
June 2010 Doc ID 15021 Rev 4 1/16

AN2824
Application note

STM32F10xxx I2C optimized examples

Introduction
The aim of this application note is to provide I2C firmware optimized examples based on
polling, interrupts and DMA, covering the four I2C communication modes available in the
STM32F10xxx, that is, slave transmitter, slave receiver, master transmitter and master
receiver and to provide recommendations on the correct use of the I2C peripheral.

This application note applies to STM32F101xx and STM32F103xx medium, high and XL
density microcontrollers, STM32F105/107xx connectivity line and STM32F100xx value line
devices. Throughout this document, these devices are referred to collectively as
STM32F10xxx.

The application note is organized in three parts. The first part describes the I2C master
programming examples using Polling, DMA and Interrupts. The second part describes the
I2C slave programming examples using DMA and Interrupts. The third part is an overview of
the content of the firmware accompanying this application note. .

www.st.com

http://www.st.com

Contents AN2824

2/16 Doc ID 15021 Rev 4

Contents

1 I2C master programming examples (DMA, interrupts, polling) 5

1.1 Overview . 5

1.2 Description of the examples . 5

1.2.1 Polling . 5

1.2.2 DMA . 9

1.2.3 Interrupt mode . 11

2 I2C slave programming examples (DMA, interrupt) 12

2.1 Overview . 12

2.2 Description of the examples . 12

2.2.1 Interrupt . 12

2.2.2 DMA . 12

3 Firmware overview . 14

4 Revision history . 15

AN2824 List of tables

Doc ID 15021 Rev 4 3/16

List of tables

Table 1. List of functions. 14
Table 2. Document revision history . 15

List of figures AN2824

4/16 Doc ID 15021 Rev 4

List of figures

Figure 1. Flowchart of master receiving more than 2 bytes using polling . 7
Figure 2. Flowchart of master receiving 1 or 2 bytes using polling . 8
Figure 3. Flowchart of master transmitter using polling . 9
Figure 4. Flowchart of master receiver using DMA . 10
Figure 5. Flowchart of master transmitter using DMA . 11

AN2824 I2C master programming examples (DMA, interrupts, polling)

Doc ID 15021 Rev 4 5/16

1 I2C master programming examples (DMA, interrupts,
polling)

1.1 Overview
The purpose of this section is to describe the firmware examples of I2C master transmitting
and receiving data using polling, DMA and interrupts, provided with this application note.

Flowcharts of Master Transmitter/Receiver in all modes (DMA, Polling, Interrupts) are also
provided.

You can modify these examples to adapt them to your application requirements.

1.2 Description of the examples

1.2.1 Polling

Master receiver

The master sends the START condition on the bus by setting START bit. The interface waits
for the SB flag to be set and then cleared by writing the slave address in the DR register.
The interface waits for the ADDR flag to be set then cleared by reading the SR1 and SR2
status register. After that, the master waits for the RXNE flag to be set in order to read data
from the data register (EV7).

The EV7 software sequence must complete before the end of the current byte transfer. In
case EV7 software sequence can not be managed before the current byte end of transfer, it
is recommended to use BTF instead.

In order to close the communication, the software must guarantee the ACK bit is cleared in
time in order to receive the last byte with a NACK. For this purpose, method 2 described in
the device reference manuals is used: with this method, DataN_2 is not read, so that after
DataN_1, the communication is stretched (both RxNE and BTF are set). Then:

● Clear the ACK bit before reading DataN-2 in DR to ensure it is cleared before the
DataN Acknowledge pulse.

● After this, just after reading DataN_2, set the STOP/ START bit and read DataN_1.

● After RxNE is set, read DataN.

This is illustrated below:

When 3 bytes remain to be read:
– RxNE = 1 => Nothing (DataN-2 not read).
– DataN-1 received
– BTF = 1 because both shift and data registers are full: DataN-2 in DR and DataN-1 in

the shift register => SCL tied low: no other data will be received on the bus.
– Clear ACK bit
– Read DataN-2 in DR => This starts DataN reception in the shift register.
– DataN received (with a NACK)
– Program START/STOP
– Read DataN-1

I2C master programming examples (DMA, interrupts, polling) AN2824

6/16 Doc ID 15021 Rev 4

– RxNE = 1
– Read DataN

Note: Due to the “Wrong data read into data register” limitation described in the device errata
sheet, interrupts should be masked between STOP programming and DataN-1 reading.
Please refer to the device errata sheet for more details.

The procedure described above is valid for N>2. The cases where a single byte or two bytes
are to be received should be handled differently, as described below:

Case of a single byte to be received:

– In the ADDR event, clear the ACK bit.

– Clear ADDR

– Program the STOP/START bit.

– Read the data after the RxNE flag is set.

Note: The EV6_3 software sequence must complete before the current byte end of transfer. To
ensure this, the interrupts should be masked between ADDR clearing and STOP/START
programming.

Case of two bytes to be received:
– Set POS and ACK
– Wait for the ADDR flag to be set
– Clear ADDR
– Clear ACK
– Wait for BTF to be set
– Program STOP
– Read DataN-1
– Read DataN

Note: 1 Due to the “Wrong data read into data register” limitation described in the device errata
sheet, interrupts must be masked between STOP programming and DataN-1 reading.
Please refer to the device errata sheet for more details.

2 The EV6_1 software sequence must complete before the ACK pulse of the current byte
transfer. To ensure this, interrupts must be disabled between ADDR clearing and ACK
clearing.

AN2824 I2C master programming examples (DMA, interrupts, polling)

Doc ID 15021 Rev 4 7/16

Figure 1. Flowchart of master receiving more than 2 bytes using polling

Start

End

N > 3

Wait for BTF = 1
ACK = 0
Disable interrupts
STOP = 1
Read Data N-1
Enable interrupts
Wait for RXNE = 1
Read DataN

No

Yes

Wait until STOP is cleared by hardware.
ACK = 1 (to be ready for another reception)

Send slave address
Wait until ADDR is set and clear it

Wait until BTF= 1

If the software ensures that
the EV7 software sequence is managed
within 1 byte transfer duration then:

 Wait until RXNE=1
Else

Read data in DR
Decrement the number of bytes to read

I2C master programming examples (DMA, interrupts, polling) AN2824

8/16 Doc ID 15021 Rev 4

Figure 2. Flowchart of master receiving 1 or 2 bytes using polling

Master transmitter

The master sends the START condition on the bus by setting the START bit. The interface
waits for the SB flag to be set and then cleared by writing the slave address in the DR
register. The interface waits for the ADDR flag to be set then cleared by reading the SR1
and SR2 status register. After that, the master writes the first data byte in the data register
(EV8_1). It then continues by writing the next data bytes in the data register after every TXE
(EV8).

The EV8 software sequence must complete before the end of the current byte transfer. In
case EV8 software sequence cannot be managed before the current byte end of transfer, it
is recommended to use BTF instead.

After the last byte is written to the DR register, the application software must wait until BTF is
set (EV8_2: Both DR and shift register are set) before setting the STOP bit to generate a
STOP condition.

Start

End

N = 2

Send Slave address
Wait until ADDR is set

ACK = 0
Disable interrupts
Clear ADDR
STOP = 1
Enable interrupts
Wait until RXNE = 1
Read the data

No (N = 1)

Yes

POS = 1
Disable interrupts
Clear ADDR
ACK = 0
Enable interrupts
Wait for BTF = 1
Disable interrupts
STOP = 1
Read Data1
Enable interrupts
Read Data2
Wait until STOP is cleared by
hardware.
POS = 0 and ACK = 1 (to be

Wait until STOP is cleared
by hardware.
ACK = 1 (to be ready for
another reception).

ready for another reception)..

AN2824 I2C master programming examples (DMA, interrupts, polling)

Doc ID 15021 Rev 4 9/16

Figure 3. Flowchart of master transmitter using polling

1.2.2 DMA

Master receiver

DMA requests are generated only for data transfer. In reception, DMA requests are
generated by the Data Register becoming full (RXNE = 1).

All remaining events (SB, ADDR etc...) must be managed by polling or interrupts. In the
examples accompanying the application note, they are managed by polling.

The master sends the START condition on the bus by setting START bit. The interface waits
for SB flag to be set and then cleared by writing the slave address in DR register. The
interface waits for ADDR flag to be set then cleared by reading SR1 and SR2 status
registers. At that point, DMA transfers begin.

Start

End

Write the first data in DR register

Send slave address
Wait until ADDR is set and clear it

Wait until BTF= 1

Number of bytes
to write = 0?

Write data in DR
Decrement the number of bytes to write.

No

Yes

Wait until BTF= 1
Program the STOP bit
Wait until STOP bit is cleared by hardware

If the software ensures that
the EV8 software sequence is managed
within 1 byte transfer duration then:

 Wait until TXE=1
Else

I2C master programming examples (DMA, interrupts, polling) AN2824

10/16 Doc ID 15021 Rev 4

After the DMA end of transfer, the STOP bit is set in order to generate a STOP condition.

Note: When using DMA, master reception of a single byte is not supported.

Figure 4. Flowchart of master receiver using DMA

Master transmitter

DMA requests are generated only for data transfer. In transmission, DMA requests are
generated by the Data Register becoming empty (TXE = 1).

All remaining events (SB, ADDR, etc.) must be managed by polling or interrupts. In the
examples accompanying this application note, they are managed by polling.

The master sends the START condition on the bus by setting START bit. The interface waits
for the SB flag to be set and then cleared by writing the slave address in DR register. The
interface waits for ADDR flag to be set then cleared by reading SR1 and SR2 status register.
At that point, DMA transfers begin.

Start

End

Wait until the DMA end of transfer

Send slave address
Wait until ADDR is set and clear it

Program the STOP bit
Wait until STOP bit is cleared by hardware

Configure and enable the I2C DMA

Set DMAEN bit
Set LAST bit (used to generate a NACK
 automatically on the last received byte.)

Send a START condition
Wait until SB is set and clear it

channel for reception.

Disable the DMA channel
Clear the DMA transfer complete flag

AN2824 I2C master programming examples (DMA, interrupts, polling)

Doc ID 15021 Rev 4 11/16

After the DMA end of transfer, the application software must wait until BTF is set (EV8_2:
Both DR and shift register are set) before setting the STOP bit to generate a STOP
condition.

Figure 5. Flowchart of master transmitter using DMA

Note: In I2C master mode using polling or DMA, I2C errors (BERR, OVR, AF, ARLO) interrupts are
enabled and configured. When an error occurs the corresponding error flag is cleared by
software.

1.2.3 Interrupt mode

The basic principles of transmission and reception are the same in interrupt mode as in
polling. The difference here is that the I2C EVT and BUF interrupts are enabled in addition
to the I2C error flags. All I2C events are managed in the I2C event interrupt routine.

The I2C interrupts should have the highest priority in the application in order to make them
uninterruptible.

Start

End

Wait until the DMA end of transfer

Send slave address
Wait until ADDR is set and clear it

Wait until BTF= 1

Configure and enable the I2C DMA

Set DMAEN bit

Send a START condition
Wait until SB is set and clear it

channel for transmission.

Disable the DMA channel
Clear the DMA transfer complete flag

Program the STOP
Wait until STOP bit is cleared by hardware

I2C slave programming examples (DMA, interrupt) AN2824

12/16 Doc ID 15021 Rev 4

2 I2C slave programming examples (DMA, interrupt)

2.1 Overview
The purpose of this section is to describe the firmware examples provided with this
application note, showing an I2C slave transmitting and receiving data using DMA and
interrupts.

Flowcharts of Slave Transmitter/Receiver using DMA and Interrupts, are also provided.

Note: In slave mode, it is not recommended to use polling mode, especially for handling the ADDR
event because the slave doesn’t know in advance when it will be addressed by the Master.
Consequently, the application, which normally does other tasks and not just I2C
communication, may get stuck waiting for the ADDR flag to be set. The same is true for the
other events, for example the slave could also get stuck waiting for the RXNE or TXE flag to
be set.

That is why it is recommended to always manage the ADDR and STOPF events using
interrupts and to manage data transfers using interrupts or DMA.

2.2 Description of the examples

2.2.1 Interrupt

All I2C slave transmitter/receiver events are managed by the I2C event interrupt routine.

I2C interrupts should have the highest priority in the application in order to make them
uninterruptible.

● Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from
Master device every RXNE event interrupt. When the master generates a STOP condition
on the bus, the slave detects this STOP condition when the STOPF flag is set in the SR2
status register.

● Slave Transmitter

Following the address reception and after clearing ADDR, the slave transmits bytes to the
Master device after every TXE event interrupt. The slave detects the end of transmission
when it receives a Non Acknowledge pulse telling it that it must stop transmission (AF flag is
set in the I2C error interrupt routine).

For transmission/reception using interrupts, the transmit and receiver counter are initialized
every ADDR event.

2.2.2 DMA

● Slave receiver

DMA requests are generated only for data transfers. In reception, DMA requests are
generated by the Data Register becoming full (RXNE = 1).

Remaining events (ADDR and STOPF) are managed by interrupts.

● Slave Transmitter

AN2824 I2C slave programming examples (DMA, interrupt)

Doc ID 15021 Rev 4 13/16

DMA requests are generated only for data transfers. In transmission, DMA requests are
generated by the Data Register becoming empty (TXE = 1).

All remaining events (ADDR and AF) are managed by interrupts.

Provided that the slave doesn’t know in advance how many data bytes are to be
received/transmitted to/from the master device, the DMA channel transmit/receive end of
transfer cannot be detected. So, it’s not possible to know when to update the DMA channel
counter and memory base address to prepare the next transmission or reception. In order to
update the DMA channel counter, the DMA channel must be disabled and of course the
DMA channel must not be disabled while the master device is transmitting/receiving data.

The only period during which the slave has control of the line (master can not transmit
neither receive) is the period between ADDR event (ADDR flag is set) and clearing the
ADDR flag. For this purpose, in the provided slave examples using DMA, the DMA count
and memory base address are initialized after ADDR flag is set and before ADDR flag is
cleared.

Firmware overview AN2824

14/16 Doc ID 15021 Rev 4

3 Firmware overview

The Optimized I2C Examples folder is structured as follows:

● src subfolder: contains the source files.

– I2CRoutines.c: containing the I2Cx (I2C1 or I2C2) master and slave initialization,
write and read routines (using DMA, interrupts or polling) and DMA1 channels
configured for I2Cx (I2C1 or I2C2) transmission/reception. See Table 1: List of
functions. In the I2C write and read routines, the register are accessed directly.
The I2C standard library is used only for the I2C peripheral initialization.

– main.c: where the I2Cx interrupts in the NVIC are configured and the routines in
the I2CRoutines.c are called.

– stm32f10x_it.c: where the I2Cx (I2C1 and I2C2) event and error interrupts are
handled.

● inc subfolder: contains the header files.

– stm32f10x_it.h: headers of the interrupt handlers

– stm32f10x_conf.h: configuration file

– I2CRoutines.h: header file for I2CRoutines.c. It also contains the I2C bit/flag
definitions and other definitions that are needed.

● EWARMv5, MDK-ARM and RIDE subfolders: contain tool-dependent preconfigured
projects and workspaces.

Note: 1 In an application where the STM32 is slave transmitter/receiver, the
I2C _Slave_BufferReadWrite() routine has to be called only once in order to enable the
DMA requests or I2C interrupts.

2 If the slave transmits or receives using DMA, uncomment the “#define SLAVE_DMA_USE”
line in the stm32f10x_it.c source file.

Table 1. List of functions

Software routine Purpose

I2C_Master_BufferRead Reads a buffer of bytes from the slave

I2C_Master_BufferWrite Sends a buffer of bytes to the slave

I2C_Slave_BufferReadWrite (see
notes below)

Enables DMA and event interrupts for data transmission and
reception

I2C_LowLevel_Init Initializes the I2C, GPIOs and DMA channels

I2C_DMAConfig Updates the buffer size and the buffer base address

AN2824 Revision history

Doc ID 15021 Rev 4 15/16

4 Revision history

Table 2. Document revision history

Date Revision Changes

18-Sep-2008 1 Initial release.

04-Mar-2009 2

Added Section 1.3 recommendations for I2C use.
Content added to Section 2: I2C firmware configuration for different
communication modes (polling, DMA and interrupts).
Added Section 3 example using DMA.

03-Nov-2009 3
This application note applies to the whole STM32F10xxx family.
Subfolder descriptions modified in Section 2.3: I2C firmware
description and Section 3.4: Firmware details.

22-June-2010 4 Application note document and firmware completely rewritten.

AN2824

16/16 Doc ID 15021 Rev 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Contents
	List of tables
	List of figures
	1 I2C master programming examples (DMA, interrupts, polling)
	1.1 Overview
	1.2 Description of the examples
	1.2.1 Polling
	Master receiver
	Figure 1. Flowchart of master receiving more than 2 bytes using polling
	Figure 2. Flowchart of master receiving 1 or 2 bytes using polling

	Master transmitter
	Figure 3. Flowchart of master transmitter using polling

	1.2.2 DMA
	Master receiver
	Figure 4. Flowchart of master receiver using DMA

	Master transmitter
	Figure 5. Flowchart of master transmitter using DMA

	1.2.3 Interrupt mode

	2 I2C slave programming examples (DMA, interrupt)
	2.1 Overview
	2.2 Description of the examples
	2.2.1 Interrupt
	2.2.2 DMA

	3 Firmware overview
	4 Revision history

