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Modern Embedded Software
Overview of QPTM Real-Time Frameworks

and QMTM Modeling Tool
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Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool
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Why is real-time programming hard (1)?

#1: Shared-state concurrency

#2: Synchronization by blocking
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What can we do about it?

● Don't share data or resources (e.g. peripherals) among threads

→ Keep data isolated and bound to threads (strict encapsulation)

● Don't block inside your code

→ Communicate among threads asynchronously via event objects

● Threads should spend their lifetime responding to events so their 
main line should consist of “message pump”

→ Encapsulated thread + “message pump”  → Active Object (Actor) 

Experienced developers came up with best practices*:

(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”

http://www.state-machine.com/
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Active Object (Actor) Design Pattern
● Active Object* (Actor*) is an event-driven, strictly encapsulated 

software object running in its own thread and communicating 
asynchronously by means of events.

→ Not a real novelty. The concept known from 1970s, adapted to real-time in 
1990s (ROOM actor), and from there into the UML (active class).

● The UML specification further proposes the UML variant of 
hierarchical state machines (UML statecharts) with which to model 
the behavior of event-driven active objects (active classes)*.

→ This addresses the “spaghetti code” problem (more about it later)

(*) Lavender, R. Greg; Schmidt, Douglas C. "Active Object"
(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”
(*) OMG Unified Modeling Language TM (OMG UML) Superstructure, formal/2011-08-06

http://www.state-machine.com/
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Active Object pattern with conventional RTOS
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Organize threads as “message pumps”
→ Threads process one event at a time (Run-to-

Completion, RTC)
→ Threads block only on empty queue and don't block 

anywhere else
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blocking) by posting events to each other's queues

No
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A Better Way: Real-Time Framework
● Implement the Active Object design pattern as a framework

→ The best way to capture an architecture and make it reusable

→ Raises the level of abstraction (directly linked to productivity)

● Inversion of control

→ The main difference between a framework and a toolkit (e.g., RTOS)

→ The main way to automate and enforce the best practices (safer design)

→ The main way to hide the difficult aspects from application (safer design)

→ The main way to bring conceptual integrity to the application

→ The main way to bring consistency among applications (product lines)

http://www.state-machine.com/
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 Paradigm Shift: Sequential → Event-Driven
● No blocking

→ Most RTOS
mechanisms!

● No sharing

→ Use events with
parameters instead

● No sequential code
/* this "Blinky" code no longer flies */
while (1) { /* RTOS task or "superloop" */
    BSP_ledOn();   /* turn the LED on  */
    OS_delay(500); /* blocking!!! */
    BSP_ledOff();  /* turn the LED off */
    OS_delay(500); /* blocking!!! */
}

delay()
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Why is event-driven programming hard (2)?
● Responding to events leads to “spaghetti 

code”

→ The response depends on both: the event type 
and the internal state of the system

→ State of the system (history) is represented
ad hoc as multitude of flags and variables 

→ Convoluted, deeply nested IF-THEN-ELSE-
SWITCH logic based on complex expressions
→ spaghetti code

http://www.state-machine.com/
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What can we do about it? 
● Finite State Machines—the best known “spaghetti reducers”

→ “State” captures only the relevant aspects of the system's history

→ Natural fit for event-driven programming, where the code cannot block and 
must return to the event-loop after each event) 

→ Context stored in a single state-variable instead of the whole call stack

ANY_KEY / send_lower_case_scan_code();
default

ANY_KEY / send_upper_case_scan_code();
caps_locked

CAPS_LOCK CAPS_LOCK

trigger list of actions

internal
transitions

http://www.state-machine.com/
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Paradigm Shift: Sequential → Event-Driven (2)
State Machines are not Flowcharts (!)

s1

(a)

s2

s3

do X

do Y do Z

(b)

E1 / action1();

E2 / action2();

E3 / action3(); do W

Statechart (event-driven)
→ represents all states of a system
→ driven by explicit events
→ processing happens on arcs (transitions)
→ no notion of “progression” 

Flowchart (sequential)
→ represents stages of processing in a system
→ gets from node to node upon completion
→ processing happens in nodes
→ progresses from start to finish

http://www.state-machine.com/
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Hierarchical State Machines

Traditional FSMs “explode”
due to repetitions
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State hierarchy eliminates repetitions
→ programming-by-difference 
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Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool
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QPTM Real-Time Frameworks        
● Family of frameworks for deeply embedded

real-time systems: QP/C, QP/C++, QP-nano

→ Combines Active Object pattern with Hierarchical
State Machines, which beautifully complement each other

→ Many advanced features yet lightweight (smaller than RTOS kernel)

● Good fit for systems with functional safety requirements

→ Sound, component-based architecture safer than “naked” RTOS 

→ Provides means of designing applications based on state machines and 
documented as UML state diagrams (recommended by safety standards)

→ Traceable implementation in MISRA-compliant C or C++ 

http://www.state-machine.com/
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Who is using QP™?

QPTM has been
licensed by
companies large
and small in
diverse industries:
→ Consumer electronics
→ Medical devices
→ Defense
→ Industrial controls
→ Communication & IoT
→ Robotics
→ Semiconductor IP
→ … (see online)

http://www.state-machine.com/


www.state-machine.com 16

QPTM Framework Family Features        
Feature QP/C QP/C++ QP-nano

Code (ROM) / Data (RAM) footprint 4KB / 1KB 5KB / 1KB 2KB / 0.5KB

Maximum number of active objects 64 64 8

Hierarchical state machines   

Events with arbitrary parameters   32-bits

Event pools and automatic event recycling   

Direct event posting   

Publish-Subscribe   

Event deferral   

Number of time events per active object unlimited unlimited 1

Software tracing support (Q-SPY)   

Cooperative QV kernel   

Preemptive, non-blocking QK kernel   

Preemptive, blocking kernel (QXK)   

Portable to 3rd-party RTOS   

http://www.state-machine.com/
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QP™ vs. RTOS Memory Footprint

QP frameworks fit into 
smaller RAM, because 
event-driven programming 
style uses much less stack 
space

http://www.state-machine.com/
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QP™ Sub-Components

http://www.state-machine.com/
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QP™ Package and Class View

RTOS

«framework»
QP

Application
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«active»
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EventA EventB

«abstract»
QHsm

«abstract»
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QEvt QTimeEvt

Thread MessageQueue MemoryPartition

Framework
API
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QEP Hierarchical Event Processor
QState Calc_on(Calc * const me, QEvt const *e) {
    QState status;
    switch (e->sig) {
        case Q_ENTRY_SIG:   /* entry action */
            BSP_message("on-ENTRY");
            status = Q_HANDLED();
            break;
        case Q_EXIT_SIG:     /* exit action */
            BSP_message("on-EXIT");
            status = Q_HANDLED();
            break;
        case Q_INIT_SIG:     /* initial transition */
            BSP_message("on-INIT");
            status = Q_TRAN(&Calc_ready);
            break;
        case C_SIG:          /* state transition */
            BSP_clear();     /* clear the display */
            status = Q_TRAN(&Calc_on);
            break;
        case OFF_SIG:        /* state transition */
            status = Q_TRAN(&Calc_final);
            break;
        default:
            status = Q_SUPER(&QHsm_top);  /* superstate */
            break;
    }
    return status;
} 

top

entry /
exit /

on

C
ready

OFF
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QF Framework – “Software Bus”

ISR_1() ISR_2()

Active 
Object 1

Active 
Object 2

Active 
Object N

direct
event posting

publish-subscribe 
“software bus”

. . .

multicasting a 
published event
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QF Framework – “Zero Copy” Event Delivery

EventPool1
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ProducerA

ISR

«active»
ProducerB

EventPool2

event queue 
holding pointers 
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internal 
thread

static event
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dynamic
events

(1)

(2)

(3)

active 
object

internal 
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QV™ Cooperative Kernel

“vanilla” scheduler

. . .

. . .dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();. . .

find highest-priority 
non-empty queue

all queues empty 
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0
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QK™ Preemptive, Non-Blocking Kernel
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locked asynchronous
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● Preemptive priority-based kernel
● Meets all requirements of Rate 

Monotonic Analysis (RMA)
● Run-to-Completion Kernel
→ Cannot block in-line
→ Single stack operation (like ISRs) 

http://www.state-machine.com/
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QXK™ Preemptive, Blocking Kernel
● A “bridge” to legacy

software & middleware
in sequential paradigm
→ Sequential threads can
coexist with event-driven AOs

● Tightly integrated with QP
(reuse of event queues,
time events, etc.)

● More efficient way to run
QP apps than any
3rd-party RTOS.
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QS/QSPY™ Software Tracing System

UDP
socket

QSPY
Back-EndTarget

Target
data link

QSpyView
Front-End

A

B

C

● You need to observe system live, not stopped in a debugger

http://www.state-machine.com/
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QUTest™ Unit Testing Harness

Specifically designed for TDD
of deeply embedded software

→ Separates CUT execution from
checking the test assertions

→ Small, reusable test fixture in the 
Target (C or C++ code)

→ Driving the tests and checking 
correctness on the Host

→ Python and Tcl test scripting

→ Specifically suitable for event-
driven systems (simplifies 
“mocking”)

http://www.state-machine.com/
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QSpyView™ Front-End
Command window 
running QSPY

QSpyView GUI Front-End
communicating with QSPY 

via a UDP socket

Canvas window of 
QSpyView customized 
for the DPP application

button to 
pause/resume 
granting the 

forks

thinking
Philosopher

eating
Philosopher

hungry
Philosopher

● Customizable (scripted)
Front-End for monitoring and 
control of embedded Targets

→ Remote User Interface

→ Graphic display of Target status

→ Dynamic interaction with Target

→ Remote resetting the Target

http://www.state-machine.com/
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Design by Contract (DbC)
● The QP's error-handling policy is based on DbC
● Preconditions / Postconditions / Invariants / General Assertions

→ DbC built-into the framework

→ Designed to catch problems in the application

→ No way of ignoring errors (enforcement of rules)

→ Provides redundancy and self-monitoring for safety-critical applications

● Example QP policies enforced by DbC

→ Event delivery guarantee (event pools and queues can't overflow)

→ Arming / disarming / re-arming of time events

→ System initialization, starting active objects 

http://www.state-machine.com/
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Presentation Outline

● Why is RTE programming so hard and what can we do about it?

● QP™ real-time frameworks for embedded systems

● QM™ graphical modeling and code generating tool
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QM™ Modeling Tool
● Modeling and code-generation tool for QP™ frameworks

→ Adds graphical state machine modeling to QP™

→ QP™ frameworks provide an excellent target for automatic code generation 

http://www.state-machine.com/
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QM™ Design Philosophy
● “Low ceremony”, code centric tool (no PIM, PSM, action-languages,…)

→ Not appropriate if you need these features (80% of benefits for 20% of costs)

● Optimized for C and C++, (no attempts to support other languages)
● Optimized for QP™ (no attempts to support other frameworks)
● Forward-engineering only (no attempts at “round-trip engineering”)
● Capture logical design (packages, classes, state machines)
● Capture physical design (directories and files generated on disk)
● Minimize “fighting the tool” while drawing diagrams and generating code
● Capable of invoking external tools, such as compilers, flash-downloaders…
● Freeware  

http://www.state-machine.com/
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Logical Design (Packages/Classes/Statecharts)

http://www.state-machine.com/
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Physical Design (Directories / Files)

http://www.state-machine.com/
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Extending QM™ with Command-Line Tools

http://www.state-machine.com/
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Welcome to the 21st Century!
● Experts avoid shared-state concurrency and blocking 
● Experts use the event-driven Active Object design pattern
● Experts use hierarchical state machines instead of “spaghetti code”
● Event-driven active objects and state machines require a paradigm 

shift from sequential to event-driven programming
● QP™ real-time frameworks provide a very lightweight, reusable 

architecture based on the AO pattern and hierarchical state machines 
for deeply embedded systems, such as single-chip MCUs

● QM™ modeling tool eliminates manual coding of your HSMs

http://www.state-machine.com/
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