
Cortex™-M3
 Revision r2p0

Technical Reference Manual
Copyright © 2005-2008, 2010 ARM Limited. All rights reserved.
ARM DDI 0337H (ID032710)

Cortex-M3
Technical Reference Manual

Copyright © 2005-2008, 2010 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other
countries, except as otherwise stated in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM Limited in good faith. However, all warranties implied
or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final (information on a developed product).

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

15 December 2005 A Confidential First Release

13 January 2006 B Non-Confidential Confidentiality status amended

10 May 2006 C Non-Confidential First Release for r1p0

27 September 2006 D Non-Confidential First Release for r1p1

13 June 2007 E Non-Confidential Minor update with no technical changes

11 April 2008 F Confidential Limited release for SC300 r0p0

26 June 2008 G Non-Confidential First Release for r2p0

26 February 2010 H Non-Confidential Second Release for r2p0
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. ii
ID032710 Non-Confidential

Contents
Cortex-M3 Technical Reference Manual

Preface
About this book .. x
Feedback .. xiii

Chapter 1 Introduction
1.1 About the processor ... 1-2
1.2 Features ... 1-3
1.3 Interfaces ... 1-4
1.4 Configurable options .. 1-5
1.5 Product documentation .. 1-6
1.6 Product revisions ... 1-9

Chapter 2 Functional Description
2.1 About the functions .. 2-2
2.2 Interfaces ... 2-4

Chapter 3 Programmers Model
3.1 About the programmers model .. 3-2
3.2 Modes of operation and execution ... 3-3
3.3 Instruction set summary ... 3-4
3.4 System address map ... 3-11
3.5 Write buffer .. 3-14
3.6 Exclusive monitor ... 3-15
3.7 Bit-banding ... 3-16
3.8 Processor core register summary .. 3-18
3.9 Exceptions ... 3-20
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. iii
ID032710 Non-Confidential

Contents
Chapter 4 System Control
4.1 About system control ... 4-2
4.2 Register summary .. 4-3
4.3 Register descriptions ... 4-5

Chapter 5 Memory Protection Unit
5.1 About the MPU .. 5-2
5.2 MPU functional description .. 5-3
5.3 MPU programmers model .. 5-4

Chapter 6 Nested Vectored Interrupt Controller
6.1 About the NVIC .. 6-2
6.2 NVIC functional description ... 6-3
6.3 NVIC programmers model ... 6-4

Chapter 7 Debug
7.1 About debug .. 7-2
7.2 About the AHB-AP ... 7-6
7.3 About the Flash Patch and Breakpoint Unit (FPB) .. 7-9

Chapter 8 Data Watchpoint and Trace Unit
8.1 About the DWT .. 8-2
8.2 DWT functional description .. 8-3
8.3 DWT Programmers Model ... 8-4

Chapter 9 Instrumentation Trace Macrocell Unit
9.1 About the ITM .. 9-2
9.2 ITM functional description .. 9-3
9.3 ITM programmers model ... 9-4

Chapter 10 Embedded Trace Macrocell
10.1 About the ETM ... 10-2
10.2 ETM functional description .. 10-3
10.3 ETM Programmers model .. 10-9

Chapter 11 Trace Port Interface Unit
11.1 About the Cortex-M3 TPIU .. 11-2
11.2 TPIU functional description .. 11-3
11.3 TPIU programmers model ... 11-5

Appendix A Revisions

Glossary
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. iv
ID032710 Non-Confidential

List of Tables
Cortex-M3 Technical Reference Manual

Change History ... ii
Table 3-1 Cortex-M3 instruction set summary .. 3-4
Table 3-2 Memory regions .. 3-11
Table 4-1 System control registers ... 4-3
Table 4-2 ACTLR bit assignments .. 4-5
Table 4-3 CPUID bit assignments ... 4-6
Table 4-4 AFSR bit assignments .. 4-6
Table 5-1 MPU registers ... 5-4
Table 6-1 NVIC registers ... 6-4
Table 6-2 ICTR bit assignments .. 6-5
Table 7-1 Cortex-M3 ROM table identification values ... 7-3
Table 7-2 Cortex-M3 ROM table components .. 7-3
Table 7-3 SCS identification values .. 7-4
Table 7-4 Debug registers ... 7-5
Table 7-5 AHB-AP register summary .. 7-6
Table 7-6 CSW bit assignments .. 7-7
Table 7-7 FPB register summary .. 7-10
Table 8-1 DWT register summary ... 8-4
Table 9-1 ITM register summary ... 9-4
Table 9-2 ITM_TPR bit assignments ... 9-5
Table 10-1 Cortex-M3 resources .. 10-4
Table 10-2 Boolean function encoding for events ... 10-5
Table 10-3 Resource identification encoding .. 10-5
Table 10-4 Input connections .. 10-7
Table 10-5 Trigger output connections ... 10-7
Table 10-6 ETM registers .. 10-9
Table 10-7 ETMCR bit assignments ... 10-11
Table 10-8 ETMCCR bit assignments ... 10-13
Table 10-9 ETMSCR bit assignments ... 10-14
Table 10-10 ETMTECR1 bit assignments ... 10-15
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. v
ID032710 Non-Confidential

List of Tables
Table 10-11 ETMIDR bit assignments .. 10-16
Table 10-12 ETMCCER bit assignments .. 10-17
Table 10-13 ETMTESSEICR bit assignments .. 10-18
Table 10-14 ETMPDSR bit assignments .. 10-19
Table 10-15 ITMISCIN bit assignments .. 10-19
Table 10-16 ITTRIGOUT bit assignments ... 10-20
Table 10-17 ETM_ITATBCTR2 bit assignments ... 10-21
Table 10-18 ETM_ITATBCTR0 bit assignments ... 10-21
Table 11-1 TPIU registers ... 11-5
Table 11-2 TPIU_ACPR bit assignments .. 11-6
Table 11-3 TPIU_FFSR bit assignments .. 11-7
Table 11-4 TPIU_FFCR bit assignments .. 11-7
Table 11-5 TRIGGER bit assignments .. 11-8
Table 11-6 Integration FIFO 0 bit assignments ... 11-9
Table 11-7 ITATBCTR2 bit assignments .. 11-10
Table 11-8 Integration FIFO 1 Data bit assignments .. 11-10
Table 11-9 ITATBCTR0 bit assignments .. 11-11
Table 11-10 TPIU_ITCTRL bit assignments ... 11-12
Table 11-11 TPIU_DEVID bit assignments ... 11-12
Table A-1 Differences between issue E and issue F ... A-1
Table A-2 Differences between issue F and issue G .. A-4
Table A-3 Differences between issue G and issue H .. A-5
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. vi
ID032710 Non-Confidential

List of Figures
Cortex-M3 Technical Reference Manual

Figure 2-1 Cortex-M3 block diagram .. 2-2
Figure 3-1 System address map .. 3-11
Figure 3-2 Bit-band mapping .. 3-17
Figure 3-3 Processor register set ... 3-18
Figure 4-1 ACTLR bit assignments .. 4-5
Figure 4-2 CPUID bit assignments ... 4-6
Figure 4-3 AFSR bit assignments .. 4-6
Figure 6-1 ICTR bit assignments .. 6-4
Figure 7-1 CoreSight discovery .. 7-2
Figure 7-2 CSW bit assignments .. 7-7
Figure 9-1 ITM_TPR bit assignments ... 9-5
Figure 10-1 ETM block diagram ... 10-3
Figure 10-2 ETMCR bit assignments ... 10-11
Figure 10-3 ETMCCR bit assignments ... 10-13
Figure 10-4 ETMSCR bit assignments ... 10-14
Figure 10-5 ETMTECR1 bit assignments ... 10-15
Figure 10-6 ETMIDR bit assignments .. 10-16
Figure 10-7 ETMCCER bit assignments .. 10-17
Figure 10-8 ETMTESSEICR bit assignments .. 10-18
Figure 10-9 ETMPDSR bit assignments .. 10-19
Figure 10-10 ITMISCIN bit assignments .. 10-19
Figure 10-11 ITTRIGOUT bit assignments ... 10-20
Figure 10-12 ETM_ITATBCTR2 bit assignments ... 10-20
Figure 10-13 ETM_ITATBCTR0 bit assignments ... 10-21
Figure 11-1 TPIU block diagram .. 11-3
Figure 11-2 TPIU_ACPR bit assignments .. 11-6
Figure 11-3 TPIU_FFSR bit assignments .. 11-6
Figure 11-4 TPIU_FFCR bit assignments .. 11-7
Figure 11-5 TRIGGER bit assignments .. 11-8
Figure 11-6 Integration FIFO 0 Data bit assignments .. 11-9
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. vii
ID032710 Non-Confidential

List of Figures
Figure 11-7 ITATBCTR2 bit assignments .. 11-9
Figure 11-8 Integration FIFO 1 Data bit assignments .. 11-10
Figure 11-9 ITATBCTR0 bit assignments .. 11-11
Figure 11-10 TPIU_ITCTRL bit assignments ... 11-11
Figure 11-11 TPIU_DEVID bit assignments ... 11-12
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. viii
ID032710 Non-Confidential

Preface

This preface introduces the Cortex-M3 Technical Reference Manual (TRM). It contains the
following sections:
• About this book on page x
• Feedback on page xiii.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. ix
ID032710 Non-Confidential

Preface
About this book
This book is for the Cortex-M3 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written to help system designers, system integrators, verification engineers, and
software programmers who are implementing a System-on-Chip (SoC) device based on the
Cortex-M3 processor.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for a description of the components of the processor, and of the product
documentation.

Chapter 2 Functional Description
Read this for a description of the functionality of the processor.

Chapter 3 Programmers Model
Read this for a description of the processor register set, modes of operation, and
other information for programming the processor.

Chapter 4 System Control
Read this for a description of the registers and programmers model for system
control.

Chapter 5 Memory Protection Unit
Read this for a description of the Memory Protection Unit (MPU).

Chapter 6 Nested Vectored Interrupt Controller
Read this for a description of the interrupt processing and control.

Chapter 7 Debug
Read this for information about debugging and testing the processor core.

Chapter 8 Data Watchpoint and Trace Unit
Read this for a description of the Data Watchpoint and Trace (DWT) unit.

Chapter 9 Instrumentation Trace Macrocell Unit
Read this for a description of the Instrumentation Trace Macrocell (ITM) unit.

Chapter 10 Embedded Trace Macrocell
Read this for a description of the processor Embedded Trace Macrocell (ETM).

Chapter 11 Trace Port Interface Unit
Read this for a description of the Trace Port Interface Unit (TPIU).
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. x
ID032710 Non-Confidential

Preface
Appendix A Revisions
Read this for a description of the technical changes between released issues of this
book.

Glossary Read this for definitions of terms used in this book.

Conventions

Conventions that this book can use are described in:
• Typographical

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
ADD Rd, Rn, <op2>

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARMv7-M Architecture Reference Manual (ARM DDI 0403)
• ARM Cortex-M3 Integration and Implementation Manual (ARM DII 0240)
• ARM AMBA® 3 AHB-Lite Protocol (v1.0) (ARM IHI 0033)
• ARM AMBA™ 3 APB Protocol Specification (ARM IHI 0024)
• AMBA 3 ATB Protocol Specification (ARM IHI 0032)

• ARM CoreSight™ Components Technical Reference Manual (ARM DDI 0314)
• ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)
• ARM Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. xi
ID032710 Non-Confidential

Preface
Other publications

This section lists relevant documents published by third parties:
• IEEE Standard Test Access Port and Boundary-Scan Architecture 1149.1-2001 (JTAG).
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. xii
ID032710 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on this manual

If you have comments on content then send e-mail to errata@arm.com. Give:
• the title
• the number, doc_number-draft_indicator
• the page number(s) to which your comments refer
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. xiii
ID032710 Non-Confidential

Chapter 1
Introduction

This chapter introduces the processor and instruction set. It contains the following sections:
• About the processor on page 1-2
• Features on page 1-3
• Interfaces on page 1-4
• Configurable options on page 1-5
• Product documentation on page 1-6
• Product revisions on page 1-9.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-1
ID032710 Non-Confidential

Introduction
1.1 About the processor
The Cortex-M3 is a low-power processor that features low gate count, low interrupt latency, and
low-cost debug. It is intended for deeply embedded applications that require FIQ interrupt
response features.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-2
ID032710 Non-Confidential

Introduction
1.2 Features
The Cortex-M3 processor incorporates:

• a processor core

• a Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core
to achieve low latency interrupt processing

• multiple high-performance bus interfaces

• a low-cost debug solution with the optional ability to:
— implement breakpoints and code patches
— implement watchpoints, tracing, and system profiling
— support printf style debugging
— bridge to a Trace Port Analyzer (TPA).

• an optional Memory Protection Unit (MPU)

• an optional ETM that enables reconstruction of program execution.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-3
ID032710 Non-Confidential

Introduction
1.3 Interfaces
The processor has the following external interfaces:
• multiple memory and device bus interfaces
• ETM interface
• trace port interface
• debug port interface
• if the implementation includes an ETM, a Cross Trigger Interface (CTI).
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-4
ID032710 Non-Confidential

Introduction
1.4 Configurable options
You can configure your Cortex-M3 implementation to include the following optional
components:
• MPU. See Chapter 5 Memory Protection Unit.
• Flash Patch and Breakpoint Unit (FPB). See Chapter 7 Debug.
• DWT. See Chapter 8 Data Watchpoint and Trace Unit.
• ITM. See Chapter 9 Instrumentation Trace Macrocell Unit.
• ETM. See Chapter 10 Embedded Trace Macrocell.
• Advanced High-performance Bus Access Port (AHB-AP). See Chapter 7 Debug.
• AHB Trace Macrocell (HTM) interface. See AHB Trace Macrocell interface on page 2-5.
• TPIU. See Chapter 11 Trace Port Interface Unit.
• Wake-up Interrupt Controller (WIC). See Low power modes on page 6-3.
• Debug Port. See Debug port AHB-AP interface on page 2-5.

Note
 You can only configure trace functionality in the following combinations:
• no trace functionality
• ITM and DWT
• ITM, DWT, and ETM
• ITM, DWT, ETM, and HTM.

You can configure the debug features provided in the DWT independently.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-5
ID032710 Non-Confidential

Introduction
1.5 Product documentation
This section describes the processor books, how they relate to the design flow, and the relevant
architectural standards and protocols.

See Additional reading on page xi for more information about the books described in this
section.

1.5.1 Documentation

The Cortex-M3 documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the Cortex-M3. It is required at all
stages of the design flow. Some behavior described in the TRM might not be
relevant because of the way that the Cortex-M3 is implemented and integrated. If
you are programming the Cortex-M3 then contact:
• the implementor to determine:

— the build configuration of the implementation
— what integration, if any, was performed before implementing the

processor.
• the integrator to determine the pin configuration of the SoC that you are

using.

Integration and Implementation Manual
The Integration and Implementation Manual (IIM) describes:
• The available build configuration options and related issues in selecting

them.
• How to configure the Register Transfer Level (RTL) with the build

configuration options
• How to integrate the processor into a SoC. This includes a description of

the integration kit and describes the pins that the integrator must tie off to
configure the macrocell for the required integration.

• How to implement the processor into your design. This includes
floorplanning guidelines, Design for Test (DFT) information, and how to
perform netlist dynamic verification on the processor.

• The processes to sign off the integration and implementation of the design.
The ARM product deliverables include reference scripts and information about
using them to implement your design.
Reference methodology documentation from your EDA tools vendor
complements the IIM.
The IIM is a confidential book that is only available to licensees.

Cortex-M3 User Guide Reference Material
This document provides reference material that ARM partners can configure and
include in a User Guide for an ARM Cortex-M3 processor. Typically:
• each chapter in this reference material might correspond to a section in the

User Guide
• each top-level section in this reference material might correspond to a

chapter in the User Guide.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-6
ID032710 Non-Confidential

Introduction
However, ARM partners can organize this material in any way, subject to the
conditions of the licence agreement under which ARM supplied the material.

1.5.2 Design Flow

The processor is delivered as synthesizable RTL. Before it can be used in a product, it must go
through the following process:

Implementation
The implementor configures and synthesizes the RTL to produce a hard
macrocell. This might include integrating RAMs into the design.

Integration The integrator connects the implemented design into a SoC. This includes
connecting it to a memory system and peripherals.

Programming
The system programmer develops the software required to configure and
initialize the processor, and tests the required application software.

Each stage in the process can be performed by a different party. Implementation and integration
choices affect the behavior and features of the processor.

For MCUs, often a single design team integrates the processor before synthesizing the complete
design. Alternatively, the team can synthesise the processor on its own or partially integrated,
to produce a macrocell that is then integrated, possibly by a separate team.

The operation of the final device depends on:

Build configuration
The implementor chooses the options that affect how the RTL source files are
pre-processed. These options usually include or exclude logic that affects one or
more of the area, maximum frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to
specific values. These configurations affect the start-up behavior before any
software configuration is made. They can also limit the options available to the
software.

Software configuration
The programmer configures the processor by programming particular values into
registers. This affects the behavior of the processor.

Note
 This manual refers to implementation-defined features that are applicable to build configuration
options. Reference to a feature that is included means that the appropriate build and pin
configuration options are selected. Reference to an enabled feature means one that has also been
configured by software.

1.5.3 Architecture and protocol information

The processor complies with, or implements, the specifications described in:
• ARM architecture on page 1-8
• Bus architecture on page 1-8
• Debug on page 1-8
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-7
ID032710 Non-Confidential

Introduction
• Embedded Trace Macrocell.

This book complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.

ARM architecture

The processor implements the ARMv7-M architecture profile. See the ARMv7-M Architecture
Reference Manual.

For more information about architectural compliance, see Architecture and protocol
information on page 1-9.

Bus architecture

The processor provides three primary bus interfaces implementing a variant of the AMBA 3
AHB-Lite protocol. The processor implements an interface for CoreSight and other debug
components using the AMBA 3 APB protocol. See
• the ARM AMBA 3 AHB-Lite Protocol (v1.0)
• the ARM AMBA 3 APB Protocol Specification.

Debug

The debug features of the processor implement the ARM debug interface architecture. See the
ARM Debug Interface v5 Architecture Specification. The processor also implements debug
features defined by the ARMv7-M. See the ARMv7-M Architecture Reference Manual.

Embedded Trace Macrocell

The trace features of the processor implement version 3.4 of the ARM Embedded Trace
Macrocell architecture. See the ARM Embedded Trace Macrocell Architecture Specification.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-8
ID032710 Non-Confidential

Introduction
1.6 Product revisions
This section summarizes the differences in functionality between the different releases of this
processor:
• Differences in functionality between r0p0 and r1p0
• Differences in functionality between r1p0 and r1p1
• Differences in functionality between r1p1 and r2p0 on page 1-10.

1.6.1 Differences in functionality between r0p0 and r1p0

In summary, the differences in functionality include:

• Addition of configurable data value comparison to the DWT module.

• Addition of a MATCHED bit to DWT_FUNCTION.

• Addition of configurable ETMFIFOFULL stalling functionality to the processor and the
ETM.

• Addition of SWV Mode to the ITM.

• CPUID Base Register VARIANT field changed to indicate Rev1.

• Cortex-M3 Rev0 Bit-band accesses in BE8 mode required access sizes to be byte.
Cortex-M3 Rev1 has been changed so that BE8 bit-band accesses function with any
access size.

• Addition of a configuration bit called STKALIGN to ensure that all exceptions have
eight-byte stack alignment.

• Addition of the Auxiliary Fault Status Register at address 0xE000ED3C. To set this register,
a 32-bit input bus called AUXFAULT has been added.

• Addition of HTM support.

• ICode and DCode cacheable and bufferable HPROT values permanently tied to
write-through.

• Addition of the SWJ-DP. This is the standard CoreSight™ debug port that combines
JTAG-DP and SW-DP.

• Addition of DWT_PCSR Register at address 0xE000101C.

• Errata fixes to the r0p0 release.

1.6.2 Differences in functionality between r1p0 and r1p1

In summary, the differences in functionality include:

• Data value matching for watchpoint generation has been made implementation time
configurable.

• Architectural clock gating in the ETM is configurable at implementation.

• DAPCLKEN was required to be a static signal in r0p0 and r1p0. This requirement has
been removed for r1p1.

• SLEEPING signal now suppressed until current outstanding instruction fetch has
completed.

• Errata fixes to the r1p0 release.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-9
ID032710 Non-Confidential

Introduction
1.6.3 Differences in functionality between r1p1 and r2p0

In summary, the differences in functionality include:

• Implementation time options have been added to select between different levels of debug
and trace support. This has replaced the previous TIEOFF_FPBEN and
TIEOFF_TRCENA options.

• New implementation option to enable the resetting of all registers within the processor.

• Architectural clock gating inclusion is now controlled using one implementation option.

• DBGRESTART input and DBGRESTARTED output have been added for use in
debugging multi-core systems. See the ARMv7-M Architecture Reference Manual for
more information.

• SLEEPHOLDREQn input and SLEEPHOLDACKn have been added to enable the
extension of SLEEPING.

• The APB interface has been upgraded from v2.0 to v3.0.

• A new output signal called INTERNALSTATE has been added that enables observation
of some of the internal state of the core if the OBSERVATION implementation option is
used.

• Added support for fault-robust implementations.

• An Auxiliary Control Register has been added with new functionality disable bits to:
— stop interruption of load/store multiples, divides and multiplies
— stop IT folding
— disable the write buffers in Cortex-M3 for default memory map accesses.

• The STKALIGN bit reset value in the Configuration and Control Register at address
0xE000ED14 has been inverted. The reset value is now 1, which means that the stack frame
is 8-byte aligned by default.

• Addition of a Wake-up Interrupt Controller to minimize logic in the always clocked
domain during sleep.

• Addition of FIXHMASTERTYPE pin to prevent debugger marking AHB transactions
as core data side if required.

• Errata fixes to the r1p1 release.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 1-10
ID032710 Non-Confidential

Chapter 2
Functional Description

This chapter introduces the processor and its external interfaces. It contains the following sections:
• About the functions on page 2-2
• Interfaces on page 2-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 2-1
ID032710 Non-Confidential

Functional Description
2.1 About the functions
Figure 2-1 shows the structure of the Cortex-M3 processor.

Figure 2-1 Cortex-M3 block diagram

The Cortex-M3 processor features:

• A low gate count processor core, with low latency interrupt processing that has:
— A subset of the Thumb instruction set, defined in the ARMv7-M Architecture

Reference Manual.
— Banked Stack Pointer (SP).
— Hardware divide instructions, SDIV and UDIV.
— Handler and Thread modes.
— Thumb and Debug states.
— Support for interruptible-continued instructions LDM, STM, PUSH, and POP for low

interrupt latency.
— Automatic processor state saving and restoration for low latency Interrupt Service

Routine (ISR) entry and exit.
— Support for ARMv6 big-endian byte-invariant or little-endian accesses.
— Support for ARMv6 unaligned accesses.

†

†

Nested
Vectored
Interrupt

Controller
(NVIC)

Bus Matrix

Cortex-M3 processor

Trace Port
Interface

† CoreSight
ROM table

Serial-Wire or
JTAG Debug

Interface ICode
AHB-Lite
instruction
interface

DCode
AHB-Lite

data
interface

System
AHB-Lite
system

interface

PPB APB
debug system

interface

Interrupts and
power control

Wake-up
Interrupt

Controller
(WIC)

Serial-Wire
or JTAG

Debug Port
 (SW-DP or
SWJ-DP)

†
Embedded

Trace
Macrocell

(ETM)

†

†
Flash Patch
Breakpoint

(FPB)

†
Memory

Protection
Unit (MPU)

†
Data

Watchpoint
and Trace

(DWT)

†
AHB

Access Port
(AHB-AP)

†
Instrumentation
Trace Macrocell

(ITM)

Trace Port
Interface Unit

(TPIU)

Cortex-M3
processor core

† Optional component
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 2-2
ID032710 Non-Confidential

Functional Description
• Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core
to achieve low latency interrupt processing. Features include:
— External interrupts, configurable from 1 to 240.
— Bits of priority, configurable from 3 to 8.
— Dynamic reprioritization of interrupts.
— Priority grouping. This enables selection of preempting interrupt levels and non

preempting interrupt levels.
— Support for tail-chaining and late arrival of interrupts. This enables back-to-back

interrupt processing without the overhead of state saving and restoration between
interrupts.

— Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead.

— Optional Wake-up Interrupt Controller (WIC), providing ultra-low power sleep
mode support.

• Memory Protection Unit (MPU). An optional MPU for memory protection, including:
— Eight memory regions.
— Sub Region Disable (SRD), enabling efficient use of memory regions.
— The ability to enable a background region that implements the default memory map

attributes.

• Bus interfaces:
— Three Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode,

DCode, and System bus interfaces.
— Private Peripheral Bus (PPB) based on Advanced Peripheral Bus (APB) interface.
— Bit-band support that includes atomic bit-band write and read operations.
— Memory access alignment.
— Write buffer for buffering of write data.
— Exclusive access transfers for multiprocessor systems.

• Low-cost debug solution that features:
— Debug access to all memory and registers in the system, including access to

memory mapped devices, access to internal core registers when the core is halted,
and access to debug control registers even while SYSRESETn is asserted.

— Serial Wire Debug Port (SW-DP) or Serial Wire JTAG Debug Port (SWJ-DP) debug
access, or both.

— Optional Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and
code patches.

— Optional Data Watchpoint and Trace (DWT) unit for implementing watchpoints,
data tracing, and system profiling.

— Optional Instrumentation Trace Macrocell (ITM) for support of printf style
debugging.

— Optional Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
(TPA), including Single Wire Output (SWO) mode.

— Optional Embedded Trace Macrocell (ETM) for instruction trace.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 2-3
ID032710 Non-Confidential

Functional Description
2.2 Interfaces
The processor contains the following external interfaces:
• bus interfaces
• ETM interface on page 2-5
• AHB Trace Macrocell interface on page 2-5
• Debug port AHB-AP interface on page 2-5.

2.2.1 Bus interfaces

The processor contains four external Advanced High-performance Bus (AHB)-Lite bus
interfaces:

ICode memory interface

Instruction fetches from Code memory space, 0x00000000 to 0x1FFFFFFF, are performed over this
32-bit AHB-Lite bus.

The Debugger cannot access this interface. All fetches are word-wide. The number of
instructions fetched per word depends on the code running and the alignment of the code in
memory.

DCode memory interface

Data and debug accesses to Code memory space, 0x00000000 to 0x1FFFFFFF, are performed over
this 32-bit AHB-Lite bus. Core data accesses have a higher priority than debug accesses on this
bus. This means that debug accesses are waited until core accesses have completed when there
are simultaneous core and debug access to this bus.

Control logic in this interface converts unaligned data and debug accesses into two or three
aligned accesses, depending on the size and alignment of the unaligned access. This stalls any
subsequent data or debug access until the unaligned access has completed.

Note
 ARM strongly recommends that any external arbitration between the ICode and DCode AHB
bus interfaces ensures that DCode has a higher priority than ICode.

System interface

Instruction fetches, and data and debug accesses, to address ranges 0x20000000 to 0xDFFFFFFF and
0xE0100000 to 0xFFFFFFFF are performed over this 32-bit AHB-Lite bus.

For simultaneous accesses to this bus, the arbitration order in decreasing priority is:
• data accesses
• instruction and vector fetches
• debug.

The system bus interface contains control logic to handle unaligned accesses, FPB remapped
accesses, bit-band accesses, and pipelined instruction fetches.

Private Peripheral Bus (PPB)

Data and debug accesses to external PPB space, 0xE0040000 to 0xE00FFFFF, are performed over
this 32-bit Advanced Peripheral Bus (APB) bus. The Trace Port Interface Unit (TPIU) and
vendor specific peripherals are on this bus.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 2-4
ID032710 Non-Confidential

Functional Description
Core data accesses have higher priority than debug accesses, so debug accesses are waited until
core accesses have completed when there are simultaneous core and debug access to this bus.
Only the address bits necessary to decode the External PPB space are supported on this
interface.

2.2.2 ETM interface

The ETM interface enables simple connection of an ETM to the processor. It provides a channel
for instruction trace to the ETM. See the ARM Embedded Trace Macrocell Architecture
Specification.

2.2.3 AHB Trace Macrocell interface

The AHB Trace Macrocell (HTM) interface enables a simple connection of the AHB trace
macrocell to the processor. It provides a channel for the data trace to the HTM.

Your implementation must include this interface to use the HTM interface. You must set
TRCENA to 1 in the Debug Exception and Monitor Control Register (DEMCR) before you
enable the HTM to enable the HTM port to supply trace data. See the ARMv7-M Architecture
Reference Manual.

2.2.4 Debug port AHB-AP interface

The processor contains an Advanced High-performance Bus Access Port (AHB-AP) interface
for debug accesses. An external Debug Port (DP) component accesses this interface. The
Cortex-M3 system supports three possible DP implementations:

• The Serial Wire JTAG Debug Port (SWJ-DP). The SWJ-DP is a standard CoreSight debug
port that combines JTAG-DP and Serial Wire Debug Port (SW-DP).

• The SW-DP. This provides a two-pin interface to the AHB-AP port.

• No DP present. If no debug functionality is present within the processor, a DP is not
required.

The two DP implementations provide different mechanisms for debug access to the processor.
Your implementation must contain only one of these components.

Note
 Your implementation might contain an alternative implementor-specific DP instead of SW-DP
or SWJ-DP. See your implementor for details.

For more detailed information on the DP components, see the CoreSight Components Technical
Reference manual.

For more information on the AHB-AP, see Chapter 7 Debug.

The DP and AP together are referred to as the Debug Access Port (DAP).

For more detailed information on the debug interface, see the ARM Debug Interface v5
Architecture Specification.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 2-5
ID032710 Non-Confidential

Chapter 3
Programmers Model

This chapter describes the processor programmers model. It contains the following sections:
• About the programmers model on page 3-2
• Modes of operation and execution on page 3-3
• Instruction set summary on page 3-4
• System address map on page 3-11
• Write buffer on page 3-14
• Bit-banding on page 3-16
• Processor core register summary on page 3-18
• Exceptions on page 3-20.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-1
ID032710 Non-Confidential

Programmers Model
3.1 About the programmers model
The ARMv7-M Architecture Reference Manual provides a complete description of the
programmers model. This chapter gives an overview of the Cortex-M3 processor programmers
model that describes the implementation-defined options. It also contains the ARMv7-M
Thumb instructions it uses and their cycle counts for the processor. In addition:
• Chapter 4 summarizes the system control features of the programmers model
• Chapter 5 summarizes the MPU features of the programmers model
• Chapter 6 summarizes the NVIC features of the programmers model
• Chapter 7 summarizes the Debug features of the programmers model
• Chapter 8 summarizes the DWT features of the programmers model
• Chapter 9 summarizes the ITM features of the programmers model
• Chapter 10 summarizes the ETM features of the programmers model
• Chapter 11 summarizes the TPIU features of the programmers model.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-2
ID032710 Non-Confidential

Programmers Model
3.2 Modes of operation and execution
This section briefly describes the modes of operation and execution of the Cortex-M3 processor.
See the ARMv7-M Architecture Reference Manual for more information.

3.2.1 Operating modes

The processor supports two modes of operation, Thread mode and Handler mode:

• The processor enters Thread mode on Reset, or as a result of an exception return.
Privileged and Unprivileged code can run in Thread mode.

• The processor enters Handler mode as a result of an exception. All code is privileged in
Handler mode.

3.2.2 Operating states

The processor can operate in one of two operating states:

• Thumb state. This is normal execution running 16-bit and 32-bit halfword aligned Thumb
instructions.

• Debug State. This is the state when the processor is in halting debug.

3.2.3 Privileged access and user access

Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes
access to some resources. Privileged execution has access to all resources. Handler mode is
always privileged. Thread mode can be privileged or unprivileged.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-3
ID032710 Non-Confidential

Programmers Model
3.3 Instruction set summary
This section provides information on:
• Cortex-M3 instructions
• Load/store timings on page 3-8
• Binary compatibility with other Cortex processors on page 3-9.

3.3.1 Cortex-M3 instructions

The processor implements the ARMv7-M Thumb instruction set. Table 3-1 shows the
Cortex-M3 instructions and their cycle counts. The cycle counts are based on a system with zero
wait states.

Within the assembler syntax, depending on the operation, the <op2> field can be replaced with
one of the following options:
• a simple register specifier, for example Rm
• an immediate shifted register, for example Rm, LSL #4
• a register shifted register, for example Rm, LSL Rs
• an immediate value, for example #0xE000E000.

For brevity, not all load and store addressing modes are shown. See the ARMv7-M Architecture
Reference Manual for more information.

Table 3-1 uses the following abbreviations in the Cycles column:

P The number of cycles required for a pipeline refill. This ranges from 1 to 3
depending on the alignment and width of the target instruction, and whether the
processor manages to speculate the address early.

B The number of cycles required to perform the barrier operation. For DSB and DMB,
the minimum number of cycles is zero. For ISB, the minimum number of cycles
is equivalent to the number required for a pipeline refill.

N The number of registers in the register list to be loaded or stored, including PC or
LR.

W The number of cycles spent waiting for an appropriate event.

Table 3-1 Cortex-M3 instruction set summary

Operation Description Assembler Cycles

Move Register MOV Rd, <op2> 1

16-bit immediate MOVW Rd, #<imm> 1

Immediate into top MOVT Rd, #<imm> 1

To PC MOV PC, Rm 1 + P

Add Add ADD Rd, Rn, <op2> 1

Add to PC ADD PC, PC, Rm 1 + P

Add with carry ADC Rd, Rn, <op2> 1

Form address ADR Rd, <label> 1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-4
ID032710 Non-Confidential

Programmers Model
Subtract Subtract SUB Rd, Rn, <op2> 1

Subtract with borrow SBC Rd, Rn, <op2> 1

Reverse RSB Rd, Rn, <op2> 1

Multiply Multiply MUL Rd, Rn, Rm 1

Multiply accumulate MLA Rd, Rn, Rm 2

Multiply subtract MLS Rd, Rn, Rm 2

Long signed SMULL RdLo, RdHi, Rn, Rm 3 to 5a

Long unsigned UMULL RdLo, RdHi, Rn, Rm 3 to 5a

Long signed accumulate SMLAL RdLo, RdHi, Rn, Rm 4 to 7a

Long unsigned accumulate UMLAL RdLo, RdHi, Rn, Rm 4 to 7a

Divide Signed SDIV Rd, Rn, Rm 2 to 12b

Unsigned UDIV Rd, Rn, Rm 2 to 12b

Saturate Signed SSAT Rd, #<imm>, <op2> 1

Unsigned USAT Rd, #<imm>, <op2> 1

Compare Compare CMP Rn, <op2> 1

Negative CMN Rn, <op2> 1

Logical AND AND Rd, Rn, <op2> 1

Exclusive OR EOR Rd, Rn, <op2> 1

OR ORR Rd, Rn, <op2> 1

OR NOT ORN Rd, Rn, <op2> 1

Bit clear BIC Rd, Rn, <op2> 1

Move NOT MVN Rd, <op2> 1

AND test TST Rn, <op2> 1

Exclusive OR test TEQ Rn, <op1>

Shift Logical shift left LSL Rd, Rn, #<imm> 1

Logical shift left LSL Rd, Rn, Rs 1

Logical shift right LSR Rd, Rn, #<imm> 1

Logical shift right LSR Rd, Rn, Rs 1

Arithmetic shift right ASR Rd, Rn, #<imm> 1

Arithmetic shift right ASR Rd, Rn, Rs 1

Table 3-1 Cortex-M3 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-5
ID032710 Non-Confidential

Programmers Model
Rotate Rotate right ROR Rd, Rn, #<imm> 1

Rotate right ROR Rd, Rn, Rs 1

With extension RRX Rd, Rn 1

Count Leading zeroes CLZ Rd, Rn 1

Load Word LDR Rd, [Rn, <op2>] 2c

To PC LDR PC, [Rn, <op2>] 2c + P

Halfword LDRH Rd, [Rn, <op2>] 2c

Byte LDRB Rd, [Rn, <op2>] 2c

Signed halfword LDRSH Rd, [Rn, <op2>] 2c

Signed byte LDRSB Rd, [Rn, <op2>] 2c

User word LDRT Rd, [Rn, #<imm>] 2c

User halfword LDRHT Rd, [Rn, #<imm>] 2c

User byte LDRBT Rd, [Rn, #<imm>] 2c

User signed halfword LDRSHT Rd, [Rn, #<imm>] 2c

User signed byte LDRSBT Rd, [Rn, #<imm>] 2c

PC relative LDR Rd,[PC, #<imm>] 2c

Doubleword LDRD Rd, Rd, [Rn, #<imm>] 1 + N

Multiple LDM Rn, {<reglist>} 1 + N

Multiple including PC LDM Rn, {<reglist>, PC} 1 + N + P

Store Word STR Rd, [Rn, <op2>] 2c

Halfword STRH Rd, [Rn, <op2>] 2c

Byte STRB Rd, [Rn, <op2>] 2c

Signed halfword STRSH Rd, [Rn, <op2>] 2c

Signed byte STRSB Rd, [Rn, <op2>] 2c

User word STRT Rd, [Rn, #<imm>] 2c

User halfword STRHT Rd, [Rn, #<imm>] 2c

User byte STRBT Rd, [Rn, #<imm>] 2c

User signed halfword STRSHT Rd, [Rn, #<imm>] 2c

User signed byte STRSBT Rd, [Rn, #<imm>] 2c

Doubleword STRD Rd, Rd, [Rn, #<imm>] 1 + N

Multiple STM Rn, {<reglist>} 1 + N

Table 3-1 Cortex-M3 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-6
ID032710 Non-Confidential

Programmers Model
Push Push PUSH {<reglist>} 1 + N

Push with link register PUSH {<reglist>, LR} 1 + N

Pop Pop POP {<reglist>} 1 + N

Pop and return POP {<reglist>, PC} 1 + N + P

Semaphore Load exclusive LDREX Rd, [Rn, #<imm>] 2

Load exclusive half LDREXH Rd, [Rn] 2

Load exclusive byte LDREXB Rd, [Rn] 2

Store exclusive STREX Rd, Rt, [Rn, #<imm>] 2

Store exclusive half STREXH Rd, Rt, [Rn] 2

Store exclusive byte STREXB Rd, Rt, [Rn] 2

Clear exclusive monitor CLREX 1

Branch Conditional B<cc> <label> 1 or 1 + Pd

Unconditional B <label> 1 + P

With link BL <label> 1 + P

With exchange BX Rm 1 + P

With link and exchange BLX Rm 1 + P

Branch if zero CBZ Rn, <label> 1 or 1 + Pd

Branch if non-zero CBNZ Rn, <label> 1 or 1 + Pd

Byte table branch TBB [Rn, Rm] 2 + P

Halfword table branch TBH [Rn, Rm, LSL#1] 2 + P

State change Supervisor call SVC #<imm> -

If-then-else IT... <cond> 1e

Disable interrupts CPSID <flags> 1 or 2

Enable interrupts CPSIE <flags> 1 or 2

Read special register MRS Rd, <specreg> 1 or 2

Write special register MSR <specreg>, Rn 1 or 2

Breakpoint BKPT #<imm> -

Extend Signed halfword to word SXTH Rd, <op2> 1

Signed byte to word SXTB Rd, <op2> 1

Unsigned halfword UXTH Rd, <op2> 1

Unsigned byte UXTB Rd, <op2> 1

Table 3-1 Cortex-M3 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-7
ID032710 Non-Confidential

Programmers Model
3.3.2 Load/store timings

This section describes how best to pair instructions to achieve more reductions in timing.

• STR Rx,[Ry,#imm] is always one cycle. This is because the address generation is performed
in the initial cycle, and the data store is performed at the same time as the next instruction
is executing. If the store is to the store buffer, and the store buffer is full or not enabled,
the next instruction is delayed until the store can complete. If the store is not to the store
buffer, for example to the Code segment, and that transaction stalls, the impact on timing
is only felt if another load or store operation is executed before completion.

• LDR Rx!,[any] is not normally pipelined. That is, base update load is generally at least a
two-cycle operation (more if stalled). However, if the next instruction does not require to
read from a register, the load is reduced to one cycle. Non register writing instructions
include CMP, TST, NOP, and non-taken IT controlled instructions.

• LDR PC,[any] is always a blocking operation. This means at least two cycles for the load,
and three cycles for the pipeline reload. So this operation takes at least five cycles, or more
if stalled on the load or the fetch.

Bit field Extract unsigned UBFX Rd, Rn, #<imm>, #<imm> 1

Extract signed SBFX Rd, Rn, #<imm>, #<imm> 1

Clear BFC Rd, Rn, #<imm>, #<imm> 1

Insert BFI Rd, Rn, #<imm>, #<imm> 1

Reverse Bytes in word REV Rd, Rm 1

Bytes in both halfwords REV16 Rd, Rm 1

Signed bottom halfword REVSH Rd, Rm 1

Bits in word RBIT Rd, Rm 1

Hint Send event SEV 1

Wait for event WFE 1 + W

Wait for interrupt WFI 1 + W

No operation NOP 1

Barriers Instruction synchronization ISB 1 + B

Data memory DMB 1 + B

Data synchronization DSB <flags> 1 + B

a. UMULL, SMULL, UMLAL, and SMLAL instructions use early termination depending on the size of
the source values. These are interruptible, that is abandoned and restarted, with worst case
latency of one cycle.

b. Division operations use early termination to minimize the number of cycles required based
on the number of leading ones and zeroes in the input operands.

c. Neighboring load and store single instructions can pipeline their address and data phases.
This enables these instructions to complete in a single execution cycle.

d. Conditional branch completes in a single cycle if the branch is not taken.
e. An IT instruction can be folded onto a preceding 16-bit Thumb instruction, enabling

execution in zero cycles.

Table 3-1 Cortex-M3 instruction set summary (continued)

Operation Description Assembler Cycles
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-8
ID032710 Non-Confidential

Programmers Model
• LDR Rx,[PC,#imm] might add a cycle because of contention with the fetch unit.

• TBB and TBH are also blocking operations. These are at least two cycles for the load, one
cycle for the add, and three cycles for the pipeline reload. This means at least six cycles,
or more if stalled on the load or the fetch.

• LDR [any] are pipelined when possible. This means that if the next instruction is an LDR or
STR, and the destination of the first LDR is not used to compute the address for the next
instruction, then one cycle is removed from the cost of the next instruction. So, an LDR
might be followed by an STR, so that the STR writes out what the LDR loaded. More multiple
LDRs can be pipelined together. Some optimized examples are:
— LDR R0,[R1]; LDR R1,[R2] - normally three cycles total
— LDR R0,[R1,R2]; STR R0,[R3,#20] - normally three cycles total
— LDR R0,[R1,R2]; STR R1,[R3,R2] - normally three cycles total
— LDR R0,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four cycles total.

• Other instructions cannot be pipelined after STR with register offset. STR can only be
pipelined when it follows an LDR, but nothing can be pipelined after the store. Even a
stalled STR normally only takes two cycles, because of the store buffer.

• LDREX and STREX can be pipelined exactly as LDR. Because STREX is treated more like an LDR,
it can be pipelined as explained for LDR. Equally LDREX is treated exactly as an LDR and so
can be pipelined.

• LDRD and STRD cannot be pipelined with preceding or following instructions. However, the
two words are pipelined together. So, this operation requires three cycles when not stalled.

• LDM and STM cannot be pipelined with preceding or following instructions. However, all
elements after the first are pipelined together. So, a three element LDM takes 2+1+1 or 5
cycles when not stalled. Similarly, an eight element store takes nine cycles when not
stalled. When interrupted, LDM and STM instructions continue from where they left off when
returned to. The continue operation adds one or two cycles to the first element when
started.

• Unaligned word or halfword loads or stores add penalty cycles. A byte aligned halfword
load or store adds one extra cycle to perform the operation as two bytes. A halfword
aligned word load or store adds one extra cycle to perform the operation as two halfwords.
A byte-aligned word load or store adds two extra cycles to perform the operation as a byte,
a halfword, and a byte. These numbers increase if the memory stalls. A STR or STRH cannot
delay the processor because of the store buffer.

3.3.3 Binary compatibility with other Cortex processors

The processor implements a binary compatible subset of the instruction set and features
provided by other Cortex-M profile processors. You can move software, including system level
software, from the Cortex-M3 processor to other Cortex-M profile processors.

To ensure a smooth transition, ARM recommends that code designed to operate on other
Cortex-M profile processor architectures obey the following rules and configure the
Configuration Control Register (CCR) appropriately:

• use word transfers only to access registers in the NVIC and System Control Space (SCS).

• treat all unused SCS registers and register fields on the processor as Do-Not-Modify.

• configure the following fields in the CCR:
— STKALIGN bit to 1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-9
ID032710 Non-Confidential

Programmers Model
— UNALIGN_TRP bit to 1
— Leave all other bits in the CCR register as their original value.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-10
ID032710 Non-Confidential

Programmers Model
3.4 System address map
The processor contains a bus matrix that arbitrates the processor core and optional Debug
Access Port (DAP) memory accesses to both the external memory system and to the internal
System Control Space (SCS) and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive
as possible. For a zero wait state system, all debug accesses to system memory, SCS, and debug
resources are completely non-intrusive.

Figure 3-1 shows the system address map.

Figure 3-1 System address map

Table 3-2 shows the processor interfaces that are addressed by the different memory map
regions.

System

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral bus - External
0xE0100000

0xE0040000

0xA0000000

0x60000000

0x40000000

0x20000000

0x00000000

ROM Table

ETM
TPIU

Reserved
SCS

Reserved
FPB
DWT
ITM

External PPB
0xE0042000

0xE0041000

0xE0040000

0xE000F000

0xE000E000

0xE0003000

0xE0002000

0xE00FF000

0x40000000
Bit band region

Bit band alias32MB

1MB

31MB

0x40100000

0x42000000

0x44000000

0xE0001000

0xE0000000

Private peripheral bus - Internal

Bit band region

Bit band alias32MB

1MB

31MB

0x20000000

0x20100000

0x22000000

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xE0000000

0xE0100000

0xE0040000

0x24000000

Table 3-2 Memory regions

Memory Map Region

Code Instruction fetches are performed over the ICode bus. Data accesses are performed over the DCode bus.

SRAM Instruction fetches and data accesses are performed over the system bus.

SRAM bit-band Alias region. Data accesses are aliases. Instruction accesses are not aliases.

Peripheral Instruction fetches and data accesses are performed over the system bus.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-11
ID032710 Non-Confidential

Programmers Model
See the ARMv7-M Architecture Reference Manual for more information about the memory
model.

3.4.1 Private peripheral bus

The internal Private Peripheral Bus (PPB) interface provides access to:

• the Instrumentation Trace Macrocell (ITM)

• the Data Watchpoint and Trace (DWT)

• the Flashpatch and Breakpoint (FPB)

• the System Control Space (SCS), including the Memory Protection Unit (MPU) and the
Nested Vectored Interrupt Controller (NVIC).

The external PPB interface provides access to:
• the Trace Point Interface Unit (TPIU)
• the Embedded Trace Macrocell (ETM)
• the ROM table
• implementation-specific areas of the PPB memory map.

3.4.2 Unaligned accesses that cross regions

The Cortex-M3 processor supports ARMv7 unaligned accesses, and performs all accesses as
single, unaligned accesses. They are converted into two or more aligned accesses by the DCode
and System bus interfaces.

Note
 All Cortex-M3 external accesses are aligned.

Unaligned support is only available for load/store singles (LDR, STR). Load/store double already
supports word aligned accesses, but does not permit other unaligned accesses, and generates a
fault if this is attempted.

Unaligned accesses that cross memory map boundaries are architecturally Unpredictable. The
processor behavior is boundary dependent, as follows:

• DCode accesses wrap within the region. For example, an unaligned halfword access to the
last byte of Code space (0x1FFFFFFF) is converted by the DCode interface into a byte
access to 0x1FFFFFFF followed by a byte access to 0x00000000.

Peripheral bit-band Alias region. Data accesses are aliases. Instruction accesses are not aliases.

External RAM Instruction fetches and data accesses are performed over the system bus.

External Device Instruction fetches and data accesses are performed over the system bus.

Private Peripheral Bus External and internal Private Peripheral Bus (PPB) interfaces. See Private peripheral bus.
This memory region is Execute Never (XN), and so instruction fetches are prohibited. An MPU, if present,
cannot change this.

System System segment for vendor system peripherals. This memory region is XN, and so instruction fetches are
prohibited. An MPU, if present, cannot change this.

Table 3-2 Memory regions (continued)

Memory Map Region
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-12
ID032710 Non-Confidential

Programmers Model
• System accesses that cross into PPB space do not wrap within System space. For example,
an unaligned halfword access to the last byte of System space (0xDFFFFFFF) is converted
by the System interface into a byte access to 0xDFFFFFFF followed by a byte access to
0xE0000000. 0xE0000000 is not a valid address on the System bus.

• System accesses that cross into Code space do not wrap within System space. For
example, an unaligned halfword access to the last byte of System space (0xFFFFFFFF) is
converted by the System interface into a byte access to 0xFFFFFFFF followed by a byte
access to 0x00000000. 0x00000000 is not a valid address on the System bus.

• Unaligned accesses are not supported to PPB space, and so there are no boundary crossing
cases for PPB accesses.

Unaligned accesses that cross into the bit-band alias regions are also architecturally
Unpredictable. The processor performs the access to the bit-band alias address, but this does not
result in a bit-band operation. For example, an unaligned halfword access to 0x21FFFFFF is
performed as a byte access to 0x21FFFFFF followed by a byte access to 0x22000000 (the first byte
of the bit-band alias).

Unaligned loads that match against a literal comparator in the FPB are not remapped. FPB only
remaps aligned addresses.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-13
ID032710 Non-Confidential

Programmers Model
3.5 Write buffer
To prevent bus wait cycles from stalling the processor during data stores, buffered stores to the
DCode and System buses go through a one-entry write buffer. If the write buffer is full,
subsequent accesses to the bus stall until the write buffer has drained. The write buffer is only
used if the bus waits the data phase of the buffered store, otherwise the transaction completes
on the bus.

DMB and DSB instructions wait for the write buffer to drain before completing. If an interrupt
comes in while DMB or DSB is waiting for the write buffer to drain, the processor returns to the
instruction following the DMB or DSB after the interrupt completes. This is because interrupt
processing acts as a memory barrier operation.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-14
ID032710 Non-Confidential

Programmers Model
3.6 Exclusive monitor
The Cortex-M3 processor implements a local exclusive monitor. For more information about
semaphores and the local exclusive monitor see the ARMv7M ARM Architecture Reference
Manual.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-15
ID032710 Non-Confidential

Programmers Model
3.7 Bit-banding
Bit-banding maps a complete word of memory onto a single bit in the bit-band region. For
example, writing to one of the alias words sets or clears the corresponding bit in the bit-band
region. This enables every individual bit in the bit-banding region to be directly accessible from
a word-aligned address using a single LDR instruction. It also enables individual bits to be toggled
without performing a read-modify-write sequence of instructions.

The processor memory map includes two bit-band regions. These occupy the lowest 1MB of the
SRAM and Peripheral memory regions respectively. These bit-band regions map each word in
an alias region of memory to a bit in a bit-band region of memory.

The System bus interface contains logic that controls bit-band accesses as follows:

• It remaps bit-band alias addresses to the bit-band region.

• For reads, it extracts the requested bit from the read byte, and returns this in the Least
Significant Bit (LSB) of the read data returned to the core.

• For writes, it converts the write to an atomic read-modify-write operation.

• The processor does not stall during bit-band operations unless it attempts to access the
System bus while the bit-band operation is being carried out.

The memory map has two 32-MB alias regions that map to two 1-MB bit-band regions:

• Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region.

• Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band
region.

A mapping formula shows how to reference each word in the alias region to a corresponding bit,
or target bit, in the bit-band region. The mapping formula is:

bit_word_offset = (byte_offset x 32) + (bit_number × 4)

bit_word_addr = bit_band_base + bit_word_offset

where:

• bit_word_offset is the position of the target bit in the bit-band memory region.

• bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

• bit_band_base is the starting address of the alias region.

• byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

• bit_number is the bit position, 0 to 7, of the targeted bit.

Figure 3-2 on page 3-17 shows examples of bit-band mapping between the SRAM bit-band
alias region and the SRAM bit-band region:

• The alias word at 0x23FFFFE0 maps to bit [0] of the bit-band byte at 0x200FFFFF: 0x23FFFFE0
= 0x22000000 + (0xFFFFF*32) + 0*4.

• The alias word at 0x23FFFFFC maps to bit [7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC
= 0x22000000 + (0xFFFFF*32) + 7*4.

• The alias word at 0x22000000 maps to bit [0] of the bit-band byte at 0x20000000: 0x22000000
= 0x22000000 + (0*32) + 0*4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-16
ID032710 Non-Confidential

Programmers Model
• The alias word at 0x2200001C maps to bit [7] of the bit-band byte at 0x20000000: 0x2200001C
= 0x22000000 + (0*32) + 7*4.

Figure 3-2 Bit-band mapping

3.7.1 Directly accessing an alias region

Writing to a word in the alias region has the same effect as a read-modify-write operation on the
targeted bit in the bit-band region.

Bit [0] of the value written to a word in the alias region determines the value written to the
targeted bit in the bit-band region. Writing a value with bit [0] set writes a 1 to the bit-band bit,
and writing a value with bit [0] cleared writes a 0 to the bit-band bit.

Bits [31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect
as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region returns either 0x01 or 0x00. A value of 0x01 indicates that the
targeted bit in the bit-band region is set. A value of 0x00 indicates that the targeted bit is clear.
Bits [31:1] are zero.

3.7.2 Directly accessing a bit-band region

You can directly access the bit-band region with normal reads and writes to that region.

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1MB SRAM bit-band region
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-17
ID032710 Non-Confidential

Programmers Model
3.8 Processor core register summary
The processor has the following 32-bit registers:
• 13 general-purpose registers, r0-r12
• Stack Pointer (SP) alias of banked registers, SP_process and SP_main
• Link Register (LR), r14
• Program Counter (PC), r15
• Special-purpose Program Status Registers, (xPSR).

Figure 3-3 shows the processor register set.

Figure 3-3 Processor register set

The general-purpose registers r0-r12 have no special architecturally-defined uses. Most
instructions that can specify a general-purpose register can specify r0-r12.

Low registers Registers r0-r7 are accessible by all instructions that specify a
general-purpose register.

High registers Registers r8-r12 are accessible by all 32-bit instructions that specify a
general-purpose register.
Registers r8-r12 are not accessible by all 16-bit instructions.

Registers r13, r14, and r15 have the following special functions:

Stack pointer Register r13 is used as the Stack Pointer (SP). Because the SP ignores
writes to bits [1:0], it is autoaligned to a word, four-byte boundary.
Handler mode always uses SP_main, but you can configure Thread mode
to use either SP_main or SP_process.

Link register Register r14 is the subroutine Link Register (LR).
The LR receives the return address from PC when a Branch and Link (BL)
or Branch and Link with Exchange (BLX) instruction is executed.
The LR is also used for exception return.
At all other times, you can treat r14 as a general-purpose register.

Program counter Register r15 is the Program Counter (PC).

Program Status Register

r13 (SP)
r14 (LR)
r15 (PC)

r5
r6
r7

r0
r1

r3
r4

r2

r10
r11
r12

r8
r9

low registers

high registers

SP_mainSP_process

xPSR
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-18
ID032710 Non-Confidential

Programmers Model
Bit [0] is always 0, so instructions are always aligned to word or halfword
boundaries.

See the ARMv7-M Architecture Reference Manual for more information.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-19
ID032710 Non-Confidential

Programmers Model
3.9 Exceptions
The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all
exceptions. When handling exceptions:

• All exceptions are handled in Handler mode.

• Processor state is automatically stored to the stack on an exception, and automatically
restored from the stack at the end of the Interrupt Service Routine (ISR).

• The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The processor supports tail-chaining that enables back-to-back interrupts without the overhead
of state saving and restoration.

You configure the number of interrupts, and bits of interrupt priority, during implementation.
Software can choose only to enable a subset of the configured number of interrupts, and can
choose how many bits of the configured priorities to use.

Note
 Vector table entries are compatible with interworking between ARM and Thumb instructions.
This causes bit [0] of the vector value to load into the Execution Program Status Register
(EPSR) T-bit on exception entry. All vector table entries must have bit [0] set. Creating a table
entry with bit [0] clear generates an INVSTATE fault on the first instruction of the handler
corresponding to this vector.

3.9.1 Exception handling

The processor implements advanced exception and interrupt handling, as described in the
ARMv7-M Architecture Reference Manual.

To reduce interrupt latency, the processor implements both interrupt late-arrival and interrupt
tail-chaining mechanisms, as defined by the ARMv7-M architecture:

• There is a maximum of a 12 cycle latency from asserting the interrupt to execution of the
first instruction of the ISR when the memory being accessed has no wait states being
applied. The first instruction to be executed is fetched in parallel to the stack push.

• Returns from interrupts similarly take twelve cycles where the instruction being returned
to is fetched in parallel to the stack pop.

• Tail chaining requires 6 cycles when using zero wait state memory. No stack pushes or
pops are performed and only the instruction for the next ISR is fetched.

The processor exception model has the following implementation-defined behavior in addition
to the architecturally defined behavior:
• exceptions on stacking from HardFault to NMI lockup at NMI priority
• exceptions on unstacking from NMI to HardFault lockup at HardFault priority.

To minimize interrupt latency, the processor abandons any divide instruction to take any
pending interrupt. On return from the interrupt handler, the processor restarts the divide
instruction from the beginning The processor implements the Interruptible-continuable
Instruction field. Load multiple (LDM) operations and store multiple (STM) operations are
interruptible. The ICI field of the EPSR holds the information required to continue the load or
store multiple from the point where the interrupt occurred.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-20
ID032710 Non-Confidential

Programmers Model
This means that software must not use load-multiple or store-multiple instructions to access a
device or memory region that is read-sensitive or sensitive to repeated writes. The software must
not use these instructions in any case where repeated reads or writes might cause inconsistent
results or unwanted side-effects.

Base register update in LDM and STM operations

There are cases when an LDM or STM updates the base register:

• When the instruction specifies base register write-back, the base register changes to the
updated address. An abort restores the original base value.

• When the base register is in the register list of an LDM, and is not the last register in the list,
the base register changes to the loaded value.

An LDM or STM is restarted rather than continued if:
• the instruction faults
• the instruction is inside an IT.

If an LDM has completed a base load, it is continued from before the base load.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 3-21
ID032710 Non-Confidential

Chapter 4
System Control

This chapter describes the registers that program the processor. It contains the following sections:
• About system control on page 4-2
• Register summary on page 4-3
• Register descriptions on page 4-5.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-1
ID032710 Non-Confidential

System Control
4.1 About system control
This chapter describes the registers that control the operation of the processor.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-2
ID032710 Non-Confidential

System Control
4.2 Register summary
Table 4-1 shows the system control registers. Registers not described in this chapter are
described in the ARMv7-M Architecture Reference Manual

Table 4-1 System control registers

Address Name Type Reset Description

0xE000E008 ACTLR RW 0x00000000 Auxiliary Control Register, ACTLR on page 4-5

0xE000E010 STCSR RW 0x00000000 SysTick Control and Status Register

0xE000E014 STRVR RW Unknown SysTick Reload Value Register

0xE000E018 STCVR RW clear Unknown SysTick Current Value Register

0xE000E01C STCR RO Implementation specific SysTick Calibration Value Register

0xE000ED00 CPUID RO 0x412FC230 CPUID Base Register, CPUID on page 4-5

0xE000ED04 ICSR RW or RO 0x00000000 Interrupt Control and State Register

0xE000ED08 VTOR RW 0x00000000 Vector Table Offset Register

0xE000ED0C AIRCR RW 0x00000000a Application Interrupt and Reset Control Register

0xE000ED10 SCR RW 0x00000000 System Control Register

0xE000ED14 CCR RW 0x00000200 Configuration and Control Register.

0xE000ED18 SHPR1 RW 0x00000000 System Handler Priority Register 1

0xE000ED1C SHPR2 RW 0x00000000 System Handler Priority Register 2

0xE000ED20 SHPR3 RW 0x00000000 System Handler Priority Register 3

0xE000ED24 SHCSR RW 0x00000000 System Handler Control and State Register

0xE000ED28 CFSR RW 0x00000000 Configurable Fault Status Registers

0xE000ED2C HFSR RW 0x00000000 HardFault Status register

0xE000ED30 DFSR RW 0x00000000 Debug Fault Status Register

0xE000ED34 MMFAR RW Unknown MemManage Address Registerb

0xE000ED38 BFAR RW Unknown BusFault Address Registerb

0xE000ED3C AFSR RW 0x00000000 Auxiliary Fault Status Register, AFSR on page 4-6

0xE000ED40 ID_PFR0 RO 0x00000030 Processor Feature Register 0

0xE000ED44 ID_PFR1 RO 0x00000200 Processor Feature Register 1

0xE000ED48 ID_DFR0 RO 0x00100000 Debug Features Register 0

0xE000ED4C ID_AFR0 RO 0x00000000 Auxiliary Features Register 0

0xE000ED50 ID_MMFR0 RO 0x00000030 Memory Model Feature Register 0

0xE000ED54 ID_ MMFR1 RO 0x00000000 Memory Model Feature Register 1

0xE000ED58 ID_MMFR2 RO 0x00000000 Memory Model Feature Register 2

0xE000ED5C ID_MMFR3 RO 0x00000000 Memory Model Feature Register 3

0xE000ED60 ID_ISAR0 RO 0x01141110 Instruction Set Attributes Register 0
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-3
ID032710 Non-Confidential

System Control
0xE000ED64 ID_ISAR1 RO 0x02112000 Instruction Set Attributes Register 1

0xE000ED68 ID_ISAR2 RO 0x21232231 Instruction Set Attributes Register 2

0xE000ED6C ID_ISAR3 RO 0x01111131 Instruction Set Attributes Register 3

0xE000ED70 ID_ISAR4 RO 0x01310102 Instruction Set Attributes Register 4

0xE000ED88 CPACR RW 0x00000000 Coprocessor Access Control Register

0xE000EF00 STIR WO 0x00000000 Software Triggered Interrupt Register

a. Bits [10:8] are reset to zero. The ENDIANNESS bit, bit [15], can reset to either state, depending on the implementation.
b. BFAR and MFAR are the same physical register. Because of this, the BFARVALID and MFAEVALID bits are mutually

exclusive.

Table 4-1 System control registers (continued)

Address Name Type Reset Description
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-4
ID032710 Non-Confidential

System Control
4.3 Register descriptions
This section describes the system control registers whose implementation is specific to this
processor.

4.3.1 Auxiliary Control Register, ACTLR

The ACTLR characteristics are:

Purpose Disables certain aspects of functionality within the processor.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Figure 4-1 shows the ACTLR bit assignments.

Figure 4-1 ACTLR bit assignments

Table 4-2 shows the ACTLR bit assignments.

4.3.2 CPUID Base Register, CPUID

The CPUID characteristics are:

Purpose Specifies:
• the ID number of the processor core
• the version number of the processor core
• the implementation details of the processor core.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Reserved

31 3 2 1 0

DISFOLD
DISDEFWBUF
DISMCYCINT

Table 4-2 ACTLR bit assignments

Bits Name Function

[31:3] - Reserved

[2] DISFOLD Disables folding of IT instructions.

[1] DISDEFWBUF Disables write buffer use during default memory map accesses. This causes all bus faults to be precise,
but decreases the performance of the processor because stores to memory must complete before the
next instruction can be executed.

[0] DISMCYCINT Disables interruption of multi-cycle instructions. This increases the interrupt latency of the processor
because load/store and multiply/divide operations complete before interrupt stacking occurs.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-5
ID032710 Non-Confidential

System Control
Figure 4-2 shows the CPUID bit assignments.

Figure 4-2 CPUID bit assignments

Table 4-3 shows the CPUID bit assignments.

4.3.3 Auxiliary Fault Status Register, AFSR

The AFSR characteristics are:

Purpose Specifies additional system fault information to software.

Usage Constraints The AFSR flags map directly onto the AUXFAULT inputs of the
processor, and a single-cycle high level on an external pin causes the
corresponding AFSR bit to become latched as one. The bit can only be
cleared by writing a one to the corresponding AFSR bit.
When an AFSR bit is written or latched as one, an exception does not
occur. If you require an exception, you must use an interrupt.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 4-1 on page 4-3.

Figure 4-3 shows the AFSR bit assignments.

Figure 4-3 AFSR bit assignments

Table 4-4 shows the AFSR bit assignments.

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT (Constant)

Table 4-3 CPUID bit assignments

Bits NAME Function

[31:24] IMPLEMENTER Indicates implementor: 0x41 = ARM

[23:20] VARIANT Indicates processor revision: 0x2 = Revision 2

[19:16] (Constant) Reads as 0xF

[15:4] PARTNO Indicates part number: 0xC23 = Cortex-M3

[3:0] REVISION Indicates patch release: 0x0 = Patch 0.

AUXFAULT

31 0

Table 4-4 AFSR bit assignments

Bits Name Function

[31:0] AUXFAULT Latched version of the AUXFAULT inputs.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 4-6
ID032710 Non-Confidential

Chapter 5
Memory Protection Unit

This chapter describes the processor Memory Protection Unit (MPU). It contains the following
sections:
• About the MPU on page 5-2
• MPU functional description on page 5-3
• MPU programmers model on page 5-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 5-1
ID032710 Non-Confidential

Memory Protection Unit
5.1 About the MPU
The MPU is an optional component for memory protection. The processor supports the standard
ARMv7 Protected Memory System Architecture model. The MPU provides full support for:
• protection regions
• overlapping protection regions, with ascending region priority:

— 7 = highest priority
— 0 = lowest priority.

• access permissions
• exporting memory attributes to the system.

MPU mismatches and permission violations invoke the programmable-priority MemManage
fault handler. See the ARMv7-M Architecture Reference Manual for more information.

You can use the MPU to:
• enforce privilege rules
• separate processes
• enforce access rules.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 5-2
ID032710 Non-Confidential

Memory Protection Unit
5.2 MPU functional description
The attribute bits, TEX, C, B, AP, and XN, of the Region Access Control Register control access
to the corresponding memory region. If an access is made to an area of memory without the
required permissions, then a permission fault is raised. For more information, see the ARMv7-M
Architecture Reference Manual.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 5-3
ID032710 Non-Confidential

Memory Protection Unit
5.3 MPU programmers model
Table 5-5 shows the MPU registers. These registers are described in the ARMv7-M Architecture
Reference Manual.

Table 5-1 MPU registers

Address Name Type Reset Description

0xE000ED90 MPU_TYPE RO 0x00000800a

a. If the MPU is not present in the implementation, then this register reads as zero.

MPU Type Register

0xE000ED94 MPU_CTRL RW 0x00000000 MPU Control Register

0xE000ED98 MPU_RNR RW - MPU Region Number Register

0xE000ED9C MPU_RBAR RW - MPU Region Base Address Register

0xE000EDA0 MPU_RASR RW - MPU Region Attribute and Size Register

0xE000EDA4 MPU_RBAR_A1 - MPU alias registers

0xE000EDA8 MPU_RASR_A1 -

0xE000EDAC MPU_RBAR_A2 -

0xE000EDB0 MPU_RASR_A2 -

0xE000EDB4 MPU_RBAR_A3 -

0xE000EDB8 MPU_RASR_A3 -
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 5-4
ID032710 Non-Confidential

Chapter 6
Nested Vectored Interrupt Controller

This chapter describes the Nested Vectored Interrupt Controller (NVIC). It contains the following
sections:
• About the NVIC on page 6-2
• NVIC functional description on page 6-3
• NVIC programmers model on page 6-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 6-1
ID032710 Non-Confidential

Nested Vectored Interrupt Controller
6.1 About the NVIC
The NVIC provides configurable interrupt handling abilities to the processor. It:
• facilitates low-latency exception and interrupt handling
• controls power management
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 6-2
ID032710 Non-Confidential

Nested Vectored Interrupt Controller
6.2 NVIC functional description
The NVIC supports up to 240 interrupts each with up to 256 levels of priority. You can change
the priority of an interrupt dynamically. The NVIC and the processor core interface are closely
coupled, to enable low latency interrupt processing and efficient processing of late arriving
interrupts. The NVIC maintains knowledge of the stacked, or nested, interrupts to enable
tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can cause interrupts to enter
a pending state in user mode if you enable this capability using the Configuration Control
Register. Any other user mode access causes a bus fault.

You can access all NVIC registers using byte, halfword, and word accesses unless otherwise
stated. NVIC registers are located within the SCS.

All NVIC registers and system debug registers are little-endian regardless of the endianness
state of the processor.

Processor exception handling is described in Exceptions on page 3-20.

6.2.1 Low power modes

Your implementation can include a Wake-up Interrupt Controller (WIC). This enables the
processor and NVIC to be put into a very low-power sleep mode leaving the WIC to identify
and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send
Event (SEV) instructions. In addition, the processor also supports the use of SLEEPONEXIT, that
causes the processor core to enter sleep mode when it returns from an exception handler to
Thread mode. See the ARMv7-M Architecture Reference Manual for more information.

6.2.2 Level versus pulse interrupts

The processor supports both level and pulse interrupts. A level interrupt is held asserted until it
is cleared by the ISR accessing the device. A pulse interrupt is a variant of an edge model.

For level interrupts, if the signal is not deasserted before the return from the interrupt routine,
the interrupt again enters the pending state and re-activates. This is particularly useful for FIFO
and buffer-based devices because it ensures that they drain either by a single ISR or by repeated
invocations, with no extra work. This means that the device holds the signal in assert until the
device is empty.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be in the pending
state and active at the same time. The application design must ensure that a second pulse does
not arrive before the first pulse is activated. The second entry to the pending state has no affect
because it is already in that state. However, if the interrupt is asserted for at least one cycle, the
NVIC latches the pend bit. When the ISR activates, the pend bit is cleared. If the interrupt asserts
again while it is activated, it can latch the pend bit again.

Pulse interrupts are mostly used for external signals and for rate or repeat signals.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 6-3
ID032710 Non-Confidential

Nested Vectored Interrupt Controller
6.3 NVIC programmers model
Table 6-1 shows the NVIC registers.

The following sections describe the NVIC registers whose implementation is specific to this
processor. Other registers are described in the ARMv7M Architecture Reference Manual.

6.3.1 Interrupt Controller Type Register, ICTR

The ICTR characteristics are:

Purpose Shows the number of interrupt lines that the NVIC supports.

Usage Constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 6-1.

Figure 6-1 shows the ICTR bit assignments.

Figure 6-1 ICTR bit assignments

Table 6-1 NVIC registers

Address Name Type Reset Description

0xE000E004 ICTR RO - Interrupt Controller Type Register, ICTR

0xE000E100 -

0xE000E11C

NVIC_ISER0 -
NVIC_ISER7

RW 0x00000000 Interrupt Set-Enable Registers

0xE000E180 -

0E000xE19C

NVIC_ICER0 -
NVIC_ICER7

RW 0x00000000 Interrupt Clear-Enable Registers

0xE000E200 -

0xE000E21C

NVIC_ISPR0 -
NVIC_ISPR7

RW 0x00000000 Interrupt Set-Pending Registers

0xE000E280 -

0xE000E29C

NVIC_ICPR0 -
NVIC_ICPR7

RW 0x00000000 Interrupt Clear-Pending Registers

0xE000E300 -

0xE000E31C

NVIC_IABR0 -
NVIC_IABR7

RO 0x00000000 Interrupt Active Bit Register

0xE000E400 -
0xE000E41F

NVIC_IPR0 -
NVIC_IPR59

RW 0x00000000 Interrupt Priority Register

Reserved

31 4 3 0

INTLINESNUM
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 6-4
ID032710 Non-Confidential

Nested Vectored Interrupt Controller
Table 6-2 shows the ICTR bit assignments.

Table 6-2 ICTR bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] INTLINESNUM Total number of interrupt lines in groups of 32:
b0000 = 0...32
b0001 = 33...64
b0010 = 65...96
b0011 = 97...128
b0100 = 129...160
b0101 = 161...192
b0110 = 193...224
b0111 = 225...256a

a. The processor supports a maximum of 240 external interrupts.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 6-5
ID032710 Non-Confidential

Chapter 7
Debug

This chapter describes how to debug and test software running on the processor. It contains the
following sections:
• About debug on page 7-2
• About the AHB-AP on page 7-6
• About the Flash Patch and Breakpoint Unit (FPB) on page 7-9.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-1
ID032710 Non-Confidential

Debug
7.1 About debug
The processor implementation determines the debug configuration, including whether debug is
implemented. If the processor does not implement debug, no ROM table is present and the halt,
breakpoint, and watchpoint functionality is not present.

Basic debug functionality includes processor halt, single-step, processor core register access,
Vector Catch, unlimited software breakpoints, and full system memory access. See the
ARMv7-M Architectural Reference Manual for more information.

The debug option might include:

• a breakpoint unit supporting 2 literal comparators and 6 instruction comparators, or only
2 instruction comparators

• a watchpoint unit supporting 1 or 4 watchpoints.

For processors that implement debug, ARM recommends that a debugger identify and connect
to the debug components using the CoreSight debug infrastructure.

Figure 7-1 shows the recommended flow that a debugger can follow to discover the components
in the CoreSight debug infrastructure. In this case a debugger reads the peripheral and
component ID registers for each CoreSight component in the CoreSight system.

Figure 7-1 CoreSight discovery

To identify the Cortex-M3 processor within the CoreSight system, ARM recommends that a
debugger perform the following actions:

1. Locate and identify the Cortex-M3 ROM table using its CoreSight identification. See
Table 7-1 on page 7-3 for more information.

CoreSight debug port

Cortex-M3 ROM table

CoreSight ID

Pointers

CoreSight access port

Base pointer

System control space

CoreSight ID

Cortex-M3 CPUID

Debug control

‡ Data watchpoint unit

CoreSight ID

Watchpoint control

‡ Optional component

Redirection from the
 ‡ System ROM table, if implemented

‡ Breakpoint unit

CoreSight ID

Breakpoint control
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-2
ID032710 Non-Confidential

Debug
2. Follow the pointers in that Cortex-M3 ROM table:
a. System Control Space (SCS)
b. Breakpoint unit (BPU)
c. Data watchpoint unit (DWT).
See Table 7-2 for more information.

When a debugger identifies the SCS from its CoreSight identification, it can identify the
processor and its revision number from the CPUID register in the SCS at address 0xE000ED00.

A debugger cannot rely on the Cortex-M3 ROM table being the first ROM table encountered.
One or more system ROM tables are required between the access port and the Cortex-M3 ROM
table if other CoreSight components are in the system. If a system ROM table is present, this
can include a unique identifier for the implementation.

7.1.1 Cortex-M3 ROM table identification and entries

Table 7-1 shows the ROM table identification registers and values for debugger detection. This
permits debuggers to identify the processor and its debug capabilities.

Note
 The Cortex-M3 ROM table only supports word size transactions.

Table 7-2 shows the CoreSight components that the Cortex-M3 ROM table points to. The values
depend on the implemented debug configuration.

Table 7-1 Cortex-M3 ROM table identification values

Address Register Value Description

0xE00FFFD0 Peripheral ID4 0x00000000 Component and Peripheral ID register formats in the ARMv7-M Architectural
Reference Manual

Note
 • These are the default values for the Peripheral ID registers if the ROM table

has not been configured at implementation. Your implementation might use
these registers to identify the manufacturer and part number for the device.

• The Component ID registers identify this as a CoreSight ROM table.

0xE00FFFE0 Peripheral ID0 0x00000000

0xE00FFFE4 Peripheral ID1 0x00000000

0xE00FFFE8 Peripheral ID2 0x00000000

0xE00FFFEC Peripheral ID3 0x00000000

0xE00FFFF0 Component ID0 0x0000000D

0xE00FFFF4 Component ID1 0x00000010

0xE00FFFF8 Component ID2 0x00000005

0xE00FFFFC Component ID3 0x000000B1

Table 7-2 Cortex-M3 ROM table components

Address Component Value Description

0xE00FF000 SCS 0xFFF0F003 See System Control Space on page 7-4

0xE00FF004 DWT 0xFFF02003a See Table 8-1 on page 8-4

0xE00FF008 FPB 0xFFF03003b See Table 7-7 on page 7-10

0xE00FF00C ITM 0xFFF01003c See Table 9-1 on page 9-4
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-3
ID032710 Non-Confidential

Debug
The ROM table entries point to the debug components of the processor. The offset for each entry
is the offset of that component from the ROM table base address, 0xE00FF000.

See the ARMv7-M Architectural Reference Manual and the ARM CoreSight Components
Technical Reference Manual for more information about the ROM table ID and component
registers, and their addresses and access types.

7.1.2 System Control Space

If debug is implemented, the processor provides debug through registers in the SCS. See:
• Debug register summary on page 7-5
• System address map on page 3-11.

SCS CoreSight identification

Table 7-3 shows the SCS CoreSight identification registers and values for debugger detection.
Final debugger identification of the Cortex-M3 processor is through the CPUID register in the
SCS. See CPUID Base Register, CPUID on page 4-5.

See the ARMv7-M Architectural Reference Manual and the ARM CoreSight Components
Technical Reference Manual for more information about the SCS CoreSight identification
registers, and their addresses and access types.

0xE00FF010 TPIU 0xFFF41003d See Table 11-1 on page 11-5

0xE00FF014 ETM 0xFFF42003e See Chapter 10 Embedded Trace Macrocell.

0xE00FF018 End marker 0x00000000 See DAP accessible ROM table in the ARMv7-M
Architectural Reference Manual

0xE00FFFCC SYSTEM ACCESS 0x00000001

a. Reads as 0xFFF02002 if no watchpoints are implemented.
b. Reads as 0xFFF03002 if no breakpoints are implemented.
c. Reads as 0xFFF01002 if no ITM is implemented.
d. Reads as 0xFFF41002 if no TPIU is implemented.
e. Reads as 0xFFF42002 if no ETM is implemented.

Table 7-2 Cortex-M3 ROM table components (continued)

Address Component Value Description

Table 7-3 SCS identification values

Address Register Value Description

0xE000EFD0 Peripheral ID4 0x00000004 Component and Peripheral ID register formats in
the ARMv7-M Architectural Reference Manual

0xE000EFE0 Peripheral ID0 0x0000000C

0xE000EFE4 Peripheral ID1 0x000000B0

0xE000EFE8 Peripheral ID2 0x0000000B

0xE000EFEC Peripheral ID3 0x00000000

0xE000EFF0 Component ID0 0x0000000D

0xE000EFF4 Component ID1 0x000000E0

0xE000EFF8 Component ID2 0x00000005

0xE000EFFC Component ID3 0x000000B1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-4
ID032710 Non-Confidential

Debug
7.1.3 Debug register summary

Table 7-4 shows the debug registers. Each of these registers is 32 bits wide and is described in
the ARMv7-M Architectural Reference Manual.

Core debug is an optional component. If core debug is removed then halt mode debugging is not
supported, and there is no halt, stepping, or register transfer functionality. Debug monitor mode
is still supported.

Table 7-4 Debug registers

Address Name Type Reset Description

0xE000ED30 DFSR RW 0x00000000a

a. Power-on reset only

Debug Fault Status Register

0xE000EDF0 DHCSR RW 0x00000000 Debug Halting Control and Status Register

0xE000EDF4 DCRSR WO - Debug Core Register Selector Register

0xE000EDF8 DCRDR RW - Debug Core Register Data Register

0xE000EDFC DEMCR RW 0x00000000 Debug Exception and Monitor Control Register
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-5
ID032710 Non-Confidential

Debug
7.2 About the AHB-AP
The AHB-AP is a Memory Access Port (MEM-AP) as defined in the ARM Debug Interface v5
Architecture Specification. The AHB-AP is an optional debug access port into the Cortex-M3
system, and provides access to all memory and registers in the system, including processor
registers through the SCS. System access is independent of the processor status. Either SW-DP
or SWJ-DP is used to access the AHB-AP.

The AHB-AP is a master into the Bus Matrix. Transactions are made using the AHB-AP
programmers model, which generates AHB-Lite transactions into the Bus Matrix.

7.2.1 AHB-AP transaction types

The AHB-AP does not perform back-to-back transactions on the bus, and so all transactions are
non-sequential. The AHB-AP can perform unaligned and bit-band transactions. The Bus Matrix
handles these. The AHB-AP transactions are not subject to MPU lookups. AHB-AP transactions
bypass the FPB, and so the FPB cannot remap AHB-AP transactions.

AHB-AP transactions are little-endian.

7.2.2 AHB-AP programmers model

Table 7-5 shows the AHB-AP registers. If the AHB-AP is not present, these registers read as
zero. Any register that is not specified in this table reads as zero.

The following sections describe the AHB-AP registers whose implementation is specific to this
processor. Other registers are described in the CoreSight Components Technical Reference
Manual.

AHB-AP Control and Status Word Register, CSW

The CSW characteristics are:

Purpose Configures and controls transfers through the AHB interface.

Usage constraints There are no usage constraints.

Table 7-5 AHB-AP register summary

Offseta

a. The offset given in this table is relative to the location of the AHB-AP in the DAP memory space. This
space is only visible from the access port. It is not part of the processor memory map.

Name Type Reset Description

0x00 CSW RW See register AHB-AP Control and Status Word Register, CSW

0x04 TAR RW - AHB-AP Transfer Address Register

0x0C DRW RW - AHB-AP Data Read/Write Register

0x10 BD0 RW - AHB-AP Banked Data Register0

0x14 BD1 RW - AHB-AP Banked Data Register1

0x18 BD2 RW - AHB-AP Banked Data Register2

0x1C BD3 RW - AHB-AP Banked Data Register3

0xF8 DBGDRAR RO 0xE00FF003 AHB-AP ROM Address Register

0xFC IDR RO 0x24770011 AHB-AP Identification Register
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-6
ID032710 Non-Confidential

Debug
Configurations This register is available in all processor configurations.

Attributes See the register summary in Table 7-5 on page 7-6.

Figure 7-2 shows the CSW bit assignments.

Figure 7-2 CSW bit assignments

Table 7-6 shows the CSW bit assignments.

11 831 29 28 2630 12 7 6 5 4 3 2 0

ModeReserved Size

25 24

TransInProg
DbgStatus

AddrInc

Hprot1

MasterType
Reserved

Reserved Reserved

Table 7-6 CSW bit assignments

Bits Name Function

[31:30] - Reserved. Read as 0b00.

[29] MasterTypea 0 = core.
1 = debug.
This bit must not be changed if a transaction is outstanding. A debugger
must first check bit [7], TransInProg.
Reset value = 0b1.
An implementation can configure this bit to be read only with a value of 1.
In that case, transactions are always indicated as debug.

[28:26] - Reserved, 0b000.

[25] Hprot1 User and Privilege control - HPROT[1].
Reset value = 0b1.

[24] - Reserved, 0b1.

[23:12] - Reserved, 0x000.

[11:8] Mode Mode of operation bits:
b0000 = normal download and upload mode
b0001-b1111 are reserved.
Reset value = 0b0000.

[7] TransInProg Transfer in progress. This field indicates if a transfer is in progress on the
APB master port.

[6] DbgStatus Indicates the status of the DAPEN port.
1 = AHB transfers permitted.
0 = AHB transfers not permitted.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-7
ID032710 Non-Confidential

Debug
[5:4] AddrInc Auto address increment and pack mode on Read or Write data access. Only
increments if the current transaction completes with no error.
Auto address incrementing and packed transfers are not performed on
access to Banked Data registers 0x10 - 0x1C. The status of these bits is
ignored in these cases.
Increments and wraps within a 4-KB address boundary, for example from
0x1000 to 0x1FFC. If the start is at 0x14A0, then the counter increments to
0x1FFC, wraps to 0x1000, then continues incrementing to 0x149C.
0b00 = auto increment off.
0b01 = increment single. Single transfer from corresponding byte lane.
0b10 = increment packed.b
0b11 = reserved. No transfer.
Size of address increment is defined by the Size field [2:0].
Reset value: 0b00.

[3] - Reserved.

[2:0] Size Size of access field:
b000 = 8 bits
b001 = 16 bits
b010 = 32 bits
b011-111 are reserved.
Reset value: b000.

a. When clear, this bit prevents the debugger from setting the C_DEBUGEN bit in the Debug Halting
Control and Status Register, and so prevents the debugger from being able to halt the processor.

b. See the definition of packed transfers in the ARM Debug Interface v5 Architecture Specification.

Table 7-6 CSW bit assignments (continued)

Bits Name Function
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-8
ID032710 Non-Confidential

Debug
7.3 About the Flash Patch and Breakpoint Unit (FPB)
The FPB:
• implements hardware breakpoints
• patches code and data from code space to system space.

A full FPB unit contains:

• Two literal comparators for matching against literal loads from Code space, and
remapping to a corresponding area in System space.

• Six instruction comparators for matching against instruction fetches from Code space, and
remapping to a corresponding area in System space. Alternatively, you can configure the
comparators individually to return a Breakpoint Instruction (BKPT) to the processor core
on a match, to provide hardware breakpoint capability.

A reduced FPB unit contains:

• Two instruction comparators. You can configure each comparator individually to return a
Breakpoint Instruction to the processor on a match, to provide hardware breakpoint
capability.

7.3.1 FPB functional description

The FPB contains both a global enable and individual enables for the eight comparators. If the
comparison for an entry matches, the address is either

• remapped to the address set in the remap register plus an offset corresponding to the
comparator that matched

• remapped to a BKPT instruction if that feature is enabled.

The comparison happens dynamically, but the result of the comparison occurs too late to stop
the original instruction fetch or literal load taking place from the Code space. The processor
ignores this transaction however, and only the remapped transaction is used.

If an MPU is present, the MPU lookups are performed for the original address, not the remapped
address.

You can remove the FPB if no debug is required, or you can reduce the number of breakpoints
it supports to two. If the FPB supports only two breakpoints then only comparators 0 and 1 are
used, and the FPB does not support flash patching.

Note
 • Unaligned literal accesses are not remapped. The original access to the DCode bus takes

place in this case.

• Load exclusive accesses can be remapped. However, it is UNPREDICTABLE whether
they are performed as exclusive accesses or not.

• Setting the flash patch remap location to a bit-band alias is not supported and results in
UNPREDICTABLE behavior.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-9
ID032710 Non-Confidential

Debug
7.3.2 FPB programmers model

Table 7-7 shows the FPB registers. Depending on the implementation of your processor, some
of these registers might not be present. Any register that is configured as not present reads as
zero.

All FPB registers are described in the ARMv7-M Architecture Reference Manual.

Table 7-7 FPB register summary

Address Name Type Reset Description

0xE0002000 FP_CTRL RW 0x130 FlashPatch Control Register

0xE0002004 FP_REMAP RW - FlashPatch Remap Register

0xE0002008 FP_COMP0 RW 1'b0a

a. For FP_COMP0 to FP_COMP7, bit 0 is reset to 0. Other bits in these registers are
not reset.

FlashPatch Comparator Register0

0xE000200C FP_COMP1 RW 1'b0 FlashPatch Comparator Register1

0xE0002010 FP_COMP2 RW 1'b0 FlashPatch Comparator Register2

0xE0002014 FP_COMP3 RW 1'b0 FlashPatch Comparator Register3

0xE0002018 FP_COMP4 RW 1'b0 FlashPatch Comparator Register4

0xE000201C FP_COMP5 RW 1'b0 FlashPatch Comparator Register5

0xE0002020 FP_COMP6 RW 1'b0 FlashPatch Comparator Register6

0xE0002024 FP_COMP7 RW 1'b0 FlashPatch Comparator Register7

0xE0002FD0 PID4 RO 0x04 Peripheral identification registers

0xE0002FD4 PID5 RO 0x00

0xE0002FD8 PID6 RO 0x00

0xE0002FDC PID7 RO 0x00

0xE0002FE0 PID0 RO 0x03

0xE0002FE4 PID1 RO 0xB0

0xE0002FE8 PID2 RO 0x2B

0xE0002FEC PID3 RO 0x00

0xE0002FF0 CID0 RO 0x0D Component identification registers

0xE0002FF4 CID1 RO 0xE0

0xE0002FF8 CID2 RO 0x05

0xE0002FFC CID3 RO 0xB1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 7-10
ID032710 Non-Confidential

Chapter 8
Data Watchpoint and Trace Unit

This chapter describes the Data Watchpoint and Trace (DWT) unit. It contains the following
sections:
• About the DWT on page 8-2
• DWT functional description on page 8-3
• DWT Programmers Model on page 8-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 8-1
ID032710 Non-Confidential

Data Watchpoint and Trace Unit
8.1 About the DWT
The DWT is an optional debug unit that provides watchpoints, data tracing, and system profiling
for the processor.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 8-2
ID032710 Non-Confidential

Data Watchpoint and Trace Unit
8.2 DWT functional description
A full DWT contains four comparators that you can configure as
• a hardware watchpoint
• an ETM trigger
• a PC sampler event trigger
• a data address sampler event trigger.

The first comparator, DWT_COMP0, can also compare against the clock cycle counter,
CYCCNT. You can also use the second comparator, DWT_COMP1, as a data comparator.

A reduced DWT contains one comparator that you can use as a watchpoint or as a trigger. It does
not support data matching.

The DWT if present contains counters for:
• clock cycles (CYCCNT)
• folded instructions
• Load Store Unit (LSU) operations
• sleep cycles
• CPI, that is all instruction cycles except for the first cycle
• interrupt overhead.

Note
 An event is generated each time a counter overflows.

You can configure the DWT to generate PC samples at defined intervals, and to generate
interrupt event information.

The DWT provides periodic requests for protocol synchronization to the ITM and the TPIU, if
the your implementation includes the Cortex-M3 TPIU.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 8-3
ID032710 Non-Confidential

Data Watchpoint and Trace Unit
8.3 DWT Programmers Model
Table 8-1 lists the DWT registers. Depending on the implementation of your processor, some of
these registers might not be present. Any register that is configured as not present reads as zero.

Table 8-1 DWT register summary

Address Name Type Reset Description

0xE0001000 DWT_CTRL RW See a Control Register

0xE0001004 DWT_CYCCNT RW 0x00000000 Cycle Count Register

0xE0001008 DWT_CPICNT RW - CPI Count Register

0xE000100C DWT_EXCCNT RW - Exception Overhead Count Register

0xE0001010 DWT_SLEEPCNT RW - Sleep Count Register

0xE0001014 DWT_LSUCNT RW - LSU Count Register

0xE0001018 DWT_FOLDCNT RW - Folded-instruction Count Register

0xE000101C DWT_PCSR RO - Program Counter Sample Register

0xE0001020 DWT_COMP0 RW - Comparator Register0

0xE0001024 DWT_MASK0 RW - Mask Register0

0xE0001028 DWT_FUNCTION0 RW 0x00000000 Function Register0

0xE0001030 DWT_COMP1 RW - Comparator Register1

0xE0001034 DWT_MASK1 RW - Mask Register1

0xE0001038 DWT_FUNCTION1 RW 0x00000000 Function Register1

0xE0001040 DWT_COMP2 RW - Comparator Register2

0xE0001044 DWT_MASK2 RW - Mask Register2

0xE0001048 DWT_FUNCTION2 RW 0x00000000 Function Register2

0xE0001050 DWT_COMP3 RW - Comparator Register3

0xE0001054 DWT_MASK3 RW - Mask Register3

0xE0001058 DWT_FUNCTION3 RW 0x00000000 Function Register3

0xE0001FD0 PID4 RO 0x04 Peripheral identification registers

0xE0001FD4 PID5 RO 0x00

0xE0001FD8 PID6 RO 0x00

0xE0001FDC PID7 RO 0x00

0xE0001FE0 PID0 RO 0x02

0xE0001FE4 PID1 RO 0xB0

0xE0001FE8 PID2 RO 0x3B

0xE0001FEC PID3 RO 0x00
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 8-4
ID032710 Non-Confidential

Data Watchpoint and Trace Unit
DWT registers are described in the ARMv7M Architecture Reference Manual. Peripheral
Identification. Component Identification registers are described in the ARM CoreSight
Components Technical Reference Manual.

Note
 • Cycle matching functionality is only available in comparator 0.

• Data matching functionality is only available in comparator 1.

• Data value is only sampled for accesses that do not produce an MPU or bus fault. The PC
is sampled irrespective of any faults. The PC is only sampled for the first address of a
burst.

• The FUNCTION field in the DWT_FUNCTION1 register is overridden for comparators
given by DATAVADDR0 and DATAVADDR1 if DATAVMATCH is also set in
DWT_FUNCTION1. The comparators given by DATAVADDR0 and DATAVADDR1 can
then only perform address comparator matches for comparator 1 data matches.

• If the data matching functionality is not included during implementation it is not possible
to set DATAVADDR0, DATAVADDR1, or DATAVMATCH in DWT_FUNCTION1. This
means that the data matching functionality is not available in the implementation. Test the
availability of data matching by writing and reading the DATAVMATCH bit in
DWT_FUNCTION1. If this bit cannot be set then data matching is unavailable.

• PC match is not recommended for watchpoints because it stops after the instruction. It
mainly guards and triggers the ETM.

0xE0001FF0 CID0 RO 0x0D Component identification registers

0xE0001FF4 CID1 RO 0xE0

0xE0001FF8 CID2 RO 0x05

0xE0001FFC CID3 RO 0xB1

a. Possible reset values are:
0x40000000 if four comparators for watchpoints and triggers are present
0x4F000000 if four comparators for watchpoints only are present
0x10000000 if only one comparator is present
0x1F000000 if one comparator for watchpoints and not triggers is present
0x00000000 if DWT is not present.

Table 8-1 DWT register summary (continued)

Address Name Type Reset Description
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 8-5
ID032710 Non-Confidential

Chapter 9
Instrumentation Trace Macrocell Unit

This chapter describes the Instrumentation Trace Macrocell (ITM) unit. It contains the following
sections:
• About the ITM on page 9-2
• ITM functional description on page 9-3
• ITM programmers model on page 9-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 9-1
ID032710 Non-Confidential

Instrumentation Trace Macrocell Unit
9.1 About the ITM
The ITM is a an optional application-driven trace source that supports printf style debugging to
trace operating system and application events, and generates diagnostic system information.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 9-2
ID032710 Non-Confidential

Instrumentation Trace Macrocell Unit
9.2 ITM functional description
The ITM generates trace information as packets. Multiple sources can generate packets. If
multiple sources generate packets at the same time, the ITM arbitrates the order in which
packets are output. These sources in decreasing order of priority are:

• Software trace. Software can write directly to ITM stimulus registers to generate packets.

• Hardware trace. The DWT generates these packets, and the ITM outputs them.

• Time stamping. Timestamps are generated relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex-M3 clock or the bitclock rate of the Serial
Wire Viewer (SWV) output clocks the counter.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 9-3
ID032710 Non-Confidential

Instrumentation Trace Macrocell Unit
9.3 ITM programmers model
Table 9-1 shows the ITM registers. Depending on the implementation of your processor, the
ITM registers might not be present. Any register that is configured as not present reads as zero.

Note
 • You must enable TRCENA of the Debug Exception and Monitor Control Register before

you program or use the ITM.

• If the ITM stream requires synchronization packets, you must configure the
synchronization packet rate in the DWT.

Note
 ITM registers are fully accessible in privileged mode. In user mode, all registers can be read,
but only the Stimulus Registers and Trace Enable Registers can be written, and only when the
corresponding Trace Privilege Register bit is set. Invalid user mode writes to the ITM registers
are discarded.

The following sections describes the ITM registers whose implementation is specific to this
processor. Other registers are described in the ARMv7-M Architectural Reference Manual.

Table 9-1 ITM register summary

Address Name Type Reset Description

0xE0000000-
0xE000007C

ITM_STIM0-
ITM_STIM31

RW - Stimulus Port Registers 0-31

0xE0000E00 ITM_TER RW 0x00000000 Trace Enable Register

0xE0000E40 ITM_TPR RW 0x00000000 ITM Trace Privilege Register, ITM_TPR on page 9-5

0xE0000E80 ITM_TCR RW 0x00000000 Trace Control Register

0xE0000FD0 PID4 RO 0x00000004 Peripheral Identification registers

0xE0000FD4 PID5 RO 0x00000000

0xE0000FD8 PID6 RO 0x00000000

0xE0000FDC PID7 RO 0x00000000

0xE0000FE0 PID0 RO 0x00000001

0xE0000FE4 PID1 RO 0x000000B0

0xE0000FE8 PID2 RO 0x0000003B

0xE0000FEC PID3 RO 0x00000000

0xE0000FF0 CID0 RO 0x0000000D Component Identification registers

0xE0000FF4 CID1 RO 0x000000E0

0xE0000FF8 CID2 RO 0x00000005

0xE0000FFC CID3 RO 0x000000B1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 9-4
ID032710 Non-Confidential

Instrumentation Trace Macrocell Unit
9.3.1 ITM Trace Privilege Register, ITM_TPR

The ITM_TPR characteristics are:

Purpose Enables an operating system to control the stimulus ports that are
accessible by user code.

Usage constraints You can only write to this register in privileged mode.

Configurations This register is available if the ITM is configured in your implementation.

Attributes See Table 9-1 on page 9-4.

Figure 9-1 shows the ITM_TPR bit assignments.

Figure 9-1 ITM_TPR bit assignments

Table 9-2 shows the ITM_TPR bit assignments.

Reserved

31 4 3 0

PRIVMASK

Table 9-2 ITM_TPR bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] PRIVMASK Bit mask to enable tracing on ITM stimulus ports:
bit [0] = stimulus ports [7:0]
bit [1] = stimulus ports [15:8]
bit [2] = stimulus ports [23:16]
bit [3] = stimulus ports [31:24].
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 9-5
ID032710 Non-Confidential

Chapter 10
Embedded Trace Macrocell

This chapter describes the Embedded Trace Macrocell (ETM). It contains the following sections:
• About the ETM on page 10-2
• ETM functional description on page 10-3
• ETM Programmers model on page 10-9.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-1
ID032710 Non-Confidential

Embedded Trace Macrocell
10.1 About the ETM
The ETM is an optional debug component that enables reconstruction of program execution.
The ETM is designed to be a high-speed, low-power debug tool that only supports instruction
trace. This ensures that area is minimized, and that gate count is reduced.

The ETM implements ARM ETM architecture v3.4. See the ARM Embedded Trace Macrocell
Architecture Specification.

The ETM traces all 32-bit Thumb instructions as a single instruction. The ETM traces
instructions following an IT instruction as normal conditional instructions. The decompressor
does not need to refer to the IT instruction.

You can use the CoreSight ETM-M3 either with the Cortex-M3 Trace Port Interface Unit
(M3-TPIU), or as part of a CoreSight system.

10.1.1 Features

ETM-M3 provides:
• tracing of 16-bit and 32-bit Thumb instructions
• four EmbeddedICE watchpoint inputs
• a Trace Start/Stop block with EmbeddedICE inputs
• two external inputs
• a 24-byte FIFO queue.

See the Embedded Trace Macrocell Architecture Specification for information about:
• the trace protocol
• controlling tracing using triggering and filtering resources.

See the Cortex-M3 Integration and Implementation Manual for information about the macrocell
signals.

10.1.2 Configurable options

The ETM-M3 macrocell includes the following configuration inputs:

• the maximum number of external inputs, see External inputs on page 10-6

• whether the system supports the FIFOFULL mechanism for stalling the processor, see
Table 10-1 on page 10-4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-2
ID032710 Non-Confidential

Embedded Trace Macrocell
10.2 ETM functional description
Figure 10-1 shows a block diagram of the ETM, and shows how the ETM interfaces to the Trace
Port Interface Unit (TPIU).

Figure 10-1 ETM block diagram

 The Cortex-M3 system can perform low-bandwidth data tracing using the Data Watchpoint and
Trace (DWT) and Instruction Trace Macrocell (ITM) components.

The ETM trace output is compatible with the AMBA Trace Bus (ATB) protocol, irrespective of
the configuration of the trace port size and trace port mode within the ETM programmers model.
The TPIU exports trace information from the processor. An implementation can replace the
TPIU with other CoreSight trace components.

For more information see:
• Chapter 8 Data Watchpoint and Trace Unit
• Chapter 9 Instrumentation Trace Macrocell Unit
• Chapter 11 Trace Port Interface Unit
• Embedded Trace Macrocell Architecture Specification.

The ETM provides a trace ID register for systems that use multiple trace sources. You must
configure this register even if only a single trace source is in use.

The following sections provide information on features of the ETM:
• Resources
• Periodic synchronization on page 10-6
• Data and instruction address compare resources on page 10-6
• External inputs on page 10-6
• Start/stop block on page 10-6
• Triggering on page 10-6
• Interfaces on page 10-7
• Operation on page 10-8.

10.2.1 Resources

Because the ETM does not generate data trace information, the lower bandwidth reduces the
requirement for complex triggering capabilities. This means that the ETM only includes a small
sub-set of the possible resources allowed by the ETM architecture.

Cortex-M3
processor

DWT

ITM
ATB

ETM-M3

ATB
Cortex-M3

TPIU or
Coresight

systemCTI

Trace port
and

SerialWire
trace outputs

Trace Generation

Trace Control:
 Counter
 Start/Stop block
 Trigger generation
 Programming interface
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-3
ID032710 Non-Confidential

Embedded Trace Macrocell
Table 10-1 lists the Cortex-M3 resources.

Table 10-1 Cortex-M3 resources

Feature Present on ETM-M3

Architecture version ETMv3.4

Address comparator pairs 0

Data comparators 0

Context ID comparators 0

Memory Map Decoders (MMDs) 0

Counters 0

Sequencer No

Start/stop block Yes

Embedded ICE comparators 4

External inputs 2

External outputs 0

Extended external inputs 0

Extended external input selectors 0

FIFOFULL Yes

FIFOFULL level setting Yes

Branch broadcasting Yes

ASIC Control Register No

Data suppression No

Software access to registers Yes

Readable registers Yes

FIFO size 24 bytes

Minimum port size 8 bits

Maximum port size 8 bits

Normal port mode -

Normal half-rate clocking, 1:1 Yes - asynchronous

Demux port mode -

Demux half-rate clocking, 1:2 No

Mux port mode, 2:1 No

1:4 port mode No

Dynamic port mode, including stalling No. Supported by asynchronous port mode.

Coprocessor Register Transfer (CPRT) data No
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-4
ID032710 Non-Confidential

Embedded Trace Macrocell
Resource identification encoding

You configure the trace enable event and trigger event using the same mechanism. For each
event, a 17-bit register is used to define the event. This register provides:
• Resource A, bits [6:0]
• Resource B, bits [13:7]
• a Boolean function, bits [16:14].

Table 10-2 shows the encodings used for the Boolean function.

Table 10-3 shows the encodings used for Resource identification.

Load PC first No

Fetch comparisons No

Load data traced No

Table 10-2 Boolean function encoding for events

Encoding Function

b000 A

b001 NOT(A)

b010 A AND B

b011 NOT(A) AND B

b100 NOT(A) AND NOT (B)

b101 A OR B

b110 NOT (A) OR B

b111 NOT (A) OR NOT (B)

Table 10-3 Resource identification encoding

Resource typea

a. For Resource A, bits [6:4]. For Resource B, bits [13:11]

Index rangeb

b. For Resource A, bits [3:0]. For Resource B, bits [10:7].

Description of resource type

b010 0-3 DWT Comparator inputs (0-3)

b100 0 Counter 1 at zero

b101 15 Trace Start/Stop resource

b110 0-1 ExtIn (0-1)

b110 15 HardWired (always True)

Table 10-1 Cortex-M3 resources (continued)

Feature Present on ETM-M3
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-5
ID032710 Non-Confidential

Embedded Trace Macrocell
10.2.2 Periodic synchronization

The ETM uses a fixed synchronization packet generation frequency of every 1024 bytes of
trace.

10.2.3 Data and instruction address compare resources

The DWT provides four address comparators on the data bus that provide debug functionality.
Within the DWT unit, you can specify the functions triggered by a match, and one of these
functions is to generate an ETM match input. These inputs are presented to the ETM as
Embedded In Circuit Emulator (ICE) comparator inputs.

A single DWT resource can trigger an ETM event and also generate instrumentation trace
directly from the same event.

You can configure the four DWT comparators individually to compare with the address of the
current executing instruction to permit the ETM access to an instruction address compare
resource. These inputs are presented to the ETM as Embedded ICE comparator inputs. The
DWT provides either 1 or 4 comparators, depending on the implementation of the processor.

Note
 Using a DWT comparator as an instruction address comparator reduces the number of available
data address comparisons.

See Chapter 8 Data Watchpoint and Trace Unit for more information about the DWT unit.

10.2.4 External inputs

Two external inputs, ETMEXTIN[1:0], enable additional components to generate trigger and
enable signals for the ETM.

10.2.5 Start/stop block

The start/stop block provides a single-bit resource that can be used as an input to other parts of
the resource logic, including the trace enable logic. The start/stop block can only be controlled
by using the EmbeddedICE inputs to the ETM. The DWT controls these inputs.

The start/stop block is set to the start state if any of the EmbeddedICE watchpoint inputs
selected as start resources in ETMTESSEICR go HIGH. The start/stop block is set to the stop
state if any of the EmbeddedICE watchpoint inputs selected as stop resources in
ETMTESSEICR go LOW.

If bit [25] of ETMTECR1 is 1, tracing will only be enabled when the start/stop block is in the
start state.

Tracing is also only enabled when the result of evaluating the Trace Enable Event is TRUE. This
event can be set to always be TRUE by programming a value of 0x6F to ETMTEEVR. For more
information see the Embedded Trace Macrocell Architecture Specification.

10.2.6 Triggering

The ETM provides a trigger resource that can be used to identify a point within a trace run. The
generation of a trigger does not affect the tracing in any way, but the trigger will be output in the
trace stream, and can also be passed to other trace components or used to halt the processor. An
external trace port analyzer can use the trigger to determine when to start and stop capture of
trace.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-6
ID032710 Non-Confidential

Embedded Trace Macrocell
10.2.7 Interfaces

The ETM-M3 has the following external interfaces:

ATB A 32-bit Advanced Trace Bus provides trace output from the macrocell. See the
AMBA 3 ATB Protocol Specification for more information about this interface.

APB An Advanced Peripheral Bus provides the control interface for the macrocell. See
the AMBA 3 APB Protocol Specification for more information about this
interface.

CTI Your implementation can provide a Cross Trigger Interface to manage the
interconnection of trigger and control signals between the processor core, ETM,
and TPIU. The implementation of your Cortex-M3 processor determines which
ETM functions are visible to the CTI.

Recommended CTI connections

Table 10-4 and Table 10-5 show the recommended CTI connections for Cortex-M3 systems.

Note
 These tables show the ARM standard connections, but the actual connections are
implementation-defined. Check the documentation from the supplier of your device for any
changes to these connections.

Table 10-4 Input connections

Trigger bit Source signal Source device Comments

[7] ETMTRIGOUT ETM Recommended if ETM is present.

[6] ETMTRIGGER[2] DWT Recommended.

[5] ETMTRIGGER[1] DWT Recommended.

[4] ETMTRIGGER[0] DWT Recommended.

[3] ACQCOMP ETB Recommended if an Embedded Trace Buffer (ETB) is present.
If multiple cores share a single ETB, you must only connect
to the CTI of one of the cores.[2] FULL ETB

[1] User Defined - -

[0] DBGACK Core Compulsory.

Table 10-5 Trigger output connections

Trigger bit Destination
signal

Destination
device Comments

[7] User defined - -

[6] User defined - -

[5] ETMEXTIN[1] ETM Compulsory if ETM is present.

[4] ETMEXTIN[0] ETM Compulsory if ETM is present.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-7
ID032710 Non-Confidential

Embedded Trace Macrocell
10.2.8 Operation

ETM-M3 implements version 3.4 of the ARM Embedded Trace Macrocell protocol. See ETM
Programmers model on page 10-9 and the Embedded Trace Macrocell Architecture
Specification for more information.

[3] INTISR[y] NVIC Recommended if an ETB is present. If multiple cores share a
single ETB, you must only connect to the CTI of one of the cores.

[2] INTISR[x] NVIC Compulsory. Any interrupt can be used.

[1] User defined - -

[0] EDBGRQ Core Compulsory.

Table 10-5 Trigger output connections (continued)

Trigger bit Destination
signal

Destination
device Comments
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-8
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3 ETM Programmers model
This section describes the mechanisms for programming the registers used to set up the trace
and triggering facilities of the macrocell. The programmers model enables you to use the ETM
registers to control the macrocell.

10.3.1 Modes of operation and execution

When the ETM is powered up or reset, you must program all of the registers that do not have an
architected reset state before you enable tracing. If you do not do so, the trace results are
UNPREDICTABLE.

When programming the ETM registers you must enable all the changes at the same time. To
achieve this, the Programming bit in ETMCR should be used. See Main Control Register,
ETMCR on page 10-10

When the Programming bit is set to 0 you must not write to registers other than ETMCR,
because this can lead to UNPREDICTABLE behavior.

When setting the Programming bit, you must not change any other bits of ETMCR. You must
only change the value of bits other than the Programming bit of ETMCR when bit [1] of ETMSR
is set to 1. ARM recommends that you use a read-modify-write procedure when changing
ETMCR.

10.3.2 Register summary

Table 10-6 shows the ETM registers.

Table 10-6 ETM registers

Address Name Reset Type Description

0xE0041000 ETMCR 0x00000411 RW Main Control Register, ETMCR on page 10-10

0xE0041004 ETMCCR 8C800000 RO Configuration Code Register, ETMCCR on page 10-13

0xE0041008 ETMTRIGGER - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041010 ETMSR - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041014 ETMSCR 0x00020D09 RO System Configuration Register, ETMSCR on page 10-14

0xE0041020 ETMTEEVR - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041024 ETMTECR1 - RW TraceEnable Control 1 Register, ETMTECR1 on page 10-15

0xE0041028 ETMFFLR - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE00411E0 ETMSYNCFR 0x00000400 RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE00411E4 ETMIDR 0x4114F242 RO ID Register, ETMIDR on page 10-16

0xE00411E8 ETMCCER 0x00141800 RO Configuration Code Extension Register, ETMCCER on page 10-17

0xE00411F0 ETMTESSEICR - RW TraceEnable Start/Stop EmbeddedICE Control Register,
ETMTESSEICR on page 10-18

0xE0041200 ETMTRACEIDR 0x00000000 RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041208 ETMIDR2 0x00000000 RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041314 ETMPDSR 0x00000001 RO Device Power-Down Status Register, ETMPDSR on page 10-18
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-9
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.3 Main Control Register, ETMCR

The ETMCR characteristics are:

Purpose Controls general operation of the ETM, such as whether tracing is enabled.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the ETM register summary in Table 10-6 on page 10-9.

Figure 10-2 on page 10-11 shows the ETMCR bit assignments.

0xE0041EE0 ITMISCIN - RO Integration Test Miscellaneous Inputs, ITMISCIN on page 10-19

0xE0041EE8 ITTRIGOUT - WO Integration Test Trigger Out, ITTRIGOUT on page 10-20

0xE0041EF0 ETM_ITATBCTR2 - RO ETM Integration Test ATB Control 2, ETM_ITATBCTR2 on page 10-20

0xE0041EF8 ETM_ITATBCTR0 - WO ETM Integration Test ATB Control 0, ETM_ITATBCTR0 on page 10-21

0xE0041F00 ETMITCTRL 0x00000000 RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FA0 ETMCLAIMSET - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FA4 ETMCLAIMCLR - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FB0 ETMLAR - RW See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FB4 ETMLSR - RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FB8 ETMAUTHSTATUS - RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FCC ETMDEVTYPE 0x00000013 RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FD0 ETMPIDR4 0x00000004 RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FD4 ETMPIDR5 0x00000000 RO

0xE0041FD8 ETMPIDR6 0x00000000 RO

0xE0041FDC ETMPIDR7 0x00000000 RO

0xE0041FE0 ETMPIDR0 0x00000024 RO

0xE0041FE4 ETMPIDR1 0x000000B9 RO

0xE0041FE8 ETMPIDR2 0x0000002B RO

0xE0041FEC ETMPIDR3 0x00000000 RO

0xE0041FF0 ETMCIDR0 0x0000000D RO See ARM Embedded Trace Macrocell Architecture Specification.

0xE0041FF4 ETMCIDR1 0x00000090 RO

0xE0041FF8 ETMCIDR2 0x00000005 RO

0xE0041FFC ETMCIDR3 0x000000B1 RO

Table 10-6 ETM registers (continued)

Address Name Reset Type Description
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-10
ID032710 Non-Confidential

Embedded Trace Macrocell
Figure 10-2 ETMCR bit assignments

Table 10-7 shows the ETMCR bit assignments.

Reserved

31 22 20 17 16 15 13 12 8 7 4 3 0

Port size[3]

21

Reserved
Port mode[1:0]

18

Port mode[2]

ETM port select (ETMEN) ETM programming
Debug request control
Branch output
Stall processor (FIFOFULL)

ETM
power down

19 6

Port size[2:0]

14 11 10

Reserved

Reserved

Reserved

Table 10-7 ETMCR bit assignments

Bits Name Function

[31:22] - RAZ

[21] Port size[3] This bit is implemented but has no function.
An ETM reset sets this bit to 0.

[20:18] - Reserved

[17:16] Port mode [1:0] These bits are implemented but have no function.
An ETM reset sets these bits to 0.

[15:14] - Reserved

[13] Port mode[2] This bit is implemented but has no function.
An ETM reset sets this bit to 0.

[12] - Reserved

[11] ETM port selection This bit can be used to control other trace components in an implementation. The possible values
are:
0 ETMEN is LOW.
1 ETMEN is HIGH.
This bit must be set by the trace software tools to ensure that trace output is enabled from this
ETM.
An ETM reset sets this bit to 0.

[10] ETM programming This bit must be set to 1 at the start of the ETM programming sequence. Tracing is prevented while
this bit is set to 1.
On an ETM reset this bit is set to b1.

[9] Debug request control When set to 1 and the trigger event occurs, the DBGRQ output is asserted until DBGACK is
observed. This enables the ARM processor to be forced into Debug state.
An ETM reset sets this bit to 0.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-11
ID032710 Non-Confidential

Embedded Trace Macrocell
[8] Branch output When set to 1 all branch addresses are output, even if the branch was because of a direct branch
instruction. Setting this bit enables reconstruction of the program flow without having access to
the memory image of the code being executed.
When this bit is set to 1, more trace data is generated, and this may affect the performance of the
trace system. Information about the execution of a branch is traced regardless of the state of this
bit.
An ETM reset sets this bit to 0.

[7] Stall processor The FIFOFULL output can be used to stall the processor to prevent overflow. The FIFOFULL
output is only enabled when the stall processor bit is set to 1. When the bit is 0 the FIFOFULL
output remains LOW at all times and the FIFO overflows if there are too many trace packets. Trace
resumes without corruption once the FIFO has drained, if overflow does occur.
An ETM reset sets this bit to 0.
For information about the interaction of this bit with the ETMFFLR register see the Embedded
Trace Macrocell Architecture Specification.

[6:4] Port size [2:0] The ETM-M3 has no influence over the external pins used for trace. These bits are implemented
but not used.
On an ETM reset these bits reset to 0b001.

[3:1] - Reserved

[0] ETM power down This bit can be used by an implementation to control if the ETM is in a low power state. This bit
must be cleared by the trace software tools at the beginning of a debug session.
When this bit is set to 1, writes to some registers and fields might be ignored. You can always write
to the following registers and fields:
• ETMCR bit [0]
• ETMLAR
• ETMCLAIMSET register
• ETMCLAIMCLR register.
When the ETMCR is written with this bit set to 1, bits other than bit [0] might be ignored.
On an ETM reset this bit is set to 1.

Table 10-7 ETMCR bit assignments (continued)

Bits Name Function
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-12
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.4 Configuration Code Register, ETMCCR

The ETM Configuration Code Register characteristics are:

Purpose Enables software to read the implementation-specific configuration of the
ETM.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the ETM register summary in Table 10-6 on page 10-9.

Figure 10-3 shows the ETMCCR bit assignments.

Figure 10-3 ETMCCR bit assignments

Table 10-8 shows the ETMCCR bit assignments.

31 28 27 26 25 24 23 22 20 19 17 16 15 13 12 8 7 4 3 0

Coprocessor and
memory mapped

access supported Number of counters

Reserved Number of data
value comparators

Number of address
comparator pairs

Number of memory
map decoders

Sequencer present
Number of external inputs
Number of external outputs
FIFOFULL logic present

Trace start/stop
block present

Number of Context ID
comparators

ETM ID
register
present

30

Table 10-8 ETMCCR bit assignments

Bits Name Function

[31] ETM ID register present The value of this bit is 1, indicating that the ETMIDR, register 0x79, is present and
defines the ETM architecture version in use.

[30:28] - Reserved.

[27] Coprocessor and memory access The value of this bit is 1, indicating that memory-mapped access to registers is
supported.

[26] Trace start/stop block present The value of this bit is 1, indicating that the Trace start/stop block is present.

[25:24] Number of Context ID comparators The value of these bits is b00, indicating that Context ID comparators are not
implemented.

[23] FIFOFULL logic present The value of this bit is 1, indicating that FIFOFULL logic is present in the ETM.
To use FIFOFULL the system must also support the function, as indicated by bit
[8] of ETMSCR, see System Configuration Register, ETMSCR on page 10-14.

[22:20] Number of external outputs The value of these bits is b000, indicating that no external outputs are supported.

[19:17] Number of external inputs The value of these bits is between b000 and b010, indicating the number of external
inputs, from 0 to 2, implemented in the system.

[16] Sequencer present The value of this bit is 0, indicating that the sequencer is not implemented.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-13
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.5 System Configuration Register, ETMSCR

The ETMSCR characteristics are:

Purpose Shows the ETM features supported by the implementation of the ETM
macrocell.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-4 shows the ETMSCR bit assignments.

Figure 10-4 ETMSCR bit assignments

Table 10-9 shows the ETMSCR bit assignments.

[15:13] Number of counters The value of these bits is b000, indicating counters are not implemented.

[12:8] Number of memory map decoders The value of these bits is b00000, indicating that memory map decoder inputs are
not implemented.

[7:4] Number of data value comparators The value of these bits is b0000, indicating that data value comparators are not
implemented.

[3:0] Number of address comparator pairs The value of these bits is b0000, indicating that address comparator pairs are not
implemented.

Table 10-8 ETMCCR bit assignments (continued)

Bits Name Function

No fetch comparisons
Maximum
port size[2:0]

31 17 16 15 12 8 7 4 3 0

Reserved

18 14 11 10 9 2

Reserved,
reads as 1
Reserved,
reads as 0x0

Reserved
(N -1), where N = Number of supported processors

Port mode supported
Port size supported

Maximum port size[3]
FIFOFULL supported

Table 10-9 ETMSCR bit assignments

Bits Name Function

[31:18] - Reserved.

[17] No Fetch comparisons The value of this bit is 1, indicating that fetch comparisons are not implemented.

[16:15] - Reserved.

[14:12] (N-1) These bits give the number of supported processors minus 1. The value of these bits is b000,
indicating that there is only one processor connected.

[11] Port mode supported This bit reads as 1 if the currently selected port mode is supported. This has no effect on the
TPIU trace port.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-14
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.6 TraceEnable Control 1 Register, ETMTECR1

The ETMTECR1 characteristics are:

Purpose Enables the start/stop logic used for trace enable.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-5 shows the ETMTECR1 bit assignments.

Figure 10-5 ETMTECR1 bit assignments

Table 10-10 shows the ETMTECR1 bit assignments.

[10] Port size supported This bit reads as 1 if the currently selected port size is supported. This has no effect on the
TPIU trace port.

[9] Maximum port size [3] Maximum ETM port size bit [3]. This bit is used in conjunction with bits [2:0]. Its value is 0.
This has no effect on the TPIU trace port.

[8] FIFOFULL supported The value of this bit is 1, indicating that FIFOFULL is supported. This bit is used in
conjunction with bit [23] of the ETMCCR.

[7:4] - Reserved, Read-As-Zero.

[3] - Reserved, Read-As-One.

[2:0] Maximum port size [2:0] Maximum ETM port size bits [2:0]. These bits are used in conjunction with bit [9]. The value
of these bits is b001.

Table 10-9 ETMSCR bit assignments (continued)

Bits Name Function

Reserved

31 0

Reserved

26 25 24

Trace control enable

Table 10-10 ETMTECR1 bit assignments

Bits Name Function

[31:26] - Reserved.

[25] Trace control enable Trace start/stop enable. The possible values of this bit are:
0 Tracing is unaffected by the trace start/stop logic.
1 Tracing is controlled by the trace on and off addresses configured for the trace

start/stop logic.
The trace start/stop resource, resource 0x5F, is unaffected by the value of this bit.

[24:0] - Reserved.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-15
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.7 ID Register, ETMIDR

The ETMIDR characteristics are:

Purpose Holds the ETM architecture variant, and defines the programmers model
for the ETM.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-6 shows the ETMIDR bit assignments.

Figure 10-6 ETMIDR bit assignments

Table 10-11 shows the ETMIDR bit assignments.

Implementor code

Support for Security Extensions

31 17 16 15 12 8 7 4 3 018 11

ETM architecture
version number

Load PC first

24 23 20 19

Major Minor

Implementation
revision

Processor
family

21

ReservedSupport for 32-bit Thumb instructions

Implements alternative branch packet encoding

Reserved

Table 10-11 ETMIDR bit assignments

Bits Name Function

[31:24] Implementor code These bits identify ARM as the implementor of the processor. The value of these bits is
01000001.

[23:21] - Reserved.

[20] Branch packet encoding The value of this bit is 1, indicating that alternative branch packet encoding is implemented.

[19] Security Extensions
support

The value of this bit is 0, indicating that the ETM behaves as if the processor is in Secure
state at all times.

[18] 32-bit Thumb instruction
tracing

The value of this bit is 1, indicating that a 32-bit Thumb instruction is traced as a single
instruction.

[17] - Reserved.

[16] Load PC first The value of this bit is 0, indicating that data tracing is not supported.

[15:12] Processor family The value of these bits is b1111, indicating that the processor family is not identified in this
register.

[11:8] Major ETM architecture
version

The value of these bits is b0010, indicating major architecture version number 3, ETMv3.

[7:4] Minor ETM architecture
version

The value of these bits is b0100, indicating minor architecture version number 4.

[3:0] Implementation revision The value of these bits is b0010, indicating implementation revision, 2.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-16
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.8 Configuration Code Extension Register, ETMCCER

The ETMCCER characteristics are:

Purpose Holds ETM configuration information additional to that in the ETMCCR.
See Configuration Code Register, ETMCCR on page 10-13.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-7 shows the ETMCCER bit assignments.

Figure 10-7 ETMCCER bit assignments

Table 10-12 shows the ETMCCER bit assignments.

Extended external
input bus size

31 12 3 0

Reserved, RAZ

11

Number of extended external input selectors

10 213

Set if data address comparison is not supported
Number of Instrumentation resources

16 1522 21 20 19

Set to 1 if all registers are readable

Number of EmbeddedICE watchpoint inputs

Trace Start/Stop block uses
EmbeddedICE inputs

EmbeddedICE Behavior Control
Register implemented

Table 10-12 ETMCCER bit assignments

Bits Name Function

[31:22] - Reserved. Read-As-Zero.

[21] EmbeddedICE behavior
control implemented

The value of this bit is 0, indicating that the ETMEIBCR is not implemented. For more
information on EmbeddedICE behavior see the Embedded Trace Macrocell Architecture
Specification.

[20] Trace Start/Stop block uses
EmbeddedICE watchpoint
inputs

The value of this bit is 1, indicating that the Trace Start/Stop block uses the EmbeddedICE
watchpoint inputs.

[19:16] EmbeddedICE watchpoint
inputs

The value of these bits is b0100, indicating that the number of EmbeddedICE watchpoint
inputs implemented is four. These inputs come from the DWT.

[15:13] Instrumentation resources The value of these bits is b000, indicating that no Instrumentation resources are supported.

[12] Data address comparisons The value of this bit is 1, indicating that data address comparisons are not supported.

[11] Readable registers The value of this bit is 1, indicating that all registers are readable.

[10:3] Extended external input bus The value of these bits is 0, indicating that the extended external input bus is not
implemented.

[2:0] Extended external input
selectors

The value of these bits is 0, indicating that extended external input selectors are not
implemented.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-17
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.9 TraceEnable Start/Stop EmbeddedICE Control Register, ETMTESSEICR

The ETMTESSEICR characteristics are:

Purpose Specifies the EmbeddedICE watchpoint comparator inputs that are used to
control the start/stop resource.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-8 shows the ETMTESSEICR bit assignments.

Figure 10-8 ETMTESSEICR bit assignments

Table 10-13 shows the ETMTESSEICR bit assignments.

10.3.10 Device Power-Down Status Register, ETMPDSR

The ETMPDSR characteristics are:

Purpose Indicates the power-down status of the ETM.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use an ETM.

Attributes See the register summary in Table 10-6 on page 10-9

Figure 10-9 on page 10-19 shows the ETMPDSR bit assignments.

Reserved, RAZ

31 16 15 0

Reserved, RAZ

4 3 2 1 4 3 2 1

19 4 3

Start resource select bitsStop resource select bits

20 18 17 2 1

Table 10-13 ETMTESSEICR bit assignments

Bits Name Function

[31:20] - Reserved, Read-as-zero.

[19:16] Stop resource selection Setting any of these bits to 1 selects the corresponding EmbeddedICE watchpoint input as a
TraceEnable stop resource. Bit [16] corresponds to input 1, bit [17] corresponds to input 2,
bit [18] corresponds to input 3, and bit [19] corresponds to input 4.

[15:4] - Reserved, Read-As-Zero.

[3:0] Start resource selection Setting any of these bits to 1 selects the corresponding EmbeddedICE watchpoint input as a
TraceEnable start resource. Bit [0] corresponds to input 1, bit [1] corresponds to input 2, bit [2]
corresponds to input 3, and bit [3] corresponds to input 4.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-18
ID032710 Non-Confidential

Embedded Trace Macrocell
Figure 10-9 ETMPDSR bit assignments

Table 10-14 shows the ETMPDSR bit assignments.

10.3.11 Integration Test Miscellaneous Inputs, ITMISCIN

The ITMISCIN characteristics are:

Purpose Integration test.

Usage constraints There are no usage constraints.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-10 shows the ITMISCIN bit assignments.

Figure 10-10 ITMISCIN bit assignments

Table 10-15 shows the ITMISCIN bit assignments.

Reserved, RAZ

31 01

ETM powered up

Table 10-14 ETMPDSR bit assignments

Bits Name Function

[31:1] - Reserved, Read-As-Zero.

[0] ETM powered up The value of this bit indicates whether you can access the ETM Trace Registers. The value of this bit is
always 1, indicating that the ETM Trace Registers can be accessed.

Reserved

31 5 4 3 2 1 0

COREHALT
Reserved

EXTIN[1:0]

Table 10-15 ITMISCIN bit assignments

Bits Name Function

[31:5] - Reserved.

[4] COREHALT A read of this bit returns the value of the COREHALT input pin.

[3:2] - Reserved.

[1:0] EXTIN[1:0] A read of these bits returns the value of the EXTIN[1:0] input pins.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-19
ID032710 Non-Confidential

Embedded Trace Macrocell
10.3.12 Integration Test Trigger Out, ITTRIGOUT

The ITMISCIN characteristics are:

Purpose Integration test.

Usage constraints You must set bit [0] of ETMITCTRL to use this register.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9

Figure 10-11 shows the ITTRIGOUT bit assignments.

Figure 10-11 ITTRIGOUT bit assignments

Table 10-16 shows the ITTRIGOUT bit assignments.

10.3.13 ETM Integration Test ATB Control 2, ETM_ITATBCTR2

The ETM_ITATBCTR2 characteristics are:

Purpose Integration test.

Usage constraints You must set bit [0] of ETMITCTRL to use this register.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9

Figure 10-12 shows the ETM_ITATBCTR2 bit assignments.

Figure 10-12 ETM_ITATBCTR2 bit assignments

Reserved

31 1 0

TRIGGER output value

Table 10-16 ITTRIGOUT bit assignments

Bits Name Function

[31:1] - Reserved

[0] TRIGGER output value A write to this bit sets the TRIGGER output.

Reserved

31 1 0

ATREADY input value
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-20
ID032710 Non-Confidential

Embedded Trace Macrocell
Table 10-17 shows the ETM_ITATBCTR2 bit assignments.

10.3.14 ETM Integration Test ATB Control 0, ETM_ITATBCTR0

The ETM_ITATBCTR0 characteristics are:

Purpose Integration test.

Usage constraints You must set bit [0] of ETMITCTRL to use this register.

Configurations This register is only available if the processor is configured to use the
ETM.

Attributes See the register summary in Table 10-6 on page 10-9.

Figure 10-13 shows the ETM_ITATBCTR0 bit assignments.

Figure 10-13 ETM_ITATBCTR0 bit assignments

Table 10-18 shows the ETM_ITATBCTR0 bit assignments.

Table 10-17 ETM_ITATBCTR2 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATREADY input value A read of this bit returns the value of the ETM ATREADY input.

Reserved

31 1 0

ATVALID output value

Table 10-18 ETM_ITATBCTR0 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATVALID output value A write to this bit sets the value of the ETM ATVALID output.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 10-21
ID032710 Non-Confidential

Chapter 11
Trace Port Interface Unit

This chapter describes the Cortex-M3 TPIU, the Trace Port Interface Unit that is specific to the
Cortex-M3 processor. It contains the following sections:
• About the Cortex-M3 TPIU on page 11-2
• TPIU functional description on page 11-3
• TPIU programmers model on page 11-5.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-1
ID032710 Non-Confidential

Trace Port Interface Unit
11.1 About the Cortex-M3 TPIU
The Cortex-M3 TPIU is an optional component that acts as a bridge between the on-chip trace
data from the Embedded Trace Macrocell (ETM) and the Instrumentation Trace Macrocell
(ITM), with separate IDs, to a data stream. The TPIU encapsulates IDs where required, and the
data stream is then captured by a Trace Port Analyzer (TPA).

The Cortex-M3 TPIU is specially designed for low-cost debug. It is a special version of the
CoreSight TPIU. Your implementation can replace the Cortex-M3 TPIU with other CoreSight
components if your implementation requires the additional features of the CoreSight TPIU.

In this chapter, the term TPIU refers to the Cortex-M3 TPIU. For information about the
CoreSight TPIU, see the ARM CoreSight Components Technical Reference Manual.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-2
ID032710 Non-Confidential

Trace Port Interface Unit
11.2 TPIU functional description
There are two configurations of the TPIU:
• A configuration that supports ITM debug trace.
• A configuration that supports both ITM and ETM debug trace.

If your implementation requires no trace support then the TPIU might not be present.

Note
 If your Cortex-M3 system uses the optional ETM component, the TPIU configuration supports
both ITM and ETM debug trace. See Chapter 10 Embedded Trace Macrocell.

11.2.1 TPIU block diagrams

Figure 11-1 shows the component layout of the TPIU for both configurations.

Figure 11-1 TPIU block diagram

11.2.2 TPIU Formatter

The formatter inserts source ID signals into the data packet stream so that trace data can be
re-associated with its trace source. The formatter is always active when the Trace Port Mode is
active.

The formatting protocol is described in the CoreSight Architecture Specification. You must
enable synchronization packets in the DWT to provide synchronization for the formatter.

When the formatter is enabled, the NULL ID and bytes of 0x00 data can be inserted if there is
no data to output after a frame has been started. Once the frame has been completed, full
synchronization packets will be inserted until new data is ready to be output.

ATB
Interface

Formatter

APB
Interface

Trace Out
(serializer)

ITM ATB Slave Port

APB Slave Port

TRACECLKIN

TRACECLK

TRACEDATA [3:0]

TRACESWO

CLK Domain TRACECLKIN Domain

† ATB
Interface

† ETM ATB Slave Port

† Optional component
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-3
ID032710 Non-Confidential

Trace Port Interface Unit
11.2.3 Serial Wire Output format

The TPIU can output trace data in a Serial Wire Output (SWO) format:

• TPIU_DEVID specifies the formats that are supported. See TPIU_DEVID on page 11-12.

• TPIU_SPPR specifies the SWO format in use. See the ARMv7-M Architecture Reference
Manual.

When one of the two SWO modes is selected, you can enable the TPIU to bypass the formatter
for trace output. If the formatter is bypassed, only the ITM and DWT trace source passes
through. The TPIU accepts and discards data from the ETM. This function can be used to
connect a device containing an ETM to a trace capture device that is only able to capture SWO
data.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-4
ID032710 Non-Confidential

Trace Port Interface Unit
11.3 TPIU programmers model
Table 11-1 provides a summary of the TPIU registers. Depending on the implementation of your
processor, the TPIU registers might not be present, or the CoreSight TPIU might be present
instead. Any register that is configured as not present reads as zero.

Table 11-1 TPIU registers

Address Name Type Reset Description

0xE0040000 TPIU_SSPSR RO 0x0xx Supported Parallel Port Size Register

0xE0040004 TPIU_CSPSR RW 0x01 Current Parallel Port Size Register

0xE0040010 TPIU_ACPR RW 0x0000 Asynchronous Clock Prescaler Register, TPIU_ACPR on page 11-6

0xE00400F0 TPIU_SPPR RW 0x01 Selected Pin Protocol Register

0xE0040300 TPIU_FFSR RO 0x08 Formatter and Flush Status Register, TPIU_FFSR on page 11-6

0xE0040304 TPIU_FFCR RW 0x102 Formatter and Flush Control Register, TPIU_FFCR on page 11-7

0xE0040308 TPIU_FSCR RO 0x00 Formatter Synchronization Counter Register

0xE0040EE8 TRIGGER RO 0x0 TRIGGER on page 11-8

0xE0040EEC FIFO data 0 RO 0x--000000 Integration FIFO 0 Data on page 11-8

0xE0040EF0 ITATBCTR2 RO 0x0 ITATBCTR2 on page 11-9

0xE0040EFC FIFO data 1 RO 0x--000000 Integration FIFO 1 Data on page 11-10

0xE0040EF8 ITATBCTR0 RO 0x0 ITATBCTR0 on page 11-11

0xE0040F00 ITCTRL RW 0x0 Integration Mode Control, TPIU_ITCTRL on page 11-11

0xE0040FA0 CLAIMSET RW 0xF Claim tag set

0xE0040FA4 CLAIMCLR RW 0x0 Claim tag clear

0xE0040FC8 DEVID RO - TPIU_DEVID on page 11-12

0xE0040FD0 PID4 RO 0x04 Peripheral identification registers

0xE0040FD4 PID5 RO 0x00

0xE0040FD8 PID6 RO 0x00

0xE0040FDC PID7 RO 0x00

0xE0040FE0 PID0 RO 0xA1

0xE0040FE4 PID1 RO 0xB9

0xE0040FE8 PID2 RO 0x0B

0xE0040FEC PID3 RO 0x00

0xE0040FF0 CID0 RO 0x0D Component identification registers

0xE0040FF4 CID1 RO 0x90

0xE0040FF8 CID2 RO 0x05

0xE0040FFC CID3 RO 0xB1
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-5
ID032710 Non-Confidential

Trace Port Interface Unit
The following sections describe the TPIU registers whose implementation is specific to this
processor. The Formatter, Integration Mode Control, and Claim Tag registers are described in
the CoreSight Components Technical Reference Manual. Other registers are described in the
ARMv7-M Architecture Reference Manual.

11.3.1 Asynchronous Clock Prescaler Register, TPIU_ACPR

The TPIU_ACPR characteristics are:

Purpose Scales the baud rate of the asynchronous output.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-2 shows the TPIU_ACPR bit assignments.

Figure 11-2 TPIU_ACPR bit assignments

Table 11-2 shows the TPIU_ACPR bit assignments.

11.3.2 Formatter and Flush Status Register, TPIU_FFSR

The TPIU_FFSR characteristics are:

Purpose Indicates the status of the TPIU formatter.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-3 shows the TPIU_FFSR bit assignments.

Figure 11-3 TPIU_FFSR bit assignments

31 13 0

Reserved

12

PRESCALER

Table 11-2 TPIU_ACPR bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/SBZP.

[12:0] PRESCALER Divisor for TRACECLKIN is Prescaler + 1.

31 2 0

Reserved

1

FlInProg

3

FtStopped
TCPresent
FtNonStop

4

ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-6
ID032710 Non-Confidential

Trace Port Interface Unit
Table 11-3 shows the TPIU_FFSR bit assignments.

11.3.3 Formatter and Flush Control Register, TPIU_FFCR

The TPIU_FFCR characteristics are:

Purpose Controls the TPIU formatter.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-4 shows the TPIU_FFCR bit assignments.

Figure 11-4 TPIU_FFCR bit assignments

Table 11-4 shows the TPIU_FFCR bit assignments.

The TPIU can output trace data in a Serial Wire Output (SWO) format. See Serial Wire Output
format on page 11-4.

Table 11-3 TPIU_FFSR bit assignments

Bits Name Function

[31:4] - Reserved

[3] FtNonStop Formatter cannot be stopped

[2] TCPresent This bit always reads zero

[1] FtStopped This bit always reads zero

[0] FlInProg This bit always reads zero

Reserved

31 9 8 7 2 1 0

Reserved

TrigIn EnFCont
Reserved

Table 11-4 TPIU_FFCR bit assignments

Bits Name Function

[31:9] - Reserved.

[8] TrigIn This bit Reads-As-One (RAO), specifying that triggers are inserted when a trigger pin is asserted.

[7:2] - Reserved.

[1] EnFCont Enable continuous formatting. Value can be:
0 = Continuous formatting disabled.
1 = Continuous formatting enabled.

[0] - Reserved.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-7
ID032710 Non-Confidential

Trace Port Interface Unit
When one of the two SWO modes is selected, bit [1] of TPIU_FFCR enables the formatter to
be bypassed. If the formatter is bypassed, only the ITM and DWT trace source passes through.
The TPIU accepts and discards data from the ETM. This function is can be used to connect a
device containing an ETM to a trace capture device that is only able to capture SWO data.
Enabling or disabling the formatter causes momentary data corruption.

Note
 If TPIU_SPPR is set to select Parallel Port Mode, the formatter is automatically enabled. If you
then select one of the SWO modes, TPIU_FFCR reverts to its previously programmed value.

11.3.4 TRIGGER

The TRIGGER characteristics are:

Purpose Integration test of the TRIGGER input.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-5 shows the TRIGGER bit assignments.

Figure 11-5 TRIGGER bit assignments

Table 11-5 shows the TRIGGER bit assignments.

11.3.5 Integration FIFO 0 Data

The Integration FIFO 0 Data characteristics are:

Purpose Trace data integration testing.

Usage constraints You must set bit [1] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5

Figure 11-6 on page 11-9 shows the Integration FIFO 0 Data bit assignments.

Reserved

31 1 0

TRIGGER input value

Table 11-5 TRIGGER bit assignments

Bits Name Function

[31:1] - Reserved

[0] TRIGGER input value When read, this bit returns the TRIGGER input.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-8
ID032710 Non-Confidential

Trace Port Interface Unit
Figure 11-6 Integration FIFO 0 Data bit assignments

Table 11-6 shows the Integration FIFO 0 Data bit assignments.

11.3.6 ITATBCTR2

The ITATBCTR2 characteristics are:

Purpose Integration test.

Usage constraints You must set bit [0] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-7 shows the ITATBCTR2 bit assignments.

Figure 11-7 ITATBCTR2 bit assignments

FIFO 0 data 2 FIFO 0 data 1 FIFO 0 data 0

31 029 2728 26 2425 23 16 15 8 7

FIFO 0 byte count
FIFO 0 ATVALID
FIFO 1 byte count
FIFO 1 ATVALID

30

Reserved

Table 11-6 Integration FIFO 0 bit assignments

Bits Name Function

[31:30] - Reserved

[29] FIFO 1 ATVALID input Returns the value of the ATVALID2 signal.

[28:27] FIFO 1 byte count Number of bytes of FIFO 1 trace data since last read of Integration ITM Data Register.

[26] FIFO 0 ATVALID input Returns the value of the ATVALID1 signal.

[25:24] FIFO 0 byte count Number of bytes of FIFO 0 trace data since last read of Integration ETM Data Register.

[23:16] FIFO 0 data 2 These fields contain ETM data if the ETM is present. If the ETM is not present, these fields
contain ITM data. The TPIU discards this data when the register is read.

[15:8] FIFO 0 data 1

[7:0] FIFO 0 data 0

31 0

Reserved

1

ATREADY1
ATREADY2
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-9
ID032710 Non-Confidential

Trace Port Interface Unit
Table 11-7 shows the ITATBCTR2 bit assignments.

11.3.7 Integration FIFO 1 Data

The Integration FIFO 1 Data characteristics are:

Purpose Trace data integration testing.

Usage constraints You must set bit [1] of TPIU_ITCTRL to use this register. See Integration
Mode Control, TPIU_ITCTRL on page 11-11.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5

Figure 11-8 shows the Integration FIFO 1 Data bit assignments.

Figure 11-8 Integration FIFO 1 Data bit assignments

Table 11-8 shows the Integration FIFO 1 Data bit assignments.

Table 11-7 ITATBCTR2 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATREADY1, ATREADY2 This bit sets the value of both the ETM and ITM ATREADY
outputs, if the TPIU is in integration test mode.

31 30 29 28 27 26 25 24 23 16 15 8 7 0

FIFO 1 data 2 FIFO 1 data 1 FIFO 1 data 0

FIFO 0 byte count
FIFO 0 ATVALID input
FIFO 1 byte count
FIFO 1 ATVALID input
Reserved

Table 11-8 Integration FIFO 1 Data bit assignments

Bits Name Function

[31:30] - Reserved

[29] FIFO 1 ATVALID input Returns the value of the FIFO 1 ATVALID2 signal.

[28:27] FIFO 1 byte count Number of bytes of FIFO 1 trace data since last read of Integration ITM Data Register.

[26] FIFO 0 ATVALID input Returns the value of the FIFO 0 ATVALID1 signal.

[25:24] FIFO 0 byte count Number of bytes of FIFO 0 trace data since last read of Integration ETM Data Register.

[23:16] FIFO 1 data 2 These fields contain ITM trace data if an ETM is present. The TPIU discards this data
when the register is read.

[15:8] FIFO 1 data 1

[7:0] FIFO 1 data 0
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-10
ID032710 Non-Confidential

Trace Port Interface Unit
11.3.8 ITATBCTR0

The ITATBCTR0 characteristics are:

Purpose Integration test.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-9 shows the ITATBCTR0 bit assignments.

Figure 11-9 ITATBCTR0 bit assignments

Table 11-9 shows the ITATBCTR0 bit assignments.

11.3.9 Integration Mode Control, TPIU_ITCTRL

The TPIU_ITCTRL characteristics are:

Purpose Specifies normal or integration mode for the TPIU.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-10 shows the TPIU_ITCTRL bit assignments.

Figure 11-10 TPIU_ITCTRL bit assignments

31 0

Reserved

1

ATVALID1
ATVALID2

Table 11-9 ITATBCTR0 bit assignments

Bits Name Function

[31:1] - Reserved

[0] ATVALID1, ATVALID2 A read of this bit returns the value of ATVALIDS1 OR-ed with
ATVALIDS2.

Reserved

31 2 1 0

Mode
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-11
ID032710 Non-Confidential

Trace Port Interface Unit
Table 11-10 shows the TPIU_ITCTRL bit assignments.

11.3.10 TPIU_DEVID

The TPIU_DEVID characteristics are:

Purpose Indicates the functions provided by the TPIU for use in topology
detection.

Usage constraints There are no usage constraints.

Configurations This register is available in all processor configurations.

Attributes See Table 11-1 on page 11-5.

Figure 11-11 shows the TPIU_DEVID bit assignments.

Figure 11-11 TPIU_DEVID bit assignments

Table 11-11 shows the TPIU_DEVID bit assignments.

Table 11-10 TPIU_ITCTRL bit assignments

Bits Name Function

[31:2] - Reserved.

[1:0] Mode Specifies the current mode for the TPIU:
b00 normal mode
b01 integration test mode
b10 integration data test mode
b11 Reserved.
In integration data test mode, the trace output is disabled, and data can be read
directly from each input port using the integration data registers.

Reserved

31 12 11 10 9 8 6 5 0

Asynchronous Serial Wire Output (NRZ)
Asynchronous Serial Wire Output (Manchester)

Parallel trace port mode
Minimum buffer size

Asynchronous TRACECLKIN

4

Number of trace inputs

Table 11-11 TPIU_DEVID bit assignments

Bits Name Function

[31:12] - Reserved

[11] Asynchronous Serial Wire
Output (NRZ)

This bit Reads-As-One (RAO), indicating that the output is
supported.

[10] Asynchronous Serial Wire
Output (Manchester)

This bit Reads-As-One (RAO), indicating that the output is
supported.

[9] Parallel trace port mode This bit Reads-As-Zero (RAZ), indicating that parallel trace port
mode is supported.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-12
ID032710 Non-Confidential

Trace Port Interface Unit
[8:6] Minimum buffer size Specifies the minimum TPIU buffer size:
b010 = 4 bytes

[5] Asynchronous
TRACECLKIN

Specifies whether TRACECLKIN can be asynchronous to CLK:
b1 = TRACECLKIN can be asynchronous to CLK.

[4:0] Number of trace inputs Specifies the number of trace inputs:
b000000 = 1 input
b000001 = 2 inputs
If your implementation includes an ETM, the value of this field is
b000001.

Table 11-11 TPIU_DEVID bit assignments (continued)

Bits Name Function
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. 11-13
ID032710 Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

Table A-1 Differences between issue E and issue F

Change Location

Introductory processor information updated Issue H distributes this information between About the processor
on page 1-2 and Features on page 1-3 and removes duplicate
information from these sections.

Processor block diagram updated Figure 2-1 on page 2-2

Introductory information added, including:

• TPIU subsection

• Addition of note to SW/SWJ-DP subsection

• ROM table subsection.

Issue H removes this information.

Introductory processor core information updated

APB bus now version 3.0 Architecture and protocol information on page 1-7

Configurable options information expanded to include:

• Added DWT configurability information

• New subsections for ITM, AHB-AP, FPB and Observation.

Configurable options on page 1-5

New subsection added to list changes in functionality between
r1p1 and r2p0

Differences in functionality between r1p1 and r2p0 on page 1-10

Information about the programmers model updated Issue H distributes this information between Operating modes on
page 3-3 and Operating states on page 3-3.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-1
ID032710 Non-Confidential

Revisions
Definition of ICI field of Execution Program Status Register
updated

Issue H removes this information.

Table of nonsupported Thumb instructions removed.

Second footnote on Table 5-1 removed. Issue H removes this information.

Addition of note to vector table and reset description

Description of SLEEPING and SLEEPDEEP signals updated.

Description of extending sleep functionality added

Addition of Auxiliary Control Register Auxiliary Control Register, ACTLR on page 4-5

Irq 0 to 31 Priority Register amended to Irq 0 to 3 Priority
Register

Issue H removes this information.

Irq 236 to 239 Priority Register amended to Irq 224 to 239
Priority Register

HCLK changed to FCLK

Addition of ascending MPU region priority information About the MPU on page 5-2

Extra paragraph added. Issue H removes this information.

Debug Core Register Selector Register REGSEL bit field
function updated

Paragraph added about removing FPB

Addition of note about configuring flash patch registers to be
present or not

FPB programmers model on page 7-10

First bullet point updated About the DWT on page 8-2

Addition of note about configuring DWT registers to be present
or not

DWT Programmers Model on page 8-4

DWT Control Register reset state updated Table 8-1 on page 8-4

DWT Control Register bit assignments updated Issue H removes this information.

Addition of note about configuring ITM registers to be present or
not

ITM programmers model on page 9-4

ITM Trace Control Register TSENA field bit function updated

Addition of note about configuring AHB-AP registers to be
present or not

AHB-AP programmers model on page 7-6

AHB-AP Banked Data Register DATA field reset value removed Issue H removes this information.

Addition of information about absence of debug functionality About debug on page 7-2

Information about exclusive memory accesses updated Issue H removes this information.

Note about bit-band accesses updated Bit-banding on page 3-16

ETM block diagram updated Figure 10-1 on page 10-3

Table A-1 Differences between issue E and issue F (continued)

Change Location
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-2
ID032710 Non-Confidential

Revisions
HCLK and CLK replaced by FCLK Issue H removes this information.

ETM Trigger Even Register description upgraded

ETM Status Register description updated

TraceEnable register replaced by Trace Start/Stop Resource
Control

TraceEnable Control 2 register added

Lock Status Register added

Description of FIFOFULL Region Register added

Description of FIFOFULL Level Register updated

Description of CoreSight Trace ID Register updated

Description ETM Control Register implementation bits expanded Main Control Register, ETMCR on page 10-10

Description of TraceEnable Control 1 Register updated TraceEnable Control 1 Register, ETMTECR1 on page 10-15

Description ETM ID Register updated to reflect revision 2 ID Register, ETMIDR on page 10-16

Subsection describing ETM Event Resources added Resources on page 10-3

Subsection describing Cross Trigger Interface added Recommended CTI connections on page 10-7

Branch status interface section updated Issue H removes this information.

Note about HADDRICore and HTRANSICore removed

Example of an opcode sequence timing diagram updated

Description of APB interface inputs added

Addition of note about configuring TPIU registers to be present
or not

TPIU programmers model on page 11-5

The following TPIU registers removed from summary table and
descriptions:

• Trigger control registers

• EXTCTL port registers

• Test pattern registers.

Issue H removes this information.

The following TPIU registers added to the summary table and
descriptions:

• Integration Register: TRIGGER

• Integration Mode Control Register

• Integration Register: FIFO data 0

• Integration Register: FIFO data 1

• Claim tag set register

• Claim tag clear register

• Device ID register

• PID registers

• CID registers.

Table A-1 Differences between issue E and issue F (continued)

Change Location
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-3
ID032710 Non-Confidential

Revisions
Table A-2 Differences between issue F and issue G

Change Location

Wake-up Interrupt Controller (WIC) added to Cortex-M3 block
diagram

Figure 2-1 on page 2-2

Section 1-2 and section 1-3 combined Issue H distributes this information between Features on
page 1-3, Interfaces on page 1-4, and Configurable options on
page 1-5.

New subsection added to list changes in functionality between
r1p1 and r2p0

Differences in functionality between r1p1 and r2p0 on page 1-10

New subsection added to describe the WIC Low power modes on page 6-3

New bullet point to describe FIXHMASTERTYPE pin Differences in functionality between r1p1 and r2p0 on page 1-10

Table of supported instruction removed Issue H reinstates this information in Table 3-1 on page 3-4.

More information added about the stacked xPSR Issue H removes this information.

Reset value of Configuration Control Register changed to
0x00000200

System and Vendor_SYS memory regions added to table of
memory region permissions

Memory region for Private Peripheral Bus changed to +0000000

SLEEPHOLDREQ changed to SLEEPHOLDREQn

SLEEPHOLDACK changed to SLEEPHOLDACKn

DEEPSLEEP signal changed to SLEEPDEEP

DBGRESTARTACK changed to DBGRESTARTED

DBGRESTARTREQ changed to DBGRESTART

New subsection added to describe the WIC

Address of Irq 224 to 239 Priority Register changed to 0xE000E4EC

Enhanced description of function of C_MASKINTS field

Settings for DWT Function Registers updated

Minor change to timing information of ETMIA
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-4
ID032710 Non-Confidential

Revisions
Note
 Issue H of this book is significantly reorganized and simplified to eliminate duplication of
information contained in the ARM Architecture Reference Manual and other ARM
documentation.

Change to timing information for ETMIVALID Issue H removes this information.

SLEEPHOLDREQn removed from table of miscellaneous input
ports timing parameters

Table of low power input ports timing parameters added

FIXHMASTERTYPE added to table of debug input ports timing
parameters

Input changed to Output in table header

SLEEPING, SLEEPDEEP, and SLEEPHOLDACKn removed
from table of miscellaneous output ports timing parameters

SLEEPDEEP, SLEEPING, SLEEPHOLDREQ, and
SLEEPHOLDACK removed

New section added to describe the low power interface signals

New section added to describe the WIC interface signals

SLEEPHOLDACKn removed from table of miscellaneous
signals

Asserted changed to de-asserted in the description of
SLEEPHOLDREQn in table of low power interface signals

FIXMASTERTPYE added to list of AHB-AP interface signals

Table A-2 Differences between issue F and issue G (continued)

Change Location

Table A-3 Differences between issue G and issue H

Change Location

Chapter 1 simplified to provide only a high-level description of
the processor. Some information to Chapter 2.

Chapter 1 Introduction

Chapter 2 Functional Description

Removed the following sections from Chapter 1:

• Execution pipeline stages

• Prefetch unit

• Branch target forwarding

• Store buffers.

See the ARMv7-M Architecture Reference Manual
and the implementation documentation for the
processor.

Added functional description chapter Chapter 2 Functional Description

Simplified description of the programmers model and modes of
operation and execution

About the programmers model on page 3-2

Modes of operation and execution on page 3-3

Added cycle counts to instruction set summary Instruction set summary on page 3-4
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-5
ID032710 Non-Confidential

Revisions
Descriptions of the memory system and of exceptions moved to
Chapter 3.

Chapter 3 Programmers Model

Component-specific registers moved from System Control
chapter to appropriate chapters within the manual.

Chapter 4 System Control

Deleted Clocking and Resets chapter. See the implementation documentation for the
processor.

Deleted Power Management chapter.

In the Memory Protection Unit and Nested Vector Interrupt
Controller chapters, removed description of
architecturally-defined registers.

Reorganized debug description into a single chapter. Chapter 7 Debug

Deleted Bus Interface chapter and moved high-level information
to appropriate chapters.

Chapter 1 Introduction

Chapter 2 Functional Description

Chapter 3 Programmers Model

Deleted Debug Port chapter and incorporated general information
from this chapter into chapters 2 and 7.

Chapter 2 Functional Description

Chapter 7 Debug

Moved information from the System Debug chapter to create new
chapters for the Data Watchpoint and Trace Unit and the
Instrumentation Trace Macrocell Unit.

Chapter 8 Data Watchpoint and Trace Unit

Chapter 9 Instrumentation Trace Macrocell Unit

Reorganized Embedded Trace Macrocell description into a single
chapter.

Chapter 10 Embedded Trace Macrocell

Removed signal information and architecturally-defined register
descriptions from the Trace Port Interface Unit chapter.

Removed duplicate information. See the ARMv7-M
Architecture Reference Manual and the
implementation documentation for the processor.

Moved instruction timing information to chapter 3. Instruction set summary on page 3-4

Removed AC Characteristics and Signal Descriptions chapters. See the implementation documentation for the
processor.

Table A-3 Differences between issue G and issue H (continued)

Change Location
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. A-6
ID032710 Non-Confidential

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a core that the attempted memory access is invalid or not allowed or
that the data returned by the memory access is invalid. An abort can be caused by the external or
internal memory system as a result of attempting to access invalid or protected instruction or data
memory.

See also Data Abort, External Abort and Prefetch Abort.

Addressing modes Various mechanisms, shared by many different instructions, for generating values used by the
instructions.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only supports a
subset of the functionality provided by the AMBA AXI protocol. The full AMBA AHB protocol
specification includes a number of features that are not commonly required for master and slave IP
developments and ARM recommends only a subset of the protocol is usually used. This subset is
defined as the AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the ARM
open standard for on-chip buses. It is an on-chip bus specification that details a strategy for the
interconnection and management of functional blocks that make up a System-on-Chip (SoC). It aids
in the development of embedded processors with one or more CPUs or signal processors and
multiple peripherals. AMBA complements a reusable design methodology by defining a common
backbone for SoC modules.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-1
ID032710 Non-Confidential

Glossary
Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that helps to
reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic functions
required by the majority of AMBA AHB slave and master designs, particularly when used with
a multi-layer AMBA interconnect. In most cases, the extra facilities provided by a full AMBA
AHB interface are implemented more efficiently by using an AMBA AXI protocol interface.

AHB Trace Macrocell
A hardware macrocell that, when connected to a processor core, outputs data trace information
on a trace port.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size
is said to be aligned. Aligned words and halfwords have addresses that are divisible by four and
two respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses
that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

Advanced Trace Bus (ATB)
A bus used by trace devices to share CoreSight capture resources.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function. It can be
custom-built or mass-produced.

Architecture The organization of hardware and/or software that characterizes a processor and its attached
components, and enables devices with similar characteristics to be grouped together when
describing their behavior, for example, Harvard architecture, instruction set architecture,
ARMv7-M architecture.

ARM instruction An instruction of the ARM Instruction Set Architecture (ISA). These cannot be executed by the
Cortex-M3 processor.

ARM state The processor state in which the processor executes the instructions of the ARM ISA. The
processor only operates in Thumb state, never in ARM state.

ASIC See Application Specific Integrated Circuit.

ATB See Advanced Trace Bus.

ATB bridge A synchronous ATB bridge provides a register slice to facilitate timing closure through the
addition of a pipeline stage. It also provides a unidirectional link between two synchronous ATB
domains.

An asynchronous ATB bridge provides a unidirectional link between two ATB domains with
asynchronous clocks. It is intended to support connection of components with ATB ports
residing in different clock domains.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-2
ID032710 Non-Confidential

Glossary
Base register A register specified by a load or store instruction that is used to hold the base value for the
instruction’s address calculation. Depending on the instruction and its addressing mode, an
offset can be added to or subtracted from the base register value to form the address that is sent
to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address calculation so that
the modified address is changed to the next higher or lower sequential address in memory. This
means that it is not necessary to fetch the target address for successive instruction transfers and
enables faster burst accesses to sequential memory.

Beat Alternative word for an individual data transfer within a burst. For example, an INCR4 burst
comprises four beats.

BE-8 Big-endian view of memory in a byte-invariant system.

See also BE-32, LE, Byte-invariant and Word-invariant.

BE-32 Big-endian view of memory in a word-invariant system.

See also BE-8, LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or halfword
within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the halfword at that
address.

See also Little-endian memory.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and TDO,
through which test data is shifted. Processors can contain several shift registers to enable you to
access selected parts of the device.

Branch folding Branch folding is a technique where the branch instruction is completely removed from the
instruction stream presented to the execution pipeline.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of
register contents, memory locations, variable values at fixed points in the program execution to
test that the program is operating correctly. Breakpoints are removed after the program is
successfully tested.

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is
no requirement to supply an address for any of the transfers after the first one. This increases the
speed at which the group of transfers can occur. Bursts over AMBA are controlled using signals
to indicate the length of the burst and how the addresses are incremented.

See also Beat.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-3
ID032710 Non-Confidential

Glossary
Byte An 8-bit data item.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when
switching between little-endian and big-endian operation. When a data item larger than a byte
is loaded from or stored to memory, the bytes making up that data item are arranged into the
correct order depending on the endianness of the memory access. The ARM architecture
supports byte-invariant systems in ARMv6 and later versions. When byte-invariant support is
selected, unaligned halfword and word memory accesses are also supported. Multi-word
accesses are expected to be word-aligned.

See also Word-invariant.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock that
results to control the operating state of the macrocell.

Clocks Per Instruction (CPI)
See Cycles Per Instruction (CPI).

Cold reset Also known as power-on reset.

See also Warm reset.

Context The environment that each process operates in for a multitasking operating system.

See also Fast context switch.

Core A core is that part of a processor that contains the ALU, the datapath, the general-purpose
registers, the Program Counter, and the instruction decode and control circuitry.

Core reset See Warm reset.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

CPI See Cycles per instruction.

Cycles Per instruction (CPI)
Cycles per instruction (or clocks per instruction) is a measure of the number of computer
instructions that can be performed in one clock cycle. This figure of merit can be used to
compare the performance of different CPUs that implement the same instruction set against each
other. The lower the value, the better the performance.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data memory
location. An exception must be taken if the processor attempts to use the data that caused the
abort.

See also Abort.

DCode Memory Memory space at 0x00000000 to 0x1FFFFFFFF.

Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system bus. The
DAP is the term used to encompass a set of modular blocks that support system wide debug. The
DAP is a modular component, intended to be extendable to support optional access to multiple
systems such as memory mapped AHB and CoreSight APB through a single debug interface.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Embedded Trace Buffer
The ETB provides on-chip storage of trace data using a configurable sized RAM.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-4
ID032710 Non-Confidential

Glossary
Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction trace
information on a trace port.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

Exception An error or event which can cause the processor to suspend the currently executing instruction
stream and execute a specific exception handler or interrupt service routine. The exception could
be an external interrupt or NMI, or it could be a fault or error event that is considered serious
enough to require that program execution is interrupted. Examples include attempting to
perform an invalid memory access, external interrupts, and undefined instructions. When an
exception occurs, normal program flow is interrupted and execution is resumed at the
corresponding exception vector. This contains the first instruction of the interrupt service
routine to deal with the exception.

Exception handler
See Interrupt service routine.

Exception vector See Interrupt vector.

External PPB PPB memory space at 0xE0040000 to 0xE00FFFFF.

Flash Patch and Breakpoint unit (FPB)
A set of address matching tags, that reroute accesses into flash to a special part of SRAM. This
permits patching flash locations for breakpointing and quick fixes or changes.

Formatter The formatter is an internal input block in the ETB and TPIU that embeds the trace source ID
within the data to create a single trace stream.

Halfword A 16-bit data item.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts when a
breakpoint or watchpoint is encountered. All processor state, coprocessor state, memory and
input/output locations can be examined and altered by the JTAG interface.

See also Monitor debug-mode.

Host A computer that provides data and other services to another computer. Especially, a computer
providing debugging services to a target being debugged.

HTM See AHB Trace Macrocell.

ICode Memory Memory space at 0x00000000 to 0x1FFFFFFF.

Illegal instruction An instruction that is architecturally Undefined.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific
The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the
option chosen does not affect software compatibility.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-5
ID032710 Non-Confidential

Glossary
Instruction cycle count
The number of cycles for which an instruction occupies the Execute stage of the pipeline.

Instrumentation trace
A component for debugging real-time systems through a simple memory-mapped trace
interface, providing printf style debugging.

Intelligent Energy Management (IEM)
A technology that enables dynamic voltage scaling and clock frequency variation to be used to
reduce power consumption in a device.

Internal PPB PPB memory space at 0xE0000000 to 0xE003FFFF.

Interrupt service
routine

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory that contains the first instruction of the
corresponding interrupt service routine.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard defines a
boundary-scan architecture used for in-circuit testing of integrated circuit devices. It is
commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for debug
access.

JTAG-DP See JTAG Debug Port.

LE Little-endian view of memory in both byte-invariant and word-invariant systems. See also
Byte-invariant, Word-invariant.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or halfword
within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the halfword at that
address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Load Store Unit (LSU)
The part of a processor that handles load and store transfers.

LSU See Load Store Unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system comprises
several macrocells (such as a processor, an ETM, and a memory block) plus application-specific
logic.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-6
ID032710 Non-Confidential

Glossary
Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value that was
most recently written to that location. Memory coherency is made difficult when there are
multiple possible physical locations that are involved, such as a system that has main memory,
a write buffer and a cache.

Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does
not modify addresses.

Microprocessor See Processor.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor enables a
software abort handler provided by the debug monitor or operating system debug task. When a
breakpoint or watchpoint is encountered, this enables vital system interrupts to continue to be
serviced while normal program execution is suspended.

See also Halt mode.

MPU See Memory Protection Unit.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect has a
direct link to each slave, The link is not shared with other masters. This enables each master to
process transfers in parallel with other masters. Contention only occurs in a multi-layer
interconnect at a payload destination, typically the slave.

Nested Vectored Interrupt Controller (NVIC)
Provides the processor with configurable interrupt handling abilities.

NMI See Non-maskable interrupt

Non-maskable interrupt
 A NonMaskable Interrupt (NMI) can be signalled by a peripheral or triggered by software. This
is the highest priority exception other than reset. It is permanently enabled and has a fixed
priority of -2. NMIs cannot be:

• masked or prevented from activation by any other exception

• preempted by any exception other than Reset.

NVIC See Nested Vectored Interrupt Controller.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur because an
instruction flow is different from that assumed or predicted.

PFU See Prefetch Unit.

PMU See Power Management Unit.

Power Management Unit (PMU)
Provides the processor with power management capability.

Power-on reset See Cold reset.

PPB See Private Peripheral Bus.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the pipeline
before the preceding instructions have finished executing. Prefetching an instruction does not
mean that the instruction has to be executed.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-7
ID032710 Non-Confidential

Glossary
Prefetch Abort An indication from a memory system to the core that an instruction has been fetched from an
illegal memory location. An exception must be taken if the processor attempts to execute the
instruction. A Prefetch Abort can be caused by the external or internal memory system as a
result of attempting to access invalid instruction memory.

See also Data Abort, Abort.

Prefetch Unit (PFU) The PFU fetches instructions from the memory system that can supply one word each cycle. The
PFU buffers up to three word fetches in its FIFO, which means that it can buffer up to three
32-bit Thumb instructions or six 16-bit Thumb instructions.

Private Peripheral Bus
Memory space at 0xE0000000 to 0xE00FFFFF.

Processor A processor is the circuitry in a computer system required to process data using the computer
instructions. It is an abbreviation of microprocessor. A clock source, power supplies, and main
memory are also required to create a minimum complete working computer system.

RW1C Register bits marked RW1C can be read normally and support write-one-to-clear. A read then
write of the result back to the register will clear all bits set. RW1C protects against
read-modify-write errors occurring on bits set between reading the register and writing the value
back (since they are written as zero, they will not be cleared).

RealView ICE A system for debugging embedded processor cores using a JTAG interface.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be written as 0
and read as 0.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology
using a standard JTAG TAP interface. Each device contains at least one TAP controller
containing shift registers that form the chain connected between TDI and TDO, through which
test data is shifted. Processors can contain several shift registers to enable you to access selected
parts of the device.

Serial-Wire Debug Port
An optional external interface for the DAP that provides a serial-wire bidirectional debug
interface.

Serial-Wire JTAG
Debug Port

A standard debug port that combines JTAG-DP and SW-DP.

SW-DP See Serial-Wire Debug Port.

SWJ-DP See Serial-Wire JTAG Debug Port.

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used to ensure
memory synchronization. That is, the LDREX and STREX instructions.

System memory Memory space at 0x20000000 to 0xFFFFFFFF, excluding PPB space at 0xE0000000 to 0xE00FFFFF.

TAP See Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and
control interface to a JTAG boundary-scan architecture. The mandatory terminals are TDI,
TDO, TMS, and TCK. The optional terminal is TRST. This signal is mandatory in ARM cores
because it is used to reset the debug logic.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-8
ID032710 Non-Confidential

Glossary
Thread Control Block A data structure used by an operating system kernel to maintain information specific to a single
thread of execution.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to perform. Thumb
instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating in
Thumb state.

TPA See Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a low-cost
product designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream
captured by a TPA.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Wake-up Interrupt
Controller (WIC)

The Wake-up Interrupt Controller provides significantly reduced gate count interrupt detection
and prioritization logic.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging features
of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when the data
contained by a particular memory address is changed. Watchpoints are inserted by the
programmer to enable inspection of register contents, memory locations, and variable values
when memory is written to test that the program is operating correctly. Watchpoints are removed
after the program is successfully tested. See also Breakpoint.

WIC See Wake-up Interrupt Controller.

Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when switching
between little-endian and big-endian operation, in such a way that the byte with address A in
one endianness has address A EOR 3 in the other endianness. As a result, each aligned word of
memory always consists of the same four bytes of memory in the same order, regardless of
endianness. The change of endianness occurs because of the change to the byte addresses, not
because the bytes are rearranged.

The ARM architecture supports word-invariant systems in ARMv3 and later versions. When
word-invariant support is selected, the behavior of load or store instructions that are given
unaligned addresses is instruction-specific, and is in general not the expected behavior for an
unaligned access. It is recommended that word-invariant systems use the endianness that
produces the required byte addresses at all times, apart possibly from very early in their reset
handlers before they have set up the endianness, and that this early part of the reset handler must
use only aligned word memory accesses.

See also Byte-invariant.

Write buffer A pipeline stage for buffering write data to prevent bus stalls from stalling the processor.
ARM DDI 0337H Copyright © 2005-2008, 2010 ARM Limited. All rights reserved. Glossary-9
ID032710 Non-Confidential

	Cortex-M3 Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Typographical

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this product
	Feedback on this manual

	Introduction
	1.1 About the processor
	1.2 Features
	1.3 Interfaces
	1.4 Configurable options
	1.5 Product documentation
	1.5.1 Documentation
	1.5.2 Design Flow
	1.5.3 Architecture and protocol information
	ARM architecture
	Bus architecture
	Debug
	Embedded Trace Macrocell

	1.6 Product revisions
	1.6.1 Differences in functionality between r0p0 and r1p0
	1.6.2 Differences in functionality between r1p0 and r1p1
	1.6.3 Differences in functionality between r1p1 and r2p0

	Functional Description
	2.1 About the functions
	2.2 Interfaces
	2.2.1 Bus interfaces
	ICode memory interface
	DCode memory interface
	System interface
	Private Peripheral Bus (PPB)

	2.2.2 ETM interface
	2.2.3 AHB Trace Macrocell interface
	2.2.4 Debug port AHB-AP interface

	Programmers Model
	3.1 About the programmers model
	3.2 Modes of operation and execution
	3.2.1 Operating modes
	3.2.2 Operating states
	3.2.3 Privileged access and user access

	3.3 Instruction set summary
	3.3.1 Cortex-M3 instructions
	3.3.2 Load/store timings
	3.3.3 Binary compatibility with other Cortex processors

	3.4 System address map
	3.4.1 Private peripheral bus
	3.4.2 Unaligned accesses that cross regions

	3.5 Write buffer
	3.6 Exclusive monitor
	3.7 Bit-banding
	3.7.1 Directly accessing an alias region
	3.7.2 Directly accessing a bit-band region

	3.8 Processor core register summary
	3.9 Exceptions
	3.9.1 Exception handling
	Base register update in LDM and STM operations

	System Control
	4.1 About system control
	4.2 Register summary
	4.3 Register descriptions
	4.3.1 Auxiliary Control Register, ACTLR
	4.3.2 CPUID Base Register, CPUID
	4.3.3 Auxiliary Fault Status Register, AFSR

	Memory Protection Unit
	5.1 About the MPU
	5.2 MPU functional description
	5.3 MPU programmers model

	Nested Vectored Interrupt Controller
	6.1 About the NVIC
	6.2 NVIC functional description
	6.2.1 Low power modes
	6.2.2 Level versus pulse interrupts

	6.3 NVIC programmers model
	6.3.1 Interrupt Controller Type Register, ICTR

	Debug
	7.1 About debug
	7.1.1 Cortex-M3 ROM table identification and entries
	7.1.2 System Control Space
	SCS CoreSight identification

	7.1.3 Debug register summary

	7.2 About the AHB-AP
	7.2.1 AHB-AP transaction types
	7.2.2 AHB-AP programmers model
	AHB-AP Control and Status Word Register, CSW

	7.3 About the Flash Patch and Breakpoint Unit (FPB)
	7.3.1 FPB functional description
	7.3.2 FPB programmers model

	Data Watchpoint and Trace Unit
	8.1 About the DWT
	8.2 DWT functional description
	8.3 DWT Programmers Model

	Instrumentation Trace Macrocell Unit
	9.1 About the ITM
	9.2 ITM functional description
	9.3 ITM programmers model
	9.3.1 ITM Trace Privilege Register, ITM_TPR

	Embedded Trace Macrocell
	10.1 About the ETM
	10.1.1 Features
	10.1.2 Configurable options

	10.2 ETM functional description
	10.2.1 Resources
	Resource identification encoding

	10.2.2 Periodic synchronization
	10.2.3 Data and instruction address compare resources
	10.2.4 External inputs
	10.2.5 Start/stop block
	10.2.6 Triggering
	10.2.7 Interfaces
	Recommended CTI connections

	10.2.8 Operation

	10.3 ETM Programmers model
	10.3.1 Modes of operation and execution
	10.3.2 Register summary
	10.3.3 Main Control Register, ETMCR
	10.3.4 Configuration Code Register, ETMCCR
	10.3.5 System Configuration Register, ETMSCR
	10.3.6 TraceEnable Control 1 Register, ETMTECR1
	10.3.7 ID Register, ETMIDR
	10.3.8 Configuration Code Extension Register, ETMCCER
	10.3.9 TraceEnable Start/Stop EmbeddedICE Control Register, ETMTESSEICR
	10.3.10 Device Power-Down Status Register, ETMPDSR
	10.3.11 Integration Test Miscellaneous Inputs, ITMISCIN
	10.3.12 Integration Test Trigger Out, ITTRIGOUT
	10.3.13 ETM Integration Test ATB Control 2, ETM_ITATBCTR2
	10.3.14 ETM Integration Test ATB Control 0, ETM_ITATBCTR0

	Trace Port Interface Unit
	11.1 About the Cortex-M3 TPIU
	11.2 TPIU functional description
	11.2.1 TPIU block diagrams
	11.2.2 TPIU Formatter
	11.2.3 Serial Wire Output format

	11.3 TPIU programmers model
	11.3.1 Asynchronous Clock Prescaler Register, TPIU_ACPR
	11.3.2 Formatter and Flush Status Register, TPIU_FFSR
	11.3.3 Formatter and Flush Control Register, TPIU_FFCR
	11.3.4 TRIGGER
	11.3.5 Integration FIFO 0 Data
	11.3.6 ITATBCTR2
	11.3.7 Integration FIFO 1 Data
	11.3.8 ITATBCTR0
	11.3.9 Integration Mode Control, TPIU_ITCTRL
	11.3.10 TPIU_DEVID

	Revisions
	Glossary

