
By Bill Gatliff
Embedded Consultant and Senior
Design Engineer
Komatsu Mining Systems

A quality compiler, linker, and
debugger are critical for the suc-
cess of any embedded project.
In two articles last year, I dis-
cussed the benefits of the GNU
debugger, gdb. 1,2 But unlike
debuggers, I find it difficult to
get excited about cross compil-

ers and linkers. They’re excruci-
atingly technical products. To
make matters worse, I tend to
stick to the ones that quietly and
reliably churn out code, instead
of the ones that don’t always get
it right but put on a big show in
the process.

On the other hand, although
the GNU compiler and linker
are the strong, silent types, they
also sport some nifty features
that can really ease the burden

of writing solid, portable code
for embedded systems. If you
stick with me here for a few
minutes, I think you will agree.

gcc: the GNU C compiler
In addition to its popularity on
the desktop, gcc is perfectly ca-
pable of producing high-quality
code for embedded systems of
all types. A complete introduc-
tion to all of its features isn’t pos-
sible in the space I have available

here, so I’ll only mention the ones
that are most useful for embed-
ded systems. See the gcc on-line
help files for the rest.

Syntax and potential run-
time error checking
The GNU compiler provides sev-
eral command-line options that
control how much trust it will
place in your code. The “-Wall”
setting is my favourite because
it causes gcc to warn you about
nearly everything that looks sus-
picious.

Some other useful options
include: “-Wformat” (checks
arguments to printf() calls);
“-Wcast-align” (warns if a cast
can cause alignment issues);
and “-Wconversion” (warns if a
negative integer constant ex-
pression is implicitly converted
to an unsigned type).

Inline assembly code
This compiler provides a powerful
syntax for embedding assembly
language statements in C/C++
source code. In the most basic
case, you can insert assembly lan-
guage instruction(s) into a block
of C code as follows:
void set_imask_to_6(void)
{
printf(“switching to interrupt
mask level 6.\n”);
__asm__(“ andi #0xf8, sr”);
__asm__(“ ori #6, sr”);
printf(“Interrupt mask level
is now 6.\n”);

}

But that’s just the tip of this
feature iceberg. The compiler
also provides a way to safely
refer to C objects in assembly
statements, instead of requiring
you to predict in advance which
register will be used to store the
value of interest.

For example, if you wanted to
use the 68881’s fsinx instruction
in as robust and portable a way

Installing the GNU compiler and linker

The GNU compiler is the only application that can reliably build a cross-platform version of itself,
so you’ll need to do all of the following on a machine that already has a native gcc installed.
Get Linux, or use Cygwin (www.cygnus.com) if you need to build and/or run under Win32.

To build and install the GNU compiler and linker, you first must
get the source code. The files you need are:

• gcc: ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.1.tar.gz
• linker, assembler, and other utilities: ftp://ftp.gnu.org/gnu/binutils/binutils-2.9.1.tar.gz
• run-time library: ftp://sourceware.cygnus.com/pub/newlib/newlib-1.8.1.tar.gz

Untar all the files, login as root, and abide by the following script. If you don’t have
root privileges on your machine, then add -prefix=<dir> to the configure statements,
replacing <dir> with a pathname that you have permission to write to.

Build the assembler and linker first:

cd binutils-2.9.1
configure
-target=your_target_name
make all install

Example target names are sh-hitachi-hms for the SH, m68k-unknown-coff for CPU32, and so on. See
configure.sub for information on supported target/host combinations, but beware: the list is long!

Now build the compiler and run-time libraries:

cd gcc-2.95.1
rm -rf libf2c
ln -s newlib ../newlib-1.8.1/newlib
configure —target=your_target_name —with-newlib
—with-headers=
/newlib/libc/
include5

make cross LANGUAGES=”c c++” install

� eetindia.com | February 2000 | EE Times-India

Embedding with GNU:
The GNU compiler and linker

GCC FEATURES

ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.1.tar.gz
ftp://ftp.gnu.org/gnu/binutils/binutils-2.9.1.tar.gz
ftp://sourceware.cygnus.com/pub/newlib/newlib-1.8.1.tar.gz
http://www.eetindia.co.in

as possible, you could do it like
this: 3

__asm__(“fsinx %1,%0” : “=f”
(result) : “f” (angle));

The “=f” and “f” are called
operand constraints, and they’re
used to tell gcc both how it
must generate the %0 and %1
expressions to make the opcode
function properly, and what side
effects the operand produces. In
this example, they tell gcc that it
must use floating-point registers
for the values of the variables an-
gle and result, and that the fsinx
instruction returns the answer in
variable result.

Operand constraints allow
mixed assembly and C/C++
statements to work properly
even when changes in optimi-
sation levels and other compiler
settings might cause them to do
otherwise. A variety of operands
and constraints are available, and
several examples are provided in
the “Extended Asm” section of
the gcc manual.

One other nice thing about
gcc’s inline assembly language
feature is that it doesn’t disrupt
the compiler’s normal optimisa-
tion processes nearly as much as
it seems to with other compilers.
To illustrate this, consider the
following simple function:

int foo(int a)
{
int b = 10;
a = 20;
__asm__ (“mov %1, %0” : “=r”
(a) : “r” (b)); /* a = b */
return a;
}

The assembly language is
simply copying b to a, and so
the return value is always 10.
With optimisations turned off,
gcc emits code that does that
explicitly (Hitachi SH-2 code, in
this case):

_foo:
mov.l r14,@-r15
add #-8,r15
mov r15,r14
mov.l r4,@r14
mov #10,r1
mov.l r1,@(4,r14)
mov #20,r1

mov.l r1,@r14
mov.l @(4,r14),r2
mov r2, r2
mov.l r2,@r14
mov.l @r14,r1
mov r1,r0
bra L1
nop
.align 2
L1: add #8,r14
mov r14,r15
mov.l @r15+,r14
rts

Crank up the optimisation
level (-O3 -fomit-frame-pointer),
however, and the code looks
very different:

_foo:
mov #10,r1
mov r1, r0
rts

In the latter case, gcc’s opti-
miser concluded that the only
possible return value was 10,
which means that it “under-
stood” the assembly code we
supplied and used it to its ad-
vantage. Pretty spiffy behaviour,
and not something I’ve come
to expect from the commercial
compilers I’ve used.

Why didn’t gcc just put the 10
into r0 in the first place? Because
gcc will optimise around user-
supplied assembly code, but it
won’t omit it. In other words, the
mov r1, r0 is there because of
our inline assembly statement,
not because gcc put it there.

Controlling names used in
assembler code
Occasionally the need arises to
have C access to an assembly
language object, but the object
of interest isn’t named in a C-
friendly fashion. The following
code allows C statements to use
a symbol named foo_in_C to re-
fer to the pathogenically named
assembly language symbol
foo_data (which lacks a leading
underscore, and therefore can’t
normally be accessed in C):

extern int foo_in_C asm
(“foo_data”);

A similar syntax is used for
declarations as well:

int bar asm (“bar_none”);
extern int foo(void) asm
(“assembly_foo”);

The first statement causes
gcc to create a C symbol called
bar, but emit assembly code
that calls it ‘ instead of the usual
_bar . The second statement
causes gcc to use the name as-
sembly_foo (instead of _foo)
whenever the C function foo() is
either called or defined.

Section specification
Many commercial cross compil-
ers allow you to specify the target
memory section for declarations
by using a command-line op-
tion. For example, to place all
of a module’s constant global
declarations into a section called
myconsts , you often use a com-
mand similar to the following:
compiler -C”myconst” main.c

In my opinion, the prob-
lem with this approach is that
it invisibly changes the effect
of the const keyword, which
leaves open the possibility that
future const additions to the
module will accidentally end
up in the wrong memory space.
Furthermore, it forces you to
split myconst and generic con-
stant declarations into separate
modules, which creates a real
maintenance headache as a
project matures.

In contrast, gcc’s approach
is to specify allocation sections
on a per-declaration basis, using
its section attribute language
extension:
const int put_this_in_rom
__attribute__((section(“myconst”
)));
const int put_this_in_flash
__attribute__((section(“myflash”
)));

In contrast to the command-
line approach, this technique
allows you to put all of the
declarations related to a piece
of functionality into the same
source module, regardless of
their destinations in the target’s
memory map.

Section attributes can also be

used to construct data tables. For
example, eCos (the open-source
Embedded Cygnus Operating
System), uses section attributes
to place all device information
structures (one of which is al-
located in each device driver’s
source module) into a section
called devtab , which the op-
erating system then analyses
at run time. Because of this ap-
proach, adding or removing a
driver is as simple as adding or
removing a module from the
application—there is no “master
device driver list” to modify.

Interrupt service routines
An interrupt_handler attribute
isn’t provided by gcc for most
target processors. This means
that you can’t write an entire ISR
(interrupt service routine) in C,
because gcc won’t return from
the function using a return-from-
exception opcode.

This limitation is not as sig-
nificant as it sounds. A common
workaround is to write a small
snippet of assembly language
code that saves registers, calls
the C code, and then exits with
an RTE , like this:

void isr_C(void)
{
/* whatever we do in C */
...
}
__asm__(“
.global _isr
_isr:
/* push scratch registers—C
* preserves the rest
*/
push r0
push r1
...
/* call the workhorse */
jsr _isr_C
/* clean up, return */
...
pop r1
pop r0
rte
“);
Why doesn’t gcc make

things easier for ISR writers, you
ask? The reason appears to be
that gcc’s primary mission (al-
though this is changing quickly)
is to produce code for desktop

� eetindia.com | February 2000 | EE Times-India

http://www.eetindia.co.in

workstations, which have no
need for interrupt service rou-
tines. Further-more, modifying
gcc’s stack frame and register
management implementation
is nontrivial, and so most seri-
ous GNU users seem to prefer
to write a few lines of assembly
language here and there, rather
than risk additional bugs.

Reserving registers
Sometimes it’s nice if you can tell
a compiler never to use a particu-
lar register, perhaps because you
have assembly language func-
tions that require a register value
be preserved across C function
calls.

As you might have guessed,
gcc can do this. Simply put a
-ffixed-REG on the command
line, that is:

gcc -ffixed-a7 myprogram.c

This capability is also useful
if your RTOS reserves a register
or two for its own use, or your
application has assembly code
that needs a high-speed global
variable.

Function names as strings
The standard C preprocessor
macros provide minimal infor-
mation useful for display output
at run time. For example, you
can describe the __DATE__ and
__TIME__ of a __FILE__ , but
not much else.

Not only does gcc support
these terms, it also adds two of
its own: __FUNCTION__ and
__PRETTY_FUNCTION__ . The
two produce the same output in
C, but the latter provides more
information when it appears in a
C++ module. In either case, the
information they provide can be
useful, especially for diagnostic
outputs caused by failed asser-
tions.

For example, this statement:
printf (“The function %s in

file
%s, was compiled on: %s.\n”,

__PRETTY_FUNCTION, __FILE__,
__DATE__);
yields either:
The function foo, in file foo.c,
was compiled on: Feb 10

1999.

or:
The function int c::foo, in file
foo.cpp, was compiled on:

Feb 10
1999.

Debugging information
You always have to tell gcc to in-
clude debugging information in
output files, using the -g flag:

gcc -g main.c

Without the -g , the applica-
tion will run but you won’t be
able to debug it.

ld: the GNU linker
The GNU linker is a powerful
application as well, but in many
cases there is no need to invoke
ld directly—gcc invokes it auto-
matically unless you use the -c
(compile only) option.

Like many commercial linkers,
most of ld’s functionality is con-
trolled using linker command
files, which are text files that
describe things like the final out-
put file’s memory organisation.
Listing 1 contains an example
linker command script that I will
discuss in detail over the next
several paragraphs. In summary,
this script defines four memory
regions called vect, rom, ram,
and cache , and the following
output sections: vect, text, bss,
init, and stack .

As with gcc, I don’t have the
space to discuss every ld feature
or supported command, but
they’re all described in ld’s on-
line documentation. Just type
info ld after installation.

The linker will use a default
command file unless you tell
it to do otherwise. To instruct
ld to use your command file
instead of its own, give gcc a
-Wl,T<filename> command
during compilation.

Listing 1 An example
linker command script

/* a list of files to link
(others are supplied on the

command line) */
INPUT(libc.a libg.a libgcc.a

libc.a libgcc.a)
/* output format
(can be overridden on com-

mand line) */
OUTPUT_FORMAT(“coff-sh”)

/* output filename
 (can be overridden on com-

mand line) */
OUTPUT_FILENAME(“main.

out”)

/* our program’s entry point;
not useful

 for much except to make
sure

 the S7 record
 is proper, because the reset

vector actually
 defines the “entrypoint” in

most embedded systems */
ENTRY(_start)

/* list of our memory sections
*/

MEMORY
{
 vect : o = 0, l = 1k
 rom : o = 0x400, l = 127k
 ram : o = 0x400000, l = 128k
 cache : o = 0xfffff000, l = 4k
}

/* how we’re organising
memory sections

 defined in each module */
SECTIONS
{
 /* the interrupt vector table

*/
 .vect :
 {
 __vect_start = .;
 *(.vect);
 __vect_end = .;
 } > vect

 /* code and constants */
 .text :

 {
 __text_start = .;
 *(.text)
 *(.strings)
 __text_end = .;
 } > rom

 /* uninitialized data */
 .bss :

 {
 __bss_start = . ;
 *(.bss)
 *(COMMON)
 __bss_end = . ;

 } > ram

 /* initialized data */
 .init : AT (__text_end)
 {
 __data_start = .;
 *(.data)
 __data_end = .;
 } > ram

 /* application stack */
 .stack :
 {
 __stack_start = .;
 *(.stack)
 __stack_end = .;
 } > ram
}

OUTPUT_FORMAT command
This command controls the for-
mat of the output file. A variety
of formats are supported, in-
cluding S-records (srec) , binary
(binary) , Intel Hex (ihex) , and
several debug-aware formats,
like COFF (coff-sh for SH-2 tar-
gets, coff-m68k for CPU32, and
so on).

The GNU linker derives its
output file formatting capabili-
ties from a library known as . Use
objdump -i to find out which
formats are supported by your
target’s version of the linker.

MEMORY command
The MEMORY command de-
scribes the target system’s
memory map. These memory
spaces are then used as targets
for statements in the SECTIONS
comand.

The typical syntax is simple:
MEMORY {
 name : o = origin, l = length
 name : o = origin, l = length
 ...
}

A one-to-one relationship usu-
ally exists between statements
in the MEMORY command and
the number of uniform, contigu-
ous memory regions supported
by the target hardware. A typi-
cal exception, however, is the
processor’s reset vector—and in
some cases, the entire interrupt
vector table—which is usually
declared as an independent sec-
tion so that its final location can

� eetindia.com | February 2000 | EE Times-India

http://www.eetindia.co.in

be strictly controlled.

SECTIONS command
Statements in a SECTIONS com-
mand describe the placement of
each named output section and
specify which input sections go
into them. You are only allowed
one SECTIONS statement per
command file, but it can have as
many statements in it as neces-
sary.

In the example, the state-
ment:

/* code and constants */
.text :

starts the definition for a sec-
tion named .text. The statements
inside the subsequent curly
braces instruct the linker to:
• Create a symbol called __

text_start and place it at the
beginning of the section

• Merge all .text and .strings
sections from the input files
into this section

• Create a symbol called __
text_end and place it at the
end of the section

Finally, the statement:
} > rom

tells the linker to locate the
entire section in the memory
space called rom which, accord-
ing to the MEMORY command,
begins at address 0x400. 4

The list of input sections can
also be file specific. For example,
if you added a line like:

foo.o (.specialsection)

to the .text section defi-
nition, the linker would also

merge into .text the section
named .specialsection from
the file foo.o .

AT directive
The AT directive tells the linker to
load a section’s data somewhere
other than the address at which
it’s actually located. This feature
is designed specifically for gen-
erating ROM images, something
that’s obviously important for
embedded systems.

The best way to understand
the AT directive is by example.
So, consider an application that
has only one initialised global
variable:

int a_global = 102;

During compilation, gcc
will declare an integer object
a_global with the value 102 in
the module’s .data section. But
by supplying an AT directive for
.data sections during linking, we
tell the linker to assign a_global
an address in one location (typi-
cally RAM), but place its initial
value somewhere else (__text_
end , usually ROM).

The following code initialises
a_global (and any other ini-
tialised global data in an applica-
tion). This code uses the symbols
_text_end, _data_start , and
_data_end to find the initial val-
ue, determine its size, and place
it at its proper place in RAM :

extern const char _text_start,
 _text_end;
extern char _data_start,
 _data_end;
memcpy(&_data_start,

&_text_end,

 &_data_end - &_data_start);

Now to put it all together.
The following command line
tells gcc to compile a file, main.
c, and then link it using the linker
command file main.cmd :

gcc -g -Wl,-Tmain.cmd main.c

Issues specific to systems
built using GNU tools
Although GNU and other open
source tools are available at no
cost, they aren’t necessarily free
for unrestricted use. For example,
if you link your application with a
library released under the terms
of the GPL (GNU Public License),
then, according to the terms of
the licence, you must make your
application available in source
form as well. Unfortunately, this is
the case for the C run-time library
(the code for printf(), malloc()
, and so forth), most often used
with gcc: glibc.

A suitable C run-time alter-
native that isn’t restricted in this
fashion is a library called new-
lib, available from the Cygnus
Solutions archives. According
to the terms of this library’s
licence, you may build pro-
prietary applications without
disclosing your source code,
so long as you acknowledge in
a manner appropriate to your
application that you’re using
Cygnus’ newlib.

Carefully read and understand
the licences for any open source
software (or any other software,
for that matter) that you use to
create or include in your em-
bedded application. If you can’t

abide by the terms, you can’t use
the code.

What have you got to lose?
Don’t take my word for it—-the
beauty of GNU is that you can
download and try out the tools
yourself at no charge. I encour-
age you to do so and to think
seriously about using GNU tools
for your next embedded project.

References
1. Gatliff, Bill, “Embedding with

GNU: The GNU Debugger,”
Embedded Systems
Programming , September
1999, p. 80.

2. Gatliff, Bill, “Embedding with
GNU: The gdb Remote Serial
Protocol,” Embedded Systems
Programming , November
1999, p. 108.

3. This example, along with
several others, is included
in the gcc documentation.
4. The name .text is tradi-
tional. With gcc , the text
section actually includes
the application’s instruction
code, constant declarations,
and text strings, subject
to section attributes sup-
plied in individual modules.
5. Replace <ABSOLUTE_
PATH_TO_NEWLIB> with
where you untarred the
newlib sources. for example:
/home/me/crossgcc-test/
newlib-1.8.1])

Email Send inquiry

� eetindia.com | February 2000 | EE Times-India

http://embedded.com/1999/9909/9909feat2.htm
http://embedded.com/1999/9909/9909feat2.htm
http://embedded.com/1999/9911/9911feat3.htm
http://embedded.com/1999/9911/9911feat3.htm
http://embedded.com/1999/9911/9911feat3.htm
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800505485&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800505485_1800001_TA_05320d73%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800505485&type=TA&title=Embedding+with+GNU%3A+The+GNU+compiler+and+linker&cat_id=1800001
http://www.eetindia.co.in

