
Build a Super Simple Tasker
Miro Samek and Robert Ward - July 12, 2006

Almost all embedded systems are event-driven; most of the time they wait for
some event such as a time tick, a button press, a mouse click, or the arrival of
a data packet. After recognizing the event, the systems react by performing
the appropriate computation. This reaction might include manipulating the
hardware or generating secondary, "soft" events that trigger other internal
software components. Once the event-handling action is complete, such
reactive systems enter a dormant state in anticipation of the next event.1

Ironically, most real-time kernels or RTOSes for embedded systems force
programmers to model these simple, discrete event reactions using tasks
structured as continuous endless loops. To us this seems a serious
mismatch--a disparity that's responsible for much of the familiar complexity of
the traditional real-time kernels.

In this article we'll show how matching the discrete event nature typical of
most embedded systems with a simple run-to-completion (RTC) kernel or
"tasker" can produce a cleaner, smaller, faster, and more natural execution
environment. In fact, we'll show you how (if you model a task as a discrete,
run-to-completion action) you can create a prioritized, fully preemptive,
deterministic real-time kernel, which we call Super Simple Tasker (SST), with
only a few dozen lines of portable C code.2

Such a real-time kernel is not new; similar kernels are widely used in the
industry. Even so, simple RTC schedulers are seldom described in the trade
press. We hope that this article provides a convenient reference for those
interested in such a lightweight scheduler. But more importantly, we hope to
explain why a simple RTC kernel like SST is a perfect match for execution
systems built around state machines including those based on advanced UML
statecharts. Because state machines universally assume RTC execution
semantics, it seems only natural that they should be coupled with a scheduler
that expects and exploits the RTC execution model.

We begin with a description of how SST works and explain why it needs only
a single stack for all tasks and interrupts. We then contrast this approach
with the traditional real-time kernels, which gives us an opportunity to re-
examine some basic real-time concepts. Next, we describe a minimal SST
implementation in portable ANSI C and back it up with an executable
example that you can run on any x86-based PC. We conclude with references
to an industrial-strength single-stack kernel combined with an open-source
state machine-based framework, which together provide a deterministic
execution environment for UML state machines. We'll assume that you're
familiar with basic real-time concepts, such as interrupt processing, context
switches, mutual exclusion and blocking, event queues, and finite state
machines.

file:///home/hhoegl/Downloads/4025691.html

1 of 21 12/6/17, 7:22 PM

Preemptive multitasking with a single stack
Conventional real-time kernels maintain relatively complex execution
contexts (including separate stack spaces) for each running thread or task, as
explained in the excellent book MicroC/OS-II: The Real-Time Kernel by Jean
Labrosse.3 Keeping track of the details of these contexts and switching
among them requires lots of bookkeeping and sophisticated mechanisms to
implement the context switch magic. The kernel we'll describe can be ultra
simple because it doesn't need to manage multiple stacks and all of their
associated bookkeeping.

By requiring that all tasks run to completion and enforcing fixed-priority
scheduling, we can instead manage all context information using the
machine's natural stack protocol. Whenever a task is preempted by a higher-
priority task, the SST scheduler uses a regular C-function call to build the
higher-priority task context on top of the preempted-task context. Whenever
an interrupt preempts a task, SST uses the already established interrupt
stack frame on top of which to build the higher-priority task context, again
using a regular C-function call. This simple form of context management is
adequate because we're insisting that every task, just like every interrupt,
runs to completion. Because the preempting task must also run to
completion, the lower-priority context will never be needed until the
preempting task (and any higher-priority tasks that might preempt it) has
completed--at which time the preempted task will naturally be at the top of
the stack, ready to be resumed.

The first consequence of this execution profile is that an SST task cannot be
an endless loop, unlike most tasks in traditional kernels.3 Instead, an SST
task is a regular C-function that runs to completion and returns, thus
removing itself from the execution stack as it completes. An SST task can be
activated only by an ordinary C-function call from the SST scheduler and
always returns to the scheduler upon completion. The SST scheduler itself is
also an ordinary C-function that's called each time a preemptive event occurs
and that runs to completion and returns once all tasks with priorities higher
than the preempted task have completed.

The second consequence of the SST execution profile is that events
associated with lower-priority tasks must be queued until the higher-priority
tasks complete. The scheduling algorithm will work with a wide range of
prioritization mechanisms; here we assume the simplest. For the sake of this
discussion we'll assume a priority numbering scheme in which SST tasks have
priorities numbered from 1 to SST_MAX_PRIO, inclusive, and a higher
number represents a higher urgency. We reserve the priority level 0 for the
SST idle loop, which is the only part of SST structured as an endless loop.

Simply calling a task function for every preemption level may seem too nave
to work, but the analysis in the next section will show that it works perfectly
for exactly the same reason that a prioritized hardware-interrupt system
works.

Prioritization of tasks and interrupts in SST
It's interesting to observe that most prioritized interrupt controllers (for

file:///home/hhoegl/Downloads/4025691.html

2 of 21 12/6/17, 7:22 PM

example, the 8259A inside the x86-based PC, the AIC in AT91-based ARM
MCUs from Atmel, the VIC in LPC2xxx MCUs from Philips, the interrupt
controller inside M16C from Renesas, and many others) implement in
hardware the exact same asynchronous scheduling policy for interrupts
as SST implements in software for tasks. In particular, any prioritized
interrupt controller allows only higher-priority interrupts to preempt the
currently active interrupt. All interrupts must run to completion and
cannot block. All interrupts nest on the same stack.

In the SST execution model, tasks and interrupts are nearly symmetrical:
both tasks and interrupt service routines are one-shot, run-to-completion
functions. In fact, SST views interrupts very much like tasks of "super
high" priority, as shown in Figure 1, except that interrupts are prioritized
in hardware (by the interrupt controller), while SST tasks are prioritized
in software.

Synchronous and asynchronous preemptions
As a fully preemptive kernel, SST must ensure that at all times the CPU
executes the highest-priority task that's ready to run. Fortunately, only two
scenarios can lead to readying a higher-priority task:

A lower-priority task posts an event to a higher-priority task:
SST must immediately suspend the execution of the lower-priority task
and start the higher-priority task. We call this type of preemption
synchronous preemption because it happens synchronously with posting
an event to the task's event queue.

An interrupt posts an event to a higher-priority task than the

file:///home/hhoegl/Downloads/4025691.html

3 of 21 12/6/17, 7:22 PM

interrupted task:
Upon completion of the interrupt service routine (ISR), the SST must
start execution of the higher-priority task instead of resuming the lower-
priority task. We call this type of preemption asynchronous
preemption because it can happen any time interrupts are not explicitly
locked.

Figure 2 illustrates the synchronous preemption scenario caused by posting
an event from a low-priority task to a high-priority task. Initially a low-priority
task is executing (1). At some point during normal execution, the low-priority
task posts an event to a high-priority task, thus making the high-priority task
ready for execution. Posting the event engages the SST scheduler (2). The
scheduler detects that a high-priority task has become ready to run, so the
scheduler calls (literally a simple C-function call) the high-priority task (3).
Note that because the SST scheduler launches the task on its own thread, the
scheduler doesn't return until after the higher-priority task completes. The
high-priority task runs (4), but at some time it too may post an event to other
tasks. If it posts to a lower-priority task than itself (5), the SST scheduler will
again be invoked (again a simple C call), but will return immediately when it
doesn't find any ready tasks with a higher priority than the current task.
When this second call to the scheduler returns, the high-priority task runs to
completion (6) and naturally returns to the SST scheduler (7). The SST
scheduler checks once more for a higher-priority task to start (8), but it finds
none. The SST scheduler returns to the low-priority task, which continues (9).

Obviously, synchronous preemptions are not limited to only one level. If the
high-priority task were to post an event to a still higher-priority task at point
(5) of Figure 2, the high-priority task would be synchronously preempted and
the scenario would recursively repeat itself at a higher level of priority.

Figure 3 illustrates the asynchronous preemption scenario caused by an
interrupt. Initially a low-priority task is executing and interrupts are unlocked
(1). An asynchronous event interrupts the processor (2). The processor
immediately preempts any executing task and starts executing the ISR
(interrupt service routine). The ISR executes the SST-specific entry (3), which
saves the priority of the interrupted task on the stack and raises the current

file:///home/hhoegl/Downloads/4025691.html

4 of 21 12/6/17, 7:22 PM

priority to the ISR level. The ISR performs its work (4) which includes posting
an event to the high-priority task (5). Posting an event engages the SST
scheduler, but the current priority (that of the ISR) is so high that the
scheduler returns immediately, not finding any task with priority higher than
an interrupt. The ISR continues (6) and finally executes the SST-specific exit
(7). The exit code sends the end-of-interrupt (EOI) instruction to the interrupt
controller, restores the saved priority of the interrupted task, and invokes the
SST scheduler (8). Now, the scheduler detects that the high-priority task is
ready to run, so it enables interrupts and calls the newly ready, high-priority
task (9). Note that the SST scheduler doesn't return. The high-priority task
runs to completion (10) unless it also gets interrupted. After completion, the
high-priority task naturally returns to the scheduler (11). The scheduler
checks for more higher-priority tasks to execute (12) but doesn't find any and
returns. The original interrupt returns to the low-priority task (13), which has
been asynchronously preempted all that time. Note that the interrupt return
(13) matches the interrupt call (2). Finally, the low-priority task runs to
completion (14).

It's important to point out that conceptually the interrupt handling ends in
the SST-specific interrupt exit (8), even though the interrupt stack frame still
remains on the stack and the IRET instruction has not yet executed. (The
IRET instruction is understood here generically to mean a specific CPU
instruction that causes hardware interrupt return.) The interrupt ends
because the EOI instruction is issued to the interrupt controller and the
interrupts get re-enabled inside the SST scheduler. Before the EOI
instruction, the interrupt controller allows only interrupts of higher priority
than the currently serviced interrupt. After the EOI instruction and
subsequent call to the SST scheduler, interrupts get unlocked and the
interrupt controller allows all interrupt levels, which is exactly the behavior
expected at the task level.

Consequently, asynchronous preemption is not limited to only one level. The
high-priority task runs with interrupts unlocked, shown as segment (10) in
Figure 3, so it too can be asynchronously preempted by an interrupt,
including the same-level interrupt that launched the task at point (9). If the

file:///home/hhoegl/Downloads/4025691.html

5 of 21 12/6/17, 7:22 PM

interrupt posts an event to a still higher-priority task, the high-priority task
will also be asynchronously preempted and the scenario will recursively
repeat itself at a higher-level of priority.

SST versus traditional kernels
By managing all contexts in a single stack, SST can run with significantly less
RAM than a typical blocking kernel. Because tasks don't have separate
stacks, no unused private stack space is associated with suspended tasks.
SST task switches also tend to incur less execution overhead; a traditional
kernel doesn't distinguish between the synchronous and asynchronous
preemptions and charges you a uniformly high price for all context switches.
Finally, SST uses much simpler and smaller task control blocks (TCBs) for
each task.

Because of this simplicity, context switches in SST (especially the
synchronous preemptions) can involve much less stack space and CPU
overhead than under any traditional kernel. But even the asynchronous
preemptions in SST end up typically using significantly less stack space and
fewer CPU cycles. Here's why.

Upon an interrupt, a traditional kernel must establish a strictly defined stack
frame on each private stack into which it saves all CPU registers. Unlike SST,
which can exploit the compiler's natural register-management strategy, a
traditional kernel must be prepared to restore all registers when it resumes
the preempted task. Often the construction and destruction of these stack
frames must be programmed in assembly, because a traditional kernel cannot
leave the context switch magic to the C compiler. In contrast, SST doesn't
really care about any particular stack frame or whether the registers are
stored immediately upon the ISR entry or stepwise, as needed. The only
relevant aspect is that the CPU state be restored exactly to the status before
the interrupt, but it's irrelevant how this happens. This means that the
compiler-generated interrupts that most embedded C compilers support are
typically adequate for SST, but are often inadequate for traditional kernels.
Not only does SST not require any assembly programming, but in this case
the compiler-generated interrupt entry and exit code is often superior to
custom assembly, because the C compiler is in a much better position to
globally optimize interrupt stack frames for specific ISRs. In this respect, SST
allows you to take advantage of the C compiler's capabilities, something a
traditional kernel can't do.

The last point is perhaps best illustrated by an example. All C compilers for
ARM processors, for instance, adhere to the ARM Procedure Call Standard
(APCS) that prescribes which registers must be preserved across a C-function
call and which can be clobbered. The C-compiler-generated ISR entry saves
initially only the registers that might be clobbered in a C function, which is
only about half of all ARM registers. The rest of the registers get saved later,
inside C functions invoked from the ISR, if and only if such registers are
actually used. This example of a context save occurring in several steps is
perfectly suited to the SST. In contrast, a traditional kernel must save all ARM
registers in one swoop upon ISR entry, and if the assembly ISR "wrapper"
calls C functions (which it typically does) many registers are saved again.

file:///home/hhoegl/Downloads/4025691.html

6 of 21 12/6/17, 7:22 PM

Needless to say, such policy requires more RAM for each private stack and
more CPU cycles (perhaps by factor of two) than SST.

On a side note, we would like to emphasize that all traditional blocking
kernels in the industry share the problems we've described. We refer here to
Labrosse's book MicroC/OS-II not because MicroC/OS-II has any special
deficiency in this regard but because his book is an excellent treatment of
traditional kernels and is familiar to many embedded systems programmers.3

Sidebar 2: Interrupt duration in traditional kernels and SST
If you have some experience with traditional preemptive kernels, you'll
notice that SST seems to encourage programmers to violate time-
honored advice about what to put in an ISR.

Most of us have been taught that an ISR should be as short as possible
and that the main work should always be done at the task level. In SST,
however, everything appears to be done at the ISR context and nothing
at the task context. It seems to be backwards.

But really, the problem centers on the distinction between an interrupt
and a task. SST forces us to revise the nave understanding of interrupt
duration as beginning with saving interrupt context on a stack and
ending with restoring the interrupt context followed by IRET because, as
it turns out, this definition is problematic even for traditional kernels.

Figure 4 shows the per-task data structures maintained by a traditional
preemptive kernel where each task has its own stack and a task control
block (TCB)3 for the execution context of each task. In general, an
interrupt handler stores the interrupt context on one task's stack and
restores the context, from another task's stack. After restoring a task's
context into the CPU registers, the traditional scheduler always issues
the IRET instruction. The key point is that the interrupt context remains
saved on the preempted task's stack, so the saved interrupt context
outlives the duration of the interrupt handler. Therefore defining the
duration of an interrupt from saving the interrupt context to restoring
the context is problematic.

file:///home/hhoegl/Downloads/4025691.html

7 of 21 12/6/17, 7:22 PM

The situation is not really that much different under a single-stack
kernel, such as SST. An ISR stores the interrupt context on the stack,
which happens to be common for all tasks and interrupts. After some
processing, the ISR calls the scheduler, which internally unlocks
interrupts. If no higher-priority tasks are ready to run, the scheduler
exits immediately, in which case the ISR restores the context from the
stack and returns to the original task exactly at the point of preemption.
Otherwise, the SST scheduler calls a higher-priority task and the
interrupt context remains saved on the stack, just as in the traditional
kernel.

The point here is that the ISR is defined from the time of storing
interrupt context to the time of sending the EOI (End Of Interrupt)
command to the interrupt controller followed by invoking the scheduler
that internally enables interrupts, not necessarily to the point of
restoring the interrupt context. This definition is more precise and
universal, because under any kernel the interrupt context remains stored
on one stack or another and typically outlives the duration of an
interrupt's processing. Of course, you should strive to keep the ISR code
to a minimum, but in SST, you should remember that the final call to the
SST scheduler is conceptually not a part of the ISR, but rather it
constitutes the task level.

The definition of ISR duration is not purely academic, but has important
practical implications. In particular, debugging at the ISR level can be
much more challenging than debugging at the task level. Indeed, in SST
debugging the ISR to the point of sending the EOI command to the
interrupt controller and invoking the SST scheduler is as hard as in any
traditional kernel, especially when debugging is accomplished through a
ROM monitor. However, debugging an SST task is as easy as debugging
the main() task, even though a task is called indirectly from the ISR.
This is because the SST scheduler launches each task with interrupts
unlocked at the CPU level and with the interrupt controller set to enable

file:///home/hhoegl/Downloads/4025691.html

8 of 21 12/6/17, 7:22 PM

all interrupts.

SST implementation
We first present a minimal standalone implementation of SST. The presented
code is portable ANSI C, with all CPU and compiler-specific parts clearly
separated out. However, the implementation omits some features that might
be needed in real-life applications. The main goal at this point is to clearly
demonstrate the key concepts while letting you execute the code on any
Windows-based PC. We've compiled the example with the legacy Turbo C++
1.01, available as a free download from the Borland Museum.4

The example The SST example demonstrates the multitasking and preemption
capabilities of SST. This example, shown in Figure 5, consists of three tasks
and two ISRs. The clock tick ISR produces a "tick event" every 5ms, while the
keyboard ISR produces a "key event" every time a key is depressed or
released, and at the auto-repeat rate of the keyboard when a key is depressed
and held. The two "tick tasks": tickTaskA() and tickTaskB() receive the
"tick events" and place a letter A or B, respectively, at a random location in
the right-hand panel of the screen. The keyboard task kbdTask(), with the
priority between tickTaskA() and tickTaskB(), receives the scan codes from
the keyboard and sends "color events" to the tick tasks, which change the
color of the displayed letters in response. Also, the kbdTask() terminates the
application when you depress the Esc key.

file:///home/hhoegl/Downloads/4025691.html

9 of 21 12/6/17, 7:22 PM

The left-hand side of the screen in Figure 5 shows the basic statistics of the
running application. The first two columns display the task names and
priorities. Note that there are many unused priority levels. The "Calls"
column shows the number of calls with 3-digit precision. The last
"Preemptions" column shows the number of asynchronous preemptions of a
given task or ISR.

The SST example application intentionally uses two independent interrupts
(the clock tick and keyboard) to create asynchronous preemptions. To further
increase the probability of an interrupt preempting a task, and of an interrupt
preempting an interrupt, the code is peppered with calls to a busyDelay()
function, which extends the run-to-completion time in a simple counted loop.
You can specify the number of iterations through this loop by a command line
parameter to the application. You should be careful not to go overboard with
this parameter, though, because larger values will produce a task set that is
not schedulable and the system will (properly) start losing events.

The following subsections explain the SST code and the application structure.
The complete SST source code consists of the header file sst.h located in the
include\ directory and the implementation file sst.c located in the source\
directory. The example files are located in the example\ directory, which also

file:///home/hhoegl/Downloads/4025691.html

10 of 21 12/6/17, 7:22 PM

contains the Turbo C++ project file to build and debug the application.
(NOTE: because the standard keyboard ISR is replaced by the custom one,
debugging this application with the Turbo C++ IDE might be difficult.)

Critical sections in SST
SST, just like any other kernel, needs to perform certain operations
indivisibly. The simplest and most efficient way to protect a section of code
from disruptions is to lock interrupts on entry to the section and unlock the
interrupts again on exit. Such a section of code is called a critical section.

Processors generally provide instructions to lock/unlock interrupts, and your
C compiler must have a mechanism to perform these operations from C. Some
compilers allow you to include inline assembly instructions in your C source.
Other compilers provide language extensions or at least C-callable functions
to lock and unlock interrupts from C.

To hide the actual implementation method chosen, SST provides two macros
to lock and unlock interrupts. Here are the macros defined for the Turbo C++
compiler:

reformat this as:
#define SST_INT_LOCK() \
 disable()
#define SST_INT_UNLOCK() \
 enable()

In the minimal SST version, we assume the simplest possible critical section:
one that unconditionally locks interrupts upon entry and unconditionally
unlocks interrupts upon exit. Such simple critical sections should never nest,
because interrupts will always be unlocked upon exit from the critical section,
regardless of whether they were locked or unlocked before the entry. The SST
scheduler is designed to never nest critical sections, but you should be
careful when using macros SST_INT_LOCK() and SST_INT_UNLOCK() to
protect your own critical sections in the applications. You can avoid this
limitation by using smarter (though somewhat more expensive) code to lock
and unlock interrupts. Please note, however, that the inability to nest critical
sections does not necessarily mean that you can't nest interrupts. On
processors equipped with an internal or external interrupt controller, such as
the 8259A PIC in the x86-based PC, or the AIC in the AT91 ARM
microcontroller, you can unlock the interrupts inside ISRs at the processor
level, thus avoiding nesting of the critical section inside ISRs, and let the
interrupt controller handle the interrupt prioritization and nesting before
they even reach the CPU core.

Interrupt processing in SST
One of the biggest advantages of SST is the simple interrupt processing,
which is actually not much more complicated with SST than it is in a simple
"super-loop" (a.k.a., main+ISRs). Because SST doesn't rely in any way on the
interrupt stack frame layout, with most embedded C compilers, the ISRs can
be written entirely in C. One notable difference between a simple "super-
loop" and SST ISRs is that SST requires the programmer to insert some
simple actions at each ISR entry and exit. These actions are implemented in
SST macros SST_ISR_ENTRY() and SST_ISR_EXIT(). The code snippet in

file:///home/hhoegl/Downloads/4025691.html

11 of 21 12/6/17, 7:22 PM

Listing 1 shows how these macros are used in the clock tick and keyboard
ISRs from the example application defined in the file example\bsp.c.

Listing 1: SST ISRs from the example application

void interrupt tickISR() { /* every ISR is entered with interrupts locked */
 uint8_t pin; /* temporary variable to store the initial priority */
 SST_ISR_ENTRY(pin, TICK_ISR_PRIO);

 SST_post(TICK_TASK_A_PRIO, TICK_SIG, 0); /* post the Tick to Task A */
 SST_post(TICK_TASK_B_PRIO, TICK_SIG, 0); /* post the Tick to Task B */

 SST_ISR_EXIT(pin, outportb(0x20, 0x20));
}
/*..*/
void interrupt kbdISR() { /* every ISR is entered with interrupts locked */
 uint8_t pin; /* temporary variable to store the initial priority */
 uint8_t key = inport(0x60);/*get scan code from the 8042 kbd controller */
 SST_ISR_ENTRY(pin, KBD_ISR_PRIO);

 SST_post(KBD_TASK_PRIO, KBD_SIG, key); /* post the Key to the KbdTask */

 SST_ISR_EXIT(pin, outportb(0x20, 0x20));
}

Note in Listing 1, the compiler specific keyword "interrupt", which directs
the Turbo-C compiler to synthesize appropriate context saving, restoring, and
interrupt return prologues and epilogues. Please also note the SST interrupt-
entry and interrupt-exit macros at the beginning and end of each ISR. (If the
interrupt source requires clearing, this should be done before calling
SST_ISR_ENTRY()). The macros SST_ISR_ENTRY() and SST_ISR_EXIT()
are defined in the includes\sst.h header file as shown in Listing 2. (The
do..while(0) loop around the macros is only for syntactically correct
grouping of the instructions.)

Listing 2: Definition of the SST interrupt entry/exit macros

#define SST_ISR_ENTRY(pin_, isrPrio_) do { \
 (pin_) = SST_currPrio_; \
 SST_currPrio_ = (isrPrio_); \
 SST_INT_UNLOCK(); \
} while (0)

#define SST_ISR_EXIT(pin_, EOI_command_) do { \
 SST_INT_LOCK(); \
 (EOI_command_); \
 SST_currPrio_ = (pin_); \
 SST_schedule_(); \
} while (0)

The SST_ISR_ENTRY() macro is invoked with interrupts locked and
performs the following three steps: (1) Saves the initial SST priority into the
stack variable 'pin_' (2) Sets the current SST priority to the ISR level (3)
Unlocks the interrupts to allow interrupt nesting The SST_ISR_EXIT() macro
is invoked with interrupts unlocked and performs the following four steps: (1)
Locks the interrupts (2) Writes the EOI command to the interrupt controller
(for example, outportb(0x20, 0x20) writes the EOI to the master 8259A
PIC) (3) Restores the initial SST priority (4) Calls the SST scheduler, which
performs the "asynchronous preemption," if necessary The task control

file:///home/hhoegl/Downloads/4025691.html

12 of 21 12/6/17, 7:22 PM

blocks
Like other real-time kernels, SST keeps track of tasks in an array of data
structures called task control blocks (TCBs). Each TCB contains such
information as the pointer to the task function, the task mask (calculated as
(1 << (priority - 1))), and the event queue associated with the task. The
TCB takes only 8 to 10 bytes, depending on the size of the function pointer.
Additionally, you need to provide an event queue buffer of the correct size
when you create a task. The TCB used here is optimized for a small, fixed
number of priority levels and simple events--restrictions that make sense in a
classic embedded environment. Neither of these limitations, however, is
required by the SST scheduling algorithm. Posting events to tasks
In this minimal version of SST, events are represented as structures
containing two byte-size elements: an event type identifier (for example, the
key-press occurrence), and the parameter associated with the occurrence (for
example, the scan code of the key). The events are stored in event queues
organized as standard ring buffers. SST maintains the status of all event
queues in the variable called the SST ready-set. As shown in Figure 6, the
SST ready-set SST_readySet_ is just a byte, meaning that this
implementation is limited to eight priority levels. Each bit in the
SST_readySet_ represents one SST task priority. The bit number 'n' in the
SST_readySet_ is 1 if the event queue of the task of priority 'n+1' is not
empty (bits are numbered 0..7). Conversely, bit number 'm' in SST_readySet_
is 0 if the event queue of the task of priority 'm+1' is empty, or the priority
level 'm+1' is not used.

Listing 3 shows the event posting function SST_post(), which uses a
standard ring buffer algorithm (FIFO). If the event is inserted to an empty
queue (1), the corresponding bit in SST_readySet_ is set (2), and the SST
scheduler is invoked to check for the "synchronous preemption" (3).

Listing 3: Event posting in SST

 uint8_t SST_post(uint8_t prio, SSTSignal sig, SSTParam par) {
 TaskCB *tcb = &l_taskCB[prio - 1];
 SST_INT_LOCK();
 if (tcb->nUsed__ < tcb->end__) {
 tcb->queue__[tcb->head__].sig = sig; /* insert the event at the head */
 tcb->queue__[tcb->head__].par = par;
 if ((++tcb->head__) == tcb->end__) {
 tcb->head__ = (uint8_t)0; /* wrap the head */
 }
(1) if ((++tcb->nUsed__) == (uint8_t)1) { /* the first event? */
(2) SST_readySet_ |= tcb->mask__; /* insert task to the ready set */

file:///home/hhoegl/Downloads/4025691.html

13 of 21 12/6/17, 7:22 PM

(3) SST_schedule_(); /* check for synchronous preemption */
 }
 SST_INT_UNLOCK();
 return (uint8_t)1; /* event successfully posted */
 }
 else {
 SST_INT_UNLOCK();
 return (uint8_t)0; /* queue full, event posting failed */
 }
 }

The SST scheduler
The SST scheduler is a simple C-function SST_schedule_() whose job is to
efficiently find the highest-priority task that is ready to run and run it, if its
priority is higher than the currently serviced SST priority. To perform this job,
the SST scheduler uses the already described SST_readySet_ and the
current priority level SST_currPrio_ shown in Figure 6. Both variables
SST_currPrio_ and SST_readySet_ are always accessed in a critical section
to prevent data corruption. (See also the SST_ISR_ENTRY/SST_ISR_EXIT
macros.) Listing 4 shows the complete SST scheduler implementation. (Yes, it
really is that small.) The function SST_schedule_() must be called with
interrupts locked and returns also with interrupts locked.

Listing 4: The SST scheduler

 void SST_schedule_(void) {
 static uint8_t const log2Lkup[] = { /* log-base-2 lookup table */
 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 . . .
 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
 . . .
 };
(1) uint8_t pin = SST_currPrio_; /* save the initial priority */
 uint8_t p; /* the new priority */
 /* is the new priority higher than the initial? */
(2) while ((p = log2Lkup[SST_readySet_]) > pin) {
 TaskCB *tcb = &l_taskCB[p - 1];
 /* get the event out of the queue */
(3) SSTEvent e = tcb->queue__[tcb->tail__];
 if ((++tcb->tail__) == tcb->end__) {
 tcb->tail__ = (uint8_t)0;
 }
 if ((â€”tcb->nUsed__) == (uint8_t)0) { /* is the queue becoming empty?*/
(4) SST_readySet_ &= ~tcb->mask__; /* remove from the ready set */
 }
(5) SST_currPrio_ = p; /* this becomes the current task priority */
(6) SST_INT_UNLOCK(); /* unlock the interrupts */

(7) (*tcb->task__)(e); /* call the SST task */

(8) SST_INT_LOCK(); /* lock the interrupts for the next pass */
 }
(9) SST_currPrio_ = pin; /* restore the initial priority */
 }

Just as the hardware-interrupt controller does when servicing an interrupt,

file:///home/hhoegl/Downloads/4025691.html

14 of 21 12/6/17, 7:22 PM

the SST scheduler starts by saving the initial priority into a stack variable
'pin' (1). Next, this initial priority is compared to the highest priority of all
tasks ready to run (computed from the SST ready-set SST_readySet_.) This
latter computation is efficiently implemented as a binary-logarithm lookup
(more precisely log2(x) + 1), which delivers the bit number of the most-
significant 1-bit in the SST_readySet_ byte (2). If the new priority 'p' is
higher than the initial value, the scheduler needs to start the task of priority
'p'. First, the scheduler removes the event from the tail of the queue (3), and
if the queue becomes empty clears the corresponding bit in SST_readySet_
(4). Subsequently, the current priority SST_currPrio_ is raised to the new
level 'p' (5), the interrupts are unlocked (6) and the high-priority task is called
(7). When the task completes and returns, the interrupts are locked (8), and
the while loop again computes the highest-priority task ready to run based on
the potentially changed SST_readySet_ (2). The loop continues until no more
tasks above the initial priority level 'pin' are ready to run. Before the exit, the
scheduler restores the current priority SST_currPrio_ from the stack
variable 'pin' (9).

Mutual exclusion in SST
SST is a preemptive kernel, and as with all such kernels, you must be very
careful with any resource sharing among SST tasks. Ideally, SST tasks should
not share any resources, limiting all intertask communication to events. This
ideal situation allows you to program all SST tasks with purely sequential
techniques, allowing SST to handle all the details of thread-safe event
exchange and queuing. However, at the cost of increased coupling among
tasks, you might choose to share selected resources. If you go this path, you
must accept responsibility for synchronizing access to such resources (shared
variables or devices). One option is to guard access to the shared resource
with a critical section. This requires the programmer to consistently lock and
unlock interrupts around each access. For very short accesses this might well
be the most effective synchronization mechanism. However, SST also provides
a more selective mechanism: a priority-ceiling mutex. Priority-ceiling mutexes
are immune to priority inversions,5 but still allow hardware interrupts and
higher-priority tasks to run as usual. The SST implementation of a priority-
ceiling mutex is remarkably simple. Recall that the SST scheduler can only
launch tasks with priorities higher than the initial priority with which the
scheduler was entered. This means that temporarily increasing the current
SST priority SST_currPrio_ blocks any tasks with priorities lower than this
priority "ceiling." This is exactly what a priority-ceiling mutex is supposed to
do. Listing 5 shows the SST implementation.

Listing 5: Priority-ceiling mutex locking and unlocking

 uint8_t SST_mutexLock(uint8_t prioCeiling) {
 uint8_t p;
 SST_INT_LOCK();
 p = SST_currPrio_; /* save the original SST priority to return */
 if (prioCeiling > SST_currPrio_) {
 SST_currPrio_ = prioCeiling; /* set the SST priority to the ceiling */
 }
 SST_INT_UNLOCK();
 return p;
 }

file:///home/hhoegl/Downloads/4025691.html

15 of 21 12/6/17, 7:22 PM

 /*..*/
 void SST_mutexUnlock(uint8_t orgPrio) {
 SST_INT_LOCK();
 if (orgPrio < SST_currPrio_) {
 SST_currPrio_ = orgPrio; /* restore the saved priority to unlock */
 SST_schedule_(); /* the scheduler unlocks the interrupts internally */
 }
 SST_INT_UNLOCK();
 }

Unlike the simple INT_LOCK macros, the SST mutex interface allows locks to
be nested, because the original SST priority is preserved on the stack. Listing
6 shows how the mutex is used in the SST example to protect the non-
reentrant DOS random number generator calls inside the clock-tick tasks
tickTaskA() and tickTaskB().

Listing 6: Priority-ceiling mutex used in the SST example to protect
the non-reentrant random-number generator

 void tickTaskA(SSTEvent e) {
 . . .
 uint8_t x, y;
 uint8_t mutex; /* mutex object preserved on the stack */

 mutex = SST_schedLock(TICK_TASK_B_PRIO); /* mutex lock */
 x = random(34); /* call to non-reentrant random number generator */
 y = random(13); /* call to non-reentrant random number generator */
 SST_schedUnlock(mutex); /* mutex unlock */
 . . .
 }

Starting multitasking and the SST idle loop
Listing 7 shows the SST_run() function, which is invoked from main() when
the application transfers control to SST to start multitasking.

Listing 7: Starting SST multitasking

 void SST_run(void) {
(1) SST_start(); /* start ISRs */

(2) SST_INT_LOCK();
(3) SST_currPrio_ = (uint8_t)0; /* set the priority for the SST idle loop */
(4) SST_schedule_(); /* process all events produced so far */
(5) SST_INT_UNLOCK();

(6) for (;;) { /* the SST idle loop */
(7) SST_onIdle(); /* invoke the on-idle callback */
 }
 }

The SST_run() function calls the SST_start() callback (1), in which the
application can configure and start interrupts (see file examples\bsp.c).
After locking interrupts (2), the current SST priority SST_currPrio_ is set to
zero, which corresponds to the priority of the idle loop. (The SST priority is
statically initialized to 0xFF.) After lowering the priority the SST scheduler is
invoked (4) to process any events that might have accumulated during the
task initialization phase. Finally, interrupts are unlocked (5), and SST_run()
enters the SST idle loop (6), which runs when the CPU is not processing any

file:///home/hhoegl/Downloads/4025691.html

16 of 21 12/6/17, 7:22 PM

of the one-shot SST tasks or interrupts. The idle loop continuously calls the
SST_onIdle() callback (7), which the application can use to put the CPU into
a power-saving mode.

Where to go from here
The minimal SST implementation presented in this article is remarkably
powerful, given that it takes only 421 bytes of code (see Figure 5), 256 bytes
of lookup tables, and several bytes of RAM per task (for the TCB and the
event queue buffer) plus, of course, the stack. This might be all you need for
smaller projects. When you tackle bigger systems, however, you will
inevitably discover shortcomings in this implementation. From our
experience, these limitations have little to do with the multitasking model and
much to do with the infrastructure surrounding the kernel, such as the
limited event parameter size, lack of error handling, and the rather primitive
event-passing mechanism.

One thing that you'll surely discover when you go beyond toy applications
suitable for publication in an article is that your task functions will grow to
contain more and more conditional code to handle various modes of
operation. For example, a user-interface task for a digital camera must react
differently to button-press events when the camera is in the playback mode
than to the same button-press events in the picture-taking mode. The best-
known method of structuring such code is through a state machine that
explicitly captures the different modes of operations as different states of the
system.

And here is the most important significance of SST. The inherent run-to-
completion (RTC) execution model responsible for the simplicity of this kernel
perfectly matches the RTC execution semantics universally assumed in all
state machine formalisms, including advanced UML statecharts. Simply put,
SST and state machines are born for each other. We would even go so far as
to suggest that if you're using any other type of real-time kernel for executing
concurrent state machines, you are probably paying too much in ROM, RAM,
and CPU usage.

While the full integration of SST into a generalized, state machine-based
system is beyond the scope of this article, you can explore the fit yourself in
an open-source system produced by one of the authors. You can download
complete code, examples, and documentation from www.quantum-leaps.com.
For the code and other supporting documention about the implementation in
this article, go to Embedded.com's code archive.

Miro Samek is the founder and CTO of Quantum Leaps, LLC, a provider of
real-time, state machine-based application frameworks for embedded
systems. He is the author of Practical Statecharts in C/C++ (CMP Books,
2002), has written numerous articles for magazines, and is a regular speaker
at the Embedded Systems Conference. He welcomes contact at
miro@quantum-leaps.com.

Robert Ward, in a former life, founded The C Users Journal and its sister
publications. He is now a principal software engineer at Netopia, Inc, where

file:///home/hhoegl/Downloads/4025691.html

17 of 21 12/6/17, 7:22 PM

he designs and builds Java-based servers to support web-based collaboration.
You can reach him at rward@codecraftsman.com.

Endnotes:

1. Selic, Bran. "The Challenges of Real-Time Software Design," Embedded
Systems Programming, October 1996. (Article not available online.)

2. Ward, Robert. "Practical Real-Time Techniques," Proceedings of the
Embedded Systems Conference, San Francisco, 2003. Article pdf

3. Labrosse, Jean J. MicroC/OS-II: The Real Time Kernel, 2nd Edition. CMP
Books 2002.

4. Borland Developer Network, "Antique Software: Turbo C++ version 1.01"
http://bdn.borland.com/article/0,1410,21751,00.html

5. Kalinsky, David. "Mutexes Prevent Priority Inversions," Embedded Systems
Programming, August 1998. (Article not available online.)

Reader Response

In my experience building operating systems, "Run-to-Completion" and "fully-
preemptive" are complete polar opposites. Code cannot "run to completion" if
its execution is preempted!

Maybe you are using these terms differently somehow?

- Mike O'Dell
President
Compass Rose Labs LLC
Oakton, VA

Robert Ward responds: Here we mean that tasks don't block waiting for any
resource other than the CPUâ€”and then only because some higher priority
task owns it.

The simple tasker described does reduce the overhead of the task switcher.
However this reduction in overhead comes at the cost of increased state logic
within each thread in order to control thread execution.

A traditional RTOS permits you to write simpler, straight line application code
since thread execution pauses in place while waiting for events. The simple
switcher requires additional state logic within each thread to control
execution on each pass through the thread. In this respect the simple
switcher requires application code more like what would be used in a round-
robin scheduler

- Phil Ouellette
Senior Engineer
Mettler-Toledo, Inc.

file:///home/hhoegl/Downloads/4025691.html

18 of 21 12/6/17, 7:22 PM

Worthington, OH

Robert Ward responds: This is exactly why we like to couple the switcher
with applications written as statecharts. The statechart is the expression of
the statefulness of the relationship between the application and its
environment. The tasker is all that's necessary to support scheduling for the
statechart. The statechart solution is a different expression for the algorithm
than many are familiar with, but the statechart is arguably more natural
(more isomorphic) to the problem in stimulus/response applications. Whether
the traditional form produces "simpler" code, I think, is a highly subjective
matter.

What I miss in this article is what happens when a task must wait for a
resource other than the priority ceiling mutex. Think of a timer, a message or
an event. In this case the task can not run to completion and is preempted by
another task with a lower priority. As far as I understand your mechanism
does no longer work then since this can not be solved with synchronous
function calls. The lower priority thread must continue where it originally has
been interrupted. I think that a mix of your mechanism and an original system
is ideal. Concluding, I think your system looks very good but is not able to
deal with all possible situations and therefore on its own only suitable for a
specific class of systems.

- Leon van Snippenberg
Software Architect TA (Technical Automation)
Atos Origin TA - IPS
Den Bosch, The Netherlands

Robert Ward responds: Ahhh, but you are still trying to frame "waiting"
using the traditional "block-on-resource" model. We would instead assume
there is no active thread until the timer fires (it is, after all an interrupt) and
that it would post the task that services it to the SST ready queue. SST would
then schedule the service as soon as possible. The basic requirement is that
the entire program must be written in an asynchronous fashion; each portion
that depends on an external event (for example, a resource becoming ready)
must be a separate SST "task." When the external event occurs, that portion
runs. The "program" never waits within a task . . . waits happen between
tasks.

Again, that's what makes statecharts so natural to this environment. When
expressed as a statechart, the program is naturally partitioned into non-
blocking action sequences (SST tasks == statechart transitions) that are
triggered by external events. The wait points (states) are clearly defined and
encoded as data, so they don't need to tie up a thread.

I have used a technique similar to this for many years, except I do not allow
tasks to preempt tasks. I use numerous smaller tasks instead of a few more
complex tasks. ISRs are the only entities allowed to "preempt". The fixed-
priority scheduler runs each task to completion in priority order. Tasks are
called as functions in C. The thing that people enamored with preemptive

file:///home/hhoegl/Downloads/4025691.html

19 of 21 12/6/17, 7:22 PM

schedulers often forget is that inter-task communications must be accounted
for at both task and ISR level. You cannot expect the RTOS to do all your
thinking for you. The simple scheduler referenced here has typically higher
latencies, but since critical preprocessing is handled in the ISR, the system
remains deterministic, which is the most important factor.

- Douglas Schmidt
Sr. Development Engineer
Thermo Electron Inc.
Minneapolis, MN

Miro Samek responds: I agree that the simpler non-preemptive scheduler
that you concisely describe here can share many techniques used in SST, such
as the ready-set to make priority decisions at the run-to-completion (RTC)
step boundaries. I also agree that a non-preemptive scheduler is adequate for
many systems. In fact, I do use such a scheduler extensively in the "bare
metal" implementation of a state-machine framework.

However, the main point of this article is preemptive multitasking. SST, just
like any fully preemptive kernel, decouples tasks in the time domain. With
SST, the timing of higher-priority tasks is completely independent on lower-
priority tasks. In other words, you can keep changing lower-priority tasks
without having an impact on timeliness of the higher-priority tasks. (This is
true exactly if you don't introduce coupling via mutexes or critical sections in
the lower-priority tasks.)

In contrast, the task-level response of the simpler, non-preemptive scheduler
is determined by the longest RTC step in the whole system. So changing any
task, regardless of its priority, can have an impact on the timeliness of the
rest of the application. Even though the simple non-preemptive scheduler is
in many ways similar to SST, it is a solution of an entirely different class.

Traditionally, the price tag for fully preemptive multitasking has been
multiple stacks, TCBs, and significant number of CPU cycles for context
switches. SST shows how to reduce these costs in all these respects. For
example, a long-time user of SST reported an 80% reduction in stack space
compared wiht a traditional kernel running essentially the same application.

SST_schedLock and SST_schedUnlock

These appear to be equivalent to the mutex lock and unlock; was just
wondering if they were from another part of the article that was edited or
another article.

- Stephen Simmons
Sr. Systems Eng
ASRC
Kennedy Space Center, FL

Miro Samek responds: Good catch. The function names
SST_schedLock()/SST_schedUnlock() used in Listing 6 should be replaced

file:///home/hhoegl/Downloads/4025691.html

20 of 21 12/6/17, 7:22 PM

with SST_mutexLock()/SST_mutexUnlock() described in the article. This name
inconsistency reflects the names used in an earlier version of the SST code
(the priority-ceiling mutex is equivalent to locking the scheduler to a given
priority level).

Please note that the SST code accompanying the article is correct. I apologize
for the inconsistency in the text.

Miro, Robert,

Thanks, I really enjoyed reading this article. I thought some of this looked
familiar, then I remembered that I hadn't finished my copy of Statecharts in
C/C++ yet.

- Greg Feneis
Consultant
Thorough Calibration & Design
Palo Alto, CA

file:///home/hhoegl/Downloads/4025691.html

21 of 21 12/6/17, 7:22 PM

