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A quality compiler, linker, and 
debugger are critical for the suc-
cess of any embedded project. 
In two articles last year, I dis-
cussed the benefits of the GNU 
debugger, gdb. 1,2 But unlike 
debuggers, I find it difficult to 
get excited about cross compil-

ers and linkers. They’re excruci-
atingly technical products. To 
make matters worse, I tend to 
stick to the ones that quietly and 
reliably churn out code, instead 
of the ones that don’t always get 
it right but put on a big show in 
the process. 

On the other hand, although 
the GNU compiler and linker 
are the strong, silent types, they 
also sport some nifty features 
that can really ease the burden 

of writing solid, portable code 
for embedded systems. If you 
stick with me here for a few 
minutes, I think you will agree. 

gcc: the GNU C compiler 
In addition to its popularity on 
the desktop, gcc is perfectly ca-
pable of producing high-quality 
code for embedded systems of 
all types. A complete introduc-
tion to all of its features isn’t pos-
sible in the space I have available 

here, so I’ll only mention the ones 
that are most useful for embed-
ded systems. See the gcc on-line 
help files for the rest. 

Syntax and potential run-
time error checking 
The GNU compiler provides sev-
eral command-line options that 
control how much trust it will 
place in your code. The “-Wall” 
setting is my favourite because 
it causes gcc to warn you about 
nearly everything that looks sus-
picious. 

Some other useful options 
include: “-Wformat” (checks 
arguments to printf() calls); 
“-Wcast-align” (warns if a cast 
can cause alignment issues); 
and “-Wconversion” (warns if a 
negative integer constant ex-
pression is implicitly converted 
to an unsigned type). 

Inline assembly code 
This compiler provides a powerful 
syntax for embedding assembly 
language statements in C/C++ 
source code. In the most basic 
case, you can insert assembly lan-
guage instruction(s) into a block 
of C code as follows: 
void set_imask_to_6( void )
{
printf( “switching to interrupt
mask level 6.\n” );
__asm__( “ andi #0xf8, sr” );
__asm__( “ ori #6, sr” );
printf( “Interrupt mask level
is now 6.\n” );

}

But that’s just the tip of this 
feature iceberg. The compiler 
also provides a way to safely 
refer to C objects in assembly 
statements, instead of requiring 
you to predict in advance which 
register will be used to store the 
value of interest. 

For example, if you wanted to 
use the 68881’s fsinx instruction 
in as robust and portable a way 

Installing the GNU compiler and linker 

The GNU compiler is the only application that can reliably build a cross-platform version of itself, 
so you’ll need to do all of the following on a machine that already has a native gcc installed. 
Get Linux, or use Cygwin ( www.cygnus.com ) if you need to build and/or run under Win32. 

To build and install the GNU compiler and linker, you first must 
get the source code. The files you need are: 

• gcc: ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.1.tar.gz 
• linker, assembler, and other utilities: ftp://ftp.gnu.org/gnu/binutils/binutils-2.9.1.tar.gz 
• run-time library: ftp://sourceware.cygnus.com/pub/newlib/newlib-1.8.1.tar.gz 

Untar all the files, login as root, and abide by the following script. If you don’t have 
root privileges on your machine, then add -prefix=<dir> to the configure statements, 
replacing <dir> with a pathname that you have permission to write to. 

Build the assembler and linker first: 

cd binutils-2.9.1 
configure
-target=your_target_name
make all install

Example target names are sh-hitachi-hms for the SH, m68k-unknown-coff for CPU32, and so on. See 
configure.sub for information on supported target/host combinations, but beware: the list is long! 

Now build the compiler and run-time libraries: 

cd gcc-2.95.1
rm -rf libf2c
ln -s newlib ../newlib-1.8.1/newlib
configure —target=your_target_name —with-newlib 
—with-headers=
/newlib/libc/
include5

make cross LANGUAGES=”c c++” install
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as possible, you could do it like 
this: 3 

__asm__(“fsinx %1,%0” : “=f”
(result) : “f” (angle));

The “=f” and “f” are called 
operand constraints, and they’re 
used to tell gcc both how it 
must generate the %0 and %1 
expressions to make the opcode 
function properly, and what side 
effects the operand produces. In 
this example, they tell gcc that it 
must use floating-point registers 
for the values of the variables an-
gle and result, and that the fsinx 
instruction returns the answer in 
variable result. 

Operand constraints allow 
mixed assembly and C/C++ 
statements to work properly 
even when changes in optimi-
sation levels and other compiler 
settings might cause them to do 
otherwise. A variety of operands 
and constraints are available, and 
several examples are provided in 
the “Extended Asm” section of 
the gcc manual. 

One other nice thing about 
gcc’s inline assembly language 
feature is that it doesn’t disrupt 
the compiler’s normal optimisa-
tion processes nearly as much as 
it seems to with other compilers. 
To illustrate this, consider the 
following simple function: 

int foo( int a )
{
int b = 10;
a = 20;
__asm__ (“mov %1, %0” : “=r”
(a) : “r” (b) ); /* a = b */
return a;
} 

The assembly language is 
simply copying b to a, and so 
the return value is always 10. 
With optimisations turned off, 
gcc emits code that does that 
explicitly (Hitachi SH-2 code, in 
this case): 

_foo:
mov.l r14,@-r15
add #-8,r15
mov r15,r14
mov.l r4,@r14
mov #10,r1
mov.l r1,@(4,r14)
mov #20,r1

mov.l r1,@r14
mov.l @(4,r14),r2
mov r2, r2
mov.l r2,@r14
mov.l @r14,r1
mov r1,r0
bra L1
nop
.align 2
L1: add #8,r14
mov r14,r15
mov.l @r15+,r14 
rts 

Crank up the optimisation 
level (-O3 -fomit-frame-pointer), 
however, and the code looks 
very different: 

_foo:
mov #10,r1
mov r1, r0
rts 

In the latter case, gcc’s opti-
miser concluded that the only 
possible return value was 10, 
which means that it “under-
stood” the assembly code we 
supplied and used it to its ad-
vantage. Pretty spiffy behaviour, 
and not something I’ve come 
to expect from the commercial 
compilers I’ve used. 

Why didn’t gcc just put the 10 
into r0 in the first place? Because 
gcc will optimise around user-
supplied assembly code, but it 
won’t omit it. In other words, the 
mov r1, r0 is there because of 
our inline assembly statement, 
not because gcc put it there.

Controlling names used in 
assembler code 
Occasionally the need arises to 
have C access to an assembly 
language object, but the object 
of interest isn’t named in a C-
friendly fashion. The following 
code allows C statements to use 
a symbol named foo_in_C to re-
fer to the pathogenically named 
assembly language symbol 
foo_data (which lacks a leading 
underscore, and therefore can’t 
normally be accessed in C): 

extern int foo_in_C asm 
(“foo_data”);

A similar syntax is used for 
declarations as well: 

int bar asm (“bar_none”);
extern int foo( void ) asm
(“assembly_foo”);

The first statement causes 
gcc to create a C symbol called 
bar, but emit assembly code 
that calls it ‘ instead of the usual 
_bar . The second statement 
causes gcc to use the name as-
sembly_foo (instead of _foo ) 
whenever the C function foo() is 
either called or defined. 

Section specification 
Many commercial cross compil-
ers allow you to specify the target 
memory section for declarations 
by using a command-line op-
tion. For example, to place all 
of a module’s constant global 
declarations into a section called 
myconsts , you often use a com-
mand similar to the following: 
compiler -C”myconst” main.c

In my opinion, the prob-
lem with this approach is that 
it invisibly changes the effect 
of the const keyword, which 
leaves open the possibility that 
future const additions to the 
module will accidentally end 
up in the wrong memory space. 
Furthermore, it forces you to 
split myconst and generic con-
stant declarations into separate 
modules, which creates a real 
maintenance headache as a 
project matures. 

In contrast, gcc’s approach 
is to specify allocation sections 
on a per-declaration basis, using 
its section attribute language 
extension: 
const int put_this_in_rom
__attribute__((section(“myconst”
)));
const int put_this_in_flash
__attribute__((section(“myflash”
)));

In contrast to the command-
line approach, this technique 
allows you to put all of the 
declarations related to a piece 
of functionality into the same 
source module, regardless of 
their destinations in the target’s 
memory map. 

Section attributes can also be 

used to construct data tables. For 
example, eCos (the open-source 
Embedded Cygnus Operating 
System), uses section attributes 
to place all device information 
structures (one of which is al-
located in each device driver’s 
source module) into a section 
called devtab , which the op-
erating system then analyses 
at run time. Because of this ap-
proach, adding or removing a 
driver is as simple as adding or 
removing a module from the 
application—there is no “master 
device driver list” to modify. 

Interrupt service routines 
An interrupt_handler attribute 
isn’t provided by gcc for most 
target processors. This means 
that you can’t write an entire ISR 
(interrupt service routine) in C, 
because gcc won’t return from 
the function using a return-from-
exception opcode. 

This limitation is not as sig-
nificant as it sounds. A common 
workaround is to write a small 
snippet of assembly language 
code that saves registers, calls 
the C code, and then exits with 
an RTE , like this: 

void isr_C( void )
{
/* whatever we do in C */
...
}
__asm__(“
.global _isr
_isr:
/* push scratch registers—C 
* preserves the rest
*/
push r0
push r1
...
/* call the workhorse */
jsr _isr_C
/* clean up, return */
...
pop r1
pop r0
rte
“);
Why doesn’t gcc make 

things easier for ISR writers, you 
ask? The reason appears to be 
that gcc’s primary mission (al-
though this is changing quickly) 
is to produce code for desktop 
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workstations, which have no 
need for interrupt service rou-
tines. Further-more, modifying 
gcc’s stack frame and register 
management implementation 
is nontrivial, and so most seri-
ous GNU users seem to prefer 
to write a few lines of assembly 
language here and there, rather 
than risk additional bugs. 

Reserving registers 
Sometimes it’s nice if you can tell 
a compiler never to use a particu-
lar register, perhaps because you 
have assembly language func-
tions that require a register value 
be preserved across C function 
calls. 

As you might have guessed, 
gcc can do this. Simply put a 
-ffixed-REG on the command 
line, that is: 

gcc -ffixed-a7 myprogram.c

This capability is also useful 
if your RTOS reserves a register 
or two for its own use, or your 
application has assembly code 
that needs a high-speed global 
variable. 

Function names as strings 
The standard C preprocessor 
macros provide minimal infor-
mation useful for display output 
at run time. For example, you 
can describe the __DATE__ and 
__TIME__ of a __FILE__ , but 
not much else. 

Not only does gcc support 
these terms, it also adds two of 
its own: __FUNCTION__ and 
__PRETTY_FUNCTION__ . The 
two produce the same output in 
C, but the latter provides more 
information when it appears in a 
C++ module. In either case, the 
information they provide can be 
useful, especially for diagnostic 
outputs caused by failed asser-
tions. 

For example, this statement: 
printf (“The function %s in 

file
%s, was compiled on: %s.\n”,

__PRETTY_FUNCTION, __FILE__,
__DATE__ );
yields either: 
The function foo, in file foo.c, 
was compiled on: Feb 10 

1999.

or: 
The function int c::foo, in file 
foo.cpp, was compiled on: 

Feb 10 
1999.

Debugging information 
You always have to tell gcc to in-
clude debugging information in 
output files, using the -g flag: 

gcc -g main.c

Without the -g , the applica-
tion will run but you won’t be 
able to debug it. 

ld: the GNU linker 
The GNU linker is a powerful 
application as well, but in many 
cases there is no need to invoke 
ld directly—gcc invokes it auto-
matically unless you use the -c 
(compile only) option. 

Like many commercial linkers, 
most of ld’s functionality is con-
trolled using linker command 
files, which are text files that 
describe things like the final out-
put file’s memory organisation. 
Listing 1 contains an example 
linker command script that I will 
discuss in detail over the next 
several paragraphs. In summary, 
this script defines four memory 
regions called vect, rom, ram, 
and cache , and the following 
output sections: vect, text, bss, 
init, and stack . 

As with gcc, I don’t have the 
space to discuss every ld feature 
or supported command, but 
they’re all described in ld’s on-
line documentation. Just type 
info ld after installation. 

The linker will use a default 
command file unless you tell 
it to do otherwise. To instruct 
ld to use your command file 
instead of its own, give gcc a 
-Wl,T<filename> command 
during compilation.

Listing 1 An example 
linker command script 

/* a list of files to link 
(others are supplied on the 

command line) */
INPUT(libc.a libg.a libgcc.a 

libc.a libgcc.a)
/* output format
(can be overridden on com-

mand line) */
OUTPUT_FORMAT(“coff-sh”)

/* output filename
  (can be overridden on com-

mand line) */
OUTPUT_FILENAME(“main.

out”)

/* our program’s entry point; 
not useful

  for much except to make 
sure

 the S7 record 
  is proper, because the reset 

vector actually
  defines the “entrypoint” in 

most embedded systems */
ENTRY(_start)

/* list of our memory sections 
*/

MEMORY
{
 vect : o = 0, l = 1k
 rom  : o = 0x400, l = 127k
 ram  : o = 0x400000, l = 128k
 cache : o = 0xfffff000, l = 4k
}

/* how we’re organising 
memory sections

  defined in each module */
SECTIONS
{
 /* the interrupt vector table 

*/
 .vect :
 {
  __vect_start = .;
  *(.vect);
  __vect_end = .;
 } > vect

 /* code and constants */
 .text :

 {
  __text_start = .;
  *(.text)
  *(.strings)
   __text_end = .;
 } > rom 

 /* uninitialized data */
 .bss :

 {
   __bss_start = . ; 
  *(.bss)
  *(COMMON)
   __bss_end = . ; 

 } > ram

 /* initialized data */
 .init : AT (__text_end)
 {
  __data_start = .;
  *(.data)
  __data_end = .;
 } > ram

 /* application stack */
 .stack :
 {
   __stack_start = .; 
  *(.stack)
   __stack_end = .;
 } > ram
}

OUTPUT_FORMAT command 
This command controls the for-
mat of the output file. A variety 
of formats are supported, in-
cluding S-records (srec) , binary 
(binary) , Intel Hex (ihex) , and 
several debug-aware formats, 
like COFF ( coff-sh for SH-2 tar-
gets, coff-m68k for CPU32, and 
so on). 

The GNU linker derives its 
output file formatting capabili-
ties from a library known as . Use 
objdump -i to find out which 
formats are supported by your 
target’s version of the linker. 

MEMORY command 
The MEMORY command de-
scribes the target system’s 
memory map. These memory 
spaces are then used as targets 
for statements in the SECTIONS 
comand. 

The typical syntax is simple: 
MEMORY {
  name : o = origin, l = length
  name : o = origin, l = length
  ...
}

A one-to-one relationship usu-
ally exists between statements 
in the MEMORY command and 
the number of uniform, contigu-
ous memory regions supported 
by the target hardware. A typi-
cal exception, however, is the 
processor’s reset vector—and in 
some cases, the entire interrupt 
vector table—which is usually 
declared as an independent sec-
tion so that its final location can 
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be strictly controlled. 

SECTIONS command 
Statements in a SECTIONS com-
mand describe the placement of 
each named output section and 
specify which input sections go 
into them. You are only allowed 
one SECTIONS statement per 
command file, but it can have as 
many statements in it as neces-
sary. 

In the example, the state-
ment: 

/* code and constants */
.text :

starts the definition for a sec-
tion named .text. The statements 
inside the subsequent curly 
braces instruct the linker to: 
• Create a symbol called __

text_start and place it at the 
beginning of the section 

• Merge all .text and .strings 
sections from the input files 
into this section 

• Create a symbol called __
text_end and place it at the 
end of the section 

Finally, the statement: 
} > rom

tells the linker to locate the 
entire section in the memory 
space called rom which, accord-
ing to the MEMORY command, 
begins at address 0x400. 4 

The list of input sections can 
also be file specific. For example, 
if you added a line like:

foo.o (.specialsection)

to the .text section defi-
nition, the linker would also 

merge into .text the section 
named .specialsection from 
the file foo.o . 

AT directive 
The AT directive tells the linker to 
load a section’s data somewhere 
other than the address at which 
it’s actually located. This feature 
is designed specifically for gen-
erating ROM images, something 
that’s obviously important for 
embedded systems. 

The best way to understand 
the AT directive is by example. 
So, consider an application that 
has only one initialised global 
variable: 

int a_global = 102;

During compilation, gcc 
will declare an integer object 
a_global with the value 102 in 
the module’s .data section. But 
by supplying an AT directive for 
.data sections during linking, we 
tell the linker to assign a_global 
an address in one location (typi-
cally RAM ), but place its initial 
value somewhere else ( __text_
end , usually ROM ). 

The following code initialises 
a_global (and any other ini-
tialised global data in an applica-
tion). This code uses the symbols 
_text_end, _data_start , and 
_data_end to find the initial val-
ue, determine its size, and place 
it at its proper place in RAM : 

extern const char _text_start,
 _text_end;
extern char _data_start,
 _data_end;
memcpy( &_data_start, 

&_text_end,

 &_data_end - &_data_start );

Now to put it all together. 
The following command line 
tells gcc to compile a file, main.
c, and then link it using the linker 
command file main.cmd : 

gcc -g -Wl,-Tmain.cmd main.c

Issues specific to systems 
built using GNU tools 
Although GNU and other open 
source tools are available at no 
cost, they aren’t necessarily free 
for unrestricted use. For example, 
if you link your application with a 
library released under the terms 
of the GPL (GNU Public License), 
then, according to the terms of 
the licence, you must make your 
application available in source 
form as well. Unfortunately, this is 
the case for the C run-time library 
(the code for printf(), malloc() 
, and so forth), most often used 
with gcc: glibc. 

A suitable C run-time alter-
native that isn’t restricted in this 
fashion is a library called new-
lib, available from the Cygnus 
Solutions archives. According 
to the terms of this library’s 
licence, you may build pro-
prietary applications without 
disclosing your source code, 
so long as you acknowledge in 
a manner appropriate to your 
application that you’re using 
Cygnus’ newlib. 

Carefully read and understand 
the licences for any open source 
software (or any other software, 
for that matter) that you use to 
create or include in your em-
bedded application. If you can’t 

abide by the terms, you can’t use 
the code. 

What have you got to lose? 
Don’t take my word for it—-the 
beauty of GNU is that you can 
download and try out the tools 
yourself at no charge. I encour-
age you to do so and to think 
seriously about using GNU tools 
for your next embedded project. 
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3. This example, along with 
several others, is included 
in the gcc documentation.  
4. The name .text is tradi-
tional. With gcc , the text 
section actually includes 
the application’s instruction 
code, constant declarations, 
and text strings, subject 
to section attributes sup-
plied in individual modules.  
5. Replace <ABSOLUTE_
PATH_TO_NEWLIB> with 
where you untarred the 
newlib sources. for example: 
/home/me/crossgcc-test/
newlib-1.8.1])
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