
November 2016 DocID025776 Rev 17 1/261

1

UM1718
User manual

STM32CubeMX for STM32 configuration
and initialization C code generation

Introduction

STM32CubeMX is a graphical tool for 32-bit ARM® Cortex® STM32 microcontrollers. It is
part of STMCube™ initiative (see Section 1) and is available either as a standalone
application or as an Eclipse plug-in for integration in Integrated Development Environments
(IDEs).

STM32CubeMX has the following key features:

• Easy microcontroller selection covering whole STM32 portfolio

• Board selection from a list of STMicroelectronics boards

• Easy microcontroller configuration (pins, clock tree, peripherals, middleware) and
generation of the corresponding initialization C code

• Easy switching to another microcontroller belonging to the same series by
importing a previously-saved configuration to a new MCU project

• Easy exporting of current configuration to a compatible MCU

• Generation of configuration reports

• Generation of embedded C projects for a selection of integrated development
environment tool chains. STM32CubeMX projects include the generated initialization C
code, MISRA 2004 compliant STM32 HAL drivers, the middleware stacks required for the
user configuration, and all the relevant files for opening and building the project in the
selected IDE.

• Power consumption calculation for a user-defined application sequence

• Self-updates allowing the user to keep the STM32CubeMX up-to-date

• Download and update of STM32Cube embedded software required for user application
development (see Appendix E: STM32Cube embedded software packages for details on
STM32Cube embedded software offer)

Although STM32CubeMX offers a user interface and generates a C code compliant with
STM32 MCU design and firmware solutions, it is recommended to refer to the product
technical documentation for details on actual implementation of microcontroller peripherals
and firmware.

The following documents are available from http://www.st.com:

• STM32 microcontroller reference manuals and datasheets

• STM32Cube HAL driver user manuals for STM32F0 (UM1785), STM32F1 (UM1850),
STM32F2 (UM1940), STM32F3 (UM1786), STM32F4 (UM1725), STM32F7 (UM1905),
STM32L0 (UM1749), STM32L1 (UM1816) and STM32L4 (UM1884).

www.st.com

http://www.st.com

Contents UM1718

2/261 DocID025776 Rev 17

Contents

1 STM32Cube overview . 14

2 Getting started with STM32CubeMX . 15

2.1 Principles . 15

2.2 Key features . 17

2.3 Rules and limitations . 18

3 Installing and running STM32CubeMX . 19

3.1 System requirements . 19

3.1.1 Supported operating systems and architectures 19

3.1.2 Memory prerequisites . 19

3.1.3 Software requirements . 19

3.2 Installing/uninstalling STM32CubeMX standalone version 19

3.2.1 Installing STM32CubeMX standalone version . 19

3.2.2 Installing STM32CubeMX from command line 20

3.2.3 Uninstalling STM32CubeMX standalone version 23

3.3 Installing STM32CubeMX plug-in version . 24

3.3.1 Downloading STM32CubeMX plug-in installation package 24

3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in 24

3.3.3 Uninstalling STM32CubeMX as Eclipse IDE plug-in 25

3.4 Launching STM32CubeMX . 27

3.4.1 Running STM32CubeMX as standalone application 27

3.4.2 Running STM32CubeMX in command-line mode 27

3.4.3 Running STM32CubeMX plug-in from Eclipse IDE 30

3.5 Getting STM32Cube updates . 31

3.5.1 Updater configuration . 33

3.5.2 Downloading new libraries . 36

3.5.3 Downloading new library patches . 38

3.5.4 Removing libraries . 38

3.5.5 Checking for updates . 40

4 STM32CubeMX User Interface . 41

4.1 Welcome page . 41

DocID025776 Rev 17 3/261

UM1718 Contents

7

4.2 New project window . 43

4.3 Main window . 46

4.4 Toolbar and menus . 49

4.4.1 File menu . 49

4.4.2 Project menu . 50

4.4.3 Pinout menu . 50

4.4.4 Window menu . 52

4.4.5 Help menu . 53

4.5 Output windows . 53

4.5.1 MCUs selection pane . 53

4.5.2 Output pane . 54

4.6 Import Project window . 54

4.7 Set unused / Reset used GPIOs windows . 60

4.8 Project Settings window . 62

4.8.1 Project tab . 64

4.8.2 Code Generator tab . 67

4.8.3 Advanced Settings tab . 70

4.9 Update Manager windows . 71

4.10 About window . 72

4.11 Pinout view . 72

4.11.1 Peripheral and Middleware tree pane . 74

4.11.2 Chip view . 75

4.11.3 Chip view advanced actions . 78

4.11.4 Keep Current Signals Placement . 80

4.11.5 Pinning and labeling signals on pins . 81

4.11.6 Setting HAL timebase source . 82

4.12 Configuration view . 88

4.12.1 Peripherals and Middleware Configuration window 90

4.12.2 User Constants configuration window . 93

4.12.3 GPIO Configuration window . 99

4.12.4 DMA Configuration window . 102

4.12.5 NVIC Configuration window . 104

4.12.6 FreeRTOS middleware configuration view . 112

4.13 Clock tree configuration view .119

4.13.1 Clock tree configuration functions . 119

4.13.2 Recommendations . 124

Contents UM1718

4/261 DocID025776 Rev 17

4.13.3 STM32F43x/42x power-over drive feature . 125

4.13.4 Clock tree glossary . 127

4.14 Power Consumption Calculator view . 127

4.14.1 Building a power consumption sequence . 128

4.14.2 Configuring a step in the power sequence . 135

4.14.3 Managing user-defined power sequence and reviewing results 139

4.14.4 Power sequence step parameters glossary . 142

4.14.5 Battery glossary . 145

5 STM32CubeMX C Code generation overview 146

5.1 STM32Cube code generation using only HAL drivers
(default mode) . 146

5.2 STM32Cube code generation using Low Layer drivers 148

5.3 Custom code generation . 154

5.3.1 STM32CubeMX data model for FreeMarker user templates 154

5.3.2 Saving and selecting user templates . 154

5.3.3 Custom code generation . 155

6 Tutorial 1: From pinout to project C code generation
using an STM32F4 MCU . 158

6.1 Creating a new STM32CubeMX Project . 158

6.2 Configuring the MCU pinout . 161

6.3 Saving the project . 162

6.4 Generating the report . 163

6.5 Configuring the MCU Clock tree . 163

6.6 Configuring the MCU initialization parameters . 166

6.6.1 Initial conditions . 166

6.6.2 Configuring the peripherals . 167

6.6.3 Configuring the GPIOs . 170

6.6.4 Configuring the DMAs . 171

6.6.5 Configuring the middleware . 172

6.7 Generating a complete C project . 175

6.7.1 Setting project options . 175

6.7.2 Downloading firmware package and generating the C code 177

6.8 Building and updating the C code project . 182

6.9 Switching to another MCU . 187

DocID025776 Rev 17 5/261

UM1718 Contents

7

7 Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board . 189

8 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption and more 196

8.1 Tutorial overview . 196

8.2 Application example description . 197

8.3 Using the Power Consumption Calculator . 197

8.3.1 Creating a power sequence . 197

8.3.2 Optimizing application power consumption . 200

9 Tutorial 4 - Example of UART communications with
a STM32L053xx Nucleo board . 208

9.1 Tutorial overview . 208

9.2 Creating a new STM32CubeMX project and
selecting the Nucleo board . 208

9.3 Selecting the features from the Pinout view . 210

9.4 Configuring the MCU clock tree from the Clock Configuration view 212

9.5 Configuring the peripheral parameters from the Configuration view . . . 213

9.6 Configuring the project settings and generating the project 216

9.7 Updating the project with the user application code 217

9.8 Compiling and running the project . 218

9.9 Configuring Tera Term software as serial communication
client on the PC . 218

10 Tutorial 5: exporting current project configuration to a
compatible MCU. 220

11 FAQ . 224

11.1 On the Pinout configuration pane, why does STM32CubeMX
move some functions when I add a new peripheral mode? 224

11.2 How can I manually force a function remapping? 224

11.3 Why are some pins highlighted in yellow or in light green in
the Chip view? Why cannot I change the function of some
pins (when I click some pins, nothing happens)? 224

11.4 Why do I get the error “Java 7 update 45’ when installing
‘Java 7 update 45’ or a more recent version of the JRE? 224

Contents UM1718

6/261 DocID025776 Rev 17

11.5 Why does the RTC multiplexer remain inactive on the Clock tree view? 225

11.6 How can I select LSE and HSE as clock source and
change the frequency? . 226

11.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as an output? . 226

Appendix A STM32CubeMX pin assignment rules . 227

A.1 Block consistency . 227

A.2 Block inter-dependency. 231

A.3 One block = one peripheral mode . 234

A.4 Block remapping (STM32F10x only) . 234

A.5 Function remapping. 235

A.6 Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked) 236

A.7 Setting and clearing a peripheral mode. 237

A.8 Mapping a function individually . 237

A.9 GPIO signals mapping . 237

Appendix B STM32CubeMX C code generation design
choices and limitations . 238

B.1 STM32CubeMX generated C code and user sections 238

B.2 STM32CubeMX design choices for peripheral initialization 238

B.3 STM32CubeMX design choices and limitations for
middleware initialization . 239

B.3.1 Overview. 239

B.3.2 USB Host . 240

B.3.3 USB Device . 240

B.3.4 FatFs. 240

B.3.5 FreeRTOS. 241

B.3.6 LwIP . 242

Appendix C STM32 microcontrollers naming conventions 244

Appendix D STM32 microcontrollers power consumption parameters 246

D.1 Power modes . 246

D.1.1 STM32L1 series . 246

DocID025776 Rev 17 7/261

UM1718 Contents

7

D.1.2 STM32F4 series . 247

D.1.3 STM32L0 series . 248

D.2 Power consumption ranges. 249

D.2.1 STM32L1 series feature 3 VCORE ranges. 249

D.2.2 STM32F4 series feature several VCORE scales 250

D.2.3 STM32L0 series feature 3 VCORE ranges. 250

Appendix E STM32Cube embedded software packages 251

12 Revision history . 252

List of tables UM1718

8/261 DocID025776 Rev 17

List of tables

Table 1. Command line summary. 28
Table 2. Welcome page shortcuts . 42
Table 3. File menu functions. 49
Table 4. Project menu. 50
Table 5. Pinout menu . 51
Table 6. Window menu . 52
Table 7. Help menu . 53
Table 8. Peripheral and Middleware tree pane - icons and color scheme . 74
Table 9. STM32CubeMX Chip view - Icons and color scheme. 76
Table 10. Peripheral and middleware configuration buttons. 89
Table 11. Peripheral and Middleware Configuration window buttons and tooltips 91
Table 12. Clock tree view widget . 123
Table 13. Voltage scaling versus power over-drive and HCLK frequency . 126
Table 14. Relations between power over-drive and HCLK frequency . 126
Table 15. Glossary . 127
Table 16. LL versus HAL code generation: drivers included in STM32CubeMX projects 149
Table 17. LL versus HAL code generation: STM32CubeMX generated header files 149
Table 18. LL versus HAL: STM32CubeMX generated source files . 150
Table 19. LL versus HAL: STM32CubeMX generated functions and function calls 150
Table 20. Document revision history . 252

DocID025776 Rev 17 9/261

UM1718 List of figures

13

List of figures

Figure 1. Overview of STM32CubeMX C code generation flow. 16
Figure 2. Example of STM32CubeMX installation in interactive mode . 21
Figure 3. STM32Cube Installation Wizard . 22
Figure 4. Auto-install command line. 23
Figure 5. Adding STM32CubeMX plug-in archive . 24
Figure 6. Installing STM32CubeMX plug-in . 25
Figure 7. Closing STM32CubeMX perspective . 25
Figure 8. Uninstalling STM32CubeMX plug-in . 26
Figure 9. Opening Eclipse plug-in . 30
Figure 10. STM32CubeMX perspective. 31
Figure 11. Displaying Windows default proxy settings. 32
Figure 12. Updater Settings window . 33
Figure 13. Connection Parameters tab - No proxy . 34
Figure 14. Connection Parameters tab - Use System proxy parameters. 35
Figure 15. Connection Parameters tab - Manual Configuration of Proxy Server 36
Figure 16. New library Manager window . 37
Figure 17. Removing libraries . 39
Figure 18. Removing library confirmation message. 39
Figure 19. Library deletion progress window . 40
Figure 20. STM32CubeMX Welcome page . 42
Figure 21. New Project window - MCU selector. 44
Figure 22. New Project window - board selector . 45
Figure 23. STM32CubeMX Main window upon MCU selection . 46
Figure 24. STM32CubeMX Main window upon board selection

(Peripheral default option unchecked) . 47
Figure 25. STM32CubeMX Main window upon board selection

(Peripheral default option checked) . 48
Figure 26. Pinout menus (Pinout tab selected) . 50
Figure 27. Pinout menus (Pinout tab not selected) . 51
Figure 28. MCU selection menu . 53
Figure 29. Output pane . 54
Figure 30. Automatic project import . 55
Figure 31. Manual project import . 56
Figure 32. Import Project menu - Try import with errors . 58
Figure 33. Import Project menu - Successful import after adjustments . 59
Figure 34. Set unused pins window . 60
Figure 35. Reset used pins window . 60
Figure 36. Set unused GPIO pins with Keep Current Signals Placement checked 61
Figure 37. Set unused GPIO pins with Keep Current Signals Placement unchecked 62
Figure 38. Project Settings window . 63
Figure 39. Project folder. 64
Figure 40. Selecting a different firmware location . 65
Figure 41. Firmware location selection error message . 66
Figure 42. Recomended new firmware repository structure . 66
Figure 43. Project Settings Code Generator . 68
Figure 44. Template Settings window . 69
Figure 45. Generated project template . 70
Figure 46. Advanced Settings window. 71

List of figures UM1718

10/261 DocID025776 Rev 17

Figure 47. About window . 72
Figure 48. STM32CubeMX Pinout view. 73
Figure 49. Chip view . 75
Figure 50. Red highlights and tooltip example: no mode configuration available 77
Figure 51. Orange highlight and tooltip example: some configurations unavailable 78
Figure 52. Tooltip example: all configurations unavailable . 78
Figure 53. Modifying pin assignments from the Chip view. 78
Figure 54. Example of remapping in case of block of pins consistency. 79
Figure 55. Pins/Signals Options window. 82
Figure 56. Selecting a HAL timebase source (STM32F407 example) . 83
Figure 57. TIM2 selected as HAL timebase source . 83
Figure 58. NVIC settings when using SysTick as HAL timebase, no FreeRTOS 84
Figure 59. NVIC settings when using FreeRTOS and SysTick as HAL timebase 85
Figure 60. NVIC settings when using FreeRTOS and TIM2 as HAL timebase 87
Figure 61. STM32CubeMX Configuration view . 88
Figure 62. Configuration window tabs for GPIO, DMA and NVIC settings (STM32F4 series). 89
Figure 63. Peripheral Configuration window (STM32F4 series) . 90
Figure 64. User Constants window . 93
Figure 65. Extract of the generated main.h file . 94
Figure 66. Using constants for peripheral parameter settings . 94
Figure 67. Specifying user constant value and name . 95
Figure 68. Deleting user constant not allowed when

constant already used for another constant definition . 96
Figure 69. Deleting a user constant used for parameter configuration-

Confirmation request . 96
Figure 70. Deleting a user constant used for peripheral configuration -

Consequence on peripheral configuration . 97
Figure 71. Searching user constants list for name. 98
Figure 72. Searching user constants list for value . 98
Figure 73. GPIO Configuration window - GPIO selection . 99
Figure 74. GPIO Configuration window - displaying GPIO settings. 100
Figure 75. GPIO configuration grouped by peripheral . 101
Figure 76. Multiple Pins Configuration . 101
Figure 77. Adding a new DMA request . 102
Figure 78. DMA Configuration . 103
Figure 79. DMA MemToMem configuration . 104
Figure 80. NVIC Configuration tab - FreeRTOS disabled . 105
Figure 81. NVIC Configuration tab - FreeRTOS enabled . 106
Figure 82. I2C NVIC Configuration window . 106
Figure 83. NVIC Code generation – All interrupts enabled . 108
Figure 84. NVIC Code generation – Interrupt initialization sequence configuration. 110
Figure 85. NVIC Code generation – IRQ Handler generation . 111
Figure 86. FreeRTOS configuration view. 112
Figure 87. FreeRTOS: configuring tasks and queues . 113
Figure 88. FreeRTOS: creating a new task . 114
Figure 89. FreeRTOS - Configuring timers, mutexes and semaphores. 116
Figure 90. FreeRTOS Heap usage . 118
Figure 91. STM32F429xx Clock Tree configuration view . 122
Figure 92. Clock Tree configuration view with errors . 122
Figure 93. Clock tree configuration: enabling RTC, RCC Clock source

and outputs from Pinout view . 124
Figure 94. Clock tree configuration: RCC Peripheral Advanced parameters. 125

DocID025776 Rev 17 11/261

UM1718 List of figures

13

Figure 95. Power Consumption Calculator default view . 128
Figure 96. Battery selection . 129
Figure 97. Building a power consumption sequence . 130
Figure 98. Step management functions . 130
Figure 99. Power consumption sequence: new step default view . 131
Figure 100. Edit Step window . 132
Figure 101. Enabling the transition checker option on an already configured sequence -

all transitions valid . 133
Figure 102. Enabling the transition checker option on an already configured sequence -

at least one transition invalid . 134
Figure 103. Transition checker option -show log . 134
Figure 104. Interpolated Power Consumption . 136
Figure 105. ADC selected in Pinout view. 137
Figure 106. Power Consumption Calculator Step configuration window:

ADC enabled using import pinout . 138
Figure 107. Power Consumption Calculator view after sequence building . 139
Figure 108. Sequence table management functions . 140
Figure 109. Power Consumption: Peripherals Consumption Chart . 141
Figure 110. Description of the Results area. 142
Figure 111. Peripheral power consumption tooltip. 144
Figure 112. Labels for pins generating define statements . 147
Figure 113. User constant generating define statements . 147
Figure 114. Duplicate labels . 147
Figure 115. HAL-based peripheral initialization: usart.c code snippet . 152
Figure 116. LL-based peripheral initialization: usart.c code snippet . 153
Figure 117. HAL versus LL : main.c code snippet . 153
Figure 118. extra_templates folder – default content. 155
Figure 119. extra_templates folder with user templates . 156
Figure 120. Project root folder with corresponding custom generated files . 156
Figure 121. User custom folder for templates . 157
Figure 122. Custom folder with corresponding custom generated files . 157
Figure 123. MCU selection . 158
Figure 124. Pinout view with MCUs selection . 159
Figure 125. Pinout view without MCUs selection window . 160
Figure 126. GPIO pin configuration . 161
Figure 127. Timer configuration . 161
Figure 128. Simple pinout configuration . 162
Figure 129. Save Project As window . 162
Figure 130. Generate Project Report - New project creation. 163
Figure 131. Generate Project Report - Project successfully created . 163
Figure 132. Clock tree view . 164
Figure 133. HSI clock enabled. 165
Figure 134. HSE clock source disabled . 165
Figure 135. HSE clock source enabled . 165
Figure 136. External PLL clock source enabled . 165
Figure 137. Configuration view . 167
Figure 138. Case of Peripheral and Middleware without configuration parameters. 167
Figure 139. Timer 3 configuration window . 168
Figure 140. Timer 3 configuration . 169
Figure 141. Enabling Timer 3 interrupt . 170
Figure 142. GPIO configuration color scheme and tooltip . 170
Figure 143. GPIO mode configuration . 171

List of figures UM1718

12/261 DocID025776 Rev 17

Figure 144. DMA Parameters configuration window . 172
Figure 145. FatFs disabled . 172
Figure 146. USB Host configuration . 173
Figure 147. FatFs over USB mode enabled . 173
Figure 148. Configuration view with FatFs and USB enabled . 173
Figure 149. FatFs peripheral instances . 174
Figure 150. FatFs define statements . 174
Figure 151. Project Settings and toolchain choice. 175
Figure 152. Project Settings menu - Code Generator tab . 176
Figure 153. Missing firmware package warning message . 177
Figure 154. Error during download . 177
Figure 155. Updater settings for download . 178
Figure 156. Updater settings with connection . 179
Figure 157. Downloading the firmware package . 179
Figure 158. Unzipping the firmware package . 180
Figure 159. C code generation completion message . 180
Figure 160. C code generation output folder . 181
Figure 161. C code generation output: Projects folder . 182
Figure 162. C code generation for EWARM . 183
Figure 163. STM32CubeMX generated project open in IAR IDE . 184
Figure 164. IAR options . 185
Figure 165. SWD connection . 185
Figure 166. Project building log . 186
Figure 167. User Section 2 . 186
Figure 168. User Section 4 . 186
Figure 169. Import Project menu . 188
Figure 170. Project Import status. 188
Figure 171. Board selection . 189
Figure 172. SDIO peripheral configuration . 190
Figure 173. FatFs mode configuration . 190
Figure 174. RCC peripheral configuration . 190
Figure 175. Clock tree view . 191
Figure 176. Project Settings menu - Code Generator tab . 191
Figure 177. C code generation completion message . 192
Figure 178. IDE workspace . 192
Figure 179. Power Consumption Calculation example . 198
Figure 180. VDD and battery selection menu . 199
Figure 181. Sequence table. 199
Figure 182. sequence results before optimization . 200
Figure 183. Step 1 optimization . 201
Figure 184. Step 5 optimization . 202
Figure 185. Step 6 optimization . 203
Figure 186. Step 7 optimization . 204
Figure 187. Step 8 optimization . 205
Figure 188. Step 10 optimization . 206
Figure 189. Power sequence results after optimizations . 207
Figure 190. Selecting NUCLEO_L053R8 board . 209
Figure 191. Selecting debug pins . 210
Figure 192. Selecting TIM2 clock source. 210
Figure 193. Selecting asynchronous mode for USART2 . 211
Figure 194. Checking pin assignment . 211
Figure 195. Configuring the MCU clock tree. 212

DocID025776 Rev 17 13/261

UM1718 List of figures

13

Figure 196. Configuring USART2 parameters . 213
Figure 197. Configuring TIM2 parameters . 214
Figure 198. Enabling TIM2 interrupt . 215
Figure 199. Project Settings menu. 216
Figure 200. Generating the code . 217
Figure 201. Checking the communication port . 218
Figure 202. Setting Tera Term port parameters . 219
Figure 203. Setting Tera Term port parameters . 219
Figure 204. Existing or new project pinout . 220
Figure 205. List of pinout compatible MCUs - partial match

with hardware compatibility. 221
Figure 206. List of Pinout compatible MCUs - exact and partial match . 221
Figure 207. Selecting a compatible MCU and importing the configuration . 222
Figure 208. Configuration imported to the selected compatible MCU . 222
Figure 209. Java Control Panel . 225
Figure 210. Pinout view - Enabling the RTC . 225
Figure 211. Pinout view - Enabling LSE and HSE clocks . 226
Figure 212. Pinout view - Setting LSE/HSE clock frequency. 226
Figure 213. Block mapping . 228
Figure 214. Block remapping . 229
Figure 215. Block remapping - example 1 . 230
Figure 216. Block remapping - example 2 . 231
Figure 217. Block inter-dependency - SPI signals assigned to PB3/4/5 . 232
Figure 218. Block inter-dependency - SPI1_MISO function assigned to PA6 233
Figure 219. One block = one peripheral mode - I2C1_SMBA function assigned to PB5. 234
Figure 220. Block remapping - example 2 . 235
Figure 221. Function remapping example . 235
Figure 222. Block shifting not applied . 236
Figure 223. Block shifting applied . 237
Figure 224. FreeRTOS HOOK functions to be completed by user . 241
Figure 225. LwIP 1.4.1 configuration . 242
Figure 226. LwIP 1.5 configuration . 243
Figure 227. STM32 microcontroller part numbering scheme . 245
Figure 228. STM32Cube Embedded Software package . 251

STM32Cube overview UM1718

14/261 DocID025776 Rev 17

1 STM32Cube overview

STMCube™ is an STMicroelectronics original initiative to ease developers life by reducing
development efforts, time and cost. STM32Cube covers STM32 portfolio.

STM32Cube includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization C code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeF2 for STM32F2 series and STM32CubeF4 for STM32F4 series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics

– All embedded software utilities coming with a full set of examples.

DocID025776 Rev 17 15/261

UM1718 Getting started with STM32CubeMX

260

2 Getting started with STM32CubeMX

2.1 Principles

Customers need to quickly identify the MCU that best meets their requirements (core
architecture, features, memory size, performance…). While board designers main concerns
are to optimize the microcontroller pin configuration for their board layout and to fulfill the
application requirements (choice of peripherals operating modes), embedded system
developers are more interested in developing new applications for a specific target device,
and migrating existing designs to different microcontrollers.

The time taken to migrate to new platforms and update the C code to new firmware drivers
adds unnecessary delays to the project. STM32CubeMX was developed within STM32Cube
initiative which purpose is to meet customer key requirements to maximize software reuse
and minimize the time to create the target system:

• Software reuse and application design portability are achieved through STM32Cube
firmware solution proposing a common Hardware Abstraction Layer API across STM32
portfolio.

• Optimized migration time is achieved thanks to STM32CubeMX built-in knowledge of
STM32 microcontrollers, peripherals and middleware (LwIP and USB communication
protocol stacks, FatFs file system for small embedded systems, FreeRTOS).

STM32CubeMX graphical interface performs the following functions:

• Fast and easy configuration of the MCU pins, clock tree and operating modes for the
selected peripherals and middleware

• Generation of pin configuration report for board designers

• Generation of a complete project with all the necessary libraries and initialization C
code to set up the device in the user defined operating mode. The project can be
directly open in the selected application development environment (for a selection of
supported IDEs) to proceed with application development (see Figure 1).

During the configuration process, STM32CubeMX detects conflicts and invalid settings and
highlights them through meaningful icons and useful tool tips.

Getting started with STM32CubeMX UM1718

16/261 DocID025776 Rev 17

Figure 1. Overview of STM32CubeMX C code generation flow

DocID025776 Rev 17 17/261

UM1718 Getting started with STM32CubeMX

260

2.2 Key features

STM32CubeMX comes with the following features:

• Project management

STM32CubeMX allows creating, saving and loading previously saved projects:

– When STM32CubeMX is launched, the user can choose to create a new project or
to load a previously saved project.

– Saving the project saves user settings and configuration performed within the
project in an .ioc file that will be used the next time the project will be loaded in
STM32CubeMX.

STM32CubeMX also allows importing previously saved projects in new projects.

STM32CubeMX projects come in two flavors:

– MCU configuration only: .ioc file are saved anywhere, next to other .ioc files.

– MCU configuration with C code generation: in this case .ioc files are saved in a
dedicated project folder along with the generated source C code. There can be
only one .ioc file per project.

• Easy MCU and STMicroelectronics board selection

When starting a new project, a dedicated window opens to select either a
microcontroller or an STMicroelectronics board from STM32 portfolio. Different filtering
options are available to ease the MCU and board selection.

• Easy pinout configuration

– From the Pinout view, the user can select the peripherals from a list and configure
the peripheral modes required for the application. STM32CubeMX assigns and
configures the pins accordingly.

– For more advanced users, it is also possible to directly map a peripheral function
to a physical pin using the Chip view. The signals can be locked on pins to prevent
STM32CubeMX conflict solver from moving the signal to another pin.

– Pinout configuration can be exported as a .csv file.

• Complete project generation

The project generation includes pinout, firmware and middleware initialization C code
for a set of IDEs. It is based on STM32Cube embedded software libraries. The
following actions can be performed:

– Starting from the previously defined pinout, the user can proceed with the
configuration of middleware, clock tree, services (RNG, CRC, etc...) and
peripheral parameters. STM32CubeMX generates the corresponding initialization
C code. The result is a project directory including generated main.c file and C
header files for configuration and initialization, plus a copy of the necessary HAL
and middleware libraries as well as specific files for the selected IDE.

– The user can modify the generated source files by adding user-defined C code in
user dedicated sections. STM32CubeMX ensures that the user C code is
preserved upon next C code generation (the user C code is commented if it is no
longer relevant for the current configuration).

– STM32CubeMX can generate user files by using user-defined freemarker .ftl
template files.

– From the Project settings menu, the user can select the development tool chain
(IDE) for which the C code has to be generated. STM32CubeMX ensures that the
IDE relevant project files are added to the project folder so that the project can be

Getting started with STM32CubeMX UM1718

18/261 DocID025776 Rev 17

directly imported as a new project within third party IDE (IAR™ EWARM, Keil™
MDK-ARM, Atollic® TrueSTUDIO and AC6 System Workbench for STM32).

• Power consumption calculation

Starting with the selection of a microcontroller part number and a battery type, the user
can define a sequence of steps representing the application life cycle and parameters
(choice of frequencies, enabled peripherals, step duration). STM32CubeMX Power
Consumption Calculator returns the corresponding power consumption and battery life
estimates.

• Clock tree configuration

STM32CubeMX offers a graphical representation of the clock tree as it can be found in
the device reference manual. The user can change the default settings (clock sources,
prescaler and frequency values). The clock tree is then updated accordingly. Invalid
settings and limitations are highlighted and documented with tool tips. Clock tree
configuration conflicts can be solved by using the solver feature. When no exact match
is found for a given user configuration, STM32CubeMX proposes the closest solution.

• Automatic updates of STM32CubeMX and STM32Cube firmware packages

STM32CubeMX comes with an updater mechanism that can be configured for
automatic or on-demand check for updates. It supports STM32CubeMX self-updates
as well as STM32Cube firmware library package updates. The updater mechanism
also allows deleting previously installed packages.

• Report generation

.pdf and .csv reports can be generated to document user configuration work.

2.3 Rules and limitations

• C code generation covers only peripheral and middleware initialization. It is based on
STM32Cube HAL firmware libraries.

• STM32CubeMX C code generation covers only initialization code for peripherals and
middlewares that use the drivers included in STM32Cube embedded software
packages. The code generation of some peripherals and middlewares, such as
cryptographic peripherals and StemWin graphic library, is not yet supported.

• Refer to Appendix A for a description of pin assignment rules.

• Refer to Appendix B for a description of STM32CubeMX C code generation design
choices and limitations.

DocID025776 Rev 17 19/261

UM1718 Installing and running STM32CubeMX

260

3 Installing and running STM32CubeMX

3.1 System requirements

3.1.1 Supported operating systems and architectures

• Windows® 7: 32-bit (x86), 64-bit (x64)

• Windows® 8: 32-bit (x86), 64-bit (x64)

• Windows® 10: 32-bit (x86), 64-bit (x64)

• Linux®: 32-bit (x86) and 64-bit (x64) (tested on RedHat, Ubuntu and Fedora)

Since STM32CubeMX is a 32-bit application, some versions of Linux 64-bit
distributions require to install 32-bit compliant packages such as ia32-libs.

• MacOS: 64-bit (x64) (tested on OS X Yosemite)

3.1.2 Memory prerequisites

• Recommended minimum RAM: 2 Gbytes.

3.1.3 Software requirements

The following software must be installed:

• For Windows and Linux, install Java Run Time Environment for 1.7.0_45 or later

If Java is not installed on your computer or if you have an old version, STM32CubeMX
installer will open the Java download web page and stop.

• For MacOS, install Java Development Kit 1.7.0_45 or later

• For Eclipse plug-in installation, install one of the following IDE:

– Eclipse IDE Juno (4.2)

– Eclipse Luna (4.4)

– Eclipse Kepler (4.3)

– Eclipse Mars (4.5)

3.2 Installing/uninstalling STM32CubeMX standalone version

3.2.1 Installing STM32CubeMX standalone version

To install STM32CubeMX, follow the steps below:

1. Download STM32CubeMX installation package from www.st.com/stm32cubemx.

2. Extract (unzip) stm32cubemx.zip whole package into the same directory.

3. Check your access rights and launch the installation wizard:

On windows:

a) Make sure you have administrators rights.

b) Double-click the SetupSTM32CubeMX-VERSION.exe file to launch the
installation wizard.

Installing and running STM32CubeMX UM1718

20/261 DocID025776 Rev 17

On Linux:

a) Make sure you have access rights to the target installation directory. You can run
the installation as root (or sudo) to install STM32CubeMX in shared directories.

b) Double-click (or launch from the console window) on the SetupSTM32CubeMX-
VERSION.linux file.

On MacOS:

a) Make sure you have administrators rights.

b) Double- click SetupSTM32CubeMX-VERSION application file to launch the
installation wizard.

4. Upon successful installation of STM32CubeMX on Windows, STM32CubeMX icon is
displayed on your desktop and STM32CubeMX application is available from the
Program menu. STM32CubeMX .ioc files are displayed with a cube icon. Double-click
them to open up them using STM32CubeMX.

5. Delete the content of the zip from your disk.

Note: If the proper version of the Java Runtime Environment (version 1.7_45 or newer) is not
installed, the wizard will propose to download it and stop. Restart STM32CubeMX
installation once Java installation is complete. Refer to Section 11: FAQ for issues when
installing the JRE.

When working on Windows, only the latest installation of STM32CubeMX will be enabled in
the program menu. Previous versions can be kept on your PC (not recommended) when
different installation folders have been specified. Otherwise, the new installation overwrites
the previous ones.

3.2.2 Installing STM32CubeMX from command line

There are 2 ways to launch an installation from a console window: either in console
interactive mode or via a script.

Interactive mode

To perform interactive installation, type the following command:

java –jar SetupSTM32CubeMX-4.14.0.exe –console

At each installation step, an answer is requested (see Figure 2 below).

DocID025776 Rev 17 21/261

UM1718 Installing and running STM32CubeMX

260

Figure 2. Example of STM32CubeMX installation in interactive mode

Installing and running STM32CubeMX UM1718

22/261 DocID025776 Rev 17

Auto-install mode

At end of an installation, performed either using STM32CubeMX graphical wizard or console
mode, it is possible to generate an auto-installation script containing user installation
preferences (see Figure 3 below):

Figure 3. STM32Cube Installation Wizard

You can then launch the installation just by typing the following command:
java –jar SetupSTM32CubeMX-4.14.0.exe auto-install.xml

DocID025776 Rev 17 23/261

UM1718 Installing and running STM32CubeMX

260

Figure 4. Auto-install command line

3.2.3 Uninstalling STM32CubeMX standalone version

Uninstalling STM32CubeMX on MacOS

To uninstall STM32CubeMX on MacOS, use the following command line:

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

Uninstalling STM32CubeMX on Linux

There are three means to uninstall STM32CubeMX on Linux:

• By using the following command line

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

• Through a Windows Explorer window:

a) Use a file explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.

Uninstalling STM32CubeMX on Windows

There are three means to uninstall STM32CubeMX on Windows:

• By using the following command line

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

• Through a Windows Explorer window:

a) Use a file explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.

• Through the Windows Control Panel:

a) Select Programs and Features from the Windows Control Panel to display the list
of programs installed on your computer.

b) Right-click STM32CubeMX and select uninstall.

Installing and running STM32CubeMX UM1718

24/261 DocID025776 Rev 17

3.3 Installing STM32CubeMX plug-in version

STM32CubeMX plug-in can be installed within Eclipse IDE development tool chain.
Installation related procedures are described in this section.

3.3.1 Downloading STM32CubeMX plug-in installation package

To download STM32CubeMX plug-in, follow the sequence below:

1. Go to http://www.st.com/stm32cubemx.

2. Download STM32CubeMX- Eclipse-plug-in .zip file to your local disk.

3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in

To install STM32CubeMX as an Eclipse IDE plug-in, follow the sequence below:

1. Launch the Eclipse environment.

2. Select Help > Install New Software from the main menu bar. The Available Software
window appears.

3. Click Add. The Add Repository window opens.

4. Click Archive. The Repository archive browser opens.

5. Select the STM32CubeMX- Eclipse-plug-in .zip file that you downloaded and click
Open (see Figure 5).

6. Click OK in the Add Repository dialog box,

7. Check STM32CubeMX_Eclipse_plug-in and click Next (see Figure 6).

8. Click Next in the Install Details dialog box.

9. Click ”I accept the terms of the license agreement” in the Review Licenses dialog box
and then click Finish.

10. Click OK in the Security Warning menu.

11. Click OK when requested to restart Eclipse IDE (see Section 3.4.2: Running
STM32CubeMX in command-line mode).

Figure 5. Adding STM32CubeMX plug-in archive

DocID025776 Rev 17 25/261

UM1718 Installing and running STM32CubeMX

260

Figure 6. Installing STM32CubeMX plug-in

3.3.3 Uninstalling STM32CubeMX as Eclipse IDE plug-in

To uninstall STM32CubeMX plug-in in Eclipse IDE, follow sequence below:

1. In Eclipse, right-click STM32CubeMX perspective Icon (see Figure 7) and select Close.

2. From Eclipse Help menu, select Install New Software.

3. Click Installed Software tab, then select STM32CubeMX and click Uninstall.

4. Click Finish in Uninstall Details menu (see Figure 8).

Figure 7. Closing STM32CubeMX perspective

Installing and running STM32CubeMX UM1718

26/261 DocID025776 Rev 17

Figure 8. Uninstalling STM32CubeMX plug-in

DocID025776 Rev 17 27/261

UM1718 Installing and running STM32CubeMX

260

3.4 Launching STM32CubeMX

3.4.1 Running STM32CubeMX as standalone application

To run STM32CubeMX as a standalone application on Windows:

• select STM32CubeMX from Program Files > ST Microelectronics > STM32CubeMX.

• or double-click STM32CubeMX icon on your desktop.

To run STM32CubeMX as a standalone application on Linux, launch the STM32CubeMX
executable from STM32CubeMX installation directory.

3.4.2 Running STM32CubeMX in command-line mode

To facilitate its integration with other tools, STM32CubeMX provides a command-line mode.
Using a set of commands, you can:
• Load an MCU

• Load an existing configuration

• Save a current configuration

• Set project parameters and generate corresponding code

• Generate user code from templates.

Three command-line modes are available:

• To run STM32CubeMX in interactive command-line mode, use the following command
line:

– On Windows:

java -jar STM32CubeMX.exe –i

– On Linux and MacOS:

java -jar STM32CubeMX –i

The “MX>” prompt is then displayed to indicate that the application is ready to accept
commands.

• To run STM32CubeMX in command-line mode getting commands from a script, use
the following command line:

– On Windows:

java -jar STM32CubeMX.exe –s <script filename>

– On Linux and MacOS:

java -jar STM32CubeMX –s <script filename>

All the commands to be executed must be listed in the script file. An example of script
file content is shown below:

load STM32F417VETx

project name MyFirstMXGeneratedProject

project toolchain "MDK-ARM v4"

project path C:\STM32CubeProjects\STM32F417VETx

project generate

exit

Installing and running STM32CubeMX UM1718

28/261 DocID025776 Rev 17

• To run STM32CubeMX in command-line mode getting commands from a scripts and
without UI, use the following command line:

– On Windows:

java -jar STM32CubeMX.exe –q <script filename>

– On Linux and MacOS:

java -jar STM32CubeMX –q <script filename>

Here again, the user can enter commands when the MX prompt is displayed.

See Table 1 for available commands.

Table 1. Command line summary

Command line Purpose Example

help
This command displays the list of
available commands

help

load <mcu>
This command loads the selected
MCU

load STM32F101RCTx

load STM32F101Z(F-G)Tx

config load <filename>
This command loads a previously
saved configuration

config load C:\Cube\ccmram\ccmram.ioc

config save <filename>
This command saves the current
configuration

config save
C:\Cube\ccmram\ccmram.ioc

config saveext <filename>

This command saves the current
configuration with all parameters,
including those for which values have
been kept to defaults (unchanged by
the user).

config saveext
C:\Cube\ccmram\ccmram.ioc

config saveas <filename>
This command saves the current
project under a new name

config saveas
C:\Cube\ccmram2\ccmram2.ioc

csv pinout <filename>

This command exports the current
pin configuration as a csv file. This
file could later be imported into a
board layout tool.

Csv pinout mypinout.csv

script <filename>
This command runs all commands in
the script file. There must be one
command per line.

script myscript.txt

project couplefilesbyip <0|1>

This code generation option allows
choosing between 0 for generating
the peripheral initializations in the
main or 1 for generating each
peripheral initialization in dedicated
.c/.h files.

project couplefilesbyip 1

DocID025776 Rev 17 29/261

UM1718 Installing and running STM32CubeMX

260

setDriver <Peripheral Name>
<HAL | LL>

For supported series,
STM32CubeMX can generate
peripheral initialization code based
on LL drivers or on HAL drivers.

This command line allows choosing,
for each peripheral, between HAL-
based and LL-based code
generation.

By default code generation is based
on HAL drivers.

setDriver ADC LL

setDriver I2C HAL

generate code <path>

This command generates only
“STM32CubeMX generated” code
and not a complete project that would
include STM32Cube firmware
libraries and Toolchains project files.

To generate a project, use “project
generate”.

generate code C:\mypath

set tpl_path <path>

This command sets the path to the
source folder containing the .ftl user
template files.

All the template files stored in this
folder will be used for code
generation.

set tpl_path C:\myTemplates\

set dest_path <path>

This command sets the path to the
destination folder that will hold the
code generated according to user
templates.

set dest_path C:\myMXProject\inc\

get tpl_path
This command retrieves the path
name of the user template source
folder

get tpl_path

get dest_path
This command retrieves the path
name of the user template
destination folder.

 get dest_path

project toolchain <toolchain>

This command specifies the tool
chain to be used for the project.
Then, use the “project generate”
command to generate the project for
that tool chain.

project toolchain EWARM

project toolchain “MDK-ARM V4”

project toolchain “MDK-ARM V5”

project toolchain TrueSTUDIO

project toolchain SW4STM32

project name <name>
This command specifies the project
name

project name ccmram

project path <path>
This command specifies the path
where to generate the project

project path C:\Cube\ccmram

project generate Generate the full project project generate

exit End STM32CubeMX process exit

Table 1. Command line summary (continued)

Command line Purpose Example

Installing and running STM32CubeMX UM1718

30/261 DocID025776 Rev 17

3.4.3 Running STM32CubeMX plug-in from Eclipse IDE

To run STM32CubeMX plug-in from Eclipse:

1. Launch Eclipse environment.

2. Once Eclipse IDE is open, click open new perspective: .

3. Select STM32CubeMX to open STM32CubeMX as a perspective (see Figure 9).

4. STM32CubeMX perspective opens (see Figure 10). Enter STM32CubeMX user
interface via the Welcome menus.

To run STM32CubeMX as a standalone application on MacOS, double-click the
STM32CubeMX icon on your desktop.

Figure 9. Opening Eclipse plug-in

DocID025776 Rev 17 31/261

UM1718 Installing and running STM32CubeMX

260

Figure 10. STM32CubeMX perspective

3.5 Getting STM32Cube updates

STM32CubeMX implements a mechanism to access the internet and to:

• Perform self-updates of STM32CubeMX and of the STM32Cube firmware packages
installed on the user computer

• Download new firmware packages and patches

Installation and update related sub-menus are available under the Help menu.

Off-line updates can also be performed on computers without internet access (see
Figure 16). This is done by browsing the filesystem and selecting available STM32Cube
firmware zip packages.

If the PC on which STM32CubeMX runs is connected to a computer network using a proxy
server, STM32CubeMX needs to connect to that server to access the internet, get self-
updates and download firmware packages. Refer to Section 3.5.1: Updater configuration for
a description of this connection configuration.

To view Windows default proxy settings, select Internet options from the Control panel and
select LAN settings from the Connections tab (see Figure 11).

Installing and running STM32CubeMX UM1718

32/261 DocID025776 Rev 17

Figure 11. Displaying Windows default proxy settings

Several proxy types exist and different computer network configurations are possible:

• Without proxy: the application directly accesses the web (Windows default
configuration).

• Proxy without login/password

• Proxy with login/password: when using an internet browser, a dialog box opens and
prompts the user to enter his login/password.

• Web proxies with login/password: when using an internet browser, a web page opens
and prompts the user to enter his login/password.

If necessary, contact your IT administrator for proxy information (proxy type, http address,
port).

STM32CubeMX does not support web proxies. In this case, the user will not be able to
benefit from the update mechanism and will need to manually copy the STM32 firmware
packages from http://www.st.com/stm32cube to the repository. To do it, follow the sequence
below:

1. Go to http://www.st.com/stm32cube and download the relevant STM32Cube firmware
package from the Associated Software section.

2. Unzip the zip package to your STM32Cube repository. Find out the default repository
folder location in the Updater settings tab as shown in Figure 12 (you might need to
update it to use a different location or name).

DocID025776 Rev 17 33/261

UM1718 Installing and running STM32CubeMX

260

3.5.1 Updater configuration

To perform STM32Cube new library package installation or updates, the tool must be
configured as follows:

1. Select Help > Updater Settings to open the Updater Settings window.

2. From the Updater Settings tab (see Figure 12)

a) Specify the repository destination folder where the downloaded packages will be
stored.

b) Enable/Disable the automatic check for updates.

Figure 12. Updater Settings window

3. In the Connection Parameters tab, specify the proxy server settings appropriate for
your network configuration by selecting a proxy type among the following possibilities:

– No Proxy (see Figure 13)

– Use System Proxy Parameters (see Figure 14)

On Windows, proxy parameters will be retrieved from the PC system settings.

Uncheck “Require Authentication” if a proxy server without login/password
configuration is used.

Installing and running STM32CubeMX UM1718

34/261 DocID025776 Rev 17

– Manual Configuration of Proxy Server (see Figure 15)

Enter the Proxy server http address and port number. Enter login/password
information or uncheck “Require Authentication” if a proxy server without
login/password configuration is used.

4. Uncheck Remember my credentials to prevent STM32CubeMX to save encrypted
login/password information in a file. This implies reentering login/password information
each time STM32CubeMX is launched.

5. Click the Check Connection button to verify if the connection works. A green check
mark appears to confirm that the connection operates
correctly :

Figure 13. Connection Parameters tab - No proxy

DocID025776 Rev 17 35/261

UM1718 Installing and running STM32CubeMX

260

Figure 14. Connection Parameters tab - Use System proxy parameters

Installing and running STM32CubeMX UM1718

36/261 DocID025776 Rev 17

Figure 15. Connection Parameters tab - Manual Configuration of Proxy Server

6. Select Help > Install New Libraries sub-menu to select among a list of possible
packages to install.

7. If the tool is configured for manual checks, select Help > Check for Updates to find out
about new tool versions or firmware library patches available to install.

3.5.2 Downloading new libraries

To download new libraries, follow the steps below:

1. Select Help > Install New Libraries to open the New Libraries Manager window.

If the installation was performed using STM32CubeMX, all the packages available for
download are displayed along with their version including the version currently installed
on the user PC (if any), and the latest version available from http://www.st.com.

If no Internet access is available at that time, choose “Local File”. Then, browse to
select the zip file of the desired STM32Cube firmware package that has been
previously downloaded from st.com. An integrity check is performed on the file to
ensure that it is fully supported by STM32CubeMX.

The package is marked in green when the version installed matches the latest version
available from http://www.st.com.

2. Click the checkbox to select a package then “Install Now” to start the download.

See Figure 16 for an example.

DocID025776 Rev 17 37/261

UM1718 Installing and running STM32CubeMX

260

Figure 16. New library Manager window

Installing and running STM32CubeMX UM1718

38/261 DocID025776 Rev 17

3.5.3 Downloading new library patches

To download new library patches, the procedure described in Section 3.5.2 applies.

A library patch, such as STM32Cube_FW_F7_1.4.1, can be easily identified by its version
number which third digit is non-null (eg ‘1’ for the 1.4.1 version).

The patch is not a complete library package but only the set of library files that need to be
updated. The patched files go on top of the original package (eg
STM32Cube_FW_F7_1.4.1 complements STM32Cube_FW_F7_1.4.0 package).

Prior to 4.17 version, STM32CubeMX copies the patches within the original baseline
directory (eg STM32Cube_FW_F7_V1.4.1 patched files are copied within the directory
called STM32Cube_FW_F7_V1.4.0).

Starting with STM32CubeMX 4.17, downloading a patch leads to the creation of a dedicated
directory. As an example, downloading STM32Cube_FW_F7_V1.4.1 patch creates the
STM32Cube_FW_F7_V1.4.1 directory that contains the original
STM32Cube_FW_F7_V1.4.0 baseline plus the patched files contained in
STM32Cube_FW_F7_V1.4.1 package.

Users can then choose to go on using the original package (without patches) for some
projects and upgrade to a patched version for others projects.

3.5.4 Removing libraries

Proceed as follows to clean up the repository from old library versions thus saving disk
space:

1. Select Help > Install New Libraries to open the New Libraries Manager window.

2. Click a green checkbox to select a package available in stm32cube repository.

3. Click the Remove Now button and confirm. A progress window then opens to show the
deletion status.

Refer to Figure 17 to Figure 19 for an example.

DocID025776 Rev 17 39/261

UM1718 Installing and running STM32CubeMX

260

Figure 17. Removing libraries

Figure 18. Removing library confirmation message

Installing and running STM32CubeMX UM1718

40/261 DocID025776 Rev 17

Figure 19. Library deletion progress window

3.5.5 Checking for updates

When the updater is configured for automatic checks, it regularly verifies if updates are
available. In this case, a green arrow icon appears on the tool bar.

When automatic checks have been disabled in the updater settings window, the user can
manually check if updates are available:

1. Click the icon to open the Update Manager window or Select Help > Check for
Updates. All the updates available for the user current installation are listed.

2. Click the check box to select a package, and then Install Now to download the update.

DocID025776 Rev 17 41/261

UM1718 STM32CubeMX User Interface

260

4 STM32CubeMX User Interface

STM32CubeMX user interface consists of a main window, a menu bar, a toolbar, four views
(Pinout, Configuration, Clock Configuration, Power Consumption Calculator) and a set of
help windows (MCUs selection, Update manager, About). All these menus are described in
the following sections.

For C code generation, although the user can switch back and forth between the different
configuration views, it is recommended to follow the sequence below:

1. Select the relevant features (peripherals, middlewares) and their operating modes from
the Pinout view.

2. Configure the clock tree from the clock configuration view.

In the Pinout view, configure the RCC peripheral by enabling the external clocks,
master output clocks, audio input clocks (when relevant for your application). This
automatically displays more options on the Clock tree view (see Figure 23).

3. Configure the parameters required to initialize the peripherals and middleware
operating modes from the configuration view.

4. Generate the initialization C code.

4.1 Welcome page

The Welcome page is the first window that opens up when launching STM32CubeMX
program. It remains open as long as the application is running. Closing it closes down the
application. Refer to Figure 20 and to Table 2 for a description of the Welcome page.

STM32CubeMX User Interface UM1718

42/261 DocID025776 Rev 17

Figure 20. STM32CubeMX Welcome page

Table 2. Welcome page shortcuts

Name Description

New Project
This shortcut launches STM32CubeMX new project creation by opening
the New project window (select an MCU from the MCU selector tab or a
board configuration from the Board selector tab).

Load Project

This shortcut opens a browser window to select a previously saved
configuration (.ioc file) and loads it.

When loading a project created with an older STM32CubeMX version, the
user can either select migrate to migrate it to the latest STM32CubeMX
available database and STM32Cube firmware version or continue.

Caution: Prior to STM32CubeMX 4.17, clicking continue still upgrades
to the latest database "compatible" with the SMT32Cube
firmware version used by the project.
Starting from STM32CubeMX 4.17, clicking continue keeps the
database used to create the project untouched. If the required
database version is not available on the computer, it will be
automatically downloaded.

Caution: When upgrading to a new version of STM32CubeMX, make
sure to always backup your projects before loading the
new project (especially when the project includes user
code).

Help This shortcut opens the user manual.

DocID025776 Rev 17 43/261

UM1718 STM32CubeMX User Interface

260

4.2 New project window

This window shows two tabs to choose from:

• The MCU selector tab offering a list of target processors

• A Board selector tab showing a list of STMicroelectronics boards.

The MCU selector allows filtering on various criteria: series, lines, packages, peripherals
and additional MCU characteristics such as memory size or number of I/Os (see Figure 21).

The Board selector allows filtering on STM32 board types, series and peripherals (see
Figure 22). Only the default board configuration is proposed. Alternative board
configurations obtained by reconfiguring jumpers or by using solder bridges are not
supported.

When a board is selected, the Pinout view is initialized with the relevant MCU part number
along with the pin assignments for the LCD, buttons, communication interfaces, LEDs,
etc...(see Figure 24). Optionally, the user can choose to initialize it with the default
peripheral modes (see Figure 25).

When a board configuration is selected, the signals change to 'pinned', i.e. they cannot be
moved automatically by STM32CubeMX constraint solver (user action on the peripheral
tree, such as the selection of a peripheral mode, will not move the signals). This ensures
that the user configuration remains compatible with the board.

STM32CubeMX User Interface UM1718

44/261 DocID025776 Rev 17

Figure 21. New Project window - MCU selector

DocID025776 Rev 17 45/261

UM1718 STM32CubeMX User Interface

260

Figure 22. New Project window - board selector

STM32CubeMX User Interface UM1718

46/261 DocID025776 Rev 17

4.3 Main window

Once an STM32 part number or a board has been selected or a previously saved project
has been loaded, the main window displays all STM32CubeMX components and menus
(see Figure 23). Refer to Section 4.3 for a detailed description of the toolbar and menus.

Figure 23. STM32CubeMX Main window upon MCU selection

DocID025776 Rev 17 47/261

UM1718 STM32CubeMX User Interface

260

Selecting a board while keeping the peripheral default modes option unchecked,
automatically sets the pinout for this board. However, only the pins set as GPIOs are
marked as configured, i.e. highlighted in green, while no peripheral mode is set. The user
can then manually select from the peripheral tree the peripheral modes required for his
application (see Figure 24).

Figure 24. STM32CubeMX Main window upon board selection
(Peripheral default option unchecked)

STM32CubeMX User Interface UM1718

48/261 DocID025776 Rev 17

Selecting a board with the peripheral default modes option checked, automatically sets both
the pinout and the default modes for the peripherals available on the board. This means that
STM32CubeMX will generate the C initialization code for all the peripherals available on the
board and not only for those relevant to the user application (see Figure 25).

Figure 25. STM32CubeMX Main window upon board selection
(Peripheral default option checked)

DocID025776 Rev 17 49/261

UM1718 STM32CubeMX User Interface

260

4.4 Toolbar and menus

The following menus are available from STM32CubeMX menu bar:

• File menu

• Project menu

• Pinout menu (displayed only when the Pinout view has been selected)

• Window menu

• Help menu

STM32CubeMX menus and toolbars are described in the sections below.

4.4.1 File menu

Refer to Table 3 for a description of the File menu and icons.

Table 3. File menu functions

Icon Name Description

New Project
Opens a new project window showing all supported MCUs and
well as a set of STMicroelectronics boards to choose from

Load Project
…

Loads an existing STM32CubeMX project configuration by
selecting an STM32CubeMX configuration .ioc file.

Caution: When upgrading to a new version of
STM32CubeMX, make sure to always backup your
projects before loading the new project (especially
when the project includes user code).

Import Project
…

Opens a new window to select the configuration file to be imported
as well as the import settings.

The import is possible only if you start from an empty MCU
configuration. Otherwise, the menu is disabled.

A status window displays the warnings or errors detected when
checking for import conflicts. The user can then decide to cancel
the import.

Save Project
as …

Saves current project configuration (pinout, clock tree, peripherals,
middlewares, Power Consumption Calculator) as a new project.
This action creates an .ioc file with user defined name and located
in the destination folder

Save Project Saves current project

No icon Close Project Closes current project and switch back to the welcome page

No icon
Recent

Projects >
Displays the list of five most recently saved projects

No icon Exit Proposes to save the project if needed then close the application

STM32CubeMX User Interface UM1718

50/261 DocID025776 Rev 17

4.4.2 Project menu

Refer to Table 4 for a description of the Project menu and icons.

4.4.3 Pinout menu

The Pinout menu and sub-menus shortcuts are available only when the Pinout tab is
selected (see Figure 26). They are hidden otherwise (see Figure 27). Refer to Table 5 for a
description of the Pinout menu and icons.

Figure 26. Pinout menus (Pinout tab selected)

Table 4. Project menu

Icon Name Description

Generate Code

This menu generates C initialization C code for current
configuration (pinout, clocks, peripherals and middleware).
Opens a window for project settings if they have not been
defined previously.

Note: It is recommended to backup the current projects when
upgrading to a new version of STM32CubeMX. The user
will be prompted to migrate to a new firmware library
version if any is available. Select "Continue" to keep the
previously used version.

Generate
Report(1)

1. If the project was previously saved, the reports are generated at the same location as the project
configuration .ioc file. Otherwise, the user can choose the destination folder, and whether to save the
project configuration as an .ioc file or not.

This menu generates current project configuration as a pdf file
and a text file.

Settings
This menu opens the project settings window to configure
project name, folder, select a toolchain and C code generation
options

DocID025776 Rev 17 51/261

UM1718 STM32CubeMX User Interface

260

Figure 27. Pinout menus (Pinout tab not selected)

Table 5. Pinout menu

Icon Name Description

Undo Undoes last configuration steps (one by one)

Redo Redoes steps that have been undone (one by one)

No icon
Pins/Signals

Options

Opens a window showing the list of all the configured pins
together with the name of the signal on the pin and a Label field
allowing the user to specify a label name for each pin of the list.
For this menu to be active, at least one pin must have been
configured.

Click the pin icon to pin/unpin signals individually.

Select multiple rows then right click to open contextual menu
and select action to pin or unpin all selected signals at once.

Click column header names to sort alphabetically by name or
according to placement on MCU.

Pinout search
field

Allows the user to search for a pin name, signal name or signal
label in the Pinout view. When it is found, the pin or set of pins
that matches the search criteria blinks on the Chip view. Click
the Chip view to stop blinking.

Show user
labels

Allows showing on the Chip view, the user-defined labels
instead of the names of the signals assigned to the pins.

No icon Clear Pinouts

Clears user pinout configuration in the Pinout window.

Note that this action puts all configured pins back to their reset
state and disables all the peripheral and middleware modes
previously enabled (whether they were using signals on pins or
not).

No icon
Clear Single

Mapped Signals
Clears signal assignments to pins for signals that have no
associated mode (highlighted in orange and not pinned).

No icon
Set unused

GPIOs

Opens a window to specify the number of GPIOs to be
configure among the total number of GPIO pins that are not
used yet. Specify their mode: Input, Output or Analog
(recommended configuration to optimize power consumption).

Caution: Before using this menu, make sure the debug pins
(available under SYS peripheral) are set to access
microcontroller debug facilities.

No icon
Reset used

GPIOs
Opens a window to specify the number of GPIOs to be freed
among the total number of GPIO pins that are configured.

STM32CubeMX User Interface UM1718

52/261 DocID025776 Rev 17

4.4.4 Window menu

The Window menu allows to access the Outputs function (see Table 6).

Generate csv
text pinout file

Generates pin configuration as a .csv text file

No Icon

List pinout
compatible

MCUs

Provides a list of MCUs that best match the pin configuration of
the current project. The matching can be:

– An exact match

– A partial match with hardware compatibility: pin locations are
the same, pin names may have been changed

– A partial match without hardware compatibility: all signals
could be mapped but not all at the same pin location

Refer to Section 10: Tutorial 5: exporting current project
configuration to a compatible MCU for details on how to use
this feature.

Collapse All Collapses the Peripheral/Middleware tree view

Disable Modes

Resets to “Disabled” all peripherals and middleware modes that
have been enabled. The pins configured in these modes (green
color) are consequently reset to “Unused” (gray color).
Peripheral and middleware labels change from green to black
(when unused) or gray (when not available).

Expand All
Expands the Peripheral/Middleware tree view to display all
functional modes.

Zooming in Zooms in the chip pinout diagram

Best Fit Adjusts the chip pinout diagram to the best fit size

Zooming out Zooms out the chip pinout diagram

Keep current
signals

Placement

Available from toolbar only.

Prevents moving pin assignments to match a new peripheral
operating mode. It is recommended to use the new pinning
feature that can block each pin assignment individually and
leave this checkbox unchecked.

Table 5. Pinout menu (continued)

Icon Name Description

Table 6. Window menu

Name Description

Outputs

Opens the MCUs selection window at the bottom of STM32CubeMX Main
window.

Opens two tabs at the bottom of STM32CubeMX main window:

– MCUs selection tab that lists the MCUs that match the user criteria selected
via the MCU selector.

– Outputs tab that displays STM32CubeMX messages, warnings and errors
encountered upon users actions.

DocID025776 Rev 17 53/261

UM1718 STM32CubeMX User Interface

260

4.4.5 Help menu

Refer to Table 7 for a description of the Help menu and icons.

4.5 Output windows

4.5.1 MCUs selection pane

This window lists all the MCUs of a given family that match the user criteria (series,
peripherals, package..) when an MCU was selected last.

Note: Selecting a different MCU from the list resets the current project configuration and switches
to the new MCU. The user will be prompted to confirm this action before proceeding.

Figure 28. MCU selection menu

Table 7. Help menu

Icons Name Description

Help Content Opens the STM32CubeMX user manual

About... Shows version information

Check for Updates
Shows the software and firmware release updates available for
download.

Install New Libraries
Shows all STM32CubeMX and firmware releases available for
installation. Green check box indicates which ones are already
installed on you PC and up-to-date.

Updater Settings...

Opens the updater settings window to configure manual
versus automatic updates, proxy settings for internet
connections, repository folder where the downloaded software
and firmware releases will be stored.

STM32CubeMX User Interface UM1718

54/261 DocID025776 Rev 17

This window can be shown/hidden by selecting/unselecting Outputs from the Window
menu.

4.5.2 Output pane

This pane displays a non exhaustive list of the actions performed, errors and warnings
raised (see Figure 29).

Figure 29. Output pane

4.6 Import Project window

The Import Project menu eases the porting of a previously-saved configuration to another
MCU.

By default the following settings are imported:

• Pinout tab: MCU pins and corresponding peripheral modes.The import fails if the same
peripheral instances are not available in the target MCU.

• Clock configuration tab: clock tree parameters.

• Configuration tab: peripherals and middleware libraries initialization parameters.

• Project settings: choice of toolchain and code generation options.

To import a project, proceed as follows:

1. Select the Import project icon that appears under the File menu after starting a
New Project and once an MCU has been selected.

The menu remains active as long as no user configuration settings are defined for the
new project, that is just after the MCU selection. It is disabled as soon as a user action
is performed on the project configuration.

2. Select File > Import Project for the dedicated Import project window to open. This
window allows to specify the following options:

– The STM32CubeMX configuration file (.ioc) pathname of the project to import on
top of current empty project.

– Whether to import the configuration defined in the Power Consumption Calculator
tab or not.

– Whether to import the project settings defined through the Project > Settings
menu: IDE selection, code generation options and advanced settings.

DocID025776 Rev 17 55/261

UM1718 STM32CubeMX User Interface

260

– Whether to import the project settings defined through the Project > Settings
menu: IDE selection and code generation options.

– Whether to attempt to import the whole configuration (Automatic import) or only a
subset (Manual Import).

a) Automatic project import (see Figure 30)

Figure 30. Automatic project import

b) Manual project import

In this case, checkboxes allow to manually select the set of peripherals (see
Figure 31).

Select the Try Import option to attempt importing.

STM32CubeMX User Interface UM1718

56/261 DocID025776 Rev 17

Figure 31. Manual project import

The Peripheral List indicates:

– The peripheral instances configured in the project to be imported

– The peripheral instances, if any exists for the MCU currently selected, to which the
configuration has to be imported. If several peripheral instances are candidate for
the import, the user needs to choose one.

Conflicts might occur when importing a smaller package with less pins or a lower-end
MCU with less peripheral options. Click the Try Import button to check for such

DocID025776 Rev 17 57/261

UM1718 STM32CubeMX User Interface

260

conflicts: the Import Status window and the Peripheral list get refreshed to indicate
errors, warnings and whether the import has been successful or not:

– Warning icons indicate that the user has selected a peripheral instance more than
once and that one of the import requests will not be performed. Figure 32 shows
an example where the ADC1 instance has been selected twice.

– A cross sign indicates that there is a pinout conflict and that the configuration can
not be imported as such. In Figure 32, the SPI6 instance configuration can not be
imported on SPI3 because it conflicts with the previously selected SPI1
configuration.

The manual import can be used to refine import choices and resolve the issues raised
by the import trial. Figure 33 shows how to complete the import successfully, that is, in
this case, by unselecting the request for ADC2 and SPI1 imports.

The Show View function allows switching between the different configuration tabs
(pinout, clock tree, peripheral configuration) for checking influence of the "Try Import"
action before actual deployment on current project (see Figure 33).

STM32CubeMX User Interface UM1718

58/261 DocID025776 Rev 17

Figure 32. Import Project menu - Try import with errors

DocID025776 Rev 17 59/261

UM1718 STM32CubeMX User Interface

260

Figure 33. Import Project menu - Successful import after adjustments

3. Choose OK to import with the current status or Cancel to go back to the empty project
without importing.

Upon import, the Import icon gets grayed since the MCU is now configured and it is no
more possible to import a non-empty configuration.

STM32CubeMX User Interface UM1718

60/261 DocID025776 Rev 17

4.7 Set unused / Reset used GPIOs windows

These windows allow configuring several pins at a time in the same GPIO mode.

To open them:

• Select Pinout > Set unused GPIOs from the STM32CubeMX menu bar.

Note: The user selects the number of GPIOs and lets STM32CubeMX choose the actual pins to
be configured or reset, among the available ones.

Figure 34. Set unused pins window

• Select Pinout > Reset used GPIOs from the STM32CubeMX menu bar.

Depending whether the Keep Current Signals Placement option is checked or not on
the toolbar, STM32CubeMX conflict solver will be able to move or not the GPIO signals
to other unused GPIOs:

– When Keep Current Signals Placement is off (unchecked), STM32CubeMX
conflict solver can move the GPIO signals to unused pins in order to fit in another
peripheral mode.

– When Keep Current Signals Placement is on (checked), GPIO signals will not be
moved and the number of possible peripheral modes becomes limited.

Refer to Figure 36 and Figure 37 and check the limitation in available peripheral
modes.

Figure 35. Reset used pins window

DocID025776 Rev 17 61/261

UM1718 STM32CubeMX User Interface

260

Figure 36. Set unused GPIO pins with Keep Current Signals Placement checked

STM32CubeMX User Interface UM1718

62/261 DocID025776 Rev 17

Figure 37. Set unused GPIO pins with Keep Current Signals Placement unchecked

4.8 Project Settings window

This Project Settings windows includes 3 tabs:

• A general project setting tab allowing to specify the project name, the location, the
toolchain, and the firmware version.

• A code generation tab allowing to set code generation options such as the location of
peripheral initialization code, library copy/link options, and to select templates for
customized code.

• An advanced settings tab dedicated to ordering STM32CubeMX initialization function
calls.

There are several ways to open the Project Settings window:

1. By selecting Project > Settings from the STM32CubeMX menu bar (see Figure 38).
The code generation will then be generated in the project folder tree shown in
Figure 39.

2. By clicking Project > Generate code for the first time.

3. By selecting Save As for a project that includes C code generation (and not only pin
configuration).

DocID025776 Rev 17 63/261

UM1718 STM32CubeMX User Interface

260

Figure 38. Project Settings window

STM32CubeMX User Interface UM1718

64/261 DocID025776 Rev 17

Figure 39. Project folder

4.8.1 Project tab

The Project tab of the Project Settings window allows configuring the following options (see
Figure 38):

• Project settings: project name, location, toolchain folder for toolchain specific
generated files, and toolchain to be used for project generation.

Selecting Other Toolchains (GPDSC) generates a gpdsc file. The gpdsc file provides a
generic description of the project, including the list and paths of drivers and other files
(such as startup files) that are required for building the project. This allows extending
STM32CubeMX project generation to any toolchain supporting gpdsc since the
toolchain will be able to load a STM32CubeMX generated C project by processing the
gpdsc file information. To standardize the description of embedded projects, the gpdsc
solution is based on CMSIS-PACK.

• Additional project settings for SW4STM32 and Atollic TrueSTUDIO toolchains:

Select the optional Generate under root checkbox to generate the toolchain project
files in STM32CubeMX user project root folder or unselect it to generate them under a
dedicated toolchain folder.

STM32CubeMX project generation under the root folder allows to benefit from the
following Eclipse features when using Eclipse-based IDEs such as SW4STM32 and
TrueStudio:

– Optional copy of the project into the Eclipse workspace when importing a project.

– Use of source control systems such as GIT or SVN from the Eclipse workspace.

However, it shall be noted that choosing to copy the project into workspace will prevent
any further synchronization between changes done in Eclipse and changes done in
STM32CubeMX as there will be 2 different copies of the project.

DocID025776 Rev 17 65/261

UM1718 STM32CubeMX User Interface

260

• Linker settings: value of minimum heap and stack sizes to be allocated for the
application. The default values proposed are 0x200 and 0x400 for heap and stack
sizes, respectively. These values may need to be increased when the application uses
middleware stacks.

• Firmware package selection when more than one version is available (this is the case
when successive versions implement the same API and support the same MCUs). By
default, the latest available version is used.

• Firmware location selection option

The default location is the location specified under the menu Help > updater settings.

Unselecting the Use Default Firmware Location checkbox allows specifying a
different path for the firmware that will be used for the project (see Figure 40).

Figure 40. Selecting a different firmware location

STM32CubeMX User Interface UM1718

66/261 DocID025776 Rev 17

The new location should contain at least a Drivers directory containing the HAL and
CMSIS drivers from the relevant STM32Cube firmware package. An error message
pops up if the folders cannot be found (see Figure 41).

Figure 41. Firmware location selection error message

To reuse the same Drivers folder across all projects that use the same firmware
location, select the Add the library files as reference from the Code generator tab
allows (see Figure 42).

Figure 42. Recomended new firmware repository structure

Caution: STM32CubeMX manages firmware updates solely for this default location. Choosing
another location will prevent the user from benefiting from automatic updates. The user
must manually copy new driver versions to you project folder.

DocID025776 Rev 17 67/261

UM1718 STM32CubeMX User Interface

260

4.8.2 Code Generator tab

The Code Generator tab allows specifying the following code generation options (see
Figure 43):

• STM32Cube Firmware Library Package option

• Generated files options

• HAL settings options

• Custom code template options

STM32Cube Firmware Library Package option

The following actions are possible:

• Copy all used libraries into the project folder

STM32CubeMX will copy to the user project folder, the drivers libraries (HAL, CMSIS)
and the middleware libraries relevant to the user configuration (e.g. FatFs, USB, ..).

• Copy only the necessary library files:

STM32CubeMX will copy to the user project folder only the library files relevant to the
user configuration (e.g., SDIO HAL driver from the HAL library,…).

• Add the required library as referenced in the toolchain project configuration file

By default, the required library files are copied to the user project. Select this option for
the configuration file to point to files in STM32CubeMX repository instead: the user
project folder will not hold a copy of the library files but only a reference to the files in
STM32CubeMX repository.

Generated files options

This area allows defining the following options:

• Generate peripheral initialization as a pair of .c/.h files or keep all peripheral
initializations in the main.c file.

• Backup previously generated files in a backup directory

The .bak extension is added to previously generated .c/.h files.

Keep user code when regenerating the C code.

This option applies only to user sections within STM32CubeMX generated files. It does
not apply to the user files that might have been added manually or generated via ftl
templates.

• Delete previously generated files when these files are no longer needed by the current
configuration. For example, uart.c/.h file are deleted if the UART peripheral, that was
enabled in previous code generation, is now disabled in current configuration.

HAL settings options

This area allows selection one HAL settings options among the following:

• Set all free pins as analog to optimize power consumption

• Enable/disable Use the Full Assert function: the Define statement in the
stm32xx_hal_conf.h configuration file will be commented or uncommented,
respectively.

STM32CubeMX User Interface UM1718

68/261 DocID025776 Rev 17

Custom code template options

To generate custom code, click the Settings button under Template Settings, to open the
Template Settings window (see Figure 44).

The user will then be prompted to choose a source directory to select the code templates
from, and a destination directory where the corresponding code will be generated.

The default source directory points to the extra_template directory, within STM32CubeMX
installation folder, which is meant for storing all user defined templates. The default
destination folder is located in the user project folder.

STM32CubeMX will then use the selected templates to generate user custom code (see
Section 5.3: Custom code generation). Figure 45 shows the result of the template
configuration shown on Figure 44: a sample.h file is generated according to sample_h.ftl
template definition.

Figure 43. Project Settings Code Generator

DocID025776 Rev 17 69/261

UM1718 STM32CubeMX User Interface

260

Figure 44. Template Settings window

STM32CubeMX User Interface UM1718

70/261 DocID025776 Rev 17

Figure 45. Generated project template

4.8.3 Advanced Settings tab

Figure 46 shows the peripheral and/or middleware selected for the project.

Ordering initialization function calls

By default, the generated code calls the peripheral/middleware initialization functions in the
order in which peripherals and middleware have been enabled in STM32CubeMX. The user
can then choose to re-order them by modifying the Rank number using the up and down
arrow buttons.

The reset button allows switching back to alphabetical order.

Disabling calls to initialization functions

If the “Not to be generated” checkbox is checked, STM32CubeMX does not generate the
call to the corresponding peripheral initialization function. It is up to the user code to do it.

Choosing between HAL and LL based code generation for a given peripheral

Starting from STM32CubeMX 4.17 and STM32L4 series, STM32CubeMX offers the
possibility for some peripherals to generate initialization code based on Low Layer (LL)
drivers instead of HAL drivers: the user can choose between LL and HAL driver in the
Driver Selector section. The code will be generated accordingly (see Section 5.2:
STM32Cube code generation using Low Layer drivers).

DocID025776 Rev 17 71/261

UM1718 STM32CubeMX User Interface

260

Figure 46. Advanced Settings window

4.9 Update Manager windows

Three windows can be accessed through the Help menu available from STM32CubeMX
menu bar:

1. Select Help > Check for updates to open the Check Update Manager window and
find out about the latest software versions available for download.

2. Select Help > Install new libraries to open the New Libraries Manager window and
find out about the software packages available for download. It also allows removing
previously installed software packages.

3. Select Help > Updater settings to open the Updater settings window and configure
update mechanism settings (proxy settings, manual versus automatic updates,
repository folder where STM32Cube software packages are stored).

STM32CubeMX User Interface UM1718

72/261 DocID025776 Rev 17

4.10 About window

This window displays STM32CubeMX version information.

To open it, select Help > About from the STM32CubeMX menu bar.

Figure 47. About window

4.11 Pinout view

The Pinout view helps the user configuring the MCU pins based on a selection of
peripherals/middleware and of their operating modes.

Note: For some middleware (USB, FATS, LwIP), a peripheral mode must be enabled before
activating the middleware mode. Tooltips guide the user through the configuration.

For FatFs, a user-defined mode has been introduced. This allows STM32CubeMX to
generate FatFs code without a predefined peripheral mode. Then, it will be up to the user to
connect the middleware with a user-defined peripheral by updating the generated
user_diskio.c/.h driver files with the necessary code.

Since STM32 MCUs allow a same pin to be used by different peripherals and for several
functions (alternate functions), the tool searches for the pinout configuration that best fits the
set of peripherals selected by the user. STM32CubeMX highlights the conflicts that cannot
be solved automatically.

The Pinout view left panel shows the Peripheral and Middleware tree and the right pane,
a graphical representation of the pinout for the selected package (e.g. BGA, QFP...) where
each pin is represented with its name (e.g. PC4) and its current alternate function
assignment if any.

DocID025776 Rev 17 73/261

UM1718 STM32CubeMX User Interface

260

STM32CubeMX offers two ways to configure the microcontroller:

• From the Peripheral and Middleware tree by clicking the peripheral names and
selecting the operating modes (see Section 4.11.1: Peripheral and Middleware tree
pane).

• For advanced users, by clicking a pin on the Chip view to manually map it to a
peripheral function (see Section 4.11.2: Chip view).

In addition, selecting Pinout > Set unused GPIOs allows configuring in one shot several
unused pins in a given GPIO mode.

Note: The Pinout view is automatically refreshed to display the resulting pinout configuration.

Pinout relevant menus and shortcuts are available when the Pinout view is active (see the
menu dedicated sections for details on the Pinout menus).

Figure 48. STM32CubeMX Pinout view

STM32CubeMX User Interface UM1718

74/261 DocID025776 Rev 17

4.11.1 Peripheral and Middleware tree pane

In this pane, the user can select the peripherals, services (DMA, RCC,...), middleware in the
modes corresponding to the application.

Note: The peripheral tree panel is also accessible from the Configuration view. However, only the
peripherals and middleware modes without influence on the pinout can be configured
through this menu.

Icons and color schemes

Table 8 shows the icons and color scheme used in the Peripheral and Middleware tree
pane.

Table 8. Peripheral and Middleware tree pane - icons and color scheme

Display Peripheral status

The peripheral is not configured (no mode is set) and all
modes are available.

The peripheral is configured (at least one mode is set) and all
other modes are available

The peripheral is configured (one mode is set) and at least
one of its other modes is unavailable.

The peripheral is not configured (no mode is set) and at least
one of its modes is unavailable.

The peripheral is not configured (no mode is set) and no
mode is available. Move the mouse over the peripheral name
to display the tooltip describing the conflict.

Available peripheral mode configurations are shown in plain
black.

The warning yellow icon indicates that at least one mode
configuration is no longer available.

When no more configurations are left for a given peripheral
mode, this peripheral is highlighted in red.

Some modes depends on the configuration of other
peripherals or middleware modes. A tooltip explains the
dependencies when the conditions are not fulfilled.

DocID025776 Rev 17 75/261

UM1718 STM32CubeMX User Interface

260

4.11.2 Chip view

The Chip view shows, for the selected part number:

• The MCU in a specific package (BGA, LQFP…)

• The graphical representation of its pinout, each pin being represented with its name
(e.g. PC4: pin 4 of GPIO port C) and its current function assignment (e.g.
ETH_MII_RXD0) (see Figure 49 for an example).

The Chip view is automatically refreshed to match the user configuration performed via the
peripheral tree. It shows the pins current configuration state.

Assigning pins through the Chip view instead of the peripheral pane requires a good
knowledge of the MCU since each individual pin can be assigned to a specific function.

Tips and tricks

• Use the mouse wheel to zoom in and out.

• Click and drag the chip diagram to move it. Click best fit to reset it to best suited
position and size (see Table 5).

• Use Pinout > Generic CSV pinout text file to export the pinout configuration into text
format.

• Some basic controls, such as insuring blocks of pins consistency, are built-in. See
Appendix A: STM32CubeMX pin assignment rules for details.

Figure 49. Chip view

STM32CubeMX User Interface UM1718

76/261 DocID025776 Rev 17

Icons and color schemes

Table 9 shows the icons and color scheme used in the Chip view.

Table 9. STM32CubeMX Chip view - Icons and color scheme

Display Pin information

Tooltip indicates the selected pin current configuration: alternate function
name, Reset state or GPIO mode.

Move your mouse over the pin name to display it.

When a pin features alternate pins corresponding to the function currently
selected, a popup message prompts the user to perform a CTRL + click to
display them.

The alternate pins available are highlighted in blue.

List of alternate functions that can be selected for a given pin. By default,
no alternate function is configured (pin in reset state).

Click the pin name to display the list.

When a function has been mapped to the pin, it is highlighted in blue.

When it corresponds to a well configured peripheral mode, the list caption
is shown in green.

Boot and reset pins are highlighted in khaki. Their configuration cannot be
changed.

DocID025776 Rev 17 77/261

UM1718 STM32CubeMX User Interface

260

Tooltips

Move the mouse over peripherals and peripheral modes that are unavailable or partially
available to display the tooltips describing the source of the conflict that is which pins are
being used by which peripherals.

As an example (see Figure 50), the Ethernet (ETH) peripheral is no longer available
because there is no possible mode configuration left. A tooltip indicates to which signal are
assigned the pins required for this mode (ADC1-IN0 signal, USART3 synchronous signal,
etc...).

Figure 50. Red highlights and tooltip example: no mode configuration available

In the next example (see Figure 51), the SDIO peripheral is partially available because at
least one of its modes is unavailable: the necessary pins are already assigned to the I2C
mode of the I2C3 peripheral.

Power dedicated pins are highlighted in yellow. Their configuration cannot
be changed.

Non-configured pins are shown in gray (default state).

When a signal assignment corresponds to a peripheral mode without
ambiguity, the pin color switches to green.

 When the signal assignment does not correspond to a valid peripheral
mode configuration, the pin is shown in orange. Additional pins need to be
configured to achieve a valid mode configuration.

When a signal assignment corresponds to a peripheral mode without
ambiguity, the pins are shown in green.

As an example, assigning the PF2 pin to the I2C2_SMBA signal matches
to I2C2 mode without ambiguity and STM32CubeMX configures
automatically the other pins (PF0 and PF1) to complete the pin mode
configuration.

Table 9. STM32CubeMX Chip view - Icons and color scheme (continued)

Display Pin information

STM32CubeMX User Interface UM1718

78/261 DocID025776 Rev 17

Figure 51. Orange highlight and tooltip example: some configurations unavailable

In this last example (see Figure 52) I2C2 peripheral is unavailable because there is no
mode function available. A tooltip shows for each function where all the remapped pins have
been allocated (USART3 synchronous mode).

Figure 52. Tooltip example: all configurations unavailable

4.11.3 Chip view advanced actions

Manually modifying pin assignments

To manually modify a pin assignment, follow the sequence below:

1. Click the pin in the Chip view to display the list of all other possible alternate functions
together with the current assignment highlighted in blue (see Figure 53).

2. Click to select the new function to assign to the pin.

Figure 53. Modifying pin assignments from the Chip view

DocID025776 Rev 17 79/261

UM1718 STM32CubeMX User Interface

260

Manually remapping a function to another pin

To manually remap a function to another pin, follow the sequence below:

1. Press the CTRL key and click the pin in the Chip view. Possible pins for relocation, if
any, are highlighted in blue.

2. Drag the function to the target pin.

Caution: A pin assignment performed from the Chip view overwrites any previous assignment.

Manual remapping with destination pin ambiguity

For MCUs with block of pins consistency (STM32F100x/ F101x/ F102x/ F103x and
STM32F105x/F107x), the destination pin can be ambiguous,e.g. there can be more than
one destination block including the destination pin. To display all the possible alternative
remapping blocks, move the mouse over the target pin.

Note: A "block of pins" is a group of pins that must be assigned together to achieve a given
peripheral mode. As shown in Figure 54, two blocks of pins are available on a
STM32F107xx MCU to configure the Ethernet Peripheral in RMII synchronous mode: {PC1,
PA1, PA2, PA7, PC4, PC5, PB11, PB12, PB13, PB5} and {PC1, PA1, PA2, PD10, PD9,
PD8, PB11, PB12, PB13, PB5}.

Figure 54. Example of remapping in case of block of pins consistency

Resolving pin conflicts

To resolve the pin conflicts that may occur when some peripheral modes use the same pins,
STM32CubeMX attempts to reassign the peripheral mode functions to other pins. The
peripherals for which pin conflicts could not be solved are highlighted in red or orange with a
tooltip describing the conflict.

STM32CubeMX User Interface UM1718

80/261 DocID025776 Rev 17

If the conflict cannot be solved by remapping the modes, the user can try the following:

• If the box is checked, try to select the peripherals in a
different sequence.

• Uncheck the Keep Current Signals Placement box and let STM32CubeMX try all the
remap combinations to find a solution.

• Manually remap a mode of a peripheral when you cannot use it because there is no
pin available for one of the signals of that mode.

4.11.4 Keep Current Signals Placement

This checkbox is available from the toolbar when the Pinout view is selected (see Figure 26
and Table 5). It can be selected or unselected at any time during the configuration. It is
unselected by default.

It is recommended to keep the checkbox unchecked for an optimized placement of the
peripherals (maximum number of peripherals concurrently used).

The Keep Current Signals Placement checkbox should be selected when the objective is
to match a board design.

Keep Current Signals Placement is unchecked

This allows STM32CubeMX to remap previously mapped blocks to other pins in order to
serve a new request (selection of a new peripheral mode or a new peripheral mode
function) which conflicts with the current pinout configuration.

Keep Current Signals Placement is checked

This ensures that all the functions corresponding to a given peripheral mode remain
allocated (mapped) to a given pin. Once the allocation is done, STM32CubeMX cannot
move a peripheral mode function from one pin to another. New configuration requests are
served if it is feasible within current pin configuration.

This functionality is useful to:

• Lock all the pins corresponding to peripherals that have been configured using the
Peripherals panel.

• Maintain a function mapped to a pin while doing manual remapping from the Chip view.

Tip

If a mode becomes unavailable (highlighted in red), try to find another pin remapping
configuration for this mode by following the steps below:

1. From the Chip view, unselect the assigned functions one by one until the mode
becomes available again.

2. Then, select the mode again and continue the pinout configuration with the new
sequence (see Appendix A: STM32CubeMX pin assignment rules for a remapping
example). This operation being time consuming, it is recommended to unselect the
Keep Current Signals Placement checkbox.

Note: Even if Keep Current Signals placement is unchecked, GPIO_ functions (excepted
GPIO_EXTI functions) are not moved by STM32CubeMX.

DocID025776 Rev 17 81/261

UM1718 STM32CubeMX User Interface

260

4.11.5 Pinning and labeling signals on pins

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins: This will prevent STM32CubeMX from automatically moving the pinned signals to
other pins when resolving conflicts.There is also the possibility to label the signals: User
labels are used for code generation (see Section 5.1 for details).

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins. This prevents STM32CubeMX from automatically moving pinned signals to other pins
when resolving conflicts. Labels, that are used for code generation, can also be assigned to
the signals (see Section 5.1 for details).

There are several ways to pin, unpin and label the signals:

1. From the Chip view, right-click a pin with a signal assignment. This opens a contextual
menu:

a) For unpinned signals, select Signal Pinning to pin the signal. A pin icon is then
displayed on the relevant pin. The signal can no longer be moved automatically
(for example when resolving pin assignment conflicts).

b) For pinned signals, select Signal Unpinning to unpin the signal. The pin icon is
removed. From now on, to resolve a conflict (such as peripheral mode conflict),
this signal can be moved to another pin, provided the Keep user placement option
is unchecked.

c) Select Enter User Label to specify a user defined label for this signal. The new
label will replacing the default signal name in the Chip view.

2. From the Pinout menu, select Pins/Signals Options

The Pins/Signals Options window (see Figure 55) lists all configured pins.

a) Click the first column to individually pin/unpin signals.

b) Select multiple rows and right-click to open the contextual menu and select
Signal(s) Pinning or Unpinning.

STM32CubeMX User Interface UM1718

82/261 DocID025776 Rev 17

Figure 55. Pins/Signals Options window

c) Select the User Label field to edit the field and enter a user-defined label.

d) Order list alphabetically by Pin or Signal name by clicking the column header.
Click once more to go back to default i.e. to list ordered according to pin
placement on MCU.

Note: Even if a signal is pinned, it is still possible however to manually change the pin signal
assignment from the Chip view: click the pin to display other possible signals for this pin and
select the relevant one.

4.11.6 Setting HAL timebase source

By default, the STM32Cube HAL is built around a unique timebase source which is the
ARM-Cortex system timer (SysTick).

However, HAL-timebase related functions are defined as weak so that they can be
overloaded to use another hardware timebase source. This is strongly recommended when
the application uses an RTOS, since this middleware has full control on the SysTick
configuration (tick and priority) and most RTOSs force the SysTick priority to be the lowest.

Using the SysTick remains acceptable if the application respects the HAL programming
model, that is, does not perform any call to HAL timebase services within an Interrupt
Service Request context (no dead lock issue).

To change the HAL timebase source, go to the SYS peripheral in the Peripheral and
Middleware tree pane and select a clock among the available clock sources: SysTick,
TIM1, TIM2,... (see Figure 56).

DocID025776 Rev 17 83/261

UM1718 STM32CubeMX User Interface

260

Figure 56. Selecting a HAL timebase source (STM32F407 example)

When used as timebase source, a given peripheral is grayed and can no longer be selected
(see Figure 57).

Figure 57. TIM2 selected as HAL timebase source

STM32CubeMX User Interface UM1718

84/261 DocID025776 Rev 17

As illustrated in the following examples, the selection of the HAL timebase source and the
use of FreeRTOS influence the generated code.

Example of configuration using SysTick without FreeRTOS

As illustrated in Figure 58, the SysTick priority is set to 0 (High) when using the SysTick
without FreeRTOS.

Figure 58. NVIC settings when using SysTick as HAL timebase, no FreeRTOS

Interrupt priorities (in main.c) and handler code (in stm32f4xx_it.c) are generated
accordingly:

• main.c file

/* SysTick_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);

• stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.

*/

void SysTick_Handler(void)

{

 /* USER CODE BEGIN SysTick_IRQn 0 */

DocID025776 Rev 17 85/261

UM1718 STM32CubeMX User Interface

260

 /* USER CODE END SysTick_IRQn 0 */

 HAL_IncTick();

 HAL_SYSTICK_IRQHandler();

 /* USER CODE BEGIN SysTick_IRQn 1 */

 /* USER CODE END SysTick_IRQn 1 */

}

Example of configuration using SysTick and FreeRTOS

As illustrated in Figure 59, the SysTick priority is set to 15 (Low) when using the SysTick
with FreeRTOS.

Figure 59. NVIC settings when using FreeRTOS and SysTick as HAL timebase

STM32CubeMX User Interface UM1718

86/261 DocID025776 Rev 17

As shown in the code snippets given below, the SysTick interrupt handler is updated to use
CMSIS-os osSystickHandler function.

• main.c file

 /* SysTick_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);

• stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.

*/

void SysTick_Handler(void)

{

 /* USER CODE BEGIN SysTick_IRQn 0 */

 /* USER CODE END SysTick_IRQn 0 */

 HAL_IncTick();

 osSystickHandler();

 /* USER CODE BEGIN SysTick_IRQn 1 */

 /* USER CODE END SysTick_IRQn 1 */

}

DocID025776 Rev 17 87/261

UM1718 STM32CubeMX User Interface

260

Example of configuration using TIM2 as HAL timebase source

When TIM2 is used as HAL timebase source, a new stm32f4xx_hal_timebase_TIM.c file is
generated to overload the HAL timebase related functions, including the HAL_InitTick
function that configures the TIM2 as the HAL time-base source.

The priority of TIM2 timebase interrupts is set to 0 (High). The SysTick priority is set to 15
(Low) if FreeRTOS is used, otherwise it is set to 0 (High).

Figure 60. NVIC settings when using FreeRTOS and TIM2 as HAL timebase

The stm32f4xx_it.c file is generated accordingly:

• SysTick_Handler calls osSystickHandler when FreeRTOS is used, otherwise it calls
HAL_SYSTICK_IRQHandler.

• TIM2_IRQHandler is generated to handle TIM2 global interrupt.

STM32CubeMX User Interface UM1718

88/261 DocID025776 Rev 17

4.12 Configuration view

STM32CubeMX Configuration window (see Figure 61) gives an overview of all the
software configurable components: GPIOs, peripherals and middleware. Clickable buttons
allow selecting the configuration options of the component initialization parameters that will
be included in the generated code. The button icon color reflects the configuration status:

• Green checkmark: correct configuration

• Warning sign: incomplete but still functional configuration

• Red cross: for invalid configuration.

Note: GPIO and Peripheral modes that influence the pinout can be set only from the Pinout view.
They are read-only in the Configuration view.

In this view, the MCU is shown on the left pane by its Peripheral and Middleware tree and
on the right pane, by the list of peripherals and middleware organized in Middleware,
Multimedia, Connectivity, Analog, System and Control categories. Each peripheral instance
has a dedicated button to edit its configuration: as an example, TIM1 and TIM3 TIM
instances are shown as dedicated buttons in Figure 61.

Figure 61. STM32CubeMX Configuration view

A configuration button is associated to each peripheral in the Configuration window (see
Table 10).

DocID025776 Rev 17 89/261

UM1718 STM32CubeMX User Interface

260

GPIO, DMA and NVIC settings can be accessed either via a dedicated button like other
peripherals or via a tab in the other configuration windows of the peripherals which use them
(see Figure 62).

Figure 62. Configuration window tabs for GPIO, DMA and NVIC settings (STM32F4 series)

Table 10. Peripheral and middleware configuration buttons

Format Peripheral Instance configuration status

Available but not fully configured yet. Click to open the
configuration window.

Well configured with default or user-defined settings
that allows proceeding with the generation of
corresponding initialization C code. Click to open the
configuration window.

Badly configured with some wrong parameter values.
Click to display the errors highlighted in red.

Other example (UART):

Dialog box that explains source of error. It shall be
fixed in another view.

STM32CubeMX User Interface UM1718

90/261 DocID025776 Rev 17

4.12.1 Peripherals and Middleware Configuration window

This window is open by clicking the peripheral instance or Middleware name from the
Configuration pane. It allows to configure the functional parameters that are required for
initializing the peripheral or the middleware in the selected operating mode. This
configuration is used to generate the corresponding initialization C code. Refer to Figure 63
for a Peripheral Configuration windows example.

The configuration window includes several tabs:

• Parameter settings to configure library dedicated parameters for the selected
peripheral or middleware,

• NVIC, GPIO and DMA settings to set the parameters for the selected peripheral (see
Section 4.12.5: NVIC Configuration window, Section 4.12.3: GPIO Configuration
window and Section 4.12.4: DMA Configuration windowfor configuration details).

• User constants to create one or several user defined constants, common to the whole
project (see Section 4.12.2: User Constants configuration window for user constants
details).

Invalid settings are detected and are either:

• Reset to minimum valid value if user choice was smaller than minimum threshold,

• Reset to maximum valid value if user choice was greater than maximum threshold,

• Reset to previous valid value if previous value was neither a maximum nor a minimum
threshold value,

• Highlighted in red:

Table 11 describes peripheral and middleware configuration buttons and messages.

Figure 63. Peripheral Configuration window (STM32F4 series)

DocID025776 Rev 17 91/261

UM1718 STM32CubeMX User Interface

260

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages Action

Apply Saves the changes without closing the window

OK Saves and closes the window

Cancel Closes and resets previously saved parameter settings

Restore Default

For the selected peripheral, the whole user configuration is reset to
STM32CubeMX default settings without clearing the project user
constants defined in the User Constants tab: STM32CubeMX default
values are restored on peripheral parameter, GPIO, NVIC and DMA
tabs.

Note: Restore default button is not available for GPIO/DMA and NVIC
windows as they address more than one peripheral.

Note: Clicking Cancel after Restore Default closes the window and
preserves the user configuration.

Caution: Clicking Apply after Restore Default saves the changes. In
this case the user original configuration cannot be restored.

Shows and Hides the description pane

Tooltip

Guides the user through the settings of parameters with valid min-max
range.

To display it, moves the mouse over a parameter value from a list of
possible values.

Hexadecimal vs decimal
values

Choose to display the field as an hexadecimal or a decimal value by
clicking the arrow on the right:

STM32CubeMX User Interface UM1718

92/261 DocID025776 Rev 17

No check option

By default, STM32CubeMX checks that the parameter values entered
by the user are valid. You can bypass this check by selecting the option
No Check for a given parameter. This allows entering any value (such
as a constant) that might not be known by STM32CubeMX
configuration.

Note: The validity check can be bypassed only on the parameters
which values are of integer type (either hexadecimal or
decimal). It cannot on parameters coming from a predefined list
of possible values or on those which are of non-integer or text
type.

To go back to the default mode, that is decimal or hexadecimal values
with validity check enabled, enter a decimal or hexadecimal value and
check the relevant option (hexadecimal or decimal check).

Caution: When a parameter depends on another parameter that is
set to No Check:

– Case of a parameter depending on another parameter for the
evaluation of its minimum or maximum possible value

If the other parameter is set to No Check, the minimum or maximum
value is no longer evaluated and checked.

– Case of a parameter depending on another parameter for the
evaluation of its current value

If the other parameter is set to No Check, the value is no longer
automatically derived. Instead, it is replaced with the formula text
showing as variable the string of the parameter set to No check.

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages Action

DocID025776 Rev 17 93/261

UM1718 STM32CubeMX User Interface

260

4.12.2 User Constants configuration window

A User Constants window is available to define user constants (see Figure 64). Constants
are automatically generated in the STM32CubeMX user project within the main.h file (see
Figure 65). Once defined, they can be used to configure peripheral and middleware
parameters (see Figure 66).

Figure 64. User Constants window

Decimal and hexadecimal
check tooltip

If the value entered by the user is out of range, an the error will be
highlighted in red along with an explanatory tooltip:

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages Action

STM32CubeMX User Interface UM1718

94/261 DocID025776 Rev 17

Figure 65. Extract of the generated main.h file

Figure 66. Using constants for peripheral parameter settings

Creating/editing user constants

Click the Add button to open the User Constants window and create a new user-defined
constant (see Figure 67).

DocID025776 Rev 17 95/261

UM1718 STM32CubeMX User Interface

260

A constant consists of:

• A name that must comply with the following rules:

– It must be unique.

– It shall not be a C/C++ keyword.

– It shall not contain a space.

– It shall not start with digits.

• A value

The constant value can be: (see Figure 64 for examples):

– a simple decimal or hexadecimal value

– a previously defined constant

– a formula using arithmetic operators (subtraction, addition, division, multiplication,
and remainder) and numeric value or user-defined numeric constants as
operands.

– a character string: the string value must be between double quotes (example:
“constant_for_usart”).

Once a constant is defined, its name and/or its value can still be changed: double- click the
row that specifies the user constant to be modified. This opens the User Constants window
for edition. The change of constant name is applied wherever the constant is used. This
does not affect the peripheral or middleware configuration state. However changing the
constant value impacts the parameters that use it and might result in invalid settings (e.g.
exceeding a maximum threshold). Invalid parameter settings will be highlighted in red with a
red cross.

Figure 67. Specifying user constant value and name

Deleting user constants

Click the Remove button to delete an existing user-defined constant.

The user constant is then automatically removed except in the following cases:

• When the constant is used for the definition of another constant. In this case, a popup
window displays an explanatory message (see Figure 68).

STM32CubeMX User Interface UM1718

96/261 DocID025776 Rev 17

Figure 68. Deleting user constant not allowed when
constant already used for another constant definition

• When the constant is used for the configuration of a peripheral or middleware library
parameter. In this case, the user is requested to confirm the deletion since the constant
removal will result in a invalid peripheral or middleware configuration (see Figure 69).

Figure 69. Deleting a user constant used for parameter configuration-
Confirmation request

Clicking Yes leads to an invalid peripheral configuration (see Figure 70))

DocID025776 Rev 17 97/261

UM1718 STM32CubeMX User Interface

260

Figure 70. Deleting a user constant used for peripheral configuration -
Consequence on peripheral configuration

STM32CubeMX User Interface UM1718

98/261 DocID025776 Rev 17

Searching for user constants

The Search Constants field allows searching for a constant name or value in the complete
list of user constants (see Figure 71 and Figure 72).

Figure 71. Searching user constants list for name

Figure 72. Searching user constants list for value

DocID025776 Rev 17 99/261

UM1718 STM32CubeMX User Interface

260

4.12.3 GPIO Configuration window

Click GPIO in the Configuration pane to open the GPIO configuration window that allows
configuring the GPIO pin settings (see Figure 73). The configuration is populated with
default values that might not be adequate for some peripheral configurations. In particular,
check if the GPIO speed is sufficient for the peripheral communication speed and select the
internal pull-up whenever needed.

Note: GPIO settings can also be accessed for a specific peripheral instance via the dedicated
GPIO window in the peripheral instance configuration window.

In addition, GPIOs can be configured in output mode (default output level). The generated
code will be updated accordingly.

Figure 73. GPIO Configuration window - GPIO selection

STM32CubeMX User Interface UM1718

100/261 DocID025776 Rev 17

Click a row or select a set of rows to display the corresponding GPIO parameters (see
Figure 74):

• GPIO PIN state

It changes the default value of the GPIO Output level. It is set to low by default and can
be changed to high.

• GPIO mode (analog, input, output, alternate function)

Selecting a peripheral mode in the Pinout view automatically configures the pins with
the relevant alternate function and GPIO mode.

• GPIO pull-up/pull-down

It is set to a default value and can be configured when other choices are possible.

• GPIO maximum output speed (for communication peripherals only)

It is set to Low by default for power consumption optimization and can be changed to a
higher frequency to fit application requirements.

• User Label

It changes the default name (e.g. GPIO_input) into a user defined name. The Chip
view is updated accordingly. The GPIO can be found under this new name via the Find
menu.

Figure 74. GPIO Configuration window - displaying GPIO settings

The Group by Peripherals checkbox allows to group all instances of a peripheral under a
same window (see Figure 75).

DocID025776 Rev 17 101/261

UM1718 STM32CubeMX User Interface

260

Figure 75. GPIO configuration grouped by peripheral

As shown in Figure 76, row multi-selection can be performed to change a set of pins to a
given configuration at the same time.

Figure 76. Multiple Pins Configuration

STM32CubeMX User Interface UM1718

102/261 DocID025776 Rev 17

4.12.4 DMA Configuration window

Click DMA in the Configuration pane to open the DMA configuration window.

This window allows to configure the generic DMA controllers available on the MCU. The
DMA interfaces allow to perform data transfers between memories and peripherals while the
CPU is running, and memory to memory transfers (if supported).

Note: Some peripherals such as USB or Ethernet, have their own DMA controller, which is
enabled by default or via the Peripheral Configuration window.

Clicking Add in the DMA configuration window adds a new line at the end of the DMA
configuration window with a combo box proposing to choose between possible DMA
requests to be mapped to peripherals signals (see Figure 77).

Figure 77. Adding a new DMA request

Selecting a DMA request automatically assigns a stream among all the streams available, a
direction and a priority. When the DMA channel is configured, it is up to the application code
to fully describe the DMA transfer run-time parameters such as the start address, etc....

The DMA request (called channel for STM32F4 MCUs) is used to reserve a stream to
transfer data between peripherals and memories (see Figure 78). The stream priority will be
used to decide which stream to select for the next DMA transfer.

DMA controllers support a dual priority system using the software priority first, and in case of
equal software priorities, a hardware priority that is given by the stream number.

DocID025776 Rev 17 103/261

UM1718 STM32CubeMX User Interface

260

Figure 78. DMA Configuration

Additional DMA configuration settings can be done through the DMA configuration
window:

• Mode: regular mode, circular mode, or peripheral flow controller mode (only available
for the SDIO peripheral).

• Increment Add: the type of peripheral address and memory address increment (fixed
or post-incremented in which case the address is incremented after each transfer).
Click the checkbox to enable the post-incremented mode.

• Peripheral data width: 8, 16 or 32 bits

• Switching from the default direct mode to the FIFO mode with programmable threshold:

a) Click the Use FIFO checkbox.

b) Then, configure the peripheral and memory data width (8, 16 or 32 bits).

c) Select between single transfer and burst transfer. If you select burst transfer,
choose a burst size (1, 4, 8 or 16).

In case of memory-to-memory transfer (MemtoMem), the DMA configuration applies to a
source memory and a destination memory.

STM32CubeMX User Interface UM1718

104/261 DocID025776 Rev 17

Figure 79. DMA MemToMem configuration

4.12.5 NVIC Configuration window

Click NVIC in the Configuration pane to open the Nested Vector interrupt controller
configuration window (see Figure 80).

Interrupt unmasking and interrupt handlers are managed within 2 tabs:

• The NVIC tab allows enabling peripheral interrupts in the NVIC controller and setting
their priorities.

• The Code generation tab allows selecting options for interrupt related code
generation.

Enabling interruptions using the NVIC tab view

The NVIC view (see Figure 80) does not show all possible interrupts but only the ones
available for the peripherals selected in the Pinout and Configuration panes. System
interrupts are displayed but can never be disabled.

Check/Uncheck the Show only enabled interrupts box to filter or not enabled interrupts.

Use the search field to filter out the interrupt vector table according to a string value. As an
example, after enabling UART peripherals from the Pinout pane, type UART in the NVIC
search field and click the green arrow close to it: all UART interrupts are then displayed.

Enabling a peripheral interrupt will generate of NVIC function calls
HAL_NVIC_SetPriority and HAL_NVIC_EnableIRQ for this peripheral.

DocID025776 Rev 17 105/261

UM1718 STM32CubeMX User Interface

260

Figure 80. NVIC Configuration tab - FreeRTOS disabled

When FreeRTOS is enabled, an additional column is shown (see Figure 81). In this case, all
the interrupt service routines (ISRs) that are calling the interrupt safe FreeRTOS APIs,
should have a priority lower than the priority defined in the
LIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY parameter (the highest the value, the
lowest the priority). The check in the corresponding checkbox guarantees that the restriction
is applied.

If an ISR does not use such functions, the checkbox can be unchecked and any priority level
can be set.

It is possible to check/uncheck multiple rows at a time (see rows highlighted in blue in
Figure 81).

STM32CubeMX User Interface UM1718

106/261 DocID025776 Rev 17

Figure 81. NVIC Configuration tab - FreeRTOS enabled

Peripheral dedicated interrupts can also be accessed through the NVIC window in the
Peripheral Configuration window (see Figure 82).

Figure 82. I2C NVIC Configuration window

DocID025776 Rev 17 107/261

UM1718 STM32CubeMX User Interface

260

STM32CubeMX NVIC configuration consists in selecting a priority group, enabling/disabling
interrupts and configuring interrupts priority levels (preemption and sub-priority levels):

1. Select a priority group

Several bits allow to define NVIC priority levels. These bits are divided in two priority
groups corresponding to two priority types: preemption priority and sub-priority. For
example, in the case of STM32F4 MCUs, the NVIC priority group 0 corresponds to 0-
bit preemption and 4-bit sub-priority.

2. In the interrupt table, click one or more rows to select one or more interrupt vectors.
Use the widgets below the interrupt table to configure the vectors one by one or several
at a time:

– Enable checkbox: check/uncheck to enable/disable the interrupt.

– Preemption priority: select a priority level. The preemption priority defines the
ability of one interrupt to interrupt another.

– Sub-priority: select a priority level. The sub-priority defines the interrupt priority
level.

– Click Apply to save changes, and OK to close the window.

Code generation options for interrupt handling

The Code Generation view allows customizing the code generated for interrupt initialization
and interrupt handlers:

• Selection/Unselection of all interrupts for sequence ordering and IRQ handler
code generation

Use the checkboxes in front of the column names to configure all interrupts at a time
(see Figure 83). Note that system interrupts are not eligible for init sequence reordering
as the software solution does not control it.

STM32CubeMX User Interface UM1718

108/261 DocID025776 Rev 17

Figure 83. NVIC Code generation – All interrupts enabled

• Default initialization sequence of interrupts

By default, the interrupts are enabled as part of the peripheral MSP initialization
function, after the configuration of the GPIOs and the enabling of the peripheral clock.

This is shown in the CAN example below, where HAL_NVIC_SetPriority and
HAL_NVIC_EnableIRQ functions are called within stm32xxx_hal_msp.c file inside the
peripheral msp_init function.

Interrupt enabling code is shown in green.

 void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)

 {

 GPIO_InitTypeDef GPIO_InitStruct;

 if(hcan->Instance==CAN1)

 {

 /* Peripheral clock enable */

 __CAN1_CLK_ENABLE();

 /**CAN1 GPIO Configuration

DocID025776 Rev 17 109/261

UM1718 STM32CubeMX User Interface

260

 PD0 ------> CAN1_RX

 PD1 ------> CAN1_TX

 */

 GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;

 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

 GPIO_InitStruct.Alternate = GPIO_AF9_CAN1;

 HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

 /* Peripheral interrupt init */

 HAL_NVIC_SetPriority(CAN1_TX_IRQn, 2, 2);

 HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);

 }

}

For EXTI GPIOs only, interrupts are enabled within the MX_GPIO_Init function:

/*Configure GPIO pin : MEMS_INT2_Pin */

 GPIO_InitStruct.Pin = MEMS_INT2_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 HAL_GPIO_Init(MEMS_INT2_GPIO_Port, &GPIO_InitStruct);

 /* EXTI interrupt init*/

 HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

For some peripherals, the application still needs to call another function to actually
activate the interruptions. Taking the timer peripheral as an example, the function
HAL_TIM_IC_Start_IT needs to be called to start the Timer input capture (IC)
measurement in interrupt mode.

• Configuration of interrupts initialization sequence

Checking Select for Init sequence ordering for a set of peripherals moves the
HAL_NVIC function calls for each peripheral to a same dedicated function, named
MX_NVIC_Init, defined in the main.c. Moreover, the HAL_NVIC functions for each
peripheral are called in the order specified in the Code generation view bottom part
(see Figure 84).

As an example, the configuration shown in Figure 84 generates the following code:

/** NVIC Configuration

*/

void MX_NVIC_Init(void)

{

 /* CAN1_TX_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(CAN1_TX_IRQn, 2, 2);

 HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);

 /* PVD_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(PVD_IRQn, 0, 0);

STM32CubeMX User Interface UM1718

110/261 DocID025776 Rev 17

 HAL_NVIC_EnableIRQ(PVD_IRQn);

 /* FLASH_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(FLASH_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(CAN1_IRQn);

 /* RCC_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(RCC_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(CAN1_IRQn);

 /* ADC_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(ADC_IRQn);

}

Figure 84. NVIC Code generation – Interrupt initialization sequence configuration

• Interrupts handler code generation

DocID025776 Rev 17 111/261

UM1718 STM32CubeMX User Interface

260

By default, STM32CubeMX generates interrupt handlers within the stm32xxx_it.c file.
As an example:

void NMI_Handler(void)

{

 HAL_RCC_NMI_IRQHandler();

}

void CAN1_TX_IRQHandler(void)

{

 HAL_CAN_IRQHandler(&hcan1);

}

The column Generate IRQ Handler allows controlling whether the interrupt handler
function call shall be generated or not. Unselecting CAN1_TX and NMI interrupts from
the Generate IRQ Handler column as shown in Figure 84 removes the code
mentioned earlier from the stm32xxx_it.c file.

Figure 85. NVIC Code generation – IRQ Handler generation

STM32CubeMX User Interface UM1718

112/261 DocID025776 Rev 17

4.12.6 FreeRTOS middleware configuration view

Through STM32CubeMX FreeRTOS configuration window, the user can configure all the
resources required for a real-time OS application and reserve the corresponding heap.
FreeRTOS elements are defined and created in the generated code using CMSIS-RTOS
API functions. Follow the sequence below:

1. In the Configuration tab, enable FreeRTOS from the tree view.

2. Click FreeRTOS in the Configuration pane to open the FreeRTOS configuration
window (see Figure 86).

All tabs but the User Constants tab allow configuring FreeRTOS native configuration
parameters and objects, such as tasks, timers, queues, and semaphores.

The Config parameters values allow configuring Kernel and Software settings.

The Include parameters tab allows selecting only the API functions required by the
application and thus optimizing the code size.

Both Config and Include parameters will be part of the FreeRTOSConfig.h file.

Figure 86. FreeRTOS configuration view

DocID025776 Rev 17 113/261

UM1718 STM32CubeMX User Interface

260

Tasks and Queues Tab

As any RTOS, FreeRTOS allows structuring a real-time application into a set of independent
tasks, with only one task being executed at a given time. Queues are meant for inter-task
communications: they allow to exchange messages between tasks or between interrupts
and tasks.

In STM32CubeMX, the FreeRTOS Tasks and Queues tab allows creating and configuring
such tasks and queues (see Figure 87). The corresponding initialization code will be
generated within main.c or freeRTOS.c if the option “generate code as pair of .c/.h files per
peripherals and middleware” is set in the Project Settings menu.

The corresponding initialization code will be generated within main.c by default or within
freeRTOS.c if the option “generate code as pair of .c/.h files per peripherals and
middleware” is set in the Project Settings menu.

Figure 87. FreeRTOS: configuring tasks and queues

• Tasks

Under the Tasks section, click the Add button to open the New Task window where
task name, priority, stack size and entry function can be configured (see Figure 88).
These settings can be updated at any time: double-clicking a task row opens again the
new task window for editing.

The entry function can be generated as weak or external:

– When the task is generated as weak, the user can propose another definition than
the one generated by default.

– When the task is extern, it is up to the user to provide its function definition.

By default, the function definition is generated including user sections to allow
customization.

• Queues

Under the Queues section, click the Add button to open the New Queue window
where the queue name, size and item size can be configured (see Figure 88). The

STM32CubeMX User Interface UM1718

114/261 DocID025776 Rev 17

queue size corresponds to the maximum number of items that the queue can hold at a
time, while the item size is the size of each data item stored in the queue. The item size
can be expressed either in number of bytes or as a data type:

• 1 byte for uint8_t, int8_t, char and portCHAR types

• 2 bytes for uint16_t, int16_t, short and portSHORT types

• 4 bytes for uint32_t, int32_t, int, long and float

• 8 bytes for uint64_t, int64_t and double

By default, the FreeRTOS heap usage calculator uses 4 bytes when the item size can
not be automatically derived from user input.

These settings can be updated at any time: double-clicking a queue row opens again
the new queue window for editing.

Figure 88. FreeRTOS: creating a new task

DocID025776 Rev 17 115/261

UM1718 STM32CubeMX User Interface

260

The following code snippet shows the generated code corresponding to Figure 87:
FreeRTOS: configuring tasks and queues.

/* Create the thread(s) */

 /* definition and creation of defaultTask */

 osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);

 defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);

 /* definition and creation of Task_A */

 osThreadDef(Task_A, StartTask_A, osPriorityHigh, 0, 128);

 Task_AHandle = osThreadCreate(osThread(Task_A), NULL);

 /* definition and creation of Task_B */

 osThreadDef(Task_B, StartTask_B, osPriorityLow, 0, 256);

 Task_BHandle = osThreadCreate(osThread(Task_B), NULL);

 /* Create the queue(s) */

 /* definition and creation of myQueue_1 */

 osMessageQDef(myQueue_1, 16, 4);

 myQueue_1Handle = osMessageCreate(osMessageQ(myQueue_1), NULL);

 /* definition and creation of myQueue_2 */

 osMessageQDef(myQueue_2, 32, 2);

 myQueue_2Handle = osMessageCreate(osMessageQ(myQueue_2), NULL);

Timers, Mutexes and Semaphores

FreeRTOS timers, mutexes and semaphores can be configured via the FreeRTOS Timers
and Semaphores tab (see Figure 89).

Under each object dedicated section, clicking the Add button to open the corresponding
New <object> window where the object specific parameters can be specified. Object
settings can be modified at any time: double- clicking the relevant row opens again the New
<object> window for edition.

Note: Expand the window if the newly created objects are not visible.

STM32CubeMX User Interface UM1718

116/261 DocID025776 Rev 17

Figure 89. FreeRTOS - Configuring timers, mutexes and semaphores

• Timers

Prior to creating timers, their usage (USE_TIMERS definition) must be enabled in the
software timer definitions section of the Configuration parameters tab. In the
same section, timer task priority, queue length and stack depth can be also configured.

The timer can be created to be one-shot (run once) or auto-reload (periodic). The timer
name and the corresponding callback function name must be specified. It is up to the
user to fill the callback function code and to specify the timer period (time between the
timer being started and its callback function being executed) when calling the CMSIS-
RTOS osTimerStart function.

• Mutexes/Semaphores

Prior to creating mutexes, recursive mutexes and counting semaphores, their usage
(USE_ MUTEXES, USE_RECURSIVE_MUTEXES,
USE_COUNTING_SEMAPHORES definitions) must be enabled within the Kernel
settings section of the Configuration parameters tab.

The following code snippet shows the generated code corresponding to Figure 89:
FreeRTOS - Configuring timers, mutexes and semaphores).

 /* Create the semaphores(s) */

 /* definition and creation of myBinarySem01 */

 osSemaphoreDef(myBinarySem01);

 myBinarySem01Handle = osSemaphoreCreate(osSemaphore(myBinarySem01), 1);

 /* definition and creation of myCountingSem01 */

DocID025776 Rev 17 117/261

UM1718 STM32CubeMX User Interface

260

 osSemaphoreDef(myCountingSem01);

 myCountingSem01Handle = osSemaphoreCreate(osSemaphore(myCountingSem01),
7);

 /* Create the timer(s) */

 /* definition and creation of myTimer01 */

 osTimerDef(myTimer01, Callback01);

 myTimer01Handle = osTimerCreate(osTimer(myTimer01), osTimerPeriodic,
NULL);

 /* definition and creation of myTimer02 */

 osTimerDef(myTimer02, Callback02);

 myTimer02Handle = osTimerCreate(osTimer(myTimer02), osTimerOnce, NULL);

 /* Create the mutex(es) */

 /* definition and creation of myMutex01 */

 osMutexDef(myMutex01);

 myMutex01Handle = osMutexCreate(osMutex(myMutex01));

 /* Create the recursive mutex(es) */

 /* definition and creation of myRecursiveMutex01 */

 osMutexDef(myRecursiveMutex01);

 myRecursiveMutex01Handle =
osRecursiveMutexCreate(osMutex(myRecursiveMutex01));

FreeRTOS heap usage

The FreeRTOS Heap usage tab displays the heap currently used and compares it to the
TOTAL_HEAP_SIZE parameter set in the Config Parameters tab. When the total heap
used crosses the TOTAL_HEAP_SIZE maximum threshold, it is shown in red and a red
cross appears on the tab (see Figure 90).

STM32CubeMX User Interface UM1718

118/261 DocID025776 Rev 17

Figure 90. FreeRTOS Heap usage

DocID025776 Rev 17 119/261

UM1718 STM32CubeMX User Interface

260

4.13 Clock tree configuration view

STM32CubeMX Clock configuration window (see Figure 91) provides a schematic
overview of the clock paths, clock sources, dividers, and multipliers. Drop-down menus and
buttons allow modifying the actual clock tree configuration to meet user application
requirements.

Actual clock speeds are displayed and active. The clock signals that are used are
highlighted in blue.

Out-of-range configured values are highlighted in red to flag potential issues. A solver
feature is proposed to automatically resolve such configuration issues (see Figure 92).

Reverse path is supported: just enter the required clock speed in the blue filed and
STM32CubeMX will attempt to reconfigure multipliers and dividers to provide the requested
value. The resulting clock value can then be locked by right clicking the field to prevent
modifications.

STM32CubeMX generates the corresponding initialization code:

• main.c with relevant HAL_RCC structure initializations and function calls

• stm32xxxx_hal_conf.h for oscillator frequencies and VDD values.

4.13.1 Clock tree configuration functions

External clock sources

When external clock sources are used, the user must previously enable them from the
Pinout view available under the RCC peripheral.

Peripheral clock configuration options

Some other paths, corresponding to clock peripherals, are grayed out. To become active,
the peripheral must be properly configured in the Pinout view (e.g. USB). This view allows
to:

• Enter a frequency value for the CPU Clock (HCLK), buses or peripheral clocks

STM32CubeMX tries to propose a clock tree configuration that reaches the desired
frequency while adjusting prescalers and dividers and taking into account other
peripheral constraints (such as USB clock minimum value). If no solution can be found,

STM32CubeMX User Interface UM1718

120/261 DocID025776 Rev 17

STM32CubeMX proposes to switch to a different clock source or can even conclude
that no solution matches the desired frequency.

• Lock the frequency fields for which the current value should be preserved

Right click a frequency field and select Lock to preserve the value currently assigned
when STM32CubeMX will search for a new clock configuration solution.

The user can unlock the locked frequency fields when the preservation is no longer
necessary.

• Select the clock source that will drive the system clock (SYSCLK)

– External oscillator clock (HSE) for a user defined frequency.

– Internal oscillator clock (HSI) for the defined fixed frequency.

– Main PLL clock

• Select secondary sources (as available for the product)

– Low-speed internal (LSI) or external (LSE) clock

– I2S input clock

– …

• Select prescalers, dividers and multipliers values.

• Enable the Clock Security system (CSS) on HSE when it is supported by the MCU

This feature is available only when the HSE clock is used as the system clock source
directly or indirectly through the PLL. It allows detecting HSE failure and inform the
software about it, thus allowing the MCU to perform rescue operations.

• Enable the CSS on LSE when it is supported by the MCU

This feature is available only when the LSE and LSI are enabled and after the RTC or
LCD clock sources have been selected to be either LSE or LSI.

• Reset the Clock tree default settings by using the toolbar Reset button ():

This feature reloads STM32CubeMX default clock tree configuration.

• Undo/Redo user configuration steps by using the toolbar
Undo/Redo buttons ()

• Detect and resolve configuration issues

Erroneous clock tree configurations are detected prior to code generation. Errors are
highlighted in red and the Clock Configuration view is marked with a red cross (see
Figure 92).

Issues can be resolved manually or automatically by clicking the Resolve Clock Issue
button () which is enabled only if issues have been detected.

The underlying resolution process follows a specific sequence:

a) Setting HSE frequency to its maximum value (optional).

b) Setting HCLK frequency then peripheral frequencies to a maximum or minimum
value (optional).

c) Changing multiplexers inputs (optional).

d) Finally, iterating through multiplier/dividers values to fix the issue. The clock tree is
cleared from red highlights if a solution is found. Otherwise an error message is
displayed.

Note: To be available from the clock tree, external clocks, I2S input clock, and master clocks shall
be enabled in RCC configuration in the Pinout view. This information is also available as
tooltips.

DocID025776 Rev 17 121/261

UM1718 STM32CubeMX User Interface

260

The tool will automatically perform the following operations:

• Adjust bus frequencies, timers, peripherals and master output clocks according to user
selection of clock sources, clock frequencies and prescalers/multipliers/dividers values.

• Check the validity of user settings.

• Highlight invalid settings in red and provide tooltips to guide the user to achieve a valid
configuration.

The Clock tree view is adjusted according to the RCC settings (configured in RCC pinout
and configuration views) and vice versa:

• If in RCC Pinout view, the external and output clocks are enabled, they become
configurable in the clock tree view.

• If in RCC Configuration view, the Timer prescaler is enabled, the choice of Timer clocks
multipliers will be adjusted.

Conversely, the clock tree configuration may affect some RCC parameters in the
configuration view:

• Flash latency: number of wait states automatically derived from VDD voltage, HCLK
frequency, and power over-drive state.

• Power regulator voltage scale: automatically derived from HCLK frequency.

• Power over-drive is enabled automatically according to HCLK frequency. When the
power drive is enabled, the maximum possible frequency values for AHB and APB
domains are increased. They are displayed in the Clock tree view.

The default optimal system settings that is used at startup are defined in the
system_stm32f4xx.c file. This file is copied by STM32CubeMX from the STM32CubeF4
firmware package. The switch to user defined clock settings is done afterwards in the main
function.

Figure 91 gives an example of Clock tree configuration view for an STM32F429x MCU and
Table 12 describes the widgets that can be used to configure each clock.

STM32CubeMX User Interface UM1718

122/261 DocID025776 Rev 17

Figure 91. STM32F429xx Clock Tree configuration view

Figure 92. Clock Tree configuration view with errors

DocID025776 Rev 17 123/261

UM1718 STM32CubeMX User Interface

260

Table 12. Clock tree view widget

Format
Configuration status of the Peripheral

Instance

Active clock sources

Unavailable settings are blurred or grayed out
(clock sources, dividers,…)

Gray drop down lists for prescalers, dividers,
multipliers selection.

Multiplier selection

User defined frequency values

Automatically derived frequency values

User-modifiable frequency field

Right click blue border rectangles, to lock/unlock
a frequency field. Lock to preserve the frequency
value during clock tree configuration updates.

STM32CubeMX User Interface UM1718

124/261 DocID025776 Rev 17

4.13.2 Recommendations

The Clock tree view is not the only entry for clock configuration.

1. Go first through the RCC pinout configuration in the Pinout view to enable the clocks
as needed: external clocks, master output clocks and Audio I2S input clock when
available (see Figure 93).

Figure 93. Clock tree configuration: enabling RTC, RCC Clock source
and outputs from Pinout view

DocID025776 Rev 17 125/261

UM1718 STM32CubeMX User Interface

260

2. Then go to the RCC configuration in the Configuration view. The settings defined
there for advanced configurations will be reflected in the clock tree view. The settings
defined in the clock tree view may change the settings in the RCC configuration (see
Figure 94).

Figure 94. Clock tree configuration: RCC Peripheral Advanced parameters

4.13.3 STM32F43x/42x power-over drive feature

STM32F42x/43x MCUs implement a power over-drive feature allowing to work at the
maximum AHB/APB bus frequencies (e.g., 180 MHz for HCLK) when a sufficient VDD
supply voltage is applied (e.g VDD > 2.1 V).

Table 13 lists the different parameters linked to the power over-drive feature and their
availability in STM32CubeMX user interface.

STM32CubeMX User Interface UM1718

126/261 DocID025776 Rev 17

Table 14 gives the relations between power-over drive mode and HCLK frequency.

Table 13. Voltage scaling versus power over-drive and HCLK frequency

Parameter STM32CubeMX panel Value

VDD voltage Configuration (RCC)
User-defined within a predefined range. Impacts
power over-drive.

Power Regulator
Voltage scaling

Configuration (RCC)
Automatically derived from HCLK frequency and
power over-drive (see Table 14).

Power Over Drive Configuration (RCC)

This value is conditioned by HCLK and VDD value
(see Table 14). It can be enabled only if
VDD ≥ 2.2 V

When VDD ≥2.2 V, it is either automatically
derived from HCLK or it can be configured by the
user if multiple choices are possible (e.g., HCLK
= 130 MHz)

HCLK/AHB clock
maximum frequency

value
Clock Configuration

Displayed in blue to indicate the maximum
possible value. For example: maximum value is
168 MHz for HCLK when power over-drive
cannot be activated (when VDD ≤ 2.1 V),
otherwise it is 180 MHz.

APB1/APB2 clock
maximum frequency

value
Clock Configuration

Displayed in blue to indicate maximum possible
value

Table 14. Relations between power over-drive and HCLK frequency

HCLK frequency range:
VDD > 2.1 V required to enable power over-

drive (POD)

Corresponding voltage scaling and power
over-drive (POD)

 ≤120 MHz
Scale 3

POD is disabled

120 to 14 MHz
Scale 2

POD can be either disabled or enabled

144 to 168 MHz
Scale 1 when POD is disabled

Scale 2 when POD is enabled

168 to 180 MHz
POD must be enabled

Scale 1 (otherwise frequency range not
supported)

DocID025776 Rev 17 127/261

UM1718 STM32CubeMX User Interface

260

4.13.4 Clock tree glossary

4.14 Power Consumption Calculator view

For an ever-growing number of embedded systems applications, power consumption is a
major concern. To help minimizing it, STM32CubeMX offers the Power Consumption
Calculator tab (see Figure 95), which, given a microcontroller, a battery model and a user-
defined power sequence, provides the following results:

• Average current consumption

Power consumption values can either be taken from the datasheet or interpolated from
a user specified bus or core frequency.

• Battery life

• Average DMIPs

DMIPs values are directly taken from the MCU datasheet and are neither interpolated
nor extrapolated.

• Maximum ambient temperature (TAMAX)

According to the chip internal power consumption, the package type and a maximum
junction temperature of 105 °C, the tool computes the maximum ambient temperature
to ensure good operating conditions.

Current TAMAX implementation does not account for I/O consumption. For an accurate
TAMAX estimate, I/O consumption must be specified using the Additional Consumption
field. The formula for I/O dynamic current consumption is specified in the
microcontroller datasheet.

Table 15. Glossary

Acronym Definition

HSI
High Speed Internal oscillator: enabled after reset, lower accuracy than
HSE.

HSE High Speed External oscillator: requires an external clock circuit.

PLL Phase Locked Loop: used to multiply above clock sources.

LSI
Low Speed Internal clock: low power clocks usually used for watchdog
timers.

LSE Low Speed External clock: powered by an external clock.

SYSCLK System clock

HCLK Internal AHB clock frequency

FCLK Cortex free running clock

AHB Advanced High Performance Bus

APB1 Low speed Advanced Peripheral Bus

APB2 High speed Advanced Peripheral Bus

STM32CubeMX User Interface UM1718

128/261 DocID025776 Rev 17

The Power Consumption Calculator view allows developers to visualize an estimate of
the embedded application consumption and lower it further at each power sequence step:

• Make use of low power modes when any available

• Adjust clock sources and frequencies based on the step requirements.

• Enable the peripherals necessary for each phase.

For each step, the user can choose VBUS as possible power source instead of the battery.
This will impact the battery life estimation. If power consumption measurements are
available at different voltage levels, STM32CubeMX will also propose a choice of voltage
values (see Figure 99).

An additional option, the transition checker, is available for STM32L0, STM32L1 and
STM32L4 series. When it is enabled, the transition checker detects invalid transitions within
the currently configured sequence. It ensures that only possible transitions are proposed to
the user when a new step is added.

4.14.1 Building a power consumption sequence

The default starting view is shown in Figure 95.

Figure 95. Power Consumption Calculator default view

DocID025776 Rev 17 129/261

UM1718 STM32CubeMX User Interface

260

Selecting a VDD value

From this view and when multiple choices are available, the user must select a VDD value.

Selecting a battery model (optional)

Optionally, the user can select a battery model. This can also be done once the power
consumption sequence is configured.

The user can select a predefined battery or choose to specify a new battery that best
matches his application (see Figure 96).

Figure 96. Battery selection

STM32CubeMX User Interface UM1718

130/261 DocID025776 Rev 17

Power sequence default view

The user can now proceed and build a power sequence (see Figure 97).

Figure 97. Building a power consumption sequence

Managing sequence steps

Steps can be reorganized within a sequence (Add new, Delete a step, Duplicate a step,
move Up or Down in the sequence) using the set of Step buttons (see Figure 98).

The user can undo or redo the last configuration actions by clicking the Undo button in the
Power Consumption Calculator view or the Undo icon from the main toolbar

Figure 98. Step management functions

Adding a step

There are two ways to add a new step:

• Click Add in the Power Consumption panel. The New Step window opens with empty
step settings.

• Or, select a step from the sequence table and click Duplicate. A New Step window
opens duplicating the step settings. (see Figure 99).

DocID025776 Rev 17 131/261

UM1718 STM32CubeMX User Interface

260

Figure 99. Power consumption sequence: new step default view

STM32CubeMX User Interface UM1718

132/261 DocID025776 Rev 17

Once a step is configured, resulting current consumption and TAMAX values are provided in
the window.

Editing a step

To edit a step, double-click it in the sequence table. The Edit Step window opens (see
Figure 100).

Figure 100. Edit Step window

DocID025776 Rev 17 133/261

UM1718 STM32CubeMX User Interface

260

Moving a step

By default, a new step is added at the end of a sequence.

Click the step in the sequence table to select it and use the Up and Down buttons to move it
elsewhere in the sequence.

Deleting a step

Select the step to be deleted and click the Delete button.

Using the transition checker

Not all transitions between power modes are possible. The Power Consumption Calculator
proposes a transition checker to detect invalid transitions or restrict the sequence
configuration to only valid transitions.

Enabling the transition checker option prior to sequence configuration ensures the user will
be able to select only valid transition steps.

Enabling the transition checker option on an already configured sequence will highlight the
sequence in green (green frame) if all transitions are valid (see Figure 101), or in red if at
least one transition is invalid (red frame with description of invalid step highlighted in red)
(see Figure 102).

In this case, the user can click the Show log button to find out how to solve the transition
issue (see Figure 103).

Figure 101. Enabling the transition checker option on an already configured sequence -
all transitions valid

STM32CubeMX User Interface UM1718

134/261 DocID025776 Rev 17

Figure 102. Enabling the transition checker option on an already configured sequence -
at least one transition invalid

Figure 103. Transition checker option -show log

DocID025776 Rev 17 135/261

UM1718 STM32CubeMX User Interface

260

4.14.2 Configuring a step in the power sequence

The step configuration is performed from the Edit Step and New Step windows. The
graphical interface guides the user by forcing a predefined order for setting parameters.

Their naming may differ according to the selected MCU series. For details on each
parameter, refer to Section 4.14.4: Power sequence step parameters glossary glossary and
to Appendix D: STM32 microcontrollers power consumption parameters or to the electrical
characteristics section of the MCU datasheet.

The parameters are set automatically by the tool when there is only one possible value (in
this case, the parameter cannot be modified and is grayed out). The tool proposes only the
configuration choices relevant to the selected MCU.

Proceed as follow to configure a new step:

1. Click Add or Duplicate to open the New step window or double-click a step from the
sequence table to open the Edit step window.

2. Within the open step window, select in the following order:

– The Power Mode

Changing the Power Mode resets the whole step configuration.

– The Peripherals

Peripherals can be selected/unselected at any time after the Power Mode is
configured.

– The Power scale

The power scale corresponds to the power consumption range (STM32L1) or the
power scale (STM32F4).

Changing the Power Mode or the Power Consumption Range discards all
subsequent configurations.

– The Memory Fetch Type

– The VDD value if multiple choices available

– The voltage source (battery or VBUS)

– A Clock Configuration

Changing the Clock Configuration resets the frequency choices further down.

– When multiple choices are available, the CPU Frequency (STM32F4) and the
AHB Bus Frequency/CPU Frequency(STM32L1) or, for active modes, a user
specified frequency. In this case, the consumption value will be interpolated (see
Section : Using interpolation).

3. Optionally set

– A step duration (1 ms is the default value)

– An additional consumption value (expressed in mA) to reflect, for example,
external components used by the application (external regulator, external pull-up,
LEDs or other displays). This value added to the microcontroller power
consumption will impact the step overall power consumption.

4. Once the configuration is complete, the Add button becomes active. Click it to create
the step and add it to the sequence table.

STM32CubeMX User Interface UM1718

136/261 DocID025776 Rev 17

Using interpolation

For steps configured for active modes (Run, Sleep), frequency interpolation is supported by
selecting CPU frequency as User Defined and entering a frequency in Hz (see Figure 104).

Figure 104. Interpolated Power Consumption

DocID025776 Rev 17 137/261

UM1718 STM32CubeMX User Interface

260

Importing pinout

Figure 105 illustrates the example of the ADC configuration in the Pinout view: clicking
Import Pinout in the Power Consumption Calculator view selects the ADC peripheral and
GPIO A (Figure 106).

The Import pinout button allows to automatically select the peripherals that have been
configured in the Pinout view.

Figure 105. ADC selected in Pinout view

STM32CubeMX User Interface UM1718

138/261 DocID025776 Rev 17

Selecting/deselecting all peripherals

Clicking the Select All button allows selecting all peripherals at once.

Clicking Deselect All removes them as contributors to the step consumption.

Figure 106. Power Consumption Calculator Step configuration window:
ADC enabled using import pinout

DocID025776 Rev 17 139/261

UM1718 STM32CubeMX User Interface

260

4.14.3 Managing user-defined power sequence and reviewing results

The configuration of a power sequence leads to an update of the Power Consumption
Calculator view (see Figure 107):

• The sequence table shows all steps and step parameters values. A category column
indicates whether the consumption values are taken from the datasheet or are
interpolated.

• The sequence chart area shows different views of the power sequence according to a
display type (e.g. plot all steps, plot low power versus run modes, ..)

• The results summary provides the total sequence time, the maximum ambient
temperature (TAMAX), plus an estimate of the average power consumption, DMIPS, and
battery lifetime provided a valid battery configuration has been selected.

Figure 107. Power Consumption Calculator view after sequence building

STM32CubeMX User Interface UM1718

140/261 DocID025776 Rev 17

Managing the whole sequence (load, save and compare)

The current sequence can be saved or deleted by clicking and ,
respectively.

In addition, a previously saved sequence can be either loaded in the current view or opened
for comparison by clicking (see Figure 108).

Figure 108. Sequence table management functions

To load a previously saved sequence:

1. Click the load button .

2. Browse to select the sequence to load.

To open a previously saved sequence for comparison:

1. Click the Compare button .

2. Browse and select the .pcs sequence file to be compared with the current sequence. A
new window opens showing the selected sequence details.

DocID025776 Rev 17 141/261

UM1718 STM32CubeMX User Interface

260

Managing the results charts and display options

In the Display area, select the type of chart to display (sequence steps, pie charts,
consumption per peripherals, ...). You can also click External Display to open the charts in
dedicated windows (see Figure 109).

Right-click on the chart to access the contextual menus: Properties, Copy, Save as png
picture file, Print, Zoom menus, and Auto Range to reset to the original view before zoom
operations. Zooming can also be achieved by mouse selecting from left to right a zone in
the chart and Zoom reset by clicking the chart and dragging the mouse to the left.

Figure 109. Power Consumption: Peripherals Consumption Chart

STM32CubeMX User Interface UM1718

142/261 DocID025776 Rev 17

Overview of the Results summary area

This area provides the following information (see Figure 110):

• Total sequence time as the sum of the sequence steps durations.

• Average consumption as the sum of each step consumption weighed by the step
duration.

• The average DMIPS (Dhrystone Million Instructions per Second) based on Dhrystone
benchmark, highlighting the CPU performance for the defined sequence.

• Battery life estimation for the selected battery model, based on the average power
consumption and the battery self-discharge.

• TAMAX: highest maximum ambient temperature value encountered during the
sequence.

Figure 110. Description of the Results area

4.14.4 Power sequence step parameters glossary

The parameters that characterize power sequence steps are the following (refer to
Appendix D: STM32 microcontrollers power consumption parameters for more details):

• Power modes

To save energy, it is recommended to switch the microcontroller operating mode from
running mode, where a maximum power is required, to a low-power mode requiring
limited resources.

• VCORE range (STM32L1) or Power scale (STM32F4)

These parameters are set by software to control the power supply range for digital
peripherals.

• Memory Fetch Type

This field proposes the possible memory locations for application C code execution. It
can be either RAM, FLASH or FLASH with ART ON or OFF (only for families that
feature a proprietary Adaptive real-time (ART) memory accelerator which increases the
program execution speed when executing from Flash memory).

DocID025776 Rev 17 143/261

UM1718 STM32CubeMX User Interface

260

The performance achieved thanks to the ART accelerator is equivalent to 0 wait state
program execution from Flash memory. In terms of power consumption, it is equivalent
to program execution from RAM. In addition, STM32CubeMX uses the same selection
choice to cover both settings, RAM and Flash with ART ON.

• Clock Configuration

This operation sets the AHB bus frequency or the CPU frequency that will be used for
computing the microcontroller power consumption. When there is only one possible
choice, the frequencies are automatically configured.

The clock configuration drop-down list allows to configure the application clocks:

– The internal or external oscillator sources: MSI, HSI, LSI, HSE or LSE),

– The oscillator frequency,

– Other determining parameters: PLL ON, LSE Bypass, AHB prescaler value, LCD
with duty...

• Peripherals

The peripheral list shows the peripherals available for the selected power mode. The
power consumption is given assuming that peripherals are only clocked (e.g. not in use
by a running program). Each peripheral can be enabled or disabled. Peripherals
individual power consumptions are displayed in a tooltip. An overall consumption due
to peripheral analog and digital parts is provided in the step Results area (see
Figure 111).

The user can select the peripherals relevant for the application:

– None (Disable All),

– Some (using peripheral dedicated checkbox),

– All (Activate All),

– Or all from the previously defined pinout configuration (Import Pinout).

Only the selected and enabled peripherals are taken into account when computing the
power consumption.

STM32CubeMX User Interface UM1718

144/261 DocID025776 Rev 17

Figure 111. Peripheral power consumption tooltip

• Step duration

The user can change the default step duration value. When building a sequence, the
user can either create steps according to the application actual power sequence or
define them as a percentage spent in each mode. For example, if an application
spends 30% in Run mode, 20% in Sleep and 50% in Stop, the user must configure a 3-
step sequence consisting in 30 ms in Run, 20 ms in Sleep and 50 ms in Stop.

• Additional Consumption

This field allows entering an additional consumption resulting from specific user
configuration (e.g. MCU providing power supply to other connected devices).

DocID025776 Rev 17 145/261

UM1718 STM32CubeMX User Interface

260

4.14.5 Battery glossary

• Capacity (mAh)

Amount of energy that can be delivered in a single battery discharge.

• Self-discharge (%/month)

This percentage, over a specified period, represents the loss of battery capacity when
the battery is not used (open-circuit conditions), as a result of internal leakage.

• Nominal voltage (V)

Voltage supplied by a fully charged battery.

• Max. Continuous Current (mA)

This current corresponds to the maximum current that can be delivered during the
battery lifetime period without damaging the battery.

• Max. Pulse Current (mA)

This is the maximum pulse current that can be delivered exceptionally, for instance
when the application is switched on during the starting phase.

STM32CubeMX C Code generation overview UM1718

146/261 DocID025776 Rev 17

5 STM32CubeMX C Code generation overview

Refer to Section 4.4.2: Project menu for code generation and C project settings related
topics.

5.1 STM32Cube code generation using only HAL drivers
(default mode)

During the C code generation process, STM32CubeMX performs the following actions:

1. If it is missing, it downloads the relevant STM32Cube firmware package from the user
repository. STM32CubeMX repository folder is specified in the Help > Updater
settings menu.

2. It copies from the firmware package, the relevant files in Drivers/CMSIS and
Drivers/STM32F4_HAL_Driver folders and in the Middleware folder if a middleware
was selected.

3. It generates the initialization C code (.c/.h files) corresponding to the user MCU
configuration and stores it in the Inc and Src folders. By default, the following files are
included:

– stm32f4xx_hal_conf.h file: this file defines the enabled HAL modules and sets
some parameters (e.g. External High Speed oscillator frequency) to predefined
default values or according to user configuration (clock tree).

– stm32f4xx_hal_msp.c (MSP = MCU Support package): this file defines all
initialization functions to configure the peripheral instances according to the user
configuration (pin allocation, enabling of clock, use of DMA and Interrupts).

– main.c is in charge of:

Resetting the MCU to a known state by calling the HAL_init() function that resets
all peripherals, initializes the Flash memory interface and the SysTick.

Configuring and initializing the system clock.

Configuring and initializing the GPIOs that are not used by peripherals.

Defining and calling, for each configured peripheral, a peripheral initialization
function that defines a handle structure that will be passed to the corresponding
peripheral HAL init function which in turn will call the peripheral HAL MSP
initialization function. Note that when LwIP (respectively USB) middleware is used,
the initialization C code for the underlying Ethernet (respectively USB peripheral)
is moved from main.c to LwIP (respectively USB) initialization C code itself.

– main.h file:

This file contains the define statements corresponding to the pin labels set from
the Pinout tab, as well as the user project constants added from the
Configuration tab (refer to Figure 112 and Figure 113 for examples):

#define MyTimeOut 10

#define LD4_Pin GPIO_PIN_12

#define LD4_GPIO_Port GPIOD

#define LD3_Pin GPIO_PIN_13

#define LD3_GPIO_Port GPIOD

#define LD5_Pin GPIO_PIN_14

DocID025776 Rev 17 147/261

UM1718 STM32CubeMX C Code generation overview

260

#define LD5_GPIO_Port GPIOD

#define LD6_Pin GPIO_PIN_15

#define LD6_GPIO_Port GPIOD

Figure 112. Labels for pins generating define statements

Figure 113. User constant generating define statements

In case of duplicate labels, a unique suffix, consisting of the pin port letter and the
pin index number, is added and used for the generation of the associated define
statements.

In the example of a duplicate I2C1 labels shown in Figure 114, the code
generation produces the following code, keeping the I2C1 label on the original port
B pin 6 define statements and adding B7 suffix on pin 7 define statements:

#define I2C1_Pin GPIO_PIN_6

#define I2C1_GPIO_Port GPIOB

#define I2C1B7_Pin GPIO_PIN_7

#define I2C1B7_GPIO_Port GPIOB

Figure 114. Duplicate labels

STM32CubeMX C Code generation overview UM1718

148/261 DocID025776 Rev 17

In order for the generated project to compile, define statements shall follow strict
naming conventions. They shall start with a letter or an underscore as well as the
corresponding label. In addition, they shall not include any special character such
as minus sign, parenthesis or brackets. Any special character within the label will
be automatically replaced by an underscore in the define name.

If the label contains character strings between “[]” or “()”, only the first string listed
is used for the define name. As an example, the label “LD6 [Blue Led]”
corresponds the following define statements:

#define LD6_Pin GPIO_PIN_15

#define LD6_GPIO_Port GPIOD

The define statements are used to configure the GPIOs in the generated
initialization code. In the following example, the initialization of the pins labeled
Audio_RST_Pin and LD4_Pin is done using the corresponding define statements:

/*Configure GPIO pins : LD4_Pin Audio_RST_Pin */

GPIO_InitStruct.Pin = LD4_Pin | Audio_RST_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_LOW;

HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

4. Finally it generates a Projects folder that contains the toolchain specific files that match
the user project settings. Double-clicking the IDE specific project file launches the IDE
and loads the project ready to be edited, built and debugged.

5.2 STM32Cube code generation using Low Layer drivers

Starting from STM32CubeMX 4.17 and STM32L4 series, STM32CubeMX allows generating
peripheral initialization code based either on the peripheral HAL driver or on the peripheral
Low Layer (LL) driver.

The choice is made through the Project Settings window (see Section 4.8.3: Advanced
Settings tab).

The LL drivers are available only for the peripherals which require an optimized access and
do not have a complex software configuration. The LL services allow performing atomic
operations by changing the relevant peripheral registers content:

• Examples of supported peripherals: RCC, ADC, GPIO, I2C, SPI, TIM, USART,…

• Examples of peripherals not supported by LL drivers: USB, SDMMC, FSMC.

The LL drivers are available within the STM32CubeL4 package:

• They are located next to the HAL drivers (stm32l4_hal_<peripheral_name>) within
the Inc and Src directory of the
STM32Cube_FW_L4_V1.6\Drivers\STM32L4xx_HAL_Driver folder.

• They can be easily recognizable by their naming convention:
stm32l4_ll_<peripheral_name>

For more details on HAL and LL drivers refer to the STM32L4 HAL and Low-layer drivers
user manual (UM1884).

As the decision to use LL or HAL drivers is made on a peripheral basis, the user can mix
both HAL and LL drivers within the same project.

DocID025776 Rev 17 149/261

UM1718 STM32CubeMX C Code generation overview

260

The following tables shows the main differences between the three possible
STM32CubeMX project generation options: HAL-only, LL-only, and mix of HAL and LL code.

Table 16. LL versus HAL code generation: drivers included in STM32CubeMX projects

Project configuration
and drivers to be

included
HAL only LL only

Mix of HAL and
LL

Comments

CMSIS Yes Yes Yes -

STM32xxx_HAL_Driver
Only HAL driver

files
Only LL driver files

Mix of HAL and LL
driver files

Only the driver files
required for a given
configuration (selection of
peripherals) are copied
when the project settings
option is set to “Copy only
the necessary files”.
Otherwise (“all used
libraries” option) the
complete set of driver files
is copied.

Table 17. LL versus HAL code generation: STM32CubeMX generated header files

Generated header
files

HAL only LL only
Mix of HAL and

LL
Comments

main.h Yes Yes Yes

This file contains the
include statements and the
generated define
statements for user
constants (GPIO labels and
user constants).

stm32xxx_hal_conf.h Yes No Yes
This file enables the HAL
modules necessary to the
project.

stm32xxx_it.h Yes Yes Yes
Header file for interrupt
handlers

stm32xx_assert.h No Yes Yes

This file contains the assert
macros and the functions
used for checking function
parameters.

STM32CubeMX C Code generation overview UM1718

150/261 DocID025776 Rev 17

Table 18. LL versus HAL: STM32CubeMX generated source files

Generated source
files

HAL only LL only
Mix of HAL

and LL
Comments

main.c Yes Yes Yes
This file contains the main functions
and optionally STM32CubeMX
generated functions.

stm32xxx_hal_msp.c Yes No Yes

This file contains the following
functions:

– HAL_MspInit

– for peripherals using HAL drivers:
HAL_<Peripheral>_MspInit,
HAL_<Peripheral>_MspDeInit,

These functions are available only for
the peripherals that use HAL drivers.

stm32xxx_it.c Yes Yes Yes Source file for interrupt handlers

Table 19. LL versus HAL: STM32CubeMX generated functions and function calls

Generated source
files

HAL only LL only Mix of HAL and LL Comments

Hal_init() Called in main.c Not used Called in main.c

This file performs the following
functions:
– Configuration of the Flash

prefetch and instruction and
data caches

– Selection of the SysTick
timer as timebase source

– Setting of NVIC Group
Priority

– MCU low-level MCU
initialization.

Hal_msp_init()
Generated in

stm32xxx_hal_msp.c
and called by HAL_init()

Not used

Generated in
stm32xxx_hal_msp.c

And called by
HAL_init()

This function performs the
peripheral resource
configuration(1).

LL_init() Not used
Generated and
called in main.c

Not used
System and memory interrupt
configuration

MX_<Peripheral>_Init()

[1]
Peripheral configuration

and call to
HAL_<Peripheral>_Init()

[2]
Peripheral and

peripheral resource
configuration(1)

using LL functions.
Call to

LL_Peripheral_Init()

– When HAL driver is
selected for the
<Peripheral>,
function generation
and calls are done
following [1]

– When LL driver
selected for the
<Peripheral>,
function generation
and calls are done
following [2]

This file takes care of the
peripheral configuration.
When the LL driver is selected
for the <Peripheral>, it also
performs the peripheral
resource configuration(1).

DocID025776 Rev 17 151/261

UM1718 STM32CubeMX C Code generation overview

260

HAL_<Peripheral>_Msp
Init()

[3]
Generated in

stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

Not used

Only HAL driver can
be selected for the

<Peripheral>: function
generation and calls

are done following [3]

Peripheral resource
configuration(1)

HAL_<Peripheral>_Msp
DeInit()

[4]
Generated in

stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

Not used

Only HAL driver can
be selected for the

<Peripheral>: function
generation and calls

are done following [4]

This function can be used to
free peripheral resources.

1. Peripheral resources include:
Peripheral clock
Pinout configuration (GPIO)
Peripheral DMA requests
Peripheral Interrupt requests and priorities

Table 19. LL versus HAL: STM32CubeMX generated functions and function calls (continued)

Generated source
files

HAL only LL only Mix of HAL and LL Comments

STM32CubeMX C Code generation overview UM1718

152/261 DocID025776 Rev 17

Figure 115. HAL-based peripheral initialization: usart.c code snippet

DocID025776 Rev 17 153/261

UM1718 STM32CubeMX C Code generation overview

260

Figure 116. LL-based peripheral initialization: usart.c code snippet

Figure 117. HAL versus LL : main.c code snippet

STM32CubeMX C Code generation overview UM1718

154/261 DocID025776 Rev 17

5.3 Custom code generation

STM32CubeMX supports custom code generation by means of a FreeMarker template
engine (see http://www.freemarker.org).

5.3.1 STM32CubeMX data model for FreeMarker user templates

STM32CubeMX can generate a custom code based on a FreeMarker template file (.ftl
extension) for any of the following MCU configuration information:

• List of MCU peripherals used by the user configuration

• List of parameters values for those peripherals

• List of resources used by these peripherals: GPIO, DMA requests and interrupts.

The user template file must be compatible with STM32CubeMX data model. This means
that the template must start with the following lines:

[#ftl]

[#list configs as dt]

[#assign data = dt]

[#assign peripheralParams =dt.peripheralParams]

[#assign peripheralGPIOParams =dt.peripheralGPIOParams]

[#assign usedIPs =dt.usedIPs]

and end with

[/#list]

A sample template file is provided for guidance (see Figure 118: extra_templates folder –
default content).

STM32CubeMX will also generate user-specific code if any is available within the template.

As shown in the below example, when the sample template is used, the ftl commands are
provided as comments next to the data they have generated:

FreeMarker command in template:

${peripheralParams.get("RCC").get("LSI_VALUE")}

Resulting generated code:

LSI_VALUE : 32000 [peripheralParams.get("RCC").get("LSI_VALUE")]

5.3.2 Saving and selecting user templates

The user can either place the FreeMarker template files under STM32CubeMX installation
path within the db/extra_templates folder or in any other folder.

Then for a given project, the user will select the template files relevant for his project via the
Template Settings window accessible from the Project Settings menu (see Section 4.8:
Project Settings window)

DocID025776 Rev 17 155/261

UM1718 STM32CubeMX C Code generation overview

260

5.3.3 Custom code generation

To generate custom code, the user must place the FreeMarker template file under
STM32CubeMX installation path within the db/extra_templates folder (see Figure 119:
extra_templates folder with user templates).

The template filename must follow the naming convention <user filename>_<file
extension>.ftl in order to generate the corresponding custom file as <user filename>.<file
extension>.

By default, the custom file is generated in the user project root folder, next to the .ioc file
(see Figure 120: Project root folder with corresponding custom generated files).

To generate the custom code in a different folder, the user shall match the destination folder
tree structure in the extra_template folder (see Figure 121: User custom folder for
templates).

Figure 118. extra_templates folder – default content

STM32CubeMX C Code generation overview UM1718

156/261 DocID025776 Rev 17

Figure 119. extra_templates folder with user templates

Figure 120. Project root folder with corresponding custom generated files

DocID025776 Rev 17 157/261

UM1718 STM32CubeMX C Code generation overview

260

Figure 121. User custom folder for templates

Figure 122. Custom folder with corresponding custom generated files

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

158/261 DocID025776 Rev 17

6 Tutorial 1: From pinout to project C code generation
using an STM32F4 MCU

This section describes the configuration and C code generation process. It takes as an
example a simple LED toggling application running on the STM32F4DISCOVERY board.

6.1 Creating a new STM32CubeMX Project

1. Select File > New project from the main menu bar or New project from the Welcome
page.

2. Select the MCU Selector tab and filter down the STM32 portfolio by selecting STM32F4
as 'Series', STM32F407 as 'Lines', and LQFP100 as 'Package’ (see Figure 123).

3. Select the STM32F407VGTx from the MCU list and click OK.

Figure 123. MCU selection

DocID025776 Rev 17 159/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

STM32CubeMX views are then populated with the selected MCU database (see
Figure 124).

Figure 124. Pinout view with MCUs selection

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

160/261 DocID025776 Rev 17

Optionally, remove the MCUs Selection bottom window by unselecting Window> Outputs
sub-menu (see Figure 125).

Figure 125. Pinout view without MCUs selection window

DocID025776 Rev 17 161/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

6.2 Configuring the MCU pinout

For a detailed description of menus, advanced actions and conflict resolutions, refer to
Section 4: STM32CubeMX User Interface and Appendix A: STM32CubeMX pin assignment
rules.

1. By default, STM32CubeMX shows the Pinout view.

2. By default, is unchecked allowing STM32CubeMX to
move the peripheral functions around and to find the optimal pin allocation, that is the
one that accommodates the maximum number of peripheral modes.

Since the MCU pin configurations must match the STM32F4DISCOVERY board,
enable for STM32CubeMX to maintain the peripheral function
allocation (mapping) to a given pin.

This setting is saved as a user preference in order to be restored when reopening the
tool or when loading another project.

3. Select the required peripherals and peripheral modes:

a) Configure the GPIO to output the signal on the STM32F4DISCOVERY green LED
by right-clicking PD12 from the Chip view, then select GPIO_output:

Figure 126. GPIO pin configuration

b) Enable a timer to be used as timebase for toggling the LED. This is done by
selecting Internal Clock as TIM3 Clock source from the peripheral tree (see
Figure 127).

Figure 127. Timer configuration

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

162/261 DocID025776 Rev 17

c) You can also configure the RCC in order to use an external oscillator as potential
clock source (see Figure 128).

This completes the pinout configuration for this example.

Figure 128. Simple pinout configuration

Note: Starting with STM32CubeMX 4.2, the user can skip the pinout configuration by directly
loading ST Discovery board configuration from the Board selector tab.

6.3 Saving the project

1. Click to save the project.

When saving for the first time, select a destination folder and filename for the project.
The .ioc extension is added automatically to indicate this is an STM32CubeMX
configuration file.

Figure 129. Save Project As window

2. Click to save the project under a different name or location.

DocID025776 Rev 17 163/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

6.4 Generating the report

Reports can be generated at any time during the configuration:

1. Click to generate .pdf and .txt reports.

If a project file has not been created yet, a warning prompts the user to save the project
first and requests a project name and a destination folder (see Figure 130). An .ioc file
is then generated for the project along with a .pdf and .txt reports with the same name.

Answering “No” will require to provide a name and location for the report only.

A confirmation message is displayed when the operation has been successful (see
Figure 131).

Figure 130. Generate Project Report - New project creation

Figure 131. Generate Project Report - Project successfully created

2. Open the .pdf report using Adobe Reader or the .txt report using your favorite text
editor. The reports summarize all the settings and MCU configuration performed for the
project.

6.5 Configuring the MCU Clock tree

The following sequence describes how to configure the clocks required by the application
based on an STM32F4 MCU.

STM32CubeMX automatically generates the system, CPU and AHB/APB bus frequencies
from the clock sources and prescalers selected by the user. Wrong settings are detected
and highlighted in red through a dynamic validation of minimum and maximum conditions.
Useful tooltips provide a detailed description of the actions to undertake when the settings
are unavailable or wrong. User frequency selection can influence some peripheral
parameters (e.g. UART baudrate limitation).

STM32CubeMX uses the clock settings defined in the Clock tree view to generate the
initialization C code for each peripheral clock. Clock settings are performed in the generated
C code as part of RCC initialization within the project main.c and in stm32f4xx_hal_conf.h
(HSE, HSI and External clock values expressed in Hertz).

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

164/261 DocID025776 Rev 17

Follow the sequence below to configure the MCU clock tree:

1. Click the Clock Configuration tab to display the clock tree (see Figure 132).

The internal (HSI, LSI), system (SYSCLK) and peripheral clock frequency fields cannot
be edited. The system and peripheral clocks can be adjusted by selecting a clock
source, and optionally by using the PLL, prescalers and multipliers.

Figure 132. Clock tree view

DocID025776 Rev 17 165/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

2. First select the clock source (HSE, HSI or PLLCLK) that will drive the system clock of
the microcontroller.

In the example taken for the tutorial, select HSI to use the internal 16 MHz clock (see
Figure 133).

Figure 133. HSI clock enabled

To use an external clock source (HSE or LSE), the RCC peripheral shall be configured
in the Pinout view since pins will be used to connect the external clock crystals (see
Figure 134).

Figure 134. HSE clock source disabled

Other clock configuration options for the STM32F4DISCOVERY board would have
been:

– To select the external HSE source and enter 8 in the HSE input frequency box
since an 8 MHz crystal is connected on the discovery board:

Figure 135. HSE clock source enabled

– To select the external PLL clock source and the HSI or HSE as the PLL input clock
source.

Figure 136. External PLL clock source enabled

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

166/261 DocID025776 Rev 17

3. Keep the core and peripheral clocks to 16 MHz using HSI, no PLL and no prescaling.

Note: Optionally, further adjust the system and peripheral clocks using PLL, prescalers and
multipliers:

Other clock sources independent from the system clock can be configured as follows:

– USB OTG FS, Random Number Generator and SDIO clocks are driven by an
independent output of the PLL.

– I2S peripherals come with their own internal clock (PLLI2S), alternatively derived
by an independent external clock source.

– USB OTG HS and Ethernet Clocks are derived from an external source.

4. Optionally, configure the prescaler for the Microcontroller Clock Output (MCO) pins that
allow to output two clocks to the external circuit.

5. Click to save the project.

6. Go to the Configuration tab to proceed with the project configuration.

6.6 Configuring the MCU initialization parameters

Reminder

The C code generated by STM32CubeMX covers the initialization of the MCU
peripherals and middlewares using the STM32Cube firmware libraries.

6.6.1 Initial conditions

Select the Configuration tab to display the configuration view (see Figure 137).

Peripherals and middleware modes without influence on the pinout can be disabled or
enabled in the Peripheral and Middleware Tree pane. The modes that impact the pin
assignments can only be selected through the Pinout tab.

In the main panel, tooltips and warning messages are displayed when peripherals are not
properly configured (see Section 4: STM32CubeMX User Interface for details).

Note: The RCC peripheral initialization will use the parameter configuration done in this view as
well as the configuration done in the Clock tree view (clock source, frequencies, prescaler
values, etc…).

DocID025776 Rev 17 167/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

Figure 137. Configuration view

6.6.2 Configuring the peripherals

Each peripheral instance corresponds to a dedicated button in the main panel.

Some peripheral modes have no configurable parameters as illustrated below:

Figure 138. Case of Peripheral and Middleware without configuration parameters

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

168/261 DocID025776 Rev 17

Follow the steps below to proceed with peripheral configuration:

1. Click the peripheral button to open the corresponding configuration window.

In our example,

a) Click TIM3 to open the timer configuration window.

Figure 139. Timer 3 configuration window

DocID025776 Rev 17 169/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

b) With a 16 MHz APB clock (Clock tree view), set the prescaler to 16000 and the
counter period to 1000 to make the LED blink every millisecond.

Figure 140. Timer 3 configuration

2. Optionally and when available, select:

– The NVIC Settings tab to display the NVIC configuration and enable interruptions
for this peripheral.

– The DMA Settings tab to display the DMA configuration and to configure DMA
transfers for this peripheral.

In the tutorial example, the DMA is not used and the GPIO settings remain
unchanged. The interrupt is enabled as shown in Figure 141.

– The GPIO Settings tab to display the GPIO configuration and to configure the
GPIOs for this peripheral.

– Insert an item:

– The User Constants tab to specify constants to be used in the project.

3. Modify and click Apply or OK to save your modifications.

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

170/261 DocID025776 Rev 17

Figure 141. Enabling Timer 3 interrupt

6.6.3 Configuring the GPIOs

The user can adjust all pin configurations from this window. A small icon along with a tooltip
indicates the configuration status.

Figure 142. GPIO configuration color scheme and tooltip

Follow the sequence below to configure the GPIOS:

1. Click the GPIO button in the Configuration view to open the Pin Configuration
window below.

2. The first tab shows the pins that have been assigned a GPIO mode but not for a
dedicated peripheral and middleware. Select a Pin Name to open the configuration for
that pin.

In the tutorial example, select PD12 and configure it in output push-pull mode to drive
the STM32F4DISCOVERY LED (see Figure 143).

DocID025776 Rev 17 171/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

Figure 143. GPIO mode configuration

3. Click Apply then Ok to close the window.

6.6.4 Configuring the DMAs

This is not required for the example taken for the tutorial.

It is recommended to use DMA transfers to offload the CPU. The DMA Configuration
window provides a fast and easy way to configure the DMAs (see Figure 144).

1. Add a new DMA request and select among a list of possible configurations.

2. Select among the available streams.

3. Select the Direction: Memory to Peripheral or Peripheral to Memory.

4. Select a Priority.

Note: Configuring the DMA for a given peripheral and middleware can also be performed using
the Peripheral and Middleware configuration window.

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

172/261 DocID025776 Rev 17

Figure 144. DMA Parameters configuration window

6.6.5 Configuring the middleware

This is not required for the example taken for the tutorial.

If a peripheral is required for a middleware mode, the peripheral must be configured in the
Pinout view for the middleware mode to become available. A tooltip can guide the user as
illustrated in the FatFs example below:

Figure 145. FatFs disabled

DocID025776 Rev 17 173/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

1. Configure the USB peripheral from the Pinout view.

Figure 146. USB Host configuration

2. Select MSC_FS class from USB Host middleware.

3. Select the checkbox to enable FatFs USB mode in the tree panel.

Figure 147. FatFs over USB mode enabled

4. Select the Configuration view. FatFs and USB buttons are then displayed.

Figure 148. Configuration view with FatFs and USB enabled

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

174/261 DocID025776 Rev 17

5. FatFs and USB using default settings are already marked as configured . Click
FatFs and USB buttons to display default configuration settings. You can also change
them by following the guidelines provided at the bottom of the window.

Figure 149. FatFs peripheral instances

Figure 150. FatFs define statements

DocID025776 Rev 17 175/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

6.7 Generating a complete C project

6.7.1 Setting project options

Default project settings can be adjusted prior to C code generation as described in
Figure 151.

1. Select Settings from the Project menu to open the Project settings window.

2. Select the Project Tab and choose a Project name, location and a toolchain to
generate the project (see Figure 151).

Figure 151. Project Settings and toolchain choice

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

176/261 DocID025776 Rev 17

3. Select the Code Generator tab to choose various C code generation options:

– The library files copied to Projects folder.

– C code regeneration (e.g. what is kept or backed up during C code regeneration).

– HAL specific action (e.g. set all free pins as analog I/Os to reduce MCU power
consumption).

In the tutorial example, select the settings as displayed in the figure below and click
OK.

Note: A dialog window appears when the firmware package is missing. Go to next section for
explanation on how to download the firmware package.

Figure 152. Project Settings menu - Code Generator tab

DocID025776 Rev 17 177/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

6.7.2 Downloading firmware package and generating the C code

1. Click to generate the C code.

During C code generation, STM32CubeMX copies files from the relevant STM32Cube
firmware package into the project folder so that the project can be compiled. When
generating a project for the first time, the firmware package is not available on the user
PC and a warning message is displayed:

Figure 153. Missing firmware package warning message

2. STM32CubeMX offers to download the relevant firmware package or to go on. Click
Download to obtain a complete project, that is a project ready to be used in the
selected IDE.

By clicking Continue, only Inc and Src folders will be created, holding STM32CubeMX
generated initialization files. The necessary firmware and middleware libraries will have
to be copied manually to obtain a complete project.

If the download fails, the below error message is displayed:

Figure 154. Error during download

To solve this issue, execute the next two steps. Skip them otherwise.

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

178/261 DocID025776 Rev 17

3. Select Help > Updater settings menu and adjust the connection parameters to match
your network configuration.

Figure 155. Updater settings for download

4. Click Check connection. The check mark turns green once the connection is
established.

DocID025776 Rev 17 179/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

Figure 156. Updater settings with connection

5. Once the connection is functional, click to generate the C code. The C code
generation process starts and progress is displayed as illustrated in the next figures.

Figure 157. Downloading the firmware package

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

180/261 DocID025776 Rev 17

Figure 158. Unzipping the firmware package

6. Finally, a confirmation message is displayed to indicate that the C code generation has
been successful.

Figure 159. C code generation completion message

DocID025776 Rev 17 181/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

7. Click Open Folder to display the generated project contents or click Open Project to
open the project directly in your IDE. Then proceed with Section 6.8.

Figure 160. C code generation output folder

The generated project contains:

• The STM32CubeMX .ioc project file located in the root folder. It contains the project
user configuration and settings generated through STM32CubeMX user interface.

• The Drivers and Middlewares folders hold copies of the firmware package files relevant
for the user configuration.

• The Projects folder contains IDE specific folders with all the files required for the project
development and debug within the IDE.

• The Inc and Src folders contain STM32CubeMX generated files for middleware,
peripheral and GPIO initialization, including the main.c file. The STM32CubeMX
generated files contain user-dedicated sections allowing to insert user-defined C code.

Caution: C code written within the user sections is preserved at next C code generation, while C code
written outside these sections is overwritten.

User C code will be lost if user sections are moved or if user sections delimiters are
renamed.

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

182/261 DocID025776 Rev 17

6.8 Building and updating the C code project

This example explains how to use the generated initialization C code and complete the
project, within IAR EWARM toolchain, to have the LED blink according to the TIM3
frequency.

A folder is available for the toolchains selected for C code generation: the project can be
generated for more than one toolchain by choosing a different toolchain from the Project
Settings menu and clicking Generate code once again.

1. Open the project directly in the IDE toolchain by clicking Open Project from the dialog
window or by double-clicking the relevant IDE file available in the toolchain folder under
STM32CubeMX generated project directory (see Figure 159).

Figure 161. C code generation output: Projects folder

DocID025776 Rev 17 183/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

2. As an example, select .eww file to load the project in the IAR EWARM IDE.

Figure 162. C code generation for EWARM

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

184/261 DocID025776 Rev 17

3. Select the main.c file to open in editor.

Figure 163. STM32CubeMX generated project open in IAR IDE

The htim3 structure handler, system clock, GPIO and TIM3 initialization functions are
defined. The initialization functions are called in the main.c. For now the user C code
sections are empty.

DocID025776 Rev 17 185/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

4. In the IAR IDE, right-click the project name and select Options.

Figure 164. IAR options

5. Click the ST-LINK category and make sure SWD is selected to communicate with the
STM32F4DISCOVERY board. Click OK.

Figure 165. SWD connection

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

186/261 DocID025776 Rev 17

6. Select Project > Rebuild all. Check if the project building has succeeded.

Figure 166. Project building log

7. Add user C code in the dedicated user sections only.

Note: The main while(1) loop is placed in a user section.

For example:

a) Edit the main.c file.

b) To start timer 3, update User Section 2 with the following C code:

Figure 167. User Section 2

c) Then, add the following C code in User Section 4:

Figure 168. User Section 4

DocID025776 Rev 17 187/261

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

260

This C code implements the weak callback function defined in the HAL timer driver
(stm32f4xx_hal_tim.h) to toggle the GPIO pin driving the green LED when the
timer counter period has elapsed.

8. Rebuild and program your board using . Make sure the SWD ST-LINK option is
checked as a Project options otherwise board programming will fail.

9. Launch the program using . The green LED on the STM32F4DISCOVERY board
will blink every second.

10. To change the MCU configuration, go back to STM32CubeMX user interface,
implement the changes and regenerate the C code. The project will be updated,
preserving the C code in the user sections if option in
Project Settings is enabled.

6.9 Switching to another MCU

STM32CubeMX allows loading a project configuration on an MCU of the same series.

Proceed as follows:

1. Select File > New Project.

2. Select an MCU belonging to the same series. As an example, you can select the
STM32F429ZITx that is the core MCU of the 32F429IDISCOVERY board.

3. Select File > Import project. In the Import project window, browse to the .ioc file to
load. A message warns you that the currently selected MCU (STM32F429ZITx) differs
from the one specified in the .ioc file (STM32F407VGTx). Several import options are
proposed (see Figure 169).

4. Click the Try Import button and check the import status to verify if the import
succeeded (see Figure 170).

5. Click OK to really import the project. An output tab is then displayed to report the import
results.

6. The green LED on 32F429IDISCOVERY board is connected to PG13: CTRL+ right
click PD12 and drag and drop it on PG13.

7. Select Project > Settings to configure the new project name and folder location. Click
Generate icon to save the project and generate the code.

8. Select Open the project from the dialog window, update the user sections with the
user code, making sure to update the GPIO settings for PG13. Build the project and
flash the board. Launch the program and check that LED blinks once per second.

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

188/261 DocID025776 Rev 17

Figure 169. Import Project menu

Figure 170. Project Import status

DocID025776 Rev 17 189/261

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

260

7 Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board

The tutorial consists in creating and writing to a file on the STM32429I-EVAL1 SD card using
the FatFs file system middleware.

To generate a project and run tutorial 2, follow the sequence below:

1. Launch STM32CubeMX.

2. Select File > New Project. The Project window opens.

3. Click the Board Selector Tab to display the list of ST boards.

4. Select EvalBoard as type of Board and STM32F4 as series to filter down the list.

5. Leave the option Initialize all peripherals with their default mode unchecked so that
the code is generated only for the peripherals used by the application.

6. Select the STM32429I-EVAL board and click OK. The Pinout view is loaded, matching
the MCU pinout configuration on the evaluation board (see Figure 171).

Figure 171. Board selection

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

190/261 DocID025776 Rev 17

7. From the Peripheral tree on the left, expand the SDIO peripheral and select the SD 4
bits wide bus (see Figure 172).

Figure 172. SDIO peripheral configuration

8. Under the Middlewares category, check “SD Card” as FatFs mode (see Figure 173).

Figure 173. FatFs mode configuration

9. Configure the clocks as follows:

a) Select the RCC peripheral from the Pinout view (see Figure 174).

Figure 174. RCC peripheral configuration

DocID025776 Rev 17 191/261

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

260

b) Configure the clock tree from the clock tab (see Figure 175).

Figure 175. Clock tree view

10. In the Project Settings menu, specify the project name and destination folder. Then,
select the EWARM IDE toolchain.

Figure 176. Project Settings menu - Code Generator tab

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

192/261 DocID025776 Rev 17

11. Click Ok. Then, on the toolbar menu, click to generate the project.

12. Upon code generation completion, click Open Project in the Code Generation dialog
window (see Figure 177). This opens the project directly in the IDE.

Figure 177. C code generation completion message

13. In the IDE, check that heap and stack sizes are sufficient: right click the project name
and select Options, then select Linker. Check Override default to use the icf file from
STM32CubeMX generated project folder. Adjust the heap and stack sizes (see
Figure 178).

Figure 178. IDE workspace

DocID025776 Rev 17 193/261

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

260

Note: When using the MDK-ARM toolchain, go to the Application/MDK-ARM folder and double-
click the startup_xx.s file to edit and adjust the heap and stack sizes there.

14. Go to the Application/User folder. Double-click the main.c file and edit it.

15. The tutorial consists in creating and writing to a file on the evaluation board SD card
using the FatFs file system middleware:

a) At startup all LEDs are OFF.

b) The red LED is turned ON to indicate that an error occurred (FatFs initialization,
file read/write access errors..).

c) The orange LED is turned ON to indicate that the FatFs link has been successfully
mounted on the SD driver.

d) The blue LED is turned ON to indicate that the file has been successfully written to
the SD Card.

e) The green LED is turned ON to indicate that the file has been successfully read
from file the SD Card.

16. For use case implementation, update main.c with the following code:

a) Insert main.c private variables in a dedicated user code section:
/* USER CODE BEGIN PV */
/* Private variables --*/
FATFS SDFatFs; /* File system object for SD card logical drive */
FIL MyFile; /* File object */
const char wtext[] = "Hello World!";
const uint8_t image1_bmp[] = {
0x42,0x4d,0x36,0x84,0x03,0x00,0x00,0x00,0x00,0x00,0x36,0x00,0x00,0x00,
0x28,0x00,0x00,0x00,0x40,0x01,0x00,0x00,0xf0,0x00,0x00,0x00,0x01,0x00,
0x18,0x00,0x00,0x00,0x00,0x00,0x00,0x84,0x03,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x29,0x74,
0x51,0x0e,0x63,0x30,0x04,0x4c,0x1d,0x0f,0x56,0x25,0x11,0x79,0x41,0x1f,
0x85,0x6f,0x25,0x79,0x7e,0x27,0x72,0x72,0x0b,0x50,0x43,0x00,0x44,0x15,
0x00,0x4b,0x0f,0x00,0x4a,0x15,0x07,0x50,0x16,0x03,0x54,0x22,0x23,0x70,
0x65,0x30,0x82,0x6d,0x0f,0x6c,0x3e,0x22,0x80,0x5d,0x23,0x8b,0x5b,0x26};
/* USER CODE END PV */

b) Insert main functional local variables:
int main(void)
{

 /* USER CODE BEGIN 1 */
 FRESULT res; /* FatFs function common result code */
 uint32_t byteswritten, bytesread; /* File write/read counts */
 char rtext[256]; /* File read buffer */
 /* USER CODE END 1 */

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the
Systick. */
HAL_Init();

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

194/261 DocID025776 Rev 17

c) Insert user code in the main function, after initialization calls and before the while
loop, to perform actual read/write from/to the SD card:

int main(void)

{

….
MX_FATFS_Init();

 /* USER CODE BEGIN 2 */
/*##-0- Turn all LEDs off(red, green, orange and blue) */
 HAL_GPIO_WritePin(GPIOG, (GPIO_PIN_10 | GPIO_PIN_6 | GPIO_PIN_7 |
GPIO_PIN_12), GPIO_PIN_SET);
/*##-1- FatFS: Link the SD disk I/O driver ##########*/
 if(retSD == 0){

/* success: set the orange LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_7, GPIO_PIN_RESET);
/*##-2- Register the file system object to the FatFs module ###*/
 if(f_mount(&SDFatFs, (TCHAR const*)SD_Path, 0) != FR_OK){
 /* FatFs Initialization Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
/*##-3- Create a FAT file system (format) on the logical drive#*/
 /* WARNING: Formatting the uSD card will delete all content on the
device */
 if(f_mkfs((TCHAR const*)SD_Path, 0, 0) != FR_OK){
 /* FatFs Format Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
/*##-4- Create & Open a new text file object with write access#*/
 if(f_open(&MyFile, "Hello.txt", FA_CREATE_ALWAYS | FA_WRITE) !=
FR_OK){
 /* 'Hello.txt' file Open for write Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-5- Write data to the text file ####################*/
 res = f_write(&MyFile, wtext, sizeof(wtext), (void
*)&byteswritten);
 if((byteswritten == 0) || (res != FR_OK)){
 /* 'Hello.txt' file Write or EOF Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-6- Successful open/write : set the blue LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_12, GPIO_PIN_RESET);
 f_close(&MyFile);
 /*##-7- Open the text file object with read access #*/
 if(f_open(&MyFile, "Hello.txt", FA_READ) != FR_OK){
 /* 'Hello.txt' file Open for read Error : set the red LED on */

DocID025776 Rev 17 195/261

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

260

 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-8- Read data from the text file #########*/
 res = f_read(&MyFile, rtext, sizeof(wtext), &bytesread);
 if((strcmp(rtext,wtext)!=0)|| (res != FR_OK)){
 /* 'Hello.txt' file Read or EOF Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /* Successful read : set the green LED On */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6, GPIO_PIN_RESET);
 /*##-9- Close the open text file ################*/
 f_close(&MyFile);
 }}}}}}}
 /*##-10- Unlink the micro SD disk I/O driver #########*/
 FATFS_UnLinkDriver(SD_Path);

 /* USER CODE END 2 */

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */

 while (1)

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

196/261 DocID025776 Rev 17

8 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption
and more

8.1 Tutorial overview

This tutorial focuses on STM32CubeMX Power Consumption Calculator (Power
Consumption Calculator) feature and its benefits to evaluate the impacts of power-saving
techniques on a given application sequence.

The key considerations to reduce a given application power consumption are:

• Reducing the operating voltage

• Reducing the time spent in energy consuming modes

It is up to the developer to select a configuration that gives the best compromise
between low-power consumption and performance.

• Maximizing the time spent in non-active and low-power modes

• Using the optimal clock configuration

The core should always operate at relatively good speed, since reducing the operating
frequency can increase energy consumption if the microcontroller has to remain for a
long time in an active operating mode to perform a given operation.

• Enabling only the peripherals relevant for the current application state and clock-gating
the others

• When relevant, using the peripherals with low-power features (e.g. waking up the
microcontroller with the I2C)

• Minimizing the number of state transitions

• Optimizing memory accesses during code execution

– Prefer code execution from RAM to Flash memory

– When relevant, consider aligning CPU frequency with Flash memory operating
frequency for zero wait states.

The following tutorial shows how the STM32CubeMX Power Consumption Calculator
feature can help to tune an application to minimize its power consumption and extend the
battery life.

Note: The Power Consumption Calculator does not account for I/O dynamic current consumption
and external board components that can also affect current consumption. For this purpose,
an “additional consumption” field is provided for the user to specify such consumption value.

DocID025776 Rev 17 197/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

8.2 Application example description

The application is designed using the NUCLEO-L476RG board based on a
STM32L476RGTx device and supplied by a 2.4 V battery.

The main purpose of this application is to perform ADC measurements and transfer the
conversion results over UART. It uses:

• Multiple low-power modes: Low-power run, Low-power sleep, Sleep, Stop and Standby

• Multiple peripherals: USART, DMA, Timer, COMP, DAC and RTC

– The RTC is used to run a calendar and to wake up the CPU from Standby when a
specified time has elapsed.

– The DMA transfers ADC measurements from ADC to memory

– The USART is used in conjunction with the DMA to send/receive data via the
virtual COM port and to wake up the CPU from Stop mode.

The process to optimize such complex application is to start describing first a functional only
sequence then to introduce, on a step by step basis, the low-power features provided by the
STM32L476RG microcontroller.

8.3 Using the Power Consumption Calculator

8.3.1 Creating a power sequence

Follow the steps below to create the sequence (see Figure 179):

1. Launch STM32CubeMX.

2. Click new project and select the Nucleo-L476RG board from the Board tab.

3. Click the Power Consumption Calculator tab to select the Power Consumption
Calculator view. A first sequence is then created as a reference.

4. Adapt it to minimize the overall current consumption. To do this:

a) Select 2.4 V VDD power supply. This value can be adjusted on a step by step basis
(see Figure 180).

b) Select the Li-MnO2 (CR2032) battery. This step is optional. The battery type can
be changed later on (see Figure 180).

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

198/261 DocID025776 Rev 17

Figure 179. Power Consumption Calculation example

DocID025776 Rev 17 199/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

Figure 180. VDD and battery selection menu

5. Enable the Transition checker to ensure the sequence is valid (see Figure 180). This
option allows verifying that the sequence respects the allowed transitions implemented
within the STM32L476RG.

6. Click the Add button to add steps that match the sequence described in Figure 180.

– By default the steps last 1 ms each, except for the wakeup transitions that are
preset using the transition times specified in the product datasheet (see
Figure 181).

– Some peripherals for which consumption is unavailable or negligible are
highlighted with ‘*’ (see Figure 181).

Figure 181. Sequence table

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

200/261 DocID025776 Rev 17

7. Click the Save button to save the sequence as SequenceOne.

The application consumption profile is the generated. It shows that the overall sequence
consumes an average of 2.01 mA for 9 ms, and the battery lifetime is only 4 days (see
Figure 182).

Figure 182. sequence results before optimization

8.3.2 Optimizing application power consumption

Let us now take several actions to optimize the overall consumption and the battery lifetime.
These actions are performed on step 1, 4, 5, 6, 7, 8 and 10.

The next figures show on the left the original step and on the right the step updated with
several optimization actions.

Step 1 (Run)

• Findings

All peripherals are enabled although the application requires only the RTC.

• Actions

– Lower the operating frequency.

– Enable solely the RTC peripheral.

– To reduce the average current consumption, reduce the time spent in this mode.

• Results

The current is reduced from 9.05 mA to 2.16 mA (see Figure 183).

DocID025776 Rev 17 201/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

Figure 183. Step 1 optimization

Step 4 (Run, RTC)

• Action:

Reduce the time spent in this mode to 0.1 ms.

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

202/261 DocID025776 Rev 17

Step 5 (Run, ADC, DMA, RTC)

• Actions

– Change to Low-power run mode.

– Lower the operating frequency.

• Results

The current consumption is reduced from 6.17 mA to 271 µA (see Figure 184).

Figure 184. Step 5 optimization

DocID025776 Rev 17 203/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

Step 6 (Sleep, DMA, ADC,RTC)

• Actions

– Switch to Lower-power sleep mode (BAM mode)

– Reduce the operating frequency to 2 MHz.

• Results

The current consumption is reduced from 703 µA to 93 µA (see Figure 185).

Figure 185. Step 6 optimization

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

204/261 DocID025776 Rev 17

Step 7 (Run, DMA, RTC, USART)

• Actions

– Switch to Lower-power run mode.

– Use the power-efficient LPUART peripheral.

– Reduce the operating frequency to 1 MHz using the interpolation feature.

• Results

The current consumption is reduced from 1.92 µA to 42 µA (see Figure 186).

Figure 186. Step 7 optimization

DocID025776 Rev 17 205/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

Step 8 (Stop 0, USART)

• Actions:

– Switch to Stop1 low-power mode.

– Use the power-efficient LPUART peripheral.

• Results

The current consumption is reduced from 110 µA to 6.65 µA (see Figure 187).

Figure 187. Step 8 optimization

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

206/261 DocID025776 Rev 17

Step 10 (RTC, USART)

• Actions

– Use the power-efficient LPUART peripheral.

– Reduce the operating frequency to 1 MHz.

• Results

The current consumption is reduced from 1.89 mA to 234 µA (see Figure 188).

The example given in Figure 189 shows an average current consumption reduction of
155 µA.

Figure 188. Step 10 optimization

DocID025776 Rev 17 207/261

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

260

See Figure 189 for the sequence overall results: 7 ms duration, about 2 month battery life,
and an average current consumption of 165.25 µA.

Use the compare button to compare the current results to the original ones saved as
SequenceOne.pcs.

Figure 189. Power sequence results after optimizations

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

208/261 DocID025776 Rev 17

9 Tutorial 4 - Example of UART communications with
a STM32L053xx Nucleo board

This tutorial aims at demonstrating how to use STM32CubeMX to create a UART serial
communication application for a NUCLEO-L053R8 board.

A Windows PC is required for the example. The ST-Link USB connector is used both for
serial data communications, and firmware downloading and debugging on the MCU. A
Type-A to mini-B USB cable must be connected between the board and the computer. The
USART2 peripheral uses PA2 and PA3 pins, which are wired to the ST-Link connector. In
addition, USART2 is selected to communicate with the PC via the ST-Link Virtual COM Port.
A serial communication client, such as Tera Term, needs to be installed on the PC to display
the messages received from the board over the virtual communication Port.

9.1 Tutorial overview

Tutorial 4 will take you through the following steps:

1. Selection of the NUCLEO-L053R8 board from the New Project menu.

2. Selection of the required features (debug, USART, timer) from the Pinout view:
peripheral operating modes as well as assignment of relevant signals on pins.

3. Configuration of the MCU clock tree from the Clock Configuration view.

4. Configuration of the peripheral parameters from the Configuration view

5. Configuration of the project settings in the Project Settings menu and generation of the
project (initialization code only).

6. Project update with the user application code corresponding to the UART
communication example.

7. Compilation, and execution of the project on the board.

8. Configuration of Tera Term software as serial communication client on the PC.

9. The results are displayed on the PC.

9.2 Creating a new STM32CubeMX project and
selecting the Nucleo board

To do this, follow the sequence below:

1. Select File > New project from the main menu bar. This opens the New Project
window.

2. Go to the Board selector tab and filter on L0 series.

3. Select NUCLEO-L053R8 and click OK to load the board within the STM32CubeMX
user interface (see Figure 190).

DocID025776 Rev 17 209/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

Figure 190. Selecting NUCLEO_L053R8 board

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

210/261 DocID025776 Rev 17

9.3 Selecting the features from the Pinout view

1. Select Debug Serial Wire under SYS (see Figure 191).

Figure 191. Selecting debug pins

2. Select Internal Clock as clock source under TIM2 peripheral (see Figure 192).

Figure 192. Selecting TIM2 clock source

DocID025776 Rev 17 211/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

3. Select the Asynchronous mode for the USART2 peripheral (see Figure 193).

Figure 193. Selecting asynchronous mode for USART2

4. Check that the signals are properly assigned on pins (see Figure 194):

– SYS_SWDIO on PA13

– TCK on PA14

– USART_TX on PA2

– USART_RX on PA3

Figure 194. Checking pin assignment

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

212/261 DocID025776 Rev 17

9.4 Configuring the MCU clock tree from the Clock Configuration
view

1. Go to the Clock Configuration tab and leave the configuration untouched, in order to
use the MSI as input clock and an HCLK of 2.097 MHz (see Figure 195).

Figure 195. Configuring the MCU clock tree

DocID025776 Rev 17 213/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

9.5 Configuring the peripheral parameters from the
Configuration view

1. From the Configuration tab, click USART2 to open the peripheral Parameter Settings
window and set the baudrate to 9600. Make sure the Data direction is set to “Receive
and Transmit” (see Figure 196).

2. Click OK to apply the changes and close the window.

Figure 196. Configuring USART2 parameters

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

214/261 DocID025776 Rev 17

3. Click TIM2 and change the prescaler to 16000, the Word Length to 8 bits and the
Counter Period to 1000 (see Figure 197).

Figure 197. Configuring TIM2 parameters

DocID025776 Rev 17 215/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

4. Enable TIM2 global interrupt from the NVIC Settings tab (see Figure 198).

Figure 198. Enabling TIM2 interrupt

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

216/261 DocID025776 Rev 17

9.6 Configuring the project settings and generating the project

1. In the Project Settings menu, specify the project name, destination folder, and select
the EWARM IDE toolchain (see Figure 199).

Figure 199. Project Settings menu

If the Firmware package version is not already available on the user PC, a progress
window opens to show the firmware package download progress.

DocID025776 Rev 17 217/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

2. In the Code Generator tab, configure the code to be generated as shown in
Figure 200, and click OK to generate the code.

Figure 200. Generating the code

9.7 Updating the project with the user application code

Add the user code as follows:

/* USER CODE BEGIN 0 */

#include "stdio.h"

#include "string.h"

/* Buffer used for transmission and number of transmissions */

char aTxBuffer[1024];

int nbtime=1;

/* USER CODE END 0 */

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

218/261 DocID025776 Rev 17

Within the main function, start the timer event generation function as follows:

/* USER CODE BEGIN 2 */

 /* Start Timer event generation */

 HAL_TIM_Base_Start_IT(&htim2);

 /* USER CODE END 2 */

/* USER CODE BEGIN 4 */

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){

sprintf(aTxBuffer,"STM32CubeMX rocks %d times \t", ++nbtime);

HAL_UART_Transmit(&huart2,(uint8_t *) aTxBuffer, strlen(aTxBuffer), 5000);

}

/* USER CODE END 4 */

9.8 Compiling and running the project

1. Compile the project within your favorite IDE.

2. Download it to the board.

3. Run the program.

9.9 Configuring Tera Term software as serial communication
client on the PC

1. On the computer, check the virtual communication port used by ST Microelectronics
from the Device Manager window (see Figure 201).

Figure 201. Checking the communication port

DocID025776 Rev 17 219/261

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

260

2. To configure Tera Term to listen to the relevant virtual communication port, adjust the
parameters to match the USART2 parameter configuration on the MCU (see
Figure 202).

Figure 202. Setting Tera Term port parameters

3. The Tera Term window displays a message coming from the board at a period of a few
seconds (see Figure 203).

Figure 203. Setting Tera Term port parameters

Tutorial 5: exporting current project configuration to a compatible MCU UM1718

220/261 DocID025776 Rev 17

10 Tutorial 5: exporting current project configuration to
a compatible MCU

When List pinout compatible MCUs is selected from the Pinout menu, STM32CubeMX
retrieves the list of the MCUs which are compatible with the current project configuration,
and offers to export the current configuration to the newly selected compatible MCU.

This tutorial shows how to display the list of compatible MCUs and export your current
project configuration to a compatible MCU:

1. Load an existing project, or create and save a new project:

Figure 204. Existing or new project pinout

2. Go to the Pinout menu and select List Pinout Compatible MCUs. The Pinout
compatible window pops up (see Figure 205 and Figure 206).

If needed, modify the search criteria and the filter options and restart the search
process by clicking the Search button.

The row color shading and the Comments column indicate the level of matching:

– Bright green indicates an exact match: the MCU is fully compatible with the current
project (see Figure 205 for an example).

– Light green indicates a partial match with hardware compatibility: the hardware
compatibility can be ensured but some pin names could not be preserved. Hover
the mouse over the desired MCU to display an explanatory tooltip (see Figure 206
for an example).

DocID025776 Rev 17 221/261

UM1718 Tutorial 5: exporting current project configuration to a compatible MCU

260

– Yellow indicates a partial match without hardware compatibility: not all signals can
be assigned to the exact same pin location and a remapping will be required.
Hover the mouse over the desired MCU to display an explanatory tooltip (see
Figure 206 for an example).

Figure 205. List of pinout compatible MCUs - partial match
with hardware compatibility

Figure 206. List of Pinout compatible MCUs - exact and partial match

Tutorial 5: exporting current project configuration to a compatible MCU UM1718

222/261 DocID025776 Rev 17

3. Then, select an MCU to import the current configuration to, and click OK, Import:

Figure 207. Selecting a compatible MCU and importing the configuration

The configuration is now available for the selected MCU:

Figure 208. Configuration imported to the selected compatible MCU

DocID025776 Rev 17 223/261

UM1718 Tutorial 5: exporting current project configuration to a compatible MCU

260

4. To see the list of compatible MCUs at any time, select Outputs under the Window
menu.

To load the current configuration to another compatible MCU, double-click the list of
compatible MCUs.

5. To remove some constraints on the search criteria, several solutions are possible:

– Select the Ignore Pinning Status checkbox to ignore pin status (locked pins).

– Select the Ignore Power Pins checkbox not to take into account the power pins.

– Select the Ignore System Pins not take into account the system pins. Hover the
mouse over the checkbox to display a tooltip that lists the system pins available on
the current MCU.

FAQ UM1718

224/261 DocID025776 Rev 17

11 FAQ

11.1 On the Pinout configuration pane, why does STM32CubeMX
move some functions when I add a new peripheral mode?

You may have unselected . In this case, the tool performs an
automatic remapping to optimize your placement.

11.2 How can I manually force a function remapping?

You should use the Manual Remapping feature.

11.3 Why are some pins highlighted in yellow or in light green in
the Chip view? Why cannot I change the function of some
pins (when I click some pins, nothing happens)?

These pins are specific pins (such as power supply or BOOT) which are not available as
peripheral signals.

11.4 Why do I get the error “Java 7 update 45’ when installing
‘Java 7 update 45’ or a more recent version of the JRE?

The problem generally occurs on 64-bit Windows operating system, when several versions
of Java are installed on your computer and the 64-bit Java installation is too old.

During STM32CubeMX installation, the computer searches for a 64-bit installation of Java.

• If one is found, the ‘Java 7 update 45’ minimum version prerequisite is checked. If the
installed version is older, an error is displayed to request the upgrade.

• If no 64-bit installation is found, STM32CubeMX searches for a 32-bit installation. If one
is found and the version is too old, the ‘Java 7 update 45’ error is displayed. The user
must update the installation to solve the issue.

To avoid this issue from occurring, it is recommended to perform one of the following
actions:

1. Remove all Java installations and reinstall only one version (32 or 64 bits) (Java 7
update 45 or more recent).

2. Keep 32-bit and 64-bit installations but make sure that the 64-bit version is at least
Java 7 update 45.

Note: Some users (Java developers for example) may need to check the PC environment
variables defining hard-coded Java paths (e.g. JAVA_HOME or PATH) and update them so
that they point to the latest Java installation.

On Windows 7 you can check your Java installation using the Control Panel. To do this,
double-click icon from Control Panel\All Control Panel to open the Java settings
window (see Figure 209):

DocID025776 Rev 17 225/261

UM1718 FAQ

260

Figure 209. Java Control Panel

You can also enter ‘java –version’ as an MS-DOS command to check the version of your
latest Java installation (the Java program called here is a copy of the program installed
under C:\Windows\System32):

java version “1.7.0_45“

Java (TM) SE Runtime Environment (build 1.7.0_45-b18)

Java HotSpot (TM) 64-Bit Server VM (build 24.45-b08, mixed mode)

11.5 Why does the RTC multiplexer remain inactive on the Clock
tree view?

To enable the RTC multiplexer, the user shall enable the RTC peripheral in the Pinout view
as indicated in below:

Figure 210. Pinout view - Enabling the RTC

FAQ UM1718

226/261 DocID025776 Rev 17

11.6 How can I select LSE and HSE as clock source and
change the frequency?

The LSE and HSE clocks become active once the RCC is configured as such in the Pinout
view. See Figure 211 for an example.

Figure 211. Pinout view - Enabling LSE and HSE clocks

The clock source frequency can then be edited and the external source selected:

Figure 212. Pinout view - Setting LSE/HSE clock frequency

11.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as an output?

STM32CubeMX implements the restriction documented in the reference manuals as a
footnote in table Output Voltage characteristics:

“PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only
sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output
mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and
these I/Os must not be used as a current source (e.g. to drive a LED).”

DocID025776 Rev 17 227/261

UM1718 STM32CubeMX pin assignment rules

260

Appendix A STM32CubeMX pin assignment rules

The following pin assignment rules are implemented in STM32CubeMX:

• Rule 1: Block consistency

• Rule 2: Block inter-dependency

• Rule 3: One block = one peripheral mode

• Rule 4: Block remapping (only for STM32F10x)

• Rule 5: Function remapping

• Rule 6: Block shifting (only for STM32F10x)

• Rule 7: Setting or clearing a peripheral mode

• Rule 8: Mapping a function individually (if Keep Current Placement is unchecked)

• Rule 9: GPIO signals mapping

A.1 Block consistency

When setting a pin signal (provided there is no ambiguity about the corresponding
peripheral mode), all the pins/signals required for this mode are mapped and pins are
shown in green (otherwise the configured pin is shown in orange).

When clearing a pin signal, all the pins/signals required for this mode are unmapped
simultaneously and the pins turn back to gray.

Example of block mapping with a STM32F107x MCU

If the user assigns I2C1_SMBA function to PB5, then STM32CubeMX configures pins and
modes as follows:

• I2C1_SCL and I2C1_SDA signals are mapped to the PB6 and PB7 pins, respectively
(see Figure 213).

• I2C1 peripheral mode is set to SMBus-Alert mode.

STM32CubeMX pin assignment rules UM1718

228/261 DocID025776 Rev 17

Figure 213. Block mapping

Example of block remapping with a STM32F107x MCU

If the user assigns GPIO_Output to PB6, STM32CubeMX automatically disables I2C1
SMBus-Alert peripheral mode from the peripheral tree view and updates the other I2C1 pins
(PB5 and PB7) as follows:

• If they are unpinned, the pin configuration is reset (pin grayed out).

• If they are pinned, the peripheral signal assigned to the pins is kept and the pins are
highlighted in orange since they no longer match a peripheral mode (see Figure 214).

DocID025776 Rev 17 229/261

UM1718 STM32CubeMX pin assignment rules

260

Figure 214. Block remapping

For STM32CubeMX to find an alternative solution for the I2C peripheral mode, the user will
need to unpin I2C1 pins and select the I2C1 mode from the peripheral tree view (see
Figure 215 and Figure 216).

STM32CubeMX pin assignment rules UM1718

230/261 DocID025776 Rev 17

Figure 215. Block remapping - example 1

DocID025776 Rev 17 231/261

UM1718 STM32CubeMX pin assignment rules

260

Figure 216. Block remapping - example 2

A.2 Block inter-dependency

On the Chip view, the same signal can appear as an alternate function for multiple pins.
However it can be mapped only once.

As a consequence, for STM32F1 MCUs, two blocks of pins cannot be selected
simultaneously for the same peripheral mode: when a block/signal from a block is selected,
the alternate blocks are cleared.

Example of block remapping of SPI in full-duplex master mode with a
STM32F107x MCU

If SPI1 full-duplex master mode is selected from the tree view, by default the corresponding
SPI signals are assigned to PB3, PB4 and PB5 pins (see Figure 217).

If the user assigns to PA6 the SPI1_MISO function currently assigned to PB4,
STM32CubeMX clears the PB4 pin from the SPI1_MISO function, as well as all the other
pins configured for this block, and moves the corresponding SPI1 functions to the relevant
pins in the same block as the PB4 pin (see Figure 218).

(by pressing CTRL and clicking PB4 to show PA6 alternate function in blue, then drag and
drop the signal to pin PA6)

STM32CubeMX pin assignment rules UM1718

232/261 DocID025776 Rev 17

Figure 217. Block inter-dependency - SPI signals assigned to PB3/4/5

DocID025776 Rev 17 233/261

UM1718 STM32CubeMX pin assignment rules

260

Figure 218. Block inter-dependency - SPI1_MISO function assigned to PA6

STM32CubeMX pin assignment rules UM1718

234/261 DocID025776 Rev 17

A.3 One block = one peripheral mode

When a block of pins is fully configured in the Chip view (shown in green), the related
peripheral mode is automatically set in the Peripherals tree.

Example of STM32F107x MCU

Assigning the I2C1_SMBA function to PB5 automatically configures I2C1 peripheral in
SMBus-Alert mode (see Peripheral tree in Figure 219).

Figure 219. One block = one peripheral mode - I2C1_SMBA function assigned to PB5

A.4 Block remapping (STM32F10x only)

To configure a peripheral mode, STM32CubeMX selects a block of pins and assigns each
mode signal to a pin in this block. In doing so, it looks for the first free block to which the
mode can be mapped.

When setting a peripheral mode, if at least one pin in the default block is already used,
STM32CubeMX tries to find an alternate block. If none can be found, it either selects the
functions in a different sequence, or unchecks , and remaps all
the blocks to find a solution.

DocID025776 Rev 17 235/261

UM1718 STM32CubeMX pin assignment rules

260

Example

STM32CubeMX remaps USART3 hardware-flow-control mode to the (PD8-PD9-PD11-
PD12) block, because PB14 of USART3 default block is already allocated to the
SPI2_MISO function (see Figure 220).

Figure 220. Block remapping - example 2

A.5 Function remapping

To configure a peripheral mode, STM32CubeMX assigns each signal of the mode to a pin.
In doing so, it will look for the first free pin the signal can be mapped to.

Example using STM32F415x

When configuring USART3 for the Synchronous mode, STM32CubeMX discovered that the
default PB10 pin for USART3_TX signal was already used by SPI. It thus remapped it to
PD8 (see Figure 221).

Figure 221. Function remapping example

STM32CubeMX pin assignment rules UM1718

236/261 DocID025776 Rev 17

A.6 Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked)

If a block cannot be mapped and there are no free alternate solutions, STM32CubeMX tries
to free the pins by remapping all the peripheral modes impacted by the shared pin.

Example

With the Keep current signal placement enabled, if USART3 synchronous mode is set first,
the Asynchronous default block (PB10-PB11) is mapped and Ethernet becomes unavailable
(shown in red) (see Figure 222).

Unchecking allows STM32CubeMX shifting blocks around
and freeing a block for the Ethernet MII mode. (see Figure 223).

Figure 222. Block shifting not applied

DocID025776 Rev 17 237/261

UM1718 STM32CubeMX pin assignment rules

260

Figure 223. Block shifting applied

A.7 Setting and clearing a peripheral mode

The Peripherals panel and the Chip view are linked: when a peripheral mode is set or
cleared, the corresponding pin functions are set or cleared.

A.8 Mapping a function individually

When STM32CubeMX needs a pin that has already been assigned manually to a function
(no peripheral mode set), it can move this function to another pin, only if

 is unchecked and the function is not pinned (no pin icon).

A.9 GPIO signals mapping

I/O signals (GPIO_Input, GPIO_Output, GPIO_Analog) can be assigned to pins either
manually through the Chip view or automatically through the Pinout menu. Such pins can
no longer be assigned automatically to another signal: STM32CubeMX signal automatic
placement does not take into account this pin anymore since it does not shift I/O signals to
other pins.

The pin can still be manually assigned to another signal or to a reset state.

STM32CubeMX C code generation design choices and limitations UM1718

238/261 DocID025776 Rev 17

Appendix B STM32CubeMX C code generation design
choices and limitations

This section summarizes STM32CubeMX design choices and limitations.

B.1 STM32CubeMX generated C code and user sections

The C code generated by STM32CubeMX provides user sections as illustrated below. They
allow user C code to be inserted and preserved at next C code generation.

User sections shall neither be moved nor renamed. Only the user sections defined by
STM32CubeMX are preserved. User created sections will be ignored and lost at next C
code generation.

 /* USER CODE BEGIN 0 */

(..)

/* USER CODE END 0 */

Note: STM32CubeMX may generate C code in some user sections. It will be up to the user to
clean the parts that may become obsolete in this section. For example, the while(1) loop in
the main function is placed inside a user section as illustrated below:

/* Infinite loop */

 /* USER CODE BEGIN WHILE */

 while (1)

 {

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

 }

/* USER CODE END 3 */

B.2 STM32CubeMX design choices for peripheral initialization

STM32CubeMX generates peripheral _Init functions that can be easily identified thanks to
the MX_ prefix:

static void MX_GPIO_Init(void);

static void MX_<Peripheral Instance Name>_Init(void);

static void MX_I2S2_Init(void);

An MX_<peripheral instance name>_Init function exists for each peripheral instance
selected by the user (e.g, MX_I2S2_Init). It performs the initialization of the relevant handle
structure (e.g, &hi2s2 for I2S second instance) that is required for HAL driver initialization
(e.g., HAL_I2S_Init) and the actual call to this function:

void MX_I2S2_Init(void)

{

 hi2s2.Instance = SPI2;

 hi2s2.Init.Mode = I2S_MODE_MASTER_TX;

 hi2s2.Init.Standard = I2S_STANDARD_PHILLIPS;

DocID025776 Rev 17 239/261

UM1718 STM32CubeMX C code generation design choices and limitations

260

 hi2s2.Init.DataFormat = I2S_DATAFORMAT_16B;

 hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;

 hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_192K;

 hi2s2.Init.CPOL = I2S_CPOL_LOW;

 hi2s2.Init.ClockSource = I2S_CLOCK_PLL;

 hi2s2.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_ENABLE;

 HAL_I2S_Init(&hi2s2);

}

By default, the peripheral initialization is done in main.c. If the peripheral is used by a
middleware mode, the peripheral initialization can be done in the middleware corresponding
.c file.

Customized HAL_<Peripheral Name>_MspInit() functions are created in the
stm32f4xx_hal_msp.c file to configure the low-level hardware (GPIO, CLOCK) for the
selected peripherals.

B.3 STM32CubeMX design choices and limitations for
middleware initialization

B.3.1 Overview

STM32CubeMX does not support C user code insertion in Middleware stack native files
although stacks such as LwIP might require it in some use cases.

STM32CubeMX generates middleware Init functions that can be easily identified thanks to
the MX_ prefix:

MX_LWIP_Init(); // defined in lwip.h file

MX_USB_HOST_Init(); // defined in usb_host.h file

MX_FATFS_Init(); // defined in fatfs.h file

Note however the following exceptions:

• No Init function is generated for FreeRTOS unless the user chooses, from the Project
settings window, to generate Init functions as pairs of .c/.h files. Instead, a
StartDefaultTask function is defined in the main.c file and CMSIS-RTOS native function
(osKernelStart) is called in the main function.

• If FreeRTOS is enabled, the Init functions for the other middlewares in use are called
from the StartDefaultTask function in the main.c file.

Example:

void StartDefaultTask(void const * argument)

{

/* init code for FATFS */

MX_FATFS_Init();

/* init code for LWIP */

MX_LWIP_Init();

 /* init code for USB_HOST */

 MX_USB_HOST_Init();

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

STM32CubeMX C code generation design choices and limitations UM1718

240/261 DocID025776 Rev 17

 for(;;)

 {

 osDelay(1);

 }

 /* USER CODE END 5 */

}

B.3.2 USB Host

USB peripheral initialization is performed within the middleware initialization C code in the
usbh_conf.c file, while USB stack initialization is done within the usb_host.c file.

When using the USB Host middleware, the user is responsible for implementing the
USBH_UserProcess callback function in the generated usb_host.c file.

From STM32CubeMX user interface, the user can select to register one class or all classes
if the application requires switching dynamically between classes.

B.3.3 USB Device

USB peripheral initialization is performed within the middleware initialization C code in the
usbd_conf.c file, while USB stack initialization is done within the usb_device.c file.

USB VID, PID and String standard descriptors are configured via STM32CubeMX user
interface and available in the usbd_desc.c generated file. Other standard descriptors
(configuration, interface) are hard-coded in the same file preventing support for USB
composite devices.

When using the USB Device middleware, the user is responsible for implementing the
functions in the usbd_<classname>_if.c class interface file for all device classes (e.g.,
usbd_storage_if.c).

USB MTP and CCID classes are not supported.

B.3.4 FatFs

FatFs configuration is available in the ffconf.h generated file.

The initialization of the SDIO peripheral for the FatFs SD Card mode and of the FMC
peripheral for the FatFs External SDRAM and External SRAM modes are kept in the main.c
file.

Some files need to be modified by the user to match user board specificities (BSP drivers in
STM32Cube embedded software package can be used as example):

• bsp_driver_sd.c/.h generated files when using FatFs SD Card mode

• bsp_driver_sram.c/.h generated files when using FatFs External SRAM mode

• bsp_driver_sdram.c/.h generated files when using FatFs External SDRAM mode.

Multi-drive FatFs is supported, which means that multiple logical drives can be used by the
application (External SDRAM, External SRAM, SD Card, USB Disk, User defined). However
support for multiple instances of a given logical drive is not available (e.g. FatFs using two
instances of USB hosts or several RAM disks).

DocID025776 Rev 17 241/261

UM1718 STM32CubeMX C code generation design choices and limitations

260

NOR and NAND Flash memory are not supported. In this case, the user shall select the
FatFs user-defined mode and update the user_diskio.c driver file generated to implement
the interface between the middleware and the selected peripheral.

B.3.5 FreeRTOS

FreeRTOS configuration is available in FreeRTOSConfig.h generated file.

When FreeRTOS is enabled, all other selected middleware modes (e.g., LwIP, FatFs, USB)
will be initialized within the same FreeRTOS thread in the main.c file.

When GENERATE_RUN_TIME_STATS, CHECK_FOR_STACK_OVERFLOW,
USE_IDLE_HOOK, USE_TICK_HOOK and USE_MALLOC_FAILED_HOOK parameters
are activated, STM32CubeMX generates freertos.c file with empty functions that the user
shall implement. This is highlighted by the tooltip (see Figure 224).

Figure 224. FreeRTOS HOOK functions to be completed by user

STM32CubeMX C code generation design choices and limitations UM1718

242/261 DocID025776 Rev 17

B.3.6 LwIP

LwIP initialization function is defined in lwip.c, while LwIP configuration is available in
lwipopts.h generated file.

STM32CubeMX supports LwIP over Ethernet only. The Ethernet peripheral initialization is
done within the middleware initialization C code.

STM32CubeMX does not support user C code insertion in stack native files. However, some
LwIP use cases require modifying stack native files (e.g., cc.h, mib2.c): user modifications
shall be backed up since they will be lost at next STM32CubeMX generation.

Starting with release 1.5, STM32CubeMX LwIP supports IPv6 (see Figure 226).

DHCP must be disabled, to configure a static IP address.

Figure 225. LwIP 1.4.1 configuration

DocID025776 Rev 17 243/261

UM1718 STM32CubeMX C code generation design choices and limitations

260

Figure 226. LwIP 1.5 configuration

STM32CubeMX generated C code will report compilation errors when specific parameters
are enabled (disabled by default). The user must fix the issues with a stack patch
(downloaded from Internet) or user C code. The following parameters generate an error:

• MEM_USE_POOLS: user C code to be added either in lwipopts.h or in cc.h (stack file).

• PPP_SUPPORT, PPPOE_SUPPORT: user C code required

• MEMP_SEPARATE_POOLS with MEMP_OVERFLOW_CHECK > 0: a stack patch
required

• MEM_LIBC_MALLOC & RTOS enabled: stack patch required

• LWIP_EVENT_API: stack patch required

In STM32CubeMX, the user must enable FreeRTOS in order to use LwIP with the netconn
and sockets APIs. These APIs require the use of threads and consequently of an operating
system. Without FreeRTOS, only the LwIP event-driven raw API can be used.

STM32 microcontrollers naming conventions UM1718

244/261 DocID025776 Rev 17

Appendix C STM32 microcontrollers naming conventions

STM32 microcontroller part numbers are codified following the below naming conventions:

• Device subfamilies

The higher the number, the more features available.

For example STM32L0 line includes STM32L051, L052, L053, L061, L062, L063
subfamilies where STM32L06x part numbers come with AES while STM32L05x do not.

The last digit indicates the level of features. In the above example:

– 1 =Access line

– 2 = with USB

– 3 = with USB and LCD.

• Pin counts

– F = 20 pins

– G = 28 pins

– K = 32 pins

– T = 36 pins

– S = 44 pins

– C = 48 pins

– R = 64 pins (or 66 pins)

– M = 80 pins

– O = 90 pins

– V = 100 pins

– Q= 132 pins (e. g. STM32L162QDH6)

– Z=144

– I=176 (+25)

– B = 208 pins (e. g.: STM32F429BIT6)

– N = 216 pins

• Flash memory sizes

– 4 = 16 Kbytes of Flash memory

– 6 = 32 Kbytes of Flash memory

– 8 = 64 Kbytes of Flash memory

– B = 128 Kbytes of Flash memory

– C = 256 Kbytes of Flash memory

– D = 384 Kbytes of Flash memory

– E = 512 Kbytes of Flash memory

– F = 768 Kbytes of Flash memory

– G = 1024 Kbytes of Flash memory

– I = 2048 Kbytes of Flash memory

• Packages

– B = SDIP

– H = BGA

DocID025776 Rev 17 245/261

UM1718 STM32 microcontrollers naming conventions

260

– M = SO

– P = TSSOP

– T = LQFP

– U = VFQFPN

– Y = WLCSP

Figure 227 shows an example of STM32 microcontroller part numbering scheme.

Figure 227. STM32 microcontroller part numbering scheme

STM32 microcontrollers power consumption parameters UM1718

246/261 DocID025776 Rev 17

Appendix D STM32 microcontrollers power consumption
parameters

This section provides an overview on how to use STM32CubeMX Power Consumption
Calculator.

Microcontroller power consumption depends on chip size, supply voltage, clock frequency
and operating mode. Embedded applications can optimize STM32 MCU power
consumption by reducing the clock frequency when fast processing is not required and
choosing the optimal operating mode and voltage range to run from. A description of STM32
power modes and voltage range is provided below.

D.1 Power modes

STM32 MCUs support different power modes (refer to STM32 MCU datasheets for full
details).

D.1.1 STM32L1 series

STM32L1 microcontrollers feature up to 6 power modes, including 5 low-power modes:

• Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU
runs up to 32 MHz and the voltage regulator is enabled.

• Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/event occurs.

• Low- power run mode

This mode uses the multispeed internal (MSI) RC oscillator set to the minimum clock
frequency (131 kHz) and the internal regulator in low-power mode. The clock frequency
and the number of enabled peripherals are limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode. The internal voltage regulator is in low-
power mode. The clock frequency and the number of enabled peripherals are limited. A
typical example would be a timer running at 32 kHz.

When the wakeup is triggered by an event or an interrupt, the system returns to the
Run mode with the regulator ON.

• Stop mode

This mode achieves the lowest power consumption while retaining RAM and register
contents. Clocks are stopped. The real-time clock (RTC) an be backed up by using
LSE/LSI at 32 kHz/37 kHz. The number of enabled peripherals is limited. The voltage
regulator is in low-power mode.

The device can be woken up from Stop mode by any of the EXTI lines.

• Standby mode

This mode achieves the lowest power consumption. The internal voltage regulator is
switched off so that the entire VCORE domain is powered off. Clocks are stopped and
the real-time clock (RTC) can be preserved up by using LSE/LSI at 32 kHz/37 kHz.

DocID025776 Rev 17 247/261

UM1718 STM32 microcontrollers power consumption parameters

260

RAM and register contents are lost except for the registers in the Standby circuitry. The
number of enabled peripherals is even more limited than in Stop mode.

The device exits Standby mode upon reset, rising edge on one of the three WKUP pins,
or if an RTC event occurs (if the RTC is ON).

Note: When exiting Stop or Standby modes to enter the Run mode, STM32L1 MCUs go through a
state where the MSI oscillator is used as clock source. This transition can have a significant
impact on the global power consumption. For this reason, the Power Consumption
Calculator introduces two transition steps: WU_FROM_STOP and WU_FROM_STANDBY.
During these steps, the clock is automatically configured to MSI.

D.1.2 STM32F4 series

STM32F4 microcontrollers feature a total of 5 power modes, including 4 low-power modes:

• Run mode

This is the default mode at power-on or after a system reset. It offers the highest
performance using HSE/HSI clock sources. The CPU can run at the maximum
frequency depending on the selected power scale.

• Sleep mode

Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/even occurs. The clock source is the clock that was set before
entering Sleep mode.

• Stop mode

This mode achieves a very low power consumption using the RC oscillator as clock
source. All clocks in the 1.2 V domain are stopped as well as CPU and peripherals.
PLL, HSI RC and HSE crystal oscillators are disabled. The content of registers and
internal SRAM are kept.

The voltage regulator can be put either in normal Main regulator mode (MR) or in Low-
power regulator mode (LPR). Selecting the regulator in low-power regulator mode
increases the wakeup time.

The Flash memory can be put either in Stop mode to achieve a fast wakeup time or in
Deep power-down to obtain a lower consumption with a slow wakeup time.

The Stop mode features two sub-modes:

– Stop in Normal mode (default mode)

In this mode, the 1.2 V domain is preserved in nominal leakage mode and the
minimum V12 voltage is 1.08 V.

– Stop in Under-drive mode

In this mode, the 1.2 V domain is preserved in reduced leakage mode and V12
voltage is less than 1.08 V. The regulator (in Main or Low-power mode) is in
under-drive or low-voltage mode. The Flash memory must be in Deep-power-
down mode. The wakeup time is about 100 µs higher than in normal mode.

• Standby mode

This mode achieves very low power consumption with the RC oscillator as a clock
source. The internal voltage regulator is switched off so that the entire 1.2 V domain is
powered off: CPU and peripherals are stopped. The PLL, the HSI RC and the HSE
crystal oscillators are disabled. SRAM and register contents are lost except for
registers in the backup domain and the 4-byte backup SRAM when selected. Only RTC
and LSE oscillator blocks are powered. The device exits Standby mode when an

STM32 microcontrollers power consumption parameters UM1718

248/261 DocID025776 Rev 17

external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC
alarm/ wakeup/ tamper/time stamp event occurs.

• VBAT operation

It allows to significantly reduced power consumption compared to the Standby mode.
This mode is available when the VBAT pin powering the Backup domain is connected to
an optional standby voltage supplied by a battery or by another source. The VBAT
domain is preserved (RTC registers, RTC backup register and backup SRAM) and
RTC and LSE oscillator blocks powered. The main difference compared to the Standby
mode is external interrupts and RTC alarm/events do not exit the device from VBAT
operation. Increasing VDD to reach the minimum threshold does.

D.1.3 STM32L0 series

STM32L0 microcontrollers feature up to 8 power modes, including 7 low-power modes to
achieve the best compromise between low-power consumption, short startup time and
available wakeup sources:

• Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU can
run up to 32 MHz and the voltage regulator is enabled.

• Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and only the CPU is stopped. All peripherals continue to operate and can wake up the
CPU when an interrupt/event occurs.

• Low-power run mode

This mode uses the internal regulator in low-power mode and the multispeed internal
(MSI) RC oscillator set to the minimum clock frequency (131 kHz). In Low-power run
mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode. Both the clock frequency and the number of enabled peripherals are
limited. Event or interrupt can revert the system to Run mode with regulator on.

• Stop mode with RTC

The Stop mode achieves the lowest power consumption with, while retaining the RAM,
register contents and real time clock. The voltage regulator is in low-power mode. LSE
or LSI is still running. All clocks in the VCORE domain are stopped, the PLL, MSI RC,
HSE crystal and HSI RC oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition. The device can be woken up from Stop mode
by any of the EXTI line, in 3.5 µs, and the processor can serve the interrupt or resume
the code.

• Stop mode without RTC

This mode is identical to “Stop mode with RTC “, except for the RTC clock which is
stopped here.

• Standby mode with RTC

The Standby mode achieves the lowest power consumption with the real time clock
running. The internal voltage regulator is switched off so that the entire VCORE domain

DocID025776 Rev 17 249/261

UM1718 STM32 microcontrollers power consumption parameters

260

is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSI is still running.

After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),

RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

This mode is identical to Standby mode with RTC, except that the RTC, LSE and LSI
clocks are stopped.

The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop
mode.

D.2 Power consumption ranges

STM32 MCUs power consumption can be further optimized thanks to the dynamic voltage
scaling feature: the main internal regulator output voltage V12 that supplies the logic (CPU,
digital peripherals, SRAM and Flash memory) can be adjusted by software by selecting a
power range (STM32L1 and STM32L0) or power scale (STM32 F4).

Power consumption range definitions are provided below (refer to STM32 MCU datasheets
for full details).

D.2.1 STM32L1 series feature 3 VCORE ranges

• High Performance Range 1 (VDD range limited to 2.0-3.6 V), with the CPU running at
up to 32 MHz

The voltage regulator outputs a 1.8 V voltage (typical) as long as the VDD input voltage
is above 2.0 V. Flash program and erase operations can be performed.

• Medium Performance Range 2 (full VDD range), with a maximum CPU frequency of
16 MHz

At 1.5 V, the Flash memory is still functional but with medium read access time. Flash
program and erase operations are still possible.

• Low Performance Range 3 (full VDD range), with a maximum CPU frequency limited to
4 MHz (generated only with the multispeed internal RC oscillator clock source)

At 1.2 V, the Flash memory is still functional but with slow read access time. Flash
Program and erase operations are no longer available.

STM32 microcontrollers power consumption parameters UM1718

250/261 DocID025776 Rev 17

D.2.2 STM32F4 series feature several VCORE scales

The scale can be modified only when the PLL is OFF and when HSI or HSE is selected as
system clock source.

• Scale 1 (V12 voltage range limited to 1.26-1.40 V), default mode at reset

HCLK frequency range = 144 MHz to 168 MHz (180 MHz with over-drive).

This is the default mode at reset.

• Scale 2 (V12 voltage range limited to 1.20 to 1.32 V)

HCLK frequency range is up to 144 MHz (168 MHz with over-drive)

• Scale 3 (V12 voltage range limited to 1.08 to 1.20 V), default mode when exiting Stop
mode

HCLK frequency ≤120 MHz.

The voltage scaling is adjusted to fHCLK frequency as follows:

• STM32F429x/39x MCUs:

– Scale 1: up to 168 MHz (up to 180 MHz with over-drive)

– Scale 2: from 120 to 144 MHz (up to 168 MHz with over-drive)

– Scale 3: up to 120 MHz.

• STM32F401x MCUs:

No Scale 1

– Scale 2: from 60 to 84 MHz

– Scale 3: up to 60 MHz.

• STM32F40x/41x MCUs:

– Scale 1: up to 168 MHz

– Scale 2: up to 144 MHz

D.2.3 STM32L0 series feature 3 VCORE ranges

• Range 1 (VDD range limited to 1.71 to 3.6 V), with CPU running at a frequency up to
32 MHz

• Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz

• Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz.

DocID025776 Rev 17 251/261

UM1718 STM32Cube embedded software packages

260

Appendix E STM32Cube embedded software packages

Along with STM32CubeMX C code generator, embedded software packages are part of
STM32Cube initiative (refer to DB2164 databrief): these packages include a low-level
hardware abstraction layer (HAL) that covers the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards (see Figure 228). This set
of components is highly portable across the STM32 series. The packages are fully
compatible with STM32CubeMX generated C code.

Figure 228. STM32Cube Embedded Software package

Note: STM32CubeF0, STM32CubeF1, STM32CubeF2, STM32CubeF3, STM32CubeF4,
STM32CubeL0 and STM32CubeL1 embedded software packages are available on st.com.
They are based on STM32Cube release v1.1 (other series will be introduced progressively)
and include the embedded software libraries used by STM32CubeMX for initialization C
code generation.

The user should use STM32CubeMX to generate the initialization C code and the examples
provided in the package to get started with STM32 application development.

Revision history UM1718

252/261 DocID025776 Rev 17

12 Revision history

Table 20. Document revision history

Date Revision
STM32CubeMX
release number

Changes

17-Feb-2014 1 4.1 Initial release.

04-Apr-2014 2 4.2

Added support for STM32CubeF2 and STM32F2 series in cover
page, Section 2.2: Key features, Section 4.12.1: Peripherals and
Middleware Configuration window, and Appendix E: STM32Cube
embedded software packages.

Updated Section 6.1: Creating a new STM32CubeMX Project,
Section 6.2: Configuring the MCU pinout, Section 6.6: Configuring
the MCU initialization parameters.

Section “Generating GPIO initialization C code move to Section 8:
Tutorial 3- Generating GPIO initialization C code (STM32F1 series
only) and content updated.

Added Section 11.4: Why do I get the error “Java 7 update 45’ when
installing ‘Java 7 update 45’ or a more recent version of the JRE?.

24-Apr-2014 3 4.3

Added support for STM32CubeL0 and STM32L0 series in cover
page, Section 2.2: Key features, Section 2.3: Rules and limitations
and Section 4.12.1: Peripherals and Middleware Configuration
window

Added board selection in Table 3: File menu functions,
Section 4.4.3: Pinout menu and Section 4.2: New project window.
Updated Table 5: Pinout menu.

Updated Figure 95: Power Consumption Calculator default view and
added battery selection in Section 4.14.1: Building a power
consumption sequence.

Updated note in Section 4.14: Power Consumption Calculator view

Updated Section 6.1: Creating a new STM32CubeMX Project.

Added Section 11.5: Why does the RTC multiplexer remain inactive
on the Clock tree view?, Section 11.6: How can I select LSE and
HSE as clock source and change the frequency?, and Section 11.7:
Why STM32CubeMX does not allow me to configure PC13, PC14,
PC15 and PI8 as outputs when one of them is already configured as
an output?.

DocID025776 Rev 17 253/261

UM1718 Revision history

260

19-jun-2014 4 4.4

Added support for STM32CubeF0, STM32CubeF3, STM32F0 and
STM32F3 series in cover page, Section 2.2: Key features,
Section 2.3: Rules and limitations,

Added board selection capability and pin locking capability in
Section 2.2: Key features, Table 2: Welcome page shortcuts,
Section 4.2: New project window, Section 4.4: Toolbar and menus,
Section 4.7: Set unused / Reset used GPIOs windows, Section 4.8:
Project Settings window, and Section 4.11: Pinout view. Added
Section 4.11.5: Pinning and labeling signals on pins.

Updated Section 4.12: Configuration view and Section 4.13: Clock
tree configuration view and Section 4.14: Power Consumption
Calculator view.

Updated Figure 23: STM32CubeMX Main window upon MCU
selection, Figure 38: Project Settings window, Figure 47: About
window, Figure 48: STM32CubeMX Pinout view, Figure 49: Chip
view, Figure 95: Power Consumption Calculator default view,
Figure 96: Battery selection, Figure 97: Building a power
consumption sequence, Figure 99: Power consumption sequence:
new step default view, Figure 107: Power Consumption Calculator
view after sequence building, Figure 108: Sequence table
management functions, Figure 88: PCC Edit Step window,
Figure 83: Power consumption sequence: new step configured
(STM32F4 example), Figure 105: ADC selected in Pinout view,
Figure 106: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout, Figure 110: Description
of the Results area, Figure 111: Peripheral power consumption
tooltip, Figure 179: Power Consumption Calculation example,
Figure 155: Sequence table and Figure 156: Power Consumption
Calculation results.

Updated Figure 61: STM32CubeMX Configuration view and
Figure 39: STM32CubeMX Configuration view - STM32F1 series
titles.

Added STM32L1 in Section 4.14: Power Consumption Calculator
view.

Removed Figure Add a new step using the PCC panel from
Section 8.1.1: Adding a step. Removed Figure Add a new step to
the sequence from Section 4.14.2: Configuring a step in the power
sequence.

Updated Section 8.2: Reviewing results.

Updated appendix B.3.4: FatFs and Appendix D: STM32
microcontrollers power consumption parameters. Added Appendix
D.1.3: STM32L0 series and D.2.3: STM32L0 series feature 3
VCORE ranges.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

254/261 DocID025776 Rev 17

19-Sep-2014 5 4.5

Added support for STM32CubeL1 series in cover page, Section 2.2:
Key features, Section 2.3: Rules and limitations,

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added off-line updates in Section 3.5: Getting STM32Cube updates,
modified Figure 16: New library Manager window, and
Section 3.5.2: Downloading new libraries.

Updated Section 4: STM32CubeMX User Interface introduction,
Table 2: Welcome page shortcuts and Section 4.2: New project
window.

Added Figure 22: New Project window - board selector.

Updated Figure 43: Project Settings Code Generator.

Modified step 3 in Section 4.8: Project Settings window.

Updated Figure 39: STM32CubeMX Configuration view - STM32F1
series.

Added STM32L1 in Section 4.12.1: Peripherals and Middleware
Configuration window.

Updated Figure 73: GPIO Configuration window - GPIO selection;
Section 4.12.3: GPIO Configuration window and Figure 79: DMA
MemToMem configuration.

Updated introduction of Section 4.13: Clock tree configuration view.
Updated Section 4.13.1: Clock tree configuration functions and
Section 4.13.2: Recommendations, Section 4.14: Power
Consumption Calculator view, Figure 99: Power consumption
sequence: new step default view, Figure 107: Power Consumption
Calculator view after sequence building, Figure 83: Power
consumption sequence: new step configured (STM32F4 example),
and Figure 106: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout. Added Figure 109:
Power Consumption: Peripherals Consumption Chart and updated
Figure 111: Peripheral power consumption tooltip. Updated
Section 4.14.4: Power sequence step parameters glossary.

Updated Section 5: STM32CubeMX C Code generation overview.

Updated Section 6.1: Creating a new STM32CubeMX Project and
Section 6.2: Configuring the MCU pinout.

Added Section 7: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and updated Section 8: Tutorial
3- Generating GPIO initialization C code (STM32F1 series only).

Updated Section 4.14.2: Configuring a step in the power sequence.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

DocID025776 Rev 17 255/261

UM1718 Revision history

260

19-Jan-2015 6 4.6

Complete project generation, power consumption calculation and
clock tree configuration now available on all STM32 series.

Updated Section 2.2: Key features and Section 2.3: Rules and
limitations.

Updated Eclipse IDEs in Section 3.1.3: Software requirements.

Updated Figure 12: Updater Settings window, Figure 16: New library
Manager window and Figure 22: New Project window - board
selector, Updated Section 4.8: Project Settings window and
Section 4.9: Update Manager windows.

Updated Figure 47: About window.

Removed Figure STM32CubeMX Configuration view -
STM32F1 series.
Updated Table 9: STM32CubeMX Chip view - Icons and color
scheme.

Updated Section 4.12.1: Peripherals and Middleware Configuration
window.

Updated Figure 77: Adding a new DMA request and Figure 79: DMA
MemToMem configuration.

Updated Section 4.13.1: Clock tree configuration functions.

Updated Figure 96: Battery selection, Figure 97: Building a power
consumption sequence, Figure 88: PCC Edit Step window.

Added Section 5.3: Custom code generation.

Updated Figure 132: Clock tree view and Figure 137: Configuration
view.

Updated peripheral configuration sequence and Figure 139:
Timer 3 configuration window in Section 6.6.2: Configuring the
peripherals .

Removed Tutorial 3: Generating GPIO initialization C code
(STM32F1 series only).

Updated Figure 143: GPIO mode configuration.

Updated Figure 179: Power Consumption Calculation example and
Figure 155: Sequence table.

Updated Appendix A.1: Block consistency, A.2: Block inter-
dependency and A.3: One block = one peripheral mode.

Appendix A.4: Block remapping (STM32F10x only): updated
Section : Example .

Appendix A.6: Block shifting (only for STM32F10x and when “Keep
Current Signals placement” is unchecked): updated Section :
Example

Updated Appendix A.8: Mapping a function individually .

Updated Appendix B.3.1: Overview.

Updated Appendix D.1.3: STM32L0 series.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

256/261 DocID025776 Rev 17

19-Mar-2015 7 4.7

Section 2.2: Key features: removed Pinout initialization C code
generation for STM32F1 series from; updated Complete project
generation.

Updated Figure 16: New library Manager window, Figure 22: New
Project window - board selector.

Updated IDE list in Section 4.8: Project Settings window and
modified Figure 38: Project Settings window.

Updated Section 4.13.1: Clock tree configuration functions. Updated
Figure 91: STM32F429xx Clock Tree configuration view.

Section 4.14: Power Consumption Calculator view: added transition
checker option. Updated Figure 95: Power Consumption Calculator
default view, Figure 96: Battery selection and Figure 97: Building a
power consumption sequence. Added Figure 101: Enabling the
transition checker option on an already configured sequence - all
transitions valid, Figure 102: Enabling the transition checker option
on an already configured sequence - at least one transition invalid
and Figure 103: Transition checker option -show log. Updated
Figure 107: Power Consumption Calculator view after sequence
building. Updated Section : Managing sequence steps, Section :
Managing the whole sequence (load, save and compare). Updated
Figure 88: PCC Edit Step window and Figure 110: Description of the
Results area.

Updated Figure 179: Power Consumption Calculation example,
Figure 155: Sequence table, Figure 156: Power Consumption
Calculation results and Figure 158: Power consumption results - IP
consumption chart.

Updated Appendix B.3.1: Overview and B.3.5: FreeRTOS.

28-May-2015 8 4.8
Added Section 3.2.2: Installing STM32CubeMX from command line
and Section 3.4.2: Running STM32CubeMX in command-line mode.

09-Jul-2015 9 4.9

Added STLM32F7 and STM32L4 microcontroller series.

Added Import project feature. Added Import function in Table 3:
File menu functions. Added Section 4.6: Import Project window.
Updated Figure 99: Power consumption sequence: new step default
view, Figure 88: PCC Edit Step window, Figure 83: Power
consumption sequence: new step configured (STM32F4 example),
Figure 106: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout and Figure 111:
Peripheral power consumption tooltip.

Updated command line to run STM32CubeMX in Section 3.4.2:
Running STM32CubeMX in command-line mode.
Updated note in Section 4.12: Configuration view.

Added new clock tree configuration functions in Section 4.13.1.

Updated Figure 145: FatFs disabled.

Modified code example in Appendix B.1: STM32CubeMX generated
C code and user sections.

Updated Appendix B.3.1: Overview.

Updated generated .h files in Appendix B.3.4: FatFs.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

DocID025776 Rev 17 257/261

UM1718 Revision history

260

27-Aug-2015 10 4.10

Replace UM1742 by UM1940 in Section : Introduction.

Updated command line to run STM32CubeMX in command-line
mode in Section 3.4.2: Running STM32CubeMX in command-line
mode. Modified Table 1: Command line summary.

Updated board selection in Section 4.2: New project window.

Updated Section 4.12: Configuration view overview. Updated
Section 4.12.1: Peripherals and Middleware Configuration window,
Section 4.12.3: GPIO Configuration window and Section 4.12.4:
DMA Configuration window. Added Section 4.12.2: User Constants
configuration window.

Updated Section 4.13: Clock tree configuration view and added
reserve path.

Updated Section 6.1: Creating a new STM32CubeMX Project,
Section 6.5: Configuring the MCU Clock tree, Section 6.6:
Configuring the MCU initialization parameters, Section 6.7.2:
Downloading firmware package and generating the C code,
Section 6.8: Building and updating the C code project. Added
Section 6.9: Switching to another MCU.

Updated Section 7: Tutorial 2 - Example of FatFs on an SD card
using STM32429I-EVAL evaluation board and replaced
STM32F429I-EVAL by STM32429I-EVAL.

16-Oct-2015 11 4.11

Updated Figure 16: New library Manager window and Section 3.5.5:
Checking for updates.

Character string constant supported in Section 4.12.2: User
Constants configuration window.

Updated Section 4.13: Clock tree configuration view.

Updated Section 4.14: Power Consumption Calculator view.

Modified Figure 179: Power Consumption Calculation example.

Updated Section 8: Tutorial 3 - Using the Power Consumption
Calculator to optimize the embedded application consumption and
more.

Added Eclipse Mars in Section 3.1.3: Software requirements

03-Dec-2015 12 4.12

Code generation options now supported by the Project settings
menu.

Updated Section 3.1.3: Software requirements.

Added project settings in Section 4.6: Import Project window.
Updated Figure 30: Automatic project import; modified Manual
project import step and updated Figure 31: Manual project import
and Figure 32: Import Project menu - Try import with errors; modified
third step of the import sequence.

Updated Figure 92: Clock Tree configuration view with errors.

Added mxconstants.h in Section 5.1: STM32Cube code generation
using only HAL drivers (default mode).

Updated Figure 179: Power Consumption Calculation example to
Figure 188: Step 10 optimization.

Updated Figure 189: Power sequence results after optimizations.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

258/261 DocID025776 Rev 17

03-Feb-2016 13 4.13

Updated Section 2.2: Key features:

– Information related to .ioc files.

– Clock tree configuration

– Automatic updates of STM32CubeMX and STM32Cube.

Updated limitation related to STM32CubeMX C code generation in
Section 2.3: Rules and limitations.

Added Linux in Section 3.1.1: Supported operating systems and
architectures. Updated Java Run Time Environment release number
in Section 3.1.3: Software requirements.

Updated Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.3.1: Downloading STM32CubeMX plug-in
installation package.

Updated Section 3.4.1: Running STM32CubeMX as standalone
application.

Updated Section 4.8: Project Settings window and Section 4.9:
Update Manager windows.

Updated Section 4.11.5: Pinning and labeling signals on pins.

Added Section 4.11.6: Setting HAL timebase source

Updated Figure 62: Configuration window tabs for GPIO, DMA and
NVIC settings (STM32F4 series).

Added note related to GPIO configuration in output mode in
Section 4.12.3: GPIO Configuration window; updated Figure 73:
GPIO Configuration window - GPIO selection.

Modified Figure 95: Power Consumption Calculator default view,
Figure 97: Building a power consumption sequence, Figure 98: Step
management functions, Figure 101: Enabling the transition checker
option on an already configured sequence - all transitions valid,
Figure 102: Enabling the transition checker option on an already
configured sequence - at least one transition invalid.

Added import pinout button icon in Section : Importing pinout.

Added Section : Selecting/deselecting all peripherals. Modified
Figure 107: Power Consumption Calculator view after sequence
building. Updated Section : Managing the whole sequence (load,
save and compare). Updated Figure 110: Description of the Results
area and Figure 111: Peripheral power consumption tooltip.

Updated Figure 179: Power Consumption Calculation example and
Figure 181: Sequence table.

Updated Section 5.3: Custom code generation.

Updated Figure 124: Pinout view with MCUs selection and
Figure 125: Pinout view without MCUs selection window in
Section 6.1: Creating a new STM32CubeMX Project.

Updated Section 6.6.2: Configuring the peripherals .

Updated Figure 151: Project Settings and toolchain choice and
Figure 152: Project Settings menu - Code Generator tab in
Section 6.7.1: Setting project options, and Figure 153: Missing
firmware package warning message in Section 6.7.2: Downloading
firmware package and generating the C code.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

DocID025776 Rev 17 259/261

UM1718 Revision history

260

15-Mar-2016 14 4.14

Upgraded STM32CubeMX released number to 4.14.0.

Added import of previously saved projects and generation of user
files from templates in Section 2.2: Key features.

Added MacOS in Section 3.1.1: Supported operating systems and
architectures, Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added command lines allowing the generation of user files from
templates in Section 3.4.2: Running STM32CubeMX in command-
line mode.

Updated new library installation sequence in Section 3.5.1: Updater
configuration.

Updated Figure 26: Pinout menus (Pinout tab selected) and
Figure 27: Pinout menus (Pinout tab not selected) in Section 4.4.3:
Pinout menu.

Modified Table 6: Window menu.

Updated Section 4.5: Output windows.

Updated Figure 38: Project Settings window and Section 4.8.1:
Project tab.

Updated Figure 58: NVIC settings when using SysTick as HAL
timebase, no FreeRTOS and Figure 59: NVIC settings when using
FreeRTOS and SysTick as HAL timebase in Section 4.11.6: Setting
HAL timebase source.

Updated Figure 64: User Constants window and Figure 65: Extract
of the generated main.h file in Section 4.12.2: User Constants
configuration window.

Section 4.12.3: GPIO Configuration window: updated Figure 74:
GPIO Configuration window - displaying GPIO settings, Figure 75:
GPIO configuration grouped by peripheral and Figure 76: Multiple
Pins Configuration.

Updated Section 4.12.5: NVIC Configuration window.

18-May-2016 15 4.15

Import project function is no more limited to MCUs of the same
series (see Section 2.2: Key features, Section 4.4.1: File menu and
Section 4.6: Import Project window).

Updated command lines in Section 3.4.2: Running STM32CubeMX
in command-line mode.

Table 1: Command line summary: modified all examples related to
config comands as well as set dest_path <path> example.

Added caution note for Load Project menu in Table 3: File menu
functions.

Updated Generate Code menu description in Table 4: Project menu.

Updated Set unused GPIOs menu in Table 5: Pinout menu.

Added case where FreeRTOS in enabled in Section : Enabling
interruptions using the NVIC tab view.

Added Section 4.12.6: FreeRTOS middleware configuration view.

Updated Appendix B.3.5: FreeRTOS and B.3.6: LwIP .

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

260/261 DocID025776 Rev 17

23-Sep-2016 16 4.17

Replaced mxconstants.h by main.h in the whole document.

Updated Introduction, Section 3.1.1: Supported operating systems
and architectures and Section 3.1.3: Software requirements.

Added Section 3.5.3: Downloading new library patches.

Updated Load project description in Table 2: Welcome page
shortcuts.

Updated Clear Pinouts function in Table 5: Pinout menu.

Updated Section 4.8.3: Advanced Settings tab to add Low Layer
driver.

Added No check and Decimal and hexadecimal check options in
Table 11: Peripheral and Middleware Configuration window buttons
and tooltips.

Updated Section : Tasks and Queues Tab and Figure 90: FreeRTOS
Heap usage.

Updated Figure 74: GPIO Configuration window - displaying GPIO
settings.

Replaced PCC by Power Consumption Calculator in the whole
document.

Added Section 5.2: STM32Cube code generation using Low Layer
drivers; updated Table 18: LL versus HAL: STM32CubeMX
generated source files and Table 19: LL versus HAL:
STM32CubeMX generated functions and function calls.

Updated Figure 210: Pinout view - Enabling the RTC.

Added Section 9: Tutorial 4 - Example of UART communications
with a STM32L053xx Nucleo board.

Added correspondence between STM32CubeMX release number
and document revision.

21-Nov-2016 17 4.18

Removed Windows XP and added Windows 10 in Section 3.1.3:
Software requirements.

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added setDriver command line in Table 1: Command line summary.

Added List pinout compatible MCUs feature:

– Updated Table 5: Pinout menu.

– Added Section 10: Tutorial 5: exporting current project
configuration to a compatible MCU

Added Firmware location selection option in Section 4.8.1: Project
tab and Figure 38: Project Settings window.

Added Restore Default feature:

– Updated Table 11: Peripheral and Middleware Configuration
window buttons and tooltips

– Updated Figure 66: Using constants for peripheral parameter
settings.

Table 20. Document revision history (continued)

Date Revision
STM32CubeMX
release number

Changes

DocID025776 Rev 17 261/261

UM1718

261

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 STM32Cube overview
	2 Getting started with STM32CubeMX
	2.1 Principles
	2.2 Key features
	2.3 Rules and limitations

	3 Installing and running STM32CubeMX
	3.1 System requirements
	3.1.1 Supported operating systems and architectures
	3.1.2 Memory prerequisites
	3.1.3 Software requirements

	3.2 Installing/uninstalling STM32CubeMX standalone version
	3.2.1 Installing STM32CubeMX standalone version
	3.2.2 Installing STM32CubeMX from command line
	Interactive mode
	Auto-install mode

	3.2.3 Uninstalling STM32CubeMX standalone version
	Uninstalling STM32CubeMX on MacOS
	Uninstalling STM32CubeMX on Linux
	Uninstalling STM32CubeMX on Windows

	3.3 Installing STM32CubeMX plug-in version
	3.3.1 Downloading STM32CubeMX plug-in installation package
	3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in
	3.3.3 Uninstalling STM32CubeMX as Eclipse IDE plug-in

	3.4 Launching STM32CubeMX
	3.4.1 Running STM32CubeMX as standalone application
	3.4.2 Running STM32CubeMX in command-line mode
	Table 1. Command line summary

	3.4.3 Running STM32CubeMX plug-in from Eclipse IDE

	3.5 Getting STM32Cube updates
	3.5.1 Updater configuration
	3.5.2 Downloading new libraries
	3.5.3 Downloading new library patches
	3.5.4 Removing libraries
	3.5.5 Checking for updates

	4 STM32CubeMX User Interface
	4.1 Welcome page
	Table 2. Welcome page shortcuts

	4.2 New project window
	4.3 Main window
	4.4 Toolbar and menus
	4.4.1 File menu
	Table 3. File menu functions

	4.4.2 Project menu
	Table 4. Project menu

	4.4.3 Pinout menu
	Table 5. Pinout menu

	4.4.4 Window menu
	Table 6. Window menu

	4.4.5 Help menu
	Table 7. Help menu

	4.5 Output windows
	4.5.1 MCUs selection pane
	4.5.2 Output pane

	4.6 Import Project window
	4.7 Set unused / Reset used GPIOs windows
	4.8 Project Settings window
	4.8.1 Project tab
	4.8.2 Code Generator tab
	STM32Cube Firmware Library Package option
	Generated files options
	HAL settings options
	Custom code template options

	4.8.3 Advanced Settings tab
	Ordering initialization function calls
	Disabling calls to initialization functions
	Choosing between HAL and LL based code generation for a given peripheral

	4.9 Update Manager windows
	4.10 About window
	4.11 Pinout view
	4.11.1 Peripheral and Middleware tree pane
	Icons and color schemes
	Table 8. Peripheral and Middleware tree pane - icons and color scheme

	4.11.2 Chip view
	Tips and tricks
	Icons and color schemes
	Table 9. STM32CubeMX Chip view - Icons and color scheme
	Tooltips

	4.11.3 Chip view advanced actions
	Manually modifying pin assignments
	Manually remapping a function to another pin
	Manual remapping with destination pin ambiguity
	Resolving pin conflicts

	4.11.4 Keep Current Signals Placement
	Keep Current Signals Placement is unchecked
	Keep Current Signals Placement is checked
	Tip

	4.11.5 Pinning and labeling signals on pins
	4.11.6 Setting HAL timebase source
	Example of configuration using SysTick without FreeRTOS
	Example of configuration using SysTick and FreeRTOS
	Example of configuration using TIM2 as HAL timebase source

	4.12 Configuration view
	Table 10. Peripheral and middleware configuration buttons
	4.12.1 Peripherals and Middleware Configuration window
	Table 11. Peripheral and Middleware Configuration window buttons and tooltips

	4.12.2 User Constants configuration window
	Creating/editing user constants
	Deleting user constants
	Searching for user constants

	4.12.3 GPIO Configuration window
	4.12.4 DMA Configuration window
	4.12.5 NVIC Configuration window
	Enabling interruptions using the NVIC tab view
	Code generation options for interrupt handling

	4.12.6 FreeRTOS middleware configuration view
	Tasks and Queues Tab
	Timers, Mutexes and Semaphores
	FreeRTOS heap usage

	4.13 Clock tree configuration view
	4.13.1 Clock tree configuration functions
	External clock sources
	Peripheral clock configuration options
	Table 12. Clock tree view widget

	4.13.2 Recommendations
	4.13.3 STM32F43x/42x power-over drive feature
	Table 13. Voltage scaling versus power over-drive and HCLK frequency
	Table 14. Relations between power over-drive and HCLK frequency

	4.13.4 Clock tree glossary
	Table 15. Glossary

	4.14 Power Consumption Calculator view
	4.14.1 Building a power consumption sequence
	Selecting a VDD value
	Selecting a battery model (optional)
	Power sequence default view
	Managing sequence steps
	Adding a step
	Editing a step
	Moving a step
	Deleting a step
	Using the transition checker

	4.14.2 Configuring a step in the power sequence
	Using interpolation
	Importing pinout
	Selecting/deselecting all peripherals

	4.14.3 Managing user-defined power sequence and reviewing results
	Managing the whole sequence (load, save and compare)
	Managing the results charts and display options
	Overview of the Results summary area

	4.14.4 Power sequence step parameters glossary
	4.14.5 Battery glossary

	5 STM32CubeMX C Code generation overview
	5.1 STM32Cube code generation using only HAL drivers (default mode)
	5.2 STM32Cube code generation using Low Layer drivers
	Table 16. LL versus HAL code generation: drivers included in STM32CubeMX projects
	Table 17. LL versus HAL code generation: STM32CubeMX generated header files
	Table 18. LL versus HAL: STM32CubeMX generated source files
	Table 19. LL versus HAL: STM32CubeMX generated functions and function calls

	5.3 Custom code generation
	5.3.1 STM32CubeMX data model for FreeMarker user templates
	5.3.2 Saving and selecting user templates
	5.3.3 Custom code generation

	6 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU
	6.1 Creating a new STM32CubeMX Project
	6.2 Configuring the MCU pinout
	6.3 Saving the project
	6.4 Generating the report
	6.5 Configuring the MCU Clock tree
	6.6 Configuring the MCU initialization parameters
	Reminder
	6.6.1 Initial conditions
	6.6.2 Configuring the peripherals
	6.6.3 Configuring the GPIOs
	6.6.4 Configuring the DMAs
	6.6.5 Configuring the middleware

	6.7 Generating a complete C project
	6.7.1 Setting project options
	6.7.2 Downloading firmware package and generating the C code

	6.8 Building and updating the C code project
	6.9 Switching to another MCU

	7 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board
	8 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application consumption and more
	8.1 Tutorial overview
	8.2 Application example description
	8.3 Using the Power Consumption Calculator
	8.3.1 Creating a power sequence
	8.3.2 Optimizing application power consumption
	Step 1 (Run)
	Step 4 (Run, RTC)
	Step 5 (Run, ADC, DMA, RTC)
	Step 6 (Sleep, DMA, ADC,RTC)
	Step 7 (Run, DMA, RTC, USART)
	Step 8 (Stop 0, USART)
	Step 10 (RTC, USART)

	9 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board
	9.1 Tutorial overview
	9.2 Creating a new STM32CubeMX project and selecting the Nucleo board
	9.3 Selecting the features from the Pinout view
	9.4 Configuring the MCU clock tree from the Clock Configuration view
	9.5 Configuring the peripheral parameters from the Configuration view
	9.6 Configuring the project settings and generating the project
	9.7 Updating the project with the user application code
	9.8 Compiling and running the project
	9.9 Configuring Tera Term software as serial communication client on the PC

	10 Tutorial 5: exporting current project configuration to a compatible MCU
	11 FAQ
	11.1 On the Pinout configuration pane, why does STM32CubeMX move some functions when I add a new peripheral mode?
	11.2 How can I manually force a function remapping?
	11.3 Why are some pins highlighted in yellow or in light green in the Chip view? Why cannot I change the function of some pins (when I click some pins, nothing happens)?
	11.4 Why do I get the error “Java 7 update 45’ when installing ‘Java 7 update 45’ or a more recent version of the JRE?
	11.5 Why does the RTC multiplexer remain inactive on the Clock tree view?
	11.6 How can I select LSE and HSE as clock source and change the frequency?
	11.7 Why STM32CubeMX does not allow me to configure PC13, PC14, PC15 and PI8 as outputs when one of them is already configured as an output?

	Appendix A STM32CubeMX pin assignment rules
	A.1 Block consistency
	Example of block mapping with a STM32F107x MCU
	Example of block remapping with a STM32F107x MCU

	A.2 Block inter-dependency
	Example of block remapping of SPI in full-duplex master mode with a STM32F107x MCU

	A.3 One block = one peripheral mode
	Example of STM32F107x MCU

	A.4 Block remapping (STM32F10x only)
	Example

	A.5 Function remapping
	Example using STM32F415x

	A.6 Block shifting (only for STM32F10x and when “Keep Current Signals placement” is unchecked)
	Example

	A.7 Setting and clearing a peripheral mode
	A.8 Mapping a function individually
	A.9 GPIO signals mapping

	Appendix B STM32CubeMX C code generation design choices and limitations
	B.1 STM32CubeMX generated C code and user sections
	B.2 STM32CubeMX design choices for peripheral initialization
	B.3 STM32CubeMX design choices and limitations for middleware initialization
	B.3.1 Overview
	B.3.2 USB Host
	B.3.3 USB Device
	B.3.4 FatFs
	B.3.5 FreeRTOS
	B.3.6 LwIP

	Appendix C STM32 microcontrollers naming conventions
	Appendix D STM32 microcontrollers power consumption parameters
	D.1 Power modes
	D.1.1 STM32L1 series
	D.1.2 STM32F4 series
	D.1.3 STM32L0 series

	D.2 Power consumption ranges
	D.2.1 STM32L1 series feature 3 VCORE ranges
	D.2.2 STM32F4 series feature several VCORE scales
	D.2.3 STM32L0 series feature 3 VCORE ranges

	Appendix E STM32Cube embedded software packages
	12 Revision history
	Table 20. Document revision history

