8 Interrupts and events

Low-density value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.

This Section applies to the whole STM32F100xx family, unless otherwise specified.

8.1 Nested vectored interrupt controller (NVIC)

Features

- 60 maskable interrupt channels in high-density value line devices and 56 in low and medium-density value line devices (not including the sixteen Cortex[™]-M3 interrupt lines)
- 16 programmable priority levels (4 bits of interrupt priority are used)
- Low-latency exception and interrupt handling
- Power management control
- Implementation of System Control Registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to *STM32F100xx Cortex-M3 programming manual* (see Related documents on page 1).

8.1.1 SysTick calibration value register

The SysTick calibration value is set to 9000, which gives a reference time base of 3 ms with the SysTick clock set to 3 MHz (max HCLK/8).

8.1.2 Interrupt and exception vectors

Position	Priority	Type of priority	Acronym	Description	Address
	-	-	-	Reserved	0x0000_0000
	-3	fixed	Reset	Reset	0x0000_0004
	-2	fixed	NMI_Handler	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000_0008
	-1	fixed	HardFault_Handler	All class of fault	0x0000_000C

Table 50. Vector table for STM32F100xx devices

Position	Priority	Type of priority	Acronym	Description	Address
	0	settable	MemManage_Handl er	Memory management	0x0000_0010
	1	settable	BusFault_Handler	Pre-fetch fault, memory access fault	0x0000_0014
	2	settable	UsageFault_Handler	Undefined instruction or illegal state	0x0000_0018
	-	-	-	Reserved	0x0000_001C - 0x0000_002B
	3	settable	SVC_Handler	System service call via SWI instruction	0x0000_002C
	4	settable	DebugMon_Handler	Debug Monitor	0x0000_0030
	-	-	-	Reserved	0x0000_0034
	5	settable	PendSV_Handler	Pendable request for system service	0x0000_0038
	6	settable	SysTick_Handler	System tick timer	0x0000_003C
0	7	settable	WWDG	Window Watchdog interrupt	0x0000_0040
1	8	settable	PVD	PVD through EXTI Line detection interrupt	0x0000_0044
2	9	settable	TAMPER_STAMP	Tamper and TimeStamp through EXTI line interrupts	0x0000_0048
3	10	settable	RTC_WKUP	RTC Wakeup through EXTI line interrupt	0x0000_004C
4	11	settable	FLASH	Flash global interrupt	0x0000_0050
5	12	settable	RCC	RCC global interrupt	0x0000_0054
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000_0058
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000_005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000_0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000_0064
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000_0068
11	18	settable	DMA1_Channel1	DMA1 Channel1 global interrupt	0x0000_006C
12	19	settable	DMA1_Channel2	DMA1 Channel2 global interrupt	0x0000_0070
13	20	settable	DMA1_Channel3	DMA1 Channel3 global interrupt	0x0000_0074
14	21	settable	DMA1_Channel4	DMA1 Channel4 global interrupt	0x0000_0078
15	22	settable	DMA1_Channel5	DMA1 Channel5 global interrupt	0x0000_007C
16	23	settable	DMA1_Channel6	DMA1 Channel6 global interrupt	0x0000_0080
17	24	settable	DMA1_Channel7	DMA1 Channel7 global interrupt	0x0000_0084
18	25	settable	ADC1	ADC1 global interrupt	0x0000_0088
-	-	-	-	Reserved	0x0000_008C - 0x0000_0098

 Table 50.
 Vector table for STM32F100xx devices (continued)

Position	Priority	Type of priority	Acronym	Description	Address
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000_009C
24	31	settable	TIM1_BRK_TIM15	TIM1 Break and TIM15 global interrupt	0x000_00A0
25	32	settable	TIM1_UP_TIM16	TIM1 Update and TIM16 global interrupts	0x0000_00A4
26	33	settable	TIM1_TRG_COM_T IM17	TIM1 Trigger and Commutation and TIM17 global interrupts	0x0000_00A8
27	34	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000_00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000_00B0
29	36	settable	ТІМЗ	TIM3 global interrupt	0x0000_00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000_00B8
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000_00BC
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000_00C0
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000_00C4
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000_00C8
35	42	settable	SPI1	SPI1 global interrupt	0x0000_00CC
36	43	settable	SPI2	SPI2 global interrupt	0x0000_00D0
37	44	settable	USART1	USART1 global interrupt	0x0000_00D4
38	45	settable	USART2	USART2 global interrupt	0x0000_00D8
39	46	settable	USART3	USART3 global interrupt	0x0000_00DC
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0
41	48	settable	RTC_Alarm	RTC Alarms (A and B) through EXTI line interrupt	0x0000_00E4
42	49	settable	CEC	CEC global interrupt	0x0000_00E8
43	50	settable	TIM12	TIM12 global interrupt	0x0000_00EC
44	51	settable	TIM13	TIM13 global interrupt	0x0000_00F0
45	52	settable	TIM14	TIM14 global interrupt	0x0000_00F4
-	-	-	-	Reserved	0x0000_00F8 - 0x0000_00FC
48	55	settable	FSMC	FSMC global interrupt	0x0000_0100
-	-	-	-	Reserved	0x0000_0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000_0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000_010C
52	59	settable	UART4	UART4 global interrupt	0x0000_0110
53	60	settable	UART5	UART5 global interrupt	0x0000_0114

 Table 50.
 Vector table for STM32F100xx devices (continued)

Position	Priority	Type of priority	Acronym	Description	Address
54	61	settable	TIM6_DAC	TIM6 global and DAC underrun interrupts	0x0000_0118
55	62	settable	TIM7	TIM7 global interrupt	0x0000_011C
56	63	settable	DMA2_Channel1	DMA2 Channel1 global interrupt	0x0000_0120
57	64	settable	DMA2_Channel2	DMA2 Channel2 global interrupt	0x0000_0124
58	65	settable	DMA2_Channel3	DMA2 Channel3 global interrupt	0x0000_0128
59	66	settable	DMA2_Channel4_5	DMA2 Channel4 and DMA2 Channel5 global interrupts	0x0000_012C
60	67	settable	DMA2_Channel5 ⁽¹⁾	DMA2 Channel5 global interrupt	0x0000_0130

Table 50. Vector table for STM32F100xx devices (continued)

1. For High-density value line devices, the DMA2 Channel 5 is mapped at postion 60 only if the MISC_REMAP bit in the AFIO_MAPR2 register is set and DMA2 Channel 2 is connected with DMA2 Channel 4 at position 59 when the MISC_REMAP bit in the AFIO_MAPR2 register is reset.

8.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 18 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (pulse or pending) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests

8.2.1 Main features

The EXTI controller main features are the following:

- Independent trigger and mask on each interrupt/event line
- Dedicated status bit for each interrupt line
- Generation of up to 18 software event/interrupt requests
- Detection of external signal with pulse width lower than APB2 clock period. Refer to the electrical characteristics section of the datasheet for details on this parameter.

8.2.2 Block diagram

The block diagram is shown in *Figure 18*.

