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Abstract

This document is an analysis and functional decomposition of FreeRTOS version 4.1.3.  
FreeRTOS is a real-time, preemptive operating system targeting embedded devices.  The 
FreeRTOS scheduling algorithm is dynamic and priority based.  Interprocess
communication is achieved via message queues and basic binary semaphores.  Deadlocks 
are avoided by forcing all blocking processes to timeout with the result that application 
developers are required to set and tune timeouts and deal with resource allocation 
failures.  Basic memory allocation schemes are provided but more complex schemes can 
be directly coded and incorporated.  FreeRTOS provides some unique capabilities.  
Cooperative instead of preemptive scheduling can be used and the scheduler can be 
suspended by any task for any duration of time.  No mechanisms to counter priority 
inversion are implemented.  Overall, FreeRTOS was determined to be slightly too 
feature-rich for limited resource embedded devices.  A simplified version may be 
beneficial to certain communities.
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Introduction

Objectives

The primary objective of this document was to support and reinforce the understanding of 
RTOS concepts and mechanisms as they apply to embedded systems.  To achieve this 
objective, an open source RTOS for embedded targets was selected, decomposed, and 
characterized in terms of traditional RTOS concepts and functionality.  

Scope

This document is an analysis of FreeRTOS version 4.1.3.  In certain cases, the analysis 
requires description in the context of a hardware target.  In those cases, execution on a 
Freescale HC9S12C32 microcontroller unit (MCU) is assumed with compilation being 
performed by m6811-elf-gcc version 3.3.6.  

FreeRTOS implements co-routines.  These are not considered in this document as they 
are duplicative of the existing functionality.  

Typographic Conventions

The following typographic conventions are used throughout this document:

 Directory or folder name;
 Variable or configuration setting;
 Name of function;
 Name of code file;
 {ListName}
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FreeRTOS Overview

General Features

A free, embedded RTOS has been made available by Richard Barry [FRTOS07].  This 
RTOS claims to be a portable, open source, mini real-time kernel that can be operated in 
pre-emptive or cooperative.  Some of the main features of FreeRTOS are listed below:

a.) Real-time:  FreeRTOS could, in fact, be a hard real-time operating system.  The 
assignment of the label “hard real time” depends on the application in which 
FreeRTOS would function and on strong validation within that context. 

b.) Preemptive or cooperative operation:  The scheduler can be preemptive or 
cooperative (the mode is decided in a configuration switch).  Cooperative 
scheduling does not implement a timer based scheduler decision point – processes 
pass control to one another by yielding.  The scheduler interrupts at regular 
frequency simply to increment the tick count.  

c.) Dynamic scheduling:  Scheduler decision points occur at regular clock frequency.  
Asynchronous events (other than the scheduler) also invoke scheduler decisions 
points.

d.) Scheduling Algorithm:  The scheduler algorithm is highest priority first.  Where 
more than one task exists at the highest priority, tasks are executed in round robin 
fashion.

e.) Inter-Process Communication:  Tasks within FreeRTOS can communicate with 
each other through the use of queuing and synchronization mechanisms:

i.) Queuing:  Inter-process communication is achieved via the creation of 
queues.  Most information exchanged via queues is passed by value not by 
reference which should be a consideration for memory constrained 
applications.  Queue reads or writes from within interrupt service routines 
(ISRs) are non-blocking.  Queue reads or writes with zero timeout are 
non-blocking.  All other queue reads or writes block with configurable 
timeouts.

ii.) Synchronization:  FreeRTOS allows the creation and use of binary
semaphores.  The semaphores themselves are specialized instances of 
message queues with queue length of one and data size of zero.  Because 
of this, taking and giving semaphores are atomic operations since 
interrupts are disabled and the scheduler is suspended in order to obtain a 
lock on the queue.
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f.) Blocking and Deadlock avoidance:  In FreeRTOS, tasks are either non-blocking 
or will block with a fixed period of time.  Tasks that wake up at the end of 
timeout and still cannot get access to a resource must have made provisions for 
the fact that the API call to the resource may return an access failure notification.  
Timeouts on each block reduce the likelihood of resource deadlocks.  

g.) Critical Section Processing: Critical section processing is handled by the 
disabling of interrupts.  Critical sections within a task can be nested and each task 
tracks its own nesting count.  However, it is possible to yield from within a 
critical section (in support of the cooperative scheduling) because software 
interrupts (SWI) are non-maskable and yield uses SWI to switch context.  The 
state of interrupts are restored on each task context switch by the restoration of the 
I bit in the condition code register (CCR).

h.) Scheduler Suspension:  When exclusive access to the MCU is required without 
jeopardizing the operation of ISRs, the scheduler can be suspended.  Suspending 
the scheduler guarantees that the current process will not be pre-empted by a 
scheduling event while at the same time continuing to service interrupts.  

i.) Memory Allocation:  FreeRTOS provides three heap models as part of the 
distribution.  The simplest model provides for fixed memory allocation on the 
creation of each task but no de-allocation or memory reuse (therefore tasks cannot 
be deleted).  A more complex heap model allows the allocation and de-allocation 
of memory and uses a best-fit algorithm to locate space in the heap.  However, the 
algorithm does not combine adjacent free segments.  The most complex heap 
algorithm provides wrappers for malloc() and calloc().  A custom heap algorithm can 
be created to suit application requirements.

j.) Priority Inversion:  FreeRTOS does not implement any advanced techniques (such 
as priority inheritance or priority ceilings [SYSC07]) to deal with priority 
inversion.  

Source Code Distribution

FreeRTOS is distributed in a code tree as shown in Figure 1.  FreeRTOS includes target 
independent source code in the Source directory.  Most of the functionality of 
FreeRTOS is provided within the tasks.c, queue.c, list.c, and coroutines.c files (and associated 
header files).  
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Figure 1:  FreeRTOS Source Distribution

FreeRTOS provides a Hardware Abstract Layer (HAL) for various combinations of 
compiler and hardware target.  Target-specific functionality for each compiler/hardware 
target is provided in the port.c and portmacro.h files within the HAL.  All functions 
referenced in this document that are start with port belong to the HAL and are 
implemented in one of the portable files.

The Demo directory provides sample code for a several demonstration applications.  This 
directory is organized in the same fashion as the Portable directory because the 
demonstrations are written and compiled to operate on certain hardware targets using 
various compilers.
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FreeRTOS Kernel Description

Introduction

This section provides a detailed description of the FreeRTOS kernel.  Where necessary, 
kernel elaboration involving hardware dependent functions (i.e. elements of the HAL) 
will assume the target to be a Freescale HC9S12C32 microcontroller on a NanoCore12 
DXC32 MCU Module [TA] with code compiled by GNU m6811-gnu-gcc version 3.3.6 
[GCC0].  Annex A describes the effort to implement FreeRTOS on the HC9S12C32 with 
GCC.  Although not in time for this document, the intent of that effort was to implement 
FreeRTOS on the chosen target in order to extract and report on certain RTOS related 
performance parameters (e.g., interrupt latency, context switch latency, etc).  While those 
results are not yet available, significant experience was obtained with respect to the HAL 
and that experience is reflected in the analysis to follow.

The analysis and description begins with a review of significant pre-execution 
configuration items.  This is followed by an overview of task management and list 
management.  These overviews are in preparation for a detailed analysis of the scheduler 
and queuing mechanisms that follow.

FreeRTOS Configuration

The operation of FreeRTOS is governed significantly by the contents of the FreeRTOSConfig.h
file.  The contents of this file is shown in Figure 2.  It was a combination of the 
FreeRTOSConfig.h files for the GCC and Code Warrior based C32 demos used in Attachment 
1.
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Figure 2:  FreeRTOSConfig.h File for Annex A

Each of the important configuration settings is described briefly below (paraphrased from 
the customization section of [FRTOS]).  The uses of many of the configurable parameters 
will be described later in this document.

 configUSE_PREEMPTION:  This is set to 1 if the preemptive kernel is desired.  
The cooperative kernel was not of interest for this study.  

 configUSE_IDLE_HOOK:  An idle task hook will execute a function during 
each cycle of the idle task.  This is set to 1 if idle hooks are desired.  The function 
will operate at the priority of the idle task.  For “probing purposes” an idle hook 
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would be ideal.  However, for basic implementation purposes, this value is set to 
zero (no idle hooks).  

 configUSE_TICK_HOOK:  A tick hook function will execute on each RTOS 
tick interrupt if this value is set to 1.  Again, this will be useful for “probing” the 
system.

 configCPU_CLOCK_HZ:  This is the internal MCU clock.  The C32 core clock 
signal, without enabling the PLL, will run at 8 MHz.  However, one CPU cycle is 
equivalent to one bus cycle and the bus runs at half the core frequency.  
Therefore, the CPU clock frequency is 4 MHz.  

 configTICK_RATE_HZ:  This is the frequency at which the RTOS tick will 
operate.  As the tick frequency goes up, the kernel will become less efficient since 
it must service the tick interrupt service request (ISR) more often.  However, a 
higher frequency gives a greater resolution in time.  A trade study is required 
within the context of the application to determine an optimal value.  Initially, for 
lack of direction, this will be set to about 1000 Hz (as it is with all the demos).  

 configMAX_PRIORITIES:  The total number of priority levels that can be 
assigned when prioritizing a task.  Each new priority level creates a new list so 
memory sensitive targets should be stripped to the minimum number of levels 
possible.

 configMAX_TASK_NAME_LEN:  The maximum number of characters that can 
be used to name a task.  The character based task names are used mostly for 
debugging and visualization of the system.

 configUSE_16_BIT_TICKS:  This configuration item controls whether or not 
to use a 16-bit or 32-bit counter for recording elapsed time.  A 16-bit value will 
perform better on the HS12C32 because the native counter size is 16-bits.  
However, this bit size combined with the value set by configTICK_RATE_HZ
may place an unrealistic upper bound on the total time that can be recorded.

 configIDLE_SHOULD_YIELD:  This configuration item controls how 
processes that are running with idle priority react to a preemption request from a 
higher priority process.  If it is set to 0, a process with idle priority is not 
preempted until the end of its allocated time slice.  If it is set to 1, a process with 
idle priority will yield immediately to the higher priority process.  However, the 
higher priority process will only be given whatever time was left within the time 
slice originally assigned to the idle task (i.e., it will not have a whole time slice to 
compute within).

 configUSE_CO_ROUTINES:  This configuration item controls whether or not 
co-routines are used.  It is set to 0 since this work does not deal with co-routines. 

 configMAX_CO_ROUTINE_PRIORITIES:  Set to 0 (N/A).
 configUSE_TRACE_FACILITY:  The FreeRTOS core has trace functionality 

built in.  This item is set to 1 if a kernel activity trace is desired.  Note that a trace 
log is created in RAM (so a buffer needs to be identified an more RAM is 
required

 configMINIMAL_STACK_SIZE:  This is the stack size used by the idle task.
The FreeRTOS authors suggest that this value not be changed from that provided 
within each demo.  However, an analysis of the optimal value should be possible.
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 configTOTAL_HEAP_SIZE:  This configuration item determines how much 
RAM is used by FreeRTOS for stacks, task control blocks, lists, and queues.  This 
is the RAM available to the heap allocation methods.

The second half of Figure 2 is used to include certain API functionality.  Much of this 
functionality will become evident as the analysis and description proceeds.  
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Task Management

Overview

This section will describe task management structures and mechanisms used by the 
scheduler.

Task Control Block

The FreeRTOS kernel manages tasks via the Task Control Block (TCB).  A TCB exists 
for each task in FreeRTOS and contains all information necessary to completely describe 
the state of a task.  The fields in the TCB for FreeRTOS are shown in Figure 3 (derived 
from tasks.c).

Figure 3:  Task Control Block for FreeRTOS

Task State Diagram

A task in FreeRTOS can exist in one of five states.  These are Deleted, Suspended, 
Ready, Blocked and Running.  A state diagram for FreeRTOS tasks is shown in Figure 4.  
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Figure 4:  Basic Process State Diagram for FreeRTOS

The FreeRTOS kernel creates a task by instantiating and populating a TCB.  New tasks 
are placed immediately in the Ready state by adding them to the Ready list.  

The Ready list is arranged in order of priority with tasks of equal priority being serviced 
on a round-robin basis.  The implementation of FreeRTOS actually uses multiple Ready 
lists – one at each priority level.  When choosing the next task to execute, the scheduler 
starts with the highest priority list and works its way progressively downward.

The FreeRTOS kernel does not have an explicit “Running” list or state.  Rather, the 
kernel maintains the variable pxCurrentTCB to identify the process in the Ready list 
that is currently running.  pxCurrentTCB is therefore defined as a pointer to a TCB 
structure.

Tasks in FreeRTOS can be blocked when access to a resource is not currently available.  
The scheduler blocks tasks only when they attempt to read from or write to a queue that 
is either empty or full respectively.  This includes attempts to obtain semaphores since 
these are special cases of queues.  

As indicated earlier, access attempts against queues can be blocking or non-blocking.  
The distinction is made via the xTicksToWait variable which is passed into the queue 
access request as an argument.  If xTicksToWait is 0, and the queue is empty/full, the 
task does not block.  Otherwise, the task will block for a period of xTicksToWait
scheduler ticks or until an event on the queue frees up the resource.

Tasks can also be blocked voluntarily for periods of time via the API.  The scheduler 
maintains a “delayed” task list for this purpose.  The scheduler visits this task list at every 
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scheduler decision point to determine if any of the tasks have timed-out.  Those that have 
are placed on the Ready list.  The FreeRTOS API provides vTaskDelay and vTaskDelayUntil
functions that can be used to put a task on the delayed task list.

Any task or, in fact, all tasks except the one currently running (and those servicing ISRs) 
can be placed in the Suspended state indefinitely.  Tasks that are placed in this state are 
not waiting on events and do not consume any resource or kernel attention until they are 
moved out of the Suspended state.  When un-suspended, they are returned to the Ready 
state.

Tasks end their lifecycle by being deleted (or deleting themselves).  The Deleted state is 
required since deletion does not necessarily result in the immediate release of resources 
held by a task.  By putting the task in the Deleted state, the scheduler in the FreeRTOS 
kernel is directed to ignore the task.  The IDLE task has the responsibility to clean up 
after tasks have been deleted and, since the IDLE task has the lowest priority, this may 
take time. 
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List Management

Overview

This section provides an overview of list creation and management in FreeRTOS.  This 
information is useful for understanding the functionality of various FreeRTOS modules 
described in later sections.

Ready and Blocked Lists

Figure 5 shows all of the lists that are created and used by the scheduler and their 
dependencies on configuration values in FreeRTOSConfig.h.

Figure 5:  Lists Created by the Scheduler

Note that the {Ready} list is not a single list but actually n lists where

n= configMAX_PRIORITIES

Each of the lists in Figure 5 is created as type xList. which is a structure defined as 
shown in Figure 6.
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Figure 6:  Type xList

Each list has an entry identifying the number of items in the list.  The list has an index 
pointer pxIndex that points to one of the items in the list (which is used to iterate 
through a list).  The pxIndex points to type xListItem which is the only type that a 
list can hold.  The only exception is xListEnd which is of type xMiniListItem.  
The structures xListItem and xMiniListItem are shown in Figure 7.

Figure 7:  xList Types
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List Initialization

Figure 8 shows an example of the initialization of the list {DelayedTaskList}.  The 
number of items is initially set to zero.  The pxIndex pointer and pxNext and 
pxPrevious pointers are all set to the address of the xListEnd structure.  

Figure 8:  List Initialization

The xItemValue in the xListEnd structure must hold the maximum possible value.  
Because {DelayedTaskList} is used to list tasks based on the amount of time that they 
can block, this value is set to portMAX_DELAY.  

Inserting a Task Into a List

To insert a task into a list (for example, the {DelayedTaskList}), FreeRTOS uses 
vListInsert.  Arguments to this function include the pointer to the list to be modified and a 
pointer to the Generic List Item portion of the TCB about to be listed as shown in Figure 
9.
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Figure 9:  vListInsert With Arguments

In the figure, the xItemValue within the Generic List Item field has already been set to 
38 (an arbitrary number).  In this case, that would represent the absolute clock tick upon 
which the task associated with this TCB should be woken up and re-inserted into the 
{Ready} list.  Also note that the *pvOwner pointer has been set to point to the TCB 
containing the Generic List Item.  This allows fast identification of the TCB.

Figure 10 shows and example of what a {DelayedTaskList} might look like with two 
listed tasks.  The *pxNext pointer in the xListEnd structure of the list is not NULL –
it points to the first entry in the list as shown in the figure.
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Figure 10:  Hypothetical DelayedTaskList

To insert a new task into the {DelayedTaskList}, vListInsert proceeds as follows.  
The xItemValue within the new Generic List Item is compared with the 
xItemValue from the first TCB in the list.  In the {DelayedTaskList} case, this will be 
the absolute clock tick on which the task should be woken.  If the existing value is lower 
(in this case, 24<38), the *pxNext pointer is used to move on to the next TCB in the 
list.  When the comparison fails, then the current TCB must be “moved to the right” 
while the new task TCB is inserted.  This is done by modifying the *pxNext and 
*pxPrev pointers of the adjacent list items and both the *pxNext and *pxPrev
pointers within the new TCB itself.  Finally, the *pxContainer pointer in the newly 
listed TCB is modified to point to the {DelayedTaskList}.  This pointer is apparently 
used for quick removal at a later time.  Once the new TCB is entered, the 
NumberOfItems value in the {DelayedTaskList} structure is updated.  

The code that implements this insertion is shown in Figure 11.  Normally, code segments 
will not be presented within this document.  However, in this case, the code is 
exceptionally concise and therefore worthy of presentation.
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Figure 11:  Code Extract from Lists.c in FreeRTOS

The for loop at point A initializes pxIterator (having type ListItem) to the last 
item in the list which is, by default, ListEnd.  As mentioned, the *pxNext pointer of 
ListEnd points to the first item in the list.  The comparison operation in the for loop 
checks the xItemValue in the structure pointed to by the current *pxNext and, if 
true, pxIterator takes on the value of the next list item.  

It should be noted that a boundary condition occurs when the new xItemValue is equal 
to portMAX_DELAY as defined in FreeRTOSConfig.h.  FreeRTOS handles this exception at 
point B in Figure 11 by assigning the task the second last place in the list.

Timer Counter Size and {DelayedTaskList}

Tasks that are placed on the {DelayedTaskList} are placed there by the scheduler or by 
API calls such as vTaskDelay or vTaskDelayUntil.  In all cases, an absolute time is calculated for 
the task to be woken.  For example, if the task is to delay for 10 ticks, then 10 is added to 
the current tick count and that becomes the xItemValue to be stored in the Generic 
List Item structure.  

However, the embedded controllers being targeted by FreeRTOS have counters that can 
be as small as 8-bits – resulting in a counter rollover after only 255 ticks.  To deal with 
this, FreeRTOS defines and uses two delay lists – {DelayedTaskList} and 
{OverflowDelayedTaskList}.
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As shown in Figure 12, the time to sleep is added to the current time at point A.  At point 
B, if the sum turns out to be less than the current timer value, then the time to wake 
should be inserted into the {OverflowDelayedTaskList}.  

Figure 12:  Deciding Which Delayed List To Insert (from Task.c)

Note that, for this to work, the maximum number of ticks that a task can be blocked must 
be less than the size of the counter (i.e., FF in the case of an 8-bit counter).  This 
maximum value is set in the FreeRTOSConfig.h variable portMAX_DELAY.

Each time the tick count is increased (in the function vTaskIncrementTick), a check is 
performed to determine if the counter has rolled over.  If it has, then the pointers to 
{DelayedTaskList} and {OverflowDelayTaskList} are swapped as shown in the code 
segment in Figure 13.
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Figure 13:  Exchanging List Pointers When Timer Overflows
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The FreeRTOS Scheduler

Overview

This section provides a detailed overview of the scheduler mechanism in FreeRTOS.  
Because of the configuration options that allow cooperative operation and scheduler 
suspension, the scheduler mechanism has considerable complexity.

Figure 14 provides an overview of the scheduler algorithm.  The scheduler operates as a 
timer interrupt service routine (vPortTickInterrupt) that is activated once every tick period.  
The tick period is defined by configuring the FreeRTOSConfig.h parameter 
configTICK_RATE_HZ.  

Figure 14:  Scheduler Algorithm

Because the scheduler operates as an interrupt, it is part of the HAL and contains 
implementation specific code.  In Figure 14, the HAL implementation for the 68HC12 
includes stacking (and un-stacking) a set of “soft registers” that are used by GCC (shown 
in the sections with dashed lines).  Details of the nature and use of soft registers can be 
found in [GCC1].
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The first operation performed by the scheduler is to reset the counter timer (a hardware 
specific instruction) in order to start the next tick period.  FreeRTOS can be configured to 
be co-operative or preemptive.  In the scheduler, after the clock is reset, the FreeRTOSConfig.h
variable configUSE_PREEMPTION is referenced to determine which mode is being
used.  

In the co-operative case, the only operation performed before returning from the timer 
interrupt is to increment the tick count.  There is a significant amount of logic behind this 
operation that is required in order to deal with special cases and timer size limitations.  
We will visit that logic shortly.

If the scheduler is preemptive, then the first step is to stack the context of the current task 
in the event that a context switch is required.  The scheduler increments the tick count 
and then checks to see if this action caused a blocked task to unblock.  If a task did 
unblock and that task has a higher priority than the current task, then a context switch is 
executed.  Finally, context is restored, soft registers are un-stacked, and the scheduler 
returns from the interrupt.  

Task Context Frame 

The following several paragraphs describe the construction of the FreeRTOS “context 
frame” and the mechanism by which a context switch is executed.  A task’s context is 
constructed from data that is provided automatically as part of interrupt servicing as well 
as additional context information provided from several macros.  It is important to know 
what is expected within a context frame and how to populate it when both starting a task 
or when performing a context switch between tasks. 

When an ISR occurs, the HCS12 (like most other embedded MCUs) will immediately 
stack the MCU context using the current stack pointer.  The MCU context for the HCS12 
consists of the program counter (the return address), the Y and X registers, the A and B 
registers, and the condition code register (CCR) [S12CPUV2].  All of these registers are 
stacked in the order just indicated prior to the MCU jumping to the interrupt service 
routine.  Figure 15 shows a task, Task 1, with its associated TCB and stack space both 
prior to an ISR and immediately before the ISR takes control of the MCU.
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Figure 15:  Stacking of MCU Context

In the GCC implementation of FreeRTOS on the HC11 or HC12 MCU, up to 12 bytes of 
“soft registers” are stacked on top of the MCU state provided by the ISR mechanism.  
These registers are stacked explicitly by executing the portISR_HEAD macro within the HAL.  
They are un-stacked using portISR_TAIL.

The final context information is provided by executing the portSAVE_CONTEXT macro within 
the HAL.  This macro first stacks a variable that tracks the critical nesting depth for the 
task (discussed later).  If the target had been using the banked memory model for 
Freescale devices, then the PPAGE register would also be stacked.  The macro then 
stores the current value of the stack pointer register into the head entry of the TCB for 
Task 1.  The context frame, as built by the ISR mechanism, portISR_HEAD, and 
portSAVE_CONTEXT is shown in Figure 16
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Figure 16:  Context Frame on Stack 1

To exit from the ISR following its work, portRESTORE_CONTEXT, portISR_TAIL, and an RTI must 
be executed in that sequence in order to properly clear the stack of the context frame.

Context Switch By Stack Pointer Manipulation

In Figure 14, one of the tasks of the scheduler is to determine if a context switch is 
required.  If that is the case, then a stack pointer manipulation is performed to execute the 
switch.  The scheduler copies the head entry of Task 2 into the stack pointer register 
(recall that the head entry is a pointer to the stack space of Task 2).  If the context of Task 
2 had been saved according to the context frame definition, then executing 
portRESTORE_CONTEXT, portISR_TAIL, and an RTI will restore the context of Task 2 to the MCU.

Starting and Stopping Tasks

Although the act of starting or stopping a task is not a direct scheduler function, a brief 
description will be provided here since the scheduler manipulates the data structures and 
stacks created when a task is created.  Therefore, an understanding of task creation and 
deletion will assist in describing the remaining scheduler functions.  

Tasks are created by invoking xTaskCreate() from within main.c or within a task itself.  
Parameters required to create a task include:

 A pointer to the function that implements the task.  For obvious reasons, the code 
that implements the task function must invoke an infinite loop. 
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 A name for the task.  This is used mainly for code debugging and monitoring in 
FreeRTOS.

 The depth of the task’s stack.
 The task’s priority.
 A pointer to any parameters needed by the task function.

An overview of the process of creating a task is shown in Figure 17.

Figure 17:  Overview of Task Creation

xTaskCreate must first allocate memory for the task’s TCB and stack.  This is accomplished 
by calling AllocateTCBandStack as shown in Figure 18.  This function invokes portMalloc to 
obtain a block of memory for the TCB that is the size of the TCB structure and a block of 
memory for the stack that is the size of the stack data type (e.g., 8, 16 bits) multiplied by 
the size of the stack requested.  These two memory blocks are obtained from the heap 
whose maximum size is specified in the FreeRTOSConfig parameter 
configTOTAL_HEAP_SIZE.  As a final exercise, AllocateTCBandStack sets a pointer to the 
base address of the stack inside the TCB.  
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Figure 18:  Allocate Stack and TCB Memory

portMalloc is implemented within the HAL.  Specifically, by choosing to compile one of 
heap1.c, heap2.c, or heap3.c with the project, a range of memory allocation strategies (and the 
corresponding portMalloc implementations) can be achieved.  For example, heap1.c 
implements a policy of allocating heap memory to a task once and does not allow 
deallocation of that memory.  This policy is good for applications with a known set of 
tasks that will not vary with time.  The policy invoked in heap2.c allows for allocation and 
deallocation of heap memory using best-fit to located the request block but it does not 
perform cleanup on fragmented but adjacent blocks.  The allocation policy in heap3.c
simply provides wrappers for traditional malloc() and calloc() allocation.

Referring back to Figure 17, the second task performed by xTaskCreate (assuming memory 
was successfully obtained) is to initialize the TCB with known values.  This includes 
initializing the task name, task priority, and stack depth fields of the TCB from function 
call parameters.  

The third and fourth steps in xTaskCreate prepare the task for its first context switch.  A 
pointer to the top-of-stack is initialized to the base stack address found in the task TCB 
(an adjustment is necessary depending on the stack growth mechanism on the target –
some targets “grow” the stack towards lower memory while others do the opposite).  The 
stack for the task is then populated with a dummy frame that perfectly matches what is 
required when a context switch is performed by a combination of portRESTORE_CONTEXT and 
port_ISRTAIL macros as discussed earlier.  The content of the dummy frame is shown in 
Figure 19.  The important element of the dummy frame is the return address which will 
point to the start address of the task code.   
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Figure 19:  Dummy Stack Frame

After populating the dummy stack for the task, the top-of-stack pointer (which now 
points to TOS-21 in Figure 19) is updated and written back to the TCB.  This stack 
pointer is the head value in the TCB is extracted directly to perform a context switch as 
discussed earlier.  

Each time a task is created successfully, xTaskCreate must determine if the scheduler is 
running.  If it is running, then the new task can simply be added to the Ready list and the 
scheduler will, on its first (or next) interrupt, determine which task has the highest 
priority.  If the scheduler is not running, then xTaskCreate must determine if the task just 
created is the highest priority task and then ensure that this is tracked (using the 
pxCurrentTCB global variable).  

The final step in creating the task is to add it to the Ready list.  This is performed by a 
call to the function prvAddTaskToReadyQueue.  This function determines what priority level the 
task is and adds it to the back of the appropriate Ready list.  If a list does not exist at that 
priority (which would only happen if the task were created dynamically after startup), 
then the appropriate list is first created.  pxCurrentTCB is adjusted by 
prvAddTaskToReadyQueue to track the TCB to be context-switched in next.  

Yeilding Between Ticks

The scheduler responds to the timer ISR.  A second ISR is required for yielding a task in 
the event of being blocked or completing early.  This is implemented by a software 
interrupt (SWI).  Any call to portYIELD causes the assembly instruction “swi” to execute 
which, in turn, invokes the ISR code attached to that interrupt (defined in port.c as 
vportYIELD).  The SWI builds a context frame as described previously – it executes 
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portISR_HEAD and portSAVE_CONTEXT, determines if any context switch is required (and loads the 
new task’s TCB head into the stack pointer if necessary), and then un-stacks the context 
frame as appropriate.  Note that an SWI is non-maskable whereas the timer responsible 
for the scheduler can be masked.

Starting the Scheduler

Figure 20 shows the process that occurs when the FreeRTOS scheduler is started.  A call 
to the FreeRTOS function vTaskStartScheduler() should be the last function call made in main.c
after all of the other required tasks have been created using the function xTaskCreate().

Figure 20:  FreeRTOS Task Scheduler Startup

The vTaskStartScheduler() function first creates the IDLE task with the lowest priority and 
then sets the global timer xTickCount to zero.  The global xSchedulerRunning
is set to TRUE.  This variable is used to in several areas to determine if the scheduler is 
available to make scheduler decisions or if those decisions need to be made locally.  For 
example, tasks can be created before or after the scheduler is started.  When tasks are 
created before, the creation mechanism includes a method to determine whether the task 
just created is the new priority task and switches pxTCBCurrent to reflect that status 
(without performing a context switch).  Otherwise, the scheduler is used.  

vTaskStartScheduler() passes control to xTaskStartScheduler() in the HAL.  The HAL is needed at 
this point because the first order of business for xTaskStartScheduler() is to set up a timer 
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interrupt to invoke the scheduler.  Since the timer is hardware dependent, configuring it 
must occur in the HAL.

The last thing that xTaskStartScheduler() does is to restore the context of the currently 
selected task which is pointed to by pxTCBCurrent and which, by virtue of the 
previous operations, is the highest priority task.  The context is switched by calling 
portRESTORE_CONTEXT and portISR_TAIL.  This might seem to be a logic error since no task was 
previously running.  However, as described earlier, each task is provided with a dummy 
stack frame when it is first created.  This frame provides the start address of the task and 
the head entry of the TCB for the task is a pointer to the top of the task stack.  This is all 
the information required to initiate the task.

Suspending the Scheduler

FreeRTOS provides a task the ability to monopolize the MCU from all other tasks for an 
unlimited amount of time by suspending the scheduler.  Indeed, this capability is used by 
FreeRTOS itself.  A task might conceivably suspend the scheduler in the event that it 
would like to process for a long period but not miss any interrupts.  Using a critical 
section blocks all interrupts – including the timer interrupts.  Extending the critical 
section for longer than necessary breaks the basic tenet of keeping critical sections short 
both in time and space.

Regardless, normal scheduler operation can be suspended through the use of vTaskSuspendAll
and vTaskResumeAll.  vTaskSuspendAll guarantees that the current process will not be pre-
empted while at the same time continues to service interrupts (including the timer 
interrupt).  Normal scheduler operation is resumed by vTaskResumeAll.

Scheduler suspensions are nested.  The nesting depth is tracked by the global variable 
uxSchedulerSuspended in tasks.c.  Figure 20 shows the algorithms implemented for 
vTaskSuspendAll and vTaskResumeAll.
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Figure 20:  Algorithms for vTaskSuspend and xTaskResumeAll

Each time vTaskSuspend is executed, uxSchedulerSuspended is incremented.  Each 
time xTaskResumeAll is executed, uxSchedulerSuspended is decremented.  If 
uxSchedulerSuspended is not made zero (FALSE) when xTaskResumeAll is executed, 
then nothing in that function is performed.  

However, if uxSchedulerSuspended is made FALSE in xTaskResumeAll, then all tasks 
that were placed on the {PendingReadyList} are moved to the {ReadyTasksList}.  

A small digression is required to understand the general concept of the 
{PendingReadyList} (it will be explained in greater detail shortly).  While the scheduler 
is suspended, tasks on the delayed lists or event lists are not being checked on each timer 
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tick to see if they should be woken up.  However, suspending the scheduler does not stop 
ISRs from executing and these may cause events that will unblock tasks.  However, while 
the scheduler is suspended, the ISR cannot modify the ready list.  Therefore, tasks that 
are made ready as a result of an ISR are placed on the {PendingReadyList} and are 
serviced by the scheduler when it is no longer suspended. 

In xTaskResumeAll, as each task on the {PendingReadyList} is reassigned to the 
{ReadyTasksList}, the priority of that task is compared to the priority of the currently 
executing task.  If it is greater, then a yield is required as soon as practicable in order to 
get the higher priority task in control.  Note that there may be more than one task with a 
higher priority than the current one – the yield will determine which is the highest and 
context switch to that one.  A yield is required because it is essential to move with haste 
to the higher priority task – otherwise, the current task will execute until the next tick.

If timer ticks were missed while the scheduler was suspended, these will show up in the 
global variable uxMissedTicks.  xTaskResumeAll will attempt to catch up on these ticks 
by executing vTaskIncrementTick in bulk (once for each uxMissedTicks).  If missed ticks 
existed and were processed, they may have made one or more tasks Ready with higher 
priority than the currently executing task.  Therefore, a yield is once again required as 
soon as practicable. 

The algorithm for vTaskIncrementTick is shown in Figure 21.  vTaskIncrementTick is called 
once each clock tick by the HAL (whenever the timer ISR occurs).  The right hand 
branch of the algorithm deals with normal scheduler operation while the left hand branch 
executes when the scheduler is suspended.  As discussed earlier, the right hand branch 
simply increments the tick count and then checks to see if the clock has overflowed.  If 
that’s the case, then the {DelayedTask} and {OverflowDelayedTask} list pointers are 
swapped and a global counter tracking the number of overflows is incremented.  An 
increase in the tick count may have caused a delayed task to wake up so a check is again 
performed.
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Figure 21:  Algorithm for vTaskIncrementTick

If the scheduler is suspended, then the global missed tick counter is incremented.  If tick 
hooks were enabled in FreeRTOSConfig.h, then any tick hook function is executed – note that 
tick hooks operate regardless of whether the scheduler is suspended or not.

The final section of the algorithm again checks to see if tick hooks are enabled.  Further, 
a check is performed to see that there are no missed ticks.  If both conditions are true, 
then the tick hook function is executed.  This final section will ensure that tick hooks are 
executed each time that vTaskIncrementTick is executed and the scheduler is not suspended –
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except when tick counts are being processed in bulk to reduce the missed tick count to 
zero (for example, as discussed in Figure 17 for xTaskResumeAll).  In that case, tick hooks 
will only be executed once for the entire set of missed ticks.

Checking the Delayed Task List

The scheduler checks {DelayedTaskList} once each tick and locates any tasks whose 
absolute time is less than the current time.  These tasks are moved into the appropriate 
Ready list.  Delayed tasks are stored in {DelayedTaskList} in the order of their absolute 
wake time.  Therefore, checking completes when the first delayed task with an un-
expired time is found.

Critical Section Processing

FreeRTOS implements critical sections by disabling interrupts.  Critical sections are 
invoked through the taskENTER_CRITICAL() macro definition (which maps to 
portENTER_CRITICAL() since entering a critical section will invoke operations in the 
HAL).  An equivalent taskEXIT_CRITICAL() exists.

Critical sections in FreeRTOS can be nested.  Nesting will occur when a function enters a 
critical section to perform some processing and, while in that section, calls another 
function that also calls a critical section (the two functions may be designed to operate 
independently).  If nesting is not performed, the second function will execute an exit from 
the critical section (turning interrupts back on) when it is complete and then return to the 
first function which is expecting interrupts to be disabled.  By using a nesting counter, 
each function increments the count on entry and decrements on exit.  If the count is 
decremented and equals zero, interrupts can safely be enabled.  

In FreeRTOS, the nesting depth is held in the uxCriticalNesting variable which is 
stacked as part of task context.  This means that each task keeps track of its own critical 
nesting count because it is possible for a task to yield from within a critical section (need 
to find an example of this).
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Queue Management

Overview

This section provides an overview of queue creation and management.  The mechanisms 
used to implement blocking and non-blocking accesses to a queue (queue read) are 
described in depth.  Queue writes are very similar to reads and will only be peripherally 
described.

Figure 22 shows the elements of a queue structure.  Two structures of type xList hold 
the {TasksWaitingToSend} and {TasksWaitingToReceive} event lists.  The items in 
these event lists are sorted and stored in order of task priority so that taking an item from 
the list head is equivalent to obtaining the highest priority item without searching.

Figure 22:  Queue Structure Elements

The physical queue size is determined by the number of queueable items (uxLength) 
multiplied by the size (in bytes) of each item (uxItemSize).  This is an important 
factor to keep in mind when calculating space requirements for memory-constrained 
applications.

Figure 23 shows a logical overview of a queue and the entities that affect it or are 
affected by it.  It also shows the initial positions of the *pcHead, *pcTail, 
*pcWriteTo, and *pcReadFrom pointers (assuming that the head of the queue is the 
left-most position).  
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Figure 23:  Queue Elements

When a blocking task fails to read or write to a queue, it is placed in one of the waiting 
lists shown in the figure.  The difference between a blocking task and a non-blocking task 
in FreeRTOS is the number of ticks that a task should wait when blocked.  If the number 
of ticks is set to zero, the task does not block.  Otherwise, it blocks for the period 
specified.  As a result, every task that ends up on either the TaskWaitingToReceive or 
TaskWaitingToSend event lists will also end up in the DelayedTasks list.  A task that is on 
either list will be made Ready when its delay time expires or when an event occurs that 
frees it from the waiting list.

Queues can be written via an API call or from within an ISR.  Since ISRs are atypical, 
their behaviour when writing to the queue is different from that of a normally schedulable 
task.  Therefore, there are two implementations for writing to a queue.  The situation is 
similar for reading from a queue.

Posting to a Queue from an ISR

The most significant difference between an ISR-based queue post and one that originates 
from within a schedulable task is that ISR-based posts are non-blocking.  If the queue is 
not ready to receive data, the send attempt fails without signaling an error.

The algorithm followed by ISRQueueSend is shown in Figure 24.  If the Queue is not full, 
data from the ISR is copied into it.  At this point, the algorithm must check to see if the 
act of posting data into the queue is an event that would un-block a process that is waiting 
to read from the queue.  
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The first step is to determine if the queue is locked.  If it is, then it is forbidden for the
ISR to modify the event list.  However, the fact that the queue was written must be 
recorded so TxLock is incremented for later action.  

Figure 24:  Algorithm for Sending to a Queue from an ISR

If the queue is not locked, the algorithm checks to see if a task has already been un-
blocked (or woken) by a previous write to the queue.  In order to appreciate this logic, it 
is important to understand that a single ISR can write many times to the same queue by 
invoking xQueueSendFromISR multiple times (for example, placing one queue object at a time 
as they are received).  Therefore, to prevent each subsequent post from pulling another 
task off of the event list, history is maintained via the xTaskPreviouslyWoken
variable.
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On the initial call to xQueueSendFromISR, xTaskPreviouslyWoken is passed as an 
argument that is initially defined as FALSE.  If a task is unblocked during that first call, 
xQueueSendFromISR returns TRUE – otherwise, it returns the value that was passed in (as 
shown at the bottom of Figure 24).  Therefore, subsequent calls to xQueueSendFromISR from 
within the same ISR must pass in the return value from the previous call to 
xQueueSendFromISR.  This ensures that multiple posts to a queue from a single ISR will only 
unblock a single task (if one exists).

If no task has been previously woken (unblocked), the algorithm then checks to see if a 
task is actually waiting to receive data.  If so, the task is to be pulled from the event list. 

Figure 25 shows the xTaskRemoveFromEventList function which implements the steps required 
to remove a task from one of the event lists (either {TasksWaitingToRead} or 
{TasksWaitingToSend}).  This function will only ever be invoked if there are no locks on 
the queue.  

Figure 25:  Remove Task From Event List

The xTaskRemoveFromEventList function removes the first available task from the head of the 
event list (they are listed in order of descending priority).  At this point, it is important to 
recall that every blocked task will appear on the {DelayedTaskList} whether it was 
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placed there by a specific delay API call or if it was blocked.  As previously described, 
this ensures that every blocked task has a timeout to prevent deadlock.  TCBs are linked 
into Event and {DelayedTaskList} via the Generic List Item and Event structures in the 
TCB as shown in Figure 26.

Figure 26:  Generic and Event Lists in TCB

If the scheduler is not suspended after removing the TCB from the {EventList}, then the 
function removes the task from the {DelayedTaskList} and inserts it into the Ready list.  
If the scheduler has been suspended, then there is probably an operation being performed 
on the Ready or {DelayedTaskList} (or both) so the task is placed in a temporary list 
called {PendingReadyList}.  When the scheduler is reinstated, tasks in this list will be 
examined and added to the Ready list in batch.

Regardless of the list to which the task is added, xTaskRemoveFromEventList determines if the 
task just unblocked has a priority that is equal to or greater than the currently executing 
task.  It provides this information to the calling function as either a TRUE return (priority 
equal or higher) or a FALSE return (priority not higher).  The calling function uses this 
information to determine if a context switch is needed immediately.

Posting to a Queue from a Schedulable Task

The act of making a post to a queue from within a schedulable task (as distinct from 
within an ISR) is one of the most interesting aspects of FreeRTOS.  Figures 27 and 28 
present the algorithm used to perform this operation.
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Figure 27:  Posting to a Queue From a Task

The function xQueueSend suspends the scheduler, records the current time, and locks the 
queue when it is invoked.  Recall that locking the queue prevents ISRs from modifying 
the event list but does not prevent them from posting to the queue.  xQueueSend senses the 
queue to see if it is full.  If it is, and the call was blocking (a non-zero tick time was 
provided as part of the call), then xQueueSend blocks.  Figure 28 provides greater detail to 
the blocking process.  We will digress slightly to describe that process.
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Figure 28:  Blocking Call on Queue Blocks

xQueueSend puts the TCB for the calling task onto the {WaitingToSend} list.  As detailed in 
the source code, this operation does not require a mutex on the list because nothing else 
can modify it while the scheduler is suspended and the queue is locked.  Since the intent 
is to block, the queue must be unlocked and the scheduler resumed so a critical section is 
entered to prevent anything else from interrupting these operations.  

When the code to resume the scheduler is executed, it is possible that the no yield was 
performed.  As described earlier, scheduler suspensions can be nested.  If they are, then 
no yield is performed when a call is made to resume.  If that occurs, the algorithm of 
Figure 28 will force a manual yield.  Once the yield is completed, the task that made this 
attempt to post to the queue is effectively blocked.  

Note that a yield from within a critical section does not affect interrupts in other tasks.  
Unlike the nesting of the scheduler, each task keeps its own nesting depth variable.  
Interrupts are enabled or disabled on each context switch based on the status of the I bit 
in the condition code register so no global variable is required to share the nesting status 
between tasks. 

When the task becomes unblocked, the scheduler is suspended, the queue is locked and 
the critical section is exited whereupon it is immediately re-entered as indicated in Figure 
27.  
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If the queue is not full when the task is resumed, then the requested data is posted and the 
variable TxLock is incremented.  This variable tracks whether items were posted or 
removed from a queue while the queue was locked.  It is necessary because event and 
ready lists cannot be modified while the queue is locked.  

A successful post is followed by an exit from the critical section (the scheduler is still 
suspended) which is then followed by unlocking the queue.  When the queue is unlocked, 
it is necessary to check to see if there are any tasks waiting to receive.  Figure 29 shows 
the algorithm for unlocking the queue.

Figure 29:  Checking for Blocked Tasks On Queue Unlock
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To unlock the queue, a critical section is invoked.  TxLock is decremented and checked 
to see if it is zero.  When the queue is locked, TxLock is incremented by one – therefore, 
other operations on the queue would only have happened if TxLock is greater than one.  

If the decremented TxLock is still greater than zero (i.e. something modified the queue), 
then the waiting lists should be checked to see if a blocked task can be unblocked.  
TxLock is set to zero.  If tasks are waiting, then the highest priority task is taken off the 
list (the TCB for this task would be the head since tasks are inserted into the list by 
priority).  If the task taken off is higher priority, then it is necessary to yield to that task –
however, the scheduler is not running so a pending yield is signaled.

The algorithm shown in Figure 29 has a similar section for RxLock.

Once the queue is unlocked, the scheduler is resumed and QueueSend returns PASS to 
the calling task.

If the queue was full when the task unblocked (refer to Figure 27), the critical section is 
exited immediately.  If the post request was a blocking post and if the time on the block 
has not expired and if the queue is full, then the task that made the call is blocked again.  
The expiry time of the task is determined by adding the block time value to the tick time 
captured when the function was first invoked.  If the current time is less than that value, 
then the task can block.  Otherwise the operation requested has timed out.  The queue is 
unlocked, the scheduler is resumed and the function returns an error condition to the 
parent task.  

Receiving from a Queue – Schedulable Task and ISR

The descriptions provided for posting to a queue from both a schedulable task and from 
within an ISR have equivalent analogues for receiving from a queue.  These operations 
won’t be covered.
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Summary and Conclusions

FreeRTOS is a small, nominally real-time operating system for embedded devices.  It 
includes traditional preemptive operating system concepts such as dynamic priority based 
scheduling and inter-process communication via message queues and synchronization 
mechanisms.

FreeRTOS provides other features that are intended to allow the operating system to be 
more flexible to embedded operations.  These include cooperative operation (instead of 
preemptive), co-routines, and the ability to suspend the scheduler.  This last feature 
appears to invoke significant overhead for marginal utility.  A scaled version of the 
FreeRTOS with these features removed might prove to be more attractive to certain 
communities.

The insistence on timeouts for each blocking task appears to provide a solution to 
deadlocks that is commensurate with the level of complexity of the operating system.  
Unfortunately, it pushes the problem upwards since the developer must now pay attention 
to the problems of assigning and tuning timeouts and dealing with failed access to 
resources.

Overall, FreeRTOS is a reasonable – if slightly too complex – attempt at a real-time 
operating system for small embedded targets.  The second portion of Attachment 1 to this 
document should provide the performance analyses in the near future to complete an 
evaluation of utility.
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