
80 SEPTEMBER 1999 Embedded Systems Programming

f
e

a
t

u
r

e

B I L L G A T L I F F

Are GNU tools ready for prime-time embedded development? The
author points out the strengths and weaknesses and then explains
how to use the GNU debugger to debug firmware running on an
embedded system.

he growth in popularity of the industry’s best-known collec-
tion of free software development tools, the GNU toolkit, has
reached the embedded marketplace. Well-known embedded
vendors like Wind River Systems, Integrated Systems Inc., and
others now openly advertise their compatibility with GNU,
and the number of individual and corporate consultants

claiming expertise in using GNU tools for embedded software develop-
ment is growing at a noticeable rate.

But are the GNU tools really ready for prime-time embedded develop-
ment? I think so, but only under the right circumstances. GNU certainly
has its advantages: the tools are cheap (free!), stable, highly portable, and
consistent across platforms. However, GNU also has drawbacks: its compo-
nents were originally designed for developing desktop applications in a
Unix-like environment, they can be a challenge to set up and use for
embedded development, and the documentation occasionally lacks detail
in areas important to embedded developers.

Even with these limitations, a motivated developer who’s willing to
invest the time to learn to use GNU will find the transition a rewarding and
productive endeavor that lends tremendous stability and flexibility to the

Embedding
with GNU:

GNU Debugger

T

Embedded Systems Programming SEPTEMBER 1999 81

embedded development experience. I
can say this with confidence because I
recently began using the GNU tools in
an embedded project of my own, and
the results have been so inspiring that
GNU tools are now my first choice,
even when a commercial alternative
exists.

In this article I’ll explain how to
use the GNU debugger, gdb, to debug
firmware running on an embedded
system connected to a PC by a serial
cable.

What is gdb?
The GNU debugger, gdb, is an
extremely powerful all-purpose
debugger. Its text-based user interface
can be used to debug programs writ-
ten in C, C++, Pascal, Fortran, and sev-
eral other languages, including the
assembly language for every micro-
processor that GNU supports.

Among gdb’s many noteworthy
features is its ability to debug pro-
grams “remotely,” in a setup where
the platform running gdb itself (the
host) is connected to the platform
running the application being
debugged (the target) via a serial
port, network connection, or some
other means. This capability is not
only essential when porting GNU
tools to a new operating system or
microprocessor, but it’s also useful for
developers who need to debug an
embedded system based on a proces-
sor that GNU already supports.

The remote debugging capability
of gdb, when it has been properly
integrated into an embedded system,
allows a developer to step through
code, set breakpoints, examine mem-
ory, and interact with the target in
ways that rival the capabilities of most
commercially available debugging
kernels—and even some low-end
emulators.

How gdb works, from an
embedded perspective
When debugging a remote target, gdb
depends on the functionality provided
by a debugging stub, a small piece of
code in the embedded system that
serves as the intermediary between the
host running gdb and the application
being debugged. This relationship is
depicted graphically in Figure 1.

The debugging stub (the techno-
logical equivalent of a ROM monitor)
and gdb communicate via the gdb
Remote Serial Protocol, an ASCII,
message-based protocol containing
commands to read and write memory,
query registers, run the program, and
so forth. Since most embedded devel-
opers write their own stubs so that they
can make the best use of their specific
hardware’s features and limitations, a
clear understanding of how gdb uses
the Remote Serial Protocol is very
important.

To set breakpoints, gdb uses mem-
ory reading and writing commands to

nondestructively replace a source
instruction with a TRAP or similar
opcode.1 This causes control to trans-
fer to the debugging stub when that
instruction is encountered. The
debugging stub’s job at that point is to
communicate the event to gdb (via
Remote Serial Protocol messages),
and then accept commands from gdb
telling it what to do next.

To illustrate, Listing 1 is a TRAP
exception handler for the Hitachi SH-
2 microprocessor. When the processor
encounters a TRAP instruction placed
as a breakpoint by gdb, this function
sends the processor context to a func-
tion called gdb_exception(), which
subsequently communicates it to gdb.
Eventually, the target invokes
gdb_return_from_exception(), which
restores the processor context and
returns control to the application.

The Remote Serial Protocol’s step
command is a bit more challenging,
especially when the target processor
doesn’t provide a “trace bit” or similar

I recently began using the GNU tools in an embedded project of my

own, and the results have been so inspiring that GNU tools are now

my first choice, even when a commercial alternative exists.

C
O

R
B

I
S

FIGURE 1 A typical embedded GNU debugger setup

Workstation

Embedded System

Application Code

Serial Cable

Debugging
Stub

gnu debugger

functionality.2 In these cases, the only
alternative is for the stub to disassem-
ble the instruction about to be execut-
ed so that it can determine where the
program is going to go next.

Fortunately for me, several sugges-
tions on how to implement the step
command are supplied with gdb. For
the Hitachi SH-2, the function
doSStep() in gdb/sh-stub.c is illustra-
tive, as are the similarly-named func-
tions in the files gdb/i386-stub.c,
gdb/m68k-stub.c, and others.

Other things gdb can do
The debugger can also evaluate arbi-
trary C expressions entered at the con-
sole, including ones containing func-
tion calls on the remote target. So you
can type commands like:

print foo(sci[x]->smr.brg)

and gdb will happily report the results.
Of course, gdb can also disassem-

ble code, and it does a good job of sup-
plementing magic numbers with
equivalent symbol information when-
ever possible. For example, the follow-
ing output:

jmp 0x401010 <main + 80>

is gdb’s way of saying that the address
shown is equivalent to an offset of 80
bytes from the start of the function
main().

The Remote Serial Protocol mes-
sages exchanged between gdb and the
debugging stub running on the target
can be displayed, as well as logged to a
file. These features are extremely use-
ful both for debugging a new stub, and
for understanding how gdb uses the
Remote Serial Protocol to implement
user requests for data, program mem-
ory, function calls, and so forth.

The GNU debugger has a scripting
language that permits automated tar-
get setup and testing. The language is
target microprocessor-independent,
so scripts can be reused when the tar-
get application changes from one
microprocessor to another.

82 SEPTEMBER 1999 Embedded Systems Programming

LISTING 1 A gdb TRAPA handler for the Hitachi SH2

/* An example TRAPA #32 handler for the Hitachi SH2.

/*

/*Stores current register values on the stack, then calls gdb_exception.

*/

asm("

.global _gdb_exception_32

_gdb_exception_32:

/* push the stack pointer and r14 */

mov.l r15, @-r15

mov.l r14, @-r15

/* the sh2 stacks the pc and sr automatically when performing a trap

/* exception, so we have to adjust the stack pointer value we give to gdb to

/* account for this extra data. In other words, gdb wants to see the stack

/* pointer value as it was BEFORE the trap was taken, and not what its value

/* is right now. So, subtract eight (pc and sr are four bytes each) from the

/* sp value we just pushed onto the stack

*/

mov.l @(4,r15), r14

add #8, r14

mov.l r14, @(4,r15)

/* push other register values onto the stack */

mov.l r13, @-r15

mov.l r12, @-r15

mov.l r11, @-r15

mov.l r10, @-r15

mov.l r9, @-r15

mov.l r8, @-r15

mov.l r7, @-r15

mov.l r6, @-r15

mov.l r5, @-r15

mov.l r4, @-r15

mov.l r3, @-r15

mov.l r2, @-r15

mov.l r1, @-r15

mov.l r0, @-r15

sts.l macl, @-r15

sts.l mach, @-r15

stc vbr, r7

stc gbr, r6

sts pr, r5

/* call gdb_exception, pass it exception=32 */

mov.l _gdb_exception_target, r1

jmp @r1

mov #32, r4

.align 2

_gdb_exception_target: .long _gdb_exception

“);

gnu debugger

84 SEPTEMBER 1999 Embedded Systems Programming

LISTING 1, cont’d. A gdb TRAPA handler for the Hitachi SH2

/* An example on how to return control to an application from a debugging

/* stub, for the Hitachi SH2.

/*

/* If this were written in C, the prototype would be:

/* void gdb_return_from_exception(gdb_sh2_registers_T registers);

/*

/* In general, we can simply pop registers off the stack in the same fashion

/* as gdb_exception_nn puts them on. However, usually the return stack pointer

/* isn’t the same as ours, so if we pop r15 before we copy the pc and sr back

/* onto the return stack, we lose them.

*/

asm(“

.global _gdb_return_from_exception

_gdb_return_from_exception:

/* restore some registers */

lds r4, pr

ldc r5, gbr

ldc r6, vbr

lds r7, mach

lds.l @r15+, macl

mov.l @r15+, r0

mov.l @r15+, r1

mov.l @r15+, r2

mov.l @r15+, r3

mov.l @r15+, r4

mov.l @r15+, r5

mov.l @r15+, r6

mov.l @r15+, r7

mov.l @r15+, r8

mov.l @r15+, r9

mov.l @r15+, r10

mov.l @r15+, r11

mov.l @r15+, r12

/* pop pc, sr onto application’s stack, not ours */

mov.l @(8,r15), r14

mov.l @(16,r15), r13

mov.l r13, @-r14

mov.l @(12,r15), r13

mov.l r13, @-r14

/* finish restoring registers */

mov.l @r15+, r13

mov.l @r15+, r14

mov.l @r15, r15

/* adjust application’s stack pointer to account for pc, sr */

add #-8, r15

/* ... and return to the application */

rte

nop

“);

gnu debugger

And finally, gdb provides trace-
points, a way to record information
about a running program with mini-
mal interruption of the program to
collect the data. Tracepoints require
significant debugging stub support to
implement, so they’ll be the subject of
a future article.

Information on all of these features
is provided with gdb. You can type
helpat the gdb console, or you can use
a GNU utility called “info” to review
documentation contained in the gdb
installation package. The debugger
also comes with a preformatted quick-
reference card in the file
gdb/doc/refcard.ps, and typeset
user’s manuals are available online at
several sites that mirror gdb source
code distributions.

Installing gdb
GNU tools like gdb are generally dis-
tributed as source code, archived, and
compressed into a single file using the
tar and gzip utilities (available from
GNU at www.gnu.org). Once the
source code is in hand, the user typi-
cally decompresses, configures, com-
piles, links, and installs the programs
in a manner most compatible with
their workstation setup, target envi-
ronment, and other factors. Some gra-
cious members of the GNU communi-
ty provide precompiled binary ver-
sions of the most popular tools; the
availability of such releases is usually
advertised in Internet newsgroups.

Efforts are underway to produce
ports of GNU tools for Windows 95,
98, and NT hosts. At the present time,
however, gdb and other tools neces-
sary for embedded development can-
not be easily built on Microsoft hosts,
although they will run fine when prop-
erly cross-compiled on another host.
To get the latest information about
GNU-Microsoft compatibility, check
out the Cygwin Project at http://source-
ware.cygnus.com/cygwin/.

The most recent release of gdb is
the file gdb-4.18.tar.gz, which contains
both the gdb source code and some
configuration scripts that help auto-

mate its compilation and installation.
This file is available from the Cygnus
Solutions gdb Web site, http://source-
ware.cygnus.com/gdb/.

To install gdb, first decompress
gdb-4.18.tar.gz:

tar xzvf gdb-4.18.tar.gz

Next, study gdb-4.18/README and
gdb-4.18/gdb/News, as these files con-
tain important information on how to
install gdb, the current state of gdb
development, new features, and so
forth.

Per the installation instructions in
README, configure gdb for your host
machine and debugging target:

mkdir gdb-build

cd gdb-build

../gdb-4.18/configure

-- target=sh-hitachi-hms

The configure script will study the
host machine’s setup and create the
proper local environment in which to
build gdb. The targetparameter tells
gdb what microprocessor your embed-
ded applications will run on. You’ll
find a list of supported targets in the
file gdb/ChangeLog.

Finally, tell gdb to compile and
install itself:

make all install

When you’re done, you’ll end up
with an executable called sh-hitachi-
hms-gdb (or whatever prefix you sup-
plied in the target parameter during
configuration). By default, this file is
placed in /usr/local/bin. To run it,
simply type the executable file name
followed by the name of your applica-
tion file:

sh-hitachi-hms-gdb a.out

Source code for a gdb
debugging stub
Despite the target-specific nature of
remote software debugging, it is possi-
ble to create a highly portable debug-

ging stub that can be reused with min-
imal modification on several different
embedded microprocessors.

I have posted my attempt at a
“portable” debugging stub on ESP’s
Web site, at www.embedded.com/code.
htm. This source code has been com-
piled and tested for the Hitachi SH-2,
and ports are underway for the
Hitachi H8, Power PC, and other
processors.

The processor-specific code is con-
tained in files with processor-specific
file names, like gdb_sh2*.c. You
should first copy these files to ones
with names related to your micro-
processor (such as gdb_m68k*.c), and
replace the contents with code that
works for your machine.

If you do succeed in porting my
code to another processor, or desire
assistance in doing so, please let me
know. In addition to hearing your
feedback, I would like to make your
modifications available to the rest of
the embedded community.

A typical gdb session
Now that we’ve covered the gdb’s
functionality in general terms and I’ve
shown how to install it, let’s observe
gdb in action. Table 1 is a transcript of
a typical gdb debugging session, dur-
ing which gdb initiates communica-
tions with a remote target running a
debugging stub, downloads a pro-
gram, sets a breakpoint, and then runs
the program. The debugging stub
informs gdb when the breakpoint is
encountered, and gdb then displays
the appropriate source line to the
user. The user subsequently displays a
variable, steps one instruction, and
then exits gdb.

The left column of the example
shows a portion of the gdb console,
where the user types commands and
views data. The right columns show
some of the GDB Remote Serial
Protocol messages exchanged
between the host machine and the
embedded device. I’ve included sup-
plemental information in square
brackets. For a detailed explanation of

86 SEPTEMBER 1999 Embedded Systems Programming

gnu debugger

these messages, see the sidebar, “The
GDB Remote Serial Protocol.”

Note that Table 1 is not what users
see when they use gdb—they see a ter-
minal display in English, complete
with source code, displayed variables,
and the like. Instead, the transcript
shown illustrates what happens behind
the scenes when the user types the list-
ed commands.

Ideas on adapting gdb to
solve specific problems
The modular implementation archi-
tecture used by gdb makes it straight-

forward to change aspects of gdb’s
behavior that don’t suit your needs.
For example, if your product has only
one communications port that is
already dedicated to a non-gdb com-
munications protocol, then it’s possi-
ble to modify gdb so that debugger
messages fit inside of packets that your
product already understands.
Likewise, if your product lacks a serial
port but has some other kind of com-
munications interface—like a CAN
port, for instance—then you could
enhance gdb’s remote communica-
tions strategy to work with an off-the-

shelf serial-to-CAN or parallel-to-CAN
bridge.

You can also modify gdb’s behavior
to make it more compatible with other
software in your embedded applica-
tion. For example, if you were already
using TRAPA #32 for something non-
gdb-related, you could either change
the opcode gdb uses for a breakpoint,
or you could have gdb produce a new
message—one that signaled your tar-
get to turn on instruction tracing or
enable on-chip breakpoint-generating
hardware, for example.

The file gdb/remote.c contains
gdb’s implementation of the Remote
Serial Protocol, and is a good starting
point for studying how gdb’s modular
implementation permits you to quick-
ly adapt it to meet the needs of a spe-
cific debugging target. Other files, like
gdb/remote-hms.c and gdb/remote-
e7000.c, use this modular framework
to provide support for debuggers and
emulators supplied by Hitachi,
Motorola, and other vendors.

For the most up-to-date informa-
tion on how gdb works, how to
enhance gdb, and how to get your
improvements into future gdb releas-
es, type info gdb-internals after
installing gdb.

Graphical gdb interfaces
Once you get the plain-vanilla gdb
working on your embedded target,
you may find that although its text
console is fast, intuitive, and easy to
use, it’s also a bit, well, uninspiring.
You are not alone, and fortunately sev-
eral free graphical add-ons are avail-
able to help jazz up your debugging
experience. These enhancements all
use a running instance of gdb itself as
the low-level debugger, so if gdb talks
properly to your target, then these
interfaces will too.

The following is not a comprehen-
sive list of all available graphical gdb
front ends, by any means—I’ve only
included tools that I have firsthand
experience with. Be sure to ask
around in the gdb newsgroups and on
the gdb homepage if you find that the

88 SEPTEMBER 1999 Embedded Systems Programming

TABLE 1 Transcript of a typical gdb session

What the user enters What happens on the serial port
gdb sends... target responds with...

host>gdb myprogram
gdb> target remote +$Hc-1#09 +$OK#9a
/dev/ttyS0 +$qOffsets#4b +$Text=0;Data=0;Bss=0#04

+$?#3f +$S05#b8
+$g#67 +$00001a00ffff81b200000020...

gdb> load $M401054,10:004020240040 +$OK#9a
20240040202400402024#72
... [lots more M messages]

gdb> breakpoint main [nothing— gdb physically sets the breakpoint immediately
before the continue command is sent]

gdb> continue +$M4015cc,2:c320#6d +$OK#9a
+$c#63 +
[gdb places a breakpoint [program runs until it reaches
opcode at main()] main()]

$T050:00401400;1:00404850
;2:00000001;3:00000030;
4:ffffffff;5:00000000;6:00000
010;7:00000010;8:0040161c;
9:00002070;a:00404068;b:
004015bc;c:ffffffff;d:ffffffef;
e:00404840;f:00404840;10:
004015cc;11:004015cc;12:
d04001e2;13:00401000;14:
00000000;15:00ffffff;16:0000
00f0;#d1
[target stopped at main(),
address 0x4015cc]

gdb> display foo +$m4015bc,2#5a +$2f86#06
[foo is at address 0x4015bc;
its value is 0x2f86]

gdb> stepi $s#73 +
[target executes one
instruction]
$T050:00401400;1:00404840
;2:00000001;3:00000030;4:ff
ffffff;5:00000000;6:00000010
;7:00000010;8:0040161c;9:0
0002070;a:00404068;b:0040
15bc;c:ffffffff;d:ffffffef;e:0040
4840;f:00404840;10:004015c
e;11:004015cc;12:d04001e2;
13:00401000;14:00000000;
15:00ffffff;16:000000f0;#d2
[PC is now 0x4015ce]

gdb> quit $k#6b +

gnu debugger

tools I’ve listed don’t suit your
needs.

DDD: Data Display
Debugger
The Data Display Debugger
(www.cs.tu-bs.de/softech/ddd/) by
Andreas Zeller (Software
Technology Department,
Technical University of
Braunschweig) is a mature,
high-quality X-Windows-based
graphical gdb interface.
Besides the usual features you
would expect from any graphi-
cal debugger, DDD provides an
easy-to-navigate graphical data
display that allows sophisticated
data structure visualization with
just a few mouse clicks.

This application is well doc-
umented and easy to install. Its
graphics-intensive interface
extracts a slight penalty in run-
time performance, but any host
processor that can reasonably
run other graphical GNU tools
will probably work fine.

Code Medic
Code Medic (www.cco.caltech.
edu/~glenn/medic/) is an ele-
gant, X-Windows-based graphi-
cal interface to gdb’s most
important features. The inter-
face was written by Glenn Bach
(of the Physics, Mathematics,
and Astronomy Division,
California Institute of
Technology), and is also part of
a suite of integrated software
development tools known as
Code Crusader.

Code Medic provides drag-
and-drop data management,
context-sensitive highlighting,
and a sophisticated display tai-
lored for complicated data
structure visualization.
Furthermore, Code Medic uses a mes-
sage-based interface to gdb, which
improves performance significantly
over DDD in both remote and self-
hosted debugging setups.

Insight
Insight (http://sourceware.cygnus.com/
gdb/) is Cygnus Solution’s own (and
formerly proprietary) graphical
enhancement to gdb. In contrast to

DDD and Code Medic, Insight’s
graphics come by way of Tcl/Tk
instead of X-Windows, which
means it runs easily on Windows
platforms. Furthermore, Insight
is compiled into gdb (rather
than it running gdb as a sub-
process, the way CodeMedic and
DDD do), which improves its
performance and makes its com-
munications with gdb more
interactive. It also provides func-
tionality to graphically configure
remote connections, which the
other front ends can only do by
way of gdb command scripts.

But is gdb right for
you?
I hope that by now you’re con-
vinced that gdb is a powerful
and capable tool for embedded
software debugging. If that were
all that mattered, then I believe
that gdb would be the most pop-
ular embedded debugger avail-
able today.

Unfortunately, tool selection
is a trade-off among many fac-
tors—price, performance, com-
patibility, and support, to name
a few—and when everything is
considered, gdb has both its
strengths and weaknesses (as
does any tool available today at
any price, free or otherwise).

As I’ve already mentioned,
gdb’s strengths (besides its cost)
lie in its feature list, its uniform
applicability across many host
platforms and debug targets,
and the degree to which its
behavior can be tailored to
meet the specific demands of an
embedded debugging target.

In particular, gdb’s consisten-
cy across hosts and targets pre-
sents the opportunity for con-

siderable reuse of automated
configuration, compilation and unit
testing scripts, which is a value that
should not be underestimated. This in
itself may reward the pain of switching
to GNU, particularly if proliferation of

90 SEPTEMBER 1999 Embedded Systems Programming

FIGURE 2 Data Display Debugger

FIGURE 3 Code Medic

FIGURE 4 Insight

gnu debugger

your products across a variety of target
processors is likely.

Although the GNU tools are gener-
ally well documented, the information

occasionally lacks details that are
important to embedded developers.
For example, procedures to properly
establish the C run-time environ-

ment—initialize global variables, zero
out memory, and so forth—are only
supplied as working code and as an
occasional side note in the descrip-
tions of a few linker commands; there
is currently no single document that
completely describes in detail a
process that is critically important for
C/C++-based embedded systems. (I’m
certain that the GNU effort would wel-
come the creation of a tutorial on this
subject.)

Finally, gdb works best when fed
debugging information produced by
the GNU compiler and linker, which
presents compatibility problems for
non-GNU legacy projects, or work
involving third-party libraries that
aren’t available in a GNU-compatible
format.

What about support?
One perceived drawback that’s actual-
ly an advantage for GNU is the lack of
available support from a central, con-
trolling organization. Instead, people
highly skilled in the use and develop-
ment of the GNU tools (including the
authors of the tools themselves) are
available 24 hours a day via a variety of
Internet news groups (gnu.gdb.bug is
one) and mail servers (www.sourceware.
cygnus.com/gdb, for example). In situa-
tions where I’ve requested help I usu-
ally received an answer in four hours
or less—an impressive statistic for even
the most expensive product support
desks.

On the other hand, if you truly
need the level of support that only
money can buy, or you need extensive
modifications to one or more GNU
tools in support of a very specialized
situation, then there are companies
and individuals around that can pro-
vide those kinds of services. The best
way to find them is to subscribe to and
read the Internet news groups and
mail specific to the GNU tools you
need help with.

A rewarding experience
The ability of gdb to adapt to the spe-
cific needs of a debugging target

92 SEPTEMBER 1999 Embedded Systems Programming

The GDB Remote Serial Protocol
The GDB Remote Serial Protocol (RSP) is the lingua franca between gdb and a remote

target. It defines messages for reading and writing data, controlling the application

being debugged, and reporting application status. The host side is implemented in

gdb’s remote.c source file.

The following are short descriptions of the RSP’s most important commands. A

complete summary of each command is available on the ESP Web site, www.embed-

ded.com/code.htm.

Data exchanged between gdb and a remote target with the GDB Remote Serial

Protocol uses plain ASCII characters. Messages begin with a dollar sign ($) and end

with a gridlet (#) and eight-bit checksum. In other words, each message looks like this:

$ <data> # CKSUM_MSN CKSUM_LSN

where <data> is typically a string of ASCII hex [0-9,a-f,A-F] characters.

CKSUM_MSNand CKSUM_LSNare ASCII hex representations of an eight-bit checksum

of <data>. Only the hex digits 0 to 9 and a to f are allowed.

When a message is sent, the receiver responds with either:

+ if the received checksum was correct, and the receiver is ready for the next packet

- the received checksum was incorrect, and the message needs to be retransmitted

A target can respond to a message from gdb with either data or an OK (depending

on the message), or a target-defined error code. When gdb receives an error code, it

reports the number to the user via the gdb console.

Definitions for <data>are shown below.

TABLE A Register-related commands

Command name <data>definition Description
read registers g Return the values of all registers
write registers GXX..XX Set registers to XX..XX
write register nn Pnn=XX..XX Set the value of register NN

TABLE B Memory-related commands

Command name <data> definition Description
read memory mAA..AA,LL..LL Read values from memory
write memory MAA..AA,LL..LL:XX..XX Write values to memory

TABLE C Target infromation commands

Command name <data> definition Description
query section offsets qOffsets Return section offset information

gnu debugger

(memory usage, communications
media, and so forth) often makes it
the only choice available for on-target
debugging, particularly given the
growing popularity of single-chip,
highly-integrated, and IP-based
embedded products. The complexity
of today’s embedded devices is
increasing at an alarming rate, and as
the technology choices available for
new designs continue to diverge, find-
ing a commercial development tool
vendor with a product that fits your
needs becomes less likely every day.

A switch to GNU might be in your
best long-term interests, even if you’re
using conventional technology in your
embedded designs, because GNU
applications are becoming increasing-
ly popular as educational tools. So a
recent engineering graduate would
probably be more familiar with them
than with any specific equivalent com-
mercial products.

And finally, GNU’s support of a
variety of popular embedded proces-
sors means that you reduce the risk of
needing to find a new tool vendor
because your current one doesn’t sup-
port the processor you’d like to use in
your next design.

With all these advantages, I have no

doubt that a motivated developer who
is willing to master the GNU tools will
find their product development a
more stable, flexible, and rewarding
experience. esp

Source code for gdb is available at
http://sourceware.cygnus.com/gdb/.
This site also includes links to gdb-specific
mailing lists, graphical front ends, and
sources for precompiled gdb binaries.

Bill Gatliff is a freelance embedded develop-
er and senior design engineer with
Komatsu Mining Systems, Inc. in Peoria,
IL, and is a semi-regular presenter at the
Embedded Systems Conferences. He can be
reached at bgat@usa.net.

References
1. An assumption here is that the applica-

tion being debugged is located in RAM.

With a smart enough debugging stub,

proper hardware support, and/or com-

piled-in breakpoints, however, this need

not be true.

2. For example, Motorola 683xx processors

contain the ability to trap on instruction

execution and/or changes in program

flow; this feature is controlled by the

"trace enable" bits, T1 and T0, in the

processor's status register.

94 SEPTEMBER 1999 Embedded Systems Programming

TABLE D Program control commands

Command name <data> definition Description
set thread Hc Set current program thread
step sAA..AA Execute one assembly instruction
continue cAA..AA Resume application execution
last signal ? Report last signal
kill k Terminate application

TABLE E Target status messages (responses from the target)

Message name <data> definition Description
last signal response Snn Minimal reply to the last signal

command
expedited response Tnnr...:v...r...:v...; The last signal reported, plus key

register values
console output Ovvvvvvvv... Sends text from the target to

gdb’s console

	fig2:
	fig3:
	fig4:
	return:

