
February 2014 DocID025922 Rev 1 1/22

UM1730
User manual

Getting started with STM32CubeF4 firmware package
 for STM32F4xx series

Introduction

The STM32Cube™ initiative was originated by STMicroelectronics to ease developers life
by reducing development efforts, time and cost. STM32Cube™ covers the STM32 portfolio.

STM32Cube Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeF4 for STM32F4 series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

– All embedded software utilities coming with a full set of examples.

This user manual describes how to get started with the STM32CubeF4 firmware package.

Section 1 describes the main features of STM32CubeF4 firmware, part of the
STM32Cube™ initiative.

Section 2 and Section 3 provide an overview of the STM32CubeF4 architecture and
firmware package structure.

www.st.com

http://www.st.com

Contents UM1730

2/22 DocID025922 Rev 1

Contents

1 STM32CubeF4 main features . 5

2 STM32CubeF4 architecture overview . 6

3 STM32CubeF4 firmware package overview . 9

3.1 Supported STM32F4 devices and hardware . 9

3.2 Firmware package overview . 10

4 Getting started . 15

4.1 How to run your first example . 15

4.2 How to develop your own application . 16

4.3 Using STM32CubeMX for generating the initialization C code 17

4.4 How to get STM32CubeF4 release updates . 18

4.4.1 How to install and run the STM32CubeUpdater program 18

5 FAQ . 19

6 Revision history . 21

DocID025922 Rev 1 3/22

UM1730 List of tables

3

List of tables

Table 1. Macros for STM32F4 series . 9
Table 2. Evaluation and Discovery boards for STM32F4 series. 10
Table 3. Number of examples available for each board . 14
Table 4. Document revision history . 21

List of figures UM1730

4/22 DocID025922 Rev 1

List of figures

Figure 1. STM32CubeF4 firmware components . 5
Figure 2. STM32CubeF4 firmware architecture . 6
Figure 3. STM32CubeF4 firmware package structure . 11
Figure 4. STM32CubeF4 examples overview . 13

DocID025922 Rev 1 5/22

UM1730 STM32CubeF4 main features

21

1 STM32CubeF4 main features

STM32CubeF4 gathers together, in a single package, all the generic embedded software
components required to develop an application on STM32F4 microcontrollers. In line with
the STM32Cube initiative, this set of components is highly portable, not only within the
STM32F4 series but also to other STM32 series.

STM32CubeF4 is fully compatible with STM32CubeMX code generator that allows the user
to generate initialization code. The package includes a low level hardware abstraction layer
(HAL) that covers the microcontroller hardware, together with an extensive set of examples
running on STMicroelectronics boards. The HAL is available in an open-source BSD license
for user convenience.

STM32CubeF4 package also contains a set of middleware components with the
corresponding examples. They come with very permissive license terms:

• Full USB Host and Device stack supporting many classes.

– Host Classes: HID, MSC, CDC, Audio, MTP

– Device Classes: HID, MSC, CDC, Audio, DFU

• STemWin, a professional graphical stack solution available in binary format and based
on the emWin solution from ST's partner Segger

• CMSIS-RTOS implementation with FreeRTOS open source solution

• FAT File system based on open source FatFS solution

• TCP/IP stack based on open source LwIP solution

• SSL/TLS secure layer based on open source PolarSSL

A demonstration implementing all these middleware components is also provided in the
STM32CubeF4 package.

Figure 1. STM32CubeF4 firmware components

STM32CubeF4 architecture overview UM1730

6/22 DocID025922 Rev 1

2 STM32CubeF4 architecture overview

The STM32CubeF4 firmware solution is built around three independent levels that can
easily interact with each other as described in the Figure 1 below:

Figure 2. STM32CubeF4 firmware architecture

Level 0: This level is divided into three sub-layers:

• Board Support Package (BSP): this layer offers a set of APIs related to the hardware
components on the hardware boards (Audio codec, I/O expander, Touchscreen, SRAM
driver, LCD drivers. etc…) and composed of two parts:

– Component: is the driver related to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the BSP
driver’s external components and can be ported to any board.

– BSP driver: it enables the component driver to be linked to a specific board and
provides a set of user-friendly APIs. The API naming rule is
BSP_FUNCT_Action(): ex. BSP_LED_Init(),BSP_LED_On()

It's based on a modular architecture that allows it to be ported easily to any hardware
by just implementing the low level routines.

• Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi instance and function-oriented APIs which allow
to offload the user application implementation by providing ready-to-use processes. For
example, for the communication peripherals (I2S, UART…) it provides APIs allowing to

DocID025922 Rev 1 7/22

UM1730 STM32CubeF4 architecture overview

21

initialize and configure the peripheral, manage data transfer based on polling, interrupt
or DMA process, and manage communication errors that may raise during
communication. The HAL Drivers APIs are split in two categories, generic APIs which
provides common and generic functions to all the STM32 series and extension APIs
which provides specific and customized functions for a specific family or a specific part
number.

• Basic peripheral usage examples: this layer contains examples of basic operation of
the STM32F4 peripherals using only the HAL and BSP resources.

Level 1: This level is divided into two sub-layers:

• Middleware components: a set of Libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interactions between the
components of this layer are done directly by calling the feature APIs while the vertical
interaction with the low level drivers is done through specific callbacks and static
macros implemented in the library system call interface. For example, the FatFs
implements the disk I/O driver to access microSD drive or the USB Mass Storage
Class.

The main features of each Middleware component are as follows:

USB Host and Device Libraries

– Several USB classes supported (Mass-Storage, HID, CDC, DFU, AUDIO, MTP)

– Supports multi packet transfer features: allows sending big amounts of data
without splitting them into max packet size transfers.

– Uses configuration files to change the core and the library configuration without
changing the library code (Read Only).

– Includes 32-bit aligned data structures to handle DMA-based transfer in High-
speed modes.

– Supports multi USB OTG core instances from user level through configuration file
(allows operation with more than one USB host/device peripheral).

– RTOS and Standalone operation

– The link with low-level driver is done through an abstraction layer using the
configuration file to avoid any dependency between the Library and the low-level
drivers.

STemWin Graphical stack

– Professional grade solution for GUI development based on Segger’s emWin
solution

– Optimized display drivers

– Software tools for code generation and bitmap editing (STemWin Builder…)

FreeRTOS

– Open source standard

– CMSIS compatibility layer

– Tickless operation during low-power mode

– Integration with all STM32Cube Middleware modules

STM32CubeF4 architecture overview UM1730

8/22 DocID025922 Rev 1

FAT File system

– FATFS FAT open source library

– Long file name support

– Dynamic multi-drive support

– RTOS and standalone operation

– Examples with microSD and USB host Mass-storage class

LwIP TCP/IP stack

– Open source standard

– RTOS and standalone operation

• Examples based on the Middleware components: each Middleware component
comes with one or more examples (called also Applications) showing how to use it.
Integration examples that use several Middleware components are provided as well.

Level 2: This level is composed of a single layer which is a global real-time and graphical
demonstration based on the Middleware service layer, the low level abstraction layer and
the applications that make basic use of the peripherals for board-based functions.

DocID025922 Rev 1 9/22

UM1730 STM32CubeF4 firmware package overview

21

3 STM32CubeF4 firmware package overview

3.1 Supported STM32F4 devices and hardware

STM32Cube offers a highly portable Hardware Abstraction Layer (HAL) built around a
generic and modular architecture allowing the upper layers, Middleware and Application, to
implement its functions without in-depth knowledge of the MCU being used. This improves
the library code re-usability and guarantees an easy portability from one device to another.

The STM32CubeF4 offers full support for all STM32F4 Series devices. You only have to
define the right macro in stm32f4xx.h.

Table 1 below lists which macro to define depending on the STM32F4 device you are using
(this macro can also be defined in the compiler preprocessor).

STM32CubeF4 features a rich set of examples and demonstrations at all levels making it
easy to understand and use any HAL driver and/or Middleware components. These

Table 1. Macros for STM32F4 series

Macro defined in
stm32f4xx.h

STM32F4 devices

STM32F405xx STM32F405RG, STM32F405VG and STM32F405ZG

STM32F415xx STM32F415RG, STM32F415VG and STM32F415ZG

STM32F407xx
STM32F407VG, STM32F407VE, STM32F407ZG, STM32F407ZE,
STM32F407IG and STM32F407IE

STM32F417xx
STM32F417VG, STM32F417VE, STM32F417ZG, STM32F417ZE,
STM32F417IG and STM32F417IE

STM32F427xx
STM32F427VG, STM32F427VI, STM32F427ZG, STM32F427ZI,
STM32F427IG and STM32F427II

STM32F437xx
STM32F437VG, STM32F437VI, STM32F437ZG, STM32F437ZI,
STM32F437IG and STM32F437II

STM32F429xx
STM32F429VG, STM32F429VI, STM32F429ZG, STM32F429ZI,
STM32F429BG, STM32F429BI, STM32F429NG, STM32F439NI,
STM32F429IG and STM32F429II

STM32F439xx
STM32F439VG, STM32F439VI, STM32F439ZG, STM32F439ZI,
STM32F439BG, STM32F439BI, STM32F439NG, STM32F439NI,
STM32F439IG and STM32F439II

STM32F401xC
STM32F401CB, STM32F401CC, STM32F401RB, STM32F401RC,
STM32F401VB and STM32F401VC

STM32F401xE
STM32F401CD, STM32F401RD, STM32F401VD, STM32F401CE,
STM32F401RE, STM32F401VE

STM32CubeF4 firmware package overview UM1730

10/22 DocID025922 Rev 1

examples can be run on any of the STMicroelectronics boards as listed in Table 2 below:

The STM32CubeF4 firmware is able to run on any compatible hardware. This means you
can simply update the BSP drivers to port the provided examples to your own board, if it has
the same hardware functions (LED, LCD display, pushbuttons...etc.).

3.2 Firmware package overview

The STM32CubeF4 firmware solution is provided in a single zip package with the structure
shown in Figure 3 below.

Table 2. Evaluation and Discovery boards for STM32F4 series

Board STM32F4 devices supported

STM324x9I_EVAL STM32F429xx and STM32F439xx

STM324xG_EVAL STM32F407xx and STM32F417xx

STM32F4-Discovery STM32F407xx

STM32F401-Discovery STM32F401xC

STM32F429I-Discovery STM32F429xx

STM32F4xx-Nucleo STM32F401xE

DocID025922 Rev 1 11/22

UM1730 STM32CubeF4 firmware package overview

21

Figure 3. STM32CubeF4 firmware package structure

For each board, a set of examples are provided with preconfigured projects for EWARM,
MDK-ARM and TrueSTUDIO toolchains.

Figure 4 shows the project structure for the STM324xG-EVAL board. The structure is
identical for other boards.

The examples are classified depending on the STM32Cube level they apply to, and are
named as follows:

• Examples in level 0 are called Examples, that use HAL drivers without any Middleware
component

• Examples in level 1 are called Applications, that provide typical use cases of each
Middleware component

• Examples in level 2 are called Demonstration, that implement all the HAL, BSP and
Middleware components

A Template project is provided to allow you to quickly build any firmware application on a
given board.

STM32CubeF4 firmware package overview UM1730

12/22 DocID025922 Rev 1

All examples have the same structure,

• \Inc folder that contains all header files

• \Src folder for the sources code

• \EWARM, \MDK-ARM and \TrueSTUDIO folders contain the preconfigured project for
each toolchain.

• readme.txt describing the example behavior and the environment required to make it
work

DocID025922 Rev 1 13/22

UM1730 STM32CubeF4 firmware package overview

21

Figure 4. STM32CubeF4 examples overview

STM32CubeF4 firmware package overview UM1730

14/22 DocID025922 Rev 1

Table 3 provides the number of examples, applications and demonstrations available for
each board.

Table 3. Number of examples available for each board

Board Examples Applications Demonstration

STM324x9I_EVAL 83 56 1

STM324xG_EVAL 68 52 1

STM32F4-Discovery 22 4 1

STM32F401-Discovery 20 4 1

STM32F429I-Discovery 26 8 1

STM32F4xx-Nucleo 3 NA NA

DocID025922 Rev 1 15/22

UM1730 Getting started

21

4 Getting started

4.1 How to run your first example

This section explains how simple it is to run a first example with STM32CubeF4. As an
illustration let's consider to run a simple LED toggling example running on the STM32F4-
Discovery board:

1. After downloading the STM32CubeF4 firmware package, unzip it into a directory of
your choice, you just need to ensure that the package structure is not modified (as
shown in Figure 3 above).

2. Browse to \Projects\STM32F4-Discovery\Examples.

3. Open \GPIO, then the \GPIO_EXTI folder.

4. Open the project with your preferred toolchain.

5. Rebuild all files and load your image into target memory.

6. Run the example: each time you press User button 4, the LEDs will toggle (for more
details, refer to the example readme file).

You will get a quick overview of how to open, build and run an example with the
supported toolchains.

• EWARM

– Under the example folder, open the \EWARM subfolder

– Open the Project.eww workspace(a)

– Rebuild all files: Project->Rebuild all

– Load project image: Project->Debug

– Run program: Debug->Go(F5)

• MDK-ARM

– Under the example folder, open the \MDK-ARM subfolder

– Open the Project.uvproj workspace(a)

– Rebuild all files: Project->Rebuild all target files

– Load project image: Debug->Start/Stop Debug Session

– Run program: Debug->Run (F5)

• TrueSTUDIO

– Open the TrueSTUDIO toolchain

– Click on File->Switch Workspace->Other and browse to the TrueSTUDIO
workspace directory

– Click on File->Import, select General->'Existing Projects into Workspace' and then
click “Next”.

– Browse to the TrueSTUDIO workspace directory, select the project

– Rebuild all project files: Select the project in the “Project explorer” window then
click on Project->build project menu.

– Run program: Run->Debug (F11)

a. The workspace name may change from one example to another

Getting started UM1730

16/22 DocID025922 Rev 1

4.2 How to develop your own application

This section describes the required steps needed to create your own application using
STM32CubeF4.

1. Create your project: to create a new project you can either start from the Template
project provided for each board under \Projects\<STM32xx_xxx>\Templates or from
any available project under \Projects\<STM32xx_xxx>\Examples or
\Projects\<STM32xx_xxx>\Applications (<STM32xx_xxx> refers to the board name, ex.
STM32F4-Discovery).

The Template project provides an empty main loop function, this is a good starting point
to allow you to get familiar with the project settings for STM32CubeF4. It has the
following characteristics:

a) It contains sources of the HAL, CMSIS and BSP drivers which are the minimum
required components to develop code for a given board

b) It contains the include paths for all the firmware components

c) It defines the STM32F4 device supported, allowing to have the right configuration
for the CMSIS and HAL drivers

d) It provides ready-to-use user files preconfigured as follows:

- HAL is initialized

- SysTick ISR implemented for HAL_Delay() purpose

- System clock is configured with the maximum frequency of the device

Note: If you copy an existing project to another location, then you need to update the include
paths.

2. Add the necessary Middleware to your project (optional): available Middleware
stacks are: USB Host and Device Libraries, STemWin, FreeRTOS, FatFS, LwIP, and
PolarSSL. To find out which source files you need to add to the project files list, refer to
the documentation provided for each Middleware, you can also have a look at the
applications available under \Projects\STM32xx_xxx\Applications\<MW_Stack>
(<MW_Stack> refers to the Middleware stack, for example USB_Device) to get a better
idea of the source files to be added and the include paths.

3. Configure the firmware components: the HAL and Middleware components offer a
set of build time configuration options using macros declared with “#define” in a header
file. A template configuration file is provided within each component, which you have to
copy to the project folder (usually the configuration file is named xxx_conf_template.h.
The word “_template” needs to be removed when copying it to the project folder). The
configuration file provides enough information to know the effect of each configuration
option. More detailed information is available in the documentation provided for each
component.

4. Start the HAL Library: after jumping to the main program, the application code needs
to call HAL_Init() API to initialize the HAL Library, which does the following:

a) Configures the Flash prefetch, instruction and data caches (user-configurable by
macros defined in stm32f4xx_hal_conf.h)

b) Configures the Systick to generate an interrupt each 1 msec, which is clocked by
the HSI (at this stage, the clock is not yet configured and thus the system is
running from the internal HSI at 16 MHz)

c) Sets NVIC Group Priority to 4

d) Calls the HAL_MspInit() callback function defined in user file
stm32f4xx_hal_msp.c to do the global low level hardware initialization

DocID025922 Rev 1 17/22

UM1730 Getting started

21

5. Configure the system clock: the system clock configuration is done by calling these
two APIs

a) HAL_RCC_OscConfig(): configures the internal and/or external oscillators, PLL
source and factors. You can choose to configure one oscillator or all oscillators.
You can also skip the PLL configuration if there is no need to run the system at
high frequency

b) HAL_RCC_ClockConfig(): configures the system clock source, Flash latency and
AHB and APB prescalers

6. Develop your application process: at this stage, your system is ready and you can
start developing your application code.

a) The HAL provides intuitive and ready-to-use APIs for configuring the peripheral,
and supports polling, interrupt and DMA programming models, to accommodate
any application requirements. For more details on how to use each peripheral,
refer to the rich examples set provided.

b) If your application has some real-time constraints, you can find a large set of
examples showing how to use FreeRTOS and integrate it with all Middleware
stacks provided in STM32CubeF4, it can be a good starting point for your
development.

c) IMPORTANT NOTE: care must be taken when using HAL_Delay(). This function
provides an accurate delay (in milliseconds) based on a variable incremented in
SysTick ISR. This implies that if HAL_Dely() is called from a peripheral ISR
process, then the SysTick interrupt must have the highest priority (numerically
lower) than the peripheral interrupt. Otherwise the caller ISR process will be
blocked. To change the SysTick interrupt priority, you have to use the
HAL_NVIC_SetPriority() function.

4.3 Using STM32CubeMX for generating the initialization C code

Another alternative to Steps 1 to 5 described in Section 4.2 consists in using the
STM32CubeMX tool to easily generate code for the initialization of the system, the
peripherals and middleware (Steps 1 to 5 above) through a step-by-step process:

• Selection of the STMicroelectronics STM32 microcontroller that matches the required
set of peripherals.

• Configuration of each required embedded software thanks to a pinout-conflict solver, a
clock-tree setting helper, a power consumption calculator, and an utility performing
MCU peripheral configuration (GPIO, USART...) and middleware stacks (USB,
TCP/IP...).

• Generation of the initialization C code based on the configuration selected. This code is
ready to be used within several development environments. The user code is kept at
the next code generation.

For more information, please refer to UM1718.

Getting started UM1730

18/22 DocID025922 Rev 1

4.4 How to get STM32CubeF4 release updates

The STM32CubeF4 firmware package comes with an updater utility: STM32CubeUpdater,
also available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available from st.com and
proposes to download them to the user’s computer.

4.4.1 How to install and run the STM32CubeUpdater program

• Double-click SetupSTM32CubeUpdater.exe file to launch the installation.

• Accept the license terms and follow the different installation steps.

Upon successful installation, STM32CubeUpdater becomes available as an
STMicroelectronics program under Program Files and is automatically launched.

The STM32CubeUpdater icon appears in the system tray:

• Right-click the updater icon and select Updater Settings to configure the Updater
connection and whether to perform manual or automatic checks (see STM32CubeMX
User guide - UM1718 section 3 - for more details on Updater configuration).

DocID025922 Rev 1 19/22

UM1730 FAQ

21

5 FAQ

What is the license scheme for the STM32CubeF4 firmware?

The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The Middleware stacks made by ST (USB Host and Device Libraries, STemWin) come with
a licensing model allowing easy reuse, provided it runs on an ST device.

The Middleware based on well-known open-source solutions (FreeRTOS, FatFs, LwIP and
PolarSSL) have user-friendly license terms. For more details, refer to the license agreement
of each Middleware.

What boards are supported by the STM32CubeF4 firmware package?

The STM32CubeF4 firmware package provides BSP drivers and ready-to-use examples for
the following STM32F4 boards: STM324x9I_EVAL, STM324xG_EVAL, STM32F4-
Discovery, STM32F401-Discovery, STM32F429I-Discovery, STM32F4xx-Nucleo.

Is there any link with Standard Peripheral Libraries?

The STM32Cube HAL Layer is the replacement of the Standard Peripheral Library.

The HAL APIs offer a higher abstraction level compared to the standard peripheral APIs.
HAL focuses on peripheral common functionalities rather than hardware. The higher
abstraction level allows to define a set of user friendly APIs that can be easily ported from
one product to another.

Customers currently using Standard Peripheral Libraries will be helped through Migration
guides. Existing Standard Peripheral Libraries will be supported, but not recommended for
new designs.

Does the HAL take benefit from interrupts or DMA? How can this be
controlled?

Yes. The HAL supports three API programming models: polling, interrupt and DMA (with or
without interrupt generation).

Are any examples provided with the ready-to-use toolset projects?

Yes. STM32CubeF4 provides a rich set of examples and applications (140 for
STM324x9I_EVAL). They come with the preconfigured project of several toolsets: IAR, Keil
and GCC.

How are the product/peripheral specific features managed?

The HAL offers extended APIs, i.e. specific functions as add-ons to the common API to
support features available on some products/lines only.

How can STM32CubeMX generate code based on embedded software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their
peripherals and software. This enables the tool to provide a graphical representation to the
user and generate *.h/*.c files based on user configuration.

FAQ UM1730

20/22 DocID025922 Rev 1

How to get regular updates on the latest STM32CubeF4 firmware releases?

The STM32CubeF4 firmware package comes with an updater utility, STM32CubeUpdater,
that can be configured for automatic or on-demand checks for new firmware package
updates (new releases or/and patches).

STM32CubeUpdater is integrated as well within the STM32CubeMX tool. When using this
tool for STM32F4 configuration and initialization C code generation, the user can benefit
from STM32CubeMX self-updates as well as STM32CubeF4 firmware package updates.

For more details, refer to Section 4.4.

DocID025922 Rev 1 21/22

UM1730 Revision history

21

6 Revision history

Table 4. Document revision history

Date Revision Changes

17-Feb-2014 1 Initial release.

UM1730

22/22 DocID025922 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 STM32CubeF4 main features
	2 STM32CubeF4 architecture overview
	3 STM32CubeF4 firmware package overview
	3.1 Supported STM32F4 devices and hardware
	Table 1. Macros for STM32F4 series
	Table 2. Evaluation and Discovery boards for STM32F4 series

	3.2 Firmware package overview
	Table 3. Number of examples available for each board

	4 Getting started
	4.1 How to run your first example
	4.2 How to develop your own application
	4.3 Using STM32CubeMX for generating the initialization C code
	4.4 How to get STM32CubeF4 release updates
	4.4.1 How to install and run the STM32CubeUpdater program

	5 FAQ
	What is the license scheme for the STM32CubeF4 firmware?
	What boards are supported by the STM32CubeF4 firmware package?
	Is there any link with Standard Peripheral Libraries?
	Does the HAL take benefit from interrupts or DMA? How can this be controlled?
	Are any examples provided with the ready-to-use toolset projects?
	How are the product/peripheral specific features managed?
	How can STM32CubeMX generate code based on embedded software?
	How to get regular updates on the latest STM32CubeF4 firmware releases?

	6 Revision history
	Table 4. Document revision history

