
www.state-machine.com 1

Modern Embedded Software
Overview of QPTM Real-Time Frameworks

and QMTM Modeling Tool

http://www.state-machine.com/

www.state-machine.com 2

Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool

http://www.state-machine.com/

www.state-machine.com 3

Why is real-time programming hard (1)?

#1: Shared-state concurrency

#2: Synchronization by blocking

Mutual
Exclusion

Preemption in
shared-state

 system

Synchronization
by blocking

Deadlock

Priority
inversion

Missed
deadlines

Starvation

Unresponsive
threads More

threads

Architectural
decay

Failure

Blocking

Race
Conditions

http://www.state-machine.com/

www.state-machine.com 4

What can we do about it?

● Don't share data or resources (e.g. peripherals) among threads

→ Keep data isolated and bound to threads (strict encapsulation)

● Don't block inside your code

→ Communicate among threads asynchronously via event objects

● Threads should spend their lifetime responding to events so their
main line should consist of “message pump”

→ Encapsulated thread + “message pump” → Active Object (Actor)

Experienced developers came up with best practices*:

(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”

http://www.state-machine.com/

www.state-machine.com 5

Active Object (Actor) Design Pattern
● Active Object* (Actor*) is an event-driven, strictly encapsulated

software object running in its own thread and communicating
asynchronously by means of events.

→ Not a real novelty. The concept known from 1970s, adapted to real-time in
1990s (ROOM actor), and from there into the UML (active class).

● The UML specification further proposes the UML variant of
hierarchical state machines (UML statecharts) with which to model
the behavior of event-driven active objects (active classes)*.

→ This addresses the “spaghetti code” problem (more about it later)

(*) Lavender, R. Greg; Schmidt, Douglas C. "Active Object"
(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”
(*) OMG Unified Modeling Language TM (OMG UML) Superstructure, formal/2011-08-06

http://www.state-machine.com/

www.state-machine.com 6

Event
queuePrivate thread

Active Object pattern with conventional RTOS

start

Wait
for event

Process
event

Event
queue

Private
data
and

resources

Event
queue

The only
blocking call

Event object

Event object

Event object
ISR

Organize threads as “message pumps”
→ Threads process one event at a time (Run-to-

Completion, RTC)
→ Threads block only on empty queue and don't block

anywhere else
→ Threads communicate asynchronously (without

blocking) by posting events to each other's queues

No
blocking

Event
loop

http://www.state-machine.com/

www.state-machine.com 7

A Better Way: Real-Time Framework
● Implement the Active Object design pattern as a framework

→ The best way to capture an architecture and make it reusable

→ Raises the level of abstraction (directly linked to productivity)

● Inversion of control

→ The main difference between a framework and a toolkit (e.g., RTOS)

→ The main way to automate and enforce the best practices (safer design)

→ The main way to hide the difficult aspects from application (safer design)

→ The main way to bring conceptual integrity to the application

→ The main way to bring consistency among applications (product lines)

http://www.state-machine.com/

www.state-machine.com 8

 Paradigm Shift: Sequential → Event-Driven
● No blocking

→ Most RTOS
mechanisms!

● No sharing

→ Use events with
parameters instead

● No sequential code
/* this "Blinky" code no longer flies */
while (1) { /* RTOS task or "superloop" */
 BSP_ledOn(); /* turn the LED on */
 OS_delay(500); /* blocking!!! */
 BSP_ledOff(); /* turn the LED off */
 OS_delay(500); /* blocking!!! */
}

delay()

Sequential
programming

with RTOS

Event-driven
real-time

framework

Semaphores

Event
Flags

Callback
Timers

Message
Queues*

Threads

Time
Events

Active
Objects

Events

Publish/
Subscribe

Memory
Pools

Paradigm Shift

State
Machines

Event
Posting

Mutexes

http://www.state-machine.com/

www.state-machine.com 9

Why is event-driven programming hard (2)?
● Responding to events leads to “spaghetti

code”

→ The response depends on both: the event type
and the internal state of the system

→ State of the system (history) is represented
ad hoc as multitude of flags and variables

→ Convoluted, deeply nested IF-THEN-ELSE-
SWITCH logic based on complex expressions
→ spaghetti code

http://www.state-machine.com/

www.state-machine.com 10

What can we do about it?
● Finite State Machines—the best known “spaghetti reducers”

→ “State” captures only the relevant aspects of the system's history

→ Natural fit for event-driven programming, where the code cannot block and
must return to the event-loop after each event)

→ Context stored in a single state-variable instead of the whole call stack

ANY_KEY / send_lower_case_scan_code();
default

ANY_KEY / send_upper_case_scan_code();
caps_locked

CAPS_LOCK CAPS_LOCK

trigger list of actions

internal
transitions

http://www.state-machine.com/

www.state-machine.com 11

Paradigm Shift: Sequential → Event-Driven (2)
State Machines are not Flowcharts (!)

s1

(a)

s2

s3

do X

do Y do Z

(b)

E1 / action1();

E2 / action2();

E3 / action3(); do W

Statechart (event-driven)
→ represents all states of a system
→ driven by explicit events
→ processing happens on arcs (transitions)
→ no notion of “progression”

Flowchart (sequential)
→ represents stages of processing in a system
→ gets from node to node upon completion
→ processing happens in nodes
→ progresses from start to finish

http://www.state-machine.com/

www.state-machine.com 12

Hierarchical State Machines

Traditional FSMs “explode”
due to repetitions

(a)

operand1

OPER

opEntered operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9,
 POINT

OPER

C

CC

C

on(b)

operand1

OPER

opEntered

operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9, POINT
OPER

C

OFF

OFF

OFF

OFF
OFF

State hierarchy eliminates repetitions
→ programming-by-difference

http://www.state-machine.com/

www.state-machine.com 13

Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool

http://www.state-machine.com/

www.state-machine.com 14

QPTM Real-Time Frameworks
● Family of frameworks for deeply embedded

real-time systems: QP/C, QP/C++, QP-nano

→ Combines Active Object pattern with Hierarchical
State Machines, which beautifully complement each other

→ Many advanced features yet lightweight (smaller than RTOS kernel)

● Good fit for systems with functional safety requirements

→ Sound, component-based architecture safer than “naked” RTOS

→ Provides means of designing applications based on state machines and
documented as UML state diagrams (recommended by safety standards)

→ Traceable implementation in MISRA-compliant C or C++

http://www.state-machine.com/

www.state-machine.com 15

Who is using QP™?

QPTM has been
licensed by
companies large
and small in
diverse industries:
→ Consumer electronics
→ Medical devices
→ Defense
→ Industrial controls
→ Communication & IoT
→ Robotics
→ Semiconductor IP
→ … (see online)

http://www.state-machine.com/

www.state-machine.com 16

QPTM Framework Family Features
Feature QP/C QP/C++ QP-nano

Code (ROM) / Data (RAM) footprint 4KB / 1KB 5KB / 1KB 2KB / 0.5KB

Maximum number of active objects 64 64 8

Hierarchical state machines   

Events with arbitrary parameters   32-bits

Event pools and automatic event recycling   

Direct event posting   

Publish-Subscribe   

Event deferral   

Number of time events per active object unlimited unlimited 1

Software tracing support (Q-SPY)   

Cooperative QV kernel   

Preemptive, non-blocking QK kernel   

Preemptive, blocking kernel (QXK)   

Portable to 3rd-party RTOS   

http://www.state-machine.com/

www.state-machine.com 17

QP™ vs. RTOS Memory Footprint

QP frameworks fit into
smaller RAM, because
event-driven programming
style uses much less stack
space

http://www.state-machine.com/

www.state-machine.com 18

QP™ Sub-Components

http://www.state-machine.com/

www.state-machine.com 19

QP™ Package and Class View

RTOS

«framework»
QP

Application

RTOS-API

«active»
ActiveA

«active»
ActiveB

EventA EventB

«abstract»
QHsm

«abstract»
QActive

QEvt QTimeEvt

Thread MessageQueue MemoryPartition

Framework
API

http://www.state-machine.com/

www.state-machine.com 20

QEP Hierarchical Event Processor
QState Calc_on(Calc * const me, QEvt const *e) {
 QState status;
 switch (e->sig) {
 case Q_ENTRY_SIG: /* entry action */
 BSP_message("on-ENTRY");
 status = Q_HANDLED();
 break;
 case Q_EXIT_SIG: /* exit action */
 BSP_message("on-EXIT");
 status = Q_HANDLED();
 break;
 case Q_INIT_SIG: /* initial transition */
 BSP_message("on-INIT");
 status = Q_TRAN(&Calc_ready);
 break;
 case C_SIG: /* state transition */
 BSP_clear(); /* clear the display */
 status = Q_TRAN(&Calc_on);
 break;
 case OFF_SIG: /* state transition */
 status = Q_TRAN(&Calc_final);
 break;
 default:
 status = Q_SUPER(&QHsm_top); /* superstate */
 break;
 }
 return status;
}

top

entry /
exit /

on

C
ready

OFF

http://www.state-machine.com/

www.state-machine.com 21

QF Framework – “Software Bus”

ISR_1() ISR_2()

Active
Object 1

Active
Object 2

Active
Object N

direct
event posting

publish-subscribe
“software bus”

. . .

multicasting a
published event

http://www.state-machine.com/

www.state-machine.com 22

QF Framework – “Zero Copy” Event Delivery

EventPool1

«active»
ProducerA

ISR

«active»
ProducerB

EventPool2

event queue
holding pointers
to events

internal
thread

static event
(not from a pool)

pointers to
event instances

dynamic
events

(1)

(2)

(3)

active
object

internal
state
machine

http://www.state-machine.com/

www.state-machine.com 23

QV™ Cooperative Kernel

“vanilla” scheduler

. . .

. . .dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();. . .

find highest-priority
non-empty queue

all queues empty
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0

http://www.state-machine.com/

www.state-machine.com 24

QK™ Preemptive, Non-Blocking Kernel

0

lo
w

 p
ri

o
rit

y
ta

sk

time5 10 15 20 25

hi
gh

 p
rio

ri
ty

 ta
sk

(3)

(4)

priority

task preempted(1) (5)

function
call

interrupt
entry/exit

RTC
scheduler

(2)

Synchronous Preemption

0

lo
w

 p
rio

ri
ty

 t
as

k

time5 10 15 20 25

hi
g

h
p

rio
rit

y
ta

sk

(8)

(7)

priority

task preempted(1) (11)

(2)

interrupt
call

interrupt
return

function
call

(4)(3)

interrupt
entry/exit

RTC
scheduler

(10)

(6)

(9)

(5)

in
te

rr
u

pt

Asynchronous Preemption

low-priority task running

no preemption

0 time1 2 3 4 5

interrupt
response

vectoring

saving interrupt context

increment interrupt nesting

interrupts locked in QF, QK,
 or the application

ISR body

send EOI

restore QK priority

send EOI

decrement interrupt nesting

run QK_schedule_()

run QK_schedule_()

return from interrupt

high-priority task running

function call overhead

interrupt
request

task-level
response

interrupts
unlocked

interrupts unlocked

interrupts
locked asynchronous

preemption

restoring interrupt context

interrupts
unlocked

● Preemptive priority-based kernel
● Meets all requirements of Rate

Monotonic Analysis (RMA)
● Run-to-Completion Kernel
→ Cannot block in-line
→ Single stack operation (like ISRs)

http://www.state-machine.com/

www.state-machine.com 25

QXK™ Preemptive, Blocking Kernel
● A “bridge” to legacy

software & middleware
in sequential paradigm
→ Sequential threads can
coexist with event-driven AOs

● Tightly integrated with QP
(reuse of event queues,
time events, etc.)

● More efficient way to run
QP apps than any
3rd-party RTOS.

delay()

QXK
blocking

kernel

QP
framework

Semaphores

Blocking
threads

Time
Events

Active
Objects

Events

Publish/
Subscribe

Paradigm Shift

State
Machines

Event
PostingMutexes

http://www.state-machine.com/

www.state-machine.com 26

QS/QSPY™ Software Tracing System

UDP
socket

QSPY
Back-EndTarget

Target
data link

QSpyView
Front-End

A

B

C

● You need to observe system live, not stopped in a debugger

http://www.state-machine.com/

www.state-machine.com 27

QUTest™ Unit Testing Harness

Specifically designed for TDD
of deeply embedded software

→ Separates CUT execution from
checking the test assertions

→ Small, reusable test fixture in the
Target (C or C++ code)

→ Driving the tests and checking
correctness on the Host

→ Python and Tcl test scripting

→ Specifically suitable for event-
driven systems (simplifies
“mocking”)

http://www.state-machine.com/

www.state-machine.com 28

QSpyView™ Front-End
Command window
running QSPY

QSpyView GUI Front-End
communicating with QSPY

via a UDP socket

Canvas window of
QSpyView customized
for the DPP application

button to
pause/resume
granting the

forks

thinking
Philosopher

eating
Philosopher

hungry
Philosopher

● Customizable (scripted)
Front-End for monitoring and
control of embedded Targets

→ Remote User Interface

→ Graphic display of Target status

→ Dynamic interaction with Target

→ Remote resetting the Target

http://www.state-machine.com/

www.state-machine.com 29

Design by Contract (DbC)
● The QP's error-handling policy is based on DbC
● Preconditions / Postconditions / Invariants / General Assertions

→ DbC built-into the framework

→ Designed to catch problems in the application

→ No way of ignoring errors (enforcement of rules)

→ Provides redundancy and self-monitoring for safety-critical applications

● Example QP policies enforced by DbC

→ Event delivery guarantee (event pools and queues can't overflow)

→ Arming / disarming / re-arming of time events

→ System initialization, starting active objects

http://www.state-machine.com/

www.state-machine.com 30

Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool

http://www.state-machine.com/

www.state-machine.com 31

QM™ Modeling Tool
● Modeling and code-generation tool for QP™ frameworks

→ Adds graphical state machine modeling to QP™

→ QP™ frameworks provide an excellent target for automatic code generation

http://www.state-machine.com/

www.state-machine.com 32

QM™ Design Philosophy
● “Low ceremony”, code centric tool (no PIM, PSM, action-languages,…)

→ Not appropriate if you need these features (80% of benefits for 20% of costs)

● Optimized for C and C++, (no attempts to support other languages)
● Optimized for QP™ (no attempts to support other frameworks)
● Forward-engineering only (no attempts at “round-trip engineering”)
● Capture logical design (packages, classes, state machines)
● Capture physical design (directories and files generated on disk)
● Minimize “fighting the tool” while drawing diagrams and generating code
● Capable of invoking external tools, such as compilers, flash-downloaders…
● Freeware

http://www.state-machine.com/

www.state-machine.com 33

Logical Design (Packages/Classes/Statecharts)

http://www.state-machine.com/

www.state-machine.com 34

Physical Design (Directories / Files)

http://www.state-machine.com/

www.state-machine.com 35

Extending QM™ with Command-Line Tools

http://www.state-machine.com/

www.state-machine.com 36

Welcome to the 21st Century!
● Experts avoid shared-state concurrency and blocking
● Experts use the event-driven Active Object design pattern
● Experts use hierarchical state machines instead of “spaghetti code”
● Event-driven active objects and state machines require a paradigm

shift from sequential to event-driven programming
● QP™ real-time frameworks provide a very lightweight, reusable

architecture based on the AO pattern and hierarchical state machines
for deeply embedded systems, such as single-chip MCUs

● QM™ modeling tool eliminates manual coding of your HSMs

http://www.state-machine.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

