

Copyright IXXAT Automation GmbH

CAN vs. RS485

White Paper

Overview

CAN (Controller Area Network) and RS485 are popular standards in fieldbus systems. As
RS485 only addresses layer 1 (the physical layer) and CAN also adds layer 2 (the data link
layer) in the OSI model, it is difficult to compare the two standards. Nevertheless, this paper
will compare the two standards in an attempt to assist users in deciding whether or not to
employ CAN in their systems.

Basics

RS485
The RS485 standard was created in 1983 providing a multi-drop communication capability
for devices with at least one UART. Any device connected to the RS485 bus can
communicate with any other device in half-duplex mode. Although half duplex enables a
bidirectional communication, only one device can transmit at a time and the other devices
have to listen.

At this, RS485 is not a protocol, it only provides the basic rules and the physical link for data
exchange, enabling the transmission of serial messages using a multi-drop bus whereas the
message content is completely user defined.

This also means, that e.g. the communication frame structure, the scheme for addressing other
nodes, the mechanisms to avoid data collisions and other tasks have to be implemented by the
developer in form of a protocol software.

CAN
The Controller Area Network (CAN) was created in the 1980s by Robert Bosch GmbH. In the
beginning, CAN mainly targeted the automotive industry, but nowadays it is used in a variety
of applications, like industrial automation, medical, transportation and so on.
Compared with RS485, CAN not only provides the physical media for the communication, it
also provides all other mechanisms necessary for addressing data packets (messages),
avoiding data collisions, detecting failures in the transmitted data, automatic repetition of
disturbed messages and ensuring data consistency over all nodes in a network. Furthermore,
CAN specifies the structure of the data frame, with message identifier, data and control bytes.

Like RS485, a CAN node can communicate with any other node in half-duplex mode. A
message consists primarily of an identifier (ID), which represents the priority of the message
with respect to collision avoidance and up to eight data bytes. It is transmitted serially over
the bus. This signal pattern is encoded in non-return-to-zero (NRZ) and is sensed by all nodes.

Copyright IXXAT Automation GmbH

If the bus is free, any node may begin to transmit. If two or more nodes begin sending
messages at the same time, the message with the higher priority, as defined by the more
dominant ID (which has more dominant bits, i.e., zeroes), will overwrite other nodes' less
dominant IDs. This insures that only the dominant message is transmitted and received by all
other nodes. This mechanism is referred to as priority-based bus arbitration. Messages with
numerically smaller values of IDs have higher priority and are transmitted first in the event
that two messages are sent simultaneously.

Comparison

RS485 is normally operated with the aid of a UART module. Communication is, therefore,
carried out on the basis of individual characters which are written or read via an 8-bit register.
Therefore, the structure of a telegram must be implemented in software. In contrast, CAN
functions with a permanently pre-set telegram format which, in addition to the 0 to 8
databytes, also contains the control information for addressing and data consistency (CRC
check). The user only has to transmit the message identifier and the payload, the rest is added
by a so called CAN controller. The CAN controller may be an external chip or an internal
module within a microcontroller.

Each CAN message has its own priority which is derived from the message identifier. CAN
messages with higher priority can be treated preferentially by the CAN controller chip and
are, therefore, transmitted before messages with a lower priority. Also, among the nodes on
the CAN bus, the message with the highest priority is transmitted first.

Consequently, CAN then becomes a real-time-compatible solution. Depending on the priority
of a message by virtue of its ID, the maximum latency time can be predicted for each CAN
message, independently of the busload or performance of the other nodes. In contrast, RS485
cannot trigger any message collisions, therefore, collision avoidance must be guaranteed with
the application software. Typically, collision avoidance in RS485 networks is achieved in
master/slave relationships by the master polling all slaves one after the other. The latency time
results from the number and reaction time of all nodes and is therefore much longer.

Due to message-wise arbitration, CAN enables multi-master operation without making
additional precautions. In the case of RS485, this is only possible with a specific protocol,
such as token ring, which has to be implemented in software.

CAN has very advanced error management. If a message is not correctly received by a node
(CRC or format error), the telegram is destroyed by the recipient via an error frame and is,
therefore, marked as invalid for all nodes. This action initiates an automatic response in the
CAN controller to repeat the transmit process. This procedure ensures that all nodes only
receive valid messages. Nodes that repeatedly transmit incorrect data or at first recognise
received data as defective are automatically disconnected from participation on the CAN bus.
This guarantees that defective CAN controllers or bus connections cannot permanently disrupt
data traffic.

These measures taken collectively (brief messages, differential transmission, error detection
and troubleshooting, withdrawal of defective nodes) make CAN a very robust, secure, reliable
network which is why CAN is employed in many critical or safety-related applications in
vehicles, ships, elevators, medical devices, aircraft and industrial plants.

Copyright IXXAT Automation GmbH

Almost every microcontroller family today offer versions with an integrated CAN controller
that is virtually free. RS485, which typically works with an internal UART, is also free. This
means that there are really no cost advantages or disadvantages when employing CAN or
RS485. The costs for the transceiver modules for CAN are even lower than for RS485 as
illustrated in the summary comparison table below.

Due to the full implementation of the CAN protocol in hardware, the load on the
microcontroller system is reduced (only one interrupt per message). With RS485 there is
typically one interrupt per received character, in addition to processing of the protocol in
software (including data consistency mechanisms), which can lead to a considerable CPU
load for RS485. Depending on the protocol and data transmission rate, as well as
requirements of the application RS485 requires more powerful and, therefore, more expensive
CPUs. Even already lower transmission rates can have a considerable impact on the CPU
performance and consequently on the cost.

CAN controllers are capable of filtering out receive messages based on the message identifier.
The CPU load can thus be further reduced, as only those messages that are relevant for the
node are received.

Further arguments in favor of CAN
By using CAN, the UART interface of the microcontroller remains free and can be used for
debugging or other purposes (printf).

Due to the high degree of standardization with CAN, PC/CAN interfaces (USB, PCIe, ...)
including software drivers are available at low cost and thus enable easy access to CAN for
PC applications.

Many CAN analysis, simulation, configuration and other tools are available for PCs, which
provide access from layer 1 to layer 7 and thus simplify development and troubleshooting.

Various layer 7 protocols such as CANopen, DeviceNet and J1939 are available from many
vendors for CAN. This enables the designer to use proven layer 7 software for almost all
available microcontrollers leading to reduced risk, faster time to market and lower
development costs.

I/O nodes, sensors and drives are available on the market for CANopen and DeviceNet layer 7
protocols. In addition, these protocols are available with pre-defined device standards that
guarantee, by virtue of compliance with the standard, that all nodes operating on the CAN bus
will communicate together. An important consideration in upgrading from RS485 to the more
robust CAN standard is the ability to use existing RS485 wiring and cable harnesses provided
that they are not too long and do not exceed the limits of the CAN standard. Even in such
cases, low cost CAN repeaters or bridges can be used to extend the length of the CAN
network.

Copyright IXXAT Automation GmbH

Summary

Feature RS485 CAN
Required interface UART CAN controller
Supported ISO model
layers

Physical layer Physical layer and data link layer

Detection of data
collisions

Not implemented Yes, CSMA/CR

Maximum transmission
rate

10 Mbit/s (up to
12 m)

1 Mbit/s (up to 50 m)

Maximum bus length 1200 m (at 100
kbit/s)

1600 m (at 50 kbit/s)

Supported Bus
arbitration principles

Master/Slave or
Token Ring

Multimaster and all principles, which
can be derived from that like
Master/Slave or Token Ring

Maximum data amount
per frame

Unlimited 8 bytes

Bus transceiver costs ~ 70 ¢ ~ 35 ¢
Examples of popular
protocols

Modbus RS485,
Profibus

CANopen, DeviceNet, J1939

For new developments, in which real-time behavior, stability of communication, failure safety
and availability of proven layer 7 communication protocol stacks and tools play a role, CAN
stands alone. In addition, implementation with CAN now costs less than implementation
using RS485.

For pure master/slave systems, for which the above criteria do not play a role but which
address a very high number of nodes, and/or where large data quantities have to be
transmitted, which may be limited by CAN communication, an RS485 implementation can
offer advantages.

List of Sources

[1] http://en.wikipedia.org/wiki/OSI_model
[2] http://en.wikipedia.org/wiki/Controller_area_network
[3] http://en.wikipedia.org/wiki/RS-485

