
CANopen 20-Mar-2000

1

CANopen
high-level protocol for CAN-bus

H. Boterenbrood

NIKHEF, Amsterdam

March 20, 2000

Contents

1 INTRODUCTION ... 2

2 CAL... 2

3 CANOPEN ... 3

3.1 CANOPEN OBJECT DICTIONARY .. 3
3.2 CANOPEN COMMUNICATION.. 5
3.3 CANOPEN PREDEFINED CONNECTION SET... 7
3.4 CANOPEN IDENTIFIER DISTRIBUTION ... 8
3.5 CANOPEN BOOT-UP PROCESS ... 9
3.6 DETAILS OF CANOPEN MESSAGE SYNTAX.. 10

3.6.1 NMT Module Control ... 10
3.6.2 NMT Node Guarding .. 10
3.6.3 NMT Boot-up .. 10
3.6.4 PDO ... 11
3.6.5 SDO ... 11
3.6.6 Emergency Object ... 14

4 SUMMARY.. 16

5 EXAMPLE OF A CANOPEN OBJECT DICTIONARY FOR DEVICES WITH CS5525 ADCS....... 17

5.1 INTRODUCTION... 17
5.2 ADC READ-OUT... 17
5.3 ADC CONFIGURATION AND CALIBRATION... 18
5.4 THE OBJECT DICTIONARY .. 18
5.5 EMERGENCY OBJECTS .. 22

REFERENCES .. 23

CANopen 15-Mar-2000

2

Version History
Version Date Comments

1.x 1998 First draft versions
2.0 1999 Change of title; change in chapter numbering; addition of CAN message syntax

details
2.0a 7 April 1999 Corrected error in table 7 and 8 captions
3.0 20 March 2000 Several additions in accordance with CiA DS301 CANopen Communication Pro-

file Version 4.0 (update from 3.0)

1 Introduction

Fieldbus networks from the OSI network model
point-of-view usually only have the layers 1 (Physi-
cal Layer), 2 (Datalink Layer) and 7 (Application
Layer) implemented. The intermediate layers are
not needed because a fieldbus network usually con-
sists of a single network segment only (no need for
Transport and Network Layer, layer 3 and 4) and
has no notion of 'sessions' (layer 5) or a need for
different internal data 'presentation' (layer 6).

The CAN (Controller Area Network) fieldbus de-

fines only the layers 1 and 2 (ISO11898); in prac-
tice these are completely handled by the CAN
hardware, significantly reducing the implementa-
tion effort for developers of the fieldbus node
firmware.

However, a high level protocol is necessary in or-

der to define how the CAN message frame's 11-bit
identifier and 8 data bytes are used. Building CAN-
based industrial automation systems guaranteeing
interoperability and interchangeability of devices of
different manufacturers requires a standardized ap-
plication layer and 'profiles', standardizing the
communication system, the device functionality and
the system administration:

♦ The application layer provides a set of services

and protocols useful to every device on the net-
work imaginable.

♦ The communication profile provides the means

to configure devices and communication data
and defines how data is communicated between
devices.

♦ Device profiles add device-specific behaviour

for (classes of) devices (e.g. digital I/O, analog
I/O, motion controllers, encoders, etc.).

The following sections describe the CAL applica-

tion layer for CAN networks on which the
CANopen standard is based and subsequently
CANopen itself and the profiles that define it.

The relation between OSI network model, CAN-
bus standards and CANopen profiles is illustrated in
Figure 1.

Figure 1. Schematic overview of CAN and
CANopen standards in the OSI net-
work model.

2 CAL

One of the existing higher layer communication
protocols for CAN-based networks –developed by
Philips Medical Systems– is CAL (CAN Applica-
tion Layer). It was adopted by the independent
CAN users and manufacturer group CAN in
Automation (CiA), developed further and pub-
lished in a series of standards [1].

CAL provides 4 application layer service elements:

1. CMS (CAN-based Message Specification):

offers objects of type Variable, Event and Do-
main to design and specify how the functional-
ity of a device (a node) can be accessed through
its CAN interface (e.g. how to up- or download
a set of data ('domain') exceeding the 8 bytes
maximum data content of a CAN-message, in-
cluding an 'abort transfer' feature).

Communication Profile CiA DS-301

Device Profile
 CiA DSP-401

Device Profile
 CiA DSP-404

Device Profile
 CiA DSP-xxx

OSI Layer 7
Application

Layer

OSI Layer 2
Data Link

Layer

CAN Controller
Chip CAN 2.0A

OSI Layer 1
Physical Layer

ISO 11898
+ -

+ -

Cable

CANopen 20-Mar-2000

3

CMS derives from MMS (Manufacturing Mes-
sage Specification), which is an OSI application
layer protocol designed for the remote control
and monitoring of industrial devices.

2. NMT (Network ManagemenT):
offers services to support network management,
e.g. to initialize, start or stop nodes, detect node
failures; this service is implemented according
to a master-slave concept (there is one NMT
master).

3. DBT (DistriBuTor):

offers a dynamic distribution of CAN identifiers
(officially called COB-ID, Communication Ob-
ject Identifier) to the nodes on the network; this
service is implemented according to a master-
slave concept (there is one DBT master).

4. LMT (Layer ManagemenT):

offers the ability to change layer parameters e.g.
change the NMT-address of a node,
or change bit-timing and baud-rate of the CAN-
interface.

CMS defines 8 priority levels in its messages,

each having 220 COB-IDs, occupying COB-IDs 1
to 1760; the remaining identifiers (0, 1761-2031)
are reserved for NMT, DBT and LMT. See Table 1.

In a CAN-network the lower the value of the
COB-ID, the higher the priority of the correspond-
ing message on the network is.

Note that this standard assumes CAN2.0A (CAN
Standard Message Frame) having an 11-bit identi-
fier, allowing a range of [0, 2047], but which -for
historical reasons- is limited to [0, 2031]. However
using CAN2.0B (CAN Extended Message Frame)
with 29-bit identifier doesn't change the picture: the
11-bits range in the table maps to the 11 most sig-
nificant bits of the 29-bits COB-ID and the COB-
ID ranges in the table will just become (much) lar-
ger.

CAN Application Layer (CAL)
COB-ID Usage
0 NMT start/stop services
1 - 220 CMS objects priority 0

221 - 440 CMS objects priority 1
441 - 660 CMS objects priority 2
661 - 880 CMS objects priority 3
881 - 1100 CMS objects priority 4

1101 - 1320 CMS objects priority 5
1321 - 1540 CMS objects priority 6
1541 - 1760 CMS objects priority 7
1761 - 2015 NMT Node Guarding
2016 - 2031 NMT, LMT, DBT services

Table 1. COB-ID (11-bit CAN-identifier) map-
ping to CAL services and objects.

3 CANopen

CAL provides all network management services
and message protocols, but it does not define the
contents of the CMS objects or the kind of objects
being communicated (it defines how, not what).
This is where CANopen enters the picture.

CANopen is built on top of CAL, using a subset of

CAL services and communication protocols; it pro-
vides an implementation of a distributed control
system using the services and protocols of CAL.

It does this in such a way that nodes can range
from simple to complex in their functionality with-
out compromising the interoperability between the
nodes in the network.

Central concept in CANopen is the Device Object

Dictionary (OD), a concept used in other fieldbus
systems as well (Profibus, Interbus-S).

Note that the Object Dictionary concept is not
part of CAL, it is an implementation aspect of
CANopen.

In the following sections we will first present the

Object Dictionary, and only then the CANopen
communication mechanisms.

3.1 CANopen Object Dictionary

The CANopen Object Dictionary (OD) is an or-
dered grouping of objects; each object is addressed
using a 16-bit index. To allow individual elements
of structures of data to be accessed an 8-bit sub-
index has been defined as well. The general layout
of the CANopen OD is shown in Table 2.

Don't be confused by all the 'data types' located in
the OD at indices below 0FFF; they're there mainly

CANopen 20-Mar-2000

4

for definition purposes only. The relevant range of a
node's OD lies between 1000 and 9FFF.

For every node in the network there exists an OD.
The OD contains all parameters describing the de-
vice and its network behaviour.

The OD of a node mainly exists in the form of a
database described in the EDS (see below) or on
paper. It is not necesssarily possible to 'interrogate'
a node via the CAN-bus about all its parameters in
its OD. It is sufficient if the node behaves exactly
according to its OD description on paper. The node
itself only needs to be able to present at least all
mandatory OD entries (as dictated by CANopen;
these are actually very few), and optionally any
other entries that form part of the configurable
functionality of the node.

CANopen is defined in the form of documents de-

scribing profiles.

There is the communication profile [2] describ-
ing the general form of the OD and the objects in
the OD's Communication Profile Area, the commu-
nication parameters; it also describes the CANopen
communication objects (see next section); this pro-
file applies to all CANopen devices.

Then there are the various device profiles (e.g.
[3]) defining for a particular type of devices the OD
objects; there are now about 5 different device pro-
files and several more are under development.

A profile describes for each OD object its func-
tion, its name, its index and sub-index, its data type,
whether the object is mandatory or optional,

whether the object is 'read only' or 'write only' or
'read/write', etc.

The description of a device's communication

functionality and objects and its device-specific
objects and their default values is proviced in the
form of an Electronic Data Sheet (EDS), an ASCII
file with a strictly defined syntax.

A description of the object configuration of an
individual device is called a Device Configuration
File (DCF) and has the same structure as an EDS.
Both file types are defined in the CANopen specifi-
cation.

The profiles define which OD objects are manda-
tory and which are optional; the number of manda-
tory objects is kept to a minimum allowing lean
implementations.

Optional features –in the communication part as
well as the device-specific part– can be added as
required to extend a CANopen device's functional-
ity.

If more features are required than are present in
the profile, there is plenty of space in the profile
available for the addition of manufacturer-specific
functionality.

So the part of the OD describing the communica-

tion parameters is the same for all CANopen de-
vices (i.e. object placing in the OD is the same, not
necessarily the value of the object…), the device-
specific part of the OD is different for different
(classes of) devices.

CANopen Object Dictionary
Index Object

0000 not used
0001 - 001F Static Data Types (standard data types, e.g. Boolean, Integer16)
0020 - 003F Complex Data Types (predefined structures composed of standard

data types, e.g. PDOCommPar, SDOParameter)
0040 - 005F Manufacturer Specific Complex Data Types
0060 - 007F Device Profile Specific Static Data Types
0080 - 009F Device Profile Specific Complex Data Types
00A0 - 0FFF reserved
1000 - 1FFF Communication Profile Area

(e.g. Device Type, Error Register, Number of PDOs supported)
2000 - 5FFF Manufacturer Specific Profile Area
6000 - 9FFF Standardised Device Profile Area (e.g. "DSP-401 Device Profile for

I/0 Modules" [3]: Read State 8 Input Lines, etc.)
A000 - FFFF reserved

Table 2. General CANopen Object Dictionary structure ('Index' in hexadecimal notation).
The terms 'PDO' and 'SDO' denote CANopen communication objects, described in the next section.

CANopen 20-Mar-2000

5

Condition to trigger PDO

(B=both needed, O=one or both)
Trans-
Mission

Type SYNC* RTR* Event*

PDO
Transmission

0 B - B Sync, acyclic
1-240 O - - Sync, cyclic

241-251 - - - reserved
252 B B - Sync, after RTR
253 - O - Async, after RTR
254 - O O Async, manufacturer specific event
255 - O O Async, device profile specific event

*SYNC= SYNC-object received.
*RTR = Remote Transmission Request received (= a 'Remote Frame' CAN-message).
*Event = e.g. 'Change-of-Value' or timer-interrupt.

Table 3. Definition of PDO transmission types in CANopen; for types 1 to 240 the number indicates
the number of SYNC objects between two PDO transmissions.

3.2 CANopen communication

Now that we have presented the concept of the
Object Dictionary we now will look at the messages
that are communicated in CANopen networks, their
content and their function, in other words: the
CANopen communication model (see [2]).

NB: be sure to make the distinction between OD
objects (objects in the Object Dictionary) –
characterized by their OD index and sub-index, as
described in the previous section– and communica-
tion objects or messages, characterized by their
COB-ID or CAN-identifier, described in this sec-
tion.

The CANopen communication model defines four
types of messages (communication objects):

1. Administrative message:

 Layer management, network management
and identifier distribution services: i.e ini-
tialisation, configuration and supervision of
the network (the latter aspect includes
'node/life guarding': see below).

 Services and protocols are according to the
LMT, NMT and DBT service elements of
CAL. These services are all based on a Mas-
ter-Slave concept: in a CAN-network there
is only one LMT-, NMT- or DBT-master
and one or more slaves.

2. Service Data Object (SDO):

 An SDO provides a client access to entries
(objects) of a device OD (the device is the
server) using the object's OD index and sub-
index, contained in the first few bytes of the
CAN-message.

 An SDO is implemented as a CMS object of
type 'Multiplexed Domain' according to
CAL, thus permitting transfer of data of any
length (as data is split up over several CAN
messages if necessary, which is when data
occupies more than 4 bytes).
The protocol is of the 'confirmed service'
type: a reply is generated for every CAN
message (one SDO requires 2 CAN-
identifiers). The SDO request and reply mes-
sage always contain 8 bytes (the number of
non-significant bytes is shown as part of the
first byte, which carries protocol informa-
tion), thus communication via an SDO has a
considerable overhead.

3. Process Data Object (PDO):
 Is used to transfer real-time data; data is

transferred from one (and only one) pro-
ducer to one or more consumers. Data trans-
fer is limited to 1 to 8 bytes (for example:
one PDO can transfer at maximum 64 digital
I/O values, or 4 16-bit analogue inputs).
It has no protocol overhead. The data con-
tent of a PDO is defined through its CAN-
identifier only and this content is assumed
known to sender as well as receiver(s) of the
PDO.

 Each PDO is described by 2 objects in the
Object Dictionary:
♦ PDO Communication Parameter: con-

tains which COB-ID is used by the PDO,
the transmission type, inhibit time and
timer period (see below for more details).

♦ PDO Mapping Parameter: contains a list
of objects from the Object Dictionary
that are mapped into the PDO, including
their size in bits (the producer as well as
the consumers of a PDO have to know
the mapping to be able to interpret the
contents of a PDO).

CANopen 20-Mar-2000

6

 Contents of the PDO message is predefined
(or is configured at network start-up):

mapping of application objects into a PDO is
described in the devices' OD (producer as well
as consumer(s)) by the PDO Mapping Parame-
ter, and is configurable using SDO messages if
'variable PDO mapping' is supported by the de-
vice(s) (producer and consumers).

 A PDO can have a number of transmission
modes:
♦ synchronous (synchronization by receipt

of a SYNC object, see next message
type):

 acyclic (synchronized with respect to
SYNC message but not periodical):
 transmission is 'pre-triggered' by a

remote transmission request from
another device,

 transmission is 'pre-triggered' by
the occurrence of an object-
(device-)specific event specified
in the device profile.

 cyclic: transmission is triggered peri-
odically after every 1, 2 or up to 240
SYNC messages.

♦ asynchronous:
 transmission is triggered by a remote

transmission request (by a CAN Re-
mote Frame) from another device,

 transmission is triggered by the oc-
currence of an object (device) spe-
cific event specified in the device
profile (e.g. an input-change-of-value
or a timer event).

Table 3 gives an overview of the different
PDO transmission modes as defined by the
transmission type, part of the PDO Commu-
nication Parameter object and defined as an
unsigned 8-bit integer.

 A PDO can be assigned an inhibit time, de-
fining the minimum time between two con-
secutive PDO transmissions, to prevent
'starvation' on the network. Inhibit time is a
part of the PDO Communication Parameter
object and is defined as an unsigned 16-bit
integer in units of 100 µs.

 A PDO can be assigned an event timer pe-
riod where PDO transmission is triggered
periodically when a specified time has
elapsed (without the occurrence an alterna-
tive trigger); it is defined as an unsigned 16-
bit integer in units of 1 ms.

 A PDO is implemented as a CMS object of
type 'Stored-Event' according to CAL, mean-
ing that the data is transferred with no proto-
col overhead and that the message is not
confirmed (one PDO requires one CAN-
identifier);
a maximum of 8 bytes (64 bits) of data can
be transferred.

4. Predefined messages or Special Function Ob-

jects:
 Synchronization (SYNC)
♦ Used to synchronize tasks network-wide

(particularly relevant for drive applica-
tions): actual values of inputs are stored
quasi-simultaneously network-wide and
subsequently transmitted (if required),
output values are updated according to
messages received after the previous
SYNC.

♦ Master-slave concept: SYNC master is-
sues the periodic SYNC object, SYNC
slaves carry out their synchronous tasks
on reception.

♦ Transmission of a synchronous PDO is
within a given time window with respect
to the transmission of the SYNC mes-
sage.

♦ Implemented as a CMS object of type
'Basic Variable'.

♦ CANopen suggests a COB-ID in the
highest priority group to ensure a regular
synchronization signal; to keep the mes-
sage as short as possible no data bytes
are transferred.

 Time Stamp
♦ Provides application devices a common

time frame reference.
♦ Implemented as a CMS object of type

'Stored Event'.

 Emergency
♦ Is triggered by the occurrence of a device

internal error.
♦ Implemented as a CMS object of type

'Stored Event'.

 Node/Life Guarding
♦ Master-slave concept.
♦ The NMT master monitors the state of

the nodes: this is called node guarding.
♦ Nodes optionally monitor the state of the

NMT master: this is called life guarding;
it starts on the NMT slave after it has re-
ceived the first Node Guard message
from the NMT master.

♦ Detects errors in the network interfaces
of the devices, not failures in the device
itself: these are reported by means of the
Emergency.

♦ Implemented according to the NMT node
guarding protocol:
a Remote Transmission Request from the
NMT master to a particular node triggers
a reply containing the node's state.

CANopen 20-Mar-2000

7

Figure 2. Schematic relationship between CAN-bus communication, Object Dictionary and applica-
tion software on a CANopen device.

 Boot-up
♦ Master-slave concept.
♦ By sending this message the NMT slave

indicates to the NMT master that is has
transitioned from state Initialising to
state Preoperational (see section 3.5).

So two of the above-mentioned types of commu-

nication objects are meant for data transfer. They
implement two different mechanisms of data trans-
fer:
♦ SDO is used for (large,) low-priority data trans-

fer between devices, typically used for configur-
ing the devices on a CANopen network.

♦ PDO is used for fast data transfer of 8 bytes of
data or less without protocol overhead (the
meaning of the data content has been defined
beforehand).

A CANopen device has to support a number of the

network management services (administrative mes-
sages) and needs a minimum of one SDO. Each
CANopen device that produces or consumes proc-
ess data should have at least one PDO. All other
communication objects are optional.

For more details about the various CANopen

communication objects see [2]. See also section 3.6.

The relation between CAN communication, the
Object Dictionary and application software on a
CANopen device is schematically illustrated in
Figure 2.

3.3 CANopen Predefined Connec-
tion Set

In order to reduce configuration effort for simple

networks a mandatory default CAN-identifier allo-
cation scheme is defined. These identifiers are
available in the Pre-Operational state (see section
3.5 CANopen boot-up) immediately following ini-
tialisation and may be modified by means of dy-
namic distribution. A device has to provide the cor-

responding identifiers only for the supported com-
munication objects.

The allocation scheme is based on the division of

the 11-bit CAN-identifier into a 4-bit function code
part and a 7-bit node-identifier (Node-ID) part as
shown in Figure 3.

Figure 3. Structure of the 11-bit CAN-identifier
in the CANopen Predefined Master /
Slave Connection Set.

The Node-ID is defined by the system integrator,
for example by setting DIP switches on the device.
The Node-ID has to be in the range from 1 to 127
(0 (zero) not allowed).

The predefined connection set defines 4 Receive
PDOs, 4 Transmit PDOs, 1 SDO (occupying 2
CAN-identifiers), 1 Emergency Object and 1 Node-
Error-Control Identifier.

It also supports the broadcasting of non-
confirmed NMT-Module-Control services, SYNC-
and Time Stamp-objects.

The resulting CAN-identifier allocation scheme is
shown in Table 4.

The identifier distribution corresponds to a mas-
ter/slave connection set because all peer-to-peer
identifiers are different so that in fact only a master
device that knows all connected Node-IDs can
communicate to each individual connected slave
node (up to 127 nodes) in a peer-to-peer fashion.
Two connected slaves would not be able to com-
municate because they don't know eachother's
Node-ID.

Function Code Node-ID

10 9 8 7 6 5 4 3 2 1 0

← Bit number

Communication
Interface:

PDOs
SDOs,

Special Function
Objects,

NMT Objects

Object
Dictionary:

Data Types,

Communication
Objects,

Application
Objects

Application:

Application
Program,

Device Profile
Implementation

I / O CAN

CANopen device

CANopen 20-Mar-2000

8

Broadcast objects of the CANopen Predefined Master/Slave Connection Set

Object Function code
(ID-bits 10-7) COB-ID Communication

parameters at OD index
NMT Module Control 0000 000h –
SYNC 0001 080h 1005h, 1006h, 1007h
TIME STAMP 0010 100h 1012h, 1013h

Peer-to-Peer objects of the CANopen Predefined Master/Slave Connection Set

Object Function code
(ID-bits 10-7) COB-ID * Communication

parameters at OD index
EMERGENCY 0001 081h - 0FFh 1024h, 1015h
PDO 1 (transmit) 0011 181h - 1FFh 1800h
PDO 1 (receive) 0100 201h - 27Fh 1400h
PDO 2 (transmit) 0101 281h - 2FFh 1801h
PDO 2 (receive) 0110 301h - 37Fh 1401h
PDO 3 (transmit) 0111 381h - 3FFh 1802h
PDO 3 (receive) 1000 401h - 47Fh 1402h
PDO 4 (transmit) 1001 481h - 4FFh 1803h
PDO 4 (receive) 1010 501h - 57Fh 1403h
SDO (transmit/server) 1011 581h - 5FFh 1200h
SDO (receive/client) 1100 601h - 67Fh 1200h
NMT Error Control 1110 701h - 77Fh 1016h, 1017h

Table 4. Assignment of CAN-identifiers in the CANopen Predefined Master/Slave Connection Set.
("PDO/SDO transmit/receive" is from the (slave) CAN-node point of view). NMT Error Con-
trol includes Node Guarding, Heartbeat and Boot-up protocols.

* The COB-ID range covers the allowed Node-ID range from 1 to 127.

Comparing the identifier mapping of the default
CANopen set in Table 4 to the mapping of CAL in
Table 1 clearly shows how CANopen objects with
specific defined functions map to the general CMS
objects of CAL, illustrating how CANopen imple-
ments a system using the more general CAL facili-
ties.

3.4 CANopen identifier distribution

The allocation of CAN-identifiers (or COB-IDs)
in CANopen can take place in 3 different ways:

 using the Predefined Master/Slave Connection
Set (see previous section):
allocation of identifiers is default, so no con-
figuration is needed; configuration of PDO
data contents (socalled PDO mapping) is pos-
sible if the node supports it.

 modifying the PDO identifiers after power-up
(when the node is in Pre-Operational state; see

next section), using the (predefined) SDO to
write new values to the appropriate locations
in the node's Object Dictionary.

 using the CAL DBT (DistriBuTor) services:
nodes or slaves connected to a CANopen net-
work are initially identified by their configured
Node-ID. The Node-ID may be configured by
setting DIPswitches on the device or by use of
CAL Layer Management services (LMT).
When the network initializes and boots the
network master initially establishes a dialog
with each connected slave by means of a 'Con-
nect_Remote_Node' telegram (a CAL NMT
service). Once this dialog has been established
the CAN identifiers for communication of
SDOs and PDOs are allocated to the node us-
ing CAL Distribution services (DBT); it re-
quires the node to support extended boot-up
(see next section).

CANopen 20-Mar-2000

9

3.5 CANopen boot-up process

In the network initialisation process CANopen
supports a socalled extended boot-up as well as a
socalled minimum boot-up process.

Extended boot-up is optional, minimum boot-up
has to be supported by all CANopen devices or
nodes; both types of nodes can exist side-by-side on
the same network.

A node has to support the extended boot-up proc-

ess if the identifier distribution is by means of CAL
DBT services (see previous section).

Both initialisation processes can be represented

by a device or node state-transition diagram as
shown in Figure 4 for a minimum boot-up node.
The extended boot-up state diagram has a few more
states between the Pre-Operational and the Opera-
tional state.

NMT services are used to bring all or selected
nodes into various operating states at any time.

The CAN-message carrying this NMT service
consists of the CAN-header (with COB-ID=0) and
two data bytes, 1 byte containing the requested ser-
vice ('NMT command specifier') and the second
byte the Node-ID, or zero which addresses all nodes
simultaneously.

There is one node the CAN-network that acts as

the NMT-master. It issues the NMT messages and
controls the node initialization process.

CANopen devices supporting only the minimum
boot-up are also called minimum capability devices.
Minimum capability devices enter the Pre-
Operational state automatically after finishing the
device initialization. In this state device parameteri-
zation and COB-ID-allocation via SDO is possible.

By switching a device into the Prepared state it is
forced to stop communication altogether, except
NMT services, and node guarding, if supported and
active. ('Stopped' would be a better name to de-
scribe this state).

Figure 4. State transition diagram for a CANopen minimum boot-up node. The letters in brackets
show which communication object types are allowed inside the different states:
a. NMT, b. Node Guard, c. SDO, d. Emergency, e. PDO, f. Boot-up

State transitions (1-5: initiated by NMT services) and the NMT command specifier (in brackets):
1: Start_Remote_Node (0x01)
2: Stop_Remote_Node (0x02)
3: Enter_Pre-Operational_State (0x80)
4: Reset_Node (0x81)
5: Reset_Communication (0x82)
6: Device initialisation finished,
 enter Pre-Operational state automatically, send Boot-up message

Initialising
(f)

Pre-Operational
(a, b, c, d)

Stopped
(a, b)

Operational
(a, b, c, d, e)

Power-on

1

1

2

3
2

3

6 45

CANopen 20-Mar-2000

10

3.6 Details of CANopen
message syntax

In the following sections the COB-IDs used are

as defined in the CANopen Predefined Connection
Set.

3.6.1 NMT Module Control
Only the NMT-Master issues NMT Module Con-

trol messages. All slaves must support the NMT
Module Control services. There is no response to an
NMT Module Control message. The NMT message
has the following format:

NMT-Master ⇒ NMT-Slave(s)
COB-ID Byte 0 Byte 1

0x000 CS Node-ID

With Node-ID=0 (zero) all connected NMT

slaves are addressed. CS is the Command Specifier,
which can have the following values (also see
Figure 4):

Command
Specifier NMT Service

1 Start Remote Node
2 Stop Remote Node

128 Enter Pre-operational State
129 Reset Node
130 Reset Communication

3.6.2 NMT Node Guarding
Using Node Guarding the NMT-Master can check

on the current state of individual nodes, which is
especially useful when these nodes are not polled
for data on a regular basis.

The NMT-Master sends a CAN remote frame (no
data bytes) as follows:

NMT-Master ⇒ NMT-Slave
COB-ID

0x700 + Node_ID

The NMT-Slave replies with the following mes-

sage:

NMT-Master ⇐ NMT-Slave
COB-ID Byte 0

0x700 + Node_ID bit 7: toggle, bit 6-0: state

The data byte contains a toggle bit (bit 7) that

should alternate between '0' and '1' for every Node
Guard request (first time = 0).

Bits 0 to 6 denote the node's state which can be
one of the following (compare to Figure 4):

Value State

0 Initialising
1 Disconnected *
2 Connecting *
3 Preparing *
4 Stopped
5 Operational

127 Pre-operational

States marked with * are present only in nodes

that support extended boot-up (see previous sec-
tion). Note that state 0 never occurs in a Node
Guard reply because a node does not respond to
Node Guard messages when in this state.

Alternatively a node can be configured to produce

a periodical so-called Heartbeat message:

HEARTBEAT Producer ⇒ Consumer(s)
COB-ID Byte 0

0x700 + Node_ID state

with state any of the following:
state Meaning

0 Boot-up
4 Stopped
5 Operational

127 Pre-operational

When a node with a Heartbeat boots up its Boot-

up message (see next section) is its first Hearbeat
message. The Heartbeat consumer typically is the
NMT-master which should have a time-out for each
node with a Heartbeat and takes appropriate action
if a time-out occurs.

A node is not allowed to support both Node

Guarding and Heartbeat protocols at the same time.

3.6.3 NMT Boot-up
An NMT-Slave issues the Boot-up message to in-

dicate to the NMT-Master that it has entered the
state Pre-operational from state Initialising:

NMT-Master ⇐ NMT-Slave
COB-ID Byte 0

0x700 + Node_ID 0

CANopen 20-Mar-2000

11

3.6.4 PDO
As an example lets assume the mapping of the

second transmit-PDO is as follows (in CANopen
described by Object Dictionary entry 0x1A01):

Object 0x1A01: 2nd transmit PDO mapping

Subindex Value Meaning
0 2 2 objects are mapped

into the PDO
1 0x60000208 Object 0x6000, subin-

dex 0x02, consisting of
8 bits

2 0x64010110 Object 0x6401, subin-
dex 0x01, consisting of
16 bits

In the definitions of the CANopen Device Profile

for I/O modules (CiA DSP-401, [3]) Object 0x6000
sub 0x02 is the second set of 8 bits of digital inputs
on the node and Object 0x6401 sub 0x01 is the first
16-bit analog input on the node.

This PDO, if it is sent (triggered by a change of

input, a timer interrupt, a remote transmission re-
quest, etc., in accordance with the PDO's transmis-
sion type (see Table 3), to be found in Object
0x1801 subindex 2) thus consists of a CAN-
message with 3 data bytes and looks like this:

PDO-producer ⇒ PDO-consumer(s)
COB-ID Byte 0 Byte 1 Byte 2
0x280 +
Node_ID

8-bits
digital in

LSB 16-bit
analog in

MSB 16-bit
analog in

By changing the contents of Object 0x1A01 the

contents of the PDO can be changed (if the node
supports this (so-called variable PDO mapping)).

Note that in CANopen multi-byte parameters are

always sent LSB first (so-called little endian).

There can never be more than 8 bytes of data in

total mapped to a particular PDO.

In [5] a so-called multiplexor PDO (MPDO) is

defined, enabling a single PDO to be used for trans-
ferring a large number of variables by including in
its message bytes the source or destination node-id
and Object Dictionary index and subindex.

If for example a node has 64 16-bit analog chan-
nels it would otherwise need 16 different transmit-
PDOs to send its data if such a mechanism would
not be available.

3.6.5 SDO
The Service Data Object (SDO) is used to access

the Object Dictionary of a device. The requester of
the OD access is called the Client and the CANopen
device, whose OD is accessed and services the re-
quest, is called the Server. The Client CAN-
message as well as the reply Server CAN-message
always contain 8 bytes (although not all bytes nec-
essarily contain meaningful data). A Client request
is always confirmed by a reply from the Server.
There are 2 mechanisms for SDO transfer:
♦ Expedited transfer: used for data objects up to

4 bytes in length.
♦ Segmented transfer: for objects with length > 4

bytes.

The basic structure of an SDO is:

Client ⇒ Server / Server ⇒ Client
Byte 0 Byte 1-2 Byte 3 Byte 4-7
SDO

Command
Specifier

Object
Index

Object
Subindex **

(** up to 4 bytes data (expedited transfer)
 or a 4 bytes byte-counter (segmented transfer)

or parameters regarding block transfer
(new SDO transfer mechanism, see below))

or
Client ⇒ Server / Server ⇒ Client

Byte 0 Byte 1-7
SDO

Command
Specifier

up to 7 bytes of data
(segmented transfer)

The SDO Command Specifier contains the follow-

ing information:
♦ download / upload
♦ request / response
♦ segmented / expedited transfer
♦ number of data bytes in this CAN-frame
♦ alternating toggle bit for each subsequent seg-

ment

There are 5 request/response protocols imple-
mented in SDO: Initiate Domain Download,
Download Domain Segment, Initiate Domain
Upload, Upload Domain Segment and Abort
Domain Transfer.

CANopen 20-Mar-2000

12

In the latest version of the CANopen communica-

tion profile a new SDO transfer mechanism is in-
troduced:
♦ Block transfer: in which multiple segments are

confirmed by only 1 confirm message (from
Server in case of download, from Client in case
of upload) in order to increase bus throughput
for objects with length > 4 bytes, with associ-
ated protocols: Initiate Block Download,
Download Block Segment, End Block
Download, Initiate Block Upload, Upload
Block Segment and End Block Upload.

'Download' means writing to the Object Diction-

ary and 'Upload' means reading from the Object
Dictionary.

The SDO Command Specifier (first data byte of an
SDO CAN-message) syntax and details for each of
these protocols is shown in the tables below ("–"
stands for: don't care, should be zero).

Initiate Domain Download

Bit 7 6 5 4 3 2 1 0
Client⇒ 0 0 1 – n e s
⇐Server 0 1 1 – – – – –

n : valid if e=1 and s=1, otherwise 0; indicates the

number of bytes that do not contain data (bytes
8-n to 7 do not contain data).

e : 0 = normal transfer, 1 = expedited transfer.
s : size indicator, 0 = data set size not indicated,

1= data set size indicated.
e=0, s=0 : data bytes reserved for further use by

CiA
e=0, s=1 : data bytes contain byte-counter, byte 4:

LSB, byte 7: MSB
e=1 : data bytes contain data to be down-

loaded.

Download Domain Segment
Bit 7 6 5 4 3 2 1 0

Client⇒ 0 0 0 t n c
⇐Server 0 0 1 t – – – –

n : indicates the number of bytes that do not con-

tain data (bytes 8-n to 7 do not contain data);
zero if no segment size is indicated.

c : 0 = more segments to be downloaded, 1 = last
segment.

t : toggle bit, must alternate for each subsequent
segment (first time = 0; equal for request / re-
sponse).

Initiate Domain Upload

Bit 7 6 5 4 3 2 1 0
Client⇒ 0 1 0 – – – – –
⇐Server 0 1 0 – n e s

n, e, s: as for Initiate Domain Download.

Upload Domain Segment
Bit 7 6 5 4 3 2 1 0

Client⇒ 0 1 1 t – – – –
⇐Server 0 0 0 t n c

n, c, t: as for Download Domain Segment.

SDO Client or Server can abort an SDO transfer by
sending a message with the following SDO Com-
mand Specifier:

Abort Domain Transfer
Bit 7 6 5 4 3 2 1 0

C⇒/⇐ S 1 0 0 – – – – –

In case of an Abort Domain Transfer, data bytes 0

and 1 contain the Object index, byte 2 the Object
sub-index and data bytes 4 to 7 contains a 32-bit
abort code describing the reason of the abort.

Table 7 lists a number of abort codes and descrip-

tions as described in [2].

Initiate Block Download
Bit 7 6 5 4 3 2 1 0

Client⇒ 1 1 0 – – cc s 0
⇐Server 1 0 1 – – sc – 0

cc : client CRC support on data, 0 = no, 1 = yes.
sc : server CRC support on data, 0 = no, 1 = yes.
s : size indicator, 0 = data set size not indicated,

1= data set size indicated.
s=0 : data bytes reserved for further use by CiA
s=1 : data bytes contain byte-counter, byte 4: LSB,

byte 7: MSB
Server byte 4 contains blksize, the number of seg-
ments per block, with 0<blksize<128.

CANopen 20-Mar-2000

13

Download Block Segment

Bit 7 6 5 4 3 2 1 0
Client⇒ c 0
Client⇒ c 1
…etc… c seqno
⇐Server 1 0 1 – – – 1 0

c : more segments to download, 0=yes, 1=no.
seqno : sequence number of segment, 0<seqno<128.

Client data bytes contain at most 7 bytes of seg-
ment data to be downloaded.

Server byte 1 contains the sequence number of
the last segment that received successfully; if set to
0 it indicates that the segment with sequence num-
ber 1 was not received correctly and all segments
have to be retransmitted.

Server byte 2 contains blksize, the number of
segments per block that the client has to use for the
next block download, with 0<blksize<128.

End Block Download

Bit 7 6 5 4 3 2 1 0
Client⇒ 1 1 0 n – 1
⇐Server 1 0 1 – – – – 1

n : indicates the number of bytes in the last seg-

ment of the last block that do not contain data
(bytes 8-n to 7 do not contain data).

Client bytes 1+2 contain the 16-bit CRC for the
whole data set; the CRC is only valid if in Initiate
Block Download cc and sc were both set to 1.

Initiate Block Upload

Bit 7 6 5 4 3 2 1 0
Client⇒ 1 0 1 – – cc 0 0
⇐Server 1 1 0 – – sc s 0
Client⇒ 1 0 1 – – – 1 1

cc : client CRC support on data, 0 = no, 1 = yes.
sc : server CRC support on data, 0 = no, 1 = yes.
s : size indicator, 0 = data set size not indicated,

1= data set size indicated.
s=0 : data bytes reserved for further use by CiA
s=1 : data bytes contain byte-counter, byte 4: LSB,

byte 7: MSB
Client byte 4 contains blksize, the number of

segments per block, with 0<blksize<128.
Client byte 5 contains pst, Protocol Switch

Threshold in bytes to change the SDO transfer pro-
tocol, 0 = change of transfer protocol not allowed, 1
= if the size of the data in bytes that has to be up-
loaded is less or equal pst the Server can optionally
switch to Upload Domain protocol by responding
with the Initiate Domain Upload protocol.

Download Block Segment

Bit 7 6 5 4 3 2 1 0
⇐Server c 0
⇐Server c 1
…etc… c seqno
Client⇒ 1 1 0 – – – 1 0

c : more segments to upload, 0 = yes, 1 = no.
seqno : sequence number of segment, 0<seqno<128.

Server data bytes contain at most 7 bytes of
segment data to be downloaded.

Client byte 1 contains the sequence number of
the last segment that received successfully; if set to
0 it indicates that the segment with sequence num-
ber 1 was not received correctly and all segments
have to be retransmitted.

Client byte 2 contains blksize, the number of
segments per block that the Server has to use for the
next block upload, with 0<blksize<128.

End Block Upload

Bit 7 6 5 4 3 2 1 0
⇐Server 1 1 0 n – 1
Client⇒ 1 0 1 – – – – 1

n : indicates the number of bytes in the last seg-

ment of the last block that do not contain data
(bytes 8-n to 7 do not contain data).

Server bytes 1+2 contain the 16-bit CRC for the
whole data set; the CRC is only valid if in Initiate
Block Upload cc and sc were both set to 1.

CANopen 20-Mar-2000

14

Following below are a few examples to demon-

strate the use of the SDO to access a node's Object
Dictionary.

With the following SDO messages value 0x3FE is

written to Object Dictionary index 0x1801 sub-
index 3, of a node with Node-ID=2, using the Initi-
ate Domain Download protocol with expedited
transfer (2 bytes of data):
Client ⇒ Server (node #2)

Byte COB-ID 0 1 2 3 4 5 6-7
602 2B 01 18 03 FE 03 –

Client ⇐ Server (node #2)
582 60 01 18 03 – – –

With the following SDO messages the same Ob-

ject Dictionary index 0x1801 sub-index 3 is read
back from the node, using the Initiate Domain Up-
load protocol where the server replies with an ex-
pedited transfer (2 bytes of data):

Client ⇒ Server (node #2)

Byte COB-ID 0 1 2 3 4 5 6-7
602 40 01 18 03 – – –

Client ⇐ Server (node #2)
582 4B 01 18 03 FE 03 –

3.6.6 Emergency Object
Emergency messages are triggered by the occur-

rence of a device internal (fatal) error situation and
are transmitted from the concerned application de-
vice to the other devices with the highest priority.
They can be used for interrupt type error alerts.

An Emergency messages consists of 8 bytes and
has the following format:

Emergency-sender ⇒ Emergency-receiver(s)
COB-ID Byte 0-1 Byte 2 Byte 3-7

0x080 +
Node_ID

Emergency
Error Code

Error
Register
(Object
0x1001)

Manufac-
turer specific
error field

A list of hexadecimal Emergency Error Codes is

shown in Table 5. The 'xx' part of the codes in this
list is defined by the appropriate device profile.

Emergency
Error Code

Meaning

00xx Error Reset or No Error
10xx Generic Error
20xx Current
21xx current, device input side
22xx current, inside the device
23xx current, device output side
30xx Voltage
31xx mains voltage
32xx voltage inside the device
33xx output voltage
40xx Temperature
41xx ambient temperature
42xx device temperature
50xx Device hardware
60xx Device software
61xx internal software
62xx user software
63xx data set
70xx Additional modules
80xx Monitoring
81xx Communication
8110 CAN overrun
8120 Error Passive
8130 Life Guard Error or

 Heartbeat Error
8140 Recovered from Bus-Off
82xx Protocol Error
8210 PDO not processed

 due to length error
8220 Length exceeded
90xx External error
F0xx Additional functions
FFxx Device specific

Table 5. Emergency Error Codes (hexadeci-
mal; 'xx' is device-profile dependent
part).

CANopen 20-Mar-2000

15

The Error Register is contained in a device's Ob-

ject Dictionary (index 0x1001). The device can map
internal errors in this status byte, offering a quick
overview of errors currently present. The meaning
of the bits is shown in Table 6.

The Manufacturer specific error field may con-

tain any other device-dependent additional informa-
tion about the error.

Bit Error type
0 generic
1 current
2 voltage
3 temperature
4 communication
5 device profile specific
6 reserved (=0)
7 manufacturer specific

Table 6. Bit definition of the 8-bit Error Regis-
ter (Object 0x1001 in the CANopen
Object Dictionary).

Abort Code Description
0503 0000 Toggle bit not alternated
0504 0000 SDO protocol timed out
0504 0001 Client/Server command specifier not valid or unknown
0504 0002 Invalid block size (Block Transfer mode only)
0504 0003 Invalid sequence number (Block Transfer mode only)
0503 0004 CRC error (Block Transfer mode only)
0503 0005 Out of memory
0601 0000 Unsupported access to an object
0601 0001 Attempt to read a write-only object
0601 0002 Attempt to write a read-only object
0602 0000 Object does not exist in the Object Dictionary
0604 0041 Object can not be mapped to the PDO
0604 0042 The number and length of the objects to be mapped would exceed PDO length
0604 0043 General parameter incompatibility reason
0604 0047 General internal incompatibility in the device
0606 0000 Object access failed due to a hardware error
0606 0010 Data type does not match, lengh of service parameter does not match
0606 0012 Data type does not match, lengh of service parameter is too high
0606 0013 Data type does not match, lengh of service parameter is too low
0609 0011 Sub-index does not exist
0609 0030 Value range of parameter exceeded (only for write access)
0609 0031 Value of parameter written too high
0609 0032 Value of parameter written too low
0609 0036 Maximum value is less than minimum value
0800 0000 General error
0800 0020 Data can not be transferred or stored to the application
0800 0021 Data can not be transferred or stored to the application because of local control
0800 0022 Data can not be transferred or stored to the application because of the present device

state
0800 0023 Object Dictionary dynamic generation fails or no Object Dictionary is present (e.g. OD

is generated from file and generation fails because of a file error)

Table 7. SDO Abort Domain Transfer: descriptions of hexadecimal abort codes (in byte 4-7).

CANopen 20-Mar-2000

16

4 Summary

In summary the CANopen standard for communi-
cation on CAN-bus based networks has the follow-
ing features:

 Standardized description of device functional-
ity be means of a Device Object Dictionary.

 Standardized description of a device and its
configuration in the form of ASCII files: Elec-
tronic Data Sheet (EDS) and Device Configu-
ration File (DCF).

 Data exchange and system administration
based on CAL CMS.

 Standardized system boot-up and node guard-
ing based on CAL NMT.

 Definition of system-wide synchronous opera-
tions.

 Definition of node-specific emergency mes-
sages.

By conforming to the guidelines contained in the
CANopen communication profile and the appropri-
ate CANopen device profile two independent manu-
facturers can produce standardised devices, which
can be incorporated seemlessly into the same
CANopen CAN network.

The following 3 levels of compatibility can be
distinguished (in increasing order of compatibility):

 Conformance:
the device can be connected to a CANopen
network without disturbing the communica-
tion of the other devices: application layer
compatibility.

 Interoperability:
the device can exchange data with other nodes
in the network: communication profile com-
patibility.

 Interchangeability:
the device can substitute another one: device
profile compatibility.

A CANopen device requires at least (minimum

capability device):

 a node-id,
 an object dictionary (contents depending on

the device functionality),
 one SDO supporting the mandatory OD en-

tries (read-only),
 support of the following NMT slave services:

Reset_Node, Enter_Preoperational_State,
Start_Remote_Node, Stop_Remote_Node, Re-
set_Communication,

 default profile ID-allocation.

CANopen 20-Mar-2000

17

55 Example of a CANopen Ob-
ject Dictionary for Devices
with CS5525 ADCs

5.1 Introduction

The CS5525 ADC ([4]) is a highly integraded
A/D converter containing an instrumentation ampli-
fier, a programmable gain amplifier, a digital filter
with programmable output update rate, calibration
circuitry and 4 output latch pins which can be used
to control an external multiplexer to select any of
up to 16 inputs.

In the case of the CRYSTAL-CAN ([7]) and

SPICAN ([8]) hardware, there even can be 8, 16 or
32 inputs to every ADC and up to 24 ADCs per
CAN-node (for a total maximum number of 192
input channels).

The CANopen Device Profile for I/O Modules

(CiA DSP-401, [3]) is thus the natural starting point
for designing an Object Dictionary for our applica-
tions. The programmability of several ADC features
requires us (if we want to be able to use them) to
include some custom objects in the library. This is
not a problem since there is room for manufacturer
specific extensions in the profile.

The large number of inputs per CAN node makes
us want something called 'multiplexed PDOs',
found in another device profile, the CANopen De-
vice Profile for Measuring Devices and Closed-
loop Controllers (CiA DSP-404, [4]). Although this
is not an officially approved mechanism, if we
would not have it, we would need many different
PDOs per node to monitor all analogue inputs in an
efficient way (as mentioned earlier).

Note: this mechanism has been superseded by an
approved multiplexor PDO mechanism, as de-
scribed in [5].

5.2 ADC Read-out

If the user has the choice of multiple ADCs per

node and the number of (multiplexed) channels per
ADC is variable it has to be decided how to number
all the input channels present on a node. It has been
decided to reserve per ADC the maximum number
of channels an ADC can have (=32) and only per-
mit to read the valid channels. This means there
will be gaps in the numbering of channels from one
ADC to the next, but that should not pose a prob-
lem. So if a node has three ADCs with 10 multi-
plexed input channels each they would number 1 to
10, 32 to 42 and 64 to 74.

 (Another option would be to introduce one mul-

tiplexor per connected ADC and assign a PDO for
each ADC; a reason to do something like this could
be the fact that all ADCs can in fact perform a con-
version simultaneously, so that in principle new
data is always available from every individual
ADC).

The transmission of the PDO(s) with their con-

tents of ADC value(s) can be triggered in different
ways, e.g. at regular intervals using an on-board
timer, or after the transmission of a SYNC object or
RTR (Remote Transmission Request) by the 'master'
network-node, or by a combination of both events,
as shown earlier. The way a PDO transmission is
triggered should either be fixed (and documented in
the application documentation) or configurable via
the appropriate PDO Communication Parameter
object in the node's Object Dictionary (this object
contains among other things an 'inhibit time' with
which the on-board timer interval could be set).

One should realise that a conversion on this type

of ADC can take quite a long time (conversion rate
ranges from ca. 220 Hz down to around as low as 4
Hz), so that if a PDO is requested by SYNC or by
RTR (CAN Remote Frame) and the conversion is
started only then, the requester will have to wait for
the result for a longer time.

An option is to let the module continuously scan
its input channels, store the values locally and when
a PDO is requested send the last conversion value
of the appropriate input channel immediately. The
frequency of scanning the input channels of an
ADC could be matched to the above mentioned
'inhibit time'.

NB: in this way the frequency is connected to a
PDO, so if only one PDO per node is used all the
node's ADCs will be scanned with the same fre-
quency.

It is also possible to initiate a conversion of a par-

ticular channel and get the result using an SDO.
This is done by reading the appropriate analog input
channel from the node's Object Dictionary (using an
SDO message), which we will choose to map under
OD-index 6404H with 'channel number' as the sub-
index. These are the indices according to DSP-401
for reading manufacturer specific analog input (we
require only 24-bit: 16-bit (or 20-bit if the CS5526
ADC is used) data plus 4-bit status).
Reading the inputs from the OD by means of SDO,
by the way, is a slow way of reading out the ADCs,
creating a lot of overhead on the CAN-bus.

CANopen 20-Mar-2000

18

5.3 ADC Configuration and Cali-
bration

To enable configuration (e.g. number of inputs,

input voltage range, etc) and calibration of individ-
ual ADCs we have introduced a number of objects:
an ADC-configuration object, an ADC-calibration-
configuration object and an ADC-reset-and-
calibrate object; one each of these objects should
be present for every ADC connected to the node.
The objects are specific to our applications so we
will place them in the Manufacturer Specific Profile
Area (OD-index 2000H to 5FFF).

The ADC-reset-and-calibrate objects serve to
generate a reset and a calibration sequence on the
corresponding ADC, when written to. The ADC-
calibration-configuration object determines the pa-
rameters of the calibration sequence (see [4]).

The ADC-configuration object contains (see [4] for
details):

 the number of input channels multiplexed to
this ADC

 the offset register contents
 the gain register contents
 the conversion word rate
 the input voltage range
 unipolar or bipolar measurement mode
 power save mode

The ADC-calibration-configuration object contains
(see [4] for details):

 conversion word rate during calibration
 offset (zero-scale) calibration type (system

or self)

 input channel number in case of system off-
set calibration

 gain (full-scale) calibration type (system
oself)

 input channel number in case of system gain
calibration

 offset (offset register content after calibra-
tion)

 gain (gain register content after calibration)

In some applications with CS5525 ADCs, these
objects might be completely predefined and un-
changeable; therefore they need not be readable
OD-objects on the node; it would be sufficient
when the application documentation lists the ob-
jects and their values.

5.4 The Object Dictionary

The following tables show in detail an Object
Dictionary (OD) for a device with multiple CS5525
ADCs each with multiple analogue input channels.

Note that the OD described here is shown purely
as an example and has not been implemented as
such.

There are three tables: one for each of the follow-

ing OD parts: a communication, a device-profile
and a device-specific (manufacturer-specific) part.

The column 'Attr' shows the access rights attrib-

ute of an object: RO=read-only (value can change),
RW=read-or-write, WO=write-only.

This OD is based on the CiA device profile for

I/O modules DSP-401 ([3]) and borrows some stuff
from DSP-404 ([4], superseded now…). The ana-
logue inputs are mapped onto the second transmit
PDO as in DSP-401.

CANopen 20-Mar-2000

19

Communication Profile Area
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default
(hex)

Comment

1000 - Device type U32 RO 00040191 Meaning: DSP-401, analogue

inputs on device
1001 - Error register U8 RO 0 Error bits according to DS-301

(error status overview)
1002 - Manufacturer status reg * U32 RO 0 ADC errors/timeouts, etc.
1003 Predefined error field Array Contains list of recent errors
1004 #PDOs supported Array

 0 Total #PDOs supported U32 RO 00000001 0 receive, 1 transmit PDO
 1 #PDOs sync U32 RO 00000000 PDO after SYNC
 2 #PDOs async U32 RO 00000001 PDO after RTR or 'event'

1008 - Manufacturer device name VisStr RO "xxxx" E.g. "CCTS" (Crystal-Can with
Temperature Sensors"

1009 - Manufacturer hardware
version

VisStr RO "xxxx" 4-byte ASCII string

100A - Manufacturer software
version

VisStr RO "xx.x" A version number as a 4-byte
ASCII string, e.g, " 1.0"

100B - Node identifier U32 RO

100F - #SDOs supported U32 RO 00000001 0 client, 1 server SDO

1801 2nd transmit PDO parame-
ters

Record Data type = PDOCommPar

 0 Number of entries U8 RO 3
 1 COB-ID used by PDO U32 RO 280+

Node-ID
According to CANopen Prede-
fined Connection Set

 2 Transmission type ♣ U8 RW FD 253 decimal
 3 Inhibit time ♣

(in units of 100 µs)
U16 RW 1000 If >0 node scans inputs with cor-

responding frequency (per ADC)
Limitation:
0.2 Hz <= frequency <= 25 Hz
(50000 >= inhibit time >= 400)

1A01 2nd transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Multiplexor 1 U32 RO 6F100108 OD-index 6F10, sub-index 1:

Multiplexor 1 (see DSP-404);
Size = 8 bits

 2 24-bit analogue input U32 RO 6404FD18 OD-index 6404, sub-index 253:
Analogue input, via multiplexor;
Size = 24 bits

Table 8. Communication Profile Area of the CANopen Object Dictionary for a device with CS5525 ADCs.

* See text for the layout of the Manufacturer Status Register.
♣ if inhibit time = 0: transmission type 254,253 => one ADC conversion and PDO transmission after an RTR

transmission type 1 => one ADC conversion and PDO transmission after a SYNC
if inhibit time > 0: transmission type 254 => scan ADC(s), a PDO transmission after every conversion

transmission type 253 => scan ADC(s), one PDO transmission after an RTR
transmission type 1 => scan ADC(s), one PDO transmission after each SYNC

CANopen 20-Mar-2000

20

The status of every CS5525 ADC channel can be
read from the conversion status, which is part of the
channel read-out value. Other types of errors we log
in the Manufacturer Status Register (Object Dic-
tionary index 0x1002), a 32-bit object, thus provid-
ing 4 bits per ADC if we allow a maximum of 8
ADCs per node:

Bits 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
ADC #7 #6 #5 #4 #3 #2 #1 #0

We propose the following definition of bits:

Bit 3 Bit 2 Bit 1 Bit 0
(not used) Calibration error:

- error during calibra-
tion procedure

Conversion error:
- timeout waiting for

conversion-ready

Reset error:
- reset bit not set

and/or
- error in default register

contents

In case digital inputs are present objects 1800H

(1st transmit PDO communication parameters) and
1A00H (1st transmit PDO mapping) should be
added to the communication part of the Object Dic-
tionary.

In case digital outputs are present objects 1400H
(1st receive PDO communication parameters) and
1600H (1st receive PDO mapping) should be added
to the communication part of the Object Dictionary;
all according to DSP-401.

Possible extensions to the device profile part of
the OD could be made –for example– in connection
with analogue input limit and interrupt settings, for
which the DSP-401 device profile provides several
OD-entries. When these capabilities are present the
node can monitor inputs and only send a message
e.g. when certain limits are exceeded or when an
input changes more rapidly then a certain set limit.

Standardised Device Profile Area
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default
(hex)

Comment

6404 Read analogue input

Manufacturer-specific
Record

 0 Number of entries U8 RO Variable, depending on hardware
Configuration

 1 Input 1 I24 RO 1st analog input (24-bit)
 2 Input 2 I24 RO 2nd " " "
 … … … … …
 192 Input 192 I24 RO 192th " " "
 252 Multiplexor number U8 RO 1 Defines which mux in the OD is

used; but in this profile we won't
define the mux itself (DSP-404)

 253 Input via multiplexor I24 RO Read input #<mux1> (DSP-404)

Table 9. Standardised Device Profile Area of the CANopen Object Dictionary for a device with CS5525
ADCs (providing 192 input channels, sufficient for six 32-channel ADCs).

CANopen 20-Mar-2000

21

Manufacturer-specific Profile Area
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default
(hex)

Comment

2A00 ADC-configuration 1

ADC#0
Record

 0 Number of entries U8 RO 7
 1 Number of input channels U8 RW In the range [0,32]

 2 Conversion Word Rate U8 RW 0 3-bit code 2
 3 Input Voltage Range U8 RW 0 3-bit code 3
 4 Unipolar/Bipolar

Measurement Mode
U8 RW 0 0 = bipolar, 1 = unipolar

 5 Power Save Mode U8 RW 0 1 = power save
 6 Offset Register U32 RW CS5525 Offset Register
 7 Gain Register U32 RW CS5525 Gain Register

2A01 ADC-configuration
ADC#1

Record

… … …
2A07 ADC-configuration

ADC#7
Record Max. 8 ADCs can be connected

to CRYSTAL-CAN / SPICAN

2B00 ADC-calibration-
configuration ADC#0

Record

 0 Number of entries U8 RO 7
 1 Conversion word rate dur-

ing calibration
U8 RO 0 3-bit code 2

(always set to 15.02 Hz)
 2 Offset calibration type U8 RW 3-bit code 4
 3 Offset calib input channel U8 RW In the range [0,31]
 4 Gain calibration type U8 RW 3-bit code 4
 5 Gain calib input channel U8 RW In the range [0,31]
 6 Offset value U32 RO 24-bits significant
 7 Gain value U32 RO 24-bits significant
2B01 ADC-calibration-

configuration ADC#1
Record

… … …
2B07 ADC-calibration-

configuration ADC#7
Record Max. 8 ADCs can be connected

to CRYSTAL-CAN / SPICAN

2C00 - ADC-reset-and-calibrate 1 U8 WO n Reset ADC#n (0<=n<=7) and
perform a calibration sequence

2D00 - ADC-reset 1 U8 WO n Reset ADC#n (0<=n<=7)

Table 10. Manufacturer-specific Profile Area of the CANopen Object Dictionary for a device with CS5525-
ADCs.

1 write access allowed only when ADC-input scanning not active (PDO inhibit time = 0)

2 000: 15.02 Hz, 001: 30.06 Hz, 010: 60.01 Hz, 011: 123.18 Hz,

100: 168.9 Hz, 101: 202.27 Hz, 110: 3.76 Hz, 111: 7.51 Hz

3 000: 100 mV, 001: 55 mV, 010: 25 mV, 011: 1 V, 100: 5 V

4 001: offset self-calibration, 010: gain self-calibration,

101: offset system-calibration, 110: gain system-calibration

CANopen 20-Mar-2000

22

5.5 Emergency Objects

Table 11 lists the contents of the Emergency Ob-
ject message for different types of internal device
errors. This is a preliminary list of the error mes-
sages defined and implemented sofar.

The Emergency Error Codes are defined by the

Communication Profile [2] and the DSP-401 De-
vice Profile [3]; the Error Register bits are defined
by DSP-401 [3]. See section 3.6.6.

Error
Description

Emergency
Error Code

(byte 0-1)

Error Register
(Object 1001H)

(byte 2)

Manufacturer-specific Error Field
(byte 3-7)

Watchdog reset 0x6000 0x01 Byte 3,4,5,6: Manufacturer Device Name

(Object Dictionary index 0x1008)
Byte 7: 0

CAN-controller
overrun:
message lost

0x8100 0x10 Byte 3: 1
Byte 4: counter (modulo 256)
Byte 5: CANSTA (CAN-controller status register)
Byte 6,7: 0

CAN-controller
error:
communication
error

0x8100 0x10 Byte 3: 2
Byte 4: counter (modulo 256)
Byte 5: CANSTA (CAN-controller status register)
Byte 6,7: 0

Local CAN
message buffer
overflow:
message lost

0x8100 0x10 Byte 3: 3
Byte 4: counter (modulo 256)
Byte 5: CANSTA (CAN-controller status register)
Byte 6,7: 0

ADC:
conversion
timeout

0xFF00 0x80 Byte 3: 1
Byte 4: ADC number (0..7)
Byte 5,6,7: 0

ADC:
reset failed

0xFF00 0x80 Byte 3: 2
Byte 4: ADC number (0..7)
Byte 5,6,7: 0

ADC:
offset calibra-
tion failed

0xFF00 0x80 Byte 3: 3
Byte 4: ADC number (0..7)
Byte 5,6,7: 0

ADC:
gain calibration
failed

0xFF00 0x80 Byte 3: 4
Byte 4: ADC number (0..7)
Byte 5,6,7: 0

Table 11. Emergency Objects for a CS5525-ADC CANopen device.

CANopen 20-Mar-2000

23

References

[1] CAN-in-Automation,

CAL, CAN Application Layer for Industrial Applications,
CiA Draft Standard DS-201 to DS-207, Version 1.1, Feb 1996.

[2] CAN-in-Automation,

CANopen, CAL-based Communication Profile for Industrial Systems,
CiA DS-301, Version 4.0, June 16 1999.

[3] CAN-in-Automation,

CANopen Device Profile for I/O Modules,
CiA DSP-401, Version 1.4, Dec 1996.

[4] CAN-in-Automation,

CANopen Device Profile for Measuring Devices and Closed-Loop Controllers,
CiA DSP-404, Revision 1.11, Nov 27 1997.

[5] CAN-in-Automation,

Framework for Programmable CANopen Devices,
CiA DSP-302, Version 2.0, Nov 27 1998.

[6] CS5525/CS5526 16-bit / 20-bit multi-range ADC with 4-bit latch,

data sheet, Crystal Semiconductor Corporation, Sep 1996.

[7] H.Boterenbrood,

Crystal-CAN, a CAN-bus node for monitoring multiple distributed analog signals
(prototypes for B-field and Temperature monitoring in ATLAS),
Version 1.4, NIKHEF internal documentation, Oct 24 1997

[8] H.Boterenbrood,

SPICAN CANopen I/O-system (for analog inputs), user documentation,
Version 2.1, NIKHEF internal documentation, Jan 14 2000

	Introduction
	CAL
	CANopen
	CANopen Object Dictionary
	CANopen communication
	CANopen Predefined Connection Set
	CANopen identifier distribution
	CANopen boot-up process
	Details of CANopen�message syntax
	NMT Module Control
	NMT Node Guarding
	NMT Boot-up
	PDO
	SDO
	Emergency Object

	Summary
	Example of a CANopen Object Dictionary for Devices with CS5525 ADCs
	Introduction
	ADC Read-out
	ADC Configuration and Calibration
	The Object Dictionary
	Emergency Objects

	References

