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 * 
 * Returns:     None. 
 * 
 **********************************************************************/ 
void delay_ms(int milliseconds) 
{ 
    long volatile cycles = (milliseconds * CYCLES_PER_MS); 
      
    while (cycles != 0) 
        cycles--; 
} 
 
      
 

The hardware-specific constant CYCLES_PER_MS represents the number of times the processor can get 
through the while loop in a millisecond. To determine this number, we used trial and error. We will see 
later how to use a hardware counter to achieve better timing accuracy.

The four functions main, ledInit, ledToggle, and delay_ms do the whole job of the Blinking LED 
program. Of course, we still need to talk about how to build and execute this program. We'll examine 
those topics in the next two chapters. But first, we have a little something to say about infinite loops and 
their role in embedded systems.  

3.3. The Role of the Infinite Loop 

One of the most fundamental differences between programs developed for embedded systems and those 
written for other computer platforms is that the embedded programs almost always have an infinite loop. 
Typically, this loop surrounds a significant part of the program's functionality, as it does in the Blinking 
LED program. The infinite loop is necessary because the embedded software's job is never done. It is 
intended to be run until either the world comes to an end or the board is reset, whichever happens first.  

In addition, most embedded systems run only one piece of software. Although hardware is important, 
the system is not a digital watch or a cellular phone or a microwave oven without that software. If the 
software stops running, the hardware is rendered useless. So the functional parts of an embedded 
program are almost always surrounded by an infinite loop that ensures that they will run forever.  

If we had forgotten the infinite loop in the Blinking LED program, the LED would have simply changed 
state once.  

 

Chapter 4. Compiling, Linking, and Locating 
I consider that the golden rule requires that if I like a program I must share it with other people who like 
it. Software sellers want to divide the users and conquer them, making each user agree not to share with 
others. I refuse to break solidarity with other users in this way. I cannot in good conscience sign a 
nondisclosure agreement or a software license agreement. So that I can continue to use computers 
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without dishonor, I have decided to put together a sufficient body of free software so that I will be able 
to get along without any software that is not free.  

—Richard Stallman, Founder of the GNU Project The GNU Manifesto 

In this chapter, we'll examine the steps involved in preparing your software for execution on an 
embedded system. We'll also discuss the associated development tools and see how to build the Blinking 
LED program shown in Chapter 3. 

But before we get started, we want to make it clear that embedded systems programming is not 
substantially different from the programming you've done before. The only thing that has really changed 
is that you need to have an understanding of the target hardware platform. Furthermore, each target 
hardware platform is unique—for example, the method for communicating over a serial interface can 
vary from processor to processor and from platform to platform. Unfortunately, this uniqueness among 
hardware platforms leads to a lot of additional software complexity, and it's also the reason you'll need
to be more aware of the software build process than ever before. 

We focus on the use of open source software tools in this edition of the book. It's wonderful that 
software developers have powerful operating systems and tools that are totally free and are available for 
exploring and altering. Open source solutions are very popular and provide tough competition for their 
commercial counterparts. 

4.1. The Build Process 

When build tools run on the same system as the program they produce, they can make a lot of 
assumptions about the system. This is typically not the case in embedded software development, where 
the build tools run on a host computer that differs from the target hardware platform. There are a lot of 
things that software development tools can do automatically when the target platform is well defined. [*] 
This automation is possible because the tools can exploit features of the hardware and operating system 
on which your program will execute. For example, if all of your programs will be executed on IBM-
compatible PCs running Windows, your compiler can automate—and, therefore, hide from your view—
certain aspects of the software build process. Embedded software development tools, on the other hand, 
can rarely make assumptions about the target platform. Instead, the user must provide some of her own 
knowledge of the system to the tools by giving them more explicit instructions.  

[*] Used this way, the term "target platform" is best understood to include not only the hardware but also 
the operating system that forms the basic runtime environment for your software. If no operating system 
is present, as is sometimes the case in an embedded system, the target platform is simply the processor 
on which your program runs. 

The process of converting the source code representation of your embedded software into an executable 
binary image involves three distinct steps: 

1. Each of the source files must be compiled or assembled into an object file. 
2. All of the object files that result from the first step must be linked together to produce a single 

object file, called the relocatable program. 
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3. Physical memory addresses must be assigned to the relative offsets within the relocatable 
program in a process called relocation. 

The result of the final step is a file containing an executable binary image that is ready to run on the 
embedded system.  

The embedded software development process just described is illustrated in Figure 4-1. In this figure, 
the three steps are shown from top to bottom, with the tools that perform the steps shown in boxes that 
have rounded corners. Each of these development tools takes one or more files as input and produces a 
single output file. More specific information about these tools and the files they produce is provided in 
the sections that follow.  

Figure 4-1. The embedded software development process 

 
 

Each of the steps of the embedded software build process is a transformation performed by software 
running on a general-purpose computer. To distinguish this development computer (usually a PC or 
Unix workstation) from the target embedded system, it is referred to as the host computer. The compiler, 
assembler, linker, and locator run on a host computer rather than on the embedded system itself. Yet, 
these tools combine their efforts to produce an executable binary image that will execute properly only 
on the target embedded system. This split of responsibilities is shown in Figure 4-2. 



Programming Embedded Systems Second Edition 

Page 60 

Figure 4-2. The split between host and target 

 
 

In this book, we'll be using the GNU tools (compiler, assembler, linker, and debugger) for our examples. 
These tools are extremely popular with embedded software developers because they are freely available 
(even the source code is free) and support many of the most popular embedded processors. We will use 
features of these specific tools as illustrations for the general concepts discussed. Once understood, these 
same basic concepts can be applied to any equivalent development tool. The manuals for all of the GNU 
software development tools can be found online at http://www.gnu.org/manual. 

4.1.1. Compiling 

The job of a compiler is mainly to translate programs written in some human-readable language into an 
equivalent set of opcodes for a particular processor. In that sense, an assembler is also a compiler (you 
might call it an "assembly language compiler"), but one that performs a much simpler one-to-one 
translation from one line of human-readable mnemonics to the equivalent opcode. Everything in this 
section applies equally to compilers and assemblers. Together these tools make up the first step of the 
embedded software build process. 

Of course, each processor has its own unique machine language, so you need to choose a compiler that 
produces programs for your specific target processor. In the embedded systems case, this compiler 
almost always runs on the host computer. It simply doesn't make sense to execute the compiler on the 
embedded system itself. A compiler such as this—that runs on one computer platform and produces 
code for another—is called a cross-compiler. The use of a cross-compiler is one of the defining features 
of embedded software development. 

The GNU C compiler (gcc) and assembler (as) can be configured as either native compilers or cross-
compilers. These tools support an impressive set of host-target combinations. The gcc compiler will run 
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on all common PC and Mac operating systems. The target processor support is extensive, including 
AVR, Intel x86, MIPS, PowerPC, ARM, and SPARC. Additional information about gcc can be found 
online at http://gcc.gnu.org. 

Regardless of the input language (C, C++, assembly, or any other), the output of the cross-compiler will 
be an object file. This is a specially formatted binary file that contains the set of instructions and data 
resulting from the language translation process. Although parts of this file contain executable code, the 
object file cannot be executed directly. In fact, the internal structure of an object file emphasizes the 
incompleteness of the larger program.  

The contents of an object file can be thought of as a very large, flexible data structure. The structure of 
the file is often defined by a standard format such as the Common Object File Format (COFF) or 
Executable and Linkable Format (ELF). If you'll be using more than one compiler (i.e., you'll be writing 
parts of your program in different source languages), you need to make sure that each compiler is 
capable of producing object files in the same format; gcc supports both of the file formats previously 
mentioned. Although many compilers (particularly those that run on Unix platforms) support standard 
object file formats such as COFF and ELF, some others produce object files only in proprietary formats. 
If you're using one of the compilers in the latter group, you might find that you need to get all of your 
other development tools from the same vendor. 

Most object files begin with a header that describes the sections that follow. Each of these sections 
contains one or more blocks of code or data that originated within the source file you created. However, 
the compiler has regrouped these blocks into related sections. For example, in gcc all of the code blocks 
are collected into a section called text, initialized global variables (and their initial values) into a 
section called data, and uninitialized global variables into a section called bss. 

There is also usually a symbol table somewhere in the object file that contains the names and locations 
of all the variables and functions referenced within the source file. Parts of this table may be incomplete, 
however, because not all of the variables and functions are always defined in the same file. These are the 
symbols that refer to variables and functions defined in other source files. And it is up to the linker to 
resolve such unresolved references. 

4.1.2. Linking 

All of the object files resulting from the compilation in step one must be combined. The object files 
themselves are individually incomplete, most notably in that some of the internal variable and function 
references have not yet been resolved. The job of the linker is to combine these object files and, in the
process, to resolve all of the unresolved symbols.  

The output of the linker is a new object file that contains all of the code and data from the input object 
files and is in the same object file format. It does this by merging the text, data, and bss sections of the 
input files. When the linker is finished executing, all of the machine language code from all of the input 
object files will be in the text section of the new file, and all of the initialized and uninitialized 
variables will reside in the new data and bss sections, respectively. 
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While the linker is in the process of merging the section contents, it is also on the lookout for unresolved 
symbols. For example, if one object file contains an unresolved reference to a variable named foo, and a 
variable with that same name is declared in one of the other object files, the linker will match them. The 
unresolved reference will be replaced with a reference to the actual variable. For example, if foo is 
located at offset 14 of the output data section, its entry in the symbol table will now contain that address.  

The GNU linker (ld) runs on all of the same host platforms as the GNU compiler. It is a command-line 
tool that takes the names of all the object files, and possibly libraries, to be linked as arguments. With 
embedded software, a special object file that contains the compiled startup code, which is covered later 
in this section, must also be included within this list. The GNU linker also has a scripting language that 
can be used to exercise tighter control over the object file that is output.  

If the same symbol is declared in more than one object file, the linker is unable to proceed. It will likely 
complain to the programmer (by displaying an error message) and exit. 

On the other hand, if a symbol reference remains unresolved after all of the object files have been 
merged, the linker will try to resolve the reference on its own. The reference might be to a function, such 
as memcpy, strlen, or malloc, that is part of the standard C library, so the linker will open each of the 
libraries described to it on the command line (in the order provided) and examine their symbol tables. If 
the linker thus discovers a function or variable with that name, the reference will be resolved by 
including the associated code and data sections within the output object file. [ ] Note that the GNU 
linker uses selective linking, which keeps other unreferenced functions out of the linker's output image. 

[ ] We are talking only about static linking here. When dynamic linking of libraries is used, the code and 
data associated with the library routine are not inserted into the program directly. 

Unfortunately, the standard library routines often require some changes before they can be used in an 
embedded program. One problem is that the standard libraries provided with most software development 
tool suites arrive only in object form. You only rarely have access to the library source code to make the 
necessary changes yourself. Thankfully, a company called Cygnus (which is now part of Red Hat) 
created a freeware version of the standard C library for use in embedded systems. This package is called 
newlib . You need only download the source code for this library from the Web (currently located at 
http://sourceware.org/newlib), implement a few target-specific functions, and compile the whole lot. The 
library can then be linked with your embedded software to resolve any previously unresolved standard 
library calls. 

After merging all of the code and data sections and resolving all of the symbol references, the linker 
produces an object file that is a special "relocatable" copy of the program. In other words, the program is 
complete except for one thing: no memory addresses have yet been assigned to the code and data 
sections within. If you weren't working on an embedded system, you'd be finished building your 
software now. 

But embedded programmers aren't always finished with the build process at this point. The addresses of 
the symbols in the linking process are relative. Even if your embedded system includes an operating 
system, you'll probably still need an absolutely located binary image. In fact, if there is an operating 
system, the code and data of which it consists are most likely within the relocatable program too. The 
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entire embedded application—including the operating system—is frequently statically linked together 
and executed as a single binary image. 

4.1.2.1. Startup code 

One of the things that traditional software development tools do automatically is insert startup code: a 
small block of assembly language code that prepares the way for the execution of software written in a 
high-level language. Each high-level language has its own set of expectations about the runtime 
environment. For example, programs written in C use a stack. Space for the stack has to be allocated 
before software written in C can be properly executed. That is just one of the responsibilities assigned to 
startup code for C programs. 

Most cross-compilers for embedded systems include an assembly language file called startup.asm, crt0.s 
(short for C runtime), or something similar. The location and contents of this file are usually described 
in the documentation supplied with the compiler.  

Startup code for C programs usually consists of the following series of actions:  

1. Disable all interrupts. 
2. Copy any initialized data from ROM to RAM. 
3. Zero the uninitialized data area. 
4. Allocate space for and initialize the stack.  
5. Initialize the processor's stack pointer. 
6. Call main. 

Typically, the startup code will also include a few instructions after the call to main. These instructions 
will be executed only in the event that the high-level language program exits (i.e., the call to main 
returns). Depending on the nature of the embedded system, you might want to use these instructions to 
halt the processor, reset the entire system, or transfer control to a debugging tool.  

Because the startup code is often not inserted automatically, the programmer must usually assemble it 
himself and include the resulting object file among the list of input files to the linker. He might even 
need to give the linker a special command-line option to prevent it from inserting the usual startup code. 
Working startup code for a variety of target processors can be found in a GNU package called libgloss . 

Debug Monitors 
In some cases, a debug monitor (or ROM monitor) is the first code executed when the board 
powers up. In the case of the Arcom board, there is a debug monitor called RedBoot. [ ] 
RedBoot, the name of which is an acronym for RedHat's Embedded Debug and Bootstrap 
program, is a debug monitor that can be used to download software, perform basic memory 
operations, and manage nonvolatile memory. This software on the Arcom board contains the 
startup code and performs the tasks listed previously to initialize the hardware to a known 
state. Because of this, programs downloaded to run in RAM via RedBoot do not need to be 
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linked with startup code and should be linked but not located. 

After the hardware has been initialized, RedBoot sends out a prompt to a serial port and waits 
for input from the user (you) to tell it what to do. RedBoot supports commands to load 
software, dump memory, and perform various other tasks. We will take a look at using 
RedBoot to load a software program in the next chapter. 

 

[ ] Additional information about RedBoot can be found online at http://ecos.sourceware.org/redboot. The 
RedBoot User's Guide is located on this site as well. A description of the RedBoot startup procedure is 
contained in the book Embedded Software Development with eCos, by Anthony Massa (Prentice Hall 
PTR). 

4.1.3. Locating 

The tool that performs the conversion from relocatable program to executable binary image is called a 
locator. It takes responsibility for the easiest step of the build process. In fact, you have to do most of the 
work in this step yourself, by providing information about the memory on the target board as input to the 
locator. The locator uses this information to assign physical memory addresses to each of the code and 
data sections within the relocatable program. It then produces an output file that contains a binary 
memory image that can be loaded into the target.  

Whether you are writing software for a general-purpose computer or an embedded system, at some point 
the sections of your relocatable program must be assigned actual addresses. Sometimes software that is 
already in the target does this for you, as RedBoot does on the Arcom board. 

In some cases, there is a separate development tool, called a locator, to assign addresses. However, in 
the case of the GNU tools, this feature is built into the linker (ld). 

The memory information required by the GNU linker can be passed to it in the form of a linker script. 
Such scripts are sometimes used to control the exact order of the code and data sections within the 
relocatable program. But here, we want to do more than just control the order; we also want to establish 
the physical location of each section in memory. 

What follows is an example of a linker script for the Arcom board. This linker script file is used to build 
the Blinking LED program covered in Chapter 3: 

ENTRY (main) 
 
MEMORY 
{ 
    ram : ORIGIN = 0x00400000, LENGTH = 64M 
    rom : ORIGIN = 0x60000000, LENGTH = 16M 
} 
 
SECTIONS 
{ 
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    data :                              /* Initialized data. */  
    {  
        _DataStart = . ;  
        *(.data)  
        _DataEnd   = . ; 
 
    } >ram 
      
    bss :                               /* Uninitialized data. */ 
    {  
        _BssStart = . ; 
        *(.bss)  
        _BssEnd   = . ; 
    } >ram 
      
    text :                              /* The actual instructions. */ 
    {  
        *(.text)  
    } >ram 
} 
 
      
 

This script informs the GNU linker's built-in locator about the memory on the target board, which 
contains 64 MB of RAM and 16 MB of flash ROM. [§] The linker script file instructs the GNU linker to 
locate the data, bss, and text sections in RAM starting at address 0x00400000. The first executable 
instruction is designated with the ENTRY command, which appears on the first line of the preceding 
example. In this case, the entry point is the function main. 

[§] There is also a version of the Arcom board that contains 32 MB of flash. If you have this version of 
the board, change the linker script file as follows: 

rom : ORIGIN = 0x60000000, LENGTH = 32M  

Names in the linker command file that begin with an underscore (e.g., _DataStart) can be referenced 
similarly to ordinary variables from within your source code. The linker will use these symbols to 
resolve references in the input object files. So, for example, there might be a part of the embedded 
software (usually within the startup code) that copies the initial values of the initialized variables from 
ROM to the data section in RAM. The start and stop addresses for this operation can be established 
symbolically by referring to the addresses as _DataStart and _DataEnd. 

A linker script can also use various commands to direct the linker to perform other operations. 
Additional information and options for GNU linker script files can be found at http://www.gnu.org. 

The output of this final step of the build process is a binary image containing physical addresses for the 
specific embedded system. This executable binary image can be downloaded to the embedded system or 
programmed into a memory chip. You'll see how to download and execute such memory images in the 
next chapter. 
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4.2. Building the Blinking LED Program 

In this section, we show an example build procedure for the Arcom VIPER-Lite development board. If 
another hardware platform is used, a simlar process should be followed using the tools and conventions 
that accompany that hardware. 

The installation procedure for the software development tools is provided in Appendix B. Once the tools 
are installed, the commands covered in the following sections are entered into a command shell. For 
Windows users, the command shell is a Cygwin bash shell (Cygwin is a Unix environment for 
Windows); for Linux users, it is a regular command shell. 

 

In this and subsequent chapters, commands entered in a shell environment are 
indicated by the number sign (#) prompt. Commands entered in the RedBoot 
environment are indicated by the RedBoot prompt (RedBoot>). 

 
 

We will next take a look at the individual commands in order to manually perform the three separate 
tasks (compiling, linking, and locating) described earlier in this chapter. Then we will learn how to 
automate the build procedure with makefiles. 

4.2.1. Compile 

As we have implemented it, the Blinking LED example consists of two source modules: led.c and 
blink.c. The first step in the build process is to compile these two files. The basic structure for the gcc 
compiler command is: 

arm-elf-gcc [ 
                  options 
               ]  
                  file 
               ... 
 

The command-line options we'll need are: 

 

-g  

To generate debugging info in default format 

 

-c  

To compile and assemble but not link 
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-Wall  

To enable most warning messages 

 

-I../include  

To look in the directory include for header files 

Here are the actual commands for compiling the C source files: 

# arm-elf-gcc –g -c –Wall -I../include led.c 
# arm-elf-gcc -g –c -Wall -I../include blink.c 
             
 

We broke up the compilation step into two separate commands, but you can compile the two files with 
one command. To use a single command, just put both of the source files after the options. If you 
wanted different options for one of the source files, you would need to compile it separately as just 
shown. For additional information about compiler options, take a look at http://gcc.gnu.org. 

Running these commands will be a good way to verify that the tools were set up properly. The result of 
each of these commands is the creation of an object file that has the same prefix as the .c file, and the 
extension .o. So if all goes well, there will now be two additional files—led.o and blink.o—in the 
working directory. The compilation procedure is shown in Figure 4-3. 

Figure 4-3. Compiling the Blinking LED program 
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4.2.2. Link and Locate 

We now have the two object files—led.o and blink.o—that we need in order to perform the second step 
in the build process. As we discussed earlier, the GNU linker performs the linking and locating of the 
object files. 

For the third step, locating, there is a linker script file named viperlite.ld that we input to ld in order to 
establish the location of each section in the Arcom board's memory. The basic structure for the linker 
and locater ld command is: 

arm-elf-ld [ 
                  options 
               ]  
                  file 
               ... 
 

The command-line options we'll need for this step are: 

 

-Map blink.map  

To generate a map file and use the given filename 
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-T viperlite.ld  

To read the linker script 

 

-N  

To set the text and data sections to be readable and writable 

 

-o blink.exe  

To set the output filename (if this option is not included, ld will use the default output filename 
a.out) 

The actual command for linking and locating is: 

# arm-elf-ld –Map blink.map –T viperlite.ld -N –o blink.exe led.o blink.o 
             
 

The order of the object files determines their placement in memory. Because we are not linking in any 
startup code, the order of the object files is irrelevant. If startup code were included, you would want 
that object file to be located at the proper address. The linker script file can be used to specify where you 
want the startup routine (and other code) to reside in memory. Furthermore, you can also use the linker 
script file to specify exact addresses for code or data, should you find it necessary to do so. 

As you can see in this command, the two object files—led.o and blink.o—are the last arguments on the 
command line for linking. The linker script file, viperlite.ld, is also passed in for locating the data and 
code in the Arcom board's memory. The result of this command is the creation of two files—blink.map 
and blink.exe—in the working directory. The linking and locating procedure is shown in Figure 4-4. 

Figure 4-4. Linking and locating the Blinking LED program 
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The .map file gives a complete listing of all code and data addresses for the final software image. If you 
have never seen such a map file before, be sure to take a look at this one before reading on. It provides 
information similar to the contents of the linker script described earlier. However, these are results rather 
than instructions and therefore include the actual lengths of the sections and the names and locations of 
the public symbols found in the relocatable program. We'll see later how this file can be used as a 
debugging aid. 

Another Linking Method 
You may notice that for examples later in the book, gcc is invoked during the linking process. 
The gcc compiler then invokes the linker indirectly. When gcc compiles certain programs, it 
may introduce calls to special runtime libraries behind the scenes. Linking via gcc ensures 
that the correct versions of these libraries (called multilibs) are linked in for the specified 
configuration. 

If the linker, ld, were invoked directly, the correct set of multilibs would also need to be 
specified on the command line to ensure that the image is linked properly. To avoid this, we 
will use gcc to invoke the linker. 
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4.2.3. Format the Output File 

The last step of the previous section creates an image of the Blinking LED program that we can load 
onto the Arcom board. In certain cases, you might need to format the image from the build procedure for 
your specific target platform. 

One tool included with the GNU toolset that can assist with formatting images is the strip utility, which 
is part of the binary utilities package called binutils (pronounced "bin-you-tills"). The strip utility can 
remove particular sections from an object file. The basic command structure for the strip utility is: 

arm-elf-strip [ 
                  options 
               ]  
                  input-file 
               ... [ 
                  -o output-file 
               ] 
 

The build procedure for subsequent chapters in the book generates two executable files: one with debug 
information and one without. The executable that contains the debug information includes dbg in its 
filename. The debug image should be used with gdb. If an image is downloaded with RedBoot, the 
nondebug image should be used. 

The command used to strip symbol information is:  

# arm-elf-strip --remove-section=.comment blinkdbg.exe -o blink.exe 
             
 

This removes the section named .comment from the image blinkdbg.exe and creates the new output file 
blink.exe. 

There might be another time when you need an image file that can be burned into ROM or flash. The 
GNU toolset has just what you need for this task. The utility objcopy (object copy) is able to copy the 
contents of one object file into another object file. The basic structure for the objcopy utility is: 

arm-elf-objcopy [ 
                  options 

]
                  input-file 
                [ 
                  output-file 
               ] 
 

For example, let's suppose we want to convert our Blinking LED program from ELF format into an Intel 
Hex Format file. [||] The command line we use for this is: 
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[||] Intel Hex format is an ASCII file format devised by Intel for storing and downloading binary images. 

# arm-elf-objcopy -O ihex blink.exe blink.hex 
             
 

This command uses the –O ihex option to generate an Intel Hex Format file. The input file is blink.exe 
(the objcopy utility determines the input file type). Finally, the output file is named blink.hex. 

 
If no output filename is given, the strip and objcopy utilities overwrite the original 
input file with the generated file. 

 
 

Some of the other GNU tools are useful for providing other information about the image you have built. 
For example, the size utility, which is part of the binutils package, lists the section sizes and total size for 
a given object file. Here is the command for using the size utility: 

# arm-elf-size blink.exe 
             
 

The resulting output is: 

text    data     bss     dec     hex filename 
 328       0       0     328     148 blink.exe 
 

The top row consists of column headings and shows the sections text, data, and bss. The Blinking 
LED program contains 328 bytes in the text section, no bytes in the data section, and no bytes in the 
bss section. The dec column shows the total image size in decimal, and the hex column shows it in 
hexadecimal (decimal 328 = hexadecimal 0x148). These total sizes are in bytes. The last column, 
filename, contains the filename of the object file. 

You will notice that the size of the section, 328 bytes, is much smaller than the approximately 3 KB file 
size of our blink.exe. This is because debugging information is located also in the blink.exe file. 

Additional information about the other GNU binutils can be found online at http://www.gnu.org. 

We're now ready to download the program to our development board, which we'll do in the next chapter. 
To wrap up our discussion of building programs, let's take a quick look at another useful tool in the 
build process.  

4.3. A Quick Look at Makefiles 

You can imagine how tedious the build process could be if you had a large number of source code files 
for a particular project. Manually entering individual compiler and linker commands on the command 
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line becomes tiresome very quickly. In order to avoid this, a makefile can be used. A makefile is a script 
that tells the make utility how to build a particular program. (The make utility is typically installed with 
the other GNU tools.) The make utility follows the rules in the makefile in order to automatically 
generate output files from a set of input source files. 

Makefiles might be a bit of a pain to set up, but they can be a great timesaver and a very powerful tool 
when building project files over and over (and over) again. Having a sample available can reduce the 
pain of setting up a makefile. 

The basic layout for a makefile build rule is: 

target:   prerequisite 
          command           
 

The target is what is going to be built, the prerequisite is a file that must exist before the target 
can be created, and the command is a shell command used to create the target. There can be multiple 
prerequisites on the target line (separated by white space) and/or multiple command lines. But be 
sure to put a tab, not spaces, at the beginning of every line containing a command. 

Here's a makefile for building our Blinking LED program: 

XCC     = arm-elf-gcc 
LD      = arm-elf-ld 
CFLAGS  = -g -c -Wall \\ 
          -I../include 
LDFLAGS = -Map blink.map -T viperlite.ld -N 
 
all: blink.exe 
 
led.o: led.c led.h 
    $(XCC) $(CFLAGS) led.c 
 
blink.o: blink.c led.h 
    $(XCC) $(CFLAGS) blink.c 
 
blink.exe: blink.o led.o viperlite.ld 
    $(LD) $(LDFLAGS) -o $@ led.o blink.o 
 
clean: 
    -rm -f blink.exe *.o blink.map 
 

The first four statements in this makefile contain variables for use in the makefile. The variable names 
are on the left side of the equal sign. In this makefile, the respective variables do the following: 

 

XCC  
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Defines the compiler executable program 

 

LD  

Defines the linker executable program 

 

CFLAGS  

Defines the flags for the compiler 

 

LDFLAGS  

Defines the flags for the linker 

Variables in a makefile are used to eliminate some of the duplication of text as well as to ease 
portability. In order to use a variable in the code, the syntax $( ) is used with the variable name 
enclosed in the parentheses. 

Note that if a line in a makefile gets too long, you can continue it on the following line by using the 
backslash (\\), as shown with the CFLAGS variable. 

Now for the build rules. The build targets in this file are all, led.o, blink.o, and blink.exe. Unless 
you specify a target when invoking the make utility, it searches for the first target (in this case, the first 
target is all) and tries to build it; this, in turn, can lead to it finding and building other targets. The make 
utility creates (or re-creates, as the case may be) the target file if it does not exist or if the prerequisite 
files are more recent than the target file. 

At this point, it might help to look at the makefile from the bottom up. In order for blink.exe to be 
created, blink.o and led.o need to be built as shown in the prerequisites. However, since these files 
don't exist, the make utility will need to create them first. It will search for ways to create these two files 
and will find them listed as targets in the makefile. The make utility can create these files because the 
prerequisites (the source files) for these two targets exist. 

Because the targets led.o and blink.o are handled similarly, let's focus on just one of them. The 
prerequisites for the target led.o are led.c and led.h. As stated above, the command tells the make 
utility how to create the target. The first part of the command for led.o is a reference to the variable 
XCC, as indicated by the syntax $(XCC), and the next part of the command is a reference to the variable 
CFLAGS, as indicated by the syntax $(CFLAGS). The make utility simply replaces variable references with 
the text assigned to them in the makefile. The final part of the command is the source file led.c. Strung 
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together, these elements construct the command that the make utility executes. This generates a 
command on the shell command line as follows: 

arm-elf-gcc -g -c -Wall -I../include led.c 
 

This is the same command we entered by hand in order to compile the led.c file earlier in this chapter, in 
the section "Building the Blinking LED Program." The make utility compiles blink.c in the same way. 

At this point, the make utility has all of the prerequisites needed to generate the target blink.exe default 
target. The command that the make utility executes (the same command we entered by hand to link and 
locate the Blinking LED program) to build blink.exe is: 

arm-elf-ld -Map blink.map -T viperlite.ld -N -o blink.exe led.o blink.o 
 

You may notice that in this makefile the linker is invoked directly. Instead, gcc could have been used to 
invoke the linker indirectly with the following line:  

arm-elf-gcc -Wl,-Map,blink.map -T viperlite.ld -N -o blink.exe led.o blink.o 
 
      
 

When invoking the linker indirectly, the special option –Wl is used so that gcc passes the request to 
generate a linker map file to the linker rather than trying to parse the argument itself. While this simple 
Blinking LED program does not need to link using gcc, you should remember that more complex C 
programs may need special runtime library support from gcc and will need to be linked in this way. 

The last part of the makefile is the target clean. However, because it was not needed for the default 
target, the command was not executed. 

To execute the makefile's build instructions, simply change to the directory that contains the makefile 
and enter the command: 

# make 
          
 

The make utility will search the current directory for a file named makefile. If your makefile has a 
different name, you can specify that on the command line following the -f option. 

With the previous command, the make utility will make the first target it finds. You can also specify 
targets on the command line for the make utility. For example, because all is the default target in the 
preceding makefile, you can just as easily use the following command: 

# make all 
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A target called clean is typically included in a makefile, with commands for removing old object files 
and executables, in order to allow you to create a fresh build. The command line for executing the clean 
target is: 

# make clean 
          
 

Keep in mind that we've presented a very basic example of the make utility and makefiles for a very 
basic project. The make utility contains very powerful tools within its advanced features that can benefit 
you when executing large and more complex projects. 

 

It is important to keep the makefile updated as your project changes. Remember to 
incorporate new source files and keep your prerequisites up to date. If 
prerequisites are not set up properly, you might change a particular source file, but 
that source file will not get incorporated into the build. This situation can leave 
you scratching your head. 

 
 

Additional information about the GNU make utility can be found online at http://www.gnu.org as well 
as in the book Managing Projects with GNU make, by Robert Mecklenburg (O'Reilly). These resources 
will give you a deeper understanding of both the make utility and makefiles and allow you to use their 
more powerful features.  

 

Chapter 5. Downloading and Debugging 
I can remember the exact instant when I realized that a large part of my life from then on was going to 
be spent in finding mistakes in my own programs. 

—Maurice Wilkes, Head of the Computer Laboratory of the University of Cambridge, 1959 

Once you have an executable binary image stored as a file on the host computer, you will need a way to 
download that image to the embedded system and execute it. The executable binary image is usually 
loaded into a memory device on the target board and executed from there. And if you have the right 
tools at your disposal, it will be possible to set breakpoints in the program or to observe its execution in 
less intrusive ways. This chapter describes various techniques for downloading, executing, and 
debugging embedded software in general, as well as focuses on the techniques available on our 
development environment. 


