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3
Operating in Real Time
This chapter addresses the need for embedded systems to generate
real-time responses to
inputs from sensors and other sources. The
 concepts of Real-Time Operating Systems
(RTOSes) and their key features
 are introduced, as well as some challenges that com‐
monly occur when
 implementing multitasking real-time applications. The chapter con‐
cludes
with a discussion of the important characteristics of some popular open
source and
commercial RTOS implementations.

After completing this chapter, you will understand what it means for
a system to operate
in real time and will know the key attributes a
real-time system must exhibit. You will un‐
derstand the RTOS features
that embedded systems rely upon, as well as some problems
that
frequently crop up in real-time embedded system designs. You will also
have learned
the key features of several popular RTOS
implementations.

We will cover the following topics in this chapter:

• What does real-time mean? • Attributes of a real-time embedded
 system •
Understanding key RTOS features and challenges • Popular
RTOSes

3.1
Technical requirements

https://learning.oreilly.com/library/view/architecting-high-performance-embedded/9781789955965/
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The files for this chapter are available at
 https://github.com/PacktPublishing/
Architecting-High-Performance-Embedded-Systems.

3.2
What does real-time mean?

Real-time means computing with a deadline. In a real-time embedded
system, the time it
takes to respond to an input is a critical component
of system performance. If the system
produces a correct response, but
 the response is not generated within the required time
limit, the effect
may range from a mild nuisance to a catastrophic impact for a
safety-re‐
lated system.

The response of a real-time embedded system to inputs must be both
correct and timely.
Most standard software development approaches focus
on the correctness of the response
produced by a piece of code rather
than being overly concerned with the timeliness of the
response.
Non-real-time software development approaches attempt to develop code
 that
executes as quickly as possible, but usually do not provide a hard
time limit specifying
when the response must be provided. Real-time
systems are considered to have failed if
the timing constraints are not
met, even during stressing and rare combinations of operat‐
ing
 conditions. A computing system that produces the intended outputs is
 considered
functionally correct. A system that produces outputs within
specified time limits is con‐
sidered temporally correct. Real-time
systems must be both functionally and temporally
correct.

Consider two automotive embedded subsystems: the digital key fob used
 to unlock the
car door and the airbag control system. If the key fob
takes a few seconds longer for the
car door to unlock than expected, the
user may be a bit irritated, but will still be able get
into the car and
operate it. But, if the airbag controller were to take a fraction of a
second
longer to respond than expected in a serious collision, the
 result may be passenger
fatalities.

Real-time applications can be divided into two categories: soft
 real-time and hard real-
time. Systems in which real-time behavior,
 defined as the ability to meet all of the
system’s timing requirements,
 is highly desired but not absolutely necessary are called
soft real-time
systems. The automotive key fob response time is an example of this
cate‐
gory. While undesired delays in response may have negative impacts,
 such as reducing
the level of perceived product quality in users’ minds,
 the system nevertheless remains
functional and usable. Real-time systems
that must, under all circumstances, strictly meet
all of their timing
requirements, such as the airbag controller, are considered hard
 real-
time systems.

The process used to develop and test software for embedded
applications must maintain a
continuous focus on the system’s real-time
requirements and ensure the software imple‐
mentation does not compromise
performance in terms of those requirements. For exam‐
ple, if noisy sensor
 measurements require digital filtering to reduce the effects of the
noise, the code to implement the filtering will most likely require the
insertion of loops in
the code to implement the algorithm. The addition
of loops, particularly if they iterate a
large number of times, can
substantially increase code execution time and possibly vio‐
late timing
requirements.

The next section will examine the key attributes a real-time embedded
system must pos‐
sess, including the necessary features of the processor
hardware, I/O devices, and operat‐
ing system-level software.

3.3
Attributes of a real-time embedded system
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The hardware and software of a real-time embedded system must exhibit
some specific
characteristics to ensure the system reliably meets its
performance goals of producing re‐
liably correct and timely outputs. Most
 real-time embedded systems that perform func‐
tions of moderate to high
complexity must divide the processing work into multiple tasks
that
execute in an apparently (to the user) simultaneous manner, including
managing the
operation of hardware such as an automobile engine while
regularly updating information
displayed to the driver.

At the finest-grained level of processor operation, most embedded
systems rely on the use
of interrupts to notify the processor when an
operation is required by an I/O device. In a
real-time application, the
handling of interrupts can become a critical factor in ensuring
proper
system operation. At the simplest level, any time an interrupt is being
processed,
the code algorithm that was paused to handle the interrupt is
 blocked from execution.
This means that when the paused code resumes
execution, it will have less time to com‐
plete before its deadline
arrives. As a rule of thumb, it is best to minimize the amount of
time
spent handling interrupts.

Related to interrupt processing, the time-related performance of I/O
 devices is another
important factor in the performance of real-time
applications. Some I/O devices, such as
a flash memory card, may require
a substantial length of time to complete a read or write
operation. When
working with these devices, it is not acceptable for the processor to
stop
and simply wait for the operation to complete. Similarly, an ADC
takes some time to per‐
form the analog-to-digital conversion operation.
If the processor spins on the conversion
complete status bit, waiting
for the conversion to finish, the delay may again be unaccept‐
able. More
sophisticated techniques are required when working with these
devices.

The following sections discuss these system concerns and the
important real-time perfor‐
mance attributes associated with each of
them.

3.4
Performing multiple tasks
It is common for an embedded system to appear to be performing
multiple tasks simulta‐
neously. It is normally not necessary for the
system to perform multiple different func‐
tions at the same precise point
in time. Instead, it is generally acceptable to rapidly switch
from
performing one task, to the next, and so on. If each task succeeds at
updating at its
intended rate, it does not matter whether the system
performs other actions between those
updates.

It is also common for the various tasks a system performs to require
updates at different
rates. For example, a system that controls the
speed of a vehicle electric drive motor may
need to update the outputs
that control the motor dozens of times per second, while the
same device
updates status information displayed to the user just a few times per
second.

It is certainly possible for a developer to combine the code to
perform both of these tasks
(motor control and status display) with code
that manages the execution of each task at
appropriate time intervals,
all within a single module. However, this is not an ideal ap‐
proach. It
is conceptually simpler to break the application code for each task into
a logi‐
cally separate module and manage the scheduling of the tasks from
 a higher-level
module.

To provide a concrete example, assume we need to update an electric
motor control task
at a 50 Hz rate and update the user status display at
a 10 Hz rate. We will also assume the
longest possible time it takes the
motor control code to run is 5 ms and the user status dis‐
play code takes
up to 10 ms to run, due to the need to transfer data over a slow
interface.
If we reach a point where both tasks are ready to run, we
must ensure the motor control
task receives the highest priority because
we need the motor updates to execute at precise
time intervals. Updating
the status display is lower priority because if the timing of up‐
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dates to
 the status display varies by a few milliseconds, it will not be
noticeable to the
user. In this example, the motor control task has a
hard real-time requirement, while the
status display task is a soft
real-time function.

The following C language listing is an example of a control program
that initializes the
system, and then executes a loop at 20 ms
intervals, updating the motor control on each
pass. Every fifth pass
through the loop, it also updates the status display after completing
the motor control update. In this code, the WaitFor20msTimer function
 may be imple‐
mented as an interrupt-driven function that places the
 processor in a low power sleep
state while waiting for the timer
interrupt to wake it.

Alternatively, WaitFor20msTimer may contain a simple loop that reads
a hardware timer
register until the timer reaches the next 20 ms
increment, at which point it returns:

This code executes in the pattern shown in Figure 3.1. The Motor
Control code executes
for 5 ms at 20 ms intervals, represented by the
pulses in the upper graph. After the first
Motor Control update
completes, the control loop calls the Status Display update routine
at
time A. The dashed line in the diagram shows this relationship between
the end of mo‐
tor update processing and the start of Status Display
update processing, which appears in
the lower graph:

Embedded system control
loop timing

void InitializeSystem(void); 


void WaitFor20msTimer(void); 


void UpdateMotorControl(void); 


void UpdateStatusDisplay(void); 


int main() 


{

    InitializeSystem(); 


    int pass_count = 0; 


    const int status_display_interval = 5; 


    for (;;) 


    { 


        WaitFor20msTimer(); 


        UpdateMotorControl(); 


        ++pass_count; 


        if (pass_count == 1) 


        { 


            UpdateStatusDisplay();


        } 


        else if (pass_count == status_display_interval) 


        { 


            pass_count = 0;


        } 


    } 


    return 0; 


}
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This code will be guaranteed to meet its timing requirements for
Motor Control updates
and Status Display updates as long as the
processing time for each of the update routines
remains within its
 constraints. There will be some small amount of timing jitter on the
Status Display updates because the Status Display routine begins after
the Motor Control
update ends, and there is no guarantee that the time
the Motor Control code takes to exe‐
cute will be identical each time it
runs.

What happens, though, if the Status Display code is upgraded to pass
additional informa‐
tion to the display and the new version takes 20 ms to
execute instead of 10 ms, as in the
original version? From Figure 3.1,
we can see that execution of the Status Display update
will stretch 5 ms
into the time period intended for the Motor Control update, delaying its
execution. We have already determined that this sort of delay is
unacceptable. What can
we do to resolve this problem?

One possible approach is to split the Status Display update code into
 two separate rou‐
tines, each taking no more than 10 ms to execute. These
 routines can be called in se‐
quence, as shown in Figure 3.2:

Status update split into
two parts

This solution will continue to meet all of the timing performance
requirements, as long as
each stage of the status update code finishes
execution within its 10 ms time limit. The
following code listing
implements this solution:

void InitializeSystem(void); 


void WaitFor20msTimer(void); 


void UpdateMotorControl(void); 


void UpdateStatusDisplay1(void); 


void UpdateStatusDisplay2(void); 


int main() 


{

    InitializeSystem(); 


    int pass_count = 0; 


    const int status_display_interval = 5; 


    for (;;) 


    { 


        WaitFor20msTimer(); 


        UpdateMotorControl(); 


        ++pass_count; 


        if (pass_count == 1) 


        { 


            UpdateStatusDisplay1();


        } 


        else if (pass_count == 2) 


        { 


            UpdateStatusDisplay2();


        } 


        else if (pass_count == status_display_interval) 


        { 
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In this version of the application, the Status Display code is broken
down into two func‐
tions: UpdateStatusDisplay1() and
UpdateStatusDisplay2().

While this solution is workable in terms of meeting the timing
requirements for the sys‐
tem, it is far from an ideal approach. For one
thing, it may not be easy, or even possible,
to separate the Status
Display update code into two functions, each taking approximately
the
 same length of time to execute. Ongoing maintenance becomes more of a
problem
when changes must be made to this code. In addition to ensuring
the new code is func‐
tionally correct, it must be distributed between the
two update functions to ensure neither
exceeds its execution time limit.
This is, frankly, a brittle solution.

For a real-time embedded system design, this approach is clearly
inappropriate. Much of
the complexity in this example can be avoided
through the use of preemptive multitask‐
ing. Preemptive multitasking is
the ability of a computer system to pause and resume the
execution of
multiple tasks as needed based on scheduling criteria.

Popular desktop operating systems such as Microsoft Windows and Linux
perform pre‐
emptive multitasking to allow dozens or even hundreds of
simultaneously executing pro‐
cesses to share processor time in a manner
that allows all of them to perform their work.

An embedded operating system supporting preemptive multitasking
follows a few simple
rules to determine which of potentially several
tasks is permitted to run each time it per‐
forms a scheduling
operation.

In embedded systems, a task is a distinct thread of execution with a
set of associated re‐
sources, including processor register contents, a
stack, and memory. In a single-processor
computer, only one task can be
executing at any given time. A scheduling event allows
the system to
select the next task to run and then start or resume its execution.
Scheduling
events include timer events and task transitions to a blocked
state, as well as operating
system calls invoked from application code
and from Interrupt Service Routines (ISRs).

Tasks in embedded systems are usually in one of three states:

• Ready state: The task is prepared to run but it is not actually
running because it is in the
scheduler’s queue awaiting scheduling for
execution.

• Running state: The task is executing processor instructions.

• Blocked state: The task is waiting for an event to occur, such as
waiting for a system re‐
source or for the receipt of a signal from a
timer.

Each task is assigned a priority by the system developer. Each time a
scheduling event
occurs, the system identifies the highest priority task
 that is in either the Ready or
Running states and transfers control to
that task, or leaves it in the Running state if it is
already there. The
switch from one task to another involves storing the context
informa‐
tion, primarily the processor register contents, associated with
 the departing task in its
Task Control Block (TCB) and restoring TCB
information for the incoming task to the
processor registers before
 jumping to the next instruction in the incoming task’s code.
Each
context switch takes a small amount of time that subtracts from the time
available
for task execution.

            pass_count = 0;


        } 


    } 


    return 0; 


}
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Figure 3.3 presents the operation of the Motor Control algorithm
 within a preemptive
multitasking RTOS. This system has timer events at
20 ms intervals. At each interval, the
Motor Control task enters the
Ready state and, because it has the higher priority, it imme‐
diately
enters the Running state and executes its update, and then returns to
the Blocked
state:

Preemptive multitasking

Every 100 ms, the Status Display task enters the Ready state, but
because it is lower pri‐
ority, the Motor Control task runs first. When
the Motor Control task enters the blocked
state at time A, the Status
Display task enters the Running state and begins execution. At
20 ms,
 another timer event occurs and the Motor Control task again enters the
 Ready
state. Because it is higher priority, it again runs until it
enters the Blocked state. At that
point, the Status Display task resumes
execution until it completes its update and enters
the Blocked
state.

The following listing shows an implementation of this system in C
using the FreeRTOS
RTOS:

#include "FreeRTOS.h"


#include "task.h"


void InitializeSystem(void); 


void UpdateMotorControl(void); 


void UpdateStatusDisplay(void); 


static void StatusDisplayTask(void* parameters) 


{

    TickType_t next_wake_time = xTaskGetTickCount();


    for (;;) 


    { 


        const TickType_t block_time = pdMS_TO_TICKS(100); 


        vTaskDelayUntil(&next_wake_time, block_time);


        UpdateStatusDisplay(); 


    } 


}

static void MotorControlTask(void* parameters) 


{

    TickType_t next_wake_time = xTaskGetTickCount();


    for (;;) 


    { 


        const TickType_t block_time = pdMS_TO_TICKS(20); 


        vTaskDelayUntil(&next_wake_time, block_time);


        UpdateMotorControl(); 


    } 


}

void main(void) 


{

    xTaskCreate(StatusDisplayTask, "StatusDisplay",
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This code defines two tasks as C functions: StatusDisplayTask() and
MotorControlTask().
The same functions that implement the application
 functionality in the earlier example
are used here: InitializeSystem(),
UpdateStatusDisplay(), and UpdateMotorControl(). The
vTaskDelayUntil()
 function performs a precise time delay to ensure the Motor Control
task
becomes ready to run every 20 ms and the Status Display task becomes
ready to run
every 100 ms.

Task priorities in FreeRTOS are assigned with lower numerical values
representing lower
priorities. The lowest priority is the idle task with
a priority of 0, represented by the con‐
stant tskIDLE_PRIORITY. The idle
 task is provided by the system and executes when‐
ever a scheduling event
occurs and there is no other task in the Ready state. The Status
Display
 task is assigned a priority one higher than the idle task and the Motor
Control
task is assigned a priority two higher than the idle task.

This example should make it clear that the use of preemptive
multitasking takes a great
deal of work off the shoulders of the system
developers when working with multiple real-
time tasks executing at
different update rates. Although this example included only two
tasks,
 the principles of task prioritization and preemptive multitasking
 support an arbi‐
trary number of tasks in a system, limited only by
available system resources and execu‐
tion time constraints.

While preemptive multitasking relieves system developers from the
need to fit code exe‐
cution within narrow time slots, there is still a
 limit to how much execution time each
task in a multitasking system can
consume and remain guaranteed to meet its timing con‐
straints. The next
section introduces rate-monotonic scheduling, which provides a method
to
guarantee that timing constraints will not be violated as long as
certain conditions are
met.

3.5
Rate-monotonic scheduling

The processor utilization of a periodic task is the maximum execution
time of the task di‐
vided by the execution interval of the task,
 expressed as a percentage. In our example,
with the extended Status
 Display processing time, the utilization of the Motor Control
task is (5
ms / 20 ms) = 20%, and the utilization of the Status Display task is (20
ms / 100
ms) = 20%. The total processor utilization for this application
is thus 20% + 20% = 40%.

While we can be confident that our two-task system represented in
Figure 3.3 will always
satisfy its timing constraints, how can we retain
this confidence if we add more tasks to
the system, each updating at its
own rate, and each with its own processor utilization?

Rate-monotonic Scheduling (RMS) provides an answer to this concern.
The timing con‐
straints of a real-time system with periodically scheduled
tasks are guaranteed to be met
if the following conditions and
assumptions are satisfied:

• Task priorities are assigned with the highest priority going to the
most frequently exe‐
cuting task, decreasing monotonically down to the
 lowest priority assigned to the least
frequently executing task.

        configMINIMAL_STACK_SIZE, 


        NULL, (tskIDLE_PRIORITY + 1), NULL);


    xTaskCreate(MotorControlTask, "MotorControl",


        configMINIMAL_STACK_SIZE, NULL,


        (tskIDLE_PRIORITY + 2), NULL);

    InitializeSystem(); 


    vTaskStartScheduler();


    // This point is only reached if memory 


    // allocation fails during startup 


    for (;;); 


}
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• A task cannot block waiting for a response from another task.

• The time to perform task scheduling and context switching is
considered negligible.

• The total processor utilization (the sum of the processor
utilizations for all n tasks) is no
greater than n*(2^(1/n) - 1).

The following table employs this formula to present the RMS processor
utilization limits
for task counts from 1 to 8:

table3-1.png
table3-1.png

In our example, the total processor utilization was 40%. From the
preceding table, we see
that we can increase the processor utilization
as high as 82.84% with two tasks and still
be guaranteed that timing
 constraints will be satisfied, as long as the RMS criteria are
satisfied.

As the number of tasks in a system increases, the maximum processor
 utilization de‐
creases. As the number of tasks becomes very large, the
maximum processor utilization
converges to a limit of 69.32%.

The RMS limit on processor utilization is conservative. It may be
possible for a system to
run at a higher level of processor utilization
 for a particular number of tasks than is
shown in this table.

In addition to preemptive multitasking, most popular RTOS
 implementations support a
variety of standard features, while also
 requiring developers to remain aware of certain
potential problem areas.
 The next section introduces some standard RTOS capabilities
and areas of
concern for system architects.

3.6
Understanding key RTOS features and challenges
Several standard capabilities are included in most of the RTOS
implementations that are
in wide use today. Some of these features
enable efficient communication among tasks in
a manner consistent with
 real-time operation. While common, not all of the following
features are
universally available in all RTOSes.

3.7
Mutexes

A mutex, which stands for mutual exclusion, is a mechanism for
managing access to a
shared resource among tasks. A mutex is
conceptually identical to a global variable that
can be read and written
by all tasks. The variable has the value 1 when the shared re‐
source is
free, and 0 when it is in use by a task. When a task needs to gain
access to the
resource, it reads the variable and, if it is free, with
the value 1, sets it to 0 to indicate the
mutex is owned by a task. The
task is then free to interact with the resource. When the
interaction is
complete, the task sets the mutex to 1, thereby releasing ownership.

If a task attempts to take ownership of the mutex while the mutex is
held by another task,
the first task will block until ownership is
released by the second task. This remains true
even if the task holding
the mutex has a lower priority than the task requesting it. Figure
3.4
presents an example of how mutex ownership can interact with task
priorities:
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Mutex ownership interaction
with task priorities

This diagram shows the two tasks running in the preemptive
multitasking environment of
Figure 3.3, except in this case, the Status
Display task takes ownership of a mutex at time
A. At time 20 ms, the
 Motor Control task becomes scheduled and begins executing.
Midway
through processing, at time B, the task attempts to take the same mutex,
but be‐
cause the resource is not available, the Motor Control task
blocks. This allows the Status
Display task to resume processing until
 it frees the mutex at time C. This unblocks the
Motor Control task,
 allowing it to take the mutex and resume execution. The Motor
Control
runs until it completes its update, and then blocks, waiting for the
next cycle. The
Status Display task then resumes until it, too, blocks,
waiting for its next update.

In this example, the blocking of the Motor Control task resulted in a
delay in the comple‐
tion of its processing, which we have already
indicated is unacceptable in the system de‐
sign. We must also note that
 this violated one of the RMS criteria, specifically, the ad‐
monishment to
avoid execution dependencies between tasks. Introducing such
complexi‐
ties does not mean the system will not be able to work properly;
 it simply means addi‐
tional analysis and testing will be required to
ensure proper system operation under all
conditions.

This example demonstrates some of the complexity and pitfalls you may
encounter when
working with inter-task dependencies. A good rule of
thumb when working with mutexes
is to hold the mutex for the smallest
possible length of time before releasing it.

3.8
Semaphores

A semaphore is a signaling mechanism that synchronizes operations
 across tasks. The
semaphore is a generalization of the mutex and can be
of two types: a binary semaphore
or a counting semaphore. A binary
 semaphore functions similar to a mutex, except its
purpose is to send a
signal to another task. If a task attempts to take a semaphore while it
is held by another task, the requesting task will block until the task
holding the sema‐
phore gives it.

A counting semaphore contains a counter initialized to an upper
limit. Each time a task
takes a counting semaphore, the counter
decrements by one. When the counter reaches
zero, attempts to take the
semaphore will block until at least one semaphore holder gives
it, which
increments the counter.

One application of a semaphore involves the reception and processing
of incoming data.
If the I/O device associated with the incoming data
stream uses a processor interrupt to
trigger an ISR, the ISR can
retrieve the data from the peripheral device, store it in a mem‐
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ory
buffer, and give a semaphore that unblocks a task waiting for incoming
data. This de‐
sign approach allows the ISR to exit as quickly as
possible, making the system more re‐
sponsive to subsequent interrupts and
minimizing delays in task execution.

It is generally advisable to spend as little time as possible
processing each ISR, which
means handing off processing duties to a task
via a semaphore is an effective way to re‐
duce the latency of subsequent
interrupts. When the task finishes processing the incoming
data, it
again attempts to take the semaphore, which will block if no additional
data has
arrived since the last time it took the semaphore.

3.9
Queues

A queue, sometimes called a message queue, is a one-way communication
path between
tasks. A sending task places data items in the queue and
the receiving task removes them
in the same order they were inserted. If
 the receiver attempts to read a queue that is
empty, it can choose to
block while waiting for data to be placed in the queue.

Similarly, if the queue is full and the sender attempts to place data
 in the queue, it can
choose to block until there is space available.
Queues are commonly implemented using a
fixed-size memory buffer that
can contain an integer number of fixed-size data items.

3.10
Event flags

Event flags, also known as event groups, are collections of
single-bit flags that signal the
occurrence of events to tasks. Event
flags support a wider range of inter-task communica‐
tion signaling
methods than semaphores. Features of event flags include the
following:

• A task can block waiting for a combination of event flags. The task
will only become
unblocked when all of the events indicated by the
selected flags have occurred.

• Multiple tasks can block waiting on a single event flag. When the
event occurs, all of
the waiting tasks are unblocked. This differs from
 the behavior of semaphores and
queues, which only unblock a single task
when the event occurs.

Event flags are useful in specific situations, such as broadcasting a
notification that must
be received by multiple tasks, or waiting for a
combination of activities performed by dif‐
ferent tasks to complete.

3.11
Timers

Timers provide a different method of scheduling future events than
 the task scheduling
mechanism previously discussed. A timer provides a
 means for scheduling a call to a
function at a specified time in the
future. The function to be called at that time is an ordi‐
nary C language
 function specified by the developer. This function is identified as the
timer callback function.

The call to the timer callback function takes place in the context of
 a system-provided
task that obeys the regular rules of task scheduling.
 In other words, the timer callback
function will only be called if, when
the specified time arrives, the system task in control
of timer function
calls is the highest priority task that is ready to run. If a
higher-priority
task is executing at that time, the call to the timer
callback function will be delayed until
the higher-priority task blocks.
The system developer has the ability to specify the prior‐
ity of the
timer callback scheduling task.
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Timers can be configured in one-shot mode or repetitive mode. In
 one-shot mode, the
timer callback function is executed one time after
the delay expires. In repetitive mode,
the timer callback function
executes periodically with a period equal to the timer delay.

3.12
Dynamic memory allocation

Like desktop computer operating systems, RTOSes generally provide
mechanisms to al‐
locate and release blocks of memory. Consider a word
processing program running under
Windows or Linux. When the user opens a
document file from disk, the program deter‐
mines the amount of memory
needed to hold the entire document, or at least part of it,
and requests
that amount of memory from the operating system. The program then reads
the contents of the document into the newly allocated memory region and
allows the user
to work with it. As the user edits the document, more
memory may be needed to hold ad‐
ditional content. The word processor
sends additional allocation requests to the operating
system when needed
to maintain sufficient space to hold the document content. When the
user
closes the document, the program writes the updated document to disk and
releases
the memory it was using for the document data.

Similar actions take place in embedded systems, though instead of
working with word
processor documents, the system is usually working
with sensor input such as tempera‐
ture measurements, button presses, or
streams of audio or video data. For some real-time
embedded
applications, it makes sense to perform dynamic memory allocation as
part of
routine system operation. There are, however, some well-known
problems that can arise
in embedded applications that use dynamic memory
allocation.

The C language is widely used in embedded system development. This
programming lan‐
guage does not provide automatic allocation and
deallocation of memory as objects and
data structures are created and
destroyed. It is up to the system developer to ensure that
the
 allocation and freeing of memory takes place in a correct, efficient,
 and reliable
manner.

Memory leaks and fragmentation are two types of problems that tend to
 cause issues
when using dynamic memory allocation in real-time embedded
systems.

3.13
Memory leaks
If the system repetitively performs memory allocation, perhaps to
 temporarily store
blocks of incoming data, the system must eventually
release the memory to ensure there
will be space available for future
incoming data.

The region of system memory used for dynamic allocation is called the
heap. If allocated
memory is not released in a timely manner, the
available heap space will eventually be‐
come exhausted. If the operation
of freeing each memory block after use is either mistak‐
enly left out of
 the code or bypassed for some reason, or if the memory blocks are
 re‐
tained for such a long time that the available memory is reduced to
zero, a heap overflow
will occur. In this situation, additional attempts
to allocate memory will fail.

We can expect the system to crash or exhibit other forms of
unintended behavior if a heap
overflow occurs in the absence of
effective steps to detect the overflow and correct the
situation. In the
C language, a call to the malloc() memory allocation function returns
the
special value NULL when it is unable to allocate the requested size
block of memory.

Tutorial examples you may come across demonstrating the use of
malloc() often assume
the call always succeeds, and immediately begin
using the return value as a pointer to the
freshly allocated block. When
malloc() fails to allocate the requested block of memory,
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the return
value of NULL is, in effect, an address of zero. In a desktop operating
system,
any attempt to read or write memory at the address zero results
in a memory access viola‐
tion and, normally, the program exits with an
error message.

In an embedded system, depending on the particular hardware
architecture, it may be per‐
fectly acceptable to read and write address
zero. These low addresses usually contain im‐
portant processor registers,
and writing arbitrary data to them (because the code assumed
malloc()
returned a valid pointer to a memory block but it received zero instead)
is likely
to cause the system to abruptly stop operating correctly.
Because this type of error occurs
only after the system has been running
long enough to consume all available memory, it
may be very difficult to
identify and debug the source of the problem.

3.14
Heap fragmentation

If a real-time application performs dynamic memory allocation, it is
possible for the re‐
sponse time performance to be perfectly adequate at
 system startup and for some time
thereafter, but degrade over time. If
frequent memory allocation and free operations take
place during system
operation, even if there is no heap overflow, it is possible, and even
likely, that the managed memory region will become fragmented into free
blocks of vari‐
ous sizes. When this happens, a memory allocation for a
large block might not be imme‐
diately possible even though plenty of free
memory is available. The memory manager
will have to consolidate some
number of smaller free blocks into a single block that can
be returned
for use by the calling code.

In a highly fragmented memory scenario, the process of consolidating
 multiple blocks
can take a long time, which may lead to failure of the
system to meet its timing deadlines.
Bugs such as this (and it is a bug,
even though the system eventually performs in a func‐
tionally correct
manner) might occur rarely, with serious effects on system behavior, and
are often difficult to replicate in a debugging environment.

3.15
Deadlock

When using mutexes to manage access to multiple shared resources, it
is possible to en‐
counter situations where multiple tasks attempt to take
more than one semaphore each
and enter a situation where the tasks
 become permanently blocked. This is called
deadlock.

For example, assume the Motor Control and Status Display tasks have
access to mutexes
associated with shared system resources. Assume mutex
Mdata controls access to a data
structure shared among tasks and mutex
Mconsole controls access to the output channel
for writing console
messages. Figure 3.5 presents the timeline for this scenario:
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Deadlock example

During its execution, the Status Display task is preparing to write a
message to the con‐
sole. The Status Display task has taken Mconsole at
time A and is formatting the message
to be displayed. The task is
interrupted to schedule the higher-priority Motor Control task
at the 20
ms mark.

During its processing, the Motor Control task takes Mdata at time B
and begins working
with the data structure. While working with the
structure, it detects an out-of-limits con‐
dition within the data and
determines it must write a message to the console describing
the
condition. The Motor Control task then attempts to take Mconsole at time
C so it can
write the message.

Since the Status Display task already has ownership of the Mconsole
mutex, the Motor
Control task blocks and the Status Display task resumes
 execution, preparing its own
message for display on the console. To
 populate the message, the Status Display task
must gather some
information from the shared data structure, so it attempts to take Mdata
at time D.

At this point, both of the tasks are stuck, with no way out. Each
task has taken one of the
two mutexes and is waiting for the other mutex
to become free, which cannot happen be‐
cause both tasks are blocked.

In this example, the actions taken by each task, viewed in isolation,
appear reasonable,
but when they interact through the mutexes, the
result is an immediate halt to system op‐
eration, at least for the
 affected pair of tasks. This represents a catastrophic failure in
terms
of system performance.

Avoiding the possibility of deadlock is a responsibility of the
system architect. There are
a couple of rules of thumb that will ensure
deadlock cannot occur in a system design:

• Whenever possible, avoid locking more than one mutex at a time. •
 If you must lock
multiple mutexes in multiple tasks, ensure they are
locked in the same sequence in each
task.

Some RTOS implementations can detect the occurrence of a deadlock and
return an error
code when attempting to take a semaphore that would
result in deadlock. The algorithm
required to implement this capability
 is considered expensive in terms of embedded re‐
sources (specifically,
code size and execution time), and avoiding the possibility of dead‐
lock
through careful system design is often the superior approach.

3.16
Priority inversion

A situation that causes a violation of task prioritization can occur
when tasks of varying
priorities use a mutex to control access to a
shared resource. This situation can occur with
three tasks of different
priorities.

Let’s add another task to our system for performing measurements with
an ultrasonic sen‐
sor. This task runs at 50 ms intervals and takes up to
15 ms to complete each execution
cycle. To comply with the requirements
of RMS, this task must have a priority between
those of the Motor
Control task, which runs at 20 ms intervals, and the Status Display
task, which runs at 100 ms intervals.

We can quickly check whether the system remains schedulable under the
RMS criteria. In
the Rate-monotonic scheduling section, we saw that the
total processor utilization for the
two-task application is 40%. The new
task consumes another (15 ms / 50 ms) = 30% of
processor time, for a
combined total utilization of 70%. From the table in the Rate-mono‐



11/22/22, 8:16 AM Ledin/Ch3

file:///home/hhoegl/tmp/Ledin-ch3/Ch3.html#understanding-key-rtos-features-and-challenges 15/21

tonic
 scheduling section, we see that the RMS schedulability threshold for a
 three-task
system is 77.98%. Because our processor utilization is below
 the threshold, we can be
certain that as long as the RMS criteria are
met, the system will meet timing deadlines.

Let’s say the new Sensor Input task is first scheduled at time 10 ms
and again at 60 ms.
Because the Motor Control task is also scheduled at
60 ms, the Sensor Input update must
block until the Motor Control task
update is complete. We will assume that this deviation
from precise
periodic update intervals is not a significant issue for the
application. This
execution timing sequence is shown in Figure 3.6:

Figure 3.6 Three-task
execution sequence

The Status Display task update is now broken into three separate
 execution time seg‐
ments. While this may appear unusual, such behavior is
perfectly normal in a preemptive
multitasking system.

Let’s introduce an innocuous-seeming dependency between the Status
Display task and
the Motor Control task. We learned from our problematic
implementation of mutex usage
in Figure 3.4 that we need to limit the
length of time a mutex is held by a lower-priority
task to the absolute
minimum. In the three-task system, the Status Display task now only
holds the mutex protecting the shared data structure long enough to copy
the data it needs
before releasing the mutex. We expect this to
 substantially reduce, though not entirely
eliminate, the unacceptable
Motor Control task execution delay of Figure 3.4.

Unfortunately, when we run the system, we see the timing response is
occasionally much
worse, as shown in Figure 3.7:
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Priority inversion
example

What’s happening here? At time A, the Status Display task takes the
mutex. Even though
it intends to release it very shortly, the Sensor
Input task becomes ready to run and begins
execution before the Status
Display task can release the mutex. At time 20 ms, the Motor
Control
task is scheduled and begins execution.

At time B, the Motor Control task attempts to take the mutex, which
causes it to block.
The Sensor Input task is ready to run, so it resumes
execution at this point. It is not until
the Sensor Input task finishes
its update and blocks that the Status Display task becomes
ready to run
again, at time C. When the Status Display task resumes, it quickly
finishes
reading the data structure and releases the mutex. This finally
allows the Motor Control
task to take the mutex and finish its (much
delayed) execution.

The problem here was that the mid-priority task (Sensor Input) was
 able to run even
though the higher-priority task (Motor Control) would
have been ready to run had the low
priority task (Status Display) been
allowed to continue execution and release the mutex.
This situation is
called priority inversion.

The standard RTOS solution to the priority inversion problem is to
implement priority in‐
heritance. In priority inheritance, whenever a
higher-priority task blocks waiting for the
release of a resource held
 by a lower-priority task, the lower-priority task temporarily
raises its
priority to that of the higher-priority task. Once the resource has been
freed by
the lower-priority task, that task returns to its original
priority.

Figure 3.8 shows the same situation as Figure 3.7, except priority
 inheritance is now
implemented:



11/22/22, 8:16 AM Ledin/Ch3

file:///home/hhoegl/tmp/Ledin-ch3/Ch3.html#understanding-key-rtos-features-and-challenges 17/21

Priority inheritance

In this diagram, the Status Display task again takes the mutex at
time A. At time B, the
Motor Control task attempts to take the mutex.
The system elevates the priority of the
Status Display task to that of
the Motor Control task, ensuring the Sensor Input task does
not run.
This give the Status Display task an opportunity to quickly complete
reading the
structure and release the mutex. The Motor Control execution
timeliness is now signifi‐
cantly improved in comparison to Figure
3.7.

The next section briefly introduces some popular RTOSes and
highlights their features
and the categories of real-time embedded
applications best suited to each of them.

3.17
Popular real-time operating systems

When selecting an RTOS for a particular real-time embedded system
architecture and ap‐
plication domain, it is important to consider a
variety of technical and non-technical fac‐
tors in the selection process.
Almost all popular RTOSes support prioritized preemptive
multitasking,
mutexes, semaphores, queues, event flags, timers, and dynamic memory
al‐
location. All of the RTOSes listed in this section include these
features.

Some key technical attributes that differentiate among the various
RTOSes are as follows:

• Feature richness: Some RTOSes are intended be as small as possible,
consuming the ab‐
solute minimum quantity of ROM, RAM, and processor
cycles in tiny microcontrollers.
Other RTOSes are designed to support a
 large number of tasks and complex protocol
stacks such as TCP/IP running
on a 32-bit processor.

• Memory protection and virtual memory management: Simple
microcontrollers and low-
end microprocessors typically support only
direct physical addressing of ROM and RAM.
Many mid-range processors
provide a mechanism for controlling memory access called a
Memory
Protection Unit (MPU). With the use of MPU functionality, memory regions
can
be isolated and protected to ensure critical system functions
continue running even if less
critical tasks experience problems that
 cause them to erroneously access memory and,
perhaps, crash. At a more
sophisticated level, 32-bit processors often include a Memory
Management
Unit (MMU), providing each running process with its own protected
virtual
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address space. RTOSes supporting virtual memory take advantage
of MMU hardware to
encapsulate each process (which is conceptually
 similar to a task) in its own dedicated
memory region so that tasks
cannot interact with each other, intentionally or otherwise,
except
through system-provided communication channels.

• Modularity and configurability: Adding features to an RTOS
 increases the amount of
ROM required for code and RAM required for data.
Most RTOSes provide configuration
options to include only those features
that an application actually needs in the compiled
memory image,
reducing the amount of memory and processing time required.

• Processor architecture support: RTOSes generally come with a list
of processor archi‐
tectures and specific processor models supported by
 the implementation. These proces‐
sor-specific implementations generally
come with a code library called a Board Support
Package (BSP). A BSP
 includes an implementation of the RTOS tailored to a specific
processor
model and, often, to a particular circuit board and its I/O interfaces.
The BSP
also includes a library of device drivers that enables the
system developer to begin imple‐
menting an application using a standard
 programming interface to the processor hard‐
ware. If you have already
selected a processor architecture for your application, this will
constrain which RTOSes are suitable for your use.

• Supporting tools and accessories: In addition to the core RTOS and
associated device
drivers, you may require additional hardware and
software tools to support the develop‐
ment process, such as debuggers,
execution tracers, timing analyzers, and memory usage
analyzers. Support
for such tools varies among the available RTOSes.

Some non-technical attributes that you may wish to consider during
RTOS selection are
as follows:

• Choosing commercial or open source: Paying a license fee for a
commercial RTOS pro‐
vides some significant benefits, including technical
support and some promise of future
RTOS sustainment. Of course, it also
costs money. There are many free-to-use RTOS im‐
plementations available
 as well, but each comes with its own licensing requirements,
community
of users, and prospects for future support.

• Vendor lock: Once you implement your application using a particular
RTOS, you are, to
some degree, committed to continued use of that RTOS.
If the commercial RTOS vendor
you select goes out of business or changes
its licensing terms in an undesirable manner,
or if the open source RTOS
you choose falls out of favor and becomes unmaintained, you
may have to
 make a choice to perform a potentially painful re-architecting of your
design.

• Formal certification: For safety-critical applications, such as in
 aircraft, automobiles,
and medical devices, some RTOSes have received
formal certification as suitable for use
in those contexts. If you are
building a system where such a certification is important, this
will
focus you search on the RTOSes that have achieved the appropriate
certification.

• Software license terms: A license for a commercial RTOS contains
whatever terms the
vendor chooses to put in their license agreement.
Open source RTOSes are commonly li‐
censed under one of the MIT, Apache,
or GPL licenses. The MIT and Apache licenses are
considered permissive,
meaning developers can take the software and use it for their own
purposes, including commercial applications, without being compelled to
make their own
source code public. The GPL, on the other hand, requires
 developers who incorporate
GPL code into a product they distribute to
make their code available to all who request it.
This is obviously a
highly simplified description of the distinction between these licenses.
Many factors can combine to make licensing issues for products based on
open source
code extremely complex.
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The following sections briefly describe a number of popular RTOSes
and highlight the
unique features of each. The RTOSes are listed in
alphabetical order to avoid implying a
preference for any particular
one. This list is not intended to be exhaustive.

embOS

embOS is a commercial RTOS produced by SEGGER Microcontroller LLC.
embOS is
intended for use across a wide range of real-time applications,
from single-chip, battery-
powered devices to sophisticated systems
running on advanced processors. embOS sup‐
ports virtually all embedded
processor architectures from major vendors as well as a wide
variety of
compilers for those architectures.

An edition of embOS is available with full MPU support. A separate
edition is safety cer‐
tified to the IEC 61508 SIL 3 standard, which
certifies a safety-focused RTOS software
development process, and IEC
 62304 Class C, which represents suitability for use in
medical device
applications.

A free version of embOS is available for non-commercial use. This
version does not in‐
clude embOS source code. For commercial use, or to
receive source code, you must pur‐
chase a license. See
https://www.segger.com/products/rtos/embos/ for more information.

FreeRTOS

FreeRTOS is a free RTOS microkernel developed by Real Time Engineers
Ltd. A micro‐
kernel contains a minimal amount of code that implements the
basic functionality of an
RTOS, including task management and inter-task
communication.

FreeRTOS provides several options for dynamic memory management, from
no memory
allocation capability at all to support for the unrestricted
allocation and freeing of arbi‐
trarily sized memory blocks. FreeRTOS
supports 35 different microcontroller platforms
and is written in the C
language with a few assembly language functions to support pre‐
emptive
multitasking.

Amazon maintains an extended version of FreeRTOS named a:FreeRTOS.
This version
includes libraries that provide IoT capabilities
 specifically focused on working with
Amazon Web Services. A version of
FreeRTOS named SAFERTOS, certified to the IEC
61508 SIL 3 standard, is
intended for safety-critical applications.

FreeRTOS is made available under the MIT license. For system
developers who prefer a
commercially licensed RTOS, OPENERTOS is a
 commercially licensed variant of the
Amazon a:FreeRTOS. See
https://www.freertos.org/ for more information.

Example applications in future chapters will use FreeRTOS because of
 its free nature,
permissive licensing, and the fact that it comes
pre-integrated in the Xilinx tool suite.

INTEGRITY

The INTEGRITY RTOS from Green Hills Software is targeted at
applications with the
highest requirements in terms of safety, security,
and reliability. INTEGRITY provides a
variety of middleware options for
 functions such as TCP/IP communication, web ser‐
vices, and 3D graphics.
INTEGRITY is targeted at applications in the automotive, avia‐
tion,
industrial, and medical domains.

INTEGRITY has been safety certified in a variety of application
areas, including aviation
applications, high security applications,
 medical devices, railway operations, industrial
control, and automotive
applications. INTEGRITY provides a secure virtualization infra‐
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structure
as well as support for multicore processors. This RTOS is supported on a
wide
range of higher-end microprocessor architectures.

INTEGRITY is commercially licensed. There does not appear to be a
free version avail‐
able. See
https://www.ghs.com/products/rtos/integrity.html for more
information.

Neutrino

The QNX Neutrino RTOS from BlackBerry is intended to provide
performance, safety,
and security in critical applications. Neutrino is
intended for applications in the automo‐
tive, medical, robotics, and
industrial domains and is built with a microkernel architecture
that
isolates drivers and applications so that the failure of one component
does not bring
down the entire system.

Neutrino supports ARMv7, ARMv8, and x86-64 processors and SoCs. The
 RTOS in‐
cludes a variety of networking and connectivity protocols,
including TCP/IP, Wi-Fi, and
USB.

Neutrino is commercially licensed. A free evaluation version is
 available. See
https://blackberry.qnx.com/en/software-solutions/embedded-software/
 qnx-neutrino-rtos
for more information.

µc/OS-III

µc/OS-III is a free RTOS focused on reliability and performance from
Micrium, which is
part of Silicon Labs. µc/OS-III includes support for
 TCP/IP, USB, CAN bus, and
Modbus. It also has a GUI library that
 supports the development of smartphone-like
graphics displays on
touchscreen devices. µc/OS-III is written entirely in ANSIC C. This
RTOS
runs on an extensive range of processor architectures.

µc/OS-III is safety certified for use in aviation, medical,
transportation, and nuclear sys‐
tems. µc/OS-III is released under the
Apache license. See https:// www.micrium.com/rtos/
for more
information.

VxWorks

VxWorks is a commercially licensed 32- and 64-bit RTOS from Wind
 River Systems.
VxWorks is targeted at applications in the aerospace,
defense, medical, industrial, auto‐
motive, IoT, and consumer electronics
 domains. Supported architectures include
POWER, ARM, Intel, and RISC-V.
VxWorks supports multicore processors and hypervi‐
sor
implementations.

A safety-certified edition is available for use in aviation,
automotive, and industrial appli‐
cations. A VxWorks edition is available
that supports architectural partitioning for avia‐
tion applications in a
manner that permits modification of components in one partition
with a
requirement to only recertify that partition and not the entire
system.

Important note

The Mars Pathfinder spacecraft that landed on the Red Planet on July
 4, 1997 used
VxWorks as its RTOS. During its first few days on the
surface, the spacecraft began to
experience full system resets,
resulting in the loss of collected data. The root cause of this
problem
was traced to a classic priority inversion, much like that of Figure
3.7. Instead of
delaying a Motor Control update, the delay of
Pathfinder’s higher-priority task resulted in
the expiration of a
 watchdog timer, which triggered the system resets. Engineers were
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able
to replicate the problem on an identical system on Earth. The solution:
modify a pa‐
rameter value to turn on priority inheritance for the mutex
associated with the problem.
Uploading this fix to the spacecraft
enabled it to resume normal operation.

VxWorks includes a full suite of development, debugging, and tracing
 tools. See
https://www.windriver.com/products/vxworks/ for more
information.

Summary

This chapter described the methods RTOSes use to ensure real-time
responses to inputs.
Key features available in common RTOSes were
introduced, along with some challenges
that commonly arise when
implementing multitasking real-time applications. The chapter
concluded
with a listing of the key features of some popular open source and
commercial
RTOS implementations.

Having completed this chapter, you now understand what it means for a
system to operate
in real time and understand the key attributes a
real-time embedded system must exhibit.
You understand the RTOS features
 that embedded systems rely upon, as well as some
challenges that
frequently occur in real-time embedded system designs. You are also
fa‐
miliar with the key features of several popular RTOS
implementations.

The next chapter introduces the concepts involved in the design of
 real-time embedded
systems using FPGAs and works through a simple FPGA
application example.
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