEE 754 floating point standard

Cortex-M7 High-performance processor for high-end microcontrollers and processing

intensive applications. It has all the ISA features available in Cortex-M4, with

additional support for double-precision floating point, as well as additional

memory features like cache and Tightly Coupled Memory (TCM)

Table 2: The Cortex-M processor family

Quite different from legacy ARM processors (e.g. ARM7TDMI, ARM9), the Cortex-M processors have

a very different architecture. For instance:

- Only support ARM Thumb® instructions, which have been extended to support both 16-bit

and 32-bit instructions in Thumb-2.

- Interrupt handling is managed by a built-in interrupt controller called Nested Vector

Interrupt Controller (NVIC), which provides automatic prioritization, masking and nesting of

interrupts and system exceptions.

- Interrupt handlers can be written as normal C functions and the vectored interrupt handling

mechanism avoided the need to use software to determine which interrupt to service. At

the same time, interrupt responses are deterministic and have low latency.

- Vector table changed from branch instructions to starting addresses of interrupts and

system exception handlers.

- The register bank and some details of the programmer’s model have also been changed.

The changes mean many old assembly code written for classic ARM processors would need

modifications, and old projects need to be modified and recompiled when migrated to the Cortex-M

world. Detailed information on software porting is documented in an ARM document:

ARM Cortex-M3 Processor Software Development for ARM7TDMI Processor Programmers

http://www.arm.com/files/pdf/Cortex-M3_programming_for_ARM7_developers.pdf

1.3 Common features in Cortex-M processors
There are many similarities between the Cortex-M0, M0+, M3, M4 and M7 processors. For example:

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 5 of 25

- Baseline programmer’s model (section 3.1)

- Nested Vectored Interrupt Controller (NVIC) for interrupt management

- Architectural defined sleep modes : sleep and deep sleep (section 4.1)

- OS support features (section 3.3)

- Debug support (section 6)

- Ease of use

For example, the NVIC is an integrated interrupt controller.

NVIC

SysTick

(System Tick

Timer)

Peripherals

NMI

IRQs

Cortex-M

processor

Core

Configuration

registers

Internal bus interconnect

System

exceptions

Bus interface

Peripheral

Figure 2: NVIC in Cortex-M processor

The NVIC supports a number of interrupt inputs from peripherals, a Non-Maskable Interrupt

request, an interrupt request from a built-in timer called SysTick (see section3.3) and a number of

system exceptions. The NVIC handles the priority management and masking of these interrupt and

exceptions.

More information on NVIC and the exception model is covered in section3.2. Other areas of

similarity and difference are covered in the rest of this document.

2 Instruction Set of the Cortex-M processors

2.1 Instruction set overview
In most cases, the application code would be written in C or other high-level languages. However, a

basic understanding of the instruction set support in the Cortex-M processor helps to decide which

Cortex-M processor is need for the tasks. The Instruction Set Architecture (ISA) is a part of the

processor architecture, and the Cortex-M processors can be grouped in two architecture profiles:

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 6 of 25

Architecture Descriptions

ARMv6-M For Cortex-M0, Cortex-M0+ and Cortex-M1 processors

ARMv7-M For Cortex-M3, Cortex-M4 and Cortex-M7 processors. The extension of ARMv7-M

to support DSP type instructions (e.g. SIMD) is also named as ARMv7E-M.

ARMv8-M Processor products to be announced. For more information about ARMv8-M

architecture, please see ARMv8-M Architecture Technical Overview in

https://community.arm.com/docs/DOC-10896

Table 3: ARM Architecture profiles for the Cortex-M processors

All Cortex-M processors support an instruction set called Thumb. The complete Thumb instruction

set became fairly large when it was expanded when the Thumb-2 Technology was made available.

However, different Cortex-M processors support different subset of the instructions available in the

Thumb ISA, as shown in Figure 3.

General data processing

I/O control tasks

Advanced data processing

bit field manipulations

DSP (SIMD, fast MAC)

Floating Point

Figure 3: Instruction Set support in the Cortex-M processors

2.2 Instructions support in Cortex-M0/M0+/M1
The Cortex-M0/M0+/M1 processors are based on the ARMv6-M architecture, which has a small

instruction set of just 56 instructions and most of them are 16-bit, as shown with the smaller oval

shapes in figure 3. However, the registers in the processor and the data being operated on are still

32-bit. For most simple I/O control tasks and general data processing, this small instruction set is

sufficient. The small instruction set allows the processor design to be implemented with very small

gate count, starting from just 12K gates in the Cortex-M0 and the Cortex-M0+ processors. However,

many of these instructions cannot utilized the high registers (R8 to R12), and have limited capability

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 7 of 25

of generating immediate data on the fly. This is a compromise between requirements in ultra low-

power processor design and the performance available.

2.3 Instructions support in Cortex-M3
The Cortex-M3 processor is based on the ARMv7-M architecture, and supports a much richer

instruction set, including many 32-bit instructions that allow the high registers to be utilized

efficiently. In addition, it also supports

 Table branch instructions and conditional execution (using IT instruction),

 hardware divide instructions,

 multiply-accumulate (MAC), and

 various bit field operations

The richer instruction enhanced the performance in a number of ways; for example, the 32-bit

Thumb instructions provide larger range of immediate data values, branch offset and immediate

offset for data memory accesses. It also has basic support for DSP operation (e.g., a few MAC

instructions are available, which take multiple clock cycles, and saturation adjustment instructions

are also available). Finally, the 32-bit instructions allow the use of the barrel shifter together with

many data operations in a single instruction.

The richer instruction set comes at a cost of larger silicon area and higher power. In typical

microcontrollers, the gate count of the Cortex-M3 can be more than double of the Cortex-M0 or

Cortex-M0+ designs. However, given the silicon of the processor is only a small part in most modern

microcontrollers, the larger silicon area and power is often insignificant.

2.4 Instructions support in Cortex-M4
The Cortex-M4 processor is very similar to the Cortex-M3 in many ways: pipeline, programmer’s

model. It supports all the features in the Cortex-M3, and in additional support various instructions

target for DSP applications like SIMD, saturation arithmetic instructions, a wide range of MAC

instructions which can execute in single cycles (compared to multiple-cycles and limited selections in

the Cortex-M3), and an optional floating unit that support single precision floating point operations.

The SIMD operations in the Cortex-M4 handle two 16-bit data or four 8-bit data in parallel. For

example, Figure 4 shows the QADD8 and QADD16 operations:

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 8 of 25

int8_t

int8_t

int8_t

int8_t

31

0

int8_t

int8_t

int8_t

int8_t

31

0

Rn

Rm

int8_t

int8_t

int8_t

int8_t

31

0

Rd

+

+

+

+
Signed

saturation

Saturation

bit

position

8

Signed

saturation

Signed

saturation

Signed

saturation

QADD8 {<Rd>,} <Rn>, <Rm>

int16_t

int16_t

31

0

31

0

Rn

Rm

int16_t

int16_t

+

+

Signed

saturation

Saturation

bit

position

16

Signed

saturation

Saturation

bit

position

16

int16_t

int16_t

31

0

Rd

QADD16 {<Rd>,} <Rn>, <Rm>

Figure 4: Example of SIMD instructions: QADD8 and QADD16

The uses of SIMD enable much faster computation of 16-bit and 8-bit data in certain DSP operations

as the calculation can be parallelized. However, in general programming, C compilers are unlikely to

utilize the SIMD capability. That is why the typical benchmark results of the Cortex-M3 and Cortex-

M4. However, the internal data path of the Cortex-M4 is different from Cortex-M3, which enable

faster operations in a few cases (e.g. single cycle MAC, and allow write back of two registers in a

single cycle).

2.5 ISA feature comparison summary
There are many ISA features in the ARMv6-M and ARMv7-M architecture so it is difficult to cover all

of these in details. However, the following table (table. 4) summarized the key differences.

 Cortex-

M0/M0+

Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7

Architecture ARMv6-M ARMv6-M ARMv7-M ARMv7E-M ARMv7E-M

v4T,v5T, v6-M

Thumb ISA

Y Y Y Y Y

v7-M Thumb

ISA

- - Y Y Y

Low power /

Sleep mode :

WFE, WFI, SEV

Y Execute as

NOP

Y Y Y

Single cycle

Multiply (32-bit

result)

Y Y Y Y Y

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 9 of 25

Bit field

processing

- - Y Y Y

Hardware

divide (integer)

- - Y Y Y

Unaligned data

access

- - Y Y Y

Table branch - - Y Y Y

Conditional

execution (IT)

- - Y Y Y

Compare &

branch (CBZ,

CBNZ)

- - Y Y Y

Floating point - - - Single

precision

(optional)

Single

precision /

Single +

double

precision

(optional)

MAC - - Y (multi-cycle,

limited)

Y (single cycle) Y (single

cycle)

SIMD - - - Y Y

Saturation - - USAT, SSAT

only

Y Y

Exclusive access - - Y Y Y

Memory barrier Y Y Y Y Y

SVC Y Optional Y Y Y

Table 4: comparison of ISA features

One of the key characteristics of the ISA in the Cortex-M processors is the upward compatibility:

Instruction supported in the Cortex-M3 processor is a superset of Cortex-M0/M0+/M1. So

theoretically if the memory map is identical, a binary image for Cortex-M0/M0+/M1 can run directly

on a Cortex-M3. The same applies to the relationship between Cortex-M4/M7and other Cortex-M

processors; instructions available on Cortex-M0/M0+/M1/M3 can run on a Cortex-M4/M7.

Although the Cortex-M0/M0+/M1/M3 processors do not have floating point unit option, floating-

point calculations can be done using software. This also applies to products based on Cortex-M4/M7

without floating point unit. When floating-point data is used in a program, the compiler suite inserts

the required runtime library functions during linking stage. Floating-point calculation using software

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 10 of 25

can take longer and could increase code size slightly. However, if the floating-point calculations are

not frequent, it might be suitable for your applications.

3 Architectural features

3.1 Programmer’s model
The programmer’s model of the Cortex-M processor family is highly consistent. For example, R0 to

R15, PSR, CONTROL and PRIMASK are available to all Cortex-M processors. Two special registers -

FAULTMASK and BASEPRI - are available only on the Cortex-M3, Cortex-M4 and Cortex-M7, and the

floating-point register bank and FPSCR (Floating Point Status and Control Register) is available on the

Cortex-M4/M7 within the optional floating-point unit.

Privileged

Handler

Unprivileged

Thread

Privileged

Thread

Start

(reset)

Exception

Exception

exit

Exception

Exception

exit

Program of

CONTROL

register

Not available in

ARMv6-M

General registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

Main Stack Pointer (MSP),

Process Stack Pointer (PSP)

Link Register (LR)

Program Counter (PC)

Name

xPSR

PRIMASK

FAULTMASK

BASEPRI

Functions

Program Status Registers

Interrupt Mask

Registers

Control RegisterCONTROL

Special

Registers

Not available in Cortex-

M0/M1, optional in

Cortex-M0+

D3

D2

D5

D4

D7

D6

D9

D8

D11

D10

D13

D12

D15

D14

Floating Point Unit

S1

D1S3

S5

S7

S9

S11

S13

S15

S17

S19

S21

S23

S25

S27

S29

S31

S0

S2

S4

S6

S8

S10

S12

S14

S16

S18

S20

S22

S24

S26

S28

S30

D0

FPSCR
Floating Point Status

and Control Register

Available on the Cortex-M4 with

FPU only

Figure 5: Programmer’s model

The BASEPRI register allows you to block exceptions and interrupts of certain priority level or lower

priorities. This can be important in ARMv7-M as you can have a large number of priority levels on

Cortex-M3, Cortex-M4 and Cortex-M7, whereas it is limited to four program levels on the ARMv6-M.

FAULTMASK is typically used in complex fault handlers (see section 3.4).

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 11 of 25

Unprivileged execution level is optional in ARMv6-M and is always available in ARMv7-M. On the

Cortex-M0+ this is optional, and is not available on Cortex-M0 and Cortex-M1. This difference means

that the CONTROL register can have minor different between different Cortex-M processors. The

FPU option also affects the CONTROL register, as shown in Figure 6.

0

CONTROL

31:3

nPRIV

12

SPSELCortex-M3

CONTROL nPRIVSPSEL
Cortex-M4/M7

with FPU
FPCA

CONTROL SPSELARMv6-M nPRIV

Figure 6: The CONTROL register

Another difference between the programmer’s model is the details of the PSR (Program Status

Register). In all Cortex-M processor, the PSR can be sub-divided into Application PSR, Execution PSR

and Interrupt PSR. The Q bit in APSR and ICI/IT bits in EPSR are not available in the ARMv6-M, and

the GE bits are available on the ARMv7E-M only (e.g. Cortex-M4). In addition, the width of the

interrupt number in IPSR has a smaller range in ARMv6-M. This is shown in Figure 7.

31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

ARMv7-M

(Cortex-M3)
N Z C V Q Exception NumberICI/IT ICI/ITT

ARMv6-M

(Cortex-M0/M0+)
N Z C V T

Exception Number

ARMv7E-M

(Cortex-M4/M7)
N Z C V Q Exception NumberICI/IT ICI/ITT GE[3:0]

Figure 7: PSR differences

Please note that the programmer’s model of Cortex-M is different from classic ARM processors such

as the ARM7TDMI. Beside from the register bank, the “mode” and “state” definitions of classic ARM

processor is different in the Cortex-M. There are only two modes in Cortex-M: Thread and Handler,

and Cortex-M processors always operate in Thumb state (ARM instructions are not supported).

3.2 Exception model and NVIC
All the Cortex-M processors include Nested Vectored Interrupt Controller (NVIC) and share the same

exception model. When an exception occurred and is higher priority than the current level, and not

blocked by any masking registers, the processor accept the interrupt / exception and stack 8

registers to the current stack. This stacking mechanism enable interrupt handlers to be written as

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 12 of 25

normal C functions, and enable many small interrupt functions to start actual work immediately as

no further stacking is required.

Some interrupts and systems exceptions available on ARMv7-M are not available on ARMv6-M, see

figure 8. For example, in the Cortex-M0, M0+ and M1 the number of interrupts is limited to 32, there

is no Debug Monitor exception and fault exception is limited to HardFault (see section 3.4 for fault

handling details). In contrast, the Cortex-M3, Cortex-M4 and Cortex-M7 processors support up to

240 peripheral interrupts.

Another difference is the number of priority levels available. In ARMv6-M architecture, the

interrupt/exception priority level contains 2 fixed levels (for NMI and HardFault) and four

programmable levels (2-bits per priority level register). This is sufficient for most microcontroller

applications.

In ARMv7-M, the number of programmable priority level range from 8 levels (3-bits) to 256 (8-bits).

In practice, most devices only implement just eight (3-bits) to 16 levels (4-bits) due to silicon area.

ARMv7-M also has a feature called priority grouping, which enable you to sub-divide priority level

registers into group priority and sub-priority, so that you can define preemption behavior in details.

Exception

Type

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

47

Vector Table

MSP initial value

Reset vector

NMI vector

HardFault vector

SVC vector

PendSV vector

MemManage vector

Bus Fault vector

Usage Fault vector

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C

0x00000030

0x00000034

0x00000038

0x0000003C

0x00000040

0x00000044

0x000000BC

0x000003FC

SecureFault (ARMv8-M Mainline) .

Not used

Not used

Not used

Debug Monitor vector

Not used

SysTick vector

Interrupt#0 vector

Interrupt#1 vector

Interrupt#31 vector

Interrupt#239 vector

Vector address

(initial)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ARMv6-M

NMI

HardFault

Device Specific

Interrupts

PendSV

SysTick

SVC

ARMv7-M

NMI

HardFault

Device Specific

Interrupts

PendSV

SysTick

SVC

Debug Monitor

MemManage (fault)

Bus Fault

Usage Fault

Not used

Not used

Not used
Not used

255

1

Figure 8: Exception type in Cortex-M processors

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 13 of 25

All Cortex-M processor rely on vector table during exception handling. The vector table stores the

starting address of exception handler and by default it is located in the starting of the memory map

(address 0x0, as shown in figure 8). The vector table starting address can be changed using a feature

called Vector Table Offset Register (VTOR). This is a useful feature for:

 relocating vector table to SRAM to allow dynamically changing exception handler entrance

points

 relocating vector table to SRAM for faster vector fetch (if flash memory is slow)

 relocating vector table to different one in ROM (or flash), so that different stage of program

execution can have different exception handlers.

The VTOR is available on Cortex-M0+/M3/M4/M7 and ARMv8-M processors (optional on the Cortex-

M0+ and ARMv8-M Baseline).

The NVIC programmer’s models also have some additional differences amongst different Cortex-M

processors. The differences are summarized in Table 5:

 Cortex-M0 Cortex-M0+ Cortex-M1 Cortex-M3/M4/M7

Number of

Interrupts

Up to 32 Up to 32 Up to 32 Up to 240

NMI Y Y Y Y

SysTick Y (optional) Y (optional) Y (optional) Y

Fault handlers 1 (HardFault) 1 (HardFault) 1 (HardFault) 4

VTOR - Y (optional) - Y

Dbg Monitor - - - Y

Programmable

priority levels

4 4 4 8 to 256

Software

trigger

interrupt

register

- - - Y

Interrupt

Active status

- - - Y

Register

accesses

32-bit 32-bit 32-bit 8/16/32-bit

Dynamic

priority change

- - - Y

Table 5: NVIC programmer’s model and feature differences

In most cases, access to interrupt control feature in the NVIC is handled by APIs provided in CMSIS-

Core, which is included inside device driver library from the microcontroller supplier. However, in

the Cortex-M3/M4/M7 you can change the priority of an interrupt even it is enabled. This dynamic

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 14 of 25

priority level change is not supported in ARMv6-M, so you need to disable an interrupt temporarily

when changing its priority level.

3.3 OS support features
The architectures for the Cortex-M processors are designed with OS in mind. The features to support

OS included:

 Shadowed stack pointer

 SVC and PendSV exceptions

 SysTick timer – a 24-bit down counter for generating periodic OS exception for time keeping

and task management

 Unprivileged execution level and Memory Protection Unit (MPU) in Cortex-M0+/M3/M4 and

M7

The SVC exception is triggered by the SVC instruction, which enable an application tasks running in

unprivileged state to trigger privileged OS services. The PendSV exception is useful for OS to

schedule non-critical operations like context switching.

In order to get the Cortex-M1 to fit in some very small FPGA devices, we made all these OS support

features optional in Cortex-M1. In Cortex-M0 and Cortex-M0+, the SysTick timer is optional.

In general, OS support is available for all Cortex-M processors. In Cortex-M0+, Cortex-M3, Cortex-

M4, Cortex-M7 and ARMv8-M processors, application tasks can run at unprivileged execution level

and this can work together with an optional Memory Protection Unit (MPU) to prevent memory

access violations. This can enhance the system robustness.

3.4 Fault handling
One of the differences between ARM processors and some other microcontroller architectures is the

fault-handling capability. When a fault is detected, a fault exception is triggered to that software can

carry out appropriate actions. Faults can be:

 Undefined instructions (e.g. flash memory corrupted)

 Access to illegal address space (e.g. stack pointer corruption) or MPU access violations

 Illegal operations (e.g. trying to trigger SVC exception when the processor is already at an

interrupt priority higher than the SVC)

Fault handling enables an embedded system to react to various issues much quicker. Otherwise, if

the system hanged, it could take a long time for a watchdog timer to reset the system.

In the ARMv6-M architecture, all the fault events trigger the HardFault handler, which has a priority

level of -1 (higher priority than all programmable exceptions, but just below the Non-Maskable

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 15 of 25

Interrupt NMI). All faults are considered unrecoverable and normally we just carry out error

reporting and potentially generate a self-reset inside the HardFault Handler.

In ARMv7-M, there are three configurable fault handlers in addition to the HardFault:

 Memmanage (Memory Management Fault)

 Bus Fault (Bus returns an error response)

 Usage Fault (undefined instructions or other illegal operations)

These exceptions have programmable priority levels and can be individually enabled / disabled. They

can also make use of the FAULTMASK register to escalate their priority to be same level as

HardFault, if needed. There are also numerous fault status registers that provide hints about what

might have triggered the fault exception, and fault address register, which could be used to pin point

the transfer address that triggered the fault to make debugging easier.

The extra fault handlers in ARMv7-M provide more flexible fault-handling capability, and the fault

status registers made it easier to locate and debug the fault event. A number of debuggers in

commercial development suites have included features to diagnose fault events using the fault

status registers. Moreover, potentially during runtime, the fault handlers can carry some of the

remedy actions out.

 ARMv6-M (Cortex-M0,M0+, M1)

and ARMv8-M Baseline

ARMv7-M (Cortex-M3/M4/M7)

and ARMv8-M Mainline

HardFault Y Y

MemManage - Y

Usage Fault - Y

Bus Fault - Y

SecureFault - ARMv8-M Mainline only

Fault Status Registers - (one Debug FSR for debug only) Y

Fault Address Register - Y

Table 6: Summary of Fault handling feature comparison

4 System features

4.1 Low power support
Low power is one key advantage of the Cortex-M processors. The low power support is built into the

architecture:

 WFI and WFE instructions

 Architectural sleep mode definitions

In addition, there are a number of other low power features that are available on Cortex-M

processors:

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 16 of 25

 Sleep and deep sleep modes: Supported by the architecture, and can be further expanded

using device specific power control registers.

 Sleep-on-exit: Enable lower power in interrupt-driven applications. When enabled, the

processor enters sleep automatically when finishing an exception handler and if no other

exception is pending. This reduces power by avoiding extra active cycles of executing code in

Thread mode, and reduces unnecessary stack operations.

 Wake-up Interrupt Controller (WIC): An optional feature that allows interrupt-detection to

be carried out by a small block outside the processor during certain low power state, E.g.

when the processor is powered down in State Retention Power Gating (SRPG) designs.

 Clock gating and architectural clock gating: Allows clocks to registers or sub-modules of the

processor to be turned off to reduce power.

All these features are supported in Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4 and Cortex-M7

processors. In addition, various low power design techniques are used to reduce power

consumptions.

Due to the low gate counts, the Cortex-M0 and Cortex-M0+ processors have lower power than the

Cortex-M3, Cortex-M4 and Cortex-M7 processors. In addition, the Cortex-M0+ has additional

optimizations to reduce the amount of program accesses (e.g. branch shadows) to keep the system-

level power consumption lower.

4.2 Bit-band feature
The Cortex-M3 and Cortex-M4 processors have an optional feature called bit band that allows two

1MB address ranges (one in SRAM, from 0x20000000, the other in Peripheral, from 0x40000000) to

be bit addressable via bit band alias addresses. The Cortex-M0, M0+ and Cortex-M1 processors do

not have this feature, but this can be added on the system level using a bus level component from

the ARM Cortex-M System Design Kit (CMSDK). The Cortex-M7 processor does not support bit band

because its cache support feature cannot be used with bit band (the cache controller does not know

the aliasing of memory spaces).

4.3 Memory Protection Unit (MPU)
The Cortex-M0+, Cortex-M3, Cortex-M4 and Cortex-M7 processors have an optional MPU, which can

be used to define Memory access permissions and Memory attributes or memory regions. In

systems with RealTime Operating System (RTOS), the OS can define the memory access permission

and memory configuration for each task to ensure that each task cannot corrupt memory ranges

used by other tasks or the OS kernel. The MPU in Cortex-M0+, Cortex-M3 and Cortex-M4 all have

eight programmable regions and have very similar programmer’s model. The main different is that

the MPU in Cortex-M3/M4 allows two levels of memory attributes (e.g. system level cache types)

while the one in the Cortex-M0+ processor only support one level. The optional MPU in Cortex-M7

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 17 of 25

can be configured to support 8 or 16 regions, and allows two levels of memory attributes. The

Cortex-M0 and Cortex-M1 do not support MPU.

4.4 Single cycle I/O interface
The single cycle I/O interface is a unique feature on the Cortex-M0+ processor, which enables this

processor to be very fast in I/O control tasks. In other Cortex-M processors, the bus interfaces are

based on the AHB Lite protocol, which is a pipelined bus protocol and allows high clock frequency

operation. However, it means it needs two clock cycles per transfer. The single cycle I/O interface

add an extra simple bus interface that is not pipelined, for connection to a small set of device

specific peripherals like GPIO (General Purpose Inputs/Outputs). When combining this feature with

the low branch penalty nature of the Cortex-M0+ processor (since its pipeline is only two stages),

many I/O control operations can be carried out faster than most other microcontroller architectures.

5 Performance considerations

5.1 General data processing performance
In general microcontroller market, benchmark figures are often used to measure the performance of

microcontrollers. Table 7 shows the performance of the Cortex-M processors running commonly

used benchmarks:

 Dhrystone DMIPS/MHz

(v2.1) – official

Dhrystone DMIPS/MHz

(v2.1) – full optimization

Coremark/MHz (v1.0)

Cortex-M0 0.84 1.21 2.33

Cortex-M0+ 0.94 1.31 2.42

Cortex-M3 1.25 1.89 3.32

Cortex-M4 1.25 1.95 3.40

Cortex-M7 2.14 2.55 5.01

Table 7: Performance of the Cortex-M processor using commonly used benchmarks

(Source : CoreMark.org website and ARM website)

One thing we need to be careful about Dhrystone is that official the code should be compiled

without inline and without multi-file compilation, and for consistency, the original K&R version of

source code r2.1 should be used. However, many microcontroller vendors quotes Dhrystone figures

with full optimizations enabled.

However, results from benchmark suite might not provide an accurate projection of what you can

get in your applications. For example, effect of the single cycle I/O interface and acceleration using

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 18 of 25

SIMD in DSP applications, or using of FPU in the Cortex-M4/M7 does not necessary shows in these

figures.

In general, Cortex-M3 and Cortex-M4 provides higher data processing performance because of:

 richer instruction set features

 Harvard bus architecture

 write buffer (single cycle write operation)

 speculative fetch of branch targets

The Cortex-M7 processor provides an even higher performance because of its six-stage dual issue

pipeline (allows execution of up to two instructions in the same clock cycle) and branch prediction

support. Also, it enables higher system-level performance by offering instruction and data caches, as

well as tightly couple memories to avoid performance penalty even when having slow main

memories (e.g. embedded flash).

However, some I/O intensive tasks can be faster on the Cortex-M0+ processor because of:

 Shorter pipeline (branches only take two cycles)

 Single cycle I/O interface

There are also device specific factors. For example, system level designs, memory speed can also

affect the performance of the system.

Very often, your own application code can be the best benchmark you need. The processor with

double the CoreMark score than another does not necessary it can perform twice as fast your own

applications. In applications with I/O intensive tasks, the system-level architecture can have a great

impact of the performance, which is device specific.

5.2 Interrupt Latency
Another aspect of performance is interrupt latency. This is typically measured from the number of

clock cycles from the assertion of an interrupt request to the execution of first instruction in the

interrupt service routine. Table 8 listed the interrupt latency for scenarios with zero wait state

memory system:

 Interrupt latency (number of clock cycles)

Cortex-M0 16

Cortex-M0+ 15

Cortex-M3 12

Cortex-M4 12

Cortex-M7 Typically 12, worst case 14

Table 8: Interrupt latency with zero wait state in memory system

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 19 of 25

In practice, the actual interrupt latencies are affected by the wait states of the memory system. For

example, many microcontrollers running at over 100MHz have a slower flash memory (e.g. 30 to

50MHz). Although flash access acceleration hardware is used to improve performance, the interrupt

latency can still be affected by the flash memory wait states. So it is well possible that a Cortex-

M0/M0+ system running with zero wait state memory system got shorter interrupt latency then a

Cortex-M3/M4/M7 system.

Do not forget to take the execution time for your interrupt handler into account when investigating

the performance. Some 8-bit or 16-bit processor architectures might have very short interrupt

latency, but can take several times the number of clock cycles to finish the interrupt request

processing. Effectively have a much slow interrupt response time and lower interrupt processing

bandwidth.

6 Debug and Trace features

6.1 Debug and trace features overview
There are a number of differences between different Cortex-M processor products. These are

summarized in Table 9.

 Cortex-M0/M1 Cortex-M0+ Cortex-M3/M4 Cortex-M7

Protocol of

debug

connection

JTAG / Serial

Wire

JTAG / Serial

Wire

JTAG / Serial Wire / both JTAG / Serial

Wire

Protocol of trace

connection

- - Trace port (4 pin data +

clock) / Serial Wire

Viewer (SWV, single pin)

Trace port (4 pin

data + clock) /

Serial Wire

Viewer (SWV,

single pin)

Hardware

Breakpoint

comparators

Up to 4 Up to 4 Up to 8 (6 for instruction

addresses, 2 literal

addresses)

Up to 8 (all for

instruction

addresses)

Software

breakpoint (BKPT

instruction)

Y Y Y Y

Data Watchpoint

comparators

Up to 2 Up to 2 Up to 4 Up to 4

Instruction Trace - Limited history

using MTB

ETM trace with

unlimited history

ETM trace with

unlimited history

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 20 of 25

Data Trace - - Selective data trace

using DWT

Selective data

trace using DWT,

Optional full

data trace via

ETM

Event & profiling

Trace

- - Using DWT Using DWT

Instrumentation

(Software) trace

- - Instrumentation Trace

Macrocell (ITM)

Instrumentation

Trace Macrocell

(ITM)

Trace timestamp - - Y Y

On the fly

memory accesses

Y Y Y Y

Debug using

software agent

(Debug monitor)

- - Y Y

Multi-core debug

synchronization

Y Y Y Y

PC sampling Y (via debug

connection)

Y (via debug

connection)

Y (via debug connection

or by trace)

Y (via debug

connection or by

trace)

Table 9: Debug and Trace feature comparison

The debug architecture of the Cortex-M processors is based on ARM CoreSight debug architecture.

This is a very scalable architecture and support multi-processor systems.

The information shown in table 9 is for typical designs. Under CoreSight architecture, the debug

interface and trace interface modules are decoupled from the processor. Therefore potentially the

debug and trace connection of the device you are using can be different from what is shown in table

9. It is also possible to add some of the debug features by adding additional CoreSight debug

components.

6.2 Debug connections
The debug connection allows the debugger to

- access registers that control the debug and trace features.

- access the memory map. For the Cortex-M processors, that can be done even when the

processors are running. This is called on-the-fly memory accesses.

- access core registers. This can only be done when the processor is halted.

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 21 of 25

- access trace history generated from the Micro Trace Buffer (MTB) in the Cortex-M0+

processor.

In addition, the debug connection can also be used for:

- flash programming

In the Cortex-M processors, there is a choice of the traditional JTAG connection, which need 4 to 5

pins (TDI, TDO, TCK, TMS and optional nTRST), or a new Serial Debug protocol which need only two

pins, which is ideal for devices with limited pin counts.

Debug

Connector Processor Core

Breakpoint

Unit (FPB)

Data Watchpoint

& trace unit (dwt)

ETM (program)

trace

Instrumentation

(ITM) trace

Flash

Microcontroller

Cortex-M3/M4

processor

Trace Port

Interface

Unit (TPIU)
Trace

Port
Debug

Adaptor

Serial Wire Viewer

Internal bus

SRAM Peripherals

bridge
10 pin Cortex Debug

Connector

or

20 pin IDC debug

connector

Figure 9: Serial Wire or JTAG Debug connection allows access to processor’s debug features and memory space including
peripherals

The Serial Wire debug protocol can handle all features available in JTAG and can provide parity

checking. The Serial Debug protocol is widely adopted by ARM tools vendors, many debug adaptors

support both protocols and the Serial Wire signals share the TCK and TMS pins on debug connectors.

6.3 Trace connection
The trace connection allows debugger to collect information about program execution in real time

(with a small delay) during program execution. The information collected could be program flow

information (instruction trace) generated from Embedded Trace Macrocell (ETM), available on the

Cortex-M3/M4/M7, data/event/profiling trace generated from Data WatchPoint and Trace (DWT)

unit, or information generated from the Instrumentation Trace Macrocell (ITM) by software control.

There are two type of trace connection available:

- Trace port – multiple data pin plus clock signal. This provides much higher trace bandwidth

than SWV and can support all trace type in SWV plus instruction trace. On Cortex-M3/M4 or

Cortex-M7 devices, the trace port usually has four data pins and one clock pin. (Figure 10)

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 22 of 25

- Serial Wire Viewer (SWV) – single pin trace connection that can support selective data trace,

event trace, profiling and instrumentation trace. (Figure 11)

Processor Core

Breakpoint

Unit (FPB)

Data Watchpoint

& trace unit (dwt)

ETM (program)

trace

Instrumentation

(ITM) trace

Flash

Microcontroller

Cortex-M3/M4

processor

Trace Port

Interface

Unit (TPIU)

Debug

Adaptor

Serial Wire Viewer

Internal bus

SRAM Peripherals

bridge
20 pin Cortex

debug connector

Trace Port signals (5 pins)

Figure 10: Trace port provides required trace bandwidth for instruction trace plus other trace

The trace connection allows plenty of useful information to be captured while the processor is

running. For example, the Embedded Trace Macrocell (ETM) enables instruction execution history

(instruction trace) to be captured, and the Instrumentation Trace Macrocell (ITM) enables software

to generate message (e.g. via printf) and capture via the trace connection. In addition, the Data

Watchpoint and Trace (DWT) module in Cortex-M3/M4/M7 enables:

- Selective data trace: Information about a memory location (e.g. combination of address,

data value & timestamp) can be captured each time the location is accessed by the

processor

- Profiling trace: Number of clock cycles the CPU used in different operations (e.g. memory

accesses, sleep)

- Event trace: Provides history and duration of interrupts/exceptions being served by the

processor

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 23 of 25

Debug

Connector Processor Core

Breakpoint

Unit (FPB)

Data Watchpoint

& trace unit (dwt)

ETM (program)

trace

Instrumentation

(ITM) trace

Flash

Microcontroller

Cortex-M3/M4

processor

Trace Port

Interface

Unit (TPIU)

Debug

Adaptor

Serial Wire Viewer

Internal bus

SRAM Peripherals

bridge
10 pin Cortex Debug

Connector

or

20 pin IDC debug

connector

Figure 11: Serial wire viewer provides low cost, low pin count trace

These trace features are widely supported by various tool vendors and the information can be

visualized in a number of ways. For example, the data trace from DWT can be visualized as

waveform in Keil µVision debugger (part of the Keil Microcontroller Development Kit), as shown in

Figure 12.

Figure 12: Logic Analyzer in Keil µVision debugger

While the Cortex-M0 and Cortex-M0+ processors do not have trace interface, the Cortex-M0+

process has a feature called Micro Trace Buffer (MTB, Figure 13). The MTB enable users to allocate a

small part of the system SRAM as a buffer for storing instruction, usually in a circular buffer

arrangement so that the recent instruction execution history can be captured and shown on the

debugger.

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 24 of 25

Debug

Connector Processor Core

Breakpoint

Unit (BP)

Data Watchpoint

Unit (DW)

Flash

Microcontroller

Cortex-M0+ processor

MTB

Internal bus

SRAM Peripherals

bridge

Serial Wire debug

or

JTAG
Trace

 information

Figure 13: MTB feature in Cortex-M0+ processor provides low cost instruction trace solution

7 Product development with the ARM Cortex-M processor

7.1 Why Cortex-M processors are easy to use
Although the Cortex-M processors are packed with features, they are also very easy to use. For

instance, almost everything can be programmed in high-level language like C. Although there is a big

variety of different Cortex-M processor-based products (e.g. with different memory size, peripherals,

performance, packages, etc), the consistency of the architecture make it easy to start using a new

Cortex-M processor once you have experience with one of them.

To make software development easier, and to enable better software reusability and portability,

ARM developed the CMSIS-CORE, where CMSIS stands for Cortex Microcontroller Software Interface

Standard. The CMSIS-CORE provides a standardized Hardware Abstraction Layer (HAL) for various

features in the processors such as interrupt management control, using a set of APIs. The CMSIS-

CORE is integrated in the device driver libraries from various microcontroller vendors, and is

supported by various compilation suites.

Beside from CMSIS-CORE, CMSIS also have a DSP software library (CMSIS-DSP). It provides various

DSP functions and is optimized for Cortex-M4, and also supports other Cortex-M processors. Both

CMSIS-Core and CMSIS-DSP are free and can be downloaded from the ARM website

(www.arm.com/cmsis), and are supported by multiple tool vendors.

7.2 Selecting a processor
For most microcontroller users, the criteria of selecting a microcontroller device are mostly heavily

dependent on the cost and peripherals available. However, many of you could be silicon designers

http://www.arm.com/cmsis

Copyright © 2016 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 25 of 25

choosing the processor core for your next silicon products. In that case, the processor itself would be

the focus.

It is obvious that performance, silicon size, power, and costs would be vital factors in such scenarios.

At the same time, there can be various other factors to be considered. For example, if you are

developing an internet-connected product, you might want to opt for a processor with the Memory

Protection Unit (MPU) so that you can run some tasks in unprivileged state and protect the memory

space using the MPU. On the other hand, if you need to certify your product in some way, the

instruction trace generated from the ETM on Cortex-M3, Cortex-M4 and Cortex-M7 can be very

useful for code coverage prove.

On the other spectrum of silicon design, if you are designing a small sensor running on harvested

energy, then the Cortex-M0+ processor could be the best choice as it is very small and have state-of-

the-art power optimization.

7.3 Ecosystem
One of the key advantages of using ARM Cortex-M processors is the wide support of devices, tools,

and middleware. Currently there are:

- More than 15 microcontroller vendors shipping microcontroller products based on ARM

Cortex-M processors

- More than 10 development suites supporting the Cortex-M processors

- More than 40 OS vendors support OS for Cortex-M

This gives you plenty of choices, and allows you to get the best combination of devices, tools and

middleware for your target applications.

8 Conclusions
There is always a tradeoff between performance, features, against silicon size and power. As a

result, ARM developed various Cortex-M processors for different level of instruction set features,

performance, system and debug features. This document covered various similarities and

differences in the Cortex-M processor family.

Although there are differences, the consistency in the architecture and the availability of standardize

APIs in CMSIS-CORE made software more portable and reusable. At the same time, the Cortex-M

processors are very easy to use. Therefore, the Cortex-M is quickly becoming the most popular 32-

bit processor architecture in microcontroller segment.

