
Carleton University
Department of Systems and Computer Engineering

SYSC5701: Operating System Methods for
Real-Time Applications

An Analysis and Description of the Inner Workings
of the FreeRTOS Kernel

1 April 07

Rich Goyette

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

i

Abstract

This document is an analysis and functional decomposition of FreeRTOS version 4.1.3.
FreeRTOS is a real-time, preemptive operating system targeting embedded devices. The
FreeRTOS scheduling algorithm is dynamic and priority based. Interprocess
communication is achieved via message queues and basic binary semaphores. Deadlocks
are avoided by forcing all blocking processes to timeout with the result that application
developers are required to set and tune timeouts and deal with resource allocation
failures. Basic memory allocation schemes are provided but more complex schemes can
be directly coded and incorporated. FreeRTOS provides some unique capabilities.
Cooperative instead of preemptive scheduling can be used and the scheduler can be
suspended by any task for any duration of time. No mechanisms to counter priority
inversion are implemented. Overall, FreeRTOS was determined to be slightly too
feature-rich for limited resource embedded devices. A simplified version may be
beneficial to certain communities.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

ii

Table of contents

Introduction... 1
Objectives ... 1
Scope... 1
Typographic Conventions... 1

FreeRTOS Overview .. 2
General Features ... 2
Source Code Distribution.. 3

FreeRTOS Kernel Description.. 5
Introduction... 5
FreeRTOS Configuration.. 5
Task Management... 9

Overview... 9
Task Control Block ... 9
Task State Diagram... 9

List Management .. 12
Overview... 12
Ready and Blocked Lists .. 12
List Initialization... 14
Inserting a Task Into a List ... 14
Timer Counter Size and {DelayedTaskList} .. 17

The FreeRTOS Scheduler ... 20
Overview... 20
Task Context Frame.. 21
Context Switch By Stack Pointer Manipulation ... 23
Starting and Stopping Tasks ... 23
Yeilding Between Ticks.. 26
Starting the Scheduler ... 27
Suspending the Scheduler ... 28
Checking the Delayed Task List ... 32

Critical Section Processing ... 32
Queue Management .. 33

Overview... 33
Posting to a Queue from an ISR ... 34
Posting to a Queue from a Schedulable Task ... 37
Receiving from a Queue – Schedulable Task and ISR... 41

Summary and Conclusions ... 42

Attachment 1: Partial Implementation of FreeRTOS on the Freescale HC9S12C32
MCU Using M6811-Elf-GCC

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

1

Introduction

Objectives

The primary objective of this document was to support and reinforce the understanding of
RTOS concepts and mechanisms as they apply to embedded systems. To achieve this
objective, an open source RTOS for embedded targets was selected, decomposed, and
characterized in terms of traditional RTOS concepts and functionality.

Scope

This document is an analysis of FreeRTOS version 4.1.3. In certain cases, the analysis
requires description in the context of a hardware target. In those cases, execution on a
Freescale HC9S12C32 microcontroller unit (MCU) is assumed with compilation being
performed by m6811-elf-gcc version 3.3.6.

FreeRTOS implements co-routines. These are not considered in this document as they
are duplicative of the existing functionality.

Typographic Conventions

The following typographic conventions are used throughout this document:

 Directory or folder name;
 Variable or configuration setting;
 Name of function;
 Name of code file;
 {ListName}

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

2

FreeRTOS Overview

General Features

A free, embedded RTOS has been made available by Richard Barry [FRTOS07]. This
RTOS claims to be a portable, open source, mini real-time kernel that can be operated in
pre-emptive or cooperative. Some of the main features of FreeRTOS are listed below:

a.) Real-time: FreeRTOS could, in fact, be a hard real-time operating system. The
assignment of the label “hard real time” depends on the application in which
FreeRTOS would function and on strong validation within that context.

b.) Preemptive or cooperative operation: The scheduler can be preemptive or
cooperative (the mode is decided in a configuration switch). Cooperative
scheduling does not implement a timer based scheduler decision point – processes
pass control to one another by yielding. The scheduler interrupts at regular
frequency simply to increment the tick count.

c.) Dynamic scheduling: Scheduler decision points occur at regular clock frequency.
Asynchronous events (other than the scheduler) also invoke scheduler decisions
points.

d.) Scheduling Algorithm: The scheduler algorithm is highest priority first. Where
more than one task exists at the highest priority, tasks are executed in round robin
fashion.

e.) Inter-Process Communication: Tasks within FreeRTOS can communicate with
each other through the use of queuing and synchronization mechanisms:

i.) Queuing: Inter-process communication is achieved via the creation of
queues. Most information exchanged via queues is passed by value not by
reference which should be a consideration for memory constrained
applications. Queue reads or writes from within interrupt service routines
(ISRs) are non-blocking. Queue reads or writes with zero timeout are
non-blocking. All other queue reads or writes block with configurable
timeouts.

ii.) Synchronization: FreeRTOS allows the creation and use of binary
semaphores. The semaphores themselves are specialized instances of
message queues with queue length of one and data size of zero. Because
of this, taking and giving semaphores are atomic operations since
interrupts are disabled and the scheduler is suspended in order to obtain a
lock on the queue.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

3

f.) Blocking and Deadlock avoidance: In FreeRTOS, tasks are either non-blocking
or will block with a fixed period of time. Tasks that wake up at the end of
timeout and still cannot get access to a resource must have made provisions for
the fact that the API call to the resource may return an access failure notification.
Timeouts on each block reduce the likelihood of resource deadlocks.

g.) Critical Section Processing: Critical section processing is handled by the
disabling of interrupts. Critical sections within a task can be nested and each task
tracks its own nesting count. However, it is possible to yield from within a
critical section (in support of the cooperative scheduling) because software
interrupts (SWI) are non-maskable and yield uses SWI to switch context. The
state of interrupts are restored on each task context switch by the restoration of the
I bit in the condition code register (CCR).

h.) Scheduler Suspension: When exclusive access to the MCU is required without
jeopardizing the operation of ISRs, the scheduler can be suspended. Suspending
the scheduler guarantees that the current process will not be pre-empted by a
scheduling event while at the same time continuing to service interrupts.

i.) Memory Allocation: FreeRTOS provides three heap models as part of the
distribution. The simplest model provides for fixed memory allocation on the
creation of each task but no de-allocation or memory reuse (therefore tasks cannot
be deleted). A more complex heap model allows the allocation and de-allocation
of memory and uses a best-fit algorithm to locate space in the heap. However, the
algorithm does not combine adjacent free segments. The most complex heap
algorithm provides wrappers for malloc() and calloc(). A custom heap algorithm can
be created to suit application requirements.

j.) Priority Inversion: FreeRTOS does not implement any advanced techniques (such
as priority inheritance or priority ceilings [SYSC07]) to deal with priority
inversion.

Source Code Distribution

FreeRTOS is distributed in a code tree as shown in Figure 1. FreeRTOS includes target
independent source code in the Source directory. Most of the functionality of
FreeRTOS is provided within the tasks.c, queue.c, list.c, and coroutines.c files (and associated
header files).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

4

Figure 1: FreeRTOS Source Distribution

FreeRTOS provides a Hardware Abstract Layer (HAL) for various combinations of
compiler and hardware target. Target-specific functionality for each compiler/hardware
target is provided in the port.c and portmacro.h files within the HAL. All functions
referenced in this document that are start with port belong to the HAL and are
implemented in one of the portable files.

The Demo directory provides sample code for a several demonstration applications. This
directory is organized in the same fashion as the Portable directory because the
demonstrations are written and compiled to operate on certain hardware targets using
various compilers.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

5

FreeRTOS Kernel Description

Introduction

This section provides a detailed description of the FreeRTOS kernel. Where necessary,
kernel elaboration involving hardware dependent functions (i.e. elements of the HAL)
will assume the target to be a Freescale HC9S12C32 microcontroller on a NanoCore12
DXC32 MCU Module [TA] with code compiled by GNU m6811-gnu-gcc version 3.3.6
[GCC0]. Annex A describes the effort to implement FreeRTOS on the HC9S12C32 with
GCC. Although not in time for this document, the intent of that effort was to implement
FreeRTOS on the chosen target in order to extract and report on certain RTOS related
performance parameters (e.g., interrupt latency, context switch latency, etc). While those
results are not yet available, significant experience was obtained with respect to the HAL
and that experience is reflected in the analysis to follow.

The analysis and description begins with a review of significant pre-execution
configuration items. This is followed by an overview of task management and list
management. These overviews are in preparation for a detailed analysis of the scheduler
and queuing mechanisms that follow.

FreeRTOS Configuration

The operation of FreeRTOS is governed significantly by the contents of the FreeRTOSConfig.h
file. The contents of this file is shown in Figure 2. It was a combination of the
FreeRTOSConfig.h files for the GCC and Code Warrior based C32 demos used in Attachment
1.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

6

Figure 2: FreeRTOSConfig.h File for Annex A

Each of the important configuration settings is described briefly below (paraphrased from
the customization section of [FRTOS]). The uses of many of the configurable parameters
will be described later in this document.

 configUSE_PREEMPTION: This is set to 1 if the preemptive kernel is desired.
The cooperative kernel was not of interest for this study.

 configUSE_IDLE_HOOK: An idle task hook will execute a function during
each cycle of the idle task. This is set to 1 if idle hooks are desired. The function
will operate at the priority of the idle task. For “probing purposes” an idle hook

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

7

would be ideal. However, for basic implementation purposes, this value is set to
zero (no idle hooks).

 configUSE_TICK_HOOK: A tick hook function will execute on each RTOS
tick interrupt if this value is set to 1. Again, this will be useful for “probing” the
system.

 configCPU_CLOCK_HZ: This is the internal MCU clock. The C32 core clock
signal, without enabling the PLL, will run at 8 MHz. However, one CPU cycle is
equivalent to one bus cycle and the bus runs at half the core frequency.
Therefore, the CPU clock frequency is 4 MHz.

 configTICK_RATE_HZ: This is the frequency at which the RTOS tick will
operate. As the tick frequency goes up, the kernel will become less efficient since
it must service the tick interrupt service request (ISR) more often. However, a
higher frequency gives a greater resolution in time. A trade study is required
within the context of the application to determine an optimal value. Initially, for
lack of direction, this will be set to about 1000 Hz (as it is with all the demos).

 configMAX_PRIORITIES: The total number of priority levels that can be
assigned when prioritizing a task. Each new priority level creates a new list so
memory sensitive targets should be stripped to the minimum number of levels
possible.

 configMAX_TASK_NAME_LEN: The maximum number of characters that can
be used to name a task. The character based task names are used mostly for
debugging and visualization of the system.

 configUSE_16_BIT_TICKS: This configuration item controls whether or not
to use a 16-bit or 32-bit counter for recording elapsed time. A 16-bit value will
perform better on the HS12C32 because the native counter size is 16-bits.
However, this bit size combined with the value set by configTICK_RATE_HZ
may place an unrealistic upper bound on the total time that can be recorded.

 configIDLE_SHOULD_YIELD: This configuration item controls how
processes that are running with idle priority react to a preemption request from a
higher priority process. If it is set to 0, a process with idle priority is not
preempted until the end of its allocated time slice. If it is set to 1, a process with
idle priority will yield immediately to the higher priority process. However, the
higher priority process will only be given whatever time was left within the time
slice originally assigned to the idle task (i.e., it will not have a whole time slice to
compute within).

 configUSE_CO_ROUTINES: This configuration item controls whether or not
co-routines are used. It is set to 0 since this work does not deal with co-routines.

 configMAX_CO_ROUTINE_PRIORITIES: Set to 0 (N/A).
 configUSE_TRACE_FACILITY: The FreeRTOS core has trace functionality

built in. This item is set to 1 if a kernel activity trace is desired. Note that a trace
log is created in RAM (so a buffer needs to be identified an more RAM is
required

 configMINIMAL_STACK_SIZE: This is the stack size used by the idle task.
The FreeRTOS authors suggest that this value not be changed from that provided
within each demo. However, an analysis of the optimal value should be possible.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

8

 configTOTAL_HEAP_SIZE: This configuration item determines how much
RAM is used by FreeRTOS for stacks, task control blocks, lists, and queues. This
is the RAM available to the heap allocation methods.

The second half of Figure 2 is used to include certain API functionality. Much of this
functionality will become evident as the analysis and description proceeds.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

9

Task Management

Overview

This section will describe task management structures and mechanisms used by the
scheduler.

Task Control Block

The FreeRTOS kernel manages tasks via the Task Control Block (TCB). A TCB exists
for each task in FreeRTOS and contains all information necessary to completely describe
the state of a task. The fields in the TCB for FreeRTOS are shown in Figure 3 (derived
from tasks.c).

Figure 3: Task Control Block for FreeRTOS

Task State Diagram

A task in FreeRTOS can exist in one of five states. These are Deleted, Suspended,
Ready, Blocked and Running. A state diagram for FreeRTOS tasks is shown in Figure 4.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

10

Figure 4: Basic Process State Diagram for FreeRTOS

The FreeRTOS kernel creates a task by instantiating and populating a TCB. New tasks
are placed immediately in the Ready state by adding them to the Ready list.

The Ready list is arranged in order of priority with tasks of equal priority being serviced
on a round-robin basis. The implementation of FreeRTOS actually uses multiple Ready
lists – one at each priority level. When choosing the next task to execute, the scheduler
starts with the highest priority list and works its way progressively downward.

The FreeRTOS kernel does not have an explicit “Running” list or state. Rather, the
kernel maintains the variable pxCurrentTCB to identify the process in the Ready list
that is currently running. pxCurrentTCB is therefore defined as a pointer to a TCB
structure.

Tasks in FreeRTOS can be blocked when access to a resource is not currently available.
The scheduler blocks tasks only when they attempt to read from or write to a queue that
is either empty or full respectively. This includes attempts to obtain semaphores since
these are special cases of queues.

As indicated earlier, access attempts against queues can be blocking or non-blocking.
The distinction is made via the xTicksToWait variable which is passed into the queue
access request as an argument. If xTicksToWait is 0, and the queue is empty/full, the
task does not block. Otherwise, the task will block for a period of xTicksToWait
scheduler ticks or until an event on the queue frees up the resource.

Tasks can also be blocked voluntarily for periods of time via the API. The scheduler
maintains a “delayed” task list for this purpose. The scheduler visits this task list at every

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

11

scheduler decision point to determine if any of the tasks have timed-out. Those that have
are placed on the Ready list. The FreeRTOS API provides vTaskDelay and vTaskDelayUntil
functions that can be used to put a task on the delayed task list.

Any task or, in fact, all tasks except the one currently running (and those servicing ISRs)
can be placed in the Suspended state indefinitely. Tasks that are placed in this state are
not waiting on events and do not consume any resource or kernel attention until they are
moved out of the Suspended state. When un-suspended, they are returned to the Ready
state.

Tasks end their lifecycle by being deleted (or deleting themselves). The Deleted state is
required since deletion does not necessarily result in the immediate release of resources
held by a task. By putting the task in the Deleted state, the scheduler in the FreeRTOS
kernel is directed to ignore the task. The IDLE task has the responsibility to clean up
after tasks have been deleted and, since the IDLE task has the lowest priority, this may
take time.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

12

List Management

Overview

This section provides an overview of list creation and management in FreeRTOS. This
information is useful for understanding the functionality of various FreeRTOS modules
described in later sections.

Ready and Blocked Lists

Figure 5 shows all of the lists that are created and used by the scheduler and their
dependencies on configuration values in FreeRTOSConfig.h.

Figure 5: Lists Created by the Scheduler

Note that the {Ready} list is not a single list but actually n lists where

n= configMAX_PRIORITIES

Each of the lists in Figure 5 is created as type xList. which is a structure defined as
shown in Figure 6.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

13

Figure 6: Type xList

Each list has an entry identifying the number of items in the list. The list has an index
pointer pxIndex that points to one of the items in the list (which is used to iterate
through a list). The pxIndex points to type xListItem which is the only type that a
list can hold. The only exception is xListEnd which is of type xMiniListItem.
The structures xListItem and xMiniListItem are shown in Figure 7.

Figure 7: xList Types

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

14

List Initialization

Figure 8 shows an example of the initialization of the list {DelayedTaskList}. The
number of items is initially set to zero. The pxIndex pointer and pxNext and
pxPrevious pointers are all set to the address of the xListEnd structure.

Figure 8: List Initialization

The xItemValue in the xListEnd structure must hold the maximum possible value.
Because {DelayedTaskList} is used to list tasks based on the amount of time that they
can block, this value is set to portMAX_DELAY.

Inserting a Task Into a List

To insert a task into a list (for example, the {DelayedTaskList}), FreeRTOS uses
vListInsert. Arguments to this function include the pointer to the list to be modified and a
pointer to the Generic List Item portion of the TCB about to be listed as shown in Figure
9.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

15

Figure 9: vListInsert With Arguments

In the figure, the xItemValue within the Generic List Item field has already been set to
38 (an arbitrary number). In this case, that would represent the absolute clock tick upon
which the task associated with this TCB should be woken up and re-inserted into the
{Ready} list. Also note that the *pvOwner pointer has been set to point to the TCB
containing the Generic List Item. This allows fast identification of the TCB.

Figure 10 shows and example of what a {DelayedTaskList} might look like with two
listed tasks. The *pxNext pointer in the xListEnd structure of the list is not NULL –
it points to the first entry in the list as shown in the figure.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

16

Figure 10: Hypothetical DelayedTaskList

To insert a new task into the {DelayedTaskList}, vListInsert proceeds as follows.
The xItemValue within the new Generic List Item is compared with the
xItemValue from the first TCB in the list. In the {DelayedTaskList} case, this will be
the absolute clock tick on which the task should be woken. If the existing value is lower
(in this case, 24<38), the *pxNext pointer is used to move on to the next TCB in the
list. When the comparison fails, then the current TCB must be “moved to the right”
while the new task TCB is inserted. This is done by modifying the *pxNext and
*pxPrev pointers of the adjacent list items and both the *pxNext and *pxPrev
pointers within the new TCB itself. Finally, the *pxContainer pointer in the newly
listed TCB is modified to point to the {DelayedTaskList}. This pointer is apparently
used for quick removal at a later time. Once the new TCB is entered, the
NumberOfItems value in the {DelayedTaskList} structure is updated.

The code that implements this insertion is shown in Figure 11. Normally, code segments
will not be presented within this document. However, in this case, the code is
exceptionally concise and therefore worthy of presentation.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

17

Figure 11: Code Extract from Lists.c in FreeRTOS

The for loop at point A initializes pxIterator (having type ListItem) to the last
item in the list which is, by default, ListEnd. As mentioned, the *pxNext pointer of
ListEnd points to the first item in the list. The comparison operation in the for loop
checks the xItemValue in the structure pointed to by the current *pxNext and, if
true, pxIterator takes on the value of the next list item.

It should be noted that a boundary condition occurs when the new xItemValue is equal
to portMAX_DELAY as defined in FreeRTOSConfig.h. FreeRTOS handles this exception at
point B in Figure 11 by assigning the task the second last place in the list.

Timer Counter Size and {DelayedTaskList}

Tasks that are placed on the {DelayedTaskList} are placed there by the scheduler or by
API calls such as vTaskDelay or vTaskDelayUntil. In all cases, an absolute time is calculated for
the task to be woken. For example, if the task is to delay for 10 ticks, then 10 is added to
the current tick count and that becomes the xItemValue to be stored in the Generic
List Item structure.

However, the embedded controllers being targeted by FreeRTOS have counters that can
be as small as 8-bits – resulting in a counter rollover after only 255 ticks. To deal with
this, FreeRTOS defines and uses two delay lists – {DelayedTaskList} and
{OverflowDelayedTaskList}.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

18

As shown in Figure 12, the time to sleep is added to the current time at point A. At point
B, if the sum turns out to be less than the current timer value, then the time to wake
should be inserted into the {OverflowDelayedTaskList}.

Figure 12: Deciding Which Delayed List To Insert (from Task.c)

Note that, for this to work, the maximum number of ticks that a task can be blocked must
be less than the size of the counter (i.e., FF in the case of an 8-bit counter). This
maximum value is set in the FreeRTOSConfig.h variable portMAX_DELAY.

Each time the tick count is increased (in the function vTaskIncrementTick), a check is
performed to determine if the counter has rolled over. If it has, then the pointers to
{DelayedTaskList} and {OverflowDelayTaskList} are swapped as shown in the code
segment in Figure 13.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

19

Figure 13: Exchanging List Pointers When Timer Overflows

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

20

The FreeRTOS Scheduler

Overview

This section provides a detailed overview of the scheduler mechanism in FreeRTOS.
Because of the configuration options that allow cooperative operation and scheduler
suspension, the scheduler mechanism has considerable complexity.

Figure 14 provides an overview of the scheduler algorithm. The scheduler operates as a
timer interrupt service routine (vPortTickInterrupt) that is activated once every tick period.
The tick period is defined by configuring the FreeRTOSConfig.h parameter
configTICK_RATE_HZ.

Figure 14: Scheduler Algorithm

Because the scheduler operates as an interrupt, it is part of the HAL and contains
implementation specific code. In Figure 14, the HAL implementation for the 68HC12
includes stacking (and un-stacking) a set of “soft registers” that are used by GCC (shown
in the sections with dashed lines). Details of the nature and use of soft registers can be
found in [GCC1].

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

21

The first operation performed by the scheduler is to reset the counter timer (a hardware
specific instruction) in order to start the next tick period. FreeRTOS can be configured to
be co-operative or preemptive. In the scheduler, after the clock is reset, the FreeRTOSConfig.h
variable configUSE_PREEMPTION is referenced to determine which mode is being
used.

In the co-operative case, the only operation performed before returning from the timer
interrupt is to increment the tick count. There is a significant amount of logic behind this
operation that is required in order to deal with special cases and timer size limitations.
We will visit that logic shortly.

If the scheduler is preemptive, then the first step is to stack the context of the current task
in the event that a context switch is required. The scheduler increments the tick count
and then checks to see if this action caused a blocked task to unblock. If a task did
unblock and that task has a higher priority than the current task, then a context switch is
executed. Finally, context is restored, soft registers are un-stacked, and the scheduler
returns from the interrupt.

Task Context Frame

The following several paragraphs describe the construction of the FreeRTOS “context
frame” and the mechanism by which a context switch is executed. A task’s context is
constructed from data that is provided automatically as part of interrupt servicing as well
as additional context information provided from several macros. It is important to know
what is expected within a context frame and how to populate it when both starting a task
or when performing a context switch between tasks.

When an ISR occurs, the HCS12 (like most other embedded MCUs) will immediately
stack the MCU context using the current stack pointer. The MCU context for the HCS12
consists of the program counter (the return address), the Y and X registers, the A and B
registers, and the condition code register (CCR) [S12CPUV2]. All of these registers are
stacked in the order just indicated prior to the MCU jumping to the interrupt service
routine. Figure 15 shows a task, Task 1, with its associated TCB and stack space both
prior to an ISR and immediately before the ISR takes control of the MCU.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

22

Figure 15: Stacking of MCU Context

In the GCC implementation of FreeRTOS on the HC11 or HC12 MCU, up to 12 bytes of
“soft registers” are stacked on top of the MCU state provided by the ISR mechanism.
These registers are stacked explicitly by executing the portISR_HEAD macro within the HAL.
They are un-stacked using portISR_TAIL.

The final context information is provided by executing the portSAVE_CONTEXT macro within
the HAL. This macro first stacks a variable that tracks the critical nesting depth for the
task (discussed later). If the target had been using the banked memory model for
Freescale devices, then the PPAGE register would also be stacked. The macro then
stores the current value of the stack pointer register into the head entry of the TCB for
Task 1. The context frame, as built by the ISR mechanism, portISR_HEAD, and
portSAVE_CONTEXT is shown in Figure 16

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

23

Figure 16: Context Frame on Stack 1

To exit from the ISR following its work, portRESTORE_CONTEXT, portISR_TAIL, and an RTI must
be executed in that sequence in order to properly clear the stack of the context frame.

Context Switch By Stack Pointer Manipulation

In Figure 14, one of the tasks of the scheduler is to determine if a context switch is
required. If that is the case, then a stack pointer manipulation is performed to execute the
switch. The scheduler copies the head entry of Task 2 into the stack pointer register
(recall that the head entry is a pointer to the stack space of Task 2). If the context of Task
2 had been saved according to the context frame definition, then executing
portRESTORE_CONTEXT, portISR_TAIL, and an RTI will restore the context of Task 2 to the MCU.

Starting and Stopping Tasks

Although the act of starting or stopping a task is not a direct scheduler function, a brief
description will be provided here since the scheduler manipulates the data structures and
stacks created when a task is created. Therefore, an understanding of task creation and
deletion will assist in describing the remaining scheduler functions.

Tasks are created by invoking xTaskCreate() from within main.c or within a task itself.
Parameters required to create a task include:

 A pointer to the function that implements the task. For obvious reasons, the code
that implements the task function must invoke an infinite loop.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

24

 A name for the task. This is used mainly for code debugging and monitoring in
FreeRTOS.

 The depth of the task’s stack.
 The task’s priority.
 A pointer to any parameters needed by the task function.

An overview of the process of creating a task is shown in Figure 17.

Figure 17: Overview of Task Creation

xTaskCreate must first allocate memory for the task’s TCB and stack. This is accomplished
by calling AllocateTCBandStack as shown in Figure 18. This function invokes portMalloc to
obtain a block of memory for the TCB that is the size of the TCB structure and a block of
memory for the stack that is the size of the stack data type (e.g., 8, 16 bits) multiplied by
the size of the stack requested. These two memory blocks are obtained from the heap
whose maximum size is specified in the FreeRTOSConfig parameter
configTOTAL_HEAP_SIZE. As a final exercise, AllocateTCBandStack sets a pointer to the
base address of the stack inside the TCB.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

25

Figure 18: Allocate Stack and TCB Memory

portMalloc is implemented within the HAL. Specifically, by choosing to compile one of
heap1.c, heap2.c, or heap3.c with the project, a range of memory allocation strategies (and the
corresponding portMalloc implementations) can be achieved. For example, heap1.c
implements a policy of allocating heap memory to a task once and does not allow
deallocation of that memory. This policy is good for applications with a known set of
tasks that will not vary with time. The policy invoked in heap2.c allows for allocation and
deallocation of heap memory using best-fit to located the request block but it does not
perform cleanup on fragmented but adjacent blocks. The allocation policy in heap3.c
simply provides wrappers for traditional malloc() and calloc() allocation.

Referring back to Figure 17, the second task performed by xTaskCreate (assuming memory
was successfully obtained) is to initialize the TCB with known values. This includes
initializing the task name, task priority, and stack depth fields of the TCB from function
call parameters.

The third and fourth steps in xTaskCreate prepare the task for its first context switch. A
pointer to the top-of-stack is initialized to the base stack address found in the task TCB
(an adjustment is necessary depending on the stack growth mechanism on the target –
some targets “grow” the stack towards lower memory while others do the opposite). The
stack for the task is then populated with a dummy frame that perfectly matches what is
required when a context switch is performed by a combination of portRESTORE_CONTEXT and
port_ISRTAIL macros as discussed earlier. The content of the dummy frame is shown in
Figure 19. The important element of the dummy frame is the return address which will
point to the start address of the task code.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

26

Figure 19: Dummy Stack Frame

After populating the dummy stack for the task, the top-of-stack pointer (which now
points to TOS-21 in Figure 19) is updated and written back to the TCB. This stack
pointer is the head value in the TCB is extracted directly to perform a context switch as
discussed earlier.

Each time a task is created successfully, xTaskCreate must determine if the scheduler is
running. If it is running, then the new task can simply be added to the Ready list and the
scheduler will, on its first (or next) interrupt, determine which task has the highest
priority. If the scheduler is not running, then xTaskCreate must determine if the task just
created is the highest priority task and then ensure that this is tracked (using the
pxCurrentTCB global variable).

The final step in creating the task is to add it to the Ready list. This is performed by a
call to the function prvAddTaskToReadyQueue. This function determines what priority level the
task is and adds it to the back of the appropriate Ready list. If a list does not exist at that
priority (which would only happen if the task were created dynamically after startup),
then the appropriate list is first created. pxCurrentTCB is adjusted by
prvAddTaskToReadyQueue to track the TCB to be context-switched in next.

Yeilding Between Ticks

The scheduler responds to the timer ISR. A second ISR is required for yielding a task in
the event of being blocked or completing early. This is implemented by a software
interrupt (SWI). Any call to portYIELD causes the assembly instruction “swi” to execute
which, in turn, invokes the ISR code attached to that interrupt (defined in port.c as
vportYIELD). The SWI builds a context frame as described previously – it executes

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

27

portISR_HEAD and portSAVE_CONTEXT, determines if any context switch is required (and loads the
new task’s TCB head into the stack pointer if necessary), and then un-stacks the context
frame as appropriate. Note that an SWI is non-maskable whereas the timer responsible
for the scheduler can be masked.

Starting the Scheduler

Figure 20 shows the process that occurs when the FreeRTOS scheduler is started. A call
to the FreeRTOS function vTaskStartScheduler() should be the last function call made in main.c
after all of the other required tasks have been created using the function xTaskCreate().

Figure 20: FreeRTOS Task Scheduler Startup

The vTaskStartScheduler() function first creates the IDLE task with the lowest priority and
then sets the global timer xTickCount to zero. The global xSchedulerRunning
is set to TRUE. This variable is used to in several areas to determine if the scheduler is
available to make scheduler decisions or if those decisions need to be made locally. For
example, tasks can be created before or after the scheduler is started. When tasks are
created before, the creation mechanism includes a method to determine whether the task
just created is the new priority task and switches pxTCBCurrent to reflect that status
(without performing a context switch). Otherwise, the scheduler is used.

vTaskStartScheduler() passes control to xTaskStartScheduler() in the HAL. The HAL is needed at
this point because the first order of business for xTaskStartScheduler() is to set up a timer

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

28

interrupt to invoke the scheduler. Since the timer is hardware dependent, configuring it
must occur in the HAL.

The last thing that xTaskStartScheduler() does is to restore the context of the currently
selected task which is pointed to by pxTCBCurrent and which, by virtue of the
previous operations, is the highest priority task. The context is switched by calling
portRESTORE_CONTEXT and portISR_TAIL. This might seem to be a logic error since no task was
previously running. However, as described earlier, each task is provided with a dummy
stack frame when it is first created. This frame provides the start address of the task and
the head entry of the TCB for the task is a pointer to the top of the task stack. This is all
the information required to initiate the task.

Suspending the Scheduler

FreeRTOS provides a task the ability to monopolize the MCU from all other tasks for an
unlimited amount of time by suspending the scheduler. Indeed, this capability is used by
FreeRTOS itself. A task might conceivably suspend the scheduler in the event that it
would like to process for a long period but not miss any interrupts. Using a critical
section blocks all interrupts – including the timer interrupts. Extending the critical
section for longer than necessary breaks the basic tenet of keeping critical sections short
both in time and space.

Regardless, normal scheduler operation can be suspended through the use of vTaskSuspendAll
and vTaskResumeAll. vTaskSuspendAll guarantees that the current process will not be pre-
empted while at the same time continues to service interrupts (including the timer
interrupt). Normal scheduler operation is resumed by vTaskResumeAll.

Scheduler suspensions are nested. The nesting depth is tracked by the global variable
uxSchedulerSuspended in tasks.c. Figure 20 shows the algorithms implemented for
vTaskSuspendAll and vTaskResumeAll.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

29

Figure 20: Algorithms for vTaskSuspend and xTaskResumeAll

Each time vTaskSuspend is executed, uxSchedulerSuspended is incremented. Each
time xTaskResumeAll is executed, uxSchedulerSuspended is decremented. If
uxSchedulerSuspended is not made zero (FALSE) when xTaskResumeAll is executed,
then nothing in that function is performed.

However, if uxSchedulerSuspended is made FALSE in xTaskResumeAll, then all tasks
that were placed on the {PendingReadyList} are moved to the {ReadyTasksList}.

A small digression is required to understand the general concept of the
{PendingReadyList} (it will be explained in greater detail shortly). While the scheduler
is suspended, tasks on the delayed lists or event lists are not being checked on each timer

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

30

tick to see if they should be woken up. However, suspending the scheduler does not stop
ISRs from executing and these may cause events that will unblock tasks. However, while
the scheduler is suspended, the ISR cannot modify the ready list. Therefore, tasks that
are made ready as a result of an ISR are placed on the {PendingReadyList} and are
serviced by the scheduler when it is no longer suspended.

In xTaskResumeAll, as each task on the {PendingReadyList} is reassigned to the
{ReadyTasksList}, the priority of that task is compared to the priority of the currently
executing task. If it is greater, then a yield is required as soon as practicable in order to
get the higher priority task in control. Note that there may be more than one task with a
higher priority than the current one – the yield will determine which is the highest and
context switch to that one. A yield is required because it is essential to move with haste
to the higher priority task – otherwise, the current task will execute until the next tick.

If timer ticks were missed while the scheduler was suspended, these will show up in the
global variable uxMissedTicks. xTaskResumeAll will attempt to catch up on these ticks
by executing vTaskIncrementTick in bulk (once for each uxMissedTicks). If missed ticks
existed and were processed, they may have made one or more tasks Ready with higher
priority than the currently executing task. Therefore, a yield is once again required as
soon as practicable.

The algorithm for vTaskIncrementTick is shown in Figure 21. vTaskIncrementTick is called
once each clock tick by the HAL (whenever the timer ISR occurs). The right hand
branch of the algorithm deals with normal scheduler operation while the left hand branch
executes when the scheduler is suspended. As discussed earlier, the right hand branch
simply increments the tick count and then checks to see if the clock has overflowed. If
that’s the case, then the {DelayedTask} and {OverflowDelayedTask} list pointers are
swapped and a global counter tracking the number of overflows is incremented. An
increase in the tick count may have caused a delayed task to wake up so a check is again
performed.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

31

Figure 21: Algorithm for vTaskIncrementTick

If the scheduler is suspended, then the global missed tick counter is incremented. If tick
hooks were enabled in FreeRTOSConfig.h, then any tick hook function is executed – note that
tick hooks operate regardless of whether the scheduler is suspended or not.

The final section of the algorithm again checks to see if tick hooks are enabled. Further,
a check is performed to see that there are no missed ticks. If both conditions are true,
then the tick hook function is executed. This final section will ensure that tick hooks are
executed each time that vTaskIncrementTick is executed and the scheduler is not suspended –

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

32

except when tick counts are being processed in bulk to reduce the missed tick count to
zero (for example, as discussed in Figure 17 for xTaskResumeAll). In that case, tick hooks
will only be executed once for the entire set of missed ticks.

Checking the Delayed Task List

The scheduler checks {DelayedTaskList} once each tick and locates any tasks whose
absolute time is less than the current time. These tasks are moved into the appropriate
Ready list. Delayed tasks are stored in {DelayedTaskList} in the order of their absolute
wake time. Therefore, checking completes when the first delayed task with an un-
expired time is found.

Critical Section Processing

FreeRTOS implements critical sections by disabling interrupts. Critical sections are
invoked through the taskENTER_CRITICAL() macro definition (which maps to
portENTER_CRITICAL() since entering a critical section will invoke operations in the
HAL). An equivalent taskEXIT_CRITICAL() exists.

Critical sections in FreeRTOS can be nested. Nesting will occur when a function enters a
critical section to perform some processing and, while in that section, calls another
function that also calls a critical section (the two functions may be designed to operate
independently). If nesting is not performed, the second function will execute an exit from
the critical section (turning interrupts back on) when it is complete and then return to the
first function which is expecting interrupts to be disabled. By using a nesting counter,
each function increments the count on entry and decrements on exit. If the count is
decremented and equals zero, interrupts can safely be enabled.

In FreeRTOS, the nesting depth is held in the uxCriticalNesting variable which is
stacked as part of task context. This means that each task keeps track of its own critical
nesting count because it is possible for a task to yield from within a critical section (need
to find an example of this).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

33

Queue Management

Overview

This section provides an overview of queue creation and management. The mechanisms
used to implement blocking and non-blocking accesses to a queue (queue read) are
described in depth. Queue writes are very similar to reads and will only be peripherally
described.

Figure 22 shows the elements of a queue structure. Two structures of type xList hold
the {TasksWaitingToSend} and {TasksWaitingToReceive} event lists. The items in
these event lists are sorted and stored in order of task priority so that taking an item from
the list head is equivalent to obtaining the highest priority item without searching.

Figure 22: Queue Structure Elements

The physical queue size is determined by the number of queueable items (uxLength)
multiplied by the size (in bytes) of each item (uxItemSize). This is an important
factor to keep in mind when calculating space requirements for memory-constrained
applications.

Figure 23 shows a logical overview of a queue and the entities that affect it or are
affected by it. It also shows the initial positions of the *pcHead, *pcTail,
*pcWriteTo, and *pcReadFrom pointers (assuming that the head of the queue is the
left-most position).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

34

Figure 23: Queue Elements

When a blocking task fails to read or write to a queue, it is placed in one of the waiting
lists shown in the figure. The difference between a blocking task and a non-blocking task
in FreeRTOS is the number of ticks that a task should wait when blocked. If the number
of ticks is set to zero, the task does not block. Otherwise, it blocks for the period
specified. As a result, every task that ends up on either the TaskWaitingToReceive or
TaskWaitingToSend event lists will also end up in the DelayedTasks list. A task that is on
either list will be made Ready when its delay time expires or when an event occurs that
frees it from the waiting list.

Queues can be written via an API call or from within an ISR. Since ISRs are atypical,
their behaviour when writing to the queue is different from that of a normally schedulable
task. Therefore, there are two implementations for writing to a queue. The situation is
similar for reading from a queue.

Posting to a Queue from an ISR

The most significant difference between an ISR-based queue post and one that originates
from within a schedulable task is that ISR-based posts are non-blocking. If the queue is
not ready to receive data, the send attempt fails without signaling an error.

The algorithm followed by ISRQueueSend is shown in Figure 24. If the Queue is not full,
data from the ISR is copied into it. At this point, the algorithm must check to see if the
act of posting data into the queue is an event that would un-block a process that is waiting
to read from the queue.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

35

The first step is to determine if the queue is locked. If it is, then it is forbidden for the
ISR to modify the event list. However, the fact that the queue was written must be
recorded so TxLock is incremented for later action.

Figure 24: Algorithm for Sending to a Queue from an ISR

If the queue is not locked, the algorithm checks to see if a task has already been un-
blocked (or woken) by a previous write to the queue. In order to appreciate this logic, it
is important to understand that a single ISR can write many times to the same queue by
invoking xQueueSendFromISR multiple times (for example, placing one queue object at a time
as they are received). Therefore, to prevent each subsequent post from pulling another
task off of the event list, history is maintained via the xTaskPreviouslyWoken
variable.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

36

On the initial call to xQueueSendFromISR, xTaskPreviouslyWoken is passed as an
argument that is initially defined as FALSE. If a task is unblocked during that first call,
xQueueSendFromISR returns TRUE – otherwise, it returns the value that was passed in (as
shown at the bottom of Figure 24). Therefore, subsequent calls to xQueueSendFromISR from
within the same ISR must pass in the return value from the previous call to
xQueueSendFromISR. This ensures that multiple posts to a queue from a single ISR will only
unblock a single task (if one exists).

If no task has been previously woken (unblocked), the algorithm then checks to see if a
task is actually waiting to receive data. If so, the task is to be pulled from the event list.

Figure 25 shows the xTaskRemoveFromEventList function which implements the steps required
to remove a task from one of the event lists (either {TasksWaitingToRead} or
{TasksWaitingToSend}). This function will only ever be invoked if there are no locks on
the queue.

Figure 25: Remove Task From Event List

The xTaskRemoveFromEventList function removes the first available task from the head of the
event list (they are listed in order of descending priority). At this point, it is important to
recall that every blocked task will appear on the {DelayedTaskList} whether it was

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

37

placed there by a specific delay API call or if it was blocked. As previously described,
this ensures that every blocked task has a timeout to prevent deadlock. TCBs are linked
into Event and {DelayedTaskList} via the Generic List Item and Event structures in the
TCB as shown in Figure 26.

Figure 26: Generic and Event Lists in TCB

If the scheduler is not suspended after removing the TCB from the {EventList}, then the
function removes the task from the {DelayedTaskList} and inserts it into the Ready list.
If the scheduler has been suspended, then there is probably an operation being performed
on the Ready or {DelayedTaskList} (or both) so the task is placed in a temporary list
called {PendingReadyList}. When the scheduler is reinstated, tasks in this list will be
examined and added to the Ready list in batch.

Regardless of the list to which the task is added, xTaskRemoveFromEventList determines if the
task just unblocked has a priority that is equal to or greater than the currently executing
task. It provides this information to the calling function as either a TRUE return (priority
equal or higher) or a FALSE return (priority not higher). The calling function uses this
information to determine if a context switch is needed immediately.

Posting to a Queue from a Schedulable Task

The act of making a post to a queue from within a schedulable task (as distinct from
within an ISR) is one of the most interesting aspects of FreeRTOS. Figures 27 and 28
present the algorithm used to perform this operation.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

38

Figure 27: Posting to a Queue From a Task

The function xQueueSend suspends the scheduler, records the current time, and locks the
queue when it is invoked. Recall that locking the queue prevents ISRs from modifying
the event list but does not prevent them from posting to the queue. xQueueSend senses the
queue to see if it is full. If it is, and the call was blocking (a non-zero tick time was
provided as part of the call), then xQueueSend blocks. Figure 28 provides greater detail to
the blocking process. We will digress slightly to describe that process.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

39

Figure 28: Blocking Call on Queue Blocks

xQueueSend puts the TCB for the calling task onto the {WaitingToSend} list. As detailed in
the source code, this operation does not require a mutex on the list because nothing else
can modify it while the scheduler is suspended and the queue is locked. Since the intent
is to block, the queue must be unlocked and the scheduler resumed so a critical section is
entered to prevent anything else from interrupting these operations.

When the code to resume the scheduler is executed, it is possible that the no yield was
performed. As described earlier, scheduler suspensions can be nested. If they are, then
no yield is performed when a call is made to resume. If that occurs, the algorithm of
Figure 28 will force a manual yield. Once the yield is completed, the task that made this
attempt to post to the queue is effectively blocked.

Note that a yield from within a critical section does not affect interrupts in other tasks.
Unlike the nesting of the scheduler, each task keeps its own nesting depth variable.
Interrupts are enabled or disabled on each context switch based on the status of the I bit
in the condition code register so no global variable is required to share the nesting status
between tasks.

When the task becomes unblocked, the scheduler is suspended, the queue is locked and
the critical section is exited whereupon it is immediately re-entered as indicated in Figure
27.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

40

If the queue is not full when the task is resumed, then the requested data is posted and the
variable TxLock is incremented. This variable tracks whether items were posted or
removed from a queue while the queue was locked. It is necessary because event and
ready lists cannot be modified while the queue is locked.

A successful post is followed by an exit from the critical section (the scheduler is still
suspended) which is then followed by unlocking the queue. When the queue is unlocked,
it is necessary to check to see if there are any tasks waiting to receive. Figure 29 shows
the algorithm for unlocking the queue.

Figure 29: Checking for Blocked Tasks On Queue Unlock

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

41

To unlock the queue, a critical section is invoked. TxLock is decremented and checked
to see if it is zero. When the queue is locked, TxLock is incremented by one – therefore,
other operations on the queue would only have happened if TxLock is greater than one.

If the decremented TxLock is still greater than zero (i.e. something modified the queue),
then the waiting lists should be checked to see if a blocked task can be unblocked.
TxLock is set to zero. If tasks are waiting, then the highest priority task is taken off the
list (the TCB for this task would be the head since tasks are inserted into the list by
priority). If the task taken off is higher priority, then it is necessary to yield to that task –
however, the scheduler is not running so a pending yield is signaled.

The algorithm shown in Figure 29 has a similar section for RxLock.

Once the queue is unlocked, the scheduler is resumed and QueueSend returns PASS to
the calling task.

If the queue was full when the task unblocked (refer to Figure 27), the critical section is
exited immediately. If the post request was a blocking post and if the time on the block
has not expired and if the queue is full, then the task that made the call is blocked again.
The expiry time of the task is determined by adding the block time value to the tick time
captured when the function was first invoked. If the current time is less than that value,
then the task can block. Otherwise the operation requested has timed out. The queue is
unlocked, the scheduler is resumed and the function returns an error condition to the
parent task.

Receiving from a Queue – Schedulable Task and ISR

The descriptions provided for posting to a queue from both a schedulable task and from
within an ISR have equivalent analogues for receiving from a queue. These operations
won’t be covered.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

42

Summary and Conclusions

FreeRTOS is a small, nominally real-time operating system for embedded devices. It
includes traditional preemptive operating system concepts such as dynamic priority based
scheduling and inter-process communication via message queues and synchronization
mechanisms.

FreeRTOS provides other features that are intended to allow the operating system to be
more flexible to embedded operations. These include cooperative operation (instead of
preemptive), co-routines, and the ability to suspend the scheduler. This last feature
appears to invoke significant overhead for marginal utility. A scaled version of the
FreeRTOS with these features removed might prove to be more attractive to certain
communities.

The insistence on timeouts for each blocking task appears to provide a solution to
deadlocks that is commensurate with the level of complexity of the operating system.
Unfortunately, it pushes the problem upwards since the developer must now pay attention
to the problems of assigning and tuning timeouts and dealing with failed access to
resources.

Overall, FreeRTOS is a reasonable – if slightly too complex – attempt at a real-time
operating system for small embedded targets. The second portion of Attachment 1 to this
document should provide the performance analyses in the near future to complete an
evaluation of utility.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

An Analysis and Description of the FreeRTOS Kernel

43

References

[FRTOS07] Barry, Richard, FreeRTOS, accessed 10 January 07 at:
http://www.freertos.org/

 [GCC1] GNU Compiler Collection Description of Port (Soft Registers) accessed
March 2007 at: http://m68hc11.serveftp.org/m68hc11_gcc.php.

[GNU2.2] GNU Development Chain for M6811/M6812 on Windows, Version 2.2.
Accessed at:
http://www.gnu.org/software/m68hc11/m68hc11_pkg_zip.html

[S12CPUV2] HC12 Microcontrollers, S12CPUV2 Reference Manual, Rev. 0, 2003.

[SYSC07] SYSC5701 Course Notes, 2007.

[TA] Technological Arts NanoCore12DX.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

