
www.edn.com September 19, 2002 | edn 83

THE USB HID CLASS IS A POWERFUL AND VERSATILE WAY

TO GET YOUR DEVICE ON THE USB. IF YOUR USB DEVICE

CAN EXIST WITHIN THE BANDWIDTH LIMITS OF THE HID

DRIVER, THEN USING THIS DRIVER MAY SAVE YOUR SANITY

AND YOUR SCHEDULE. AN EXAMPLE SHOWS HOW.

The difficulty of writing device drivers is one
of the major barriers to the adoption of the USB.
A typical embedded-device engineer who can

comfortably design embedded systems all day long
can get nervous at the thought of writing a PC-de-
vice driver. The design is no longer as simple as us-
ing the parallel port or serial port. Nonetheless, the
USB offers many advantages, including multiplat-
form support, standard device classes, and support
for vendor-defined devices. Motherboard vendors
are also attempting to eliminate the legacy connec-
tions in favor of the USB, which forces embedded-
system engineers to accept the evolution of technol-
ogy. Move to the USB, or become obsolete.

Fortunately, by using the HID (Human Interface
Device) class for the USB, you need not write a sin-
gle Windows/Mac/Linux device driver. Even if your
device doesn’t fit into one of the predefined
HID usages, you can use a completely ven-
dor-defined usage.

The HID class is a standard device classification
for the USB, but don’t let the words “standard” or
“classification” fool you. The HID class doesn’t rep-
resent a set of fixed-function devices. Rather, it sup-
ports a variety of devices with widely varying char-
acteristics. Some examples include a computer
mouse, a keyboard, sports equipment, medical in-
struments, audio/video devices, and vendor-defined
functions. HID also supports device primitives such
as an LED and a button, and standard measure-

ments, such as time, temperature, and distance. The
general idea is that you can use the HID class to sup-
port a range of vendor-specific applications that a
USB-device class doesn’t currently support. Mi-
crosoft also supports the HID class with a well-
rounded library that it includes as part of the Win-
dows DDK.

To show how to use the HID class to communi-
cate with an embedded device, a thermometer ex-
ample that follows focuses on encapsulating the con-
cepts of a Windows-based application. This example
also shows how to use the Windows DDK library in
a typical situation for a vendor-defined HID usage.
The goal of the sample Windows application and
USB device is to show the basic steps of data ex-

Using the HID class
eases the job of writing
USB device drivers

HID TURNS
ON PULLUP

RESISTOR

USB HOST STARTS
GENERAL ENUMERATION.
THE HOST SETS THE USB
DEVICE ADDRESS AND
GATHERS GENERAL
DESCRIPTORS.

SYSTEM TRANSFERS
CONTROL TO HID CLASS DRIVER,
GATHERS HID DESCRIPTORS,
AND STARTS HID REPORTS.

The HID device-enumeration process begins with the action
of a simple pull-up resistor.

F igure 1

designfeature By Stuart Allman, Cypress Semiconductor

designfeature USB device drivers

84 edn | September 19, 2002 www.edn.com

change across the USB using the HID
driver.You can find a complete de-
sign package for this example with
the Web version of this story at www.
edn.com.

HOW DOES A DEVICE GET ON THE USB?

The process of a device’s getting on the
USB begins with the act of a simple pull-
up resistor. After you plug the device into
an active USB host, the device turns on
a pull-up resistor on one of the USB data
signals. The device pulls up D� if the de-
vice is low-speed and pulls up D� if it is
full- or high-speed. The USB host detects
this condition and begins device enu-
meration, a start-up process on the USB
(Figure 1). (Note that high-speed hosts
go through an additional process.) Dur-
ing enumeration, the host requests a
number of data structures, or descriptors,
from the device. These descriptors con-
tain information about the number and
type of communication channels, or end-
points, that the USB device desires to use,
as well as information about any device
class. Enumeration occurs on the default
endpoint, which is endpoint 0, also
known as the control endpoint. The host
also assigns a unique 7-bit address to the
device, directing communications to a
particular device.

On PC or Mac platforms, the first part
of the enumeration process occurs with-
out custom or class-specific device driv-
ers. During the first part of enumeration,
the USB driver retrieves the general de-
scriptors that all devices support and
gives the device a unique address on the
USB. If the descriptors indicate that the
device belongs to a particular USB device
class, the USB driver hands off the rest of
the enumeration to the specified class
driver. In the example for this article, the
driver handoff is to the HID-class driver.
If the descriptors don’t specify a class,
then the device’s VID (vendor ID) and
PID (product ID), gathered from the de-
scriptors, identify an appropriate driver
for the USB device.

In a properly designed USB HID de-
vice, you need not worry about the driv-
er process. The device drivers on the USB
host handle the enumeration process and
the class-driver handoff for you. The USB
host simply enumerates the device, which
is then ready to use with your application.
However, if you improperly format the

descriptors or the device responds im-
properly, either the USB or the class driv-
er disables the device, depending on when
the failure occurred during enumeration.

HID REQUIRES NO HUMAN INTERFACE

Don’t let the “human interface”part of
HID confuse you. A USB device that
claims to belong to the Human Interface
Device class need not necessarily have a
human interface. The HID class supports
a variety of devices that you would gen-
erally never associate with a human in-
terface. Devices can be as obvious as a
mouse or a keyboard but as unexpected
as an IC programmer or a thermometer.
The class also supports a variety of device
primitives that you would associate with
a general digital device, such as an LED,
a button, a vector, or an LCD.

The HID class allows you to create a
collection of HID usages to describe a de-
vice. The HID report descriptor, which
the host gathers during enumeration, de-
scribes this collection along with the in-
put and output data streams. For in-
stance, a clock description could be an
input stream of 3 bytes corresponding to
hours, minutes, and seconds. The clock

could also have an output report in the
collection that describes how to write to
a device’s LCD. The HID class also has the
capacity to allow vendor-defined usages.
Even if none of the predefined usages in
the HID usage tables (Reference 1) can
describe your device, you can still reserve
a generic vendor-defined slot in the HID
report collection.

The downside to using the HID class is
that the typical class drivers support only
one type of endpoint communication—
an interrupt—and the bandwidth is lim-
ited to well below the USB’s maximum
throughput. The bandwidth is limited to
800 bytes/sec/report (8 bytes/msec/I/O
report) for low-speed devices, 64,000
bytes/sec/report (64 bytes/msec/I/O re-
port) for full-speed devices, and approx-
imately 23.4 Mbytes/sec/report (3072
bytes/microframe/I/O report) for high-
speed devices. An HID may specify mul-
tiple reports if more than the “per-re-
port” bandwidth is necessary.

Don’t let these bandwidth limits im-
mediately discourage you. Using an in-
telligent USB controller often helps pre-
sort data and lower the bandwidth that’s
required to support an application. The

Opening a device takes seven steps.

HidD_GetHidGuid()

CreateFile()

DESIRED VID AND PID?

SetupDiGetClassDevs()

SetupDiGetClassDevs()

SetupDiGetDeviceInterface
Detail()

GET THE WINDOWS
GLOBALLY UNIQUE ID

FOR HID DEVICES.

GATHER AN ARRAY OF
STRUCTURES DESCRIBING

ALL HID DEVICES.

GATHER INFO ABOUT HID
DEVICE WITH INDEX "I,"

STARTING AT 0.

GET DETAILED INFO ABOUT
DEVICE THAT INDEX "I"

POINTS TO.

OPEN A HANDLE TO
THE DEVICE.

CHECK VID AND PID OF
OPEN DEVICE TO SEE

WHETHER IT'S THE DEVICE
YOU WANT.

HID DEVICE FOUND

HID DEVICE
NOT FOUND

TRUE

TRUE

FALSE

FALSE (INCREMENT
INDEX "I" INDEX
AND TRY AGAIN.)

F igure 2

low-speed bandwidth limit was far
greater than was necessary for the
sample application that follows.

THE STEPS TO A WORKING HID

You need to take many steps to make
an HID enumerate and communicate
using HID reports on the USB. This
process isn’t easy, but this application
provides a framework that you can copy
and edit as a starting point.

All USB devices handle “Chapter 9 re-
quests,” which Chapter 9 of the USB
specification describes (Reference 2).
The requests include tasks such retriev-
ing a standard set of descriptors from the
device and setting standard device pa-
rameters. The first specific task in mak-
ing an HID is specifying the HID class in
the USB interface descriptor’s bInter-
faceClass field. A value of 0x03 corre-
sponds to the HID class. This value lets
the general USB driver know which class
driver the application needs to be passed
on to after enumeration is complete.

During enumeration, the device also
supplies an HID class descriptor as a sub-
section of the configuration descriptor in
between the interface and the endpoint-
descriptor subsections. This descriptor
basically contains the HID-specification
version information and the length of the
HID-report descriptor. The second as-
pect of making an HID is the HID-report
descriptor itself, which can be complex.
The HID descriptor comprises HID us-
ages, each of which describes a field in an
input or an output report (Listing 1).
The HID usage-table document shows a
large number of useful examples of how
to create an HID-report descriptor (Ref-
erence 1).

When the device correctly handles the
Chapter 9 requests and HID-specific pa-
rameters, the remainder of the work lies
in the application itself. This example
uses a Microsoft Windows-based appli-
cation. Examples are also available else-
where for MacOS and Linux (references
3 and 4).

An application must first be able to
open the device for communications—a
fairly lengthy process. However, the sam-
ple application encapsulates the process
into a reusable function, bOpenHidDe-
vice() (Reference 5). The bOpenHidDe-
vice function takes a device-handle ref-
erence, a target device VID, and a target

device PID as function arguments. If the
host finds a device that matches the de-
sired VID and PID, then the function re-
turns “true,” and the Windows HID API
assigns a valid value to the device handle.
If the function returns false, it more than
likely means that the either the device is
not plugged in or the device failed enu-
meration.

The process of opening a device con-
sists of seven steps (Figure 2).

1. Obtain the Windows GUID (glob-
ally unique ID) for HID devices via a call
to HidD_GetHidGuid().

2. Get an array of structures that con-
tain information about all attached
HIDs via a call to SetupDiGetClassDe-
vs(). This step uses the previously ob-
tained HID GUID to specify that the list

should contain only HID devices.
3. Use the Windows function Setup-

DiEnumDeviceInterfaces() to get infor-
mation about a device in the list. You
need to step through each index of device
information until you find one with the
correct VID and PID. If this function re-
turns “false,” then you have reached the
end of the list without finding the desired
device.

4. A call to SetupDiGetDeviceInter-
faceDetail() returns detailed data about
the device indexed in the previous step.
You want to use the device path to open
the device in the next step.

5. Call CreateFile() to open the device
using the path obtained in the previous
step. If the Windows API call to Create-
File() returns a valid handle, then you can
examine the VID and PID to determine
whether this is the device you want.

6. Compare the open device’s VID and
PID to determine whether this is the de-
vice you want. If so, then you should re-
turn the device handle and a “true” con-
dition.

7. If the VID and PID are incorrect,
then you need to close the device handle
and return to Step 3 to check the next de-
vice the list indexes.

The HID application must then han-
dle device-attachment and -detachment
notification. The bHidDeviceNotify()
function encapsulates this process. This
function causes the Windows USB sys-
tem to send a WM_DEVICECHANGE
message to the application whenever a
USB HID device is plugged into or un-
plugged from the system. The notifica-
tion system is not intelligent enough to
indicate an HID-device change for a VID
and a PID, so the application must check
whether the device is still attached on any
notification message.

Setting up device notifications is a five-
part process:

1. Obtain the Windows GUID for HID
devices by way of a call to HidD_Get
HidGuid().

2. Clear the contents of a DEV_
BROADCAST_DEVICEINTERFACE
structure 0.

3. Assign the members of the structure
such that you specify the HID GUID.

4. Register the application for device
notifications by calling the function Reg-
isterDeviceNotification().

5. If the previous step returns an in-

designfeature USB device drivers

86 edn | September 19, 2002 www.edn.com

The HID input report for the thermometer
includes the button state and temperature
measurement in one report.

BUTTON STATE (LSB)

TEMPERATURE-LOW BYTE

TEMPERATURE-HIGH BYTE

BYTE 0

BYTE 1

BYTE 2

F igure 3

LISTING 1—HID-REPORT
DESCRIPTOR

valid handle, then an error has occurred,
and the function should return an error.
Otherwise, the return is successful.

The Windows DDK provides a num-
ber of functions that allow you to find
devices with certain capabilities and re-
trieve pieces of data from the USB device.
The library functions are too numerous
to mention here, but you can find them
by searching for “HID Support Routines
for Clients” on the MSDN Web site (Ref-
erence 6).

INPUT AND OUTPUT REPORTS

The next function that the ap-
plication needs is the ability to read in-
put reports and write output reports. To
perform these tasks, an application uses
the ReadFile() and WriteFile() func-
tions, respectively. Each of these func-
tions use the device handle that the
CreateFile() function returns. This ap-
plication uses overlapped transactions,
which allow the application to enter a
low-CPU-overhead state while waiting
for a requested USB transaction to oc-
cur. You can queue as many as eight
overlapped transactions at once by de-
fault, and you can queue more if more
are specified. If an application doesn’t
use overlapped transactions, then it has
to wait until the USB transaction fin-
ishes before it can perform any addi-
tional tasks. This state is undesirable
when an application spends most of its
time waiting for data returned from a
USB device. The bOpenHidDevice()
function opens the device with the
FILE_FLAG_OVERLAPPED parameter,
so all transactions are overlapped in this
example.

A second aspect of data transfer is the
use of multiple threads. Because the
main application needs to remain re-
sponsive even while waiting for USB
transactions, it is desirable to put the
USB reads and writes in a separate
thread. This feature allows the main ap-
plication to continue processing mes-
sages while the USB transaction thread
waits for overlapped transactions to
complete.

A SAMPLE HID THERMOMETER

The thermometer in this example
communicates with a PC via the HID-
class driver. This example shows an un-
conventional use of the versatile HID

class. This thermometer has an LED,
a button, and a temperature meas-
urement. The button and thermome-
ter are grouped into an input report,
and the host application controls the
LED via an output report. Again, for
a complete design package, see
www.ednmag.com.

An LED is a predefined “usage
page”—that is, a collection of LED-
related functions—of the HID class
(see the HID usage-tables specifica-
tion). For the purposes of this appli-
cation, the LED usage is defined as a
ready LED. The intention of provid-
ing this control is to show how to use
an HID output report. The report
comprises one byte that turns on the
LED (0x01) or off (0x00). The LED is
on when the computer starts taking
measurements and off when the
measurements stop; that is, when the
application closes. WriteFile() sends
an overlapped HID output report to
the USB device.

The button is also a predefined us-
age page of the HID class.You can de-
fine a general-purpose button with-
out a usage in mind. Figure 3 shows
the format of the button report. To re-
quest button information from the
USB device, the windows application
uses an overlapped transaction via a
call to ReadFile().

The temperature measurement is a
bit more complex. The “generic-desk-
top” usage page contains a nonori-
ented vector. The intended use of a
nonoriented vector is for measuring

time, distance, temperature, light inten-
sity, and so on when direction is not im-
portant. The HID report descriptor also
indicates the units for the measure-
ment—that is, SI linear Kelvin—and the
exponent (100) for the reported value.
The temperature-measurement IC on
the USB device reports in Celsius, so re-
porting in Kelvin is a matter of simply
adding 273 to the IC’s measured value.
The application searches for a USB de-
vice; it does not look for units, expo-
nents, or other information. However,
the Windows HID DDK allows your ap-
plication to search for devices with cer-
tain capabilities instead of a dedicated
device (Reference 6).

designfeature USB device drivers

88 edn | September 19, 2002 www.edn.com

The HID thermometer application reports tem-
perature measurement, debugging messages,
and the output report on the screen.

VECTOR
REPORT

PROVIDES
TEMPERATURE

MEASUREMENT

BUTTON
REPORT
SELECTS
TEMPERATURE
UNITS

DEBUGGING MESSAGES OUTPUT REPORT
TURNS LED ON OR OFF

F igure 4

LISTING 2—HID-REPORT DESCRIPTOR
WITH THREE REPORTS

90 edn | September 19, 2002 www.edn.com

designfeature USB

The example provides both the button
and temperature measurement as one re-
port. Whenever the button changes or a
temperature measurement is complete,
the USB device reports these values back
to the host in the format that Figure 3
shows. The format of the HID report de-
scriptor for the thermometer shows the
vendor-defined usage and a collection of
three reports, two of which are in a sin-
gle input report (Listing 2). The Win-
dows HID driver follows the conventions
set in the HID-class specification to parse
the HID report descriptor. Even if the
host-side application doesn’t use some of
the information in the HID report de-
scriptor, it is still necessary for the HID
driver to accept your device.

Detailed information about how to
format HID report descriptors is beyond
the scope of this article. The HID-class
and HID usage-table specifications pro-
vide complete information on this sub-
ject. A HID descriptor tool is also avail-
able to help you with this task.

The host application for the HID-ther-
mometer application was written using
the VisualC�� Version 6.0 tools and the
Win98 DDK (Figure 4). The Win98
DDK isn’t the most up-to-date kit, but it
ensures that you can build the applica-
tion using all versions of the Windows
DDK and that the application will run
with all USB-enabled versions of Win-
dows.

Cypress developed the USB device for
the CY7C63743 USB microcontroller.
The CY3644 application board that
comes with the microcontroller’s devel-
opment kit has buttons, LEDs, and a tem-
perature IC. The microcontroller’s
source code, assembler, and ROM image
are part of the design package.�

References
1. USB HID specification, HID-usages

tables, and HID descriptor tool, www.
usb.org/developers/hidpage.html.

2. USB specification, www.usb.org/
developers/docs.html.

3. Apple USB, http://developer.apple.
com/hardware/usb/.

4. Linux USB, www.linux-usb.org.
5. Axelson, Jan, USB Complete, Lake-

view Research, www.lvr.com.
6. Microsoft DDK, http://msdn.mi-

crosoft.com.
7. Hyde, John, USB Design by Example,

Intel, www.usb-by-example.com.

Author’s Biography
Stuart Allman is a senior systems engineer
and solution architect for the Personal
Communications Division of Cypress
Semiconductor (www.cypress.com). He
holds a BS degree in electrical engineering
from the University of Washington (Seat-
tle). Before joining Cypress, Allman
worked at small audio companies devel-
oping microcontroller- and DSP-based
products. Allman joined Cypress in 1998
and has been involved with microprocessor
development tools, IC architectures, and
encryption technology.

