

ElektorBus

Reference

By Michael Busser and Jens Nickel

ElektorBus

CONTENT

1. General / Physical layer

1.1. Basics
1.2. Physical Layer

2. ElektorMessageProtocol

2.1. Basics
2.2. Mode-Byte
2.3. Ack-mechanism on Message-level

3. Collision Management

3.1. Basics
3.2. Direct Mode
3.3. Hybrid Mode

4. ElektorApplicationProtocol

4.1. Basics
4.2. Channels and Channel addressing
4.3. 2-Byte-parts and 4-Byte-parts
4.4. Value-parts and Command-parts
4.5. The Set-bit and the Ack-bit
4.6. Defined Value-parts
4.7. Defined Command-parts
4.8. Evaluation of the part-type

5. Rapid Application Development

5.1. Basics
5.2. Implementation of the protocol stack
5.3. The In-/Out-command
5.4. Messages and Parts
5.5. The Javascript library JSBus
5.6. Structure of an HTML-UI-Page

6. Appendix

6.1. AVR Democode: Bytes in the EEPROM
6.2. Message Examples
6.3. HTML and Javascript Basics

ElektorBus

1. General

1.1. Basics / Bus System

Nodes are the participants of the communication.

Every node can talk directly to every other node.

There are 2 forms of communication:
* 1:1 (two nodes) and
* more nodes, all connected together on one bus.

The nodes have addresses, e.g. 0, 1, 2, 10.

One physical processor/board can combine the functions of more than one node, so it has more than
one node-address.

Messages are byte-oriented, 1 byte = 8 bit

We use a protocol stack.
Protocols can be combined. For example, higher protocols can be used with different physical layers.

ElektorBus

1.2. Physical layer

First implementation use RS485, UART-Protocol 8-N-1 and a power supply of the nodes over the bus.
Others are possible.

Data-rate is 9600 Baud (= “1x”)
Higher data-rates possible, but not implemented yet.

Bus has 4 lines:

1. RS485-B
2. RS485-A
3. GND
4. 12 V

First hardware (ElektorBus Experimental node):

12-V and GND now swopped !!!!!

ElektorBus

2. ElektorMessageProtocol

2.1. Basics

1. Messages have a fixed length of 16 Bytes.
2. The very first byte of every message is 0xAA which is used for synchronization purpose.
3. The second byte is a mode-byte determining the meaning of the following 14 bytes (and

realizing an Ack-Mechanism).
4. ID follows (if ModeBit7 not 0).

ID is always 1. Receiver-Address, 2. Sender-Address.
A fragment-number is optional.

5. Application-Data follows. A higher protocol determines the details.
6. CRC or checksum is optional.
7. There is an acknowledge-mechanism at the Message-level.

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 =$AA (Start of Message)

1 Mode-Byte

2
Addressing and Fragmentation

depending on Mode-Byte

ID-Byte 0

3 ID-Byte 1

4 ID-Byte 2

5 ID-Byte 3

6

Application data area

7

8

9

A

B

C

D

E Might contain a CRC/Checksum
depending on the Mode-Byte

Hi – CRC/Checksum

F Lo – CRC/Checksum

ElektorBus

2.2. Modebyte

8 bits of the Modebyte

7 6 5 4 3 2 1 0

X 0 = ID-Bytes from Byte 2
1 = No ID-Bytes, payload from byte 2

 X 0 = 4 ID-Bytes (Byte 2..5)
1 = 2 ID-Bytes only (Byte 2..3)

 X 0 = with 16 bit CRC or Checksum
1 = without Checksum, can be used as additional data bytes

 X 0 = AAhex does not appear from byte 2 onwards
1 = advanced sync mechanism

 X 0 = all ID Bytes for addressing purposes
1 = last ID Byte is fragment nr

 X 0 = no segment address
1 = upper 6 bits representing the segment address

 X 0 = original message
1 = acknowledge message (see 2.3.)

 X 0 = no acknowledge message expected
1 = acknowledge message expected

Standard-Layout
(ModeBit7..ModeBit2 = 0)

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 =$AA (Start of Message)

1 0 0 0 0 0 0 0 0 Mode-Byte = 0

2 Receiver address Hi byte

3 Lo byte

4 Sender address Hi byte

5 Lo byte

6

Application data area

7

8

9

A

B

C

D

E Simple 14-bit-Checksum 7 bit High

F 7 bit Low

ElektorBus

More Layout-Examples

Mode = 0x1C

 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 =$AA Start

1 0 0 0 1 1 1 0 0 Mode-Byte = $1C

2 Segment Receiver Node ID-Byte 0

3 Receiver Segment ID-Byte 1

4 Sender Node Sender ID-Byte 2

5 Fragment-Number ID-Byte 3

6 Data 0

7 Data 1

8 Data 2

9 Data 3

A Data 4

B Data 5

C Data 6

D Data 7

E 16-bit CRC CRC

F CRC

Mode = 0xA0

 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 =$AA Start

1 1 0 1 0 0 0 0 0 Mode-Byte = $A0

2 Data 0

3 Data 1

4 Data 2

5 Data 3

6 Data 4

7 Data 5

8 Data 6

9 Data 7

A Data 8

B Data 9

C Data 10

D Data 11

E Data 12

F Data 13

ElektorBus

2.3. Ack-Mechanism on Message-Level (MLevel)

Sender sends a message to Receiver.
If ModeBit1 = 1, the Receiver must send a (MLevel-)Ack-Message immediately back to the sender.

This Ack-Message contains exactly the same data-bytes as the Original-Message, receiver- and
sender-address are swopped, ModeBit0 = 1, ModeBit1 = 0.

If ModeBit7..ModeBit2 = 0 (standard-layout), we have the following Mode-Bytes:

Mode = 2 Original-Message with request for Ack-Message.
Mode = 1 This is the Ack-Message.
Mode = 0 Original-Message, no Ack needed.

ElektorBus

3. Collision Management

3.1. Basics

There is no hardware collision management, all is done in software.
The best Collision Management is avoiding collisions at all.
So every node must know when it is allowed to send a message.

There are two systems:
DirectMode is dedicated for 1:1 communication.
Hybrid Mode is dedicated for Bus-communication with more than two nodes.

3.2. Direct Mode

‘Direct mode’ is used when a bus participant (typically a sensor node) sends messages at
predetermined time intervals (see figure). The other bus participant then uses these messages as a
timebase. For example, if a controller wishes to send a message to the sensor, it can do so
immediately after it sees the periodic message from that sensor.

Another possibility that is not yet implemented is the (more conventional) reverse of the above: the
master generates the timebase and the slave replies. The master can send control commands as part
of this exchange with the sensor node or can ask for particular readings.

ElektorBus

3.3. Hybrid-Mode

Scheduling

One node takes on the role of the scheduler. Its sender address is defined as 0, which makes it easy
for the other nodes to recognise its messages. The scheduler maintains an array, with x elements,
containing the addresses of the nodes that are to be scheduled cyclically. It is also possible, of course,
to arrange for a particularly loquacious node to be interrogated more often than the others.

To schedule a node the scheduler sends out a special request message (SchedulerRequest), which
includes the address of the polled node in the recipient address field. The scheduler then waits for a
message with the same value in the transmitter address field (ResponseMessage), which can have
any desired value in the recipient address field. The scheduler then turns to the next node in
sequence and the process repeats. If a node fails to reply to a SchedulerRequest, the process would
come grinding to a halt. For this reason a timer is started when the SchedulerRequest is sent out: if
the timer expires without a reply being received, the scheduler stops waiting and moves on to the
next polled node anyway.

FreeBusPhases

First, all the nodes that need to be interrogated periodically (such as temperature sensor nodes) are
probed in turn. The scheduler then releases the bus for the unprompted transmission of messages.
At this point any node that only occasionally has something to say (such as a light switch) is
permitted to speak. The ‘free bus phase’ must of course only continue for a certain period of time, so
that nothing is accidentally still being transmitted when the scheduling of the scheduled nodes
resumes.

To start the FreeBusPhase the scheduler sends a special message, called FreeBusMessage. After this
message was sent, the scheduler waits y milliseconds (70 to 100 ms).

FreeBusMessage
(send by the scheduler to inform the nodes about the upcoming phase of free bus access)
 Receiver adress = 0
 Sender adress = 0
 Mode = 0

This message from one node of course can interfere with messages, send by other nodes at the same
time in this phase.

ElektorBus

Collision Detection in the FreeBusPhase

Due to to fact of possible collisions, the sending node may request an acknowledgement from the
addressed receiver, typically (but not necessarily) the domotic master.
For this purpose we use the Ack-Mechanism of the MessageProtocol (see 2.3.).

A message in the FreebusPhase is formed by:
 Receiver address = any address, typically, but not necessarily, the address of the domotic

master
 Sender address = the nodes address
 Mode = 1 bit 0 = 1: acknowledge requested
 bit 1 = 0: this is the original message

The addressed receiver must reply to such a message with a copy of the message except:
 Receiver address = received sender address
 Sender address = received receiver address = own address
 Mode = 2 bit 0 = 0: acknowledge not requested
 bit 1 = 1: this is an acknowledgement message

Collision Resolution and FreeBusPriority

If the sender of the original message doesn’t receive an ack-message of the receiver, it sends the
original message again. If 2 senders are sending at the same time, the collision must be resolved. So
the 2 senders are waiting a different amount of FreeBusPhases. If the FreeBusPriority is 2, a sender
will wait for 2 FreeBusPhases until it is allowed to send again.
Two senders which are allowed to send in the FreeBusPhase (=FreeBusNodes) must always have a
different FreeBusPriority. One can take the Address as FreeBusPriority, or any other system to ensure
that.

ElektorBus

4. ElektorApplicationProtocol

4.1. Basics

The MessageProtocol does not define the layout and meaning of the data-bytes (payload).
So we need an application protocol mutually understood by the nodes on the bus (both sensors and
actuators) and which will allow easy expansion to accommodate new hardware. So that we do not
have to reinvent the protocol every few months, the ElektorApplicationProtocol is relatively simple
and yet also flexible, fulfilling the following requirements as a minimum.

• Transmission of ten-bit values plus sign, either a reading from a sensor or, in the other
direction, a control value to an actuator.
• The option to use twenty-bit values plus sign, for which we need a four-byte-per-channel
mode.
• Setting of units and scaling factors for smart sensor nodes.
• Setting of measurement interval for sensor nodes.
• Setting of multiple thresholds.
• Notification of above- or below-threshold alarms.
• Configuration and calling-up of default presets for actuators (not implemented yet).
• acknowledge mechanism on Application level

Parts
We don’t need a whole message for each of the features above.
For example, a master can set a threshold and an interval on one sensor with only one message.
Another example: we can have more sensors at one node, to save costs. More than one sensor can
send its value with only one message.
All these information-units (e.g. sensor-values, setting tresholds and so on) are called parts. There
are parts with 2 and 4 bytes. So with 8 data-bytes we can transport up to 4 parts in one message.

ElektorBus

4.2. Channels and channel-addressing

At one node, we can address up to 8 actors and sensors. We address those “sub-nodes” with a
channel-address 0..7.

Implicit addressing
If we want to send a part with 2 bytes, defining a 10-bit-Value, to or from a sensor/actor on Channel
0..3, we can use implicit addressing.
The part for the distinct channel is defined by its position.
So we can send or receive up to 4 of these 10-bit-values to/from a sensor-/actor-node within one
message.

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 =$AA (Start of Message)

1 0 0 0 0 0 0 0 0 Mode-Byte = 0

2 Receiver adress Hi byte

3 Lo byte

4 Sender adress Hi byte

5 Lo byte

6
Channel 0

Hi byte

7 Lo Byte

8
Channel 1

Hi byte

9 Lo Byte

A
Channel 2

Hi byte

B Lo Byte

C
Channel 3

Hi byte

D Lo Byte

E Might contain a 16bit CRC value
depending on the Mode-Byte, bit 5

F

Explicit addressing
For all the other parts we use an explicit addressing. We use the Bit2..Bit0 of the first byte of the part
to define the channel-number.

ElektorBus

4.3. 2-Byte-Part vs. 4-Byte-Part

The receiver decodes the data-bytes, beginning with the first data-byte.
There are parts with 2 Bytes and parts with 4 Bytes. When decoding the data-bytes, the receiver
must know when a new part begins, so it must know how long the parts are.

We use Bit6 of the first data-byte for this purpose.

Hi.6 = 1  this is a 2-byte-part

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 1 Hi byte

 Lo byte

Hi.6 = 0  this is a 4-byte-part

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 1 Address

 Command / High

 First / Middle

 Second / Low

The decoder starts with the first data-byte 0. Then it decodes the first part. The next part begins at
data-byte 0+x, x is 2 or 4.

If the first byte of a part is completely zero, this is a void-part with no information (2 bytes long).
Because of that, the Bit3 of the first byte of a 4-byte-part must be 1.

ElektorBus

4.4. Value-Parts vs. Command-Parts

To avoid a “AA” in the data for simple synchronization, the Bit7 of all the bytes of one part is always
0, when number-values are transported.
But we can use this Bit7, if we only have distinct byte-values. These distinct values can encode
commands, e.g. D1hex or C1 hex, see below. A command part always begins with a first byte for 2-/4-
byte-part-determination and channel-addressing. Then a second byte follows, encoding the distinct
command. The Bit7 of the second byte is always 1.
So we can determine with Bit7 of the second byte of a part, if the part transports a numerical value
or a command.

2-Byte-Command-Part

C = Channel-Address-Bits

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 1 C C C Address

 1 Command

4-Byte-Command-Part

C = Channel-Address-Bits

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 1 C C C Address

 1 Command

 First Parameter-Byte

 Second Parameter-Byte

ElektorBus

4.5. The Set-Bit and the Ack-Bit

Bit5 of the first byte of a part is the Set-Bit. It defines if we want to set a value on a channel (=1) or if
we get a measurement value from that channel (=0).

Bit4 of the first Byte of a part is the Ack-Bit. With this bit we can determine if this is the original
message or the acknowledge-message. So we can realize another acknowledge-mechanism.
Note: this is an acknowledge-mechanism on application level, it is independent from the
acknowledge-mechanism on message-level, see 2.3..
Note: There is no acknowledge-requested-flag (like we have on message level, see 2.3.). The receiver
must know that it is requested to send an ack-message.

ElektorBus

4.6. Defined Value-Parts

Value2: 10bit incl. sign

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 1 SC AO S D9 D8 D7 Hi byte

 0 D6 D5 D4 D3 D2 D1 D0 Lo byte

D9..D0 10 databits representing the value

SC = 0 The value is a current value, e.g. a value from a sensor element
SC = 1 The value is set on the receiver of this part.

AO=0 Indication that this is the original message
AO=1 Acknowledge-message (at the application protocol level)

S=0 Sign, 0  +
S=1 Sign, 1  -

This part can be used by a sensor for example, who tells us its actual sensor value.

CALCULATION:
Representing values from –1023 to +1023
SIGN = 8 for negative values, 0 otherwise
LOW = lower seven bits of magnitude (in BASCOM: Low = Value And 127)
HIGH = upper three bits of magnitude (in BASCOM: Shift Value, Right, 7 : High = Value)

 Byte 1 Byte 2
Transmit reading 64 + SIGN + HIGH LOW
Set value 96 + SIGN + HIGH LOW
Switch on 96 1
Switch off 96 0

Acknowledgement from receiver: original byte 1 value plus 16.

ElektorBus

Value4: 19bit incl. sign

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 0 SC AO 1 C2 C1 C0 Address

 0 0 S
D
18

D
17

D
16

D
15

D
14

High

 0
D
13

D
12

D
11

D
10

D9 D8 D7 Middle

 0 D6 D5 D4 D3 D2 D1 D0 Low

SC = 0 The value is a current value, e.g. a value from a sensor element
SC = 1 The value is set on the receiver of this part.

AO=0 Indication that this is the original message
AO=1 Achnowledge-message (at the application protocol level)

C2..C0 Identifies the channel belonging to this part (0..7)

S=0 Sign, 0  +
S=1 Sign, 1  -

D18..D0 19 databits representing the value

ElektorBus

ValueFloat: transport a floating point value

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 0 SC AO 1 C2 C1 C0 Address

 0 1 S
M
S

M
3

M
2

M
1

M
0

High

 0
D
13

D
12

D
11

D
10

D9 D8 D7 Middle

 0 D6 D5 D4 D3 D2 D1 D0 Low

SC = 0 The value is a current value, e.g. a value from a sensor element
SC = 1 The value is set to the receiver of this part.

AO=0 Indication that this is the original message

AO=1 Acknowledge-message (at the application protocol level)

C2..C0 Identifies the channel belonging to this part (0..7)

S=0 Sign of mantissa, 0  +
S=1 Sign of mantissa, 1  -

MS=0 Sign of exponent, 0  +
MS=1 Sign of exponent, 1  -

M3..M0 4 databits to encode the exponent

D13..D0 14 databits representing the mantissa

Even measurements of electrical quantities often require precision spanning a range of several
orders of magnitude. For such cases we can use four bytes to represent a reading or setting. The
figure shows how an individual sensor or actuator attached to a node is addressed using the channel
bits C1 and C2 in the first byte. The bytes labelled ‘High’, ‘Middle’ and ‘Low’ carry the actual value.
High.6 is set to indicate that the bytes represent a floating-point value; High.5 gives the sign of the
mantissa. MS, M3, M2, M1 and M0 give the exponent (as a power of ten), and the remaining
fourteen bits (D13 down to D0) give the magnitude of the mantissa. The largest number that can be
represented is +16383*10+15.

ElektorBus

4.8. Defined Command-Parts

Limit: Set a threshold / Alarm

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 1 LA 0 1 C2 C1 C0 Hi byte

 1 1 0 1 0 0 L1 L0 Lo byte

C2..C0 Identifies the channel belonging to this part (0..7)

LA=0 Alarming, channel C2..C0 exceeds upper or lower limit

LA=1 Use the actual value as a upper or lower limit at channel C2..C0

L1..L0 10  upper Limit

01  lower limit
00  alarming
11  undefined

This part is used to set the actual value of a sensor as a threshold.

CALCULATION:
CH = channel number

 Byte 1 Byte 2
Set lower threshold 104 + CH 209
Set upper threshold 104 + CH 210
Alarm: value below threshold 72 + CH 209
Alarm: value above threshold 72 + CH 210
Value between thresholds 72 + CH 208

Acknowledgement from receiver: original byte 1 value plus 16

ElektorBus

Scale: set unit, scaling and physical quantity to a smart sensor

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 0 1 0 1 C2 C1 C0 Address

 1 1 0 0 0 0 0 1 Command (=193 dec.)

 0 Phys. Quantity First

 0 unit S scale Second

C2..C0 Identifies the channel belonging to this part (0..7)

S=0 Sign of exponent, 0  +
S=1 Sign of exponent, 1  -

Phys. Quantity 01hex = 1 = raw ADC-Value

10hex = 16 = Voltage
11hex = 17 = Current
12hex = 18 = Resistance
14hex = 20 = Power
21hex = 33 = Temperature
22hex = 34 = Humidity
24hex = 35 = Pressure

Unit 00 = SI-Units

S=0 Sign of exponent, 0  +
S=1 Sign of exponent, 1  -

scale 0..15

Provides the exponent (base=10)

Example:
Phys. Quantity = Current, S=1, scale=3  mA
Phys. Quantity = Resistance, S=0, scale=3  kΩ
Phys. Quantity = Resistance, S=0, scale=6  MΩ

CALCULATION:
CH = channel number
POT = exponent (‘power of ten’) absolute value
PSIGN = 16 for negative exponent, 0 otherwise

 Byte 1 Byte 2 Byte 3 Byte 4
Set 40 + CH 193 see above PSIGN + POT
Voltage in V 40 + CH 193 16 0
Voltage in mV 40 + CH 193 16 19
Current in mA 40 + CH 193 17 19

Trigger transmission of preset quantity and units from sensor: byte 1 = 8 + CH

ElektorBus

Interval: set interval to a smart sensor

 Bitposition Meaning

Byte 7 6 5 4 3 2 1 0

 0 0 1 0 1 C2 C1 C0 Address

 1 1 1 0 0 0 0 0 Command (E0 hex.=224 dec.)

 0 Interval Value First

 0 Interval Scale Second

C2..C0 Identifies the channel belonging to this part (0..7)

Interval value 7 bit Value 0..127

Interval Scale Hex Dec Interval

04 4 1 µs
05 5 10 µs
06 6 100 µs
07 7 1 ms
08 8 10 ms
09 9 100 ms
0A 10 1 s
0B 11 10 s

0C 12 100 s
10 16 1 minute
11 17 10 minutes
12 18 100 minutes
18 24 1 hour
19 25 10 hours
20 32 1 day
21 33 10 days
22 34 100 days
28 40 1 month
30 48 1 year

31 49 10 years

ElektorBus

Requesting readings
Note: this is not implemented yet in the Javascript Library JSBus, see 5.

It is possible to use the application protocol to set a target value on a node from a controller. Sensor
nodes can also report current readings. Until now it has however not been possible to prompt a particular

sensor or actuator node to send these values: the scheduler does divide up the transmit time slots, but
does not carry out polling in the strict sense of the word.

CALCULATION:

Reading request

Byte 1 Byte 2

Request reading 104 + CH 240 (F0hex)
Request lower threshold 104 + CH 241 (F1hex)
Request upper threshold 104 + CH 242 (F2hex)

In the above, ‘CH’ represents the channel number from 0 to 7.

Absolute Treshold
Note: this is not implemented yet in the Javascript Library JSBus, see 5.

This is a format to transmit absolute threshold values, as so far we have only been able to use the
current reading as the setting for an upper or lower threshold.

CALCULATION:

Set absolute threshold
Byte 1 Byte 2 subsequent bytes

Set lower threshold 104 + CH 217 (D9hex) value (2 or 4 bytes)
Set upper threshold 104 + CH 218 (DAhex) value (2 or 4 bytes)

Report absolute threshold value from sensor: byte 1 = 72 + CH

In the above, ‘CH’ represents the channel number from 0 to 7.

ElektorBus

4.8. Evaluate part type at a received message

The interpretation of the data in the application data area (byte 6..13 of the message) depends on
the type of the part sended. So the first goal is to figure out the type of the part. There are some
Symbols defined for the different type of parts.

We start with byte 6 of the message:

2-byte-Part 4-byte-part
 Yes no

 no

 yes

 Yes no no yes

LIMIT VALUE2 VALUE4 VALUEFLOAT SCALE/INTERVAL

Now we know, if the part has 2 or 4 byte, we proceed with byte 8 in case of a 2-byte-part or with
byte 10 in case of a 4-byte-part.

If we received a part type VALUE2, we also have to derive the channel number from the position of
the part itself inside the message (see 4.3.).

Byte6.6=1?

Byte7.7=1
? Byte7.7=1?

Byte7.6=1?

ElektorBus

5. Rapid Application Development

5.1 Basics

On the PC/Master-side. A C-library for the controller side will follow.

We would ideally like to have a library which

 implements the ElektorBus protocol, freeing the developer to concentrate on the application
proper;

 provides a clear separation between the application code and protocol code;
 makes it easy for an electronics engineer to design and program a user interface; and
 is platform-independent, so that the same application can run equally well on a PC and on

a smartphone.

HTML-Approach:

We use a kind of a browser, which can display our tailor-made Bus User Interface, realized with
HTML. The HTML and Javascript code form the core of the application, wrapped within the browser
which itself is written in a more conventional programming language such as Visual Basic .NET or
Java. We can think of the ElektorBus browser the ‘host’ in our system.

ElektorBus

5.2. Implementation of the protocol stack

In principle it would be possible to implement all three bus protocols (the ‘Elektor Message Protocol’,
‘Hybrid Mode’ (which is optional) and the ‘Application Protocol’) within the host. On the other hand,
it would be possible to make the host transparent, passing the 16 raw bytes in a received message
packet directly through to the Javascript code, where the details of the protocol could be
implemented. We choose a middle road: the simple Elektor Message Protocol and the rather timing-
sensitive Hybrid Mode and scheduler are implemented within the host, while the Application
Protocol, which requires rather more code and which some readers will perhaps want to extend, is
implemented with the help of a small Javascript library JSBus.

ElektorBus

5.3. The In-/Out-Command

The host receives the sixteen bytes of the message sent over the bus using the start byte
synchronisation system. The message is ‘unpacked’ into a data structure that contains (among other
things) the transmitter address, the receiver address and the eight payload bytes. These parts are
then encoded into a string (called ‘InCommand’) and passed in to the Javascript code. The
InCommand string is formatted as plain ASCII (see the text box) which ensures that it will be treated
compatibly across different platforms.

The ElektorBus application, written in Javascript, and the ElektorBus browser, written (for example)
in Visual Basic .NET, communicate with one another using these simple text strings. The JSON syntax
is used to encode the necessary information in a data structure within the string to be passed
outwards from the Javascript application to the host or inwards from host to Javascript application.
The data structures for InCommand and OutCommand are very similar.

OutCommand
Command command type (‘Send’ or ‘Url’ or ‘Scheduler’ or ‘SMS’)
Url ‘Url’: file name for HTML page to be loaded.

‘SMS’: SMS-Number or ‘1’ for sending an SMS to default SMS-number
Options ‘SMS’: SMS-Text
Mode mode byte for the message to be sent (needed as part of the acknowledge mechanism)
Receiver receiver address
Sender transmitter address
Data ‘Send’: array of eight data bytes.

‘Scheduler’: addresses of up to eight scheduled nodes

InCommand
Command command type (‘Rec’ or ‘Status’ or ‘SetAddress’)
Mode mode byte of the received message (Status 2 = OK; –1 = error)
Valid checksum OK? (not yet implemented)
Receiver receiver address
Sender transmitter address
Data ‘Rec’: array of eight data bytes.

‘SetAddress’: First data byte is the Address of the node.

JSON Syntax
In JSON syntax an InCommand appears as in following example:
{"Command":"Rec","Mode":0,"Valid":0,"Sender":2,"Receiver":10,"Data":[0,0,64,1,0,0,0,0]}

ElektorBus

5.4. Messages and Parts

The Javascript library works internally with two data structures to describe messages and parts
(items of payload information such as two-byte values, alarm reports, quantity settings and so on)
that are being transmitted and received.

The Message object basically consists of the familiar components of an ElektorBus message.

Mode mode byte
Receiver receiver address
Sender transmitter address
Data array of eight data bytes
Valid checksum OK? (not yet implemented)

Within the eight data bytes we can convey up to four parts in accordance with the Application
Protocol. Each Part is characterised by the following properties.

Valid check sum OK? (not yet implemented)
Sender transmitter address
Receiver receiver address
Channel channel number
Setflag desired setting or current value?
Ackflag acknowledge message or original message (application-level flag)
Mode message’s mode byte (with message-level acknowledge flags)
Parttype type of part, with the following constant values defined: PARTTYPE_VALUE2,

PARTTYPE_VALUE4, PARTTYPE_VALUEFLOAT, PARTTYPE_LIMIT, PARTTYPE_SCALE,
PARTTYPE_INTERVAL

Numvalue numerical data value (for example from –1023 to 1023 in the case of
PARTTYPE_VALUE2)

Limit 0 = value between thresholds; 1 = below lower threshold; 2 = above upper threshold
Quantity physical quantity (from 0 to 127, see 4.8.)
Unit unit of measurement (from 0 to 3, see 4.8.)
Scale power of ten scaling (from –15 to +15)
Interval Interval unit/scale (from 0..127, see 4.8.)
Preset reserved
Options reserved

ElektorBus

5.5. The Javascript Library JSBus

Main variables/functions in the JSBus Javascript library:

ownAddress

To allow dynamic address selection the Javascript library defines a variable ownAddress. We can
switch the Address in the host, the address to a new value it is passed on to the Javascript (by an
InCommand with Type ‘SetAddress’) and the variable ownAddress is suitably modified. The variable
can then be used in the node code. For example, a node would send the status of its test LED using
the following code:

var parts = InitParts();

parts = TransmitValue(parts, ownAddress, 10, 1, 0, LedStatus);

SendParts(parts, true);

Parttypes
var PARTTYPE_VALUE2 = 2;
var PARTTYPE_VALUE4 = 4;
var PARTTYPE_VALUEFLOAT = 12;
var PARTTYPE_LIMIT = 32;
var PARTTYPE_SCALE = 48;
var PARTTYPE_INTERVAL = 64;

Encoding and sending Parts

function InitParts()

Returns an empty array of parts. Called as follows: var parts = Initparts();.

function SetLimit(parts, sender, receiver, channel, mode, limit, numvalue)

function SetScale(parts, sender, receiver, channel, mode, quantity, unit, scale)

function SetValue(parts, sender, receiver, channel, mode, setvalue)

These functions append a new part to an existing array parts, respectively representing a threshold, a
quantity, unit and scaling value, and a set-point for a given sensor or actuator. The return value is the
extended array.
function TransmitValue (parts, sender, receiver, channel, mode, value)

This function is comparable in operation to SetValue, except that here the master does not send a
value: instead a node sends a value to the master.

Quantity-constants:
var RAWVALUE = 1;
var VOLTAGE = 16;
var CURRENT = 17;
var RESISTANCE = 18;
var POWER = 20;
var TEMPERATURE = 33;
var HUMIDITY = 34;
var PRESSURE = 36;

Example:
var parts = InitParts();

parts = SetScale(parts, 10, 2, 0, 0, TEMPERATURE, 0, -4);

SendParts(parts, true);

ElektorBus

SetIntervalValue(parts, sender, receiver, channel, mode, interval, numvalue)

Like SetScale, but to set an interval on smart sensor

Interval-constants:

var INTERVAL_MILLISECONDS = 7;
var INTERVAL_CENTISECONDS = 8;
var INTERVAL_DECISECONDS = 9;
var INTERVAL_SECONDS = 10;

function SendParts(parts, overrideQueue)

Encodes and sends all parts in the array in one or more messages.

function PartText(part)

Returns a textual representation of a part, for example for debugging purposes.

User Interface Control-Element Functions

id = ID of the HTML-Control-Element

function RadioButtonSetvalue(id, setvalue)

Sets or resets a radio button (setvalue = 0 or 1).

function TextboxSetvalue(id, setvalue)

function TextSetvalue(id, setvalue)

function TextboxSetvalueScaled(id, setvalue, scale)

Sets the text in a text box or text element.
Scale is the exponent of a floating point value.

Functions controlling the Host

function GotoUrl(url)

Causes the host to load a new HTML page (url = file name with HTML-code without trailing ‘.htm’
extension).

function SetScheduler(status, schedulednode1, … , schedulednode8)

Switches the scheduler in the host on or off (status = SCHEDULER_ON or SCHEDULER_OFF or
SCHEDULER_DIRECTMODE) and provides the scheduler with a new list of nodes that should be
regularly requested to send a message. A zero value terminates the list.

var SCHEDULER_OFF = 1;
var SCHEDULER_ON = 2;
var SCHEDULER_DIRECTMODE = 3;

function SendSMS(number,text)

Number can be an SMS-number or ‘1’. ‘1’ means that the Default-SMS-number (to be set in the Host-
application) shall be used.

ElektorBus

Functions to be called by the library JSBus

function ProcessPart (part)

The library will call that function for every part of received message. It is absolutely necessary that
you implement this function in every HTML-Page of your User-Interface.

Normally, the host processes the scheduler messages, as they are part of the collision management
system HybridMode. But one can configure the host that the scheduler Messages are also given to
Javascript. JSBus also calls ProcessPart in that case, with a part = null. You must check for this null-
value in your function code. See 5.6..

Functions to process received parts / Automatic Ack-mechanism

function ProcessReceivedParts(parts)

var ackparts = InitParts();

 for (var p = 0; p < parts.length; p = p + 1)

 {

 ProcessPart(parts[p])

 if (parts[p].Mode == 1)

 {

 ackparts = AddAutoAckPart(ackparts,parts[p]);

 }

 }

 SendParts(ackparts, false);

}

This function is called if one message is received and decoded to parts. Parts is the array of parts.
This function performs an automatic Ack-mechanism on message level (see 2.2.). All parts of a
message with Mode == 1 are automatically encoded back and the Ack-message is sent out with
Mode==2.
For each part, the function ProcessPart is called (implemented in the HTML-User-Interface-Pages)

Important Built-in-Javascript-functions
var sendinterval = setInterval("SendValues()", 500);

The first parameter expected by the function setInterval is the name of another function, which is

to be called regularly. The second parameter is the interval between these calls in milliseconds. The
return value is a variable that uniquely identifies this repeating action: the value can be reused
later to stop the repeating action by calling

clearInterval(sendinterval).

ElektorBus

5.6. Structure of an HTML-UI-Page

<SCRIPT src='JSBus.txt' Language='javascript' ></SCRIPT>

<SCRIPT Language='javascript' >

function ProcessPart(part)

{

if (part==null)

{

CODE TO PROCESS THE SCHEDULER MESSAGES

 }

 else

{

CODE TO PROCESS THE RECEIVED PARTS

 }

}

OTHER USERDEFINED FUNCTIONS

</SCRIPT>

<FORM Name='Bus'>

<STYLE type='text/css'>

 CSS STYLE DEFINITIONS

</STYLE>

HTML CONTROLS CODE

</FORM>

ElektorBus

Example

<SCRIPT src='JSBus.txt' Language='javascript' ></SCRIPT>

<SCRIPT Language='javascript' >

function ProcessPart(part)

{

if (part==null)

{

 }

 else

{

if (((part.Sender == 1)||(part.Sender == 2)) && (part.Parttype ==

PARTTYPE_VALUE2))

{

if (part.Channel == 1)

{RadioButtonSetvalue('LED'+part.Sender,part.Numvalue);};

}

if ((part.Sender == 2) && (part.Parttype == PARTTYPE_VALUE2))

{

if (part.Channel == 0) {TextboxSetvalue('ADC', part.Numvalue);};

}

 }

}

function SetSensorScale(quantity)

{

var parts = InitParts();

parts = SetScale(parts, 10, 2, 0, 0, quantity, 0, 0);

SendParts(parts, true);

if (quantity==RESISTANCE) {TextSetvalue('unit','Ohm');};

if (quantity==RAWVALUE) {TextSetvalue('unit','ADC-Value');};

}

</SCRIPT>

<FORM Name='Bus'>

<STYLE type='text/css'>

#head {font-size:20}

</STYLE>

<DIV ID='head' >ElektorBusBrowser </DIV>

Scheduler

<BUTTON Type='button' onclick='javascript:SetScheduler(SCHEDULER_ON,2,10,0,0,0,0,0,0)' >

on</BUTTON>

<BUTTON Type='button' onclick='javascript:SetScheduler(SCHEDULER_OFF,2,10,0,0,0,0,0,0)' >

off</BUTTON>

LED Node 1

<INPUT Type='radio' ID='LED1' Name='LED1' Value='LED1' />

LED Node 2

<INPUT Type='radio' ID='LED2' Name='LED2' Value='LED2' />

<INPUT Type='text' ID='ADC' Value='' /> ADC-Value

<BUTTON Type='button' onclick='javascript:SetSensorScale(RESISTANCE)'>Ohm</BUTTON>

<BUTTON Type='button' onclick='javascript:SetSensorScale(RAWVALUE)'>Adc raw</BUTTON>

<BUTTON Type='button' onclick='javascript:GotoUrl(“Limit“)'>Set-Limit-Page</BUTTON>

</FORM>

ElektorBus

6. Appendix

6.1. AVR-Democode: Meaning of the Bytes in AVR-EEPROM

Byte

00

01

02 OwnAddress

03

04 Scheduling
01 = Scheduled
00 = FreeBusNode

05 FreeBusPriority
0x = we must wait x FreeBusPhases in case of collisions

06 Type of Device

07

08

09

ElektorBus

6.2. Message Examples

 AA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FreeBusMsg

 AA 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 Query to 02

 AA 00 00 0A 00 02 47 7F 40 00 00 00 00 00 BB CC Reply from 02

to 0A

 AA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 0A 00 02 47 7F 40 00 00 00 00 00 BB CC

 AA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 0A 00 02 47 7F 40 00 00 00 00 00 BB CC

 AA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00

 AA 00 00 0A 00 02 47 7F 40 00 00 00 00 00 BB CC

 SchedulerMessage
 Message from scheduled node

S: AA 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
R: AA 00 00 0A 00 01 00 EB 18 1C 1D 02 03 44 00 00

S: AA 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
R: AA 04 00 00 00 01 00 EB 18 1C 1D 42 03 43 00 00

ElektorBus

6.3. HTML and Javascript basics

1. An HTML element starts with an opening tag <TAG... > and ends with a closing tag </TAG>. Between
the tags, the element can contain text and more HTML elements. If an element does not have any
content it can be closed within the start tag: <TAG... />.
2. So-called ‘attributes’ are used to qualify a tag further. Each takes the form AttributeName =
’AttributeValue’. Attribute values can be enclosed in either single or double quotation marks. If the
attribute value must itself contain quotation marks (for example when it includes a call to a Javascript
function) the nested quotation marks should be of the other sort than the enclosing quotation marks.
3. HTML is not case sensitive, and so upper and lower case letters can be freely mixed. The official
recommendation is to write all tags and attribute names in lower case. However, when calling Javascript
functions, for example when setting the ‘onclick’ attribute of a button, strict attention must be paid to the
correct capitalisation of function names and variables.
4. It is advisable to give each element a meaningful and unique ID attribute. Plain text can be enclosed

within a element or, if it is to have a paragraph to itself, within a <DIV> element.
5. The <DIV> tag produces a new paragraph. An ordinary line break can be produced using the

tag.
6. Javascript code within an HTML file must be enclosed between <SCRIPT> tags as shown in the
example listing. Within the code identifiers are strictly case sensitive.
7. In Javascript, basic blocks are enclosed within curly brackets. Unlike C, Javascript does not require a
semicolon after each statement, but it is recommended.
8. Comments are introduced by a pair of slash characters.
9. A function call always requires a pair of brackets after the function name, even if there are no

parameters. A function returns a value using the keyword return. A subroutine that has no return value

is still considered a function, and its definition is still introduced by the keyword function.

10. Conditional statements can be introduced by the if keyword (in lower case!) with the condition itself

always enclosed in brackets. The sequence ‘||’ corresponds to ‘OR’ in Basic and ‘&&’ to ‘AND’. And it

cannot be stressed enough that equality comparisons require a doubled equals sign. The expression ‘!=’

means ‘is not equal to’. The boolean values ‘true’ and ‘false’ are written thus, in lower case like most

Javascript keywords.

11. Array indices are enclosed in square brackets and always count from zero. Arrays must be properly

declared: see the function InitParts() in the JSBus library.

12. Simple variables and constants are declared using the var keyword. Javascript distinguishes two

types of simple variable: strings and integers. Numbers and strings can be mixed in expressions without
having to specify the type conversions explicitly. For example the expression ‘TEXT’+1 evaluates to

‘TEXT1’.

Various HTML and Javascript tutorials can be found on the internet.

