
Introduction
STM32Cube is an STMicroelectronics original initiative to significantly improve developer productivity by reducing development
effort, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of C initialization code using graphical
wizards.

• A comprehensive embedded software platform, delivered per Series (such as STM32CubeL4 for STM32L4 and
STM32L4+)

– The STM32Cube HAL, STM32 abstraction layer embedded software ensuring maximized portability across the
STM32 portfolio. HAL APIs are available for all peripherals.

– Low-layer APIs (LL) offering a fast light-weight expert-oriented layer which is closer to the hardware than the HAL. LL
APIs are available only for a set of peripherals.

– A consistent set of middleware components such as RTOS, USB and Graphics.

– All embedded software utilities, delivered with a full set of examples.

The HAL driver layer provides a simple, generic multi-instance set of APIs (application programming interfaces) to interact with
the upper layer (application, libraries and stacks).

The HAL driver APIs are split into two categories: generic APIs, which provide common and generic functions for all the STM32
series and extension APIs, which include specific and customized functions for a given line or part number. The HAL drivers
include a complete set of ready-to-use APIs that simplify the user application implementation. For example, the communication
peripherals contain APIs to initialize and configure the peripheral, manage data transfers in polling mode, handle interrupts or
DMA, and manage communication errors.

The HAL drivers are feature-oriented instead of IP-oriented. For example, the timer APIs are split into several categories
following the IP functions, such as basic timer, capture and pulse width modulation (PWM). The HAL driver layer implements
run-time failure detection by checking the input values of all functions. Such dynamic checking enhances the firmware
robustness. Run-time detection is also suitable for user application development and debugging.

The LL drivers offer hardware services based on the available features of the STM32 peripherals. These services reflect exactly
the hardware capabilities, and provide atomic operations that must be called by following the programming model described in
the product line reference manual. As a result, the LL services are not based on standalone processes and do not require any
additional memory resources to save their states, counter or data pointers. All operations are performed by changing the
content of the associated peripheral registers. Unlike the HAL, LL APIs are not provided for peripherals for which optimized
access is not a key feature, or for those requiring heavy software configuration and/or a complex upper-level stack (such as
USB).

The HAL and LL are complementary and cover a wide range of application requirements:

• The HAL offers high-level and feature-oriented APIs with a high-portability level. These hide the MCU and peripheral
complexity from the end-user.

• The LL offers low-level APIs at register level, with better optimization but less portability. These require deep knowledge of
the MCU and peripheral specifications.

The HAL- and LL-driver source code is developed in Strict ANSI-C, which makes it independent of the development tools. It is
checked with the CodeSonar® static analysis tool. It is fully documented.

It is compliant with MISRA C®:2004 standard.

 Description of STM32L4/L4+ HAL and low-layer drivers

UM1884

User manual

UM1884 - Rev 8 - February 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

This user manual is structured as follows:

• Overview of HAL drivers

• Overview of low-layer drivers

• Cohabiting of HAL and LL drivers

• Detailed description of each peripheral driver: configuration structures, functions, and how to use the given API to build
your application

UM1884

UM1884 - Rev 8 page 2/2719

1 General information

The STM32CubeL4 MCU Package runs on STM32L4 and STM32L4+ 32-bit microcontrollers based on the Arm®

Cortex®-M processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM1884
General information

UM1884 - Rev 8 page 3/2719

2 Acronyms and definitions

Table 1. Acronyms and definitions

Acronym Definition

ADC Analog-to-digital converter

AES Advanced encryption standard

ANSI American national standards institute

API Application programming interface

BSP Board support package

CAN Controller area network

CEC Consumer electronic controller

CMSIS Cortex microcontroller software interface standard

COMP Comparator

CORDIC Trigonometric calculation unit

CPU Central processing unit

CRC CRC calculation unit

CRYP Cryptographic processor

CSS Clock security system

DAC Digital to analog converter

DLYB Delay block

DCMI Digital camera interface

DFSDM Digital filter sigma delta modulator

DMA Direct memory access

DMAMUX Direct memory access request multiplexer

DSI Display serial interface

DTS Digital temperature sensor

ETH Ethernet controller

EXTI External interrupt/event controller

FDCAN Flexible data-rate controller area network unit

FLASH Flash memory

FMAC Filtering mathematical calculation unit

FMC Flexible memory controller

FW Firewall

GFXMMU Chrom-GRC™

GPIO General purpose I/Os

GTZC Global TrustZone controller

GTZC-MPCBB GTZC block-based memory protection controller

GTZC-MPCWM GTZC watermark memory protection controller

GTZC-TZIC GTZC TrustZone illegal access controller

GTZC-TZSC GTZC TrustZone security controller

UM1884
Acronyms and definitions

UM1884 - Rev 8 page 4/2719

Acronym Definition

HAL Hardware abstraction layer

HASH Hash processor

HCD USB host controller driver

HRTIM High-resolution timer

I2C Inter-integrated circuit

I2S Inter-integrated sound

ICACHE Instruction cache

IRDA Infrared data association

IWDG Independent watchdog

JPEG Joint photographic experts group

LCD Liquid crystal display controler

LTDC LCD TFT Display Controller

LPTIM Low-power timer

LPUART Low-power universal asynchronous receiver/transmitter

MCO Microcontroller clock output

MDIOS Management data input/output (MDIO) slave

MDMA Master direct memory access

MMC MultiMediaCard

MPU Memory protection unit

MSP MCU specific package

NAND NAND Flash memory

NOR NOR Flash memory

NVIC Nested vectored interrupt controller

OCTOSPI Octo-SPI interface

OPAMP Operational amplifier

OTFDEC On-the-fly decryption engine

OTG-FS USB on-the-go full-speed

PKA Public key accelerator

PCD USB peripheral controller driver

PPP STM32 peripheral or block

PSSI Parallel synchronous slave interface

PWR Power controller

QSPI QuadSPI Flash memory

RAMECC RAM ECC monitoring

RCC Reset and clock controller

RNG Random number generator

RTC Real-time clock

SAI Serial audio interface

SD Secure digital

SDMMC SD/SDIO/MultiMediaCard card host interface

UM1884
Acronyms and definitions

UM1884 - Rev 8 page 5/2719

Acronym Definition

SMARTCARD Smartcard IC

SMBUS System management bus

SPI Serial peripheral interface

SPDIFRX SPDIF-RX Receiver interface

SRAM SRAM external memory

SWPMI Serial wire protocol master interface

SysTick System tick timer

TIM Advanced-control, general-purpose or basic timer

TSC Touch sensing controller

TZ Arm TrustZone-M

TZEN TrustZone® enable Flash user option bit

UART Universal asynchronous receiver/transmitter

UCPD USB Type-C and power delivery interface

USART Universal synchronous receiver/transmitter

VREFBUF Voltage reference buffer

WWDG Window watchdog

USB Universal serial bus

UM1884
Acronyms and definitions

UM1884 - Rev 8 page 6/2719

3 Overview of HAL drivers

The HAL drivers are designed to offer a rich set of APIs and to interact easily with the application upper layers.

Each driver consists of a set of functions covering the most common peripheral features. The development of
each driver is driven by a common API which standardizes the driver structure, the functions and the parameter
names.

The HAL drivers include a set of driver modules, each module being linked to a standalone peripheral. However,
in some cases, the module is linked to a peripheral functional mode. As an example, several modules exist for the
USART peripheral: UART driver module, USART driver module, SMARTCARD driver module and IRDA driver
module.

The HAL main features are the following:

• Cross-family portable set of APIs covering the common peripheral features as well as extension APIs in
case of specific peripheral features.

• Three API programming models: polling, interrupt and DMA.

• APIs are RTOS compliant:

– Fully reentrant APIs

– Systematic usage of timeouts in polling mode.

• Support of peripheral multi-instance allowing concurrent API calls for multiple instances of a given peripheral
(USART1, USART2...)

• All HAL APIs implement user-callback functions mechanism:

– Peripheral Init/DeInit HAL APIs can call user-callback functions to perform peripheral system level
Initialization/De-Initialization (clock, GPIOs, interrupt, DMA)

– Peripherals interrupt events

– Error events.

• Object locking mechanism: safe hardware access to prevent multiple spurious accesses to shared
resources.

• Timeout used for all blocking processes: the timeout can be a simple counter or a timebase.

3.1 HAL and user-application files

3.1.1 HAL driver files
A HAL drivers are composed of the following set of files:

Table 2. HAL driver files

File Description

stm32l4xx_hal_ppp.c

Main peripheral/module driver file.

It includes the APIs that are common to all STM32 devices.

Example: stm32l4xx_hal_adc.c, stm32l4xx_hal_irda.c, …

stm32l4xx_hal_ppp.h

Header file of the main driver C file

It includes common data, handle and enumeration structures, define statements and
macros, as well as the exported generic APIs.

Example:stm32l4xx_hal_adc.h,stm32l4xx_hal_irda.h, …

stm32l4xx_hal_ppp_ex.c

Extension file of a peripheral/module driver. It includes the specific APIs for a given part
number or family, as well as the newly defined APIs that overwrite the default generic APIs if
the internal process is implemented in different way.

Example:stm32l4xx_hal_adc_ex.c,stm32l4xx_hal_flash_ex.c, …

stm32l4xx_hal_ppp_ex.h

Header file of the extension C file.

It includes the specific data and enumeration structures, define statements and macros, as
well as the exported device part number specific APIs

UM1884
Overview of HAL drivers

UM1884 - Rev 8 page 7/2719

File Description

Example: stm32l4xx_hal_adc_ex.h,stm32l4xx_hal_flash_ex.h, …

stm32l4xx_hal.c
This file is used for HAL initialization and contains DBGMCU, Remap and Time Delay based
on SysTick APIs.

stm32l4xx_hal.h stm32l4xx_hal.c header file

stm32l4xx_hal_msp_template.c

Template file to be copied to the user application folder.

It contains the MSP initialization and de-initialization (main routine and callbacks) of the
peripheral used in the user application.

stm32l4xx_hal_conf_template.h Template file allowing to customize the drivers for a given application.

stm32l4xx_hal_def.h
Common HAL resources such as common define statements, enumerations, structures and
macros.

3.1.2 User-application files
The minimum files required to build an application using the HAL are listed in the table below:

Table 3. User-application files

File Description

system_stm32l4xx.c

This file contains SystemInit() that is called at startup just after reset and before branching to the
main program. It does not configure the system clock at startup (contrary to the standard library).
This is to be done using the HAL APIs in the user files. It allows relocating the vector table in
internal SRAM.

startup_stm32l4xx.s
Toolchain specific file that contains reset handler and exception vectors.

For some toolchains, it allows adapting the stack/heap size to fit the application requirements.

stm32l4xx_flash.icf
(optional)

Linker file for EWARM toolchain allowing mainly adapting the stack/heap size to fit the application
requirements.

stm32l4xx_hal_msp.c
This file contains the MSP initialization and de-initialization (main routine and callbacks) of the
peripheral used in the user application.

stm32l4xx_hal_conf.h

This file allows the user to customize the HAL drivers for a specific application.

It is not mandatory to modify this configuration. The application can use the default configuration
without any modification.

stm32l4xx_it.c/.h

This file contains the exceptions handler and peripherals interrupt service routine, and calls
HAL_IncTick() at regular time intervals to increment a local variable (declared in stm32l4xx_hal.c)
used as HAL timebase. By default, this function is called each 1ms in Systick ISR. .

The PPP_IRQHandler() routine must call HAL_PPP_IRQHandler() if an interrupt based process is
used within the application.

main.c/.h

This file contains the main program routine, mainly:

• Call to HAL_Init()

• assert_failed() implementation

• system clock configuration

• peripheral HAL initialization and user application code.

The STM32Cube package comes with ready-to-use project templates, one for each supported board. Each
project contains the files listed above and a preconfigured project for the supported toolchains.

Each project template provides empty main loop function and can be used as a starting point to get familiar with
project settings for STM32Cube. Its features are the following:

• It contains the sources of HAL, CMSIS and BSP drivers which are the minimal components to develop a
code on a given board.

• It contains the include paths for all the firmware components.

• It defines the STM32 device supported, and allows configuring the CMSIS and HAL drivers accordingly.

UM1884
HAL and user-application files

UM1884 - Rev 8 page 8/2719

• It provides ready to use user files preconfigured as defined below:

– HAL is initialized

– SysTick ISR implemented for HAL_GetTick()

– System clock configured with the selected device frequency.

Note: If an existing project is copied to another location, then include paths must be updated.

Figure 1. Example of project template

3.2 HAL data structures

Each HAL driver can contain the following data structures:

• Peripheral handle structures

• Initialization and configuration structures

• Specific process structures.

3.2.1 Peripheral handle structures
The APIs have a modular generic multi-instance architecture that allows working with several IP instances
simultaneously.

PPP_HandleTypeDef *handle is the main structure that is implemented in the HAL drivers. It handles the
peripheral/module configuration and registers and embeds all the structures and variables needed to follow the
peripheral device flow.

The peripheral handle is used for the following purposes:

• Multi-instance support: each peripheral/module instance has its own handle. As a result instance resources
are independent.

• Peripheral process intercommunication: the handle is used to manage shared data resources between the
process routines.

Example: global pointers, DMA handles, state machine.

• Storage : this handle is used also to manage global variables within a given HAL driver.

An example of peripheral structure is shown below:

UM1884
HAL data structures

UM1884 - Rev 8 page 9/2719

typedef struct
{
USART_TypeDef *Instance; /* USART registers base address */
USART_InitTypeDef Init; /* Usart communication parameters */
uint8_t *pTxBuffPtr;/* Pointer to Usart Tx transfer Buffer */
uint16_t TxXferSize; /* Usart Tx Transfer size */
__IO uint16_t TxXferCount;/* Usart Tx Transfer Counter */
uint8_t *pRxBuffPtr;/* Pointer to Usart Rx transfer Buffer */
uint16_t RxXferSize; /* Usart Rx Transfer size */
__IO uint16_t RxXferCount; /* Usart Rx Transfer Counter */
DMA_HandleTypeDef *hdmatx; /* Usart Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /* Usart Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /* Locking object */
__IO HAL_USART_StateTypeDef State; /* Usart communication state */
__IO HAL_USART_ErrorTypeDef ErrorCode;/* USART Error code */
}USART_HandleTypeDef;

Note: 1. The multi-instance feature implies that all the APIs used in the application are reentrant and avoid using
global variables because subroutines can fail to be reentrant if they rely on a global variable to remain
unchanged but that variable is modified when the subroutine is recursively invoked. For this reason, the
following rules are respected:

– Reentrant code does not hold any static (or global) non-constant data: reentrant functions can work
with global data. For example, a reentrant interrupt service routine can grab a piece of hardware
status to work with (e.g. serial port read buffer) which is not only global, but volatile. Still, typical use
of static variables and global data is not advised, in the sense that only atomic read-modify-write
instructions should be used in these variables. It should not be possible for an interrupt or signal to
occur during the execution of such an instruction.

– Reentrant code does not modify its own code.

2. When a peripheral can manage several processes simultaneously using the DMA (full duplex case), the
DMA interface handle for each process is added in the PPP_HandleTypeDef.

3. For the shared and system peripherals, no handle or instance object is used. The peripherals concerned
by this exception are the following:

– GPIO

– SYSTICK

– NVIC

– PWR

– RCC

– FLASH

3.2.2 Initialization and configuration structure
These structures are defined in the generic driver header file when it is common to all part numbers. When they
can change from one part number to another, the structures are defined in the extension header file for each part
number.

typedef struct
{
uint32_t BaudRate; /*!< This member configures the UART communication baudrate.*/
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a fram
e.*/
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.*/
uint32_t Parity; /*!< Specifies the parity mode. */
uint32_t Mode; /*!< Specifies wether the Receive or Transmit mode is enabled or disabled.*/
uint32_t HwFlowCtl; /*!< Specifies wether the hardware flow control mode is enabled or disabl
ed.*/
uint32_t OverSampling; /*!< Specifies wether the Over sampling 8 is enabled or disabled,
to achieve higher speed (up to fPCLK/8).*/
}UART_InitTypeDef;

UM1884
HAL data structures

UM1884 - Rev 8 page 10/2719

Note: The config structure is used to initialize the sub-modules or sub-instances. See below example:

HAL_ADC_ConfigChannel (ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)

3.2.3 Specific process structures
The specific process structures are used for specific process (common APIs). They are defined in the generic
driver header file.

Example:

HAL_PPP_Process (PPP_HandleTypeDef* hadc,PPP_ProcessConfig* sConfig)

UM1884
HAL data structures

UM1884 - Rev 8 page 11/2719

3.3 API classification

The HAL APIs are classified into three categories:

• Generic APIs: common generic APIs applying to all STM32 devices. These APIs are consequently present
in the generic HAL driver files of all STM32 microcontrollers.

HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc);
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc);
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc);
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc);

• Extension APIs:

This set of API is divided into two sub-categories :

– Family specific APIs: APIs applying to a given family. They are located in the extension HAL driver file
(see example below related to the ADC).

HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc, uint32_t Sing
leDiff);
uint32_t HAL_ADCEx_Calibration_GetValue(ADC_HandleTypeDef* hadc, uint32_t SingleDiff
);

– Device part number specific APIs:These APIs are implemented in the extension file and delimited by
specific define statements relative to a given part number.

#if defined(STM32L475xx) || defined(STM32L476xx)|| defined(STM32L486xx)
void HAL_PWR
Ex_EnableVddUSB(void); void HAL_PWREx_DisableVddUSB(void);
#endif /* STM32L475xx ||
STM32L476xx || STM32L486xx */

Note: The data structure related to the specific APIs is delimited by the device part number define statement. It is
located in the corresponding extension header C file.

The following table summarizes the location of the different categories of HAL APIs in the driver files.

Table 4. API classification

Generic file Extension file

Common APIs X X

Family specific APIs X

Device specific APIs X

Note: Family specific APIs are only related to a given family. This means that if a specific API is implemented in
another family, and the arguments of this latter family are different, additional structures and arguments might
need to be added.

Note: The IRQ handlers are used for common and family specific processes.

UM1884
API classification

UM1884 - Rev 8 page 12/2719

3.4 Devices supported by HAL drivers

Table 5. List of STM32L4 Series devices supported by HAL drivers

IP/Module

S
T

M
32

L
43

1x
x

S
T

M
32

L
43

2x
x

S
T

M
32

L
44

2x
x

S
T

M
32

L
43

3x
x

S
T

M
32

L
44

3x
x

S
T

M
32

L
45

1x
x

S
T

M
32

L
45

2x
x

S
T

M
32

L
46

2x
x

S
T

M
32

L
47

1x
x

S
T

M
32

L
47

5x
x

S
T

M
32

L
47

6x
x

S
T

M
32

L
48

5x
x

S
T

M
32

L
48

6x
x

S
T

M
32

L
49

6x
x

S
T

M
32

L
4A

6x
x

stm32l4xx_hal.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_adc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_adc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_can.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_comp.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_cortex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_crc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_crc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_cryp.c No No Yes No Yes No No Yes No No No Yes Yes No Yes

stm32l4xx_hal_cryp_ex.c No No Yes No Yes No No Yes No No No Yes Yes No Yes

stm32l4xx_hal_dac.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dac_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dcmi.c No No No No No No No No No No No No No Yes Yes

stm32l4xx_hal_dfsdm.c No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dfsdm_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_dma.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dma_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_dma2d.c No No No No No No No No No No No No No Yes Yes

stm32l4xx_hal_dsi.c No No No No No No No No No No No No No No No

stm32l4xx_hal_firewall.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash_ramfunc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_gfxmmu.c No No No No No No No No No No No No No No No

stm32l4xx_hal_gpio.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_hash.c No No No No No No No No No No No No No No Yes

stm32l4xx_hal_hash_ex.c No No No No No No No No No No No No No No Yes

stm32l4xx_hal_hcd.c No No No No No No No No No Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_i2c.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_i2c_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_irda.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_iwdg.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_lcd.c No No No Yes Yes No No No No No Yes No Yes Yes Yes

stm32l4xx_hal_lptim.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

UM1884
Devices supported by HAL drivers

UM1884 - Rev 8 page 13/2719

IP/Module

S
T

M
32

L
43

1x
x

S
T

M
32

L
43

2x
x

S
T

M
32

L
44

2x
x

S
T

M
32

L
43

3x
x

S
T

M
32

L
44

3x
x

S
T

M
32

L
45

1x
x

S
T

M
32

L
45

2x
x

S
T

M
32

L
46

2x
x

S
T

M
32

L
47

1x
x

S
T

M
32

L
47

5x
x

S
T

M
32

L
47

6x
x

S
T

M
32

L
48

5x
x

S
T

M
32

L
48

6x
x

S
T

M
32

L
49

6x
x

S
T

M
32

L
4A

6x
x

stm32l4xx_hal_ltdc.c No No No No No No No No No No No No No No No

stm32l4xx_hal_ltdc_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_msp_template.c NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

stm32l4xx_hal_nand.c No No No No No No No No Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_nor.c No No No No No No No No Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_opamp.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_opamp_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_ospi.c No No No No No No No No No No No No No No No

stm32l4xx_hal_pcd.c No Yes Yes Yes Yes No Yes Yes No Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pcd_ex.c No Yes Yes Yes Yes No Yes Yes No Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pwr.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pwr_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_qspi.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rcc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rcc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rng.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rtc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rtc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sai.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sai_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_sd.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sd_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_smartcard.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_smartcard_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_smbus.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_spi.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_spi_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sram.c No No No No No No No No Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_swpmi.c Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_tim.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_tim_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_tsc.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_uart.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_uart_ex.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_usart.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_usart_ex.c No No No No No No No No No No No No No No No

stm32l4xx_hal_wwdg.c Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

UM1884
Devices supported by HAL drivers

UM1884 - Rev 8 page 14/2719

Table 6. List of STM32L4+ Series devices supported by HAL drivers

IP/module

S
T

M
32

L
4P

5x
x

S
T

M
32

L
4Q

5x
x

S
T

M
32

L
4R

5x
x

S
T

M
32

L
4R

7x
x

S
T

M
32

L
4R

9x
x

S
T

M
32

L
4S

5x
x

S
T

M
32

L
4S

7x
x

S
T

M
32

L
4S

9x
x

stm32l4xx_hal.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_adc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_adc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_can.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_comp.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_cortex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_crc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_crc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_cryp.c No Yes No No No Yes Yes Yes

stm32l4xx_hal_cryp_ex.c No Yes No No No Yes Yes Yes

stm32l4xx_hal_dac.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dac_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dcmi.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dfsdm.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dfsdm_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dma.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dma_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dma2d.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_dsi.c No No No No Yes No No Yes

stm32l4xx_hal_firewall.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_flash_ramfunc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_gfxmmu.c No No No Yes Yes No Yes Yes

stm32l4xx_hal_gpio.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_hash.c Yes Yes No No No Yes Yes Yes

stm32l4xx_hal_hash_ex.c Yes Yes No No No Yes Yes Yes

stm32l4xx_hal_hcd.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_i2c.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_i2c_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_irda.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_iwdg.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_lcd.c No No No No No No No No

stm32l4xx_hal_lptim.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_ltdc.c Yes Yes No Yes Yes No Yes Yes

stm32l4xx_hal_ltdc_ex.c Yes Yes No Yes Yes No Yes Yes

UM1884
Devices supported by HAL drivers

UM1884 - Rev 8 page 15/2719

IP/module

S
T

M
32

L
4P

5x
x

S
T

M
32

L
4Q

5x
x

S
T

M
32

L
4R

5x
x

S
T

M
32

L
4R

7x
x

S
T

M
32

L
4R

9x
x

S
T

M
32

L
4S

5x
x

S
T

M
32

L
4S

7x
x

S
T

M
32

L
4S

9x
x

stm32l4xx_hal_msp_template.c NA NA NA NA NA NA NA NA

stm32l4xx_hal_nand.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_nor.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_opamp.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_opamp_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_ospi.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pcd.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pcd_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pka.c No Yes No No No No No No

stm32l4xx_hal_pssi.c Yes Yes No No No No No No

stm32l4xx_hal_pwr.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_pwr_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_qspi.c No No No No No No No No

stm32l4xx_hal_rcc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rcc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rng.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rng_ex.c Yes Yes No No No No No No

stm32l4xx_hal_rtc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_rtc_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sai.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sai_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sd.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sd_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_smartcard.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_smartcard_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_smbus.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_spi.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_spi_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_sram.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_swpmi.c No No No No No No No No

stm32l4xx_hal_tim.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_tim_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_tsc.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_uart.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_uart_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_usart.c Yes Yes Yes Yes Yes Yes Yes Yes

stm32l4xx_hal_usart_ex.c Yes Yes Yes Yes Yes Yes Yes Yes

UM1884
Devices supported by HAL drivers

UM1884 - Rev 8 page 16/2719

IP/module

S
T

M
32

L
4P

5x
x

S
T

M
32

L
4Q

5x
x

S
T

M
32

L
4R

5x
x

S
T

M
32

L
4R

7x
x

S
T

M
32

L
4R

9x
x

S
T

M
32

L
4S

5x
x

S
T

M
32

L
4S

7x
x

S
T

M
32

L
4S

9x
x

stm32l4xx_hal_wwdg.c Yes Yes Yes Yes Yes Yes Yes Yes

UM1884
Devices supported by HAL drivers

UM1884 - Rev 8 page 17/2719

3.5 HAL driver rules

3.5.1 HAL API naming rules
The following naming rules are used in HAL drivers:

Table 7. HAL API naming rules

Generic Family specific Device specific

File names stm32l4xx_hal_ppp (c/h) stm32l4xx_hal_ppp_ex (c/h) stm32l4xx_ hal_ppp_ex (c/h)

Module
name

HAL_PPP_ MODULE

Function
name

HAL_PPP_Function
HAL_PPP_FeatureFunction_MODE

HAL_PPPEx_Function
HAL_PPPEx_FeatureFunction_MODE

HAL_PPPEx_Function
HAL_PPPEx_FeatureFunction_MODE

Handle
name

PPP_HandleTypedef NA NA

Init
structure

name
PPP_InitTypeDef NA PPP_InitTypeDef

Enum name HAL_PPP_StructnameTypeDef NA NA

• The PPP prefix refers to the peripheral functional mode and not to the peripheral itself. For example, if the
USART, PPP can be USART, IRDA, UART or SMARTCARD depending on the peripheral mode.

• The constants used in one file are defined within this file. A constant used in several files is defined in a
header file. All constants are written in uppercase, except for peripheral driver function parameters.

• typedef variable names should be suffixed with _TypeDef.

• Registers are considered as constants. In most cases, their name is in uppercase and uses the same
acronyms as in the STM32L4 and STM32L4+ reference manuals.

• Peripheral registers are declared in the PPP_TypeDef structure (e.g. ADC_TypeDef) in the stm32l4xxx.h
header file:

stm32l4xxx.h corresponds to stm32l412xx.h, stm32l422xx.h, stm32l431xx.h, stm32l432xx.h, stm32l433xx.h,
stm32l442xx.h, stm32l443xx.h, stm32l4521xx.h, stm32l452xx.h, stm32l462xx.h, stm32l471xx.h,
stm32l475xx.h, stm32l476xx.h, stm32l485xx.h, stm32l486xx.h, stm32l496xx.h, stm32l4a6xx.h,
stm32l4p5xx.h, stm32l4q5xx.h, stm32l4r5xx.h, stm32l4r7xx.h, stm32l4r9xx.h, stm32l4s5xx.h, stm32l4s7xx.h,
stm32l4s9xx.h.

• Peripheral function names are prefixed by HAL_, then the corresponding peripheral acronym in uppercase
followed by an underscore. The first letter of each word is in uppercase (e.g. HAL_UART_Transmit()). Only
one underscore is allowed in a function name to separate the peripheral acronym from the rest of the
function name.

• The structure containing the PPP peripheral initialization parameters are named PPP_InitTypeDef (e.g.
ADC_InitTypeDef).

• The structure containing the Specific configuration parameters for the PPP peripheral are named
PPP_xxxxConfTypeDef (e.g. ADC_ChannelConfTypeDef).

• Peripheral handle structures are named PPP_HandleTypedef (e.g DMA_HandleTypeDef)

• The functions used to initialize the PPP peripheral according to parameters specified in PPP_InitTypeDef are
named HAL_PPP_Init (e.g. HAL_TIM_Init()).

• The functions used to reset the PPP peripheral registers to their default values are named HAL_PPP_DeInit
(e.g. HAL_TIM_DeInit()).

• The MODE suffix refers to the process mode, which can be polling, interrupt or DMA. As an example, when
the DMA is used in addition to the native resources, the function should be called: HAL_PPP_Function_DMA
().

UM1884
HAL driver rules

UM1884 - Rev 8 page 18/2719

• The Feature prefix should refer to the new feature.

Example: HAL_ADCEx_InjectedStart()() refers to the injection mode

3.5.2 HAL general naming rules
• For the shared and system peripherals, no handle or instance object is used. This rule applies to the

following peripherals:

– GPIO

– SYSTICK

– NVIC

– RCC

– FLASH.

Example: The HAL_GPIO_Init() requires only the GPIO address and its configuration parameters.

HAL_StatusTypeDef HAL_GPIO_Init (GPIO_TypeDef* GPIOx, GPIO_InitTypeDef *Init)
{
/*GPIO Initialization body */
}

UM1884
HAL driver rules

UM1884 - Rev 8 page 19/2719

• The macros that handle interrupts and specific clock configurations are defined in each peripheral/module
driver. These macros are exported in the peripheral driver header files so that they can be used by the
extension file. The list of these macros is defined below:

Note: This list is not exhaustive and other macros related to peripheral features can be added, so that they can be
used in the user application.

Table 8. Macros handling interrupts and specific clock configurations

Macros Description

__HAL_PPP_ENABLE_IT(__HANDLE__, __INTERRUPT__) Enables a specific peripheral interrupt

__HAL_PPP_DISABLE_IT(__HANDLE__,
__INTERRUPT__)

Disables a specific peripheral interrupt

__HAL_PPP_GET_IT (__HANDLE__, __ INTERRUPT __) Gets a specific peripheral interrupt status

__HAL_PPP_CLEAR_IT (__HANDLE__, __ INTERRUPT __) Clears a specific peripheral interrupt status

__HAL_PPP_GET_FLAG (__HANDLE__, __FLAG__) Gets a specific peripheral flag status

__HAL_PPP_CLEAR_FLAG (__HANDLE__, __FLAG__) Clears a specific peripheral flag status

__HAL_PPP_ENABLE(__HANDLE__) Enables a peripheral

__HAL_PPP_DISABLE(__HANDLE__) Disables a peripheral

__HAL_PPP_XXXX (__HANDLE__, __PARAM__) Specific PPP HAL driver macro

__HAL_PPP_GET_ IT_SOURCE (__HANDLE__, __
INTERRUPT __)

Checks the source of specified interrupt

• NVIC and SYSTICK are two Arm® Cortex® core features. The APIs related to these features are located in
the stm32l4xx_hal_cortex.c file.

• When a status bit or a flag is read from registers, it is composed of shifted values depending on the number
of read values and of their size. In this case, the returned status width is 32 bits. Example : STATUS = XX |
(YY << 16) or STATUS = XX | (YY << 8) | (YY << 16) | (YY << 24)".

• The PPP handles are valid before using the HAL_PPP_Init() API. The init function performs a check before
modifying the handle fields.

 HAL_PPP_Init(PPP_HandleTypeDef)
if(hppp == NULL)
 {
 return HAL_ERROR;
 }

• The macros defined below are used:

– Conditional macro:

#define ABS(x) (((x) > 0) ? (x) : -(x))

– Pseudo-code macro (multiple instructions macro):

#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD_, __DMA_HANDLE_) \
do{ \
(__HANDLE__)->__PPP_DMA_FIELD_ = &(__DMA_HANDLE_); \
(__DMA_HANDLE_).Parent = (__HANDLE__); \
} while(0)

3.5.3 HAL interrupt handler and callback functions
Besides the APIs, HAL peripheral drivers include:

• HAL_PPP_IRQHandler() peripheral interrupt handler that should be called from stm32l4xx_it.c

• User callback functions.

UM1884
HAL driver rules

UM1884 - Rev 8 page 20/2719

The user callback functions are defined as empty functions with “weak” attribute. They have to be defined in the
user code.

There are three types of user callbacks functions:

• Peripheral system level initialization/ de-Initialization callbacks: HAL_PPP_MspInit() and
HAL_PPP_MspDeInit

• Process complete callbacks : HAL_PPP_ProcessCpltCallback

• Error callback: HAL_PPP_ErrorCallback.

Table 9. Callback functions

Callback functions Example

HAL_PPP_MspInit() / _DeInit()

Example: HAL_USART_MspInit()

Called from HAL_PPP_Init() API function to perform peripheral system level initialization
(GPIOs, clock, DMA, interrupt)

HAL_PPP_ProcessCpltCallback
Example: HAL_USART_TxCpltCallback

Called by peripheral or DMA interrupt handler when the process completes

HAL_PPP_ErrorCallback
Example: HAL_USART_ErrorCallback

Called by peripheral or DMA interrupt handler when an error occurs

3.6 HAL generic APIs

The generic APIs provide common generic functions applying to all STM32 devices. They are composed of four
APIs groups:

• Initialization and de-initialization functions:HAL_PPP_Init(), HAL_PPP_DeInit()

• IO operation functions: HAL_PPP_Read(), HAL_PPP_Write(),HAL_PPP_Transmit(), HAL_PPP_Receive()

• Control functions: HAL_PPP_Set (), HAL_PPP_Get ().

• State and Errors functions: HAL_PPP_GetState (), HAL_PPP_GetError ().

For some peripheral/module drivers, these groups are modified depending on the peripheral/module
implementation.

Example: in the timer driver, the API grouping is based on timer features (PWM, OC, IC...).

The initialization and de-initialization functions allow initializing a peripheral and configuring the low-level
resources, mainly clocks, GPIO, alternate functions (AF) and possibly DMA and interrupts. The
HAL_DeInit()function restores the peripheral default state, frees the low-level resources and removes any direct
dependency with the hardware.

The IO operation functions perform a row access to the peripheral payload data in write and read modes.

The control functions are used to change dynamically the peripheral configuration and set another operating
mode.

The peripheral state and errors functions allow retrieving in run time the peripheral and data flow states, and
identifying the type of errors that occurred. The example below is based on the ADC peripheral. The list of generic
APIs is not exhaustive. It is only given as an example.

Table 10. HAL generic APIs

Function group Common API name Description

Initialization group

HAL_ADC_Init()
This function initializes the peripheral and configures the low -level
resources (clocks, GPIO, AF..)

HAL_ADC_DeInit()
This function restores the peripheral default state, frees the low-
level resources and removes any direct dependency with the
hardware.

IO operation group HAL_ADC_Start ()
This function starts ADC conversions when the polling method is
used

UM1884
HAL generic APIs

UM1884 - Rev 8 page 21/2719

Function group Common API name Description

IO operation group

HAL_ADC_Stop ()
This function stops ADC conversions when the polling method is
used

HAL_ADC_PollForConversion()
This function allows waiting for the end of conversions when the
polling method is used. In this case, a timout value is specified by
the user according to the application.

HAL_ADC_Start_IT()
This function starts ADC conversions when the interrupt method is
used

HAL_ADC_Stop_IT()
This function stops ADC conversions when the interrupt method is
used

HAL_ADC_IRQHandler() This function handles ADC interrupt requests

HAL_ADC_ConvCpltCallback()
Callback function called in the IT subroutine to indicate the end of
the current process or when a DMA transfer has completed

HAL_ADC_ErrorCallback()
Callback function called in the IT subroutine if a peripheral error or a
DMA transfer error occurred

Control group
HAL_ADC_ConfigChannel()

This function configures the selected ADC regular channel, the
corresponding rank in the sequencer and the sample time

HAL_ADC_AnalogWDGConfig This function configures the analog watchdog for the selected ADC

State and Errors
group

HAL_ADC_GetState()
This function allows getting in run time the peripheral and the data
flow states.

HAL_ADC_GetError()
This fuction allows getting in run time the error that occurred during
IT routine

3.7 HAL extension APIs

3.7.1 HAL extension model overview
The extension APIs provide specific functions or overwrite modified APIs for a specific family (series) or specific
part number within the same family.

The extension model consists of an additional file, stm32l4xx_hal_ppp_ex.c, that includes all the specific functions
and define statements (stm32l4xx_hal_ppp_ex.h) for a given part number.

Below an example based on the ADC peripheral:

Table 11. HAL extension APIs

Function group Common API name

HAL_ADCEx_CalibrationStart() This function is used to start the automatic ADC calibration

3.7.2 HAL extension model cases
The specific IP features can be handled by the HAL drivers in five different ways. They are described below.

Adding a part number-specific function

When a new feature specific to a given device is required, the new APIs are added in the
stm32l4xx_hal_ppp_ex.c extension file. They are named HAL_PPPEx_Function().

UM1884
HAL extension APIs

UM1884 - Rev 8 page 22/2719

Figure 2. Adding device-specific functions

Example: stm32l4xx_hal_adc_ex.c/h

#if defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L486xx)
void HAL_PWREx_EnableVddUSB(void);
void HAL_PWREx_DisableVddUSB(void);
#endif /* STM32L475xx || STM32L476xx || STM32L486xx */

Adding a family-specific function

In this case, the API is added in the extension driver C file and named HAL_PPPEx_Function ().

Figure 3. Adding family-specific functions

Adding a new peripheral (specific to a device belonging to a given family)

When a peripheral which is available only in a specific device is required, the APIs corresponding to this new
peripheral/module (newPPP) are added in a new stm32l4xx_hal_newppp.c. However the inclusion of this file is
selected in the stm32l4xx_hal_conf.h using the macro:

#define HAL_NEWPPP_MODULE_ENABLED

UM1884
HAL extension APIs

UM1884 - Rev 8 page 23/2719

Figure 4. Adding new peripherals

Example: stm32l4xx_hal_adc.c/h

Updating existing common APIs

In this case, the routines are defined with the same names in the stm32l4xx_hal_ppp_ex.c extension file, while
the generic API is defined as weak, so that the compiler will overwrite the original routine by the new defined
function.

Figure 5. Updating existing APIs

Updating existing data structures

The data structure for a specific device part number (e.g. PPP_InitTypeDef) can have different fields. In this case,
the data structure is defined in the extension header file and delimited by the specific part number define
statement.

UM1884
HAL extension APIs

UM1884 - Rev 8 page 24/2719

3.8 File inclusion model

The header of the common HAL driver file (stm32l4xx_hal.h) includes the common configurations for the whole
HAL library. It is the only header file that is included in the user sources and the HAL C sources files to be able to
use the HAL resources.

Figure 6. File inclusion model

A PPP driver is a standalone module which is used in a project. The user must enable the corresponding
USE_HAL_PPP_MODULE define statement in the configuration file.

/***
* @file stm32l4xx_hal_conf.h
* @author MCD Application Team
* @version VX.Y.Z * @date dd-mm-yyyy
* @brief This file contains the modules to be used
**
(…)
#define HAL_USART_MODULE_ENABLED
#define HAL_IRDA_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
(…)

3.9 HAL common resources

The common HAL resources, such as common define enumerations, structures and macros, are defined in
stm32l4xx_hal_def.h.The main common define enumeration is HAL_StatusTypeDef.

UM1884
File inclusion model

UM1884 - Rev 8 page 25/2719

• HAL Status

The HAL status is used by almost all HAL APIs, except for boolean functions and IRQ handler. It returns the
status of the current API operations. It has four possible values as described below:

Typedef enum
{
HAL_OK = 0x00,
HAL_ERROR = 0x01,
HAL_BUSY = 0x02,
HAL_TIMEOUT = 0x03
} HAL_StatusTypeDef;

• HAL Locked

The HAL lock is used by all HAL APIs to prevent accessing by accident shared resources.

typedef enum
{
HAL_UNLOCKED = 0x00, /*!<Resources unlocked */
HAL_LOCKED = 0x01 /*!< Resources locked */
} HAL_LockTypeDef;

In addition to common resources, the stm32l4xx_hal_def.h file calls the stm32l4xx.h file in CMSIS library to
get the data structures and the address mapping for all peripherals:

– Declarations of peripheral registers and bits definition.

– Macros to access peripheral registers hardware (Write register, Read register…etc.).

• Common macros

– Macro defining HAL_MAX_DELAY

#define HAL_MAX_DELAY 0xFFFFFFFF

– Macro linking a PPP peripheral to a DMA structure pointer:

#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD_, __DMA_HANDLE_) \
do{ \
 (__HANDLE__)->__PPP_DMA_FIELD_ = &(__DMA_HANDLE_); \
 (__DMA_HANDLE_).Parent = (__HANDLE__); \
} while(0)

3.10 HAL configuration

The configuration file, stm32l4xx_hal_conf.h, allows customizing the drivers for the user application. Modifying
this configuration is not mandatory: the application can use the default configuration without any modification.

To configure these parameters, the user should enable, disable or modify some options by uncommenting,
commenting or modifying the values of the related define statements as described in the table below:

Table 12. Define statements used for HAL configuration

Configuration item Description Default Value

HSE_VALUE
Defines the value of the external oscillator (HSE) expressed in Hz.
The user must adjust this define statement when using a different
crystal value.

8 000 000 Hz

HSE_STARTUP_TIMEOUT Timeout for HSE start-up, expressed in ms 100

HSI_VALUE Defines the value of the internal oscillator (HSI) expressed in Hz. 16 000 000 Hz

MSI_VALUE
Defines the default value of the Multiplespeed internal oscillator
(MSI) expressed in Hz.

4 000 000 Hz

LSI_VALUE
Defines the default value of the Low-speed internal oscillator (LSI)
expressed in Hz.

32000 Hz

UM1884
HAL configuration

UM1884 - Rev 8 page 26/2719

Configuration item Description Default Value

LSE_VALUE
Defines the value of the external oscillator (LSE) expressed in Hz.
The user must adjust this define statement when using a different
crystal value.

32768 Hz

LSE_STARTUP_TIMEOUT Timeout for LSE start-up, expressed in ms 5000

VDD_VALUE VDD value 3300 (mV)

USE_RTOS Enables the use of RTOS
FALSE (for future

use)

PREFETCH_ENABLE Enables prefetch feature FALSE

INSTRUCTION_CACHE_ENABLE Enables I-cache feature TRUE

DATA_CACHE_ENABLE Enables D-cache feature TRUE

Note: The stm32l4xx_hal_conf_template.h file is located in the HAL drivers Inc folder. It should be copied to the user
folder, renamed and modified as described above.

Note: By default, the values defined in the stm32l4xx_hal_conf_template.h file are the same as the ones used for the
examples and demonstrations. All HAL include files are enabled so that they can be used in the user code
without modifications.

3.11 HAL system peripheral handling

This chapter gives an overview of how the system peripherals are handled by the HAL drivers. The full API list is
provided within each peripheral driver description section.

3.11.1 Clock
Two main functions can be used to configure the system clock:

• HAL_RCC_OscConfig (RCC_OscInitTypeDef *RCC_OscInitStruct). This function configures/enables
multiple clock sources (HSE, HSI, MSI, LSE, LSI, PLL).

• HAL_RCC_ClockConfig (RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency). This function

– selects the system clock source

– configures AHB, APB1 and APB2 clock dividers

– configures the number of Flash memory wait states

– updates the SysTick configuration when HCLK clock changes.

Some peripheral clocks are not derived from the system clock (such as RTC, USB). In this case, the clock
configuration is performed by an extended API defined in stm32l4xx_hal_rcc_ex.c:
HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit).

Additional RCC HAL driver functions are available:

• HAL_RCC_DeInit() Clock de-initialization function that returns clock configuration to reset state

• Get clock functions that allow retreiving various clock configurations (system clock, HCLK, PCLK1, PCLK2,
…)

• MCO and CSS configuration functions

A set of macros are defined in stm32l4xx_hal_rcc.h and stm32l4xx_hal_rcc_ex.h. They allow executing
elementary operations on RCC block registers, such as peripherals clock gating/reset control:

• __HAL_PPP_CLK_ENABLE/__HAL_PPP_CLK_DISABLE to enable/disable the peripheral clock

• __HAL_PPP_FORCE_RESET/__HAL_PPP_RELEASE_RESET to force/release peripheral reset

• __HAL_PPP_CLK_SLEEP_ENABLE/__HAL_PPP_CLK_SLEEP_DISABLE to enable/disable the peripheral
clock during Sleep mode.

• __HAL_PPP_IS_CLK_ENABLED/__HAL_PPP_IS_CLK_DISABLED to query about the enabled/disabled
status of the peripheral clock.

• __HAL_PPP_IS_CLK_SLEEP_ENABLED/__HAL_PPP_IS_CLK_SLEEP_DISABLED to query about the
enabled/disabled status of the peripheral clock during Sleep mode.

UM1884
HAL system peripheral handling

UM1884 - Rev 8 page 27/2719

3.11.2 GPIOs
GPIO HAL APIs are the following:

• HAL_GPIO_Init() / HAL_GPIO_DeInit()

• HAL_GPIO_ReadPin() / HAL_GPIO_WritePin()

• HAL_GPIO_TogglePin ().

In addition to standard GPIO modes (input, output, analog), the pin mode can be configured as EXTI with interrupt
or event generation.

When selecting EXTI mode with interrupt generation, the user must call HAL_GPIO_EXTI_IRQHandler() from
stm32l4xx_it.c and implement HAL_GPIO_EXTI_Callback()

The table below describes the GPIO_InitTypeDef structure field.

Table 13. Description of GPIO_InitTypeDef structure

Structure field Description

Pin
Specifies the GPIO pins to be configured.

Possible values: GPIO_PIN_x or GPIO_PIN_All, where x[0..15]

Mode

Specifies the operating mode for the selected pins: GPIO mode or EXTI mode.

Possible values are:

• GPIO mode

– GPIO_MODE_INPUT : Input floating

– GPIO_MODE_OUTPUT_PP : Output push-pull

– GPIO_MODE_OUTPUT_OD : Output open drain

– GPIO_MODE_AF_PP : Alternate function push-pull

– GPIO_MODE_AF_OD : Alternate function open drain

– GPIO_MODE_ANALOG : Analog mode

– GPIO_MODE_ANALOG_ADC_CONTROL: ADC analog mode

• External Interrupt mode

– GPIO_MODE_IT_RISING : Rising edge trigger detection

– GPIO_MODE_IT_FALLING : Falling edge trigger detection

– GPIO_MODE_IT_RISING_FALLING : Rising/Falling edge trigger detection

• External Event mode

– GPIO_MODE_EVT_RISING : Rising edge trigger detection

– GPIO_MODE_EVT_FALLING : Falling edge trigger detection

– GPIO_MODE_EVT_RISING_FALLING: Rising/Falling edge trigger detection

Pull

Specifies the Pull-up or Pull-down activation for the selected pins.

Possible values are:

GPIO_NOPULL

GPIO_PULLUP

GPIO_PULLDOWN

Speed

Specifies the speed for the selected pins

Possible values are:

GPIO_SPEED_FREQ_LOW

GPIO_SPEED_FREQ_MEDIUM

GPIO_SPEED_FREQ_HIGH

GPIO_SPEED_FREQ_VERY_HIGH

Please find below typical GPIO configuration examples:

UM1884
HAL system peripheral handling

UM1884 - Rev 8 page 28/2719

• Configuring GPIOs as output push-pull to drive external LEDs:

GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

• Configuring PA0 as external interrupt with falling edge sensitivity:

GPIO_InitStructure.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Pin = GPIO_PIN_0;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);

3.11.3 Cortex® NVIC and SysTick timer

The Cortex® HAL driver, stm32l4xx_hal_cortex.c, provides APIs to handle NVIC and SysTick. The supported APIs
include:

• HAL_NVIC_SetPriority()/ HAL_NVIC_SetPriorityGrouping()

• HAL_NVIC_GetPriority() / HAL_NVIC_GetPriorityGrouping()

• HAL_NVIC_EnableIRQ()/HAL_NVIC_DisableIRQ()

• HAL_NVIC_SystemReset()

• HAL_SYSTICK_IRQHandler()

• HAL_NVIC_GetPendingIRQ() / HAL_NVIC_SetPendingIRQ () / HAL_NVIC_ClearPendingIRQ()

• HAL_NVIC_GetActive(IRQn)

• HAL_SYSTICK_Config()

• HAL_SYSTICK_CLKSourceConfig()

• HAL_SYSTICK_Callback()

3.11.4 PWR
The PWR HAL driver handles power management. The features shared between all STM32 Series are listed
below:

• PVD configuration, enabling/disabling and interrupt handling

– HAL_PWR_ConfigPVD()

– HAL_PWR_EnablePVD() / HAL_PWR_DisablePVD()

– HAL_PWR_PVD_IRQHandler()

– HAL_PWR_PVDCallback()

• Wakeup pin configuration

– HAL_PWR_EnableWakeUpPin() / HAL_PWR_DisableWakeUpPin()

• Low-power mode entry

– HAL_PWR_EnterSLEEPMode()

– HAL_PWR_EnterSTOPMode() (kept for compatibility with other family but identical to
HAL_PWREx_EnterSTOP0Mode() or HAL_PWREx_EnterSTOP1Mode() (see hereafter))

– HAL_PWR_EnterSTANDBYMode()

• STM32L4 and STM32L4+ new low-power management features:

– HAL_PWREx_EnterSTOP0Mode()

– HAL_PWREx_EnterSTOP1Mode()

– HAL_PWREx_EnterSTOP2Mode()

– HAL_PWREx_EnterSHUTDOWNMode()

3.11.5 EXTI
The EXTI is not considered as a standalone peripheral but rather as a service used by other peripheral, that are
handled through EXTI HAL APIs. In addition, each peripheral HAL driver implements the associated EXTI
configuration and function as macros in its header file.

UM1884
HAL system peripheral handling

UM1884 - Rev 8 page 29/2719

The first 16 EXTI lines connected to the GPIOs are managed within the GPIO driver. The GPIO_InitTypeDef
structure allows configuring an I/O as external interrupt or external event.

The EXTI lines connected internally to the PVD, RTC, USB, and Ethernet are configured within the HAL drivers of
these peripheral through the macros given in the table below.

The EXTI internal connections depend on the targeted STM32 microcontroller (refer to the product datasheet for
more details):

Table 14. Description of EXTI configuration macros

Macros Description

__HAL_PPP_{SUBLOCK}__EXTI_ENABLE_IT()

Enables a given EXTI line interrupt

Example:

__HAL_PWR_PVD_EXTI_ENABLE_IT()

__HAL_PPP_{SUBLOCK}__EXTI_DISABLE_IT()

Disables a given EXTI line.

Example:

__HAL_PWR_PVD_EXTI_DISABLE_IT()

__HAL_ PPP_{SUBLOCK}__EXTI_GET_FLAG()

Gets a given EXTI line interrupt flag pending bit status.

Example:

__HAL_PWR_PVD_EXTI_GET_FLAG()

__HAL_ PPP_{SUBLOCK}_EXTI_CLEAR_FLAG()

Clears a given EXTI line interrupt flag pending bit.

Example;

__HAL_PWR_PVD_EXTI_CLEAR_FLAG()

__HAL_ PPP_{SUBLOCK}_EXTI_GENERATE_SWIT()

Generates a software interrupt for a given EXTI line.

Example:

__HAL_PWR_PVD_EXTI_ GENERATE_SWIT ()

__HAL_PPP_SUBBLOCK_EXTI_ENABLE_EVENT()

Enable a given EXTI line event

Example:

__HAL_RTC_WAKEUP_EXTI_ENABLE_EVENT()

__HAL_PPP_SUBBLOCK_EXTI_DISABLE_EVENT()

Disable a given EXTI line event

Example:

__HAL_RTC_WAKEUP_EXTI_DISABLE_EVENT()

__HAL_ PPP_SUBBLOCK_EXTI_ENABLE_RISING_EDGE() Configure an EXTI Interrupt or Event on rising edge

__HAL_ PPP_SUBBLOCK_EXTI_DISABLE_FALLING_EDGE() Enable an EXTI Interrupt or Event on Falling edge

__HAL_ PPP_SUBBLOCK_EXTI_DISABLE_RISING_EDGE() Disable an EXTI Interrupt or Event on rising edge

__HAL_ PPP_SUBBLOCK_EXTI_DISABLE_FALLING_EDGE() Disable an EXTI Interrupt or Event on Falling edge

__HAL_ PPP_SUBBLOCK_EXTI_ENABLE_RISING_FALLING_EDGE() Enable an EXTI Interrupt or Event on Rising/Falling edge

__HAL_ PPP_SUBBLOCK_EXTI_DISABLE_RISING_FALLING_EDGE() Disable an EXTI Interrupt or Event on Rising/Falling edge

If the EXTI interrupt mode is selected, the user application must call HAL_PPP_FUNCTION_IRQHandler() (for
example HAL_PWR_PVD_IRQHandler()), from stm32l4xx_it.c file, and implement
HAL_PPP_FUNCTIONCallback() callback function (for example HAL_PWR_PVDCallback().

3.11.6 DMA
The DMA HAL driver allows enabling and configuring the peripheral to be connected to the DMA Channels
(except for internal SRAM/FLASH memory which do not require any initialization). Refer to the product reference
manual for details on the DMA request corresponding to each peripheral.

UM1884
HAL system peripheral handling

UM1884 - Rev 8 page 30/2719

For a given channel, HAL_DMA_Init() API allows programming the required configuration through the following
parameters:

• Transfer direction

• Source and destination data formats

• Circular, Normal control mode

• Channel priority level

• Source and destination Increment mode

Two operating modes are available:

• Polling mode I/O operation

1. Use HAL_DMA_Start() to start DMA transfer when the source and destination addresses and the
Length of data to be transferred have been configured.

2. Use HAL_DMA_PollForTransfer() to poll for the end of current transfer. In this case a fixed timeout can
be configured depending on the user application.

• Interrupt mode I/O operation

1. Configure the DMA interrupt priority using HAL_NVIC_SetPriority()

2. Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()

3. Use HAL_DMA_Start_IT() to start DMA transfer when the source and destination addresses and the
length of data to be transferred have been confgured. In this case the DMA interrupt is configured.

4. Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine

5. When data transfer is complete, HAL_DMA_IRQHandler() function is executed and a user function can
be called by customizing XferCpltCallback and XferErrorCallback function pointer (i.e. a member of
DMA handle structure).

Additional functions and macros are available to ensure efficient DMA management:

• Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
detection.

• Use HAL_DMA_Abort() function to abort the current transfer

The most used DMA HAL driver macros are the following:

• __HAL_DMA_ENABLE: enables the specified DMA channel.

• __HAL_DMA_DISABLE: disables the specified DMA channel.

• __HAL_DMA_GET_FLAG: gets the DMA channel pending flags.

• __HAL_DMA_CLEAR_FLAG: clears the DMA channel pending flags.

• __HAL_DMA_ENABLE_IT: enables the specified DMA channel interrupts.

• __HAL_DMA_DISABLE_IT: disables the specified DMA channel interrupts.

• __HAL_DMA_GET_IT_SOURCE: checks whether the specified DMA channel interrupt has been enabled or
not.

Note: When a peripheral is used in DMA mode, the DMA initialization should be done in the HAL_PPP_MspInit()
callback. In addition, the user application should associate the DMA handle to the PPP handle (refer to section
“HAL IO operation functions”).

Note: DMA channel callbacks need to be initialized by the user application only in case of memory-to-memory transfer.
However when peripheral-to-memory transfers are used, these callbacks are automatically initialized by calling a
process API function that uses the DMA.

3.12 How to use HAL drivers

3.12.1 HAL usage models
The following figure shows the typical use of the HAL driver and the interaction between the application user, the
HAL driver and the interrupts.

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 31/2719

Figure 7. HAL driver model

Note: The functions implemented in the HAL driver are shown in green, the functions called from interrupt handlers in
dotted lines, and the msp functions implemented in the user application in red. Non-dotted lines represent the
interactions between the user application functions.

Basically, the HAL driver APIs are called from user files and optionally from interrupt handlers file when the APIs
based on the DMA or the PPP peripheral dedicated interrupts are used.

When DMA or PPP peripheral interrupts are used, the PPP process complete callbacks are called to inform the
user about the process completion in real-time event mode (interrupts). Note that the same process completion
callbacks are used for DMA in interrupt mode.

3.12.2 HAL initialization

3.12.2.1 HAL global initialization

In addition to the peripheral initialization and de-initialization functions, a set of APIs are provided to initialize the
HAL core implemented in file stm32l4xx_hal.c.

• HAL_Init(): this function must be called at application startup to

– initialize data/instruction cache and pre-fetch queue

– set SysTick timer to generate an interrupt each 1ms (based on HSI clock) with the lowest priority

– call HAL_MspInit() user callback function to perform system level initializations (Clock, GPIOs, DMA,
interrupts). HAL_MspInit() is defined as “weak” empty function in the HAL drivers.

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 32/2719

• HAL_DeInit()

– resets all peripherals

– calls function HAL_MspDeInit() which a is user callback function to do system level De-Initalizations.

• HAL_GetTick(): this function gets current SysTick counter value (incremented in SysTick interrupt) used by
peripherals drivers to handle timeouts.

• HAL_Delay(). this function implements a delay (expressed in milliseconds) using the SysTick timer.

Care must be taken when using HAL_Delay() since this function provides an accurate delay (expressed in
milliseconds) based on a variable incremented in SysTick ISR. This means that if HAL_Delay() is called from
a peripheral ISR, then the SysTick interrupt must have highest priority (numerically lower) than the
peripheral interrupt, otherwise the caller ISR will be blocked.

3.12.2.2 System clock initialization

The clock configuration is done at the beginning of the user code. However the user can change the configuration
of the clock in his own code.

Please find below the typical Clock configuration sequence to reach the maximum 80 MHz clock frequency based
on the HSE clock:

 void SystemClock_Config(void)
{
 RCC_ClkInitTypeDef clkinitstruct = {0};
 RCC_OscInitTypeDef oscinitstruct = {0};
/* Configure PLLs--*/
/* PLL configuration: PLLCLK = (HSE/PLLM * PLLN) / PLLR = (16/1 * 20) / 2 = 80 MHz*/
/* Enable HSE Oscillator and activate PLL with HSE as source */
 oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
 oscinitstruct.HSEState = RCC_HSE_ON;
 oscinitstruct.PLL.PLLState = RCC_PLL_ON;
 oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
 oscinitstruct.PLL.PLLM = 1;
 oscinitstruct.PLL.PLLN = 20;
 oscinitstruct.PLL.PLLR = 2;
 oscinitstruct.PLL.PLLL = 7;
 oscinitstruct.PLL.PLLQ = 4;
 if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK)
 {
 /* Initialization Error */
 while(1);
 }
 /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks divi
ders */
 clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK I RCC_CLOCKTYPE_HCLK I RCC_CLOCKTYPE_PCL
K1 I RCC_CLOCKTYPE_PCLK2);
 clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1;
 clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV1;
 if
 (HAL_RCC_ClockConfig(&clkinitstruct,FLASH_LATENCY_4)!= HAL_OK)
 {
 /* Initialization Error */
 while(1);
 }
 }

3.12.2.3 HAL MSP initialization process

The peripheral initialization is done through HAL_PPP_Init() while the hardware resources initialization used by a
peripheral (PPP) is performed during this initialization by calling MSP callback function HAL_PPP_MspInit().

The MspInit callback performs the low level initialization related to the different additional hardware resources:
RCC, GPIO, NVIC and DMA.

All the HAL drivers with handles include two MSP callbacks for initialization and de-initialization:

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 33/2719

/**
* @brief Initializes the PPP MSP.
* @param hppp: PPP handle
* @retval None */
void __weak HAL_PPP_MspInit(PPP_HandleTypeDef *hppp) {
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PPP_MspInit could be implemented in the user file */
}
/**
* @brief DeInitializes PPP MSP.
* @param hppp: PPP handle
* @retval None */
void __weak HAL_PPP_MspDeInit(PPP_HandleTypeDef *hppp) {
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PPP_MspDeInit could be implemented in the user file */
}

The MSP callbacks are declared empty as weak functions in each peripheral driver. The user can use them to set
the low level initialization code or omit them and use his own initialization routine.

The HAL MSP callback is implemented inside the stm32l4xx_hal_msp.c file in the user folders. An
stm32l4xx_hal_msp.c file template is located in the HAL folder and should be copied to the user folder. It can be
generated automatically by STM32CubeMX tool and further modified. Note that all the routines are declared as
weak functions and could be overwritten or removed to use user low level initialization code.

stm32l4xx_hal_msp.c file contains the following functions:

Table 15. MSP functions

Routine Description

void HAL_MspInit() Global MSP initialization routine

void HAL_MspDeInit() Global MSP de-initialization routine

void HAL_PPP_MspInit() PPP MSP initialization routine

void HAL_PPP_MspDeInit() PPP MSP de-initialization routine

By default, if no peripheral needs to be de-initialized during the program execution, the whole MSP initialization is
done in Hal_MspInit() and MSP De-Initialization in the Hal_MspDeInit(). In this case the HAL_PPP_MspInit() and
HAL_PPP_MspDeInit() are not implemented.

When one or more peripherals needs to be de-initialized in run time and the low level resources of a given
peripheral need to be released and used by another peripheral, HAL_PPP_MspDeInit() and HAL_PPP_MspInit()
are implemented for the concerned peripheral and other peripherals initialization and de-Initialization are kept in
the global HAL_MspInit() and the HAL_MspDeInit().

If there is nothing to be initialized by the global HAL_MspInit() and HAL_MspDeInit(), the two routines can simply
be omitted.

3.12.3 HAL I/O operation process
The HAL functions with internal data processing like transmit, receive, write and read are generally provided with
three data processing modes as follows:

• Polling mode

• Interrupt mode

• DMA mode

3.12.3.1 Polling mode

In Polling mode, the HAL functions return the process status when the data processing in blocking mode is
complete. The operation is considered complete when the function returns the HAL_OK status, otherwise an error
status is returned. The user can get more information through the HAL_PPP_GetState() function. The data
processing is handled internally in a loop. A timeout (expressed in ms) is used to prevent process hanging.

The example below shows the typical Polling mode processing sequence :

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 34/2719

HAL_StatusTypeDef HAL_PPP_Transmit (PPP_HandleTypeDef * phandle, uint8_t pData,
int16_tSize,uint32_tTimeout)
{
if((pData == NULL) || (Size == 0))
{
return HAL_ERROR;
}
(…) while (data processing is running)
{
if(timeout reached)
{
return HAL_TIMEOUT;
}
}
(…)
return HAL_OK; }

3.12.3.2 Interrupt mode

In Interrupt mode, the HAL function returns the process status after starting the data processing and enabling the
appropriate interruption. The end of the operation is indicated by a callback declared as a weak function. It can be
customized by the user to be informed in real-time about the process completion. The user can also get the
process status through the HAL_PPP_GetState() function.

In Interrupt mode, four functions are declared in the driver:

• HAL_PPP_Process_IT(): launch the process

• HAL_PPP_IRQHandler(): the global PPP peripheral interruption

• __weak HAL_PPP_ProcessCpltCallback (): the callback relative to the process completion.

• __weak HAL_PPP_ProcessErrorCallback(): the callback relative to the process Error.

To use a process in Interrupt mode, HAL_PPP_Process_IT() is called in the user file and HAL_PPP_IRQHandler
in stm32l4xx_it.c.

The HAL_PPP_ProcessCpltCallback() function is declared as weak function in the driver. This means that the
user can declare it again in the application. The function in the driver is not modified.

An example of use is illustrated below:

main.c file:

UART_HandleTypeDef UartHandle;
int main(void)
{
/* Set User Parameters */
UartHandle.Init.BaudRate = 9600;
UartHandle.Init.WordLength = UART_DATABITS_8;
UartHandle.Init.StopBits = UART_STOPBITS_1;
UartHandle.Init.Parity = UART_PARITY_NONE;
UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UartHandle.Init.Mode = UART_MODE_TX_RX;
UartHandle.Init.Instance = USART1;
HAL_UART_Init(&UartHandle);
HAL_UART_SendIT(&UartHandle, TxBuffer, sizeof(TxBuffer));
while (1);
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
}
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
}

stm32l4xx_it.cfile:

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 35/2719

extern UART_HandleTypeDef UartHandle;
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&UartHandle);
}

3.12.3.3 DMA mode

In DMA mode, the HAL function returns the process status after starting the data processing through the DMA
and after enabling the appropriate DMA interruption. The end of the operation is indicated by a callback declared
as a weak function and can be customized by the user to be informed in real-time about the process completion.
The user can also get the process status through the HAL_PPP_GetState() function. For the DMA mode, three
functions are declared in the driver:

• HAL_PPP_Process_DMA(): launch the process

• HAL_PPP_DMA_IRQHandler(): the DMA interruption used by the PPP peripheral

• __weak HAL_PPP_ProcessCpltCallback(): the callback relative to the process completion.

• __weak HAL_PPP_ErrorCpltCallback(): the callback relative to the process Error.

To use a process in DMA mode, HAL_PPP_Process_DMA() is called in the user file and the
HAL_PPP_DMA_IRQHandler() is placed in the stm32l4xx_it.c. When DMA mode is used, the DMA initialization is
done in the HAL_PPP_MspInit() callback. The user should also associate the DMA handle to the PPP handle. For
this purpose, the handles of all the peripheral drivers that use the DMA must be declared as follows:

typedef struct
{
PPP_TypeDef *Instance; /* Register base address */
PPP_InitTypeDef Init; /* PPP communication parameters */
HAL_StateTypeDef State; /* PPP communication state */
(…)
DMA_HandleTypeDef *hdma; /* associated DMA handle */
} PPP_HandleTypeDef;

The initialization is done as follows (UART example):

int main(void)
{
/* Set User Parameters */
UartHandle.Init.BaudRate = 9600;
UartHandle.Init.WordLength = UART_DATABITS_8;
UartHandle.Init.StopBits = UART_STOPBITS_1;
UartHandle.Init.Parity = UART_PARITY_NONE;
UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UartHandle.Init.Mode = UART_MODE_TX_RX;
UartHandle.Init.Instance = UART1;
HAL_UART_Init(&UartHandle);
(..)
}
void HAL_USART_MspInit (UART_HandleTypeDef * huart)
{
static DMA_HandleTypeDef hdma_tx;
static DMA_HandleTypeDef hdma_rx;
(…)
__HAL_LINKDMA(UartHandle, DMA_Handle_tx, hdma_tx);
__HAL_LINKDMA(UartHandle, DMA_Handle_rx, hdma_rx);
(…)
}

The HAL_PPP_ProcessCpltCallback() function is declared as weak function in the driver that means, the user can
declare it again in the application code. The function in the driver should not be modified.

An example of use is illustrated below:

main.c file:

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 36/2719

UART_HandleTypeDef UartHandle;
int main(void)
{
/* Set User Paramaters */
UartHandle.Init.BaudRate = 9600;
UartHandle.Init.WordLength = UART_DATABITS_8;
UartHandle.Init.StopBits = UART_STOPBITS_1;
UartHandle.Init.Parity = UART_PARITY_NONE;
UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UartHandle.Init.Mode = UART_MODE_TX_RX; UartHandle.Init.Instance = USART1;
HAL_UART_Init(&UartHandle);
HAL_UART_Send_DMA(&UartHandle, TxBuffer, sizeof(TxBuffer));
while (1);
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *phuart)
{
}
void HAL_UART_TxErrorCallback(UART_HandleTypeDef *phuart)
{
}

stm32l4xx_it.c file:

extern UART_HandleTypeDef UartHandle;
void DMAx_IRQHandler(void)
{
HAL_DMA_IRQHandler(&UartHandle.DMA_Handle_tx);
}

HAL_USART_TxCpltCallback() and HAL_USART_ErrorCallback() should be linked in the
HAL_PPP_Process_DMA() function to the DMA transfer complete callback and the DMA transfer Error callback
by using the following statement:

HAL_PPP_Process_DMA (PPP_HandleTypeDef *hppp, Params….)
{
(…)
hppp->DMA_Handle->XferCpltCallback = HAL_UART_TxCpltCallback ;
hppp->DMA_Handle->XferErrorCallback = HAL_UART_ErrorCallback ;
(…)
}

3.12.4 Timeout and error management

3.12.4.1 Timeout management

The timeout is often used for the APIs that operate in Polling mode. It defines the delay during which a blocking
process should wait till an error is returned. An example is provided below:

HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, ui
nt32_t Timeout)

The timeout possible value are the following:

Table 16. Timeout values

Timeout value Description

0 No poll : Immediate process check and exit

1 ... (HAL_MAX_DELAY -1) (1) Timeout in ms

HAL_MAX_DELAY Infinite poll till process is successful

1. HAL_MAX_DELAY is defined in the stm32l4xx_hal_def.h as 0xFFFFFFFF

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 37/2719

However, in some cases, a fixed timeout is used for system peripherals or internal HAL driver processes. In these
cases, the timeout has the same meaning and is used in the same way, except when it is defined locally in the
drivers and cannot be modified or introduced as an argument in the user application.

Example of fixed timeout:

#define LOCAL_PROCESS_TIMEOUT 100
HAL_StatusTypeDef HAL_PPP_Process(PPP_HandleTypeDef)
{
(…)
timeout = HAL_GetTick() + LOCAL_PROCESS_TIMEOUT;
(…)
while(ProcessOngoing)
{
(…)
if(HAL_GetTick() ≥ timeout)
{
/* Process unlocked */
__HAL_UNLOCK(hppp);
hppp->State= HAL_PPP_STATE_TIMEOUT;
return HAL_PPP_STATE_TIMEOUT;
}
}
(…)
}

The following example shows how to use the timeout inside the polling functions:

HAL_PPP_StateTypeDef HAL_PPP_Poll (PPP_HandleTypeDef *hppp, uint32_t Timeout)
{
(…)
timeout = HAL_GetTick() + Timeout;
(…)
while(ProcessOngoing)
{
(…)
if(Timeout != HAL_MAX_DELAY)
{
if(HAL_GetTick() ≥ timeout)
{
/* Process unlocked */
__HAL_UNLOCK(hppp);
hppp->State= HAL_PPP_STATE_TIMEOUT;
return hppp->State;
}
}
(…)
}

3.12.4.2 Error management

The HAL drivers implement a check on the following items:

• Valid parameters: for some process the used parameters should be valid and already defined, otherwise the
system may crash or go into an undefined state. These critical parameters are checked before being used
(see example below).

HAL_StatusTypeDef HAL_PPP_Process(PPP_HandleTypeDef* hppp, uint32_t *pdata, uint32 Size)

{
if ((pData == NULL) || (Size == 0))
{
return HAL_ERROR;
}
}

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 38/2719

• Valid handle: the PPP peripheral handle is the most important argument since it keeps the PPP driver vital
parameters. It is always checked in the beginning of the HAL_PPP_Init() function.

HAL_StatusTypeDef HAL_PPP_Init(PPP_HandleTypeDef* hppp)
{
if (hppp == NULL) //the handle should be already allocated
{
return HAL_ERROR;
}
}

• Timeout error: the following statement is used when a timeout error occurs:

while (Process ongoing)
{
timeout = HAL_GetTick() + Timeout; while (data processing is running)
{
if(timeout) { return HAL_TIMEOUT;
}
}

When an error occurs during a peripheral process, HAL_PPP_Process () returns with a HAL_ERROR status. The
HAL PPP driver implements the HAL_PPP_GetError () to allow retrieving the origin of the error.

HAL_PPP_ErrorTypeDef HAL_PPP_GetError (PPP_HandleTypeDef *hppp);

In all peripheral handles, a HAL_PPP_ErrorTypeDef is defined and used to store the last error code.

typedef struct
{
PPP_TypeDef * Instance; /* PPP registers base address */
PPP_InitTypeDef Init; /* PPP initialization parameters */
HAL_LockTypeDef Lock; /* PPP locking object */
__IO HAL_PPP_StateTypeDef State; /* PPP state */
__IO HAL_PPP_ErrorTypeDef ErrorCode; /* PPP Error code */
(…)
/* PPP specific parameters */
}
PPP_HandleTypeDef;

The error state and the peripheral global state are always updated before returning an error:

PPP->State = HAL_PPP_READY; /* Set the peripheral ready */
PP->ErrorCode = HAL_ERRORCODE ; /* Set the error code */
_HAL_UNLOCK(PPP) ; /* Unlock the PPP resources */
return HAL_ERROR; /*return with HAL error */

HAL_PPP_GetError () must be used in interrupt mode in the error callback:

void HAL_PPP_ProcessCpltCallback(PPP_HandleTypeDef *hspi)
{
ErrorCode = HAL_PPP_GetError (hppp); /* retreive error code */
}

3.12.4.3 Run-time checking

The HAL implements run-time failure detection by checking the input values of all HAL driver functions. The run-
time checking is achieved by using an assert_param macro. This macro is used in all the HAL driver functions
which have an input parameter. It allows verifying that the input value lies within the parameter allowed values.

To enable the run-time checking, use the assert_param macro, and leave the define USE_FULL_ASSERT
uncommented in stm32l4xx_hal_conf.h file.

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 39/2719

void HAL_UART_Init(UART_HandleTypeDef *huart)
{
(..) /* Check the parameters */
assert_param(IS_UART_INSTANCE(huart->Instance));
assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
assert_param(IS_UART_PARITY(huart->Init.Parity));
assert_param(IS_UART_MODE(huart->Init.Mode));
assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
(..)

/** @defgroup UART_Word_Length *
@{
*/
#define UART_WORDLENGTH_8B ((uint32_t)0x00000000)
#define UART_WORDLENGTH_9B ((uint32_t)USART_CR1_M)
#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B) ||
\ ((LENGTH) == UART_WORDLENGTH_9B))

If the expression passed to the assert_param macro is false, theassert_failed function is called and returns the
name of the source file and the source line number of the call that failed. If the expression is true, no value is
returned.

The assert_param macro is implemented in stm32l4xx_hal_conf.h:

/* Exported macro --*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None */
#define assert_param(expr) ((expr)?(void)0:assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions --------------------------------------*/
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr)((void)0)
#endif /* USE_FULL_ASSERT */

The assert_failed function is implemented in the main.c file or in any other user C file:

#ifdef USE_FULL_ASSERT /**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None */
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}

Note: Because of the overhead run-time checking introduces, it is recommended to use it during application
code development and debugging, and to remove it from the final application to improve code size and
speed.

UM1884
How to use HAL drivers

UM1884 - Rev 8 page 40/2719

4 Overview of low-layer drivers

The low-layer (LL) drivers are designed to offer a fast light-weight expert-oriented layer which is closer to the
hardware than the HAL. Contrary to the HAL, LL APIs are not provided for peripherals where optimized access is
not a key feature, or those requiring heavy software configuration and/or complex upper-level stack (such as
USB).

The LL drivers feature:

• A set of functions to initialize peripheral main features according to the parameters specified in data
structures

• A set of functions used to fill initialization data structures with the reset values of each field

• Functions to perform peripheral de-initialization (peripheral registers restored to their default values)

• A set of inline functions for direct and atomic register access

• Full independence from HAL since LL drivers can be used either in standalone mode (without HAL drivers)
or in mixed mode (with HAL drivers)

• Full coverage of the supported peripheral features.

The low-layer drivers provide hardware services based on the available features of the STM32 peripherals. These
services reflect exactly the hardware capabilities and provide one-shot operations that must be called following
the programming model described in the microcontroller line reference manual. As a result, the LL services do not
implement any processing and do not require any additional memory resources to save their states, counter or
data pointers: all the operations are performed by changing the associated peripheral registers content.

4.1 Low-layer files

The low-layer drivers are built around header/C files (one per each supported peripheral) plus five header files for
some System and Cortex related features.

Table 17. LL driver files

File Description

stm32l4xx_ll_bus.h
This is the h-source file for core bus control and peripheral clock activation and deactivation

Example: LL_AHB2_GRP1_EnableClock

stm32l4xx_ll_ppp.h/.c

stm32l4xx_ll_ppp.c provides peripheral initialization functions such as LL_PPP_Init(),
LL_PPP_StructInit(), LL_PPP_DeInit(). All the other APIs are definined within stm32l4xx_ll_ppp.h
file.

The low-layer PPP driver is a standalone module. To use it, the application must include it in the
stm32l4xx_ll_ppp.h file.

stm32l4xx_ll_cortex.h
Cortex-M related register operation APIs including the Systick, Low power (LL_SYSTICK_xxxxx,
LL_LPM_xxxxx "Low Power Mode" ...)

stm32l4xx_ll_utils.h/.c

This file covers the generic APIs:

• Read of device unique ID and electronic signature

• Timebase and delay management

• System clock configuration.

stm32l4xx_ll_system.h
System related operations.

Example: LL_SYSCFG_xxx, LL_DBGMCU_xxx and LL_FLASH_xxx and LL_VREFBUF_xxx

stm32_assert_template.h

Template file allowing to define the assert_param macro, that is used when run-time checking is
enabled.

This file is required only when the LL drivers are used in standalone mode (without calling the HAL
APIs). It should be copied to the application folder and renamed to stm32_assert.h.

Note: There is no configuration file for the LL drivers.

UM1884
Overview of low-layer drivers

UM1884 - Rev 8 page 41/2719

The low-layer files are located in the same HAL driver folder.

Figure 8. Low-layer driver folders

In general, low-layer drivers include only the STM32 CMSIS device file.

#include "stm32yyxx.h"

UM1884
Low-layer files

UM1884 - Rev 8 page 42/2719

Figure 9. Low-layer driver CMSIS files

Application files have to include only the used low-layer driver header files.

4.2 Overview of low-layer APIs and naming rules

4.2.1 Peripheral initialization functions
The LL drivers offer three sets of initialization functions. They are defined in stm32l4xx_ll_ppp.c file:

• Functions to initialize peripheral main features according to the parameters specified in data structures

• A set of functions used to fill initialization data structures with the reset values of each field

• Function for peripheral de-initialization (peripheral registers restored to their default values)

The definition of these LL initialization functions and associated resources (structure, literals and prototypes) is
conditioned by a compilation switch: USE_FULL_LL_DRIVER. To use these functions, this switch must be added
in the toolchain compiler preprocessor or to any generic header file which is processed before the LL drivers.

The below table shows the list of the common functions provided for all the supported peripherals:

Table 18. Common peripheral initialization functions

Functions
Return
Type

Parameters Description

LL_PPP_Init ErrorStatus
• PPP_TypeDef* PPPx

• LL_PPP_InitTypeDef*
PPP_InitStruct

Initializes the peripheral main features according to the
parameters specified in PPP_InitStruct.

Example: LL_USART_Init(USART_TypeDef *USARTx,
LL_USART_InitTypeDef *USART_InitStruct)

LL_PPP_StructInit void
• LL_PPP_InitTypeDef*

PPP_InitStruct

Fills each PPP_InitStruct member with its default value.

Example. LL_USART_StructInit(LL_USART_InitTypeDef
*USART_InitStruct)

UM1884
Overview of low-layer APIs and naming rules

UM1884 - Rev 8 page 43/2719

Functions
Return
Type

Parameters Description

LL_PPP_DeInit ErrorStatus • PPP_TypeDef* PPPx

De-initializes the peripheral registers, that is restore them
to their default reset values.

Example. LL_USART_DeInit(USART_TypeDef *USARTx)

Additional functions are available for some peripherals (refer to Table 19. Optional peripheral initialization
functions).

Table 19. Optional peripheral initialization functions

Functions
Return
Type

Parameters Examples

LL_PPP{_CATEGORY}_Init ErrorStatus

• PPP_TypeDef* PPPx

• LL_PPP{_CATEGORY}_InitTypeDef*
PPP{_CATEGORY}_InitStruct

Initializes peripheral features according to the parameters
specified in PPP_InitStruct.

Example:

LL_ADC_INJ_Init(ADC_TypeDef *ADCx,
LL_ADC_INJ_InitTypeDef *ADC_INJ_InitStruct)

LL_RTC_TIME_Init(RTC_TypeDef *RTCx, uint32_t
RTC_Format, LL_RTC_TimeTypeDef *RTC_TimeStruct)

LL_RTC_DATE_Init(RTC_TypeDef *RTCx, uint32_t
RTC_Format, LL_RTC_DateTypeDef *RTC_DateStruct)

LL_TIM_IC_Init(TIM_TypeDef* TIMx, uint32_t Channel,
LL_TIM_IC_InitTypeDef* TIM_IC_InitStruct)

LL_TIM_ENCODER_Init(TIM_TypeDef* TIMx,
LL_TIM_ENCODER_InitTypeDef* TIM_EncoderInitStruct)

LL_PPP{_CATEGORY}_StructInit void
LL_PPP{_CATEGORY}_InitTypeDef*

PPP{_CATEGORY}_InitStruct

Fills each PPP{_CATEGORY}_InitStruct member with its
default value.

Example:
LL_ADC_INJ_StructInit(LL_ADC_INJ_InitTypeDef
*ADC_INJ_InitStruct)

LL_PPP_CommonInit ErrorStatus

• PPP_TypeDef* PPPx

• LL_PPP_CommonInitTypeDef*
PPP_CommonInitStruct

Initializes the common features shared between different
instances of the same peripheral.

Example: LL_ADC_CommonInit(ADC_Common_TypeDef
*ADCxy_COMMON, LL_ADC_CommonInitTypeDef
*ADC_CommonInitStruct)

LL_PPP_CommonStructInit void
LL_PPP_CommonInitTypeDef*

PPP_CommonInitStruct

Fills each PPP_CommonInitStruct member with its default
value

Example:
LL_ADC_CommonStructInit(LL_ADC_CommonInitTypeDef
*ADC_CommonInitStruct)

LL_PPP_ClockInit ErrorStatus

• PPP_TypeDef* PPPx

• LL_PPP_ClockInitTypeDef*
PPP_ClockInitStruct

Initializes the peripheral clock configuration in synchronous
mode.

Example: LL_USART_ClockInit(USART_TypeDef
*USARTx, LL_USART_ClockInitTypeDef
*USART_ClockInitStruct)

LL_PPP_ClockStructInit void
LL_PPP_ClockInitTypeDef*

PPP_ClockInitStruct

Fills each PPP_ClockInitStruct member with its default
value

Example:
LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef
*USART_ClockInitStruct)

UM1884
Overview of low-layer APIs and naming rules

UM1884 - Rev 8 page 44/2719

4.2.1.1 Run-time checking

Like HAL drivers, LL initialization functions implement run-time failure detection by checking the input values of all
LL driver functions. For more details please refer to Section 3.12.4.3 Run-time checking.

When using the LL drivers in standalone mode (without calling HAL functions), the following actions are required
to use run-time checking:

1. Copy stm32_assert_template.h to the application folder and rename it to stm32_assert.h. This file defines
the assert_param macro which is used when run-time checking is enabled.

2. Include stm32_assert.h file within the application main header file.

3. Add the USE_FULL_ASSERT compilation switch in the toolchain compiler preprocessor or in any generic
header file which is processed before the stm32_assert.h driver.

Note: Run-time checking is not available for LL inline functions.

4.2.2 Peripheral register-level configuration functions
On top of the peripheral initialization functions, the LL drivers offer a set of inline functions for direct atomic
register access. Their format is as follows:

__STATIC_INLINE return_type LL_PPP_Function (PPPx_TypeDef *PPPx, args)

The “Function” naming is defined depending to the action category:

• Specific Interrupt, DMA request and status flags management: Set/Get/Clear/Enable/Disable flags on
interrupt and status registers

Table 20. Specific Interrupt, DMA request and status flags management

Name Examples

LL_PPP_{_CATEGORY}_ActionItem_BITNAME

LL_PPP{_CATEGORY}_IsItem_BITNAME_Action

• LL_RCC_IsActiveFlag_LSIRDY

• LL_RCC_IsActiveFlag_FWRST()

• LL_ADC_ClearFlag_EOC(ADC1)

• LL_DMA_ClearFlag_TCx(DMA_TypeDef* DMAx)

Table 21. Available function formats

Item Action Format

Flag
Get LL_PPP_IsActiveFlag_BITNAME

Clear LL_PPP_ClearFlag_BITNAME

Interrupts

Enable LL_PPP_EnableIT_BITNAME

Disable LL_PPP_DisableIT_BITNAME

Get LL_PPP_IsEnabledIT_BITNAME

DMA

Enable LL_PPP_EnableDMAReq_BITNAME

Disable LL_PPP_DisableDMAReq_BITNAME

Get LL_PPP_IsEnabledDMAReq_BITNAME

Note: BITNAME refers to the peripheral register bit name as described in the product line reference manual.

• Peripheral clock activation/deactivation management: Enable/Disable/Reset a peripheral clock

Table 22. Peripheral clock activation/deactivation management

Name Examples

LL_BUS_GRPx_ActionClock{Mode}
• LL_AHB2_GRP1_EnableClock (LL_AHB2_GRP1_PERIPH_GPIOA|

LL_AHB2_GRP1_PERIPH_GPIOB)

UM1884
Overview of low-layer APIs and naming rules

UM1884 - Rev 8 page 45/2719

Name Examples

• LL_APB1_GRP1_EnableClockSleep (LL_APB1_GRP1_PERIPH_DAC1)

Note: 'x' corresponds to the group index and refers to the index of the modified register on a given bus. 'bus'
corresponds to the bus name.

• Peripheral activation/deactivation management : Enable/disable a peripheral or activate/deactivate
specific peripheral features

Table 23. Peripheral activation/deactivation management

Name Examples

LL_PPP{_CATEGORY}_Action{Item}

LL_PPP{_CATEGORY}_IsItemAction

• LL_ADC_Enable ()

• LL_ADC_StartCalibration();

• LL_ADC_IsCalibrationOnGoing;

• LL_RCC_HSI_Enable ()

• LL_RCC_HSI_IsReady()

• Peripheral configuration management : Set/get a peripheral configuration settings

Table 24. Peripheral configuration management

Name Examples

LL_PPP{_CATEGORY}_Set{ or
Get}ConfigItem

LL_USART_SetBaudRate (USART2, Clock, LL_USART_BAUDRATE_9600)

• Peripheral register management : Write/read the content of a register/retrun DMA relative register address

Table 25. Peripheral register management

Name

LL_PPP_WriteReg(__INSTANCE__, __REG__, __VALUE__)

LL_PPP_ReadReg(__INSTANCE__, __REG__)

LL_PPP_DMA_GetRegAddr (PPP_TypeDef *PPPx,{Sub Instance if any ex: Channel} , {uint32_t Propriety})

Note: The Propriety is a variable used to identify the DMA transfer direction or the data register type.

UM1884
Overview of low-layer APIs and naming rules

UM1884 - Rev 8 page 46/2719

5 Cohabiting of HAL and LL

The low-ayer APIs are designed to be used in standalone mode or combined with the HAL. They cannot be
automatically used with the HAL for the same peripheral instance. If you use the LL APIs for a specific instance,
you can still use the HAL APIs for other instances. Be careful that the low-layer APIs might overwrite some
registers which content is mirrored in the HAL handles.

5.1 Low-layer driver used in Standalone mode

The low-layer APIs can be used without calling the HAL driver services. This is done by simply including
stm32l4xx_ll_ppp.h in the application files. The LL APIs for a given peripheral are called by executing the same
sequence as the one recommended by the programming model in the corresponding product line reference
manual. In this case the HAL drivers associated to the used peripheral can be removed from the workspace.
However the STM32CubeL4 framework should be used in the same way as in the HAL drivers case which means
that System file, startup file and CMSIS should always be used.

Note: When the BSP drivers are included, the used HAL drivers associated with the BSP functions drivers should be
included in the workspace, even if they are not used by the application layer.

5.2 Mixed use of low-layer APIs and HAL drivers

In this case the low-layer APIs are used in conjunction with the HAL drivers to achieve direct and register level
based operations.

Mixed use is allowed, however some consideration should be taken into account:

• It is recommended to avoid using simultaneously the HAL APIs and the combination of low-layer APIs for a
given peripheral instance. If this is the case, one or more private fields in the HAL PPP handle structure
should be updated accordingly.

• For operations and processes that do not alter the handle fields including the initialization structure, the HAL
driver APIs and the low-layer services can be used together for the same peripheral instance.

• The low-layer drivers can be used without any restriction with all the HAL drivers that are not based on
handle objects (RCC, common HAL, flash and GPIO).

Several examples showing how to use HAL and LL in the same application are provided within stm32l4 firmware
package (refer to Examples_MIX projects).

Note: 1. When the HAL Init/DeInit APIs are not used and are replaced by the low-layer macros, the InitMsp()
functions are not called and the MSP initialization should be done in the user application.

2. When process APIs are not used and the corresponding function is performed through the low-layer APIs,
the callbacks are not called and post processing or error management should be done by the user
application.

3. When the LL APIs is used for process operations, the IRQ handler HAL APIs cannot be called and the IRQ
should be implemented by the user application. Each LL driver implements the macros needed to read and
clear the associated interrupt flags.

UM1884
Cohabiting of HAL and LL

UM1884 - Rev 8 page 47/2719

