

Inter-integrated circuit (I2C) interface RM0041

542/675 Doc ID 16188 Rev 4

22 Inter-integrated circuit (I2C) interface

Low-density value line devices are STM32F100xx microcontrollers where the Flash
memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the Flash
memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the Flash
memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

22.1 I2C introduction
I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports standard and fast speed modes. It is
also SMBus 2.0 compatible.

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

22.2 I2C main features
● Parallel-bus/I2C protocol converter

● Multimaster capability: the same interface can act as Master or Slave

● I2C Master features:

– Clock generation

– Start and Stop generation

● I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

● Generation and detection of 7-bit/10-bit addressing and General Call

● Supports different communication speeds:

– Standard Speed (up to 100 kHz),

– Fast Speed (up to 400 kHz)

● Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

● Error flags:

– Arbitration lost condition for master mode

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 543/675

– Acknowledgement failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

● 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

● Optional clock stretching

● 1-byte buffer with DMA capability

● Configurable PEC (packet error checking) generation or verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

● SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

● PMBus Compatibility

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

22.3 I2C functional description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

22.3.1 Mode selection

The interface can operate in one of the four following modes:

● Slave transmitter

● Slave receiver

● Master transmitter

● Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

Inter-integrated circuit (I2C) interface RM0041

544/675 Doc ID 16188 Rev 4

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 233.

Figure 233. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 234.

SCL

SDA

1 2 8 9

MSB ACK

Stop Start
conditioncondition

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 545/675

Figure 234. I2C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

22.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Data shift register

Comparator

Own address register

Clock control

Status registers

Control registers

Control

Clock
control

Data
control

SCL

logic

Dual address register

Data register

PEC register

Interrupts

PEC calculation

SMBA

SDA

Register (CCR)

(SR1&SR2)

(CR1&CR2)

DMA requests & ACK

ai17189

Inter-integrated circuit (I2C) interface RM0041

546/675 Doc ID 16188 Rev 4

Address matched: the interface generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

● If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 235 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

● The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

Figure 235. Transfer sequence diagram for slave transmitter

7-bit slave transmitter

10-bit slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV3-1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV3: TxE=1, shift register not empty, data register empty, cleared by writing DR
EV3-2: AF=1; AF is cleared by writing ‘0’ in AF bit of SR1 register.

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3-1 EV3 EV3 EV3 EV3-2

S Header A Address A

EV1

Sr Header A Data1 A DataN NA P

EV1 EV3_1 EV3 EV3 EV3-2

ai18209

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 547/675

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from
I2C_SR1 followed by a read from the I2C_DR register, stretching SCL low (see Figure 236
Transfer sequencing).

Figure 236. Transfer sequence diagram for slave receiver

1. The EV1 event stretches SCL low until the end of the corresponding software sequence.

2. The EV2 software sequence must be completed before the end of the current byte transfer

3. After checking the SR1 register content, the user should perform the complete clearing sequence for each
flag found set.
Thus, for ADDR and STOPF flags, the following sequence is required inside the I2C interrupt routine:
READ SR1
if (ADDR == 1) {READ SR1; READ SR2}
if (STOPF == 1) {READ SR1; WRITE CR1}
The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found set.

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

● The STOPF bit and generates an interrupt if the ITEVFEN bit is set.

The STOPF bit is cleared by a read of the SR1 register followed by a write to the CR1
register (see Figure 236: Transfer sequence diagram for slave receiver EV4).

22.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.

7-bit slave receiver

10-bit slave receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV2: RxNE=1 cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing to the CR1 register

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

ai18208

Inter-integrated circuit (I2C) interface RM0041

548/675 Doc ID 16188 Rev 4

Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

● Program the peripheral input clock in I2C_CR2 Register in order to generate correct
timings

● Configure the clock control registers

● Configure the rise time register

● Program the I2C_CR1 register to enable the peripheral

● Set the START bit in the I2C_CR1 register to generate a Start condition

The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (M/SL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

● The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 237 & Figure 238 Transfer sequencing EV5).

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 237 & Figure 238 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 237 & Figure 238 Transfer sequencing).

● In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 237 & Figure 238 Transfer sequencing).

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 549/675

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

● In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

● In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 237 Transfer
sequencing EV8_1).

When the acknowledge pulse is received, the TxE bit is set by hardware and an interrupt is
generated if the ITEVFEN and ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a read from I2C_SR1
followed by a write to I2C_DR, stretching SCL low.

Closing the communication

After the last byte is written to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 237 Transfer sequencing EV8_2). The interface automatically
goes back to slave mode (M/SL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Inter-integrated circuit (I2C) interface RM0041

550/675 Doc ID 16188 Rev 4

Figure 237. Transfer sequence diagram for master transmitter

7-bit master transmitter

10-bit master transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN = 1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2.
EV8_1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV8: TxE=1, shift register not empty, data register empty, cleared by writing DR register.
EV8_2: TxE=1, BTF = 1, Program Stop request. TxE and BTF are cleared by hardware by the Stop condition
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8_1 EV8 EV8 EV8 EV8_2

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8_1 EV8 EV8 EV8_2

ai15881b

Notes: 1- The EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software sequence.
 2- The EV8 software sequence must complete before the end of the current byte transfer. In case EV8 software
 sequence can not be managed before the current byte end of transfer, it is recommended to use BTF instead
 of TXE with the drawback of slowing the communication.

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 551/675

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

1. An acknowledge pulse if the ACK bit is set

2. The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 238 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the DR register, stretching SCL low.

Closing the communication

Method 1: This method is for the case when the I2C is used with interrupts that have the
highest priority in the application.

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Restart condition.

1. To generate the nonacknowledge pulse after the last received data byte, the ACK bit
must be cleared just after reading the second last data byte (after second last RxNE
event).

2. To generate the Stop/Restart condition, software must set the STOP/START bit just
after reading the second last data byte (after the second last RxNE event).

3. In case a single byte has to be received, the Acknowledge disable and the Stop
condition generation are made just after EV6 (in EV6_1, just after ADDR is cleared).

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

Inter-integrated circuit (I2C) interface RM0041

552/675 Doc ID 16188 Rev 4

Figure 238. Method 1: transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 software sequence must complete before the end of the current byte transfer. In case EV7
software sequence can not be managed before the current byte end of transfer, it is recommended to use
BTF instead of RXNE with the drawback of slowing the communication.

4. The EV6_1 or EV7_1 software sequence must complete before the ACK pulse of the current byte transfer.

Method 2: This method is for the case when the I2C is used with interrupts that do not have
the highest priority in the application or when the I2C is used with polling.

With this method, DataN_2 is not read, so that after DataN_1, the communication is
stretched (both RxNE and BTF are set). Then, clear the ACK bit before reading DataN-2 in
DR to ensure it is be cleared before the DataN Acknowledge pulse. After that, just after
reading DataN_2, set the STOP/ START bit and read DataN_1. After RxNE is set, read
DataN. This is illustrated below:

����� ������ ��������

������ ������ ��������

������� �� ������ �� � �������� ������ �� ����� �� ������������ ��� ����������������
���� ����� ����� ��������� �� ����������
���� ����� ������� �� ������� ��� �������� �������� �� ������� �� ���������
���� ������� ������� �� ������� ��� �������� �������� �� ������� ���� �� ������ ������ �������� ����� ���� ���
������ ������ �� �������� �� ������� ��� ���� ����� � ��

���� ������ ������� �� ������� �� ���������
������ ������ ������� �� ������� �� ��������� ������� ����� ��� ���� �������
���� �������� ������� �� ������� ��� �������� �������� �� ������� �� ���������

� ������� � ����� ���� ����� �
�����

����� �� �

��� ��� ��� ��� ����� ���

� ������ � ������� �

��� ��� ���

�� ������ � ����� ����
�����

��� ��� ��������

������ �� ���������� ���� ������ ���� ��� � ���� ��������� ����� ��� ����������� ������� ��� ���� ���������
���������� ��� ���� ���� ����� ���� ���� �� ����� ���� �� ��������

����� �

���

����� �� �

����� ���

�������

�����

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 553/675

Figure 239. Method 2: transfer sequence diagram for master receiver when N>2

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. The EV7 software sequence must complete before the end of the current byte transfer.In case EV7
software sequence can not be managed before the current byte end of transfer, it is recommended to use
BTF instead of RXNE with the drawback of slowing the communication.

When 3 bytes remain to be read:

● RxNE = 1 => Nothing (DataN-2 not read).

● DataN-1 received

● BTF = 1 because both shift and data registers are full: DataN-2 in DR and DataN-1 in
the shift register => SCL tied low: no other data will be received on the bus.

● Clear ACK bit

● Read DataN-2 in DR => This will launch the DataN reception in the shift register

● DataN received (with a NACK)

● Program START/STOP

● Read DataN-1

● RxNE = 1

● Read DataN

AAddressS

EV5 EV6

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR2.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV7: RxNE=1, cleared by reading DR register
EV7_2: BTF = 1, DataN-2 in DR and DataN-1 in shift register, program ACK = 0, Read DataN-2 in DR.
Program STOP = 1, read DataN-1.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AData1 AData2

EV7 EV7

ADataN-2 ADataN-1

EV7_2

NADataN

EV7

P

AAddress

EV6

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

Inter-integrated circuit (I2C) interface RM0041

554/675 Doc ID 16188 Rev 4

The procedure described above is valid for N>2. The cases where a single byte or two bytes
are to be received should be handled differently, as described below:

● Case of a single byte to be received:

– In the ADDR event, clear the ACK bit.

– Clear ADDR

– Program the STOP/START bit.

– Read the data after the RxNE flag is set.

● Case of two bytes to be received:

– Set POS and ACK

– Wait for the ADDR flag to be set

– Clear ADDR

– Clear ACK

– Wait for BTF to be set

– Program STOP

– Read DR twice

Figure 240. Method 2: transfer sequence diagram for master receiver when N=2

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

2. The EV6_1 software sequence must complete before the ACK pulse of the current byte transfer.

AAddressS

EV5 EV6

AData1 Data2

EV7_3

NA P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.
EV6: ADDR1, cleared by reading SR1 register followed by reading SR2.
In 10-bit master receiver mode, this sequence should be followed by writing CR2 with START = 1.
EV6_1: No associated flag event. The acknowledge disable should be done just after EV6, that is after ADDR is cleared.

EVx = Event (with interrupt if ITEVFEN = 1)

EV6_1

EV7_3: BTF = 1, program STOP = 1, read DR twice (Read Data1 and Data2) just after programming the STOP.

7- bit master receiver

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

AData1 Data2

EV7_3

NA P

EV6_1

AHeaderSr

EV5 EV6

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 555/675

Figure 241. Method 2: transfer sequence diagram for master receiver when N=1

1. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

22.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external Stop or Start condition during
an address or a data transfer. In this case:

● the BERR bit is set and an interrupt is generated if the ITERREN bit is set

● in Slave mode: data are discarded and the lines are released by hardware:

– in case of a misplaced Start, the slave considers it is a restart and waits for an
address, or a Stop condition

– in case of a misplaced Stop, the slave behaves like for a Stop condition and the
lines are released by hardware

● In Master mode: the lines are not released and the state of the current transmission is
not affected. It is up to the software to abort or not the current transmission

Acknowledge failure (AF)

This error occurs when the interface detects a nonacknowledge bit. In this case:

● the AF bit is set and an interrupt is generated if the ITERREN bit is set

● a transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop or repeated Start condition must be generated by software

AAddressS

EV5

NAData1

EV7

P

Legend: S = Start, Sr = Repeated Start, P = Stop, A = Acknowledge, NA = Non-acknowledge,

EV5: SB=1, cleared by reading SR1 register followed by writing the DR register.

EV6_3: ADDR = 1, program ACK = 0, clear ADDR by reading SR1 register followed by reading SR2 register, program

 .

EV6_3

STOP =1 just after ADDR is cleared.
Note: The EV6_3 software sequence must complete before the current byte end of transfer.

10- bit master receiver

AHeaderS

EV5 EV9

AAddress

EV6

7- bit master receiver

NAData1

EV7

P

EV6_3

AHeaderSr

EV5

EV9: ADD10= 1, cleared by reading SR1 register followed by writing DR register.

EVx = Event (with interrupt if ITEVFEN = 1)

EV7: RxNE =1, cleared by reading DR register.

EV6: ADDR =1, cleared by reading SR1 resister followed by reading SR2 register.

Inter-integrated circuit (I2C) interface RM0041

556/675 Doc ID 16188 Rev 4

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

● the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

● the I2C Interface goes automatically back to slave mode (the M/SL bit is cleared). When
the I2C loses the arbitration, it is not able to acknowledge its slave address in the same
transfer, but it can acknowledge it after a repeated Start from the winning master.

● lines are released by hardware

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

● The last received byte is lost.

● In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

● The same byte in the DR register will be sent again

● The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

22.3.5 SDA/SCL line control

● If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data Register (both buffer and shift register are full).

● If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 557/675

22.3.6 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized master
that provides the main interface to the system's CPU. A host must be a master-slave and
must support the SMBus host notify protocol. Only one host is allowed in a system.

Similarities between SMBus and I2C

● 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

● Master-slave communication, Master provides clock

● Multi master capability

● SMBus data format similar to I2C 7-bit addressing format (Figure 233).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification ver. 2.0 (http://smbus.org/specs/).

Table 120. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types

Different bus protocols (quick command, process
call etc.)

No bus protocols

Inter-integrated circuit (I2C) interface RM0041

558/675 Doc ID 16188 Rev 4

Bus protocols

The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).
These protocols should be implemented by the user software.

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

● Address assignment uses the standard SMBus physical layer arbitration mechanism

● Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

● No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

● Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
ver. 2.0 (http://smbus.org/specs/).

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are.
SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with
the SMBus are 2 bytes long.

A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT
bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all
SMBA devices through the Alert Response Address (known as ARA having a value 0001
100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response
Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The
host performs a modified Receive Byte operation. The 7 bit device address provided by the
slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be
a zero or one.

If more than one device pulls SMBA low, the highest priority (lowest address) device will win
communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBA pull-down. If the host
still sees SMBA low when the message transfer is complete, it knows to read the ARA
again.
A host which does not implement the SMBA signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification ver. 2.0
(http://smbus.org/specs/).

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 559/675

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:
SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

● Set the SMBus bit in the I2C_CR1 register

● Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 22.3.3: I2C master mode. Otherwise, follow the sequence in
Section 22.3.2: I2C slave mode.

The application has to control the various SMBus protocols by software.

● SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

● SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

● SMB Alert Response Address acknowledged if SMBALERT=1

22.3.7 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data Register becoming empty in transmission and Data Register becoming
full in reception. The DMA request must be served before the end of the current byte
transfer. When the number of data transfers which has been programmed for the
corresponding DMA channel is reached, the DMA controller sends an End of Transfer EOT
signal to the I2C interface and generates a Transfer Complete interrupt if enabled:

● Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

● Master receiver: when the number of bytes to be received is equal to or greater than
two, the DMA controller sends a hardware signal, EOT_1, corresponding to the last but
one data byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set,
I2C automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data will be loaded from a Memory area configured using the DMA peripheral (refer
to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
channel for I2C transmission, perform the following sequence. Here x is the channel number.

Inter-integrated circuit (I2C) interface RM0041

560/675 Doc ID 16188 Rev 4

1. Set the I2C_DR register address in the DMA_CPARx register. The data will be moved
to this address from the memory after each TxE event.

2. Set the memory address in the DMA_CMARx register. The data will be loaded into
I2C_DR from this memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx register.
After each TxE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx register

5. Set the DIR bit and, in the DMA_CCRx register, configure interrupts after half transfer
or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data will be loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for I2C reception, perform the following sequence. Here x is the channel number.

1. Set the I2C_DR register address in DMA_CPARx register. The data will be moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_CMARx register. The data will be loaded from the
I2C_DR register to this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx register.
After each RxNE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx register

5. Reset the DIR bit and configure interrupts in the DMA_CCRx register after half transfer
or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 561/675

22.3.8 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

● PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC will be transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result.The PEC must
be set before the ACK pulse of the current byte reception.

● A PECERR error flag/interrupt is also available in the I2C_SR1 register.

● If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it will automatically consider the next byte as a PEC and will check it. A
DMA request is generated after PEC reception.

● To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

● PEC calculation is corrupted by an arbitration loss.

22.4 I2C interrupts
The table below gives the list of I2C interrupt requests.

 T

Table 121. I2C Interrupt requests

Interrupt event Event flag Enable control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

Inter-integrated circuit (I2C) interface RM0041

562/675 Doc ID 16188 Rev 4

Note: 1 SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt
channel.

2 BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the
same interrupt channel.

Figure 242. I2C interrupt mapping diagram

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

Table 121. I2C Interrupt requests (continued)

Interrupt event Event flag Enable control bit

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBALERT

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 563/675

22.5 I2C debug mode
When the microcontroller enters the debug mode (Cortex™-M3 core halted), the SMBUS
timeout either continues to work normally or stops, depending on the
DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details,
refer to Section 25.15.2: Debug support for timers, watchdog and I2C on page 658.

22.6 I2C registers
Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

22.6.1 I2C Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWRST
Res.

ALERT PEC POS ACK STOP START NO
STRETCH ENGC ENPEC ENARP SMB

TYPE Res.
SMBUS PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used in case the BUSY bit is set to ‘1 when no stop condition has been
detected on the bus.

Bit 14 Reserved, forced by hardware to 0.

Bit 13 ALERT: SMBus alert

This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBA pin high. Alert Response Address Header followed by NACK.
1: Drives SMBA pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

Inter-integrated circuit (I2C) interface RM0041

564/675 Doc ID 16188 Rev 4

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.

0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
The PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit is used when the procedure for reception of 2 bytes (see Method 2:
transfer sequence diagram for master receiver when N=2) is followed. It must be
configured before data reception starts. In this case, to NACK the 2nd byte, the ACK bit
must be cleared just after ADDR is cleared. To check the 2nd byte as PEC, the PEC bit
must be set during the ADDR stretch event after configuring the POS bit.

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Note: When the STOP, START or PEC bit is set, the software must not perform any write
access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of
setting a second STOP, START or PEC request.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable
0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 565/675

22.6.2 I2C Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 4 ENARP: ARP enable
0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

Bit 2 Reserved, forced by hardware to 0.

Bit 1 SMBUS: SMBus mode
0: I2C mode
1: SMBus mode

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable: the corresponding IOs are selected as alternate functions depending
on SMBus bit.

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LAST DMA

EN
ITBUF

EN
ITEVT

EN
ITERR

EN Reserved
FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, forced by hardware to 0.

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1:TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

Inter-integrated circuit (I2C) interface RM0041

566/675 Doc ID 16188 Rev 4

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled

This interrupt is generated when:
–SB = 1 (Master)

–ADDR = 1 (Master/Slave)

–ADD10= 1 (Master)
–STOPF = 1 (Slave)

–BTF = 1 with no TxE or RxNE event

–TxE event to 1 if ITBUFEN = 1
–RxNE event to 1if ITBUFEN = 1

Bit 8 ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled

This interrupt is generated when:
– BERR = 1

– ARLO = 1

– AF = 1

– OVR = 1
– PECERR = 1

– TIMEOUT = 1

– SMBALERT = 1

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The peripheral clock frequency must be configured using the input APB clock frequency (I2C
peripheral connected to APB). The minimum allowed frequency is 2 MHz, the maximum
frequency is limited by the maximum APB frequency (24 MHz) and an intrinsic limitation of
46 MHz.
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b011000: 24 MHz
Higher than 0b011000: Not allowed

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 567/675

22.6.3 I2C Own address register 1 (I2C_OAR1)

Address offset: 0x08
Reset value: 0x0000

22.6.4 I2C Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE Reserved

ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)

0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Should always be kept at 1 by software.

Bits 13:10 Reserved, forced by hardware to 0.

Bits 9:8 ADD[9:8]: Interface address
7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADD2[7:1] ENDUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

Inter-integrated circuit (I2C) interface RM0041

568/675 Doc ID 16188 Rev 4

22.6.5 I2C Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

22.6.6 I2C Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.
–Transmitter mode: Byte transmission starts automatically when a byte is written in the DR

register. A continuous transmit stream can be maintained if the next data to be transmitted
is put in DR once the transmission is started (TxE=1)

–Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.

Note: Write collision is not managed (DR can be written if TxE=0).
Note: If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so

cannot be read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIME
OUT Res.

PEC
ERR OVR AF ARLO BERR TxE RxNE

Res.
STOPF ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBALERT
1: SMBALERT event occurred on pin
In SMBus slave mode:
0: no SMBALERT response address header
1: SMBALERT response address header to SMBALERT LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Bit 14 TIMEOUT: Timeout or Tlow error
0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by hardware

– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.
Note: This functionality is available only in SMBus mode.

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 569/675

Bit 13 Reserved, forced by hardware to 0.

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)

1: PEC error: receiver returns NACK after PEC reception (whatever ACK)
–Cleared by software writing 0, or by hardware when PE=0.

–

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

–Set by hardware in slave mode when NOSTRETCH=1 and:
–In reception when a new byte is received (including ACK pulse) and the DR register has not

been read yet. New received byte is lost.
–In transmission when a new byte should be sent and the DR register has not been written

yet. The same byte is sent twice.
–Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure
–Set by hardware when no acknowledge is returned.

–Cleared by software writing 0, or by hardware when PE=0.

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected

Set by hardware when the interface loses the arbitration of the bus to another master

–Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase,
or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

–Set by hardware when the interface detects an SDA rising or falling edge while SCL is high,
occurring in a non-valid position during a byte transfer.

–Cleared by software writing 0, or by hardware when PE=0.

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty

–Set when DR is empty in transmission. TxE is not set during address phase.
–Cleared by software writing to the DR register or by hardware after a start or a stop

condition or when PE=0.
TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Inter-integrated circuit (I2C) interface RM0041

570/675 Doc ID 16188 Rev 4

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

–Set when data register is not empty in receiver mode. RxNE is not set during address
phase.

–Cleared by software reading or writing the DR register or by hardware when PE=0.

RxNE is not set in case of ARLO event.
Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, forced by hardware to 0.

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected
–Set by hardware when a Stop condition is detected on the bus by the slave after an

acknowledge (if ACK=1).
–Cleared by software reading the SR1 register followed by a write in the CR1 register, or by

hardware when PE=0

Note: The STOPF bit is not set after a NACK reception.
It is recommended to perform the complete clearing sequence (READ SR1 then
WRITE CR1) after the STOPF is set. Refer to Figure 236: Transfer sequence diagram
for slave receiver on page 547.

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).
–Set by hardware when the master has sent the first byte in 10-bit address mode.

–Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded

–Set by hardware when NOSTRETCH=0 and:
–In reception when a new byte is received (including ACK pulse) and DR has not been

read yet (RxNE=1).
–In transmission when a new byte should be sent and DR has not been written yet

(TxE=1).
–Cleared by software reading SR1 followed by either a read or write in the DR register or

by hardware after a start or a stop condition in transmission or when PE=0.
Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 571/675

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.

Address matched (Slave)

0: Address mismatched or not received.
1: Received address matched.

–Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus
Alert is recognized. (when enabled depending on configuration).

Note: In slave mode, it is recommended to perform the complete clearing sequence (READ
SR1 then READ SR2) after ADDR is set. Refer to Figure 236: Transfer sequence
diagram for slave receiver on page 547.

Address sent (Master)

0: No end of address transmission
1: End of address transmission

–For 10-bit addressing, the bit is set after the ACK of the 2nd byte.
–For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.

–Set when a Start condition generated.

–Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

Inter-integrated circuit (I2C) interface RM0041

572/675 Doc ID 16188 Rev 4

22.6.7 I2C Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value: 0x0000

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF SMB
HOST

SMBDE
FAULT

GEN
CALL Res.

TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.
–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, forced by hardware to 0.

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted

This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.

It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

–Set by hardware on detection of SDA or SCL low

–cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 573/675

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

22.6.8 I2C Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: 1 fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least
4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10MHz to reach the
400 kHz maximum I²C fast mode clock.

2 The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 0 MSL: Master/slave

0: Slave Mode
1: Master Mode

–Set by hardware as soon as the interface is in Master mode (SB=1).

–Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY
Reserved

CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 F/S: I2C master mode selection

0: Standard Mode I2C
1: Fast Mode I2C

Bit 14 DUTY: Fast mode duty cycle

0: Fast Mode tlow/thigh = 2
1: Fast Mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, forced by hardware to 0.

Inter-integrated circuit (I2C) interface RM0041

574/675 Doc ID 16188 Rev 4

22.6.9 I2C TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bits 11:0 CCR[11:0]: Clock control register in Fast/Standard mode (Master mode)

Controls the SCL clock in master mode.

Standard mode or SMBus:

Thigh = CCR * TPCLK1

Tlow = CCR * TPCLK1

Fast mode:

If DUTY = 0:
Thigh = CCR * TPCLK1
Tlow = 2 * CCR * TPCLK1

If DUTY = 1: (to reach 400 kHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1

For instance: in standard mode, to generate a 100 kHz SCL frequency:

If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: 1. The minimum allowed value is 0x04, except in FAST DUTY mode where the
minimum allowed value is 0x01
. These timings are without filters.
. The CCR register must be configured only when the I2C is disabled (PE = 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TRISE[5:0]

rw rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0.

Bits 5:0 TRISE[5:0]: Maximum rise time in Fast/Standard mode (Master mode)

These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.

For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.

If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.

(1000 ns / 125 ns = 8 + 1)

The filter value can also be added to TRISE[5:0].

If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

RM0041 Inter-integrated circuit (I2C) interface

Doc ID 16188 Rev 4 575/675

22.6.10 I2C register map

The table below provides the I2C register map and reset values.

Refer to Table 1: Low and medium-density device register boundary addresses and Table 2:
High-density device register boundary addresses for the register boundary addresses table.

Table 122. I2C register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

Reserved

S
W

R
S

T

R
es

er
ve

d

A
LE

R
T

P
E

C

P
O

S

A
C

K

S
TO

P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
es

er
ve

d

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

Reserved LA
S

T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
es

er
ve

d

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

Reserved

A
D

D
M

O
D

E

Reserved
ADD[9:8] ADD[7:1]

A
D

D
0

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

Reserved
ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

Reserved
DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

Reserved

S
M

B
A

LE
R

T

T
IM

E
O

U
T

R
es

er
ve

d

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E

R
es

er
ve

d

S
TO

P
F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

Reserved
PEC[7:0]

D
U

A
LF

S
M

B
H

O
S

T

S
M

B
D

E
FA

U
LT

G
E

N
C

A
LL

R
es

er
ve

d

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

Reserved F
/S

D
U

T
Y

R
es

er
ve

d

CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

Reserved
TRISE[5:0]

Reset value 0 0 0 0 1 0

