
FreeRTOS (pronounced "free-arr-toss") is an open source real-time operating

system (RTOS) for embedded systems. FreeRTOS supports many different

architectures and compiler toolchains, and is designed to be "small, simple, and

easy to use".

FreeRTOS is under active development, and has been since Richard Barry started

work on it in 2002. As for me, I'm not a developer of or contributor to FreeRTOS,

I'm merely a user and a fan. As a result, this chapter will favor the "what" and

"how" of FreeRTOS's architecture, with less of the "why" than other chapters in

this book.

Like all operating systems, FreeRTOS's main job is to run tasks. Most of

FreeRTOS's code involves prioritizing, scheduling, and running user-defined tasks.

Unlike all operating systems, FreeRTOS is a real-time operating system which

runs on embedded systems.

By the end of this chapter I hope that you'll understand the basic architecture of

FreeRTOS. Most of FreeRTOS is dedicated to running tasks, so you'll get a good

look at exactly how FreeRTOS does that.

If this is your first look under the hood of an operating system, I also hope that

you'll learn the basics about how any OS works. FreeRTOS is relatively simple,

especially when compared to Windows, Linux, or OS X, but all operating systems

share the same basic concepts and goals, so looking at any OS can be instructive

and interesting.

3.1. What is "Embedded" and "Real-

Time"?

"Embedded" and "real-time" can mean different things to different people, so let's

define them as FreeRTOS uses them.

An embedded system is a computer system that is designed to do only a few

things, like the system in a TV remote control, in-car GPS, digital watch, or

pacemaker. Embedded systems are typically smaller and slower than general

purpose computer systems, and are also usually less expensive. A typical low-end

embedded system may have an 8-bit CPU running at 25MHz, a few KB of RAM,

and maybe 32KB of flash memory. A higher-end embedded system may have a

32-bit CPU running at 750MHz, a GB of RAM, and multiple GB of flash memory.

Real-time systems are designed to do something within a certain amount of time;

they guarantee that stuff happens when it's supposed to.

FreeRTOS

Christopher Svec

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

1 of 14 12/01/2014 09:56 PM

A pacemaker is an excellent example of a real-time embedded system. A

pacemaker must contract the heart muscle at the right time to keep you alive; it

can't be too busy to respond in time. Pacemakers and other real-time embedded

systems are carefully designed to run their tasks on time, every time.

3.2. Architecture Overview

FreeRTOS is a relatively small application. The minimum core of FreeRTOS is

only three source (.c) files and a handful of header files, totalling just under

9000 lines of code, including comments and blank lines. A typical binary code

image is less than 10KB.

FreeRTOS's code breaks down into three main areas: tasks, communication, and

hardware interfacing.

Tasks: Almost half of FreeRTOS's core code deals with the central concern in

many operating systems: tasks. A task is a user-defined C function with a

given priority. tasks.c and task.h do all the heavy lifting for creating,

scheduling, and maintaining tasks.

Communication: Tasks are good, but tasks that can communicate with each

other are even better! Which brings us to the second FreeRTOS job:

communication. About 40% of FreeRTOS's core code deals with

communication. queue.c and queue.h handle FreeRTOS communication.

Tasks and interrupts use queues to send data to each other and to signal the

use of critical resources using semaphores and mutexes.

The Hardware Whisperer: The approximately 9000 lines of code that make

up the base of FreeRTOS are hardware-independent; the same code runs

whether FreeRTOS is running on the humble 8051 or the newest, shiniest

ARM core. About 6% of FreeRTOS's core code acts a shim between the

hardware-independent FreeRTOS core and the hardware-dependent code.

We'll discuss the hardware-dependent code in the next section.

Hardware Considerations

The hardware-independent FreeRTOS layer sits on top of a hardware-dependent

layer. This hardware-dependent layer knows how to talk to whatever chip

architecture you choose. Figure 3.1 shows FreeRTOS's layers.

Figure 3.1: FreeRTOS software layers

FreeRTOS ships with all the hardware-independent as well as hardware-

dependent code you'll need to get a system up and running. It supports many

compilers (CodeWarrior, GCC, IAR, etc.) as well as many processor architectures

(ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, x86, etc.). See the

FreeRTOS website for a list of supported architectures and compilers.

FreeRTOS is highly configurable by design. FreeRTOS can be built as a single

CPU, bare-bones RTOS, supporting only a few tasks, or it can be built as a highly

functional multicore beast with TCP/IP, a file system, and USB.

Configuration options are selected in FreeRTOSConfig.h by setting various

#defines . Clock speed, heap size, mutexes, and API subsets are all

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

2 of 14 12/01/2014 09:56 PM

configurable in this file, along with many other options. Here are a few examples

that set the maximum number of task priority levels, the CPU frequency, the

system tick frequency, the minimal stack size and the total heap size:

#define configMAX_PRIORITIES ((unsigned portBASE_TYPE)

5)

#define configCPU_CLOCK_HZ (12000000UL)

#define configTICK_RATE_HZ ((portTickType) 1000)

#define configMINIMAL_STACK_SIZE ((unsigned short) 100)

#define configTOTAL_HEAP_SIZE ((size_t) (4 * 1024))

Hardware-dependent code lives in separate files for each compiler toolchain and

CPU architecture. For example, if you're working with the IAR compiler on an ARM

Cortex-M3 chip, the hardware-dependent code lives in the FreeRTOS/Source

/portable/IAR/ARM_CM3/ directory. portmacro.h declares all of the

hardware-specific functions, while port.c and portasm.s contain all of the

actual hardware-dependent code. The hardware-independent header file

portable.h #include 's the correct portmacro.h file at compile time.

FreeRTOS calls the hardware-specific functions using #define 'd functions

declared in portmacro.h .

Let's look at an example of how FreeRTOS calls a hardware-dependent function.

The hardware-independent file tasks.c frequently needs to enter a critical

section of code to prevent preemption. Entering a critical section happens

differently on different architectures, and the hardware-independent tasks.c

does not want to have to understand the hardware-dependent details. So

tasks.c calls the global macro portENTER_CRITICAL() , glad to be ignorant

of how it actually works. Assuming we're using the IAR compiler on an ARM

Cortex-M3 chip, FreeRTOS is built with the file FreeRTOS/Source/portable

/IAR/ARM_CM3/portmacro.h which defines portENTER_CRITICAL() like this:

#define portENTER_CRITICAL() vPortEnterCritical()

vPortEnterCritical() is actually defined in FreeRTOS/Source/portable

/IAR/ARM_CM3/port.c . The port.c file is hardware-dependent, and contains

code that understands the IAR compiler and the Cortex-M3 chip.

vPortEnterCritical() enters the critical section using this hardware-specific

knowledge and returns to the hardware-independent tasks.c .

The portmacro.h file also defines an architecture's basic data types. Data types

for basic integer variables, pointers, and the system timer tick data type are

defined like this for the IAR compiler on ARM Cortex-M3 chips:

#define portBASE_TYPE long // Basic integer varia

ble type

#define portSTACK_TYPE unsigned long // Pointers to memory

locations

typedef unsigned portLONG portTickType; // The system timer ti

ck type

This method of using data types and functions through thin layers of #defines

may seem a bit complicated, but it allows FreeRTOS to be recompiled for a

completely different system architecture by changing only the hardware-dependent

files. And if you want to run FreeRTOS on an architecture it doesn't currently

support, you only have to implement the hardware-dependent functionality which

is much smaller than the hardware-independent part of FreeRTOS.

As we've seen, FreeRTOS implements hardware-dependent functionality with C

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

3 of 14 12/01/2014 09:56 PM

preprocessor #define macros. FreeRTOS also uses #define for plenty of

hardware-independent code. For non-embedded applications this frequent use of

#define is a cardinal sin, but in many smaller embedded systems the overhead

for calling a function is not worth the advantages that "real" functions offer.

3.3. Scheduling Tasks: A Quick Overview

Task Priorities and the Ready List

Each task has a user-assigned priority between 0 (the lowest priority) and the

compile-time value of configMAX_PRIORITIES-1 (the highest priority). For

instance, if configMAX_PRIORITIES is set to 5, then FreeRTOS will use 5

priority levels: 0 (lowest priority), 1, 2, 3, and 4 (highest priority).

FreeRTOS uses a "ready list" to keep track of all tasks that are currently ready to

run. It implements the ready list as an array of task lists like this:

static xList pxReadyTasksLists[configMAX_PRIORITIES]; /* Prioritised

 ready tasks. */

pxReadyTasksLists[0] is a list of all ready priority 0 tasks,

pxReadyTasksLists[1] is a list of all ready priority 1 tasks, and so on, all the

way up to pxReadyTasksLists[configMAX_PRIORITIES-1] .

The System Tick

The heartbeat of a FreeRTOS system is called the system tick. FreeRTOS

configures the system to generate a periodic tick interrupt. The user can configure

the tick interrupt frequency, which is typically in the millisecond range. Every time

the tick interrupt fires, the vTaskSwitchContext() function is called.

vTaskSwitchContext() selects the highest-priority ready task and puts it in the

pxCurrentTCB variable like this:

/* Find the highest-priority queue that contains ready tasks. */

while(listLIST_IS_EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])

))

{

 configASSERT(uxTopReadyPriority);

 --uxTopReadyPriority;

}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of

the same

priority get an equal share of the processor time. */

listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB, &(pxReadyTasksLists[uxTopR

eadyPriority]));

Before the while loop starts, uxTopReadyPriority is guaranteed to be greater

than or equal to the priority of the highest-priority ready task. The while() loop

starts at priority level uxTopReadyPriority and walks down through the

pxReadyTasksLists[] array to find the highest-priority level with ready tasks.

listGET_OWNER_OF_NEXT_ENTRY() then grabs the next ready task from that

priority level's ready list.

Now pxCurrentTCB points to the highest-priority task, and when

vTaskSwitchContext() returns the hardware-dependent code starts running

that task.

Those nine lines of code are the absolute heart of FreeRTOS. The other 8900+

lines of FreeRTOS are there to make sure those nine lines are all that's needed to

keep the highest-priority task running.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

4 of 14 12/01/2014 09:56 PM

Figure 3.2 is a high-level picture of what a ready list looks like. This example has

three priority levels, with one priority 0 task, no priority 1 tasks, and three priority 2

tasks. This picture is accurate but not complete; it's missing a few details which

we'll fill in later.

Figure 3.2: Basic view of FreeRTOS Ready List

Now that we have the high-level overview out of the way, let's dive in to the details.

We'll look at the three main FreeRTOS data structures: tasks, lists, and queues.

3.4. Tasks

The main job of all operating systems is to run and coordinate user tasks. Like

many operating systems, the basic unit of work in FreeRTOS is the task.

FreeRTOS uses a Task Control Block (TCB) to represent each task.

Task Control Block (TCB)

The TCB is defined in tasks.c like this:

typedef struct tskTaskControlBlock

{

 volatile portSTACK_TYPE *pxTopOfStack; /* Points to

the location of

 the last i

tem placed on

 the tasks

stack. THIS

 MUST BE TH

E FIRST MEMBER

 OF THE STR

UCT. */

 xListItem xGenericListItem; /* List item

used to place

 the TCB in

 ready and

 blocked qu

eues. */

 xListItem xEventListItem; /* List item

used to place

 the TCB in

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

5 of 14 12/01/2014 09:56 PM

 event lists.*/

 unsigned portBASE_TYPE uxPriority; /* The priori

ty of the task

 where 0 is

 the lowest

 priority.

*/

 portSTACK_TYPE *pxStack; /* Points to

the start of

 the stack.

 */

 signed char pcTaskName[configMAX_TASK_NAME_LEN]; /* Descriptiv

e name given

 to the tas

k when created.

 Facilitate

s debugging

 only. */

 #if (portSTACK_GROWTH > 0)

 portSTACK_TYPE *pxEndOfStack; /* Used for s

tack overflow

 checking o

n architectures

 where the

stack grows up

 from low m

emory. */

 #endif

 #if (configUSE_MUTEXES == 1)

 unsigned portBASE_TYPE uxBasePriority; /* The priori

ty last

 assigned t

o the task -

 used by th

e priority

 inheritanc

e mechanism. */

 #endif

} tskTCB;

The TCB stores the address of the stack start address in pxStack and the

current top of stack in pxTopOfStack . It also stores a pointer to the end of the

stack in pxEndOfStack to check for stack overflow if the stack grows "up" to

higher addresses. If the stack grows "down" to lower addresses then stack

overflow is checked by comparing the current top of stack against the start of stack

memory in pxStack .

The TCB stores the initial priority of the task in uxPriority and

uxBasePriority . A task is given a priority when it is created, and a task's

priority can be changed. If FreeRTOS implements priority inheritance then it uses

uxBasePriority to remember the original priority while the task is temporarily

elevated to the "inherited" priority. (See the discussion about mutexes below for

more on priority inheritance.)

Each task has two list items for use in FreeRTOS's various scheduling lists. When

a task is inserted into a list FreeRTOS doesn't insert a pointer directly to the TCB.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

6 of 14 12/01/2014 09:56 PM

Instead, it inserts a pointer to either the TCB's xGenericListItem or

xEventListItem . These xListItem variables let the FreeRTOS lists be

smarter than if they merely held a pointer to the TCB. We'll see an example of this

when we discuss lists later.

A task can be in one of four states: running, ready to run, suspended, or blocked.

You might expect each task to have a variable that tells FreeRTOS what state it's

in, but it doesn't. Instead, FreeRTOS tracks task state implicitly by putting tasks in

the appropriate list: ready list, suspended list, etc. The presence of a task in a

particular list indicates the task's state. As a task changes from one state to

another, FreeRTOS simply moves it from one list to another.

Task Setup

We've already touched on how a task is selected and scheduled with the

pxReadyTasksLists array; now let's look at how a task is initially created. A

task is created when the xTaskCreate() function is called. FreeRTOS uses a

newly allocated TCB object to store the name, priority, and other details for a task,

then allocates the amount of stack the user requests (assuming there's enough

memory available) and remembers the start of the stack memory in TCB's

pxStack member.

The stack is initialized to look as if the new task is already running and was

interrupted by a context switch. This way the scheduler can treat newly created

tasks exactly the same way as it treats tasks that have been running for a while;

the scheduler doesn't need any special case code for handling new tasks.

The way that a task's stack is made to look like it was interrupted by a context

switch depends on the architecture FreeRTOS is running on, but this ARM

Cortex-M3 processor's implementation is a good example:

unsigned int *pxPortInitialiseStack(unsigned int *pxTopOfStack,

 pdTASK_CODE pxCode,

 void *pvParameters)

{

 /* Simulate the stack frame as it would be created by a context switc

h interrupt. */

 pxTopOfStack--; /* Offset added to account for the way the MCU uses t

he stack on

 entry/exit of interrupts. */

 pxTopOfStack = portINITIAL_XPSR; / xPSR */

 pxTopOfStack--;

 pxTopOfStack = (portSTACK_TYPE) pxCode; / PC */

 pxTopOfStack--;

 pxTopOfStack = 0; / LR */

 pxTopOfStack -= 5; /* R12, R3, R2 and R1. */

 pxTopOfStack = (portSTACK_TYPE) pvParameters; / R0 */

 pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */

 return pxTopOfStack;

}

The ARM Cortex-M3 processor pushes registers on the stack when a task is

interrupted. pxPortInitialiseStack() modifies the stack to look like the

registers were pushed even though the task hasn't actually started running yet.

Known values are stored to the stack for the ARM registers xPSR, PC, LR, and

R0 . The remaining registers R1 -- R12 get stack space allocated for them by

decrementing the top of stack pointer, but no specific data is stored in the stack for

those registers. The ARM architecture says that those registers are undefined at

reset, so a (non-buggy) program will not rely on a known value.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

7 of 14 12/01/2014 09:56 PM

After the stack is prepared, the task is almost ready to run. First though,

FreeRTOS disables interrupts: We're about to start mucking with the ready lists

and other scheduler structures and we don't want anyone else changing them

underneath us.

If this is the first task to ever be created, FreeRTOS initializes the scheduler's task

lists. FreeRTOS's scheduler has an array of ready lists, pxReadyTasksLists[] ,

which has one ready list for each possible priority level. FreeRTOS also has a few

other lists for tracking tasks that have been suspended, killed, and delayed. These

are all initialized now as well.

After any first-time initialization is done, the new task is added to the ready list at

its specified priority level. Interrupts are re-enabled and new task creation is

complete.

3.5. Lists

After tasks, the most used FreeRTOS data structure is the list. FreeRTOS uses its

list structure to keep track of tasks for scheduling, and also to implement queues.

Figure 3.3: Full view of FreeRTOS Ready List

The FreeRTOS list is a standard circular doubly linked list with a couple of

interesting additions. Here's a list element:

struct xLIST_ITEM

{

 portTickType xItemValue; /* The value being listed.

 In most cases

 this is used to sort th

e list in

 descending order. */

 volatile struct xLIST_ITEM * pxNext; /* Pointer to the next xLi

stItem in the

 list. */

 volatile struct xLIST_ITEM * pxPrevious; /* Pointer to the previous

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

8 of 14 12/01/2014 09:56 PM

 xListItem in

 the list. */

 void * pvOwner; /* Pointer to the object (

normally a TCB)

 that contains the list

item. There is

 therefore a two-way lin

k between the

 object containing the l

ist item and

 the list item itself. *

/

 void * pvContainer; /* Pointer to the list in

which this list

 item is placed (if any)

. */

};

Each list element holds a number, xItemValue , that is the usually the priority of

the task being tracked or a timer value for event scheduling. Lists are kept in

high-to-low priority order, meaning that the highest-priority xItemValue (the

largest number) is at the front of the list and the lowest priority xItemValue (the

smallest number) is at the end of the list.

The pxNext and pxPrevious pointers are standard linked list pointers.

pvOwner is a pointer to the owner of the list element. This is usually a pointer to

a task's TCB object. pvOwner is used to make task switching fast in

vTaskSwitchContext() : once the highest-priority task's list element is found in

pxReadyTasksLists[] , that list element's pvOwner pointer leads us directly to

the TCB needed to schedule the task.

pvContainer points to the list that this item is in. It is used to quickly determine

if a list item is in a particular list. Each list element can be put in a list, which is

defined as:

typedef struct xLIST

{

 volatile unsigned portBASE_TYPE uxNumberOfItems;

 volatile xListItem * pxIndex; /* Used to walk through the l

ist. Points to

 the last item returned by

a call to

 pvListGetOwnerOfNextEntry

(). */

 volatile xMiniListItem xListEnd; /* List item that contains th

e maximum

 possible item value, meani

ng it is always

 at the end of the list and

 is therefore

 used as a marker. */

} xList;

The size of a list at any time is stored in uxNumberOfItems , for fast list-size

operations. All new lists are initialized to contain a single element: the xListEnd

element. xListEnd.xItemValue is a sentinel value which is equal to the largest

value for the xItemValue variable: 0xffff when portTickType is a 16-bit

value and 0xffffffff when portTickType is a 32-bit value. Other list

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

9 of 14 12/01/2014 09:56 PM

elements may also have the same value; the insertion algorithm ensures that

xListEnd is always the last item in the list.

Since lists are sorted high-to-low, the xListEnd element is used as a marker for

the start of the list. And since the list is circular, this xListEnd element is also a

marker for the end of the list.

Most "traditional" list accesses you've used probably do all of their work within a

single for() loop or function call like this:

for (listPtr = listStart; listPtr != NULL; listPtr = listPtr->next) {

 // Do something with listPtr here...

}

FreeRTOS frequently needs to access a list across multiple for() and while() loops

as well as function calls, and so it uses list functions that manipulate the

pxIndex pointer to walk the list. The list function

listGET_OWNER_OF_NEXT_ENTRY() does pxIndex = pxIndex->pxNext;

and returns pxIndex . (Of course it does the proper end-of-list-wraparound

detection too.) This way the list itself is responsible for keeping track of "where you

are" while walking it using pxIndex , allowing the rest of FreeRTOS to not worry

about it.

Figure 3.4: Full view of FreeRTOS Ready List after a system timer

tick

The pxReadyTasksLists[] list manipulation done in vTaskSwitchContext()

is a good example of how pxIndex is used. Let's assume we have only one

priority level, priority 0, and there are three tasks at that priority level. This is

similar to the basic ready list picture we looked at earlier, but this time we'll include

all of the data structures and fields.

As you can see in Figure 3.3, pxCurrentTCB indicates that we're currently

running Task B. The next time vTaskSwitchContext() runs, it calls

listGET_OWNER_OF_NEXT_ENTRY() to get the next task to run. This function

uses pxIndex->pxNext to figure out the next task is Task C, and now

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

10 of 14 12/01/2014 09:56 PM

pxIndex points to Task C's list element and pxCurrentTCB points to Task C's

TCB, as shown in Figure 3.4.

Note that each struct xListItem object is actually the xGenericListItem

object from the associated TCB.

3.6. Queues

FreeRTOS allows tasks to communicate and synchronize with each other using

queues. Interrupt service routines (ISRs) also use queues for communication and

synchronization.

The basic queue data structure is:

typedef struct QueueDefinition

{

 signed char *pcHead; /* Points to the beginning

of the queue

 storage area. */

 signed char *pcTail; /* Points to the byte at th

e end of the

 queue storage area. One

more byte is

 allocated than necessary

 to store the

 queue items; this is used

as a marker. */

 signed char *pcWriteTo; /* Points to the free next

place in the

 storage area. */

 signed char *pcReadFrom; /* Points to the last place

 that a queued

 item was read from. */

 xList xTasksWaitingToSend; /* List of tasks that are b

locked waiting

 to post onto this queue.

 Stored in

 priority order. */

 xList xTasksWaitingToReceive; /* List of tasks that are b

locked waiting

 to read from this queue.

 Stored in

 priority order. */

 volatile unsigned portBASE_TYPE uxMessagesWaiting; /* The number of

items currently

 in the queue.

*/

 unsigned portBASE_TYPE uxLength; /* The length of

the queue

 defined as the

 number of

 items it will

hold, not the

 number of byte

s. */

 unsigned portBASE_TYPE uxItemSize; /* The size of ea

ch items that

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

11 of 14 12/01/2014 09:56 PM

 the queue will

 hold. */

} xQUEUE;

This is a fairly standard queue with head and tail pointers, as well as pointers to

keep track of where we've just read from and written to.

When creating a queue, the user specifies the length of the queue and the size of

each item to be tracked by the queue. pcHead and pcTail are used to keep

track of the queue's internal storage. Adding an item into a queue does a deep

copy of the item into the queue's internal storage.

FreeRTOS makes a deep copy instead of storing a pointer to the item because the

lifetime of the item inserted may be much shorter than the lifetime of the queue.

For instance, consider a queue of simple integers inserted and removed using

local variables across several function calls. If the queue stored pointers to the

integers' local variables, the pointers would be invalid as soon as the integers'

local variables went out of scope and the local variables' memory was used for

some new value.

The user chooses what to queue. The user can queue copies of items if the items

are small, like in the simple integer example in the previous paragraph, or the user

can queue pointers to the items if the items are large. Note that in both cases

FreeRTOS does a deep copy: if the user chooses to queue copies of items then

the queue stores a deep copy of each item; if the user chooses to queue pointers

then the queue stores a deep copy of the pointer. Of course, if the user stores

pointers in the queue then the user is responsible for managing the memory

associated with the pointers. The queue doesn't care what data you're storing in it,

it just needs to know the data's size.

FreeRTOS supports blocking and non-blocking queue insertions and removals.

Non-blocking operations return immediately with a "Did the queue insertion work?"

or "Did the queue removal work?" status. Blocking operations are specified with a

timeout. A task can block indefinitely or for a limited amount of time.

A blocked task—call it Task A—will remain blocked as long as its insert/remove

operation cannot complete and its timeout (if any) has not expired. If an interrupt

or another task modifies the queue so that Task A's operation could complete,

Task A will be unblocked. If Task A's queue operation is still possible by the time it

actually runs then Task A will complete its queue operation and return "success".

However, by the time Task A actually runs, it is possible that a higher-priority task

or interrupt has performed yet another operation on the queue that prevents Task

A from performing its operation. In this case Task A will check its timeout and

either resume blocking if the timeout hasn't expired, or return with a queue

operation "failed" status.

It's important to note that the rest of the system keeps going while a task is

blocking on a queue; other tasks and interrupts continue to run. This way the

blocked task doesn't waste CPU cycles that could be used productively by other

tasks and interrupts.

FreeRTOS uses the xTasksWaitingToSend list to keep track of tasks that are

blocking on inserting into a queue. Each time an element is removed from a queue

the xTasksWaitingToSend list is checked. If a task is waiting in that list the task

is unblocked.

Similarly, xTasksWaitingToReceive keeps track of tasks that are blocking on

removing from a queue. Each time a new element is inserted into a queue the

xTasksWaitingToReceive list is checked. If a task is waiting in that list the task

is unblocked.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

12 of 14 12/01/2014 09:56 PM

Semaphores and Mutexes

FreeRTOS uses its queues for communication between and within tasks.

FreeRTOS also uses its queues to implement semaphores and mutexes.

What's The Difference?

Semaphores and mutexes may sound like the same thing, but they're not.

FreeRTOS implements them similarly, but they're intended to be used in different

ways. How should they be used differently? Embedded systems guru Michael Barr

says it best in his article, "Mutexes and Semaphores Demystified":

The correct use of a semaphore is for signaling from one task to another. A

mutex is meant to be taken and released, always in that order, by each task

that uses the shared resource it protects. By contrast, tasks that use

semaphores either signal ["send" in FreeRTOS terms] or wait ["receive" in

FreeRTOS terms] - not both.

A mutex is used to protect a shared resource. A task acquires a mutex, uses the

shared resource, then releases the mutex. No task can acquire a mutex while the

mutex is being held by another task. This guarantees that only one task is allowed

to use a shared resource at a time.

Semaphores are used by one task to signal another task. To quote Barr's article:

For example, Task 1 may contain code to post (i.e., signal or increment) a

particular semaphore when the "power" button is pressed and Task 2, which

wakes the display, pends on that same semaphore. In this scenario, one task is

the producer of the event signal; the other the consumer.

If you're at all in doubt about semaphores and mutexes, please check out

Michael's article.

Implementation

FreeRTOS implements an N-element semaphore as a queue that can hold N

items. It doesn't store any actual data for the queue items; the semaphore just

cares how many queue entries are currently occupied, which is tracked in the

queue's uxMessagesWaiting field. It's doing "pure synchronization", as the

FreeRTOS header file semphr.h calls it. Therefore the queue has a item size of

zero bytes (uxItemSize == 0). Each semaphore access increments or

decrements the uxMessagesWaiting field; no item or data copying is needed.

Like a semaphore, a mutex is also implemented as a queue, but several of the

xQUEUE struct fields are overloaded using #defines :

/* Effectively make a union out of the xQUEUE structure. */

#define uxQueueType pcHead

#define pxMutexHolder pcTail

Since a mutex doesn't store any data in the queue, it doesn't need any internal

storage, and so the pcHead and pcTail fields aren't needed. FreeRTOS sets

the uxQueueType field (really the pcHead field) to 0 to note that this queue is

being used for a mutex. FreeRTOS uses the overloaded pcTail fields to

implement priority inheritance for mutexes.

In case you're not familiar with priority inheritance, I'll quote Michael Barr again to

define it, this time from his article, "Introduction to Priority Inversion":

[Priority inheritance] mandates that a lower-priority task inherit the priority of

any higher-priority task pending on a resource they share. This priority change

should take place as soon as the high-priority task begins to pend; it should

end when the resource is released.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

13 of 14 12/01/2014 09:56 PM

This work is made available under the Creative Commons Attribution 3.0 Unported

license. Please see the full description of the license for details.

FreeRTOS implements priority inheritance using the pxMutexHolder field (which

is really just the overloaded-by- #define pcTail field). FreeRTOS records the

task that holds a mutex in the pxMutexHolder field. When a higher-priority task

is found to be waiting on a mutex currently taken by a lower-priority task,

FreeRTOS "upgrades" the lower-priority task to the priority of the higher-priority

task until the mutex is available again.

3.7. Conclusion

We've completed our look at the FreeRTOS architecture. Hopefully you now have

a good feel for how FreeRTOS's tasks run and communicate. And if you've never

looked at any OS's internals before, I hope you now have a basic idea of how they

work.

Obviously this chapter did not cover all of FreeRTOS's architecture. Notably, I

didn't mention memory allocation, ISRs, debugging, or MPU support. This chapter

also did not discuss how to set up or use FreeRTOS. Richard Barry has written an

excellent book, Using the FreeRTOS Real Time Kernel: A Practical Guide, which

discusses exactly that; I highly recommend it if you're going to use FreeRTOS.

3.8. Acknowledgements

I would like to thank Richard Barry for creating and maintaining FreeRTOS, and for

choosing to make it open source. Richard was very helpful in writing this chapter,

providing some FreeRTOS history as well as a very valuable technical review.

Thanks also to Amy Brown and Greg Wilson for pulling this whole AOSA thing

together.

Last and most (the opposite of "not least"), thanks to my wife Sarah for sharing me

with the research and writing for this chapter. Luckily she knew I was a geek when

she married me!

Back to top

Back to The Architecture of Open Source Applications.

The Architecture of Open Source Applications (Vol... http://www.aosabook.org/en/freertos.html

14 of 14 12/01/2014 09:56 PM

