
GCC, the GNU Compiler Collection, is a tool used by nearly every
embedded engineer, even those who don’t target Linux. In release
since 1987, supporting every processor known to man, GCC is a
juggernaut of software engineering that, because of its ubiquity
and ease of use, doesn’t get the admiration it deserves.

When used in an embedded project, GCC capably does another
trick, cross-compilation, without complaint. Simply invoke the compiler
and the right things will happen. Under the covers, GCC is a very
complex tool with lots of knobs to turn to fine-tune the compilation
and linking process; this article looks at how to build a GCC cross-
compiler, examines the process that GCC uses to compile a program
and shares some productivity-boosting tips and tricks.

Building a Cross-Compiler
When starting an embedded project, the first tool needed is a
cross-compiler, a compiler that generates code intended to work
on a machine different from the one on which the code generation
occurred. Sometimes, it’s possible to obtain a prebuilt cross-compiler
(from a commercial or noncommercial source), short-circuiting
the need to build from source; however, some projects require
that all tools must be re-creatable from source. No matter why
GCC needs to be built, there are several different approaches to
building a cross-compiler.

Quite possibly the easiest way is by using the crosstool Project, created
by Dan Kegel and hosted at www.kegel.com/crosstool. Using this
project involves downloading the source code and making one of the
presupplied files feed the right parameters into the script that builds the
compiler. The matrix of supported platforms and software versions can be
found at www.kegel.com/crosstool/crosstool-0.43/buildlogs, and
choosing something that’s marked as working will yield a compiler in a
few hours. crosstool will download the right software, even the patches,
necessary to make the software work on the target platform. However, if
the project requires support for an alternate C library, crosstool becomes
more difficult to use.

Because many developers want to use uClibc, a smaller implemen-
tation of the C library, it’s fortunate that this project has something
similar to crosstool, called buildroot, located at buildroot.uclibc.net.
As a bonus, buildroot, along with building a cross-compiler, also can
be used to build a root filesystem for the board based on the related
BusyBox Project. The user configures a buildroot run using a process
similar to that of the kernel configuration to ready the build. This
project doesn’t have a chart of known working configurations like
crosstool, so finding a working configuration can be difficult.

Finally, for the type of person who doesn’t like the idea of wading

through somebody else’s build scripts when things don’t work, build-
ing a cross-complier by hand isn’t as daunting a process as one would
expect. The following steps outline the process, where $TARGET is the
target processor and $INSTALLAT is the directory where the compiler
will reside after being built:

1. Download and build binutils:

$ tar xzf binutils-<version>.tar.gz

$./binutils-<version>/configure --target=$TARGET --prefix=$INSTALLAT

$ make ; make install

2. Copy the include and asm from the board’s kernel to the
installation directory:

$ mkdir $INSTALLAT/include

$ cp -rvL $KERNEL/include/linux $KERNEL/include/asm $INSTALLAT/include

3. Download and build bootstrap GCC. At this point, it’s best to
build the bootstrap GCC in its own directory and not the directory
where it has been unpacked:

$ tar xzf gcc-<version>.tar.gz

$ mkdir ~/$TARGET-gcc ; cd ~/$TARGET-gcc

$../gcc-<version>/configure --target=$TARGET --prefix=$INSTALLAT

--with-headers=$INSTALLAT/include --enable-languages="c" -Dinhibit_libc

$ make all ; make install

4. Download and build glibc (or alternate libc) with the bootstrap
compiler. Like GCC, the build of the library works best when you
configure and make outside the source tree:

$ tar xzf glibc-<version> --target=$TARGET --prefix=$INSTALLAT

--enable-add-ons --disable-sanity-checks

$ CC=$INSTALLAT/bin/$TARGET-gcc make

$ CC=$INSTALLAT/bin/$TARGET-gcc make install

5. Build the final GCC. The bootstrap compiler was built to build
the C library. Now, GCC can be built to use the cross-compiled C
library when building its own programs:

$ cd ~/$TARGET-gcc

$../gcc-<version>/configure --target=$TARGET --prefix=$INSTALLAT

--with-headers=$INSTALLAT/include --enable-languages="c"

$ make all ; make install

70 | january 2008 www.l inux journa l .com

INDEPTH

GCC for Embedded
Engineers
Read along to understand how GCC works, find out what all those other programs
in the toolchain directory do, and learn some tips and tricks to become more
comfortable with most indispensable tool in your project. GENE SALLY

www.l inux journa l .com january 2008 | 71

At the end of this process, the newly built cross-compiler will be at
$INSTALLAT/bin. An oft-used strategy for those needing a specially
configured GCC is to use crosstool or buildroot to download and
patch the source files and then interrupt the process. At this point,
the user applies additional patches and builds the components with
the desired configuration settings.

Before leaving this section, there’s a frequently asked question
from embedded engineers targeting Pentium machines doing develop-
ment on desktops that are essentially same. In this case, is a cross-
compiler necessary? The answer is yes. Building a cross-compiler for
this configuration insulates the build environment and library depen-
dencies from the development machine that happened to be used to
build the source code. Because desktop systems can change revisions
several times a year, and not all team members may be using the
same version, having a consistent environment for compiling the
embedded project is essential to eliminate the possibility of build
configuration-related defects.

The Toolchain: More Than Just a Compiler
The collection of programs necessary to compile and link an applica-
tion is called the toolchain, and GCC, the compiler, is only one
part. A complete toolchain consists of three separate parts: binutils,
language-specific standard libraries and the compiler. Notably
absent is the debugger, which is frequently supplied with the
toolchain but is not a necessary component.

binutils
binutils (binary utilities), performs the grunt work of manipulating files
in a way that’s appropriate for the target machine. Key parts of the
toolchain, such as the linker and assembler, reside in the binutils
Project and aren’t part of the GCC Project.

Hidden inside the binutils Project is another nifty bit of software,
the BFD library, which technically is a separate project. The BFD, Binary
Descriptor Library (the actual acronym unpacks to something too
bawdy for this publication), provides an abstract, consistent interface
to object files, such as handling details like address relocation, symbol
translation and byte order. Because of the features supplied by BFD,
most tools that need to read or manipulate binaries for target reside in
the binutils Project to best take advantage of what BFD has to offer.

For the record, binutils contains the following programs:

■ addr2line: given a binary with debugging information and an
address, returns the line and file of that address.

■ ar: a program for creating code archives that are a collection of
object files.

■ c++filt: demangles symbols. With classes and overloading, the
linker can’t depend on the underlying language to provide unique
symbol names. c++filt will turn _ZN5pointC1ERKS_ into something
readable. A godsend when debugging.

■ gprof: produces reports based on data collected when running
code with profiling enabled.

■ nlmconv: converts an object file into a Netware Loadable Module
(NLM). If you’ve ever worked with NLMs, you probably did so with

your collar turned up and cringed when seeing ABEND on
your terminal. It’s noted here because nlmconv is rarely, if ever,
distributed with a toolchain.

■ nm: given an object file, lists symbols such as those in the
public section.

■ objcopy: translates a file from one format to another, used in the
embedded file to generate S-Records from ELF binaries.

■ objdump/readelf: reads and prints out information from a binary
file. readelf performs the same function; however, it can work only
with ELF-formatted files.

■ ranlib: a complement to ar. Generates an index of the public
symbols in an archive to speed link time. Users can get the same
effect by using ar -s.

■ size: prints out the size of various components of a binary file.

■ strings: extracts the strings from a binary, performing correct target
host byte order translation. It’s frequently used as the slacker’s way
of seeing what libraries a binary links to, as ldd doesn’t work for
cross-compiled programs: strings <binary> | grep lib.

■ strip: removes symbols or sections, typically debugging information,
from files.

Table 1. Pros and Cons of Most Frequently Used C Libraries

Library Pros Cons

glibc The canonical C library; Size; configurability;
contains the greatest can be hard
amount of support for to cross-build.
all C features; very
portable; support for
the widest number of
architectures.

uClibc Small (but not the Not well supported on
smallest); very configurable; all architectures;
widely used; active handles only UTF-8
development team multibyte characters.
and community.

DietLibC Small, small, small; Least functionality;
excellent support for no dynamic linking;
ARM and MIPS. documentation.

NewLib Well supported by Smallish community;
Red Hat; best support not updated frequently.
for math functions;
great documentation.

72 | january 2008 www.l inux journa l .com

C Library
The C language specification contains only 32 keywords, give or take
a few, depending on the compiler’s implementation of the language.
Like C, most languages have the concept of a standard library supply-
ing common operations, such as string manipulation, and an interface
to the filesystem and memory. The majority of the programming that
happens in C involves interacting with the C library. As a result, much
of the code in the project isn’t written by the engineers, but rather is
supplied by the standard libraries. Picking a standard library that has
been designed to be small can have a drastic impact on the final size
of the project.

Most embedded engineers opt for using a C library other than
the standard GNU C Library, otherwise known as glibc, to conserve
resources. glibc was designed for portability and compatibility, and
as such, it contains code for cases not encountered or that can be
sacrificed on an embedded system. One example is the lack of binary
compatibility between releases of the library. Although glibc rarely
breaks an interface once published, embedded standard libraries do
so without any qualms.

Table 1 outlines the most frequently used C libraries, with the pros
and cons of each.

Preprocessor and Compiler
These components perform only a small slice of the work necessary to
produce an executable. The preprocessor, for languages that support
such a concept, runs before the compiler proper, performing text
transformations before the compiler transforms the input into machine
code for the target. During the compilation process, the compiler
performs optimizations as specified by the user and produces a
parse tree. The parse tree is translated into assembler code, and the
assembler uses that input to make an object file. If the user wants
to produce an executable binary, the object file is then passed to
the linker to produce an executable.

How It All Fits Together
After looking at all the components in a toolchain, the following
section steps through the process GCC takes when compiling C
source files into a binary. The process starts by invoking GCC with
the files to be compiled and a parameter specifying output to be
stored to thebinary:

armv5l-linux-gcc file1.c file2.c -o thebinary

GCC is actually a driver program that invokes the underlying

compiler and binutils to produce the final executable. By looking at
the extension of the input file and using the rules built in to the
compiler, GCC determines what programs to run in what order to
build the output. To see what happens in order to compile the file,
add the -### parameter:

armv5l-linux-gcc -### file1.c file2.c -o thebinary

This produces virtual reams of output on the console. Much of
the output has been clipped, saving untold virtual trees, to make it
more readable for this example. The first information that appears
describes the version of the compiler and how it was built—very
important information when queried “was GCC built with thumb-
interworking disabled?”

Target: armv5l-linux

Configured with: <the contents of a autoconf command line>

Thread model: posix

gcc version 4.1.0 20060304 (TimeSys 4.1.0-3)

After outputting the state of the tool, the compilation process
starts. Each source file is compiled with the cc1 compiler, the “real”
compiler for the target architecture. When GCC was compiled, it was
configured to pass certain parameters to cc1:

"/opt/timesys/toolchains/armv5l-linux/libexec/gcc/

➥armv5l-linux/4.1.0/cc1.exe" "-quiet" "file1.c"

➥"-quiet" "-dumpbase" "file1.c" "-mcpu=xscale"

➥"-mfloat-abi=soft" "-auxbase" "file1" "-o"

➥"/cygdrive/c/DOCUME~1/GENESA~1.TIM/LOCALS~1/Temp/ccC39DVR.s"

Now the assembler takes over and turns the file into object code:

"/opt/timesys/toolchains/armv5l-linux/lib/gcc/

➥armv5l-linux/4.1.0/../../../../armv5l-linux/bin/as.exe"

➥"-mcpu=xscale" "-mfloat-abi=soft" "-o"

➥"/cygdrive/c/DOCUME~1/GENESA~1.TIM/LOCALS~1/Temp/ccm4aB3B.o"

➥"/cygdrive/c/DOCUME~1/GENESA~1.TIM/LOCALS~1/Temp/ccC39DVR.s"

The same thing happens for the next file on the command line,
file2.c. The command lines are the same as those for file1.c, but with
different input and output filenames.

After compilation, collect2 performs a linking step and looks for
initialization functions (called constructor functions, but not in the
object-oriented sense) called before the “main” section of the pro-
gram. collect2 gathers these functions together, creates a temporary
source file, compiles it and links that to the rest of the program:

"/opt/timesys/toolchains/armv5l-linux/libexec/gcc/

➥armv5l-linux/4.1.0/collect2.exe" "--eh-frame-hdr"

➥"-dynamic-linker" "/lib/ld-linux.so.2" "-X" "-m"

➥"armelf_linux" "-p" "-o" "binary" "/opt/timesys/

➥toolchains/armv5l-linux/lib/gcc/armv5l-linux/

➥4.1.0/../../../../armv5l-linux/lib/crt1.o"

➥"/opt/timesys/toolchains/armv5l-linux/lib/gcc/

➥armv5l-linux/4.1.0/../../../../armv5l-linux/lib/crti.o"

➥"/opt/timesys/toolchains/armv5l-linux/lib/gcc/

INDEPTH

Finally, for the type of person
who doesn’t like the idea of wading

through somebody else’s build
scripts when things don’t work,

building a cross-complier by
hand isn’t as daunting a process

as one would expect.

➥armv5l-linux/4.1.0/crtbegin.o"

➥"-L/opt/timesys/toolchains/armv5l-linux/lib/

➥gcc/armv5l-linux/4.1.0" "-L/opt/timesys/

➥toolchains/armv5l-linux/lib/gcc/armv5l-linux/

➥4.1.0/../../../../armv5l-linux/lib"

➥"/cygdrive/c/DOCUME~1/GENESA~1.TIM/LOCALS~1/

➥Temp/ccm4aB3B.o" "/cygdrive/c/DOCUME~1/

➥GENESA~1.TIM/LOCALS~1/Temp/cc60Td3s.o"

➥"-lgcc" "--as-needed" "-lgcc_s" "--no-as-needed"

➥"-lc" "-lgcc" "--as-needed" "-lgcc_s" "--no-as-needed"

➥"/opt/timesys/toolchains/armv5l-linux/lib/

➥gcc/armv5l-linux/4.1.0/crtend.o" "/opt/timesys/

➥toolchains/armv5l-linux/lib/gcc/armv5l-linux/

➥4.1.0/../../../../armv5l-linux/lib/crtn.o"

There are some other nifty things in here that warrant
pointing out:

1. Here’s the option that specifies the dynamic linker to invoke
when running the program on the target platform:

"-dynamic-linker" "/lib/ld-linux.so.2"

On Linux platforms, dynamically linked programs actually load by
running a dynamic loader, making themselves a parameter of the
linker, which does the work of loading the libraries into memory and
fixing up the references. If this program isn’t in the same place on
the target machine, the program will fail to run with an “unable to
execute program” error message. A misplaced linker on the target
ensnares every embedded developer at least once.

2. These files contain the code before the programmer’s entry
point (typically main, but you can change that too) and handle things
like initialization of globals, opening the standard file handles, making
that nice array of parameters and other housekeeping functions:

■ crtbegin.o

■ crt1.o

■ crti.o

3. Likewise, these files contain the code after the last return,
such as closing files and other housekeeping work. Like the prior
items, these are cross-compiled during the GCC build:

■ crtend.o

■ crtn.o

And, that’s it! At the end of this process, the output is a program
ready for execution on the target platform.

The spec File
Recall that GCC is a driver program that knows what program to
invoke to build a certain output, which begs the question, “How
does it know that?” This information that was built in to GCC
when it was built is kept in the “specs”. To see the specs, run
GCC with the -dumpspecs parameters:

Linux Server

Microsoft Server

FreeBSD Server

Solaris Server

GENSTOR STORAGE SOLUTIONS:

Storage options - FC to SATA/SAS, FC to FC
SAS to SAS/SATA, SCSI to SATA, SCSI to SCSI
Exceptional Performance with Proven Reliability
24 TB in 4U with easy upgrade path
Host Servers and Storage comes Pre-Configured

Fully redundant Storage solutions

with heterogeneous OS- Linux, * BSD, Solaris
Microsoft etc.

_

_

_

_

_

Features:

_
_

_

1U rack-optimized chassis (1.75in.)
Up to 2 Quad Core Intel ® Xeon ® Woodcrest per
Node with 1333 MHz system bus
Up to 16 Woodcrest Cores Per 1U rackspace

www.genstor.com
Email: sales@genstor.com
Phone: 1-877-25 SERVER

780 Montague Express. #604
San Jose, CA 95131

 1-408-383-0120

Genstor Systems, Inc.

Intel®, Intel® Xeon® Inside are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries

74 | january 2008 www.l inux journa l .com

armv5l-linux-gcc -dumpspecs

The console will fill with a few hundred lines of output. The spec
file format evolved over years of development, and it’s easier for the
computer to read than for a person. Each line contains instructions
for what parameters to use for a given tool. From the prior example,
consider the command line for the assembler (with the path names
removed for readability):

"<path>/as.exe" "-mcpu=xscale" "-mfloat-abi=soft"

➥"-o" "<temppath>/ccm4aB3B.o" "<temppath>/ccC39DVR.s"

The compiler has the following in the specs for the assembler:

*asm:

%{mbig-endian:-EB} %{mlittle-endian:-EL} %{mcpu=*:-mcpu=%*}

➥%{march=*:-march=%*} %{mapcs-*:-mapcs-%*}

➥%(subtarget_asm_float_spec)

➥%{mthumb-interwork:-mthumb-interwork}

➥%{msoft-float:-mfloat-abi=soft}

➥%{mhard-float:-mfloat-abi=hard} %{mfloat-abi=*}

➥%{mfpu=*} %(subtarget_extra_asm_spec)

This line uses some familiar constructs explained below. Adequately
discussing the minutiae of the spec file would require an article
series in itself.

■ *asm: this line tells GCC the following line will override the internal
specification for the asm tool.

■ %{mbig-endian:-EB}: the pattern %{symbol:parameter} means if a
symbol was passed to GCC, replace it with parameter; otherwise,
this expands to a null string. In our example, the parameter
-mfloat-abi=soft was added this way.

■ %(subtarget_extra_asm_spec): evaluate the spec string %(specname).
This may result in an empty string, as it did in our case.

Most users don’t need to modify the spec file for their compiler;
however, frequently engineers who inherit a project need to have GCC
recognize nonstandard extensions for files. For example, assembler
source files may have the extension, .arm; in this case, GCC won’t
know what to execute, as it doesn’t have a rule for that file extension.
In this case, you can create a spec file containing the following:

.arm:

@asm

and use the -specs=<file> to pass that to GCC, so that it will know
how to handle files with the .arm extension. The spec file on the
command line will be added to the internal spec file after it has
been processed.

Tips and Tricks of the Trade
The following tips and tricks should be, if they haven’t already, stashed
on the crib sheet of engineers who work with GCC.

Force GCC to use an alternate C library:

armv5l-linux-gcc -nostdlib -nostdinc -isystem

➥<path to header files> -L<path to c library>

➥-l <c library file>

This tells GCC to ignore everything it knows about where to find
header files and libraries and instead uses what you tell it. Most alter-
nate C libraries provide a script that performs this function; however,
some projects can’t use the wrapper scripts, and other times, when
experimenting with several versions of a library, the flexibility and control
of specifying this information directly is necessary.

Mixed assembler/source output:

armv5l-linux-gcc -g program.c -o binary-program

armv5l-linux-objdump -S binary-program

This is the best way to see exactly what GCC generated in relation
to the input code. Doing the compilation with several different opti-
mization settings shows what the compiler did for the given optimization.
Because embedded development pushes the processor-support
envelope, being able to see the generated assembler code can be
instrumental in proving a defect in GCC’s support for that processor. In
addition, engineers can use this to validate that the proper instructions
are generated when specifying processor-specific optimizations.

List predefined macros:

armv5l-linux-gcc -E -dM - < /dev/null

An invaluable tool for doing a port, this makes clear what GCC

INDEPTH

Resources

uClibc, a replacement for the GNU C Library, optimized for size:
www.uclibc.org.

dietlibc, another replacement for GNU C, the smallest of the group:
www.fefe.de/dietlibc.

NewLib, a Red Hat-supported project for a minimal C library:
sourceware.org/newlib.

GCC Internals—information about the guts and construction of
GCC; it’s very well written and a great guide for those curious about
how GCC works: gcc.gnu.org/onlinedocs/gccint.

binutils—architecture-specific tools that smooth the way for
development: www.gnu.org/software/binutils.

info gcc, from your command line, provides in-depth information
about end-user-related aspects of GCC.

crosstool, a tool for building GCC cross-compilers, now the
canonical way for doing so, is very easy to use: www.uclibc.org.

The Definitive Guide to GCC by Bill von Hagen—a great book
covering all aspects of how to use GCC.

macros will be set automatically and the value. This will show not
only the standard macros, but also all the ones set for the target
architecture. Keeping this output and comparing it to a newer version
of GCC can save hours of work when code fails to compile or run
due to changes.

List dependencies:

armv5l-linux-gcc -M program.c

Formally, this command creates a separate make rule for each file
on the command line showing all dependencies. The output is indis-
pensable when trying to track down problems related to what header
files a source file is using and tracking down problems related to forc-
ing GCC to use an alternate C library. Deeply nested header files are
both unavoidable and incredibly useful in any nontrivial C project and
can consume hours when trying to debug. Using -MM instead of -M
will show only nonsystem dependencies—useful noise reduction when
the problem resides in the project files alone.

Show internal steps:

armv5l-linux-gcc -### program.c

This article already uses this command to make GCC show what

steps occur internally to build a program. When a program isn’t
compiling or linking properly, using -### is the fastest route to see
what GCC is doing. Each command is on its own line and can be
run individually, so:

armv5l-linux-gcc -### program.c &> compile-commands

will produce a file compile—commands that the user can mark as
executable and run a line at a time to pinpoint the exact cause of
a problem.

Wrapping Up
GCC is a deceptively powerful, complex tool. The developers have
created software that “does the right thing” with minimal information
from the user. Because it works so well, users frequently forget to
spend the time to learn about GCC’s capabilities. This article scratches
the surface; the best advice is to read the documentation and
invest a little time each day to learn how this tool always can do
more than expected.■

Gene Sally has been working with all facets of embedded Linux for the last seven years and is
cohost of LinuxLink Radio, the most popular embedded Linux podcast. Gene can be reached at
gene.sally@timesys.com.

