
10
Input and Output

10.1 I/O Hardware . 262
10.1.1 Pulse Width Modulation . 263
10.1.2 General-Purpose Digital I/O 264
10.1.3 Serial Interfaces . 268
10.1.4 Parallel Interfaces . 271
10.1.5 Buses . 272

10.2 Sequential Software in a Concurrent World 273
10.2.1 Interrupts and Exceptions 274
10.2.2 Atomicity . 276
Sidebar: Basics: Timers . 276
10.2.3 Interrupt Controllers . 278
10.2.4 Modeling Interrupts . 279

10.3 Summary . 282
Exercises . 285

Because cyber-physical systems integrate computing and physical dynamics, the mech-
anisms in processors that support interaction with the outside world are central to any
design. A system designer has to confront a number of issues. Among these, the me-
chanical and electrical properties of the interfaces are important. Incorrect use of parts,
such as drawing too much current from a pin, may cause a system to malfunction or may
reduce its useful lifetime. In addition, in the physical world, many things happen at once.

261

10.1. I/O HARDWARE

Software, by contrast, is mostly sequential. Reconciling these two disparate properties
is a major challenge, and is often the biggest risk factor in the design of embedded sys-
tems. Incorrect interactions between sequential code and concurrent events in the physical
world can cause dramatic system failures. In this chapter, we deal with issues.

10.1 I/O Hardware

Embedded processors, be they microcontrollers, DSP processors, or general-purpose pro-
cessors, typically include a number of input and output (I/O) mechanisms on chip, ex-
posed to designers as pins of the chip. In this section, we review some of the more
common interfaces provided, illustrating their properties through the following running
example.

Example 10.1: Figure 10.1 shows an evaluation board for the Luminary Micro
Stellaris R� microcontroller, which is an ARM CortexTM - M3 32-bit processor.
The microcontroller itself is in the center below the graphics display. Many of the
pins of the microcontroller are available at the connectors shown on either side of
the microcontroller and at the top and bottom of the board. Such a board would
typically be used to prototype an embedded application, and in the final product
it would be replaced with a custom circuit board that includes only the hardware
required by the application. An engineer will develop software for the board using
an integrated development environment (IDE) provided by the vendor and load the
software onto flash memory to be inserted into the slot at the bottom of the board.
Alternatively, software might be loaded onto the board through the USB interface
at the top from the development computer.

The evaluation board in the above example is more than a processor since it includes a
display and various hardware interfaces (switches and a speaker, for example). Such a
board is often called a single-board computer or a microcomputer board. We next
discuss a few of the interfaces provided by a microcontroller or single-board computer.
For a more comprehensive description of the many kinds of I/O interfaces in use, we
recommend Valvano (2007) and Derenzo (2003).

262 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

USB interface

JTAG and SWD interface

graphics

display

CAN bus interface

Ethernet interface

analog

(ADC)

inputs

micro-

controller

removable

�ash

memory

slot

PWM outputs

GPIO connectors

switches

connected

to GPIO pins
speaker

connected to

GPIO or PWM

Figure 10.1: Stellaris R� LM3S8962 evaluation board (Luminary Micro R�, 2008a).
(Luminary Micro was acquired by pointerTexas Instruments in 2009.)

10.1.1 Pulse Width Modulation

Pulse width modulation (PWM) is a technique for delivering a variable amount of power
efficiently to external hardware devices. It can be used to control for example the speed of
electric motors, the brightness of an LED light, and the temperature of a heating element.
In general, it can deliver varying amounts of power to devices that tolerate rapid and
abrupt changes in voltage and current.

PWM hardware uses only digital circuits, and hence is easy to integrate on the same chip
with a microcontroller. Digital circuits, by design, produce only two voltage levels, high
and low. A PWM signal rapidly switches between high and low at some fixed frequency,
varying the amount of time that it holds the signal high. The duty cycle is the proportion

Lee & Seshia, Introduction to Embedded Systems 263

10.1. I/O HARDWARE

of time that the voltage is high. If the duty cycle is 100%, then the voltage is always high.
If the duty cycle is 0%, then the voltage is always low.

Many microcontrollers provide PWM peripheral devices (see Figure 10.1). To use these,
a programmer typically writes a value to a memory-mapped register to set the duty cycle
(the frequency may also be settable). The device then delivers power to external hardware
in proportion to the specified duty cycle.

PWM is an effective way to deliver varying amounts of power, but only to certain devices.
A heating element, for example, is a resistor whose temperature increases as more cur-
rent passes through it. Temperature varies slowly, compared to the frequency of a PWM
signal, so the rapidly varying voltage of the signal is averaged out by the resistor, and the
temperature will be very close to constant for a fixed duty cycle. Motors similarly aver-
age out rapid variations in input voltage. So do incandescent and LED lights. Any device
whose response to changes in current or voltage is slow compared to the frequency of the
PWM signal is a candidate for being controlled via PWM.

10.1.2 General-Purpose Digital I/O

Embedded system designers frequently need to connect specialized or custom digital
hardware to embedded processors. Many embedded processors have a number of general-
purpose I/O pins (GPIO), which enable the software to either read or write voltage levels
representing a logical zero or one. If the processor supply voltage is VDD, in active high
logic a voltage close to VDD represents a logical one, and a voltage near zero represents
a logical zero. In active low logic, these interpretations are reversed.

In many designs, a GPIO pin may be configured to be an output. This enables software to
then write to a memory-mapped register to set the output voltage to be either high or low.
By this mechanism, software can directly control external physical devices.

However, caution is in order. When interfacing hardware to GPIO pins, a designer needs
to understand the specifications of the device. In particular, the voltage and current levels
vary by device. If a GPIO pin produces an output voltage of VDD when given a logical
one, then the designer needs to know the current limitations before connecting a device
to it. If a device with a resistance of R ohms is connected to it, for example, then Ohm’s
law tells us that the output current will be

I = VDD/R .

264 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

It is essential to keep this current within specified tolerances. Going outside these toler-
ances could cause the device to overheat and fail. A power amplifier may be needed to
deliver adequate current. An amplifier may also be needed to change voltage levels.

Example 10.2: The GPIO pins of the Luminary Micro Stellaris R� microcontroller
shown in Figure 10.1 may be configured to source or sink varying amounts of cur-
rent up to 18 mA. There are restrictions on what combinations of pins can handle
such relatively high currents. For example, Luminary Micro R� (2008b) states “The
high-current GPIO package pins must be selected such that there are only a max-
imum of two per side of the physical package ... with the total number of high-
current GPIO outputs not exceeding four for the entire package.” Such constraints
are designed to prevent overheating of the device.

In addition, it may be important to maintain electrical isolation between processor cir-
cuits and external devices. The external devices may have messy (noisy) electrical char-
acteristics that will make the processor unreliable if the noise spills over into the power
or ground lines of the processor. Or the external device may operate in a very different
voltage or power regime compared to the processor. A useful strategy is to divide a cir-
cuit into electrical domains, possibly with separate power supplies, that have relatively
little influence on one another. Isolation devices such as opto-isolators and transformers
may be used to enable communication across electrical domains. The former convert an
electrical signal in one electrical domain into light, and detect the light in the other elec-
trical domain and convert it back to an electrical signal. The latter use inductive coupling
between electrical domains.

GPIO pins can also be configured as inputs, in which case software will be able to react
to externally provided voltage levels. An input pin may be Schmitt triggered, in which
case they have hysteresis, similar to the thermostat of Example 3.5. A Schmitt triggered
input pin is less vulnerable to noise. It is named after Otto H. Schmitt, who invented it in
1934 while he was a graduate student studying the neural impulse propagation in squid
nerves.

Example 10.3: The GPIO pins of the microcontroller shown in Figure 10.1, when
configured as inputs, are Schmitt triggered.

Lee & Seshia, Introduction to Embedded Systems 265

10.1. I/O HARDWARE

microcontroller

register

drive

transistor

GPIO

pin

Figure 10.2: An open collector circuit for a GPIO pin.

In many applications, several devices may share a single electrical connection. The de-
signer must take care to ensure that these devices do not simultaneously drive the voltage
of this single electrical connection to different values, resulting in a short circuit that can
cause overheating and device failure.

Example 10.4: Consider a factory floor where several independent microcon-
trollers are all able to turn off a piece of machinery by asserting a logical zero on
an output GPIO line. Such a design may provide additional safety because the
microcontrollers may be redundant, so that failure of one does not prevent a safety-
related shutdown from occurring. If all of these GPIO lines are wired together to
a single control input of the piece of machinery, then we have to take precautions
to ensure that the microcontrollers do not short each other out. This would occur if
one microcontroller attempts to drive the shared line to a high voltage while another
attempts to drive the same line to a low voltage.

GPIO outputs may use open collector circuits, as shown in Figure 10.2. In such a circuit,
writing a logical one into the (memory mapped) register turns on the transistor, which
pulls the voltage on the output pin down to (near) zero. Writing a logical zero into the
register turns off the transistor, which leaves the output pin unconnected, or “open.”

A number of open collector interfaces may be connected as shown in Figure 10.3. The
shared line is connected to a pull-up resistor, which brings the voltage of the line up to
VDD when all the transistors are turned off. If any one transistor is turned on, then it will
bring the voltage of the entire line down to (near) zero without creating a short circuit with

266 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

microcontroller

microcontroller

microcontroller

register

drive

transistor

pull-up

resistor

VDD

GPIO pin

GPIO pin

GPIO pin

Figure 10.3: A number of open collector circuits wired together.

the other GPIO pins. Logically, all registers must have zeros in them for the output to be
high. If any one of the registers has a one in it, then the output will be low. Assuming
active high logic, the logical function being performed is NOR, so such a circuit is called
a wired NOR. By varying the configuration, one can similarly create wired OR or wired
AND.

The term “open collector” comes from the name for the terminal of a bipolar transistor. In
CMOS technologies, this type of interface will typically be called an open drain interface.
It functions essentially in the same way.

Example 10.5: The GPIO pins of the microcontroller shown in Figure 10.1, when
configured as outputs, may be specified to be open drain circuits. They may also
optionally provide the pull-up resistor, which conveniently reduces the number of
external discrete components required on a printed circuit board.

GPIO outputs may also be realized with tristate logic, which means that in addition to
producing an output high or low voltage, the pin may be simply turned off. Like an open-
collector interface, this can facilitate sharing the same external circuits among multiple
devices. Unlike an open-collector interface, a tristate design can assert both high and low
voltages, rather than just one of the two.

Lee & Seshia, Introduction to Embedded Systems 267

10.1. I/O HARDWARE

DB-9 serial port DB-25 parallel port

USB IEEE 488

Figure 10.4: Connectors for serial and parallel interfaces.

10.1.3 Serial Interfaces

One of the key constraints faced by embedded processor designers is the need to have
physically small packages and low power consumption. A consequence is that the num-
ber of pins on the processor integrated circuit is limited. Thus, each pin must be used
efficiently. In addition, when wiring together subsystems, the number of wires needs to
be limited to keep the overall bulk and cost of the product in check. Hence, wires must
also be used efficiently. One way to use pins and wires efficiently is to send information
over them serially as sequences of bits. Such an interface is called a serial interface.
A number of standards have evolved for serial interfaces so that devices from different
manufacturers can (usually) be connected.

An old but persistent standard, RS-232, standardized by the Electronics Industries Asso-
ciation (EIA), was first introduced in 1962 to connect teletypes to modems. This standard
defines electrical signals and connector types; it persists because of its simplicity and be-
cause of continued prevalence of aging industrial equipment that uses it. The standard
defines how one device can transmit a byte to another device asynchronously (meaning
that the devices do not share a clock signal). On older PCs, an RS-232 connection may be
provided via a DB-9 connector, as shown in Figure 10.4. A microcontroller will typically

268 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

use a universal asynchronous receiver/transmitter (UART) to convert the contents of
an 8-bit register into a sequence of bits for transmission over an RS-232 serial link.

For an embedded system designer, a major issue to consider is that RS-232 interfaces can
be quite slow and may slow down the application software, if the programmer is not very
careful.

Example 10.6: All variants of the Atmel AVR microcontroller include a UART
that can be used to provide an RS-232 serial interface. To send a byte over the serial
port, an application program may include the lines

1 while(!(UCSR0A & 0x20));
2 UDR0 = x;

where x is a variable of type uint8 t (a C data type specifying an 8-bit unsigned
integer). The symbols UCSR0A and UDR0 are defined in header files provided
in the AVR IDE. They are defined to refer to memory locations corresponding to
memory-mapped registers in the AVR architecture.

The first line above executes an empty while loop until the serial transmit buffer is
empty. The AVR architecture indicates that the transmit buffer is empty by setting
the sixth bit of the memory mapped register UCSR0A to 1. When that bit becomes
1, the expression !(UCSR0A & 0x20) becomes 0 and the while loop stops
looping. The second line loads the value to be sent, which is whatever the variable
x contains, into the memory-mapped register UDR0.

Suppose you wish to send a sequence of 8 bytes stored in an array x. You could do
this with the C code

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

How long would it take to execute this code? Suppose that the serial port is set to
operate at 57600 baud, or bits per second (this is quite fast for an RS-232 inter-
face). Then after loading UDR0 with an 8-bit value, it will take 8/57600 seconds or
about 139 microseconds for the 8-bit value to be sent. Suppose that the frequency
of the processor is operating at 18 MHz (relatively slow for a microcontroller).

Lee & Seshia, Introduction to Embedded Systems 269

10.1. I/O HARDWARE

Then except for the first time through the for loop, each while loop will need to
consume approximately 2500 cycles, during which time the processor is doing no
useful work.

To receive a byte over the serial port, a programmer may use the following C code:

1 while(!(UCSR0A & 0x80));
2 return UDR0;

In this case, the while loop waits until the UART has received an incoming byte.
The programmer must ensure that there will be an incoming byte, or this code will
execute forever. If this code is again enclosed in a loop to receive a sequence of
bytes, then the while loop will need to consume a considerable number of cycles
each time it executes.

For both sending and receiving bytes over a serial port, a programmer may use
an interrupt instead to avoid having an idle processor that is waiting for the serial
communication to occur. Interrupts will be discussed below.

The RS-232 mechanism is very simple. The sender and receiver first must agree on a
transmission rate (which is slow by modern standards). The sender initiates transmission
of a byte with a start bit, which alerts the receiver that a byte is coming. The sender then
clocks out the sequence of bits at the agreed-upon rate, following them by one or two stop
bits. The receiver’s clock resets upon receiving the start bit and is expected to track the
sender’s clock closely enough to be able to sample the incoming signal sequentially and
recover the sequence of bits. There are many descendants of the standard that support
higher rate communication, such as RS-422, RS-423, and more.

Newer devices designed to connect to personal computers typically use universal serial
bus (USB) interfaces, standardized by a consortium of vendors. USB 1.0 appeared in
1996 and supports a data rate of 12 Mbits/sec. USB 2.0 appeared in 2000 and supports
data rates up to 480 Mbits/sec. USB 3.0 appeared in 2008 and supports data rates up to
4.8 Gbits/sec.

USB is electrically simpler than RS-232 and uses simpler, more robust connectors, as
shown in Figure 10.4. But the USB standard defines much more than electrical trans-
port of bytes, and more complicated control logic is required to support it. Since modern
peripheral devices such as printers, disk drives, and audio and video devices all include

270 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

microcontrollers, supporting the more complex USB protocol is reasonable for these de-
vices.

Another serial interface that is widely implemented in embedded processors is known
as JTAG (Joint Test Action Group), or more formally as the IEEE 1149.1 standard test
access port and boundary-scan architecture. This interface appeared in the mid 1980s
to solve the problem that integrated circuit packages and printed circuit board technology
had evolved to the point that testing circuits using electrical probes had become difficult or
impossible. Points in the circuit that needed to be accessed became inaccessible to probes.
The notion of a boundary scan allows the state of a logical boundary of a circuit (what
would traditionally have been pins accessible to probes) to be read or written serially
through pins that are made accessible. Today, JTAG ports are widely used to provide a
debug interface to embedded processors, enabling a PC-hosted debugging environment
to examine and control the state of an embedded processor. The JTAG port is used, for
example, to read out the state of processor registers, to set breakpoints in a program, and
to single step through a program. A newer variant is serial wire debug (SWD), which
provides similar functionality with fewer pins.

There are several other serial interfaces in use today, including for example I2C (inter-
integrated circuit), SPI (serial peripheral interface bus), PCI Express (peripheral compo-
nent interconnect express), FireWire, MIDI (musical instrument digital interface), and
serial versions of SCSI (described below). Each of these has its use. Also, network inter-
faces are typically serial.

10.1.4 Parallel Interfaces

A serial interface sends or receives a sequence of bits sequentially over a single line. A
parallel interface uses multiple lines to simultaneously send bits. Of course, each line
of a parallel interface is also a serial interface, but the logical grouping and coordinated
action of these lines is what makes the interface a parallel interface.

Historically, one of the most widely used parallel interfaces is the IEEE-1284 printer port,
which on the IBM PC used a DB-25 connector, as shown in Figure 10.4. This interface
originated in 1970 with the Centronics model 101 printer, and hence is sometimes called
a Centronics printer port. Today, printers are typically connected using USB or wireless
networks.

Lee & Seshia, Introduction to Embedded Systems 271

10.1. I/O HARDWARE

With careful programming, a group of GPIO pins can be used together to realize a parallel
interface. In fact, embedded system designers sometimes find themselves using GPIO
pins to emulate an interface not supported directly by their hardware.

It seems intuitive that parallel interfaces should deliver higher performance than serial
interfaces, because more wires are used for the interconnection. However, this is not
necessarily the case. A significant challenge with parallel interfaces is maintaining syn-
chrony across the multiple wires. This becomes more difficult as the physical length of
the interconnection increases. This fact, combined with the requirement for bulkier cables
and more I/O pins has resulted in many traditionally parallel interfaces being replaced by
serial interfaces.

10.1.5 Buses

A bus is an interface shared among multiple devices, in contrast to a point-to-point in-
terconnection linking exactly two devices. Busses can be serial interfaces (such as USB)
or parallel interfaces. A widespread parallel bus is SCSI (pronounced scuzzy, for small
computer system interface), commonly used to connect hard drives and tape drives to
computers. Recent variants of SCSI interfaces, however, depart from the traditional par-
allel interface to become serial interfaces. SCSI is an example of a peripheral bus archi-
tecture, used to connect computers to peripherals such as sound cards and disk drives.

Other widely used peripheral bus standards include the ISA bus (industry standard archi-
tecture, used in the ubiquitous IBM PC architecture), PCI (peripheral component inter-
face), and Parallel ATA (advanced technology attachment). A somewhat different kind
of peripheral bus standard is IEEE-488, originally developed more than 30 years ago to
connect automated test equipment to controlling computers. This interface was designed
at Hewlett Packard and is also widely known as HP-IB (Hewlett Packard interface bus)
and GPIB (general purpose interface bus). Many networks also use a bus architecture.

Because a bus is shared among several devices, any bus architecture must include a
media-access control (MAC) protocol to arbitrate competing accesses. A simple MAC
protocol has a single bus master that interrogates bus slaves. USB uses such a mech-
anism. An alternative is a time-triggered bus, where devices are assigned time slots
during which they can transmit (or not, if they have nothing to send). A third alternative
is a token ring, where devices on the bus must acquire a token before they can use the
shared medium, and the token is passed around the devices according to some pattern.
A fourth alternative is to use a bus arbiter, which is a circuit that handles requests for

272 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

the bus according to some priorities. A fifth alternative is carrier sense multiple access
(CSMA), where devices sense the carrier to determine whether the medium is in use be-
fore beginning to use it, detect collisions that might occur when they begin to use it, and
try again later when a collision occurs.

In all cases, sharing of the physical medium has implications on the timing of applications.

Example 10.7: A peripheral bus provides a mechanism for external devices to
communicate with a CPU. If an external device needs to transfer a large amount of
data to the main memory, it may be inefficient and/or disruptive to require the CPU
to perform each transfer. An alternative is direct memory access (DMA). In the
DMA scheme used on the ISA bus, the transfer is performed by a separate device
called a DMA controller which takes control of the bus and transfers the data. In
some more recent designs, such as PCI, the external device directly takes control of
the bus and performs the transfer without the help of a dedicated DMA controller.
In both cases, the CPU is free to execute software while the transfer is occurring,
but if the executed code needs access to the memory or the peripheral bus, then the
timing of the program is disrupted by the DMA. Such timing effects can be difficult
to analyze.

10.2 Sequential Software in a Concurrent World

As we saw in Example 10.6, when software interacts with the external world, the tim-
ing of the execution of the software may be strongly affected. Software is intrinsically
sequential, typically executing as fast as possible. The physical world, however, is con-
current, with many things happening at once, and with the pace at which they happen
determined by their physical properties. Bridging this mismatch in semantics is one of
the major challenges that an embedded system designer faces. In this section, we discuss
some of the key mechanisms for accomplishing this.

Lee & Seshia, Introduction to Embedded Systems 273

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

10.2.1 Interrupts and Exceptions

An interrupt is a mechanism for pausing execution of whatever a processor is currently
doing and executing a pre-defined code sequence called an interrupt service routine
(ISR) or interrupt handler. Three kinds of events may trigger an interrupt. One is
a hardware interrupt, where some external hardware changes the voltage level on an
interrupt request line. In the case of a software interrupt, the program that is executing
triggers the interrupt by executing a special instruction or by writing to a memory-mapped
register. A third variant is called an exception, where the interrupt is triggered by internal
hardware that detects a fault, such as a segmentation fault.

For the first two variants, once the ISR completes, the program that was interrupted re-
sumes where it left off. In the case of an exception, once the ISR has completed, the pro-
gram that triggered the exception is not normally resumed. Instead, the program counter
is set to some fixed location where, for example, the operating system may terminate the
offending program.

Upon occurrence of an interrupt trigger, the hardware must first decide whether to re-
spond. If interrupts are disabled, it will not respond. The mechanism for enabling or
disabling interrupts varies by processor. Moreover, it may be that some interrupts are
enabled and others are not. Interrupts and exceptions generally have priorities, and an
interrupt will be serviced only if the processor is not already in the middle of servicing
an interrupt with a higher priority. Typically, exceptions have the highest priority and are
always serviced.

When the hardware decides to service an interrupt, it will usually first disable interrupts,
push the current program counter and processor status register(s) onto the stack, and
branch to a designated address that will normally contain a jump to an ISR. The ISR must
store on the stack the values currently in any registers that it will use, and restore their
values before returning from the interrupt, so that the interrupted program can resume
where it left off. Either the interrupt service routine or the hardware must also re-enable
interrupts before returning from the interrupt.

Example 10.8: The ARM CortexTM - M3 is a 32-bit microcontroller used in indus-
trial automation and other applications. It includes a system timer called SysTick.
This timer can be used to trigger an ISR to execute every 1ms. Suppose for example
that every 1ms we would like to count down from some initial count until the count

274 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

reaches zero, and then stop counting down. The following C code defines an ISR
that does this:

1 volatile uint timerCount = 0;
2 void countDown(void) {
3 if (timerCount != 0) {
4 timerCount--;
5 }
6 }

Here, the variable timerCount is a global variable, and it is decremented each
time countDown() is invoked, until it reaches zero. We will specify below that
this is to occur once per millisecond by registering countDown() as an ISR. The
variable timerCount is marked with the C volatile keyword, which tells the
compiler that the value of the variable will change at unpredictable times during
execution of the program. This prevents the compiler from performing certain op-
timizations, such as caching the value of the variable in a register and reading it
repeatedly. Using a C API provided by Luminary Micro R� (2008c), we can spec-
ify that countDown() should be invoked as an interrupt service routine once per
millisecond as follows:

1 SysTickPeriodSet(SysCtlClockGet() / 1000);
2 SysTickIntRegister(&countDown);
3 SysTickEnable();
4 SysTickIntEnable();

The first line sets the number of clock cycles between “ticks” of the SysTick timer.
The timer will request an interrupt on each tick. SysCtlClockGet() is a library
procedure that returns the number of cycles per second of the target platform’s clock
(e.g., 50,000,000 for a 50 MHz part). The second line registers the ISR by providing
a function pointer for the ISR (the address of the countDown() procedure).
(Note: Some configurations do not support run-time registration of ISRs, as shown
in this code. See the documentation for your particular system.) The third line
starts the clock, enabling ticks to occur. The fourth line enables interrupts.

The timer service we have set up can be used, for example, to perform some func-
tion for two seconds and then stop. A program to do that is:

1 int main(void) {
2 timerCount = 2000;

Lee & Seshia, Introduction to Embedded Systems 275

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

3 ... initialization code from above ...
4 while(timerCount != 0) {
5 ... code to run for 2 seconds ...
6 }
7 }

Processor vendors provide many variants of the mechanisms used in the previous exam-
ple, so you will need to consult the vendor’s documentation for the particular processor
you are using. Since the code is not portable (it will not run correctly on a different pro-
cessor), it is wise to isolate such code from your application logic and document carefully
what needs to be re-implemented to target a new processor.

10.2.2 Atomicity

An interrupt service routine can be invoked between any two instructions of the main
program (or between any two instructions of a lower priority ISR). One of the major chal-
lenges for embedded software designers is that reasoning about the possible interleavings
of instructions can become extremely difficult. In the previous example, the interrupt
service routine and the main program are interacting through a shared variable, namely
timerCount. The value of that variable can change between any two atomic opera-

Basics: Timers

Microcontrollers almost always include some number of peripheral devices called timers.
A programmable interval timer (PIT), the most common type, simply counts down
from some value to zero. The initial value is set by writing to a memory-mapped register,
and when the value hits zero, the PIT raises an interrupt request. By writing to a memory-
mapped control register, a timer might be set up to trigger repeatedly without having to
be reset by the software. Such repeated triggers will be more precisely periodic than what
you would get if the ISR restarts the timer each time it gets invoked. This is because the
time between when the count reaches zero in the timer hardware and the time when the
counter gets restarted by the ISR is difficult to control and variable. For example, if the
timer reaches zero at a time when interrupts happen to be disabled, then there will be a
delay before the ISR gets invoked. It cannot be invoked before interrupts are re-enabled.

276 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

tions of the main program. Unfortunately, it can be quite difficult to know what operations
are atomic. The term “atomic” comes from the Greek work for “indivisible,” and it is far
from obvious to a programmer what operations are indivisible. If the programmer is writ-
ing assembly code, then it may be safe to assume that each assembly language instruction
is atomic, but many ISAs include assembly level instructions that are not atomic.

Example 10.9: The ARM instruction set includes a LDM instruction, which loads
multiple registers from consecutive memory locations. It can be interrupted part
way through the loads (ARM Limited, 2006).

At the level of a C program, it can be even more difficult to know what operations are
atomic. Consider a single, innocent looking statement

timerCount = 2000;

On an 8-bit microcontroller, this statement may take more than one instruction cycle to
execute (an 8-bit word cannot store both the instruction and the constant 2000; in fact, the
constant alone does not fit in an 8-bit word). An interrupt could occur part way through the
execution of those cycles. Suppose that the ISR also writes to the variable timerCount.
In this case, the final value of the timerCount variable may be composed of 8 bits set
in the ISR and the remaining bits set by the above line of C, for example. The final
value could be very different from 2000, and also different from the value specified in the
interrupt service routine. Will this bug occur on a 32-bit microcontroller? The only way
to know for sure is to fully understand the ISA and the compiler. In such circumstances,
there is no advantage to having written the code in C instead of assembly language.

Bugs like this in a program are extremely difficult to identify and correct. Worse, the
problematic interleavings are quite unlikely to occur, and hence may not show up in test-
ing. For safety-critical systems, programmers have to make every effort to avoid such
bugs. One way to do this is to build programs using higher-level concurrent models of
computation, as discussed in Chapter 6. Of course, the implementation of those models
of computation needs to be correct, but presumably, that implementation is constructed
by experts in concurrency, rather than by application engineers.

When working at the level of C and ISRs, a programmer must carefully reason about
the order of operations. Although many interleavings are possible, operations given as a

Lee & Seshia, Introduction to Embedded Systems 277

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

sequence of C statements must execute in order (more precisely, they must behave as if
they had executed in order, even if out-of-order execution is used).

Example 10.10: In example 10.8, the programmer can rely on the statements
within main() executing in order. Notice that in that example, the statement

timerCount = 2000;

appears before

SysTickIntEnable();

The latter statement enables the SysTick interrupt. Hence, the former statement
cannot be interrupted by the SysTick interrupt.

10.2.3 Interrupt Controllers

An interrupt controller is the logic in the processor that handles interrupts. It supports
some number of interrupts and some number of priority levels. Each interrupt has an
interrupt vector, which is the address of an ISR or an index into an array called the
interrupt vector table that contains the addresses of all the ISRs.

Example 10.11: The Luminary Micro LM3S8962 controller, shown in Figure
10.1, includes an ARM CortexTM - M3 core microcontroller that supports 36 in-
terrupts with eight priority levels. If two interrupts are assigned the same priority
number, then the one with the lower vector will have priority over the one with the
higher vector.

When an interrupt is asserted by changing the voltage on a pin, the response may be either
level triggered or edge triggered. For level-triggered interrupts, the hardware asserting
the interrupt will typically hold the voltage on the line until it gets an acknowledgement,

278 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

which indicates that the interrupt is being handled. For edge-triggered interrupts, the
hardware asserting the interrupt changes the voltage for only a short time. In both cases,
open collector lines can be used so that the same physical line can be shared among
several devices (of course, the ISR will require some mechanism to determine which
device asserted the interrupt, for example by reading a memory-mapped register in each
device that could have asserted the interrupt).

Sharing interrupts among devices can be tricky, and careful consideration must be given to
prevent low priority interrupts from blocking high priority interrupts. Asserting interrupts
by writing to a designated address on a bus has the advantage that the same hardware can
support many more distinct interrupts, but the disadvantage that peripheral devices get
more complex. The peripheral devices have to include an interface to the memory bus.

10.2.4 Modeling Interrupts

The behavior of interrupts can be quite difficult to fully understand, and many catastrophic
system failures are caused by unexpected behaviors. Unfortunately, the logic of interrupt
controllers is often described in processor documentation very imprecisely, leaving many
possible behaviors unspecified. One way to make this logic more precise is to model it as
an FSM.

Example 10.12: The program of Example 10.8, which performs some action for
two seconds, is shown in Figure 10.5 together with two finite state machines that
model the ISR and the main program. The states of the FSMs correspond to posi-
tions in the execution labeled A through E, as shown in the program listing. These
positions are between C statements, so we are assuming here that these statements
are atomic operations (a questionable assumption in general).

We may wish to determine whether the program is assured of always reaching po-
sition C. In other words, can we assert with confidence that the program will even-
tually move beyond whatever computation it was to perform for two seconds? A
state machine model will help us answer that question.

The key question now becomes how to compose these state machines to correctly
model the interaction between the two pieces of sequential code in the procedures
ISR and main. It is easy to see that asynchronous composition is not the right

Lee & Seshia, Introduction to Embedded Systems 279

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}
… whatever comes next

E
D

A
B

C

Figure 10.5: State machine models and main program for a program that does
something for two seconds and then continues to do something else.

280 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

choice because the interleavings are not arbitrary. In particular, main can be inter-
rupted by ISR, but ISR cannot be interrupted by main. Asynchronous composi-
tion would fail to capture this asymmetry.

Assuming that the interrupt is always serviced immediately upon being requested,
we wish to have a model something like that shown in Figure 10.6. In that figure, a
two-state FSM models whether an interrupt is being serviced. The transition from
Inactive to Active is triggered by a pure input assert, which models the timer hard-
ware requesting interrupt service. When the ISR completes its execution, another
pure input return triggers a return to the Inactive state. Notice here that the transi-
tion from Inactive to Active is a preemptive transition, indicated by the small circle
at the start of the transition, suggesting that it should be taken immediately when
assert occurs, and that it is a reset transition, suggesting that the state refinement of
Active should begin in its initial state upon entry.

If we combine Figures 10.5 and 10.6 we get the hierarchical FSM in Figure 10.7.
Notice that the return signal is both an input and an output now. It is an output
produced by the state refinement of Active, and it is an input to the top-level FSM,
where it triggers a transition to Inactive. Having an output that is also an input
provides a mechanism for a state refinement to trigger a transition in its container
state machine.

To determine whether the program reaches state C, we can study the flattened state
machine shown in Figure 10.8. Studying that machine carefully, we see that in fact
there is no assurance that state C will be reached! If, for example, assert is present
on every reaction, then C is never reached.

Could this happen in practice? With this program, it is improbable, but not im-
possible. It could happen if the ISR itself takes longer to execute than the time
between interrupts. Is there any assurance that this will not happen? Unfortunately,
our only assurance is a vague notion that processors are faster than that. There is
no guarantee.

In the above example, modeling the interaction between a main program and an interrupt
service routine exposes a potential flaw in the program. Although the flaw may be unlikely
to occur in practice in this example, the fact that the flaw is present at all is disturbing.
In any case, it is better to know that the flaw is present, and to decide that the risk is
acceptable, than to not know it is present.

Lee & Seshia, Introduction to Embedded Systems 281

10.3. SUMMARY

E
D

A
B

C

Figure 10.6: Sketch of a state machine model for the interaction between an ISR
and the main program.

Interrupt mechanisms can be quite complex. Software that uses these mechanisms to
provide I/O to an external device is called a device driver. Writing device drivers that
are correct and robust is a challenging engineering task requiring a deep understanding
of the architecture and considerable skill reasoning about concurrency. Many failures in
computer systems are caused by unexpected interactions between device drivers and other
programs.

10.3 Summary

This chapter has reviewed hardware and software mechanisms used to get sensor data
into processors and commands from the processor to actuators. The emphasis is on un-
derstanding the principles behind the mechanisms, with a particular focus on the bridging
between the sequential world of software and the parallel physical world.

282 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

Figure 10.7: Hierarchical state machine model for the interaction between an ISR
and the main program.

Lee & Seshia, Introduction to Embedded Systems 283

10.3. SUMMARY

Figure 10.8: Flattened version of the hierarchical state machine in Figure 10.7.

284 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

Exercises

1. Similar to Example 10.6, consider a C program for an Atmel AVR that uses a UART
to send 8 bytes to an RS-232 serial interface, as follows:

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

Assume the processor runs at 50 MHz; also assume that initially the UART is idle,
so when the code begins executing, UCSR0A & 0x20 == 0x20 is true; further,
assume that the serial port is operating at 19,200 baud. How many cycles are re-
quired to execute the above code? You may assume that the for statement executes
in three cycles (one to increment i, one to compare it to 8, and one to perform the
conditional branch); the while statement executes in 2 cycles (one to compute
!(UCSR0A & 0x20) and one to perform the conditional branch); and the assig-
ment to UDR0 executes in one cycle.

2. Figure 10.9 gives the sketch of a program for an Atmel AVR microcontroller that
performs some function repeatedly for three seconds. The function is invoked by
calling the procedure foo(). The program begins by setting up a timer interrupt
to occur once per second (the code to do this setup is not shown). Each time the
interrupt occurs, the specified interrupt service routine is called. That routine decre-
ments a counter until the counter reaches zero. The main() procedure initializes the
counter with value 3 and then invokes foo() until the counter reaches zero.

(a) We wish to assume that the segments of code in the grey boxes, labeled A, B,
and C, are atomic. State conditions that make this assumption valid.

(b) Construct a state machine model for this program, assuming as in part (a)
that A, B, and C, are atomic. The transitions in your state machine should
be labeled with “guard/action”, where the action can be any of A, B, C, or
nothing. The actions A, B, or C should correspond to the sections of code in
the grey boxes with the corresponding labels. You may assume these actions
are atomic.

(c) Is your state machine deterministic? What does it tell you about how many
times foo() may be invoked? Do all the possible behaviors of your model
correspond to what the programmer likely intended?

Lee & Seshia, Introduction to Embedded Systems 285

EXERCISES

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;

// Interrupt service routine.
SIGNAL(SIG_OUTPUT_COMPARE1A) {

 if(timer_count > 0) {
 timer_count--;
 }
}

// Main program.
int main(void) {
 // Set up interrupts to occur
 // once per second.
 ...

 // Start a 3 second timer.
 timer_count = 3;

 // Do something repeatedly
 // for 3 seconds.
 while(timer_count > 0) {
 foo();
 }
}

A

B

C

Figure 10.9: Sketch of a C program that performs some function by calling proce-
dure foo() repeatedly for 3 seconds, using a timer interrupt to determine when to
stop.

286 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

Note that there are many possible answers. Simple models are preferred over elab-
orate ones, and complete ones (where everything is defined) over incomplete ones.
Feel free to give more than one model.

3. In a manner similar to example 10.8, create a C program for the ARM CortexTM -
M3 to use the SysTick timer to invoke a system-clock ISR with a jiffy interval of
10 ms that records the time since system start in a 32-bit int. How long can this
program run before your clock overflows?

4. Consider a dashboard display that displays “normal” when brakes in the car operate
normally and “emergency” when there is a failure. The intended behavior is that
once “emergency” has been displayed, “normal” will not again be displayed. That
is, “emergency” remains on the display until the system is reset.

In the following code, assume that the variable display defines what is displayed.
Whatever its value, that is what appears on the dashboard.

1 volatile static uint8_t alerted;
2 volatile static char* display;
3 void ISRA() {
4 if (alerted == 0) {
5 display = "normal";
6 }
7 }
8 void ISRB() {
9 display = "emergency";

10 alerted = 1;
11 }
12 void main() {
13 alerted = 0;
14 ...set up interrupts...
15 ...enable interrupts...
16 ...
17 }

Assume that ISRA is an interrupt service routine that is invoked when the brakes
are applied by the driver. Assume that ISRB is invoked if a sensor indicates that the
brakes are being applied at the same time that the accelerator pedal is depressed.
Assume that neither ISR can interrupt itself, but that ISRB has higher priority than

Lee & Seshia, Introduction to Embedded Systems 287

EXERCISES

ISRA, and hence ISRB can interrupt ISRA, but ISRA cannot interrupt ISRB.
Assume further (unrealistically) that each line of code is atomic.

(a) Does this program always exhibit the intended behavior? Explain. In the
remaining parts of this problem, you will construct various models that will
either demonstrate that the behavior is correct or will illustrate how it can be
incorrect.

(b) Construct a determinate extended state machine modeling ISRA. Assume
that:

• alerted is a variable of type {0, 1} ⊂ uint8 t,
• there is a pure input A that when present indicates an interrupt request for
ISRA, and

• display is an output of type char*.

(c) Give the size of the state space for your solution.

(d) Explain your assumptions about when the state machine in (b) reacts. Is this
time triggered, event triggered, or neither?

(e) Construct a determinate extended state machine modeling ISRB. This one has
a pure input B that when present indicates an interrupt request for ISRB.

(f) Construct a flat (non-hierarchical) determinate extended state machine de-
scribing the joint operation of the these two ISRs. Use your model to argue
the correctness of your answer to part (a).

(g) Give an equivalent hierarchical state machine. Use your model to argue the
correctness of your answer to part (a).

5. Suppose a processor handles interrupts as specified by the following FSM:

288 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

Here, we assume a more complicated interrupt controller than that considered in
Example 10.12, where there are several possible interrupts and an arbiter that de-
cides which interrupt to service. The above state machine shows the state of one
interrupt. When the interrupt is asserted, the FSM transitions to the Pending state,
and remains there until the arbiter provides a handle input. At that time, the FSM
transitions to the Active state and produces an acknowledge output. If another in-
terrupt is asserted while in the Active state, then it transitions to Active and Pend-
ing. When the ISR returns, the input return causes a transition to either Inactive
or Pending, depending on the starting point. The deassert input allows external
hardware to cancel an interrupt request before it gets serviced.

Answer the following questions.

(a) If the state is Pending and the input is return, what is the reaction?

(b) If the state is Active and the input is assert ∧ deassert, what is the reaction?

(c) Suppose the state is Inactive and the input sequence in three successive reac-
tions is:

i. assert ,
ii. deassert ∧ handle ,
iii. return .

Lee & Seshia, Introduction to Embedded Systems 289

EXERCISES

What are all the possible states after reacting to these inputs? Was the interrupt
handled or not?

(d) Suppose that an input sequence never includes deassert. Is it true that every
assert input causes an acknowledge output? In other words, is every interrupt
request serviced? If yes, give a proof. If no, give a counterexample.

6. Suppose you are designing a processor that will support two interrupts whose logic
is given by the FSM in Exercise 5. Design an FSM giving the logic of an arbiter
that assigns one of these two interrupts higher priority than the other. The inputs
should be the following pure signals:

assert1, return1, assert2, return2

to indicate requests and return from interrupt for interrupts 1 and 2, respectively.
The outputs should be pure signals handle1 and handle2. Assuming the assert
inputs are generated by two state machines like that in Exercise 5, can you be sure
that this arbiter will handle every request that is made? Justify your answer.

7. Consider the following program that monitors two sensors. Here sensor1 and
sensor2 denote the variables storing the readouts from two sensors. The actual
read is performed by the functions readSensor1() and readSensor2(), re-
spectively, which are called in the interrupt service routine ISR.

1 char flag = 0;
2 volatile char* display;
3 volatile short sensor1, sensor2;
4

5 void ISR() {
6 if (flag) {
7 sensor1 = readSensor1();
8 } else {
9 sensor2 = readSensor2();

10 }
11 }
12

13 int main() {
14 // ... set up interrupts ...
15 // ... enable interrupts ...
16 while(1) {
17 if (flag) {
18 if isFaulty2(sensor2) {
19 display = "Sensor2 Faulty";
20 }

290 Lee & Seshia, Introduction to Embedded Systems

10. INPUT AND OUTPUT

21 } else {
22 if isFaulty1(sensor1) {
23 display = "Sensor1 Faulty";
24 }
25 }
26 flag = !flag;
27 }
28 }

Functions isFaulty1() and isFaulty2() check the sensor readings for any
discrepancies, returning 1 if there is a fault and 0 otherwise. Assume that the vari-
able display defines what is shown on the monitor to alert a human operator
about faults. Also, you may assume that flag is modified only in the body of
main.

Answer the following questions:

(a) Is it possible for the ISR to update the value of sensor1 while the main
function is checking whether sensor1 is faulty? Why or why not?

(b) Suppose a spurious error occurs that causes sensor1 or sensor2 to be a
faulty value for one measurement. Is it possible for that this code would not
report “Sensor1 faulty” or “Sensor2 faulty”?

(c) Assuming the interrupt source for ISR() is timer-driven, what conditions
would cause this code to never check whether the sensors are faulty?

(d) Suppose that instead being interrupt driven, ISR and main are executed con-
currently, each in its own thread. Assume a microkernel that can interrupt
any thread at any time and switch contexts to execute another thread. In this
scenario, is it possible for the ISR to update the value of sensor1 while the
main function is checking whether sensor1 is faulty? Why or why not?

Lee & Seshia, Introduction to Embedded Systems 291

EXERCISES

292 Lee & Seshia, Introduction to Embedded Systems

