
Amazon FreeRTOS
User Guide



Amazon FreeRTOS User Guide

Amazon FreeRTOS: User Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.



Amazon FreeRTOS User Guide

Table of Contents
What Is Amazon FreeRTOS? .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The FreeRTOS Kernel ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Amazon FreeRTOS Libraries ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Amazon FreeRTOS Console .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Amazon FreeRTOS Qualification Program ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Development Workflow ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Getting Started with Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Granting FreeRTOS Permissions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Amazon FreeRTOS Prerequisites ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Create Your AWS IoT Credentials ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Getting Started with the Texas Instruments (TI) CC3220SF-LAUNCHXL .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Setting Up Your Environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Download and Build Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Run the FreeRTOS Samples .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Troubleshooting .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Getting Started with the STMicroelectronics (ST) STM32L4 Discovery kit IoT node .... . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Setting Up Your Environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Download and Build Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Run the FreeRTOS Samples .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Getting Started with the NXP LPC54018 IoT Module .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Setting up Your Environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Connecting a JTAG Debugger .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Download and Build Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Getting Started with the FreeRTOS Windows Simulator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Setting Up Your Environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Download and Build Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Run the FreeRTOS Samples .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Next Steps .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Navigating the Example Project ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Directory and File Organization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Configuration Files ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Thing Shadow Demo ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Greengrass Discovery Demo ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Amazon FreeRTOS Developer Guide .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Amazon FreeRTOS Architecture .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
FreeRTOS Kernel Fundamentals ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

FreeRTOS Kernel Scheduler ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Memory Management .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Inter-task Coordination .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Software Timers .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Low Power Support ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

FreeRTOS Libraries ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cloud Connectivity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Greengrass Connectivity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Amazon FreeRTOS Security ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FreeRTOS Wi-Fi Interface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Amazon FreeRTOS Console User Guide .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Downloading Amazon FreeRTOS from GitHub .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Amazon FreeRTOS Qualification Program ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

What's in it for OEMs? .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Qualification Program for MCU Vendors .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Contact Amazon .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Sign Up for the AWS Partner Network .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Jointly Agree on Terms and Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



Amazon FreeRTOS User Guide

Pass Qualification Test Suite .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Amazon FreeRTOS Qualified .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Supported Platforms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Texas Instruments CC3220SF-LAUNCHXL .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STMicroelectronics STM32L4 Discovery Kit – IoT Node .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
NXP LPC54108 IoT Module .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Amazon FreeRTOS Porting Guide .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Logging .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Logging Configuration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Connectivity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Wi-Fi Management .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Sockets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Security ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TLS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
PKCS#11 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Using Custom Libraries with Amazon FreeRTOS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



Amazon FreeRTOS User Guide
The FreeRTOS Kernel

What Is Amazon FreeRTOS?
Amazon FreeRTOS is a microcontroller operating system based on the FreeRTOS kernel. It includes
libraries for connectivity and security. You can use the Amazon FreeRTOS console to configure and
download the FreeRTOS kernel and software libraries for your application. The Amazon FreeRTOS
Qualification Program gives you the confidence that the microcontroller you choose fully supports the
Amazon FreeRTOS features and capabilities.

The FreeRTOS Kernel
The FreeRTOS kernel is a real-time operating system that supports numerous architectures and is ideal
for building embedded microcontroller applications. The kernel provides:

• A multitasking scheduler.
• Multiple memory allocation options (including the ability to create completely statically allocated

systems).
• Inter-task coordination primitives, including task notifications, message queues, multiple types of

semaphores, and stream and message buffers.

Amazon FreeRTOS Libraries
Amazon FreeRTOS includes libraries that enable you to:

• Securely connect devices to the AWS IoT cloud using MQTT and device shadows.
• Discover and connect to AWS Greengrass cores.
• Manage Wi-Fi connections.

Amazon FreeRTOS Console
The Amazon FreeRTOS console is used to create software configurations that you can download onto
your development computers to get started with Amazon FreeRTOS. The console allows you to select the
hardware platform, compiler and IDE used for development, and Amazon FreeRTOS libraries required for
your application. After you have made these selections, a custom zip file of the required files is created
along with demo projects that make it easy to get started with Amazon FreeRTOS. This zip file includes
the FreeRTOS kernel, Amazon FreeRTOS libraries, and board support packages (BSPs) and hardware
drivers for the hardware platform.

Amazon FreeRTOS Qualification Program
The Amazon FreeRTOS Qualification Program (Amazon FQP) is for microcontroller vendors who want
to qualify their microcontroller-based hardware on Amazon FreeRTOS. The goal of Amazon FQP is to
ensure that developers can use Amazon FreeRTOS on their choice of microcontroller-based hardware.
In order to deliver a consistent experience for developers, the Amazon FQP outlines a set of security,
functionality, and performance requirements that all microcontrollers (and the associated hardware
abstraction layers and drivers) must meet.

1

https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Development Workflow

Development Workflow
During the development process, you can customize and download Amazon FreeRTOS source code from
the Amazon FreeRTOS console. Each of your configurations is saved in AWS. You can download the
source code using these configurations at any time. After you have the source code, you can develop
your embedded application on your selected hardware platform and manufacture and deploy these
devices using the development process appropriate for your device. Deployed devices can connect to the
AWS IoT service or AWS Greengrass as part of a complete IoT solution. The following diagram shows the
development workflow and the subsequent connectivity from Amazon FreeRTOS-based devices.

You can also download the Amazon FreeRTOS source code from GitHub.

2

https://github.com/aws/amazon-freertos


Amazon FreeRTOS User Guide
Granting FreeRTOS Permissions

Getting Started with Amazon
FreeRTOS

This section walks you through configuring Amazon FreeRTOS and running it on one of the qualified
microcontroller boards. In this tutorial, we assume you are familiar with the AWS IoT console. If not, we
recommend that you start with the AWS IoT Getting Started tutorial first.

Granting FreeRTOS Permissions
In order to access the Amazon FreeRTOS console, you must grant your IAM user
AmazonFreeRTOSFullAccess permissions:

1. Browse to the IAM console, and from the left navigation pane, choose  Users.

2. Type in your user name in the search text box and press return. Choose your user name from the list
of users.

3. Choose Add permissions.

4. Choose Attach existing policies directly.

5. In the search box type AWSFreeRTOSFullAccess, select it from the list of policies, and choose Next:
Review.

6. Choose Add permissions.

Amazon FreeRTOS Prerequisites
Before you install Amazon FreeRTOS, you need an AWS account and one of the supported hardware
platforms.

1. To create an AWS account, see Create and Activate an AWS Account.

2. Purchase one of the supported hardware platforms:

• STMicroelectronicsSTM32L4 Discovery kit IoT node

• Texas Instruments CC3220SF-LAUNCHXL

• NXP LPC54018 IoT Module

• Microsoft Windows 7 or later, with at least a dual core and a hard-wired Ethernet connection

Create Your AWS IoT Credentials
A device connected to AWS IoT is represented by an IoT thing. The IoT thing is associated with a
device certificate, private key, and an AWS IoT policy. The device uses the certificate and private key to
authenticate with AWS IoT. The AWS IoT policy is associated with the certificate and determines which
AWS IoT operations the device can perform. For more information, see Security and Identity in AWS IoT.

3

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/iam/home
https://aws.amazon.com/premiumsupport/knowledge-center/
http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
http://www.ti.com/tool/CC3220SF-LAUNCHXL
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc54000-series-cortex-m4-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
http://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html


Amazon FreeRTOS User Guide
Create Your AWS IoT Credentials

To create an IoT thing for your device

1. Browse to the AWS IoT Console.

2. In the left navigation pane, choose Manage, and then choose Things.

3. If you do not have any IoT things registered in your account, the You don't have any things yet page
is displayed. If you see this page, choose Register a thing.

4. On the Creating AWS IoT things page, choose Create a single thing.

5. On the Add your device to the thing registry page, type a name for your thing, and then choose
Next.

6. On the Add a certificate for your thing page, under One-click certificate creation, choose Create
certificate.

7. Download your private key and certificate by choosing the Download links for each. Make note of
the certificate ID. You need it later to attach a policy to your certificate.

8. Choose Activate to activate your certificate. Certificates must be activated prior to use.

9. Choose Attach a policy to attach a policy to your certificate that grants your device access to AWS
IoT operations.

10. Choose Create new policy.

11. On the Create a policy page, type a name for your policy, and in Add statements, choose Advanced
mode.

12. Replace the region and aws-account in the following JSON and then copy and paste the
configuration into the policy editor window.

{
 "Version": "2012-10-17",
 "Statement": [
 {
  "Effect": "Allow",
  "Action": "iot:Connect",
  "Resource": "arn:aws:iot:<us-west-2>:<aws-account-id>:client/MQTTEcho"
 },
 {
  "Effect": "Allow",
  "Action": "iot:Publish",
  "Resource": "arn:aws:iot:<us-west-2>:<aws-account-id>:topic/freertos/demos/echo"
 },
 {
  "Effect": "Allow",
  "Action": "iot:Subscribe",
  "Resource": "arn:aws:iot:<us-west-2>:<aws-account-id>:topicfilter/freertos/demos/
echo"
 },
 {
  "Effect": "Allow",
  "Action": "iot:Receive",
  "Resource": "arn:aws:iot:<us-west-2>:<aws-account-id>:topic/freertos/demos/echo"
 }  
 ]
}

Choose Create to create the policy.

13. In the left navigation pane, choose Secure, and then choose Certificates.

14. On Certificates page, choose your certificate (they are listed by ID), choose the ellipsis (...), and
then choose Attach policy.

15. On the Attach policies to certificate(s) page, select your policy, and then choose Attach.

4

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Getting Started with the Texas

Instruments (TI) CC3220SF-LAUNCHXL

Getting Started with the Texas Instruments (TI)
CC3220SF-LAUNCHXL

If you do not have the TI CC3220SF-LAUNCHXL development kit, you can purchase one from Texas
Instruments. Connect your Texas Instruments (TI) CC3220SF-LAUNCHXL to your computer using a USB
cable.

Setting Up Your Environment
Install TI Code Composer Studio

1. Browse to TI Code Composer Studio.

2. Download the offline installer for your host machines's platform (Windows, macOS, or Linux 64-bit).

3. Unzip and run the offline installer. Follow the prompts.

4. For Product Families to Install, choose SimpleLink Wi-Fi CC32xx Wireless MCUs.

5. On the next page, accept the default settings for debugging probes, and then choose Finish.

If you experience installation issues, see TI Development Tools Support, Code Composer Studio FAQs,
and  Troubleshooting Code Composer Studio.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. In the AWS IoT console, browse to the Amazon FreeRTOS page.

2. In the left navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Choose Download FreeRTOS Software.

5. Under Software Configurations, find Connect to AWS IoT- TI, and then choose Download.

5

http://www.ti.com/tool/CC3220SF-LAUNCHXL
http://www.ti.com/tool/CC3220SF-LAUNCHXL
http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://processors.wiki.ti.com/index.php/FAQ_-_CCS
http://processors.wiki.ti.com/index.php/Troubleshooting_CCS
https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

6. Unzip the downloaded file to a folder, and make note of the folder path. In this tutorial, this folder is
referred to as BASE_FOLDER.

Note
In Microsoft Windows, the maximum length of a file path is 260 characters. To accommodate
the files in the Amazon FreeRTOS projects, make sure the path to your BASE_FOLDER is less
than 36 characters. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Import the Amazon FreeRTOS Sample Code into TI Code
Composer
1. Open TI Code Composer and type a name for a new workspace.
2. On the Getting Started page, choose Import Project.
3. In the Select search-directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\ti

\cc3220_launchpad\ccs.
4. The project aws_demos should be selected by default.

6



Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

5. To import the project into TI Code Composer, choose Finish.

6. From the Project menu, choose Build Project to make sure it compiles without errors or warnings.

Configure Your Project

Configure Your Wi-Fi Credentials

1. In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

2. Specify values for the following #define constants:

• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.

• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.

• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network. Valid values are:

• eWiFiSecurityOpen: Open, no security.

• eWiFiSecurityWEP: WEP security.

• eWiFiSecurityWPA: WPA security.

• eWiFiSecurityWPA2: WPA2 security.

Configure Your AWS IoT Endpoint

You must specify a custom AWS IoT endpoint in order for the FreeRTOS sample code to connect to AWS
IoT.

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

3. Copy your custom AWS IoT endpoint from the Endpoint text box. It should look like
<1234567890123>.iot.<us-east-1>.amazonaws.com.

4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h
and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS simulator code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h and then save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file that is in the directory.

7

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

Run the FreeRTOS Samples
1. Rebuild your project.

2. Sign in to the AWS IoT Console.

3. In the left navigation pane, choose Test to open the MQTT client.

4. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to
topic.

5. From the Run menu in TI Code Composer, choose Debug to start debugging.

6. When the debugger stops at the breakpoint in main(), go to the Run menu, and then choose
Resume.

In the MQTT client in the AWS IoT console, you should see the MQTT messages sent by your device.

Troubleshooting
If you don’t see messages received in the MQTT client of the AWS IoT console, you might need to
configure debug settings for the board. Use these debug settings:

1. In Code Composer, on Project Explorer, choose aws_demos.

2. From the Run menu, choose Debug Configurations.

3. In the left navigation pane, choose aws_demos.

4. Choose the Target tab in the main window.

5. Scroll down to the Connection Options section and select the Reset the target on a connect check
box.

6. Choose Apply and then choose Close to close the Debug Configurations dialog box.

If these steps don’t work, look at the program's output in the serial terminal. You should see some text
that indicates the source of the problem.

Getting Started with the STMicroelectronics (ST)
STM32L4 Discovery kit IoT node

If you do not already have the STMicroelectronics STM32L4 Discovery kit IoT node, you can purchase
one from STMicroelectronics. Connect your STMicroelectronics STM32L4 Discovery kit IoT node to your
computer using a USB cable.

Setting Up Your Environment
Install System Workbench for STM32

1. Browse to OpenSTM32.org.

2. Register on the OpenSTM32 web page. You need to sign in to download System Workbench.

3. Browse to the System Workbench for STM32 installer to download and install.

If you encounter installation issues, see the FAQs on the System Workbench website.

8

https://console.aws.amazon.com/iotv2/
http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
http://www.openstm32.org/HomePage
http://www.openstm32.org/Downloading+the+System+Workbench+for+STM32+installer
http://www.openstm32.org/HomePage


Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. In the AWS IoT console, browse to the Amazon FreeRTOS page.

2. In the left navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Choose Download FreeRTOS Software.

5. Under Software Configurations, find Connect to AWS IoT- ST and choose Download.

6. Unzip the downloaded file to a folder, and make note of the folder path. In this tutorial, this folder is
referred to as BASE_FOLDER.

9

https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

Import the Amazon FreeRTOS Sample Code into the STM32
System Workbench
1. Open the STM32 System Workbench and type a name for a new workspace.
2. From the File menu, choose Import. Expand General and choose Existing Projects into Workspace

and choose Next.
3. In the Select Root Directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\st

\stm32l475_discovery\ac6.
4. The project aws_demos should be found and selected by default.
5. Choose Finish to import the project into STM32 System Workbench.
6. From the Project menu, choose Build All and make sure it compiles without any errors or warnings.

Configure Your Project

Configure Your Wi-Fi Credentials

1. In the Project Explorer window, open AmazonFreeRTOS\demos\common\include
\aws_clientcredential.h.

2. Specify values for the following #define constants:

• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.
• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.
• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network. Valid values are:

• eWiFiSecurityOpen: Open, no security.
• eWiFiSecurityWEP: WEP security.
• eWiFiSecurityWPA: WPA security.
• eWiFiSecurityWPA2: WPA2 security.

Configure Your AWS IoT Endpoint

You must specify a custom AWS IoT endpoint in order for the FreeRTOS sample code to connect to AWS
IoT.

1. Browse to the AWS IoT console.
2. In the left navigation pane, choose Settings.
3. Copy your custom AWS IoT endpoint from the Endpoint text box. It should look like

<1234567890123>.iot.<us-east-1>.amazonaws.com.
4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h

and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS simulator code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

10

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Select the Generate and save aws_clientcredential_keys.h and save the file in
<BASE_FOLDER>\demos\common\include. This will overwrite the stub file that is in the directory
already.

Run the FreeRTOS Samples
1. Rebuild your project.

2. Sign in to the AWS IoT console.

3. In the left navigation pane, choose Test to open the MQTT client.

4. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to
topic.

5. From the Project Explorer, right click aws_demos and choose Debug As and choose Ac6 STM32 C/C
++ Application

If a debug error occurs the first time a debug session is launched follow these steps:

1. In STM32 System Workbench, from the Run menu, choose Debug Configurations.

2. In list box on the left, choose aws_demos Debug (you may need to expand Ac6 STM32
Debugging).

3. Choose the Debugger tab.

4. In the Configuration Script section, choose Show Generator Options.

5. In the Mode Setup section, set Reset Mode to Software System Reset. Choose Apply and
Debug.

6. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

In the MQTT client in AWS IoT, you should see the MQTT messages sent by your device.

Getting Started with the NXP LPC54018 IoT
Module

If you do not have an NXP LPC54018 IoT Module, you can order one from NXP. Connect your NXP
LPC54018 IoT Module to your computer using a USB cable.

Setting up Your Environment
Install IAR Embedded Workbench for Arm

1. Browse to Software for NXP Kits and select Download Software to install IAR Embedded
Workbench for Arm.

Note
IAR Embedded Workbench for ARM requires Microsoft Windows.

2. Unzip and run the installer, following the prompts.

3. In the License Wizard select Register with IAR Systems to get an evaluation license.

11

https://console.aws.amazon.com/iotv2/
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc54000-series-cortex-m4-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007?fsrch=1&sr=1&pageNum=1
https://www.iar.com/iar-embedded-workbench/partners/nxp/downloads-for-nxp-kits


Amazon FreeRTOS User Guide
Connecting a JTAG Debugger

Note
If you encounter any installation issues, see NXP Support or NXP Developer Resources.

Connecting a JTAG Debugger
You will need a JTAG debugger to launch and debug your code running on the NXP LPC54018 board.
Amazon FreeRTOS was tested using a Segger J-Link probe. For more information about supported
debuggers, see the NXP LPC54018 Users’ Guide.

Note
If you are using a Segger J-Link debugger, you will need a converter cable to connect the 20-pin
connector from the debugger to the 10-pin connector on the NXP IoT module.

Download and Build Amazon FreeRTOS
Once you have your environment setup, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. Browse to the Amazon FreeRTOS page in the AWS IoT console.

2. In the left navigation pane, select Software.

3. Under Amazon FreeRTOS Device Software choose Configure download.

4. Choose Download FreeRTOS Software

5. In the Software Configurations find Connect to AWS IoT- NXP and choose Download.

12

https://www.nxp.com/support/support:SUPPORTHOME?tid=sbmenu
https://www.nxp.com/support/developer-resources:DEVELOPER_HOME
https://www.nxp.com/docs/en/user-guide/UM11078.pdf
https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

6. Unzip the downloaded file to a folder, and remember the folder path. We will refer to this folder as
BASE_FOLDER in this tutorial.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. In order
to accommodate the files in the Amazon FreeRTOS projects, ensure the path to your
BASE_FOLDER is less than [XYZ] characters long. For example, C:\Users\Username\Dev
\AmazonFreeRTOS will work, but C:\Users\Username\Documents\Development
\Projects\AmazonFreeRTOS will cause build failures.

Import the Amazon FreeRTOS Sample Code into IAR Embedded
Workbench
1. Open IAR Embedded Workbench, go to the File menu and choose Open Workspace.

2. In the search-directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\nxp
\lpc54018_iot_module\iar and select aws_demos.eww.

3. In the Project menu, select Rebuild All.

13



Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

Configure your Project

Configure your WiFi Credentials

1. In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

2. Specify values for the following #define constants:

• clientcredentialWIFI_SSID – your WiFi network’s Wi-Fi SSID.
• clientcredentialWIFI_PASSWORD – your WiFi network's password.
• clientcredentialWIFI_SECURITY – your WiFi network's security type, valid values are:

• eWiFiSecurityOpen - Open, no security.
• eWiFiSecurityWEP - WEP security.
• eWiFiSecurityWPA - WPA security.
• eWiFiSecurityWPA2 - WPA2 Security.

Configure your AWS IoT Endpoint

In order for the FreeRTOS sample code to connect to AWS IoT, you must specify your custom AWS IoT
endpoint.

1. Browse to the AWS IoT Console.
2. In the left navigation pane, select Settings.
3. Copy your custom AWS IoT endpoint from the Endpoint textbox (it should look like

<1234567890123>.iot.<us-east-1>.amazonaws.com).
4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h

and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint.

Configure your AWS IoT Credentials

The certificate and private key need to be hard coded into the Amazon FreeRTOS simulator code.
Amazon FreeRTOS is a C language project and the certificate and private key must be specially formatted
to be added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file select the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file select the <ID>-private.pem.key you downloaded from the AWS IoT
console

4. Select the Generate and save aws_clientcredential_keys.h and save the file in
<BASE_FOLDER>\demos\common\include. This will overwrite the stub file that is in the directory
already.

Run the FreeRTOS Samples
In order to run the Amazon FreeRTOS demos on the NXP LPC54018 IoT Module board, connect the USB
port on the NXP IoT Module to your host computer, open a terminal program and connect to the port
identified as "USB Serial Device".

14

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Getting Started with the FreeRTOS Windows Simulator

1. Rebuild your project.
2. Log into the AWS IoT Console.
3. In the left navigation pane, select Test to open the MQTT client.
4. In the Subscription topic textbox, type freertos/demos/echo and click Subscribe to topic
5. In IAR Embedded Workbench go to the Project menu and select Build.
6. Connect both the NXP IoT Module and the Segger J-Link Debugger to the USB ports on your

computer using mini-USB to USB cables.
7. In IAR Embedded Workbench go to the Project menu and select Download and Debug.
8. In IAR Embedded Workbench go to the Debug menu and select Start Debugging.
9. When the debugger stops at the breakpoint in main(), go to the Debug and select Go

In the AWS IoT console MQTT client, you should see the MQTT messages sent by your device.

Note
If a J-Link … Device Selection dialog box opens, click OK to continue. In the Target Device
Settings dialog box, select Unspecified, Cortex-M4 and click OK. This will only need to be done
once.

Troubleshooting
If no messages are received at the IOT console, try the following:

1. Open a terminal window to view the logging output of the sample. This may help you determine
what is going wrong.

2. Check that your network credentials are valid.

Getting Started with the FreeRTOS Windows
Simulator

Amazon FreeRTOS ships as a zip file that contains the Amazon FreeRTOS libraries and sample
applications for the platform you specify. To run the samples on a Windows machine, you download the
libraries and samples ported to run on Windows. This set of files is referred to as the FreeRTOS simulator
for Windows.

Setting Up Your Environment
1. Install the latest version of WinPCap.
2. Install Microsoft Visual Studio Community 2017.
3. Make sure that you have an active hard-wired Ethernet connection.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. In the AWS IoT console, browse to the Amazon FreeRTOS page.
2. In the left navigation pane, choose Software.

15

https://console.aws.amazon.com/iotv2/
https://www.winpcap.org/
https://www.visualstudio.com/downloads
https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

3. Under Amazon FreeRTOS Device Software, choose Configure download.
4. Choose Download FreeRTOS Software.
5. In the list of software configurations, find the Connect to AWS IoT- Windows predefined

configuration for the Windows simulator, and then choose Download.

6. Unzip the downloaded file to a folder, and make note of the folder path. In this tutorial, this folder is
referred to as BASE_FOLDER.

Note
In Microsoft Windows, the maximum length of a file path is 260 characters. To accommodate
the files in the Amazon FreeRTOS projects, make sure the path to your BASE_FOLDER is less
than 36 characters. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOScauses build
failures.

Load the Amazon FreeRTOS Sample Code into Visual Studio
1. In Visual Studio, go to the File menu, choose Open, File/Solution and navigate to

<BASE_FOLDER>\AmazonFreeRTOS\demos\pc\windows\visual_studio\aws_demos.sln
and choose Open.

16



Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

2. From the Build menu, choose Build Solution, and make sure the solution builds without errors or
warnings.

Configure Your Project

Configure Your Network Interface

1. Run the project in Visual Studio. The program will enumerate your network interfaces. Find the
number for your hard-wired Ethernet interface. The output should look like this:

0 0 [None] FreeRTOS_IPInit
1 0 [None] vTaskStartScheduler
1. rpcap://\Device\NPF_{AD01B877-A0C1-4F33-8256-EE1F4480B70D}
(Network adapter 'Intel(R) Ethernet Connection (4) I219-LM' on local host)
  
2. rpcap://\Device\NPF_{337F7AF9-2520-4667-8EFF-2B575A98B580}
(Network adapter 'Microsoft' on local host)
  
The interface that will be opened is set by "configNETWORK_INTERFACE_TO_USE" which
 should be defined in FreeRTOSConfig.h Attempting to open interface number 1.
     

You may see output in the debugger that says Cannot find or open the PDB file. These messages
can be ignored.

You can close the application window after you have identified the number for your hard-wired
Ethernet interface.

2. Open AmazonFreeRTOS\demos\pc\windows\common\config_files\FreeRTOSConfig.h
and set configNETWORK_INTERFACE_TO_USE to the number that corresponds to your hard-wired
network interface.

Configure Your AWS IoT Endpoint

You must specify a custom AWS IoT endpoint in order for the FreeRTOS sample code to connect to AWS
IoT.

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

3. Copy your custom AWS IoT endpoint from the Endpoint text box. It should look like
<c3p0r2d2a1b2c3>.iot.<us-east-1>.amazonaws.com.

4. Inside Visual Studio, open aws_demos/application_code/common_demos/include/
aws_clientcredential.h and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS
IoT endpoint.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS simulator code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

17

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h and save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file that is in the directory.

Run the FreeRTOS Samples
1. Rebuild your Visual Studio project to pick up changes made in the header files.

2. Sign in to the AWS IoT console.

3. In the left navigation pane, choose Test to open the MQTT client.

4. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to
topic.

5. From the Debug menu in Visual Studio, choose Start Debugging.

Output like the following should be displayed in the output window for the aws_demo application.

0 0 [None] FreeRTOS_IPInit
1 0 [None] vTaskStartScheduler
      
      
The following network interfaces are available:
      
Interface 1 - rpcap://\Device\NPF_{FD3E22FF-2E53-4791-8522-AD889B6ABF1F}
(Network adapter 'Intel(R) Ethernet Connection (3) I218-LM' on local host)
      
Interface 2 - rpcap://\Device\NPF_{260D089E-CECC-43A7-8FC3-021FA7D17903}
(Network adapter 'Microsoft' on local host)
      
      
The interface that will be opened is set by "configNETWORK_INTERFACE_TO_USE", which
should be defined in FreeRTOSConfig.h
Attempting to open interface number 1.
2 92 [IP-task] vDHCPProcess: offer 10.0.0.189
3 152 [IP-task] vDHCPProcess: offer 10.0.0.189
4 152 [IP-task] Creating MQTT Echo Task...
5 152 [IP-task]
      
IP Address: 10.0.0.189
6 152 [IP-task] Subnet Mask: 255.255.255.0
7 152 [IP-task] Gateway Address: 10.0.0.1
8 152 [IP-task] DNS Server Address: 75.75.75.75
      
      
9 152 [MQTT] Blocking on queue with timeout set to 0.
10 152 [MQTT] Timed out on queue read.
11 152 [MQTT] Blocking on queue with timeout set to ffffffff.
12 153 [MQTTEcho] MQTT echo attempting to connect to 12345678901234.iot.us-
west-2.amazonaws.com.
13 153 [MQTTEcho] Sending command to MQTT task.
14 153 [MQTT] Received message 10000 from queue.
15 212 [IP-task] Socket sending wakeup to MQTT task.
16 492 [MQTT] Blocking on queue with timeout set to 2ee0.
17 492 [MQTT] Received message 0 from queue.
18 492 [MQTT] Blocking on queue with timeout set to 2ee0.
19 552 [IP-task] Socket sending wakeup to MQTT task.
20 552 [MQTT] Received message 0 from queue.

18

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

21 552 [MQTT] MQTT Connect was accepted. Connection established.
22 552 [MQTT] Notifying task.
23 552 [MQTT] Blocking on queue with timeout set to 493e0.
24 552 [MQTTEcho] Command sent to MQTT task passed.
25 552 [MQTTEcho] MQTT echo connected.
26 552 [MQTTEcho] MQTT echo test echoing task created.
27 552 [MQTTEcho] Sending command to MQTT task.
28 552 [MQTT] Received message 20000 from queue.
29 552 [MQTT] Blocking on queue with timeout set to 12c.
30 612 [IP-task] Socket sending wakeup to MQTT task.
31 612 [MQTT] Received message 0 from queue.
32 612 [MQTT] MQTT Subscribe was accepted. Subscribed.
33 612 [MQTT] Notifying task.
34 612 [MQTT] Blocking on queue with timeout set to 493a4.
35 612 [MQTTEcho] Command sent to MQTT task passed.
36 612 [MQTTEcho] MQTT Echo demo subscribed to freertos/demos/echo
37 612 [MQTTEcho] Sending command to MQTT task.
38 612 [MQTT] Received message 30000 from queue.
39 612 [MQTT] Blocking on queue with timeout set to 12c.
40 672 [IP-task] Socket sending wakeup to MQTT task.
41 672 [MQTT] Received message 0 from queue.
42 672 [MQTT] MQTT Publish was successful.
43 672 [MQTT] Notifying task.
44 672 [MQTT] Blocking on queue with timeout set to 493e0.
45 672 [MQTTEcho] Command sent to MQTT task passed.
46 672 [MQTTEcho] Echo successfully published 'Hello World 0'
47 672 [Echoing] Sending command to MQTT task.
48 672 [MQTT] Received message 40000 from queue.
49 672 [MQTT] Blocking on queue with timeout set to 12c.
50 712 [IP-task] Socket sending wakeup to MQTT task.
51 712 [MQTT] Received message 0 from queue.
52 712 [MQTT] MQTT Publish was successful.
53 712 [MQTT] Notifying task.
54 712 [MQTT] Blocking on queue with timeout set to 493e0.
55 712 [Echoing] Command sent to MQTT task passed.
56 712 [Echoing] Message returned with ACK: 'Hello World 0 ACK'

The sample sends 11 Hello World messages and then displays the following messages to indicate the
sample has completed successfully:

350 61473 [MQTTEcho] Command sent to MQTT task passed.
351 61473 [MQTTEcho] MQTT echo demo finished.

In the AWS IoT console, the MQTT client displays the messages received from the FreeRTOS Windows
simulator.

19

https://console.aws.amazon.com/iotv2/


Amazon FreeRTOS User Guide
Navigating the Example Project

Next Steps
This section describes the structure of the Amazon FreeRTOS download package and how to work with
the thing shadow and Greengrass demos. If you haven't already, we recommend that you first read the
Getting Started Guide (p. 3).

Topics
• Navigating the Example Project (p. 20)
• Thing Shadow Demo (p. 21)
• Greengrass Discovery Demo (p. 22)

Navigating the Example Project
Directory and File Organization
There are two subfolders in the main Amazon FreeRTOS directory:

• demos
• lib

The demos directory contains example code that can be run on an Amazon FreeRTOS device to
demonstrate Amazon FreeRTOS functionality. There is one subdirectory for each target platform
selected. These subdirectories contain code used by the demos, but not all demos can be run
independently. If you use the Amazon FreeRTOS console, only the target platform you choose has its
own subdirectory under demos.

The function DEMO_RUNNER_RunDemos() located in AmazonFreeRTOS\demos\common
\demo_runner\aws_demo_runner.c contains code that calls each example. By default, only the
vStartpubsubDemotasks() function is called. All others are commented. Although you can change
the selection of demos here, be aware that not all combinations of examples work together. Depending
on the combination, the software might not be able to be executed on the selected target due to
memory constraints. All the examples that can be executed by Amazon FreeRTOS can be found in the
common directory under demos.

The lib directory contains the source code of the Amazon FreeRTOS libraries. The libraries that are
available to you as part of Amazon FreeRTOS include:

• MQTT
• Thing shadow
• Greengrass
• Wi-Fi

There are helper functionsthat assist in implementing the library functionality. We do not recommend
that you change these helper functions. If you need to change one of these libraries, make sure it
conforms to the library interface defined in the libs/include directory.

Configuration Files
The demos have been configured to get you started quickly. You might want to change some of the
configurations for your project in order to create a version that runs on your platform. You can find

20

https://console.aws.amazon.com/freertos


Amazon FreeRTOS User Guide
Thing Shadow Demo

configuration files for a given platform vendor at AmazonFreeRTOS/<vendor>/<platform>/common/
config_files.

The configuration files include:

aws_bufferpool.h

Configures the size and quantity of static buffers available for use by the application.
aws_clientcredential_keys.h

Configures your device certificate and private key.
aws_demo_config.h

Configures the task parameters used in the demos: stack size, priorities, and so on.
aws_ggd_config.h

Configures the parameters used to configure a Greengrass core, such as network interface IDs.
aws_mqtt_agent_config.h

Configures the parameters related to MQTT operations, such as task priorities, MQTT brokers, and
keep-alive counts.

aws_mqtt_library.h

Configures MQTT library parameters, such as the subscription length and the maximum number of
subscriptions.

aws_secure_sockets_config.h

Configures the timeouts and the byte ordering when using secure sockets.
aws_shadow_configure.h

Configures the parameters used for an AWS IoT shadow, such as the number of JSMN tokens used
when parsing a JSON file received from a shadow.

aws_clientcredential.h

Configures parameters including the Wi-Fi (SSID, password, and security type), the MQTT broker
endpoint, and IoT thing name.

FreeRTOSConfig.h

Configures the FreeRTOS kernel for multitasking operations.

Thing Shadow Demo
The thing shadow example demonstrates how to programmatically update and respond to changes in
a thing shadow. The device in this scenario is a light bulb whose color can be set to red or green. The
thing shadow example app is located in the AmazonFreeRTOS/demos/common/shadow directory. This
example creates three tasks:

1. A main demo task that calls prvShadowMainTask.
2. A device update task that calls prvUpdateTask.
3. A number of shadow update tasks that call prvShadowUpdateTasks.

prvShadowMainTask initializes the thing shadow client and initiates an MQTT connection to AWS IoT.
It then creates the device update task. Finally, it creates shadow update tasks and then terminates. The

21



Amazon FreeRTOS User Guide
Greengrass Discovery Demo

number of shadow update tasks created is controlled by the democonfigSHADOW_DEMO_NUM_TASKS
constant defined in AmazonFreeRTOS/demos/common/shadow/aws_shadow_lightbulb_on_off.c.

prvShadowUpdateTasks generates an initial thing shadow document and updates the thing shadow
with the document. It then goes into an infinite loop that periodically updates the thing shadow's desired
state, requesting the light bulb change its color (red -> green -> red).

prvUpdateTask responds to changes in the thing shadow's desired state. When the thing shadow's
desired state changes, this task updates the thing shadow's reported state to reflect the thing shadow's
new desired state.

1. Add the following policy to your device certificate:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "iot:Connect",
      "Resource": "arn:aws:iot:us-west-2:123456789012:client/<yourClientId>"
    },
    {
      "Effect": "Allow",
      "Action": "iot:Subscribe",
      "Resource": "arn:aws:iot:us-west-2:123456789012:topicfilter/$aws/things/
thingName/shadow/#"
    },
    {
      "Effect": "Allow",
      "Action": "iot:Receive",
      "Resource": "arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/
shadow/update/delta"
    },
    {
      "Effect": "Allow",
      "Action": "iot:Publish",
      "Resource": "arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/
shadow/update"
    }
  ]
}

2. Uncomment the declaration of and call to vStartShadowDemoTasks in aws_demo_runner.c.
This function creates a task that runs the prvShadowMainTask function.

You can use the AWS IoT console to view your thing's shadow and confirm that its desired and reported
states change periodically.

1. In the AWS IoT console, from the left navigation pane, choose Manage.
2. Under Manage, choose Things, and then choose the thing whose shadow you want to view.
3. On the thing detail page, from the left navigation pane, choose Shadow to display the thing shadow.

For more information about how devices and thing shadows interact, see Thing Shadows Data Flow.

Greengrass Discovery Demo
Before running the FreeRTOS Greengrass discovery demo, you must create a Greengrass group and add a
Greengrass core. For more information, see Getting Started with AWS Greengrass.

22

http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-data-flow.html
http://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html


Amazon FreeRTOS User Guide
Greengrass Discovery Demo

After you have a core running the Greengrass software, create an AWS IoT thing, certificate. and policy
for your Amazon FreeRTOS device. For more information, see Create Your AWS IoT Credentials (p. 3).

After you have created an IoT thing for your Amazon FreeRTOS device, follow the instructions for setting
up your environment and building Amazon FreeRTOS on one of the supported devices:

Note
Use the Getting Started instructions, but instead of downloading one of the predefined Connect
to AWS IoT- XX configurations (where XX is TI, ST, or Windows), download one of the Connect
to AWS Greengrass - XX configurations (where XX is TI, ST, or Windows). Be sure to follow the
steps in the "Configure Your Project" sections. Return to this topic after you have built Amazon
FreeRTOS for your device.

• Getting Started with the Texas Instruments (TI) CC3220SF-LAUNCHXL (p. 5)
• Getting Started with the STMicroelectronics (ST) STM32L4 Discovery kit IoT node (p. 8)
• Getting Started with the NXP LPC54018 IoT Module (p. 11)
• Getting Started with the FreeRTOS Windows Simulator (p. 15)

At this point, you have downloaded the Amazon FreeRTOS software, imported it into your IDE, and built
the project without errors. The project is already configured to run the Greengrass Connectivity demo.
In the AWS IoT console, choose Test and then add a subscription to freertos/demos/ggd. The demo
publishes a series of messages to the Greengrass core. The messages are also published to AWS IoT,
where they are received by the AWS IoT MQTT client.

In the MQTT client, you should see the following strings:

Message from Thing to Greengrass Core: Hello world msg #1!
Message from Thing to Greengrass Core: Hello world msg #0!
Message from Thing to Greengrass Core: Address of Greengrass Core
 found! <123456789012>.<us-west-2>.compute.amazonaws.com

23



Amazon FreeRTOS User Guide
Amazon FreeRTOS Architecture

Amazon FreeRTOS Developer Guide
This section contains information required for writing embedded applications with Amazon FreeRTOS.

Topics
• Amazon FreeRTOS Architecture (p. 24)
• FreeRTOS Kernel Fundamentals (p. 1)
• FreeRTOS Libraries (p. 1)
• Amazon FreeRTOS Console User Guide (p. 38)
• Downloading Amazon FreeRTOS from GitHub (p. 38)
• Amazon FreeRTOS Qualification Program (p. 38)
• Supported Platforms (p. 40)

Amazon FreeRTOS Architecture
Amazon FreeRTOS is intended for use on embedded microcontrollers, and is typically flashed to devices
as a single compiled image with all the relevant components required for the device application. This
image will combine functionality for the application written by the embedded developer, software
libraries provided by Amazon, the FreeRTOS kernel, and relevant drivers and BSP (board support
packages) for the hardware platform. Independent of the individual microcontroller being used,
embedded application developers can expect the same standardized interfaces to the FreeRTOS kernel
and all Amazon FreeRTOS software libraries.

24



Amazon FreeRTOS User Guide
FreeRTOS Kernel Fundamentals

FreeRTOS Kernel Fundamentals
The FreeRTOS kernel is a real-time operating system that supports numerous architectures and is ideal
for building embedded microcontroller applications. It provides:

• A multitasking scheduler.
• Multiple memory allocation options (including the ability to create completely statically allocated

systems).
• Inter-task coordination primitives, including task notifications, message queues, multiple types of

semaphore, and stream and message buffers.

The FreeRTOS kernel never performs non-deterministic operations, such as walking a linked list, inside
a critical section or interrupt. The FreeRTOS kernel includes an efficient software timer implementation
that does not use any CPU time unless a timer actually needs servicing. Blocked tasks do not require
time-consuming periodic servicing. Direct-to-task notifications allow fast task signaling, with practically
no RAM overhead, and can be used in the majority of inter-task and interrupt-to-task signaling scenarios.

The FreeRTOS kernel is designed to be small, simple, and easy to use. A typical RTOS kernel binary image
is in the range of 4000 to 9000 bytes.

FreeRTOS Kernel Scheduler
An embedded application that uses an RTOS can be structured as a set of independent tasks. Each task
executeswithin its own context with no dependency on other tasks. Only one task within the application
is running at any point in time. The real-time RTOS scheduler determines when each task should run.
Each task is provided with its own stack. When a task is swapped out so another task can run, the task’s
execution context is saved to the task stack so it can be restored when the same task is later swapped
back in to resume its execution.

To provide deterministic real-time behavior, the FreeRTOS tasks scheduler allows tasks to be assigned
strict priorities. RTOS ensures the highest priority task that is able to execute is given processing
time. This require sharing processing time between tasks of equal priority if they are ready to run
simultaneously. FreeRTOS also creates an idle task that executes only when no other tasks are ready to
run.

Memory Management

Kernel Memory Allocation
The RTOS kernel needs RAM each time a task, queue, or other RTOS object is created. The RAM can be
allocated:

• Statically at compile time.
• Dynamically from the RTOS heap by the RTOS API object creation functions.

When RTOS objects are created dynamically, using the standard C library malloc() and free()
functions is not always appropriate for a number of reasons:

• They might not be available on embedded systems.
• They take up valuable code space.
• They are not typically thread-safe.
• They are not deterministic.

25



Amazon FreeRTOS User Guide
Inter-task Coordination

For these reasons, FreeRTOS keeps the memory allocation API in its portable layer. The portable layer is
outside of the source files that implement the core RTOS functionality, which allows you to provide an
application-specific implementation appropriate for the real-time system being developed. When the
RTOS kernel requires RAM, it calls pvPortMalloc() instead of malloc()(). When RAM is being freed,
the RTOS kernel calls vPortFree() instead of free().

Application Memory Management
When applications need memory, they can allocate it from the FreeRTOS heap. FreeRTOS offers several
heap management schemes that range in complexity and features. You can also provide your own heap
implementation.

The FreeRTOS kernel includes five heap implementations:

heap_1

The simplest implementation. Does not permit memory to be freed.
heap_2

Permits memory to be freed, but not does coalescence adjacent free blocks.
heap_3

Wraps the standard >malloc() and free() for thread safety.
heap_4

Coalesces adjacent free blocks to avoid fragmentation. Includes an absolute address placement
option.

heap_5

Similar to heap_4. Can span the heap across multiple, non-adjacent memory areas.

Inter-task Coordination

Queues
Queues are the primary form of inter-task communication. They can be used to send messages between
tasks and between interrupts and tasks. In most cases, they are used as thread-safe FIFO (First In First
Out) buffers with new data being sent to the back of the queue. (Data can also be sent to the front of the
queue.) Messages are sent through queues by copy, meaning the data (which can be a pointer to larger
buffers) is itself copied into the queue rather than simply storing a reference to the data.

Queue APIs permit a block time to be specified. When a task attempts to read from an empty queue, the
task is placed into the Blocked state until data becomes available on the queue or the block time elapses.
Tasks in the Blocked state do not consume any CPU time, allowing other tasks to run. Similarly, when
a task attempts to write to a full queue, the task is placed into the Blocked state until space becomes
available in the queue or the block time elapses. If more than one task blocks on the same queue, the
task with the highest priority is unblocked first.

Other FreeRTOS primitives, such as direct-to-task notifications and stream and message buffers, offer
lightweight alternatives to queues in many common design scenarios.

Semaphores and Mutexes
The FreeRTOS kernel provides binary semaphores, counting semaphores, and mutexes for both mutual
exclusion and synchronization purposes.

26



Amazon FreeRTOS User Guide
Inter-task Coordination

Binary semaphores can only have two values. They are a good choice for implementing synchronization
(either between tasks or between tasks and an interrupt). Counting semaphores take more than two
values. They allow many tasks to share resources or perform more complex synchronization operations.

Mutexes are binary semaphores that include a priority inheritance mechanism. This means that if a high
priority task blocks while attempting to obtain a mutex that is currently held by a lower priority task, the
priority of the task holding the token is temporarily raised to that of the blocking task. This mechanism is
designed to ensure the higher priority task is kept in the Blocked state for the shortest time possible, to
minimize the priority inversion that has occurred.

Direct-to-Task Notifications
Task notifications allow tasks to interact with other tasks, and to synchronize with interrupt service
routines (ISRs), without the need for a separate communication object like a semaphore. Each RTOS task
has a 32-bit notification value that is used to store the content of the notification, if any. An RTOS task
notification is an event sent directly to a task that can unblock the receiving task and optionally update
the receiving task's notification value.

RTOS task notifications can be used as a faster and lightweight alternative to binary and counting
semaphores and, in some cases, queues. Task notifications have both speed and RAM footprint
advantages over other FreeRTOS features that can be used to perform equivalent functionality. However,
task notifications can only be used when there is only one task that can be the recipient of the event.

Stream Buffers
Stream buffers allow a stream of bytes to be passed from an interrupt service routine to a task, or from
one task to another. A byte stream can be of arbitrary length and does not necessarily have a beginning
or an end. Any number of bytes can be written at one time, and any number of bytes can be read at
one time. Stream buffer functionality is enabled by including the <BASE_DIR>/libs/FreeRTOS/
stream_buffer.c source file in your project.

Stream buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The stream buffer implementation uses direct to task notifications. Therefore, calling a stream buffer
API that places the calling task into the blocked state can change the calling task's notification state and
value.

Sending Data

xStreamBufferSend() is used to send data to a stream buffer in a task.
xStreamBufferSendFromISR() is used to send data to a stream buffer in an interrupt service routine
(ISR).

xStreamBufferSend() allows a block time to be specified. If xStreamBufferSend() is called with
a non-zero block time to write to a stream buffer and the buffer is full, the task will be placed into the
blocked state until either space becomes available, or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally by
the FreeRTOS API) when data is written to a stream buffer. It takes the handle of the stream buffer that
was updated. Both of these macros check to see if there is a task blocked on the stream buffer waiting
for data, and if so, removes the task from the blocked state.

You can change this default behaviour by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h. This is useful when a stream buffer is used to pass data between cores
on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to
generate an interrupt in the other CPU core, and the interrupt's service routine can then use the

27



Amazon FreeRTOS User Guide
Inter-task Coordination

xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, a task that is
waiting for the data.

Receiving Data

xStreamBufferReceive() is used to read data from a stream buffer in a task.
xStreamBufferReceiveFromISR() is used to read data from a stream buffer in an interrupt service
routine (ISR).

xStreamBufferReceive() allows a block time to be specified. If xStreamBufferReceive() is called
with a non-zero block time to read from a stream buffer and the buffer is empty, the task will be placed
into the blocked state until either a specified amount of data becomes available in the stream buffer, or
the block time expires.

The amount of data that must be in the stream buffer before a task is unblocked is called the stream
buffer's trigger level. A task blocked with a trigger level of 10 will be unblocked when at least 10
bytes are written to the buffer or the task's block time expires. If a reading task's block time expires
before the trigger level is reached, the task will receive any data written to the buffer. The trigger
level of a task must be set to a value between 1 and the size of the stream buffer. The trigger level
of a stream buffer is set when xStreamBufferCreate() is called. It can be changed by calling
xStreamBufferSetTriggerLevel().

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are called
(internally by the FreeRTOS API) when data is read from a stream buffer. The macros check to see
if there is a task blocked on the stream buffer waiting for space to become available within the
buffer, and if so, removes the task from the blocked state. You can change the default behaviour of
sbRECEIVE_COMPLETED() by providing an alternative implementation in FreeRTOSConfig.h.

Message Buffers
Message buffers allow variable length discrete messages to be passed from an interrupt service
routine to a task, or from one task to another. For example, messages of length 10, 20 and 123
bytes can all be written to, and read from, the same message buffer. A 10 byte message can only
be read as a 10 byte message, not as individual bytes. Message buffers are built on top of stream
buffer implementation. Message buffer functionality is enabled by including the <BASE_DIR>/libs/
FreeRTOS/stream_buffer.c source file in your project.

Message buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The message buffer implementation uses direct to task notifications. Therefore, calling a stream buffer
API that places the calling task into the blocked state can change the calling task's notification state and
value.

To enable message buffers to handle variable sized messages the length of each message is written into
the message buffer before the message itself. The length is stored in a variable of type size_t, which is
typically 4 bytes on a 32 byte architecture. Therefore, writing a 10 byte message into a message buffer
will actually consume 14 bytes of buffer space. Likewise, writing a 100 byte message into a message
buffer will actually use 104 bytes of buffer space.

Sending Data

xMessageBufferSend() is used to send data to a message buffer from a task.
xMessageBufferSendFromISR() is used to send data to a message buffer from an interrupt service
routine (ISR).

xMessageBufferSend() allows a block time to be specified. If xMessageBufferSend() is called with
a non-zero block time to write to a message buffer and the buffer is full, the task will be placed into the
blocked state until either space becomes available in the message buffer, or the block time expires.

28



Amazon FreeRTOS User Guide
Software Timers

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally
by the FreeRTOS API) when data is written to a stream buffer. It takes a single parameter, which is
the handle of the stream buffer that was updated. Both of these macros check to see if there is a task
blocked on the stream buffer waiting for data, and if so, removes the task from the blocked state.

You can change this default behaviour by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h. This is useful when a stream buffer is used to pass data between cores
on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to
generate an interrupt in the other CPU core, and the interrupt's service routine can then use the
xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, a task that was
waiting for the data.

Receiving Data

xMessageBufferReceive() is used to read data from a message buffer in a task.
xMessageBufferReceiveFromISR() is used to read data from a message buffer in an interrupt
service routine (ISR). xMessageBufferReceive() allows a block time to be specified. If
xMessageBufferReceive() is called with a non-zero block time to read from a message buffer and
the buffer is empty, the task will be placed into the blocked state until either data becomes available, or
the block time expires.

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are called
(internally by the FreeRTOS API) when data is read from a stream buffer. The macros check to see
if there is a task blocked on the stream buffer waiting for space to become available within the
buffer, and if so, removes the task from the blocked state. You can change the default behaviour of
sbRECEIVE_COMPLETED() by providing an alternative implementation in FreeRTOSConfig.h.

Software Timers
A software timer allows a function to be executed at a set time in the future. The function executed by
the timer is called the timer’s callback function. The time between a timer being started and its callback
function being executed is called the timer’s period. The FreeRTOS kernel provides an efficient software
timer implementation:

• It does not execute timer callback functions from an interrupt context.

• It does not consume any processing time unless a timer has actually expired.

• It does not add any processing overhead to the tick interrupt.

• It does not walk any link list structures while interrupts are disabled.

Low Power Support
Like most embedded operating systems, the FreeRTOS kernel users a hardware timer to generate
periodic tick interrupts, which are used to measure time. The power saving of regular hardware timer
implementations is limited by the necessity to periodically exit and then re-enter the low power state to
process tick interrupts. If the frequency of the tick interrupt is too high, the energy and time consumed
entering and exiting a low power state for every tick outweighs any potential power saving gains for all
but the lightest power saving modes.

To address this limitation, FreeRTOS includes a tickless timer mode for low-power applications. The
FreeRTOS tickless idle mode stops the periodic tick interrupt during idle periods (periods when there are
no application tasks that are able to execute), and then makes a correcting adjustment to the RTOS tick
count value when the tick interrupt is restarted. Stopping the tick interrupt allows the microcontroller to
remain in a deep power saving state until either an interrupt occurs, or it is time for the RTOS kernel to
transition a task into the ready state.

29



Amazon FreeRTOS User Guide
FreeRTOS Libraries

FreeRTOS Libraries
This section describes how to use the Amazon FreeRTOS libraries when writing embedded applications.

Topics
• Cloud Connectivity (p. 30)
• Greengrass Connectivity (p. 32)
• Amazon FreeRTOS Security (p. 34)
• FreeRTOS Wi-Fi Interface (p. 36)

Cloud Connectivity
Topics

• MQTT (p. 30)
• Thing Shadows (p. 31)

MQTT
The MQTT agent implements the MQTT protocol, which is a lightweight protocol designed for
constrained devices. The MQTT agent runs in a separate FreeRTOS task and automatically sends
regular keep-alive messages, as documented by the MQTT protocol specification. All the MQTT APIs are
blocking and take a timeout parameter, which is the maximum amount of time the API waits for the
corresponding operation to complete. If the operation does not complete in the provided time, the API
returns timeout error code.

Callback

You can specify an optional callback which is invoked whenever the MQTT agent is disconnected
from the broker or whenever a publish message is received from the broker. The received publish
message is stored in a buffer taken from the central buffer pool. This message is passed to the
callback. This callback runs in the context of the MQTT task and therefore must be quick. If you
need to do longer processing, you must take the ownership of the buffer by returning pdTRUE from
the callback. You must then return the buffer back to the pool whenever you are done by calling
FreeRTOS_Agent_ReturnBuffer.

Subscription Management

Subscription management enables you to register a callback per subscription filter. You supply this
callback while subscribing. It is invoked whenever a publish message received on a topic matches the
subscribed topic filter. The buffer ownership works the same way as described in the case of generic
callback.

MQTT Task Wakeup

MQTT task wakeup wakes up whenever the user calls an API to perform any operation or whenever
a publish message is received from the broker. This asynchronous wakeup upon receipt of a publish
message is possible on platforms that are capable of informing the host MCU about the data received
on a connected socket. Platforms that do not have this capability require the MQTT task to continuously
poll for the received data on the connected socket. To ensure the delay between receiving a publish
message and invoking the callback is minimal, the mqttconfigMQTT_TASK_MAX_BLOCK_TICKS
macro controls the maximum time an MQTT task can remain blocked. This value must be short for the
platforms that lack the capability to inform the host MCU about received data on a connected socket.

30



Amazon FreeRTOS User Guide
Cloud Connectivity

Major Configurations

You can use these configuration options to customize the MQTT agent’s behavior:

• mqttconfigKEEP_ALIVE_ACTUAL_INTERVAL_TICKS: The frequency of the keep-alive messages
sent.

• mqttconfigENABLE_SUBSCRIPTION_MANAGEMENT: Enable subscription management.
• mqttconfigMAX_BROKERS: Maximum number of simultaneous MQTT clients.
• mqttconfigMQTT_TASK_STACK_DEPTH: The task stack depth.
• mqttconfigMQTT_TASK_PRIORITY: The priority of the MQTT task.
• mqttconfigRX_BUFFER_SIZE: Length of the buffer used to receive data.

Thing Shadows
The Amazon FreeRTOS API provides functions to create, delete, and update a thing shadow. For more
information, see Thing Shadows. Thing shadows are accessed using the MQTT protocol. The FreeRTOS
thing shadow API works with the MQTT API and handles the details of working with the MQTT protocol.

The Amazon FreeRTOS shadow APIs define functions to create, update, and delete thing shadows.

Prerequisites

You need to create a thing in AWS IoT, including a certificate and policy. For more information, see AWS
IoT Getting Started. You must set values for the following constants in the AmazonFreeRTOS/demos/
common/include/aws_client_credentials.hfile:

clientcredentialMQTT_BROKER_ENDPOINT

Your AWS IoT endpoint.
clientcredentialIOT_THING_NAME

The name of your IoT thing.
clientcredentialWIFI_SSID

The SSID of your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of Wi-Fi security used by your network.
clientcredentialCLIENT_CERTIFICATE_PEM

The certificate PEM associated with your IoT thing. For more information, see Configure Your AWS
IoT Credentials (p. 7)

clientcredentialCLIENT_PRIVATE_KEY_PEM

The private key PEM associated with your IoT thing. For more information, see Configure Your AWS
IoT Credentials (p. 7)

•

Make sure the Amazon FreeRTOS MQTT library is installed on your device. For more information about
the MQTT library, see MQTT (p. 30). Make sure that the MQTT buffers are large enough to contain

31

http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html


Amazon FreeRTOS User Guide
Greengrass Connectivity

the shadow JSON files. The maximum size for a thing shadow document is 8 KB. All default settings for
the thing shadow API can be set in the lib\include\private\aws_shadow_config_defaults.h
file. You can modify any of these settings in the demos/<platform>/common/config_files/
aws_shadow_config.h file.

You must have an IoT thing registered with AWS IoT, including a certificate with a policy that permits
accessing the thing shadow. For more information, see AWS IoT Getting Started.

Using the Thing Shadow APIs

1. Use the SHADOW_ClientCreate API to create a shadow client. For most applications, the only field
to fill is xCreateParams.xMQTTClientType = eDedicatedMQTTClient.

2. Establish an MQTT connection by calling the SHADOW_ClientConnect API, passing the client handle
returned by SHADOW_ClientCreate.

3. Call the SHADOW_RegisterCallbacks API to configure callbacks for shadow update, get, and delete.

After a connection is established, you can use the following APIs to work with the thing shadow:

SHADOW_Delete

Delete the thing shadow.
SHADOW_Get

Get the current thing shadow.
SHADOW_Update

Update the thing shadow.

Note
When you are done working with the thing shadow, call SHADOW_ClientDisconnect to
disconnect the shadow client and free system resources.

Greengrass Connectivity
The Greengrass Discovery API is used by your microcontroller devices to discover a Greengrass core on
your network. Your device can send messages to a Greengrass core after it finds the core's endpoint.

Prerequisites
To use the Greengrass Discovery API, you must create a thing in AWS IoT, including a certificate and
policy. For more information, see AWS IoT Getting Started. You must set values for the following
constants in the AmazonFreeRTOS\demos\common\include\aws_client_credentials.h` file:

clientcredentialMQTT_BROKER_ENDPOINT

Your AWS IoT endpoint.
clientcredentialIOT_THING_NAME

The name of your IoT thing.
clientcredentialWIFI_SSID

The SSID for your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.

32

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html


Amazon FreeRTOS User Guide
Greengrass Connectivity

clientcredentialWIFI_SECURITY

The type of security used by your Wi-Fi network.
clientcredentialCLIENT_CERTIFICATE_PEM

The certificate PEM associated with your thing.
clientcredentialCLIENT_PRIVATE_KEY_PEM

The private key PEM associated with your thing.

A Greengrass group and core device must be set up in the console. For more information, see Getting
Started with AWS Greengrass.

Although the MQTT library is not required for Greengrass connectivity, we strongly recommend you
install it because it can be used to communicate with the Greengrass core after it has been discovered.

Greengrass Workflow
The MCU device initiates the discovery process by requesting from AWS IoT a JSON file that contains
the Greengrass core connectivity parameters. There are two methods for retrieving the Greengrass
core connectivity parameters from the JSON file: automatic selection and manual selection. Automatic
selection iterates through all the Greengrass cores listed in the JSON file and connects to the first one
available. Manual selection uses the information in aws_ggd_config.h to connect to the specified
Greengrass core.

How to Use the Greengrass API
All default configuration options for the Greengrass API are defined in lib\include\private
\aws_ggd_config_defaults.h. You can override any of these settings in lib\include\.

If only one Greengrass core is present, call GGD_GetGGCIPandCertificate to request the JSON file
with Greengrass core connectivity information. When GGD_GetGGCIPandCertificate returns, the
pcBuffer parameter contains the text of the JSON file. The pxHostAddressData parameter contains
the IP address and port of the Greengrass core to which you can connect.

For more customization options, like dynamically allocating certificates, you must call the following APIs:

GGD_JSONRequestStart

Makes an HTTP GET request to AWS IoT to initiate the discovery request to discover a Greengrass
core. GD_SecureConnect_Send is used to send the request to AWS IoT.

GGD_JSONRequestGetSize

Gets the size of the JSON file from the HTTP response.
GGD_JSONRequestGetFile

Gets the JSON object string. These last two functions use GGD_SecureConnect_Read to
get the JSON data from the socket. GGD_JSONRequestStart, GGD_SecureConnect_Send,
GGD_JSONRequestGetSize must be called in order to successfully receive the JSON data from
AWS IoT.

GGD_GetIPandCertificateFromJSON

Extracts the IP address and the Greengrass core certificate from the JSON data. You can turn on
automatic selection by setting the xAutoSelectFlag to True. Automatic selection finds the
first core device to which your FreeRTOS device can connect. To connect to a Greengrass core, call
the GGD_SecureConnect_Connect function, passing in the core device’s IP address, port, and
certificate. To use manual selection, set the following fields of the HostParameters_t parameter:

33

http://docs.aws.amazon.com/greengrass/latest/developerguide/
http://docs.aws.amazon.com/greengrass/latest/developerguide/


Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

pcGroupName

The ID of the Greengrass group to which the core belongs. You can use the aws greengrasss
list-groups CLI command to find the ID of your Greengrass groups.

pcCoreAddress

The ARN of the Greengrass core to which you are connecting.

Amazon FreeRTOS Security
The Amazon FreeRTOS security API allows you to create embedded applications that communicate
securely. The information in this section is intended to complement the API documentation.

Secure Sockets
The Secure Sockets interface is based on the Berkeley socket interface. It is provided for the easy
onboarding of software developers from a variety of network programming backgrounds. The
reference implementation for Secure Sockets supports TLS and TCP/IP over Ethernet and Wi-Fi. See
aws_secure_sockets.h in the Amazon FreeRTOS source code repository.

Transport Layer Security
The Transport Layer Security (TLS) interface is a thin, optional wrapper used to abstract cryptographic
implementation details away from the Secure Sockets interface that sits above it in the protocol stack.
The purpose of the TLS interface is to make the current software crypto library, mbed TLS, easy to
replace with an alternative implementation for TLS protocol negotiation and cryptographic primitives.
The TLS library can be swapped out without any changes required to the Secure Sockets interface. See
aws_tls.h in the Amazon FreeRTOS source code repository.

The TLS library is optional because you can choose to interface directly from Secure Sockets into a
crypto library. The Amazon FreeRTOS library is not used for MCU solutions that include a full-stack
offload implementation of TLS and network transport.

Public Key Cryptography Standard #11
Public Key Cryptography Standard #11 (PKCS#11) is a cryptographic API that abstracts key storage,
get/set properties for cryptographic objects, and session semantics. Please see pkcs11.h (obtained
from OASIS, the standard body) in the Amazon FreeRTOS source code repository. In the Amazon
FreeRTOS reference implementation, PKCS#11 API calls are made by the TLS helper interface in order
to perform TLS client authentication during SOCKETS_Connect. PKCS#11 API calls are also made by
our one-time developer provisioning work flow in order to import a TLS client certificate and private
key for authentication to the AWS IoT MQTT broker. Those two use cases, provisioning and TLS client
authentication, require only a small subset of the PKCS#11 interface standard to be implemented.

The following subset of PKCS#11 is used. This list is in roughly the order that the routines are called
in support of provisioning, TLS client authentication, and clean-up. For detailed descriptions of the
functions, please consult the PKCS#11 documentation provided by the standard committee.

Provisioning API

• C_GetFunctionList

• C_Initialize

• C_CreateObject CKO_PRIVATE_KEY

• C_CreateObject CKO_CERTIFICATE pkcs11CERTIFICATE_TYPE_USER

• C_CreateObject CKO_CERTIFICATE pkcs11CERTIFICATE_TYPE_ROOT

34



Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

• C_DestroyObject

Client Authentication

• C_Initialize

• C_GetSlotList

• C_OpenSession

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_GenerateRandom

• C_SignInit

• C_Sign

Clean-up

• C_CloseSession

• C_Finalize

Asymmetric Cryptosystem Support

The Amazon FreeRTOS PKCS#11 reference implementation supports 2048-bit RSA (signing only) and
the NIST P-256 curve for ECDSA. The AWS IoT Thing registry supports ECDSA certificates, but they can
only be created by submitting a CSR (Certificate Service Request). The following section contains a walk
through for creating a certificate with a CSR.

Make sure you are using the following (or newer) versions of the AWS CLI and Open SSL:

aws --version
aws-cli/1.11.176 Python/2.7.9 Windows/8 botocore/1.7.34

openssl version
OpenSSL 1.0.2g  1 Mar 2016

The following steps are written with the assumption that you have used the aws configure command
to configure the AWS CLI.

1. Run aws iot create-thing --thing-name dcgecc to create an AWS IoT thing.
2. Run openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt

ec_param_enc:named_curve -outform PEM -out dcgecc.key to use OpenSSL to create a
new P-256 key.

3. Run openssl req -new -nodes -days 365 -key dcgecc.key -out dcgecc.reqto create
a certificate enrollment request signed by the key created in step 2.

4. Run aws iot create-certificate-from-csr --certificate-signing-request
file://dcgecc.req --set-as-active --certificate-pem-outfile dcgecc.crtto
submit the certificate enrollment request to AWS IoT.

35



Amazon FreeRTOS User Guide
FreeRTOS Wi-Fi Interface

5. Run aws iot attach-thing-principal --thing-
name dcgecc --principal "arn:aws:iot:us-
east-1:123456789012:cert/86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"
to attach the certificate (referenced by the ARN output by the previous command) to the thing.

6. Run aws iot create-policy --policy-name FullControl --policy-document
file://policy.json to create a policy. This policy is too permissive and should be used for
development purposes only. The following is a listing of the policy.json file specified in the create-
policy command:

{
 "Version": "2012-10-17",
 "Statement": [{
  "Effect": "Allow",
  "Action": "iot:*",
  "Resource": "*"
 },
 {
  "Effect": "Allow",
  "Action": "greengrass:*",
  "Resource": "*"
 }]
}

7. Finally, run aws iot attach-principal-policy --policy-
name FullControl --principal "arn:aws:iot:us-
east-1:785484208847:cert/86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"
to attach the principal (certificate) and policy to the thing.

Now, follow the steps in the Getting Started section of this guide. Don’t forget to copy the certificate
and private key you created into your aws_clientcredential_keys.h file. Copy your thing name into
aws_clientcredential.h.

FreeRTOS Wi-Fi Interface
The Wi-Fi interface API provides a common abstraction layer that enables application to communicate
with the lower level wireless stack. Wi-Fi chip sets differ in features, driver implementations and APIs.
The common Wi-Fi interface simplifies application development and porting for all supported Wi-Fi chip
sets. The interface provides a primary API for managing all aspects of Wi-Fi devices.

Setup, Provisioning, and Configuration
The setup APIs provide functionality to turn Wi-Fi on by initializing the radio, peripherals, and drivers.
Your application must turn Wi-Fi on by calling WIFI_On before calling any other API. An application can
turn WI-Fi off by calling WIFI_Off to save power. This is useful for power constrained devices which can
have intermittent connectivity. Calling WIFI_Reset will reset the Wi-Fi radio.

The Amazon FreeRTOS demos hard code Wi-Fi credentials into the application. If you are not able to
connect to your Wi-FI network using these credentials, you can put your FreeRTOS device into soft Access
Point (AP) mode. This allows you to connect the FreeRTOS device and configure a different set of Wi-Fi
credentials (SSID, password, security type, and channel). To configure AP mode call WIFI_ConfigureAP.
To put your device into soft AP mode, call WIFI_StartAP. When your device is in soft AP mode you
can connect another device, using a web browser to your FreeRTOS device and configure the new Wi-Fi
credentials. To turn off soft AP mode, call WIFI_StopAP.

A Wi-Fi device can be configured to be in a particular role at a time. Device roles like Station, Access
Point, P2P can be configured by calling WIFI_SetMode. You can get the current mode of a Wi-Fi device
by calling WIFI_GetMode. Switching modes by calling WIFI_SetMode will disconnect the device if it is
already connected to a network.

36



Amazon FreeRTOS User Guide
FreeRTOS Wi-Fi Interface

Connection
A Wi-Fi device turned on and switched to Station mode is ready to connect to the network using the
connectivity API. When calling the connection API, you pass network parameters like SSID, password
and security type to establish a connection. You can perform a scan operation to look for networks
which returns the SSID, BSSID, Channel, RSSI and security type. The scan can be performed for hidden
networks. If you find a desired network in the scan, a you can connect to the network by calling and
providing the network password. You can disconnect a Wi-Fi device from the network by calling
WIFI_Disconnect.

Security
The interface API support several security types like WEP, WPA, WPA2 and Open (no security).
When a device is in the Station role, you must specify the network security type when calling the
WIFI_ConnectAP function. When a device is in soft AP mode, the device can be configured to use any of
the supported security types:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

• eWiFiSecurityWPA2

Power Management
Different Wi-Fi devices have different power requirements depending upon the application and available
power sources. A device may always be powered on to reduce latency or it may be intermittently
connected and switch into a low power mode when Wi-Fi is not required. The interface API support
various power management modes like always on, low power, and normal mode. You set the power
mode for a device using the WIFI_SetPMMode function. You can get the current power mode of a device
by calling the WIFI_GetPMMode function.

Network Profiles
The Wi-Fi API enables you to save network profiles in the non-volatile memory of your devices.
This allows you to save network settings so they can be retrieved when a device reconnects to a
Wi-Fi network, removing the need to re-provision devices after they have been connected to a
network. WIFI_NetworkAdd adds a network profile. WIFI_NetworkGet retrieves a network profile.
WIFI_NetworkDel deletes a network profile. The limit of profiles you can save is platform dependent.

Network Utilities
The Wi-Fi API also provides utility functions described in the following table:

API Description

WIFI_GetIP Gets the IP address of a device.

WIFI_GetHostIP Gets the host IP address.

WIFI_GetMAC Gets the MAC address of a device.

WIFI_Ping Sends a ping to a device on the network.

WIFI_Scan Scans for available Wi-Fi networks.

37



Amazon FreeRTOS User Guide
Amazon FreeRTOS Console User Guide

Amazon FreeRTOS Console User Guide
You can use the Amazon FreeRTOS console to manage software configurations and download Amazon
FreeRTOS software for your device. The Amazon FreeRTOS software is prequalified on a variety of
platforms. It includes the required hardware drivers, libraries, and example projects to help get you
started quickly. You can choose between predefined configurations or create custom configurations.

Predefined configurations are defined for the prequalified platforms:

• TI CC3220SF-LAUNCHXL
• STM32 IoT Discovery Kit
• NXP LPC54018 IoT Module
• FreeRTOS Windows Simulator

The predefined configurations allow you to get started quickly with the supported use cases without
thinking about which libraries are required. To use a predefined configuration, browse to the Amazon
FreeRTOS Console, find the configuration you want to use, and then choose Download.

Custom configurations allow you to specify your hardware platform, integrated development platform
(IDE), compiler, and only those RTOS libraries you require. This leaves more space on your devices for
application code.

To create a custom configuration

1. Browse to the Amazon FreeRTOS console and choose Create new.
2. On the New Software Configuration page, choose Select a hardware platform, and choose one of

the prequalified platforms.
3. Choose the IDE and compiler you want use.
4. For the Amazon FreeRTOS libraries you require, choose Add Library. If you choose a library that

requires another library, it is added for you. If you want to choose more libraries, choose Add
another library.

5. In the Demo Projects section, enable one of the demo projects. This enables the demo in the project
files.

6. In Name required, type a name for your custom configuration.
7. In Description, you can type a description for your custom configuration.
8. At the bottom of the page, choose Create and download to create and download your custom

configuration.

Downloading Amazon FreeRTOS from GitHub
Although we recommend that you download the Amazon FreeRTOS kernel and software libraries from
the Amazon FreeRTOS console, all Amazon FreeRTOS files are available on GitHub.

Amazon FreeRTOS Qualification Program
This section provides information for MCU vendors about the Amazon FreeRTOS qualification workflow,
which includes:

• Creating an Amazon FreeRTOS project.
• Porting Amazon FreeRTOS abstraction layers.

38

https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://github.com/aws/amazon-freertos


Amazon FreeRTOS User Guide
What's in it for OEMs?

• Running tests.
• Submitting test results to the Amazon FreeRTOS team for final qualification.

What's in it for OEMs?
The Amazon FreeRTOS Qualification Program intends to give confidence to OEM/ODM developers that
by using a qualified microcontroller (MCU) from this program for their IoT device, they can run Amazon
FreeRTOS on the device without compatibility issues. It works with AWS IoT or AWS Greengrass. This
allows OEM/ODM developers to focus on the code for their device functionality.

Qualification Program for MCU Vendors
The Amazon FreeRTOS Qualification Program gives MCU vendors confidence that their qualified
MCUs are secure and interoperable with AWS IoT and AWS Greengrass. This means that the MCUs and
associated libraries meet the security, functionality, and performance requirements to work seamlessly
with AWS IoT and AWS Greengrass. A qualified MCU is included in the Amazon FreeRTOS console, where
customers can select it and download the relevant libraries. These include Amazon FreeRTOS and board
support packages (BSPs) and drivers. Details of the qualified MCU, along with relevant links and the
MCU vendor company logo, are available on the Amazon FreeRTOS Partners webpage. The rest of this
FAQ describes the steps to qualify your MCU and verify that your software (including drivers and BSPs)
functionally integrates with Amazon FreeRTOS software.

Contact Amazon
If you want to qualify an MCU, send a request to <freertos-qual@amazon.com>. A representative
from the qualification support team will send an acknowledgement and support you through the
qualification steps.

Sign Up for the AWS Partner Network
The AWS Partner Network (APN) is the global partner program for AWS. It is focused on helping APN
Partners build successful AWS-based businesses or solutions by providing business, technical, marketing,
and go-to-market support. To find and register for the APN Partner program, see AWS Partner Network.

Jointly Agree on Terms and Conditions
After you become an APN Partner, you and AWS jointly review and agree on general terms and
conditions, schedules, and initiatives in the partnership. The agreement includes topics such as
the purpose of collaboration, alliance team, initiative development, marketing and collateral,
indemnification, limitations of liability, and other general terms. After you and AWS sign the agreement,
you can start the qualification workflow process.

Pass Qualification Test Suite
There are several steps to verify that your software (including drivers and BSPs) is functionally integrated
with Amazon FreeRTOS software. The goal of this process is to create an MCU development project that
successfully builds and runs a range of functional, performance, and security tests on your MCU.

The high-level steps are:

1. Download the latest version of the Amazon FreeRTOS source code.
2. Create a project using the target IDE and compiler that demonstrates the equivalent of a “Hello

World” example for the target MCU.

39

https://console.aws.amazon.com/freertos
https://partnercentral.awspartner.com/AWS_Partner_Application


Amazon FreeRTOS User Guide
Amazon FreeRTOS Qualified

3. Add Amazon FreeRTOS files and resources to the created project, and confirm the project still builds.
At this stage, the included TQP tests should build and run, but are expected to fail because they have
not yet been ported to your hardware.

4. Enable each Amazon FreeRTOS feature to work successfully on your MCU. This involves implementing
each hardware-dependent layer of the Amazon FreeRTOS feature abstractions. Test these
implementations and fix issues.

5. When all included tests are passing, submit your results (test reports) and your microcontroller
hardware to Amazon to confirm the qualification process.

Amazon FreeRTOS Qualified
After your hardware passes the verification tests, it is considered Amazon FreeRTOS-qualified.
Information about your hardware will be displayed in the Amazon FreeRTOS console and the Amazon
FreeRTOS Getting Started page.

Supported Platforms
Texas Instruments CC3220SF-LAUNCHXL
The SimpleLink Wi-Fi® CC3220SF LaunchPad development kit (CC3220SF-LAUNCHXL) includes the
CC3220SF, a single-chip wireless microcontroller (MCU) with ARM Cortex -M4 Core at 80 MHz, 1MB
Flash, 256KB of RAM and enhanced security features. The on-chip Wi-Fi module offloads TLS and TCP/IP
processing, freeing up memory and compute for the application on the main microcontroller. For more
information about this platform, see, Texas Instruments CC3220SF-LAUNCHXL.

STMicroelectronics STM32L4 Discovery Kit – IoT Node
The STM32L4 IoT Discovery kit (B-L475E-IOT01A) supports Wi-Fi® and integrates additional sensors.
The kit has an STM32L4 Series MCU based on ARM Cortex -M4 core at 80 MHz with 1 Mbyte of Flash
memory and 128 Kbytes of SRAM, and Wi-Fi module Inventek ISM43362-M3G-L44. The Wi-Fi module
offloads TCP/IP processing from the MCU. The interface to the Wi-Fi module for this kit has not
yet been optimized for use with Amazon FreeRTOS, and as such, contains limitations on its use. We
recommend only using the Secure Sockets APIs from low priority tasks, and to limit transmit throughput.
Future revisions are planned to improve this interface. For more information about this platform, see
STMicroelectronicsSTM32L4Discovery kit IoT node

NXP LPC54108 IoT Module
The LPC54018 IoT Module from NXP includes an LPC54018 MCU with a 180MHz ARM® Cortex®-M4
core with 360KB of SRAM, 128Mb of Quad-SPI Flash (Macronix MX25L12835FM2), and a Longsys
IEEE802.11b/g/n Wi-Fi® module based on Qualcomm GT1216. The Wi-Fi module offloads TCP/IP
processing from the MCU. The LPC54018 IoT Module requires a debugger and J-Link connector (available
in the NXP Direct store) or a baseboard. For more information about this platform, see NXP LPC54018
IoT Module.

40

https://console.aws.amazon.com/freertos
http://www.ti.com/tool/cc3220sf-launchxl
http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.nxp.com/support/developer-resources/reference-designs/lpc54018-iot-solution-with-amazon-freertos:IoT-Solution-with-Amazon-FreeRTOS?tid=vanLPC-AWS-Module
https://www.nxp.com/support/developer-resources/reference-designs/lpc54018-iot-solution-with-amazon-freertos:IoT-Solution-with-Amazon-FreeRTOS?tid=vanLPC-AWS-Module


Amazon FreeRTOS User Guide
Logging

Amazon FreeRTOS Porting Guide
This porting guide walks you through modifying the Amazon FreeRTOS software package to work on
boards that are not Amazon FreeRTOS qualified. Amazon FreeRTOS is designed to let you choose only
those libraries required by your board or application. The MQTT, Shadow, and Greengrass libraries are
designed to be compatible with most devices as-is, so there is no porting guide for these libraries.

For information about porting FreeRTOS kernel, see FreeRTOS Kernel Porting Guide.

Topics

• Logging (p. 41)

• Connectivity (p. 42)

• Security (p. 44)

• Using Custom Libraries with Amazon FreeRTOS (p. 46)

Logging
Amazon FreeRTOS provides a thread-safe logging task that can be used by calling the configPRINTF
function. configPRINTF is designed to behave like printf. To port configPRINTF, initialize your
communications peripheral, and define the configPRINT_STRING macro so that it takes an input string
and displays it on your preferred output.

Logging Configuration
configPRINT_STRING should be defined for your board’s implementation of logging. Current examples
use a UART serial terminal, but other interfaces can also be used.

#define configPRINT_STRING( x )

Use configLOGGING_MAX_MESSAGE_LENGTH to set the maximum number of bytes to be printed.
Messages longer than this length are truncated.

#define configLOGGING_MAX_MESSAGE_LENGTH

When configLOGGING_INCLUDE_TIME_AND_TASK_NAME is set to 1, all printed messages are
prepended with additional debug information (the message number, FreeRTOS tick count, and task
name).

#define configLOGGING_INCLUDE_TIME_AND_TASK_NAME    1

vLoggingPrintf is the name of the FreeRTOS thread-safe printf call. You do not need to change this
value to use AmazonFreeRTOS logging.

#define configPRINTF( X )    vLoggingPrintf X

41

http://www.freertos.org/FreeRTOS-porting-guide.html


Amazon FreeRTOS User Guide
Connectivity

Connectivity
You must first configure your connectivity peripheral. You can use Wi-Fi, Bluetooth, Ethernet, or other
connectivity mediums. At this time, only a Wi-Fi management API is defined for board ports, but if you
are using Ethernet, the FreeRTOS TCP/IP software  can provide a good place to start.

Wi-Fi Management
The Wi-Fi management library supports network connectivity following the 802.11 (a/b/n) protocol. If
your hardware does not support Wi-Fi, you do not need to port this library.

The functions that must be ported are listed in the lib/wifi/portable/<vendor>/<platform>/
aws_wifi.c file. You can find a detailed explanation for each public interface in lib/include/
aws_wifi.h.

The following functions must be ported:

WiFiReturnCode_t WIFI_On( void );
WIFIReturnCode_t WIFI_Off( void );
WiFiReturnCode_t WIFI_ConnectAP( const WiFiNetworkParams_t * const pxNetworkParams );
WiFiReturnCode_t WIFI_Disconnect( void );
WiFiReturnCode_t WIFI_Reset( void );
WiFiReturnCode_t WIFI_Scan( WiFiScanResult_t * pxBuffer, uint8_t uxNumNetworks );

Sockets
The sockets library supports TCP/IP network communication between your board and another node
in the network. The sockets APIs are based on the Berkeley sockets interface, but also include a secure
communication option. At this time, only client APIs are supported. We recommend that you port the
TCP/IP functionality first, before you add the TLS functionality.

Libraries for MQTT, Shadow, and Greengrass all make calls into the sockets layer. A successful port of the
sockets layer allows the protocols built on sockets to just work.

Major Differences from Berkeley Sockets Implementation

Security

The sockets interface must be configured to use TLS for secure communication. The SetSockOpt
command has a couple of nonstandard options that must be implemented to work with
AmazonFreeRTOS examples.

SOCKETS_SO_REQUIRE_TLS  
SOCKETS_SO_SERVER_NAME_INDICATION 
SOCKETS_SO_TRUSTED_SERVER_CERTIFICATE

For information about these nonstandard options, see the secure sockets documentation (p. 34).
For information about porting TLS and cryptographic operations, see the TLS (p. 34) and Public Key
Cryptography Standard #11 (p. 34) sections.

Error Codes

The SOCKETS library returns error codes from the API (rather than setting a global errno). All error codes
returned must be negative values.

42

http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html


Amazon FreeRTOS User Guide
Sockets

The public interfaces that must be ported are listed in lib/secure_sockets/portable/<vendor>
/<platform>/aws_secure_sockets.c.

A detailed explanation for each public interface can be found in lib/include/
aws_secure_sockets.h.

If you are using TLS based on mbed TLS, you can save refactoring effort by implementing network
send and network receive functions that can be registered with the TLS layer for sending and receiving
plaintext or encrypted buffers.

Secure Sockets Porting for the STM32 IoT Discovery Kit
• This port supports up to four sockets.

• SOCKETS_PERIPHERAL_RESET means that the Wi-Fi module has been reset. This occurs when the Wi-
Fi module stops responding or gets out of sync with the SPI driver. Call WiFi_ConnectAP to reconnect
to your Wi-Fi network.

Sockets_Connect

• SocketsSockaddr_t uses the usPort and ulAddress fields only. ucLength and ucSocketDomain
are not used.

• Supports IPv4 only.

• Sends connection information to the Wi-Fi module only. A successful return does not guarantee that
the socket was able to reach the provided IP address.

Sockets_SetSockOpt

For SOCKETS_SO_SNDTIMEO and SOCKETS_SO_RCVTIMEO, valid values are 0 (block forever) and 30,000
milliseconds.

SOCKETS_Shutdown

SOCKETS_Shutdown does not send a FIN packet, but does prevent the socket from being used for send
and receive.

Secure Sockets Porting for the TI CC3220SF-LAUNCHXL Board
This port supports up to 16 sockets. The sockets can be secured with TLS.

Sockets_Connect

• SocketsSockaddr_t uses the usPort and ulAddress fields only. ucLength and ucSocketDomain
are not used.

• Supports IPv4 only.

• Receiving a negative error code from SOCKETS_Connect does not mean that the socket was closed.
Applications must close sockets after receving a negative error code.

• When using a TLS-enabled socket, sometimes a connection is made even though SOCKETS_Connect
returned an error. This might indicate that the connection cannot be authenticated using the provided
root of trust. We strongly recommend that you explicitly close the socket if a handshake-related error
is returned, even if the connection is made.

• In the event of handshake error, you can get information by enabling printing or by investigating the
asynchronous event handler structure set in SimpleLinkSockEventHandler.

43



Amazon FreeRTOS User Guide
Security

Sockets_SetSockOpt

SOCKETS_SO_RCVTIMEO can be specified in 10 millisecond increments.

SOCKETS_SO_SNDTIMEO is not used. It might be used in future versions.

SOCKETS_Send

In the event of a TX error, you can get information by investigating the TX Failed event handler structure
in SimpleLinkSockEventHandler.

SOCKETS_Shutdown

SOCKETS_Shutdown does not send a FIN packet, but does prevent the socket from being used for send
and receive.

Security
Amazon FreeRTOS has two libraries that work together to provide platform security: TLS and PKCS#11.
Amazon FreeRTOS provides a software security solution built on mbed TLS (a third-party TLS library).
The TLS API uses mbed TLS to encrypt and authenticate network traffic. PKCS#11 provides an standard
interface to handle cryptographic material and replace software cryptographic operations with
implementations that fully use the hardware.

TLS
If you choose to use an mbed TLS-based implementation, you can use aws_tls.c as-is, provided that
PKCS#11 is implemented.

The public interfaces of this library and a detailed explanation for each TLS interface are listed in
lib/include/aws _tls.h. The Amazon FreeRTOS implementation of the TLS library is in lib/
tls/aws_tls.c. If you decide to use your own TLS support, you can either implement the TLS public
interfaces and plug them into the sockets public interfaces, or you can directly port the sockets library
using your own TLS interfaces.

The mbedtls_hardware_poll function provides randomness for the deterministic random bit
generator. For security, no two boards should provide identical randomness, and a board must not
provide the same random value repeatedly, even if the board is reset. Examples of implementations
for this function can be found in ports using mbed TLS at demos\<vendor>\<platform>\common
\application_code\<vendor code> \aws_entropy_hardware_poll.c

Using TLS Libraries Other Than mbed TLS
If you are porting another TLS library to Amazon FreeRTOS, make sure that a compatible TLS cipher
suite is implemented in your port. For more information, see Cipher Suites Compatible with AWS IoT. The
following cipher suites are compatible with AWS Greengrass devices:

• TLS_RSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

• TLS_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (not recommended)

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (not recommended)

44

http://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html


Amazon FreeRTOS User Guide
PKCS#11

• TLS_RSA_WITH_AES_128_CBC_SHA (not recommended)
• TLS_RSA_WITH_AES_256_CBC_SHA (not recommended)

Due to attacks on SHA1, we recommend that you use SHA256 or SHA384 for Amazon FreeRTOS
connections.

PKCS#11
Amazon FreeRTOS implements a PKCS#11 standard for cryptographic operations and key storage. The
header file for PKCS#11 is an industry standard. To port PKCS#11, you must implement functions to read
and write credentials to and from non-volatile memory (NVM).

The functions you need to implement are listed in lib/third_party/pkcs11/pkcs11f.h. The
implementation of the public interfaces is located in: lib/pkcs11/portable/vendor/board/
pkcs11.c.

The following functions are the minimum required to support TLS client authentication in Amazon
FreeRTOS:

• C_GetFunctionList

• C_Initialize

• C_GetSlotList

• C_OpenSession

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_SignInit

• C_Sign

• C_CloseSession

• C_Finalize

For a general porting guide, see the open standard, PKCS #11 Cryptographic Token Interface Base
Specification.

Two additional non-PKCS#11 standard functions must be implemented for keys and certificates to
survive power cycle:

prvSaveFile

Writes the client (device) private key and certificate to memory. If your NVM is susceptible to
damage from write cycles, you might want to use an additional variable to record whether the device
private key and device certificate have been initialized.

prvReadFile

Retrieves either the device private key or device certificate from NVM into RAM for use by the TLS
library.

45

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html


Amazon FreeRTOS User Guide
Using Custom Libraries with Amazon FreeRTOS

Using Custom Libraries with Amazon FreeRTOS
All Amazon FreeRTOS libraries can be replaced with custom developed libraries. All custom libraries must
conform to the API of the Amazon FreeRTOS library they replace.

46


	Amazon FreeRTOS
	Table of Contents
	What Is Amazon FreeRTOS?
	The FreeRTOS Kernel
	Amazon FreeRTOS Libraries
	Amazon FreeRTOS Console
	Amazon FreeRTOS Qualification Program
	Development Workflow

	Getting Started with Amazon FreeRTOS
	Granting FreeRTOS Permissions
	Amazon FreeRTOS Prerequisites
	Create Your AWS IoT Credentials
	Getting Started with the Texas Instruments (TI) CC3220SF-LAUNCHXL
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into TI Code Composer
	Configure Your Project
	Configure Your Wi-Fi Credentials
	Configure Your AWS IoT Endpoint
	Configure Your AWS IoT Credentials


	Run the FreeRTOS Samples
	Troubleshooting

	Getting Started with the STMicroelectronics (ST) STM32L4 Discovery kit IoT node
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into the STM32 System Workbench
	Configure Your Project
	Configure Your Wi-Fi Credentials
	Configure Your AWS IoT Endpoint
	Configure Your AWS IoT Credentials


	Run the FreeRTOS Samples

	Getting Started with the NXP LPC54018 IoT Module
	Setting up Your Environment
	Connecting a JTAG Debugger
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into IAR Embedded Workbench
	Configure your Project
	Configure your WiFi Credentials
	Configure your AWS IoT Endpoint
	Configure your AWS IoT Credentials

	Run the FreeRTOS Samples
	Troubleshooting


	Getting Started with the FreeRTOS Windows Simulator
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Load the Amazon FreeRTOS Sample Code into Visual Studio
	Configure Your Project
	Configure Your Network Interface
	Configure Your AWS IoT Endpoint
	Configure Your AWS IoT Credentials


	Run the FreeRTOS Samples


	Next Steps
	Navigating the Example Project
	Directory and File Organization
	Configuration Files

	Thing Shadow Demo
	Greengrass Discovery Demo

	Amazon FreeRTOS Developer Guide
	Amazon FreeRTOS Architecture
	FreeRTOS Kernel Fundamentals
	FreeRTOS Kernel Scheduler
	Memory Management
	Kernel Memory Allocation
	Application Memory Management

	Inter-task Coordination
	Queues
	Semaphores and Mutexes
	Direct-to-Task Notifications
	Stream Buffers
	Sending Data
	Receiving Data

	Message Buffers
	Sending Data
	Receiving Data


	Software Timers
	Low Power Support

	FreeRTOS Libraries
	Cloud Connectivity
	MQTT
	Callback
	Subscription Management
	MQTT Task Wakeup
	Major Configurations

	Thing Shadows
	Prerequisites
	Using the Thing Shadow APIs


	Greengrass Connectivity
	Prerequisites
	Greengrass Workflow
	How to Use the Greengrass API

	Amazon FreeRTOS Security
	Secure Sockets
	Transport Layer Security
	Public Key Cryptography Standard #11
	
	Provisioning API
	Client Authentication
	Clean-up

	Asymmetric Cryptosystem Support


	FreeRTOS Wi-Fi Interface
	Setup, Provisioning, and Configuration
	Connection
	Security
	Power Management
	Network Profiles
	Network Utilities


	Amazon FreeRTOS Console User Guide
	Downloading Amazon FreeRTOS from GitHub
	Amazon FreeRTOS Qualification Program
	What's in it for OEMs?
	Qualification Program for MCU Vendors
	Contact Amazon
	Sign Up for the AWS Partner Network
	Jointly Agree on Terms and Conditions
	Pass Qualification Test Suite
	Amazon FreeRTOS Qualified

	Supported Platforms
	Texas Instruments CC3220SF-LAUNCHXL
	STMicroelectronics STM32L4 Discovery Kit – IoT Node
	NXP LPC54108 IoT Module


	Amazon FreeRTOS Porting Guide
	Logging
	Logging Configuration

	Connectivity
	Wi-Fi Management
	Sockets
	Major Differences from Berkeley Sockets Implementation
	Security
	Error Codes

	Secure Sockets Porting for the STM32 IoT Discovery Kit
	Sockets_Connect
	Sockets_SetSockOpt
	SOCKETS_Shutdown

	Secure Sockets Porting for the TI CC3220SF-LAUNCHXL Board
	Sockets_Connect
	Sockets_SetSockOpt
	SOCKETS_Send
	SOCKETS_Shutdown



	Security
	TLS
	Using TLS Libraries Other Than mbed TLS

	PKCS#11

	Using Custom Libraries with Amazon FreeRTOS


