
Programming Embedded Systems Second Edition

Page 57

 *
 * Returns: None.
 *
 **/
void delay_ms(int milliseconds)
{
 long volatile cycles = (milliseconds * CYCLES_PER_MS);

 while (cycles != 0)
 cycles--;
}

The hardware-specific constant CYCLES_PER_MS represents the number of times the processor can get
through the while loop in a millisecond. To determine this number, we used trial and error. We will see
later how to use a hardware counter to achieve better timing accuracy.

The four functions main, ledInit, ledToggle, and delay_ms do the whole job of the Blinking LED
program. Of course, we still need to talk about how to build and execute this program. We'll examine
those topics in the next two chapters. But first, we have a little something to say about infinite loops and
their role in embedded systems.

3.3. The Role of the Infinite Loop

One of the most fundamental differences between programs developed for embedded systems and those
written for other computer platforms is that the embedded programs almost always have an infinite loop.
Typically, this loop surrounds a significant part of the program's functionality, as it does in the Blinking
LED program. The infinite loop is necessary because the embedded software's job is never done. It is
intended to be run until either the world comes to an end or the board is reset, whichever happens first.

In addition, most embedded systems run only one piece of software. Although hardware is important,
the system is not a digital watch or a cellular phone or a microwave oven without that software. If the
software stops running, the hardware is rendered useless. So the functional parts of an embedded
program are almost always surrounded by an infinite loop that ensures that they will run forever.

If we had forgotten the infinite loop in the Blinking LED program, the LED would have simply changed
state once.

Chapter 4. Compiling, Linking, and Locating
I consider that the golden rule requires that if I like a program I must share it with other people who like
it. Software sellers want to divide the users and conquer them, making each user agree not to share with
others. I refuse to break solidarity with other users in this way. I cannot in good conscience sign a
nondisclosure agreement or a software license agreement. So that I can continue to use computers

Programming Embedded Systems Second Edition

Page 58

without dishonor, I have decided to put together a sufficient body of free software so that I will be able
to get along without any software that is not free.

—Richard Stallman, Founder of the GNU Project The GNU Manifesto

In this chapter, we'll examine the steps involved in preparing your software for execution on an
embedded system. We'll also discuss the associated development tools and see how to build the Blinking
LED program shown in Chapter 3.

But before we get started, we want to make it clear that embedded systems programming is not
substantially different from the programming you've done before. The only thing that has really changed
is that you need to have an understanding of the target hardware platform. Furthermore, each target
hardware platform is unique—for example, the method for communicating over a serial interface can
vary from processor to processor and from platform to platform. Unfortunately, this uniqueness among
hardware platforms leads to a lot of additional software complexity, and it's also the reason you'll need
to be more aware of the software build process than ever before.

We focus on the use of open source software tools in this edition of the book. It's wonderful that
software developers have powerful operating systems and tools that are totally free and are available for
exploring and altering. Open source solutions are very popular and provide tough competition for their
commercial counterparts.

4.1. The Build Process

When build tools run on the same system as the program they produce, they can make a lot of
assumptions about the system. This is typically not the case in embedded software development, where
the build tools run on a host computer that differs from the target hardware platform. There are a lot of
things that software development tools can do automatically when the target platform is well defined. [*]
This automation is possible because the tools can exploit features of the hardware and operating system
on which your program will execute. For example, if all of your programs will be executed on IBM-
compatible PCs running Windows, your compiler can automate—and, therefore, hide from your view—
certain aspects of the software build process. Embedded software development tools, on the other hand,
can rarely make assumptions about the target platform. Instead, the user must provide some of her own
knowledge of the system to the tools by giving them more explicit instructions.

[*] Used this way, the term "target platform" is best understood to include not only the hardware but also
the operating system that forms the basic runtime environment for your software. If no operating system
is present, as is sometimes the case in an embedded system, the target platform is simply the processor
on which your program runs.

The process of converting the source code representation of your embedded software into an executable
binary image involves three distinct steps:

1. Each of the source files must be compiled or assembled into an object file.
2. All of the object files that result from the first step must be linked together to produce a single

object file, called the relocatable program.

Programming Embedded Systems Second Edition

Page 59

3. Physical memory addresses must be assigned to the relative offsets within the relocatable
program in a process called relocation.

The result of the final step is a file containing an executable binary image that is ready to run on the
embedded system.

The embedded software development process just described is illustrated in Figure 4-1. In this figure,
the three steps are shown from top to bottom, with the tools that perform the steps shown in boxes that
have rounded corners. Each of these development tools takes one or more files as input and produces a
single output file. More specific information about these tools and the files they produce is provided in
the sections that follow.

Figure 4-1. The embedded software development process

Each of the steps of the embedded software build process is a transformation performed by software
running on a general-purpose computer. To distinguish this development computer (usually a PC or
Unix workstation) from the target embedded system, it is referred to as the host computer. The compiler,
assembler, linker, and locator run on a host computer rather than on the embedded system itself. Yet,
these tools combine their efforts to produce an executable binary image that will execute properly only
on the target embedded system. This split of responsibilities is shown in Figure 4-2.

Programming Embedded Systems Second Edition

Page 60

Figure 4-2. The split between host and target

In this book, we'll be using the GNU tools (compiler, assembler, linker, and debugger) for our examples.
These tools are extremely popular with embedded software developers because they are freely available
(even the source code is free) and support many of the most popular embedded processors. We will use
features of these specific tools as illustrations for the general concepts discussed. Once understood, these
same basic concepts can be applied to any equivalent development tool. The manuals for all of the GNU
software development tools can be found online at http://www.gnu.org/manual.

4.1.1. Compiling

The job of a compiler is mainly to translate programs written in some human-readable language into an
equivalent set of opcodes for a particular processor. In that sense, an assembler is also a compiler (you
might call it an "assembly language compiler"), but one that performs a much simpler one-to-one
translation from one line of human-readable mnemonics to the equivalent opcode. Everything in this
section applies equally to compilers and assemblers. Together these tools make up the first step of the
embedded software build process.

Of course, each processor has its own unique machine language, so you need to choose a compiler that
produces programs for your specific target processor. In the embedded systems case, this compiler
almost always runs on the host computer. It simply doesn't make sense to execute the compiler on the
embedded system itself. A compiler such as this—that runs on one computer platform and produces
code for another—is called a cross-compiler. The use of a cross-compiler is one of the defining features
of embedded software development.

The GNU C compiler (gcc) and assembler (as) can be configured as either native compilers or cross-
compilers. These tools support an impressive set of host-target combinations. The gcc compiler will run

Programming Embedded Systems Second Edition

Page 61

on all common PC and Mac operating systems. The target processor support is extensive, including
AVR, Intel x86, MIPS, PowerPC, ARM, and SPARC. Additional information about gcc can be found
online at http://gcc.gnu.org.

Regardless of the input language (C, C++, assembly, or any other), the output of the cross-compiler will
be an object file. This is a specially formatted binary file that contains the set of instructions and data
resulting from the language translation process. Although parts of this file contain executable code, the
object file cannot be executed directly. In fact, the internal structure of an object file emphasizes the
incompleteness of the larger program.

The contents of an object file can be thought of as a very large, flexible data structure. The structure of
the file is often defined by a standard format such as the Common Object File Format (COFF) or
Executable and Linkable Format (ELF). If you'll be using more than one compiler (i.e., you'll be writing
parts of your program in different source languages), you need to make sure that each compiler is
capable of producing object files in the same format; gcc supports both of the file formats previously
mentioned. Although many compilers (particularly those that run on Unix platforms) support standard
object file formats such as COFF and ELF, some others produce object files only in proprietary formats.
If you're using one of the compilers in the latter group, you might find that you need to get all of your
other development tools from the same vendor.

Most object files begin with a header that describes the sections that follow. Each of these sections
contains one or more blocks of code or data that originated within the source file you created. However,
the compiler has regrouped these blocks into related sections. For example, in gcc all of the code blocks
are collected into a section called text, initialized global variables (and their initial values) into a
section called data, and uninitialized global variables into a section called bss.

There is also usually a symbol table somewhere in the object file that contains the names and locations
of all the variables and functions referenced within the source file. Parts of this table may be incomplete,
however, because not all of the variables and functions are always defined in the same file. These are the
symbols that refer to variables and functions defined in other source files. And it is up to the linker to
resolve such unresolved references.

4.1.2. Linking

All of the object files resulting from the compilation in step one must be combined. The object files
themselves are individually incomplete, most notably in that some of the internal variable and function
references have not yet been resolved. The job of the linker is to combine these object files and, in the
process, to resolve all of the unresolved symbols.

The output of the linker is a new object file that contains all of the code and data from the input object
files and is in the same object file format. It does this by merging the text, data, and bss sections of the
input files. When the linker is finished executing, all of the machine language code from all of the input
object files will be in the text section of the new file, and all of the initialized and uninitialized
variables will reside in the new data and bss sections, respectively.

Programming Embedded Systems Second Edition

Page 62

While the linker is in the process of merging the section contents, it is also on the lookout for unresolved
symbols. For example, if one object file contains an unresolved reference to a variable named foo, and a
variable with that same name is declared in one of the other object files, the linker will match them. The
unresolved reference will be replaced with a reference to the actual variable. For example, if foo is
located at offset 14 of the output data section, its entry in the symbol table will now contain that address.

The GNU linker (ld) runs on all of the same host platforms as the GNU compiler. It is a command-line
tool that takes the names of all the object files, and possibly libraries, to be linked as arguments. With
embedded software, a special object file that contains the compiled startup code, which is covered later
in this section, must also be included within this list. The GNU linker also has a scripting language that
can be used to exercise tighter control over the object file that is output.

If the same symbol is declared in more than one object file, the linker is unable to proceed. It will likely
complain to the programmer (by displaying an error message) and exit.

On the other hand, if a symbol reference remains unresolved after all of the object files have been
merged, the linker will try to resolve the reference on its own. The reference might be to a function, such
as memcpy, strlen, or malloc, that is part of the standard C library, so the linker will open each of the
libraries described to it on the command line (in the order provided) and examine their symbol tables. If
the linker thus discovers a function or variable with that name, the reference will be resolved by
including the associated code and data sections within the output object file. [] Note that the GNU
linker uses selective linking, which keeps other unreferenced functions out of the linker's output image.

[] We are talking only about static linking here. When dynamic linking of libraries is used, the code and
data associated with the library routine are not inserted into the program directly.

Unfortunately, the standard library routines often require some changes before they can be used in an
embedded program. One problem is that the standard libraries provided with most software development
tool suites arrive only in object form. You only rarely have access to the library source code to make the
necessary changes yourself. Thankfully, a company called Cygnus (which is now part of Red Hat)
created a freeware version of the standard C library for use in embedded systems. This package is called
newlib . You need only download the source code for this library from the Web (currently located at
http://sourceware.org/newlib), implement a few target-specific functions, and compile the whole lot. The
library can then be linked with your embedded software to resolve any previously unresolved standard
library calls.

After merging all of the code and data sections and resolving all of the symbol references, the linker
produces an object file that is a special "relocatable" copy of the program. In other words, the program is
complete except for one thing: no memory addresses have yet been assigned to the code and data
sections within. If you weren't working on an embedded system, you'd be finished building your
software now.

But embedded programmers aren't always finished with the build process at this point. The addresses of
the symbols in the linking process are relative. Even if your embedded system includes an operating
system, you'll probably still need an absolutely located binary image. In fact, if there is an operating
system, the code and data of which it consists are most likely within the relocatable program too. The

Programming Embedded Systems Second Edition

Page 63

entire embedded application—including the operating system—is frequently statically linked together
and executed as a single binary image.

4.1.2.1. Startup code

One of the things that traditional software development tools do automatically is insert startup code: a
small block of assembly language code that prepares the way for the execution of software written in a
high-level language. Each high-level language has its own set of expectations about the runtime
environment. For example, programs written in C use a stack. Space for the stack has to be allocated
before software written in C can be properly executed. That is just one of the responsibilities assigned to
startup code for C programs.

Most cross-compilers for embedded systems include an assembly language file called startup.asm, crt0.s
(short for C runtime), or something similar. The location and contents of this file are usually described
in the documentation supplied with the compiler.

Startup code for C programs usually consists of the following series of actions:

1. Disable all interrupts.
2. Copy any initialized data from ROM to RAM.
3. Zero the uninitialized data area.
4. Allocate space for and initialize the stack.
5. Initialize the processor's stack pointer.
6. Call main.

Typically, the startup code will also include a few instructions after the call to main. These instructions
will be executed only in the event that the high-level language program exits (i.e., the call to main
returns). Depending on the nature of the embedded system, you might want to use these instructions to
halt the processor, reset the entire system, or transfer control to a debugging tool.

Because the startup code is often not inserted automatically, the programmer must usually assemble it
himself and include the resulting object file among the list of input files to the linker. He might even
need to give the linker a special command-line option to prevent it from inserting the usual startup code.
Working startup code for a variety of target processors can be found in a GNU package called libgloss .

Debug Monitors
In some cases, a debug monitor (or ROM monitor) is the first code executed when the board
powers up. In the case of the Arcom board, there is a debug monitor called RedBoot. []
RedBoot, the name of which is an acronym for RedHat's Embedded Debug and Bootstrap
program, is a debug monitor that can be used to download software, perform basic memory
operations, and manage nonvolatile memory. This software on the Arcom board contains the
startup code and performs the tasks listed previously to initialize the hardware to a known
state. Because of this, programs downloaded to run in RAM via RedBoot do not need to be

Programming Embedded Systems Second Edition

Page 64

linked with startup code and should be linked but not located.

After the hardware has been initialized, RedBoot sends out a prompt to a serial port and waits
for input from the user (you) to tell it what to do. RedBoot supports commands to load
software, dump memory, and perform various other tasks. We will take a look at using
RedBoot to load a software program in the next chapter.

[] Additional information about RedBoot can be found online at http://ecos.sourceware.org/redboot. The
RedBoot User's Guide is located on this site as well. A description of the RedBoot startup procedure is
contained in the book Embedded Software Development with eCos, by Anthony Massa (Prentice Hall
PTR).

4.1.3. Locating

The tool that performs the conversion from relocatable program to executable binary image is called a
locator. It takes responsibility for the easiest step of the build process. In fact, you have to do most of the
work in this step yourself, by providing information about the memory on the target board as input to the
locator. The locator uses this information to assign physical memory addresses to each of the code and
data sections within the relocatable program. It then produces an output file that contains a binary
memory image that can be loaded into the target.

Whether you are writing software for a general-purpose computer or an embedded system, at some point
the sections of your relocatable program must be assigned actual addresses. Sometimes software that is
already in the target does this for you, as RedBoot does on the Arcom board.

In some cases, there is a separate development tool, called a locator, to assign addresses. However, in
the case of the GNU tools, this feature is built into the linker (ld).

The memory information required by the GNU linker can be passed to it in the form of a linker script.
Such scripts are sometimes used to control the exact order of the code and data sections within the
relocatable program. But here, we want to do more than just control the order; we also want to establish
the physical location of each section in memory.

What follows is an example of a linker script for the Arcom board. This linker script file is used to build
the Blinking LED program covered in Chapter 3:

ENTRY (main)

MEMORY
{
 ram : ORIGIN = 0x00400000, LENGTH = 64M
 rom : ORIGIN = 0x60000000, LENGTH = 16M
}

SECTIONS
{

Programming Embedded Systems Second Edition

Page 65

 data : /* Initialized data. */
 {
 _DataStart = . ;
 *(.data)
 _DataEnd = . ;

 } >ram

 bss : /* Uninitialized data. */
 {
 _BssStart = . ;
 *(.bss)
 _BssEnd = . ;
 } >ram

 text : /* The actual instructions. */
 {
 *(.text)
 } >ram
}

This script informs the GNU linker's built-in locator about the memory on the target board, which
contains 64 MB of RAM and 16 MB of flash ROM. [§] The linker script file instructs the GNU linker to
locate the data, bss, and text sections in RAM starting at address 0x00400000. The first executable
instruction is designated with the ENTRY command, which appears on the first line of the preceding
example. In this case, the entry point is the function main.

[§] There is also a version of the Arcom board that contains 32 MB of flash. If you have this version of
the board, change the linker script file as follows:

rom : ORIGIN = 0x60000000, LENGTH = 32M

Names in the linker command file that begin with an underscore (e.g., _DataStart) can be referenced
similarly to ordinary variables from within your source code. The linker will use these symbols to
resolve references in the input object files. So, for example, there might be a part of the embedded
software (usually within the startup code) that copies the initial values of the initialized variables from
ROM to the data section in RAM. The start and stop addresses for this operation can be established
symbolically by referring to the addresses as _DataStart and _DataEnd.

A linker script can also use various commands to direct the linker to perform other operations.
Additional information and options for GNU linker script files can be found at http://www.gnu.org.

The output of this final step of the build process is a binary image containing physical addresses for the
specific embedded system. This executable binary image can be downloaded to the embedded system or
programmed into a memory chip. You'll see how to download and execute such memory images in the
next chapter.

Programming Embedded Systems Second Edition

Page 66

4.2. Building the Blinking LED Program

In this section, we show an example build procedure for the Arcom VIPER-Lite development board. If
another hardware platform is used, a simlar process should be followed using the tools and conventions
that accompany that hardware.

The installation procedure for the software development tools is provided in Appendix B. Once the tools
are installed, the commands covered in the following sections are entered into a command shell. For
Windows users, the command shell is a Cygwin bash shell (Cygwin is a Unix environment for
Windows); for Linux users, it is a regular command shell.

In this and subsequent chapters, commands entered in a shell environment are
indicated by the number sign (#) prompt. Commands entered in the RedBoot
environment are indicated by the RedBoot prompt (RedBoot>).

We will next take a look at the individual commands in order to manually perform the three separate
tasks (compiling, linking, and locating) described earlier in this chapter. Then we will learn how to
automate the build procedure with makefiles.

4.2.1. Compile

As we have implemented it, the Blinking LED example consists of two source modules: led.c and
blink.c. The first step in the build process is to compile these two files. The basic structure for the gcc
compiler command is:

arm-elf-gcc [
 options
]
 file
 ...

The command-line options we'll need are:

-g

To generate debugging info in default format

-c

To compile and assemble but not link

Programming Embedded Systems Second Edition

Page 67

-Wall

To enable most warning messages

-I../include

To look in the directory include for header files

Here are the actual commands for compiling the C source files:

arm-elf-gcc –g -c –Wall -I../include led.c
arm-elf-gcc -g –c -Wall -I../include blink.c

We broke up the compilation step into two separate commands, but you can compile the two files with
one command. To use a single command, just put both of the source files after the options. If you
wanted different options for one of the source files, you would need to compile it separately as just
shown. For additional information about compiler options, take a look at http://gcc.gnu.org.

Running these commands will be a good way to verify that the tools were set up properly. The result of
each of these commands is the creation of an object file that has the same prefix as the .c file, and the
extension .o. So if all goes well, there will now be two additional files—led.o and blink.o—in the
working directory. The compilation procedure is shown in Figure 4-3.

Figure 4-3. Compiling the Blinking LED program

Programming Embedded Systems Second Edition

Page 68

4.2.2. Link and Locate

We now have the two object files—led.o and blink.o—that we need in order to perform the second step
in the build process. As we discussed earlier, the GNU linker performs the linking and locating of the
object files.

For the third step, locating, there is a linker script file named viperlite.ld that we input to ld in order to
establish the location of each section in the Arcom board's memory. The basic structure for the linker
and locater ld command is:

arm-elf-ld [
 options
]
 file
 ...

The command-line options we'll need for this step are:

-Map blink.map

To generate a map file and use the given filename

Programming Embedded Systems Second Edition

Page 69

-T viperlite.ld

To read the linker script

-N

To set the text and data sections to be readable and writable

-o blink.exe

To set the output filename (if this option is not included, ld will use the default output filename
a.out)

The actual command for linking and locating is:

arm-elf-ld –Map blink.map –T viperlite.ld -N –o blink.exe led.o blink.o

The order of the object files determines their placement in memory. Because we are not linking in any
startup code, the order of the object files is irrelevant. If startup code were included, you would want
that object file to be located at the proper address. The linker script file can be used to specify where you
want the startup routine (and other code) to reside in memory. Furthermore, you can also use the linker
script file to specify exact addresses for code or data, should you find it necessary to do so.

As you can see in this command, the two object files—led.o and blink.o—are the last arguments on the
command line for linking. The linker script file, viperlite.ld, is also passed in for locating the data and
code in the Arcom board's memory. The result of this command is the creation of two files—blink.map
and blink.exe—in the working directory. The linking and locating procedure is shown in Figure 4-4.

Figure 4-4. Linking and locating the Blinking LED program

Programming Embedded Systems Second Edition

Page 70

The .map file gives a complete listing of all code and data addresses for the final software image. If you
have never seen such a map file before, be sure to take a look at this one before reading on. It provides
information similar to the contents of the linker script described earlier. However, these are results rather
than instructions and therefore include the actual lengths of the sections and the names and locations of
the public symbols found in the relocatable program. We'll see later how this file can be used as a
debugging aid.

Another Linking Method
You may notice that for examples later in the book, gcc is invoked during the linking process.
The gcc compiler then invokes the linker indirectly. When gcc compiles certain programs, it
may introduce calls to special runtime libraries behind the scenes. Linking via gcc ensures
that the correct versions of these libraries (called multilibs) are linked in for the specified
configuration.

If the linker, ld, were invoked directly, the correct set of multilibs would also need to be
specified on the command line to ensure that the image is linked properly. To avoid this, we
will use gcc to invoke the linker.

Programming Embedded Systems Second Edition

Page 71

4.2.3. Format the Output File

The last step of the previous section creates an image of the Blinking LED program that we can load
onto the Arcom board. In certain cases, you might need to format the image from the build procedure for
your specific target platform.

One tool included with the GNU toolset that can assist with formatting images is the strip utility, which
is part of the binary utilities package called binutils (pronounced "bin-you-tills"). The strip utility can
remove particular sections from an object file. The basic command structure for the strip utility is:

arm-elf-strip [
 options
]
 input-file
 ... [
 -o output-file
]

The build procedure for subsequent chapters in the book generates two executable files: one with debug
information and one without. The executable that contains the debug information includes dbg in its
filename. The debug image should be used with gdb. If an image is downloaded with RedBoot, the
nondebug image should be used.

The command used to strip symbol information is:

arm-elf-strip --remove-section=.comment blinkdbg.exe -o blink.exe

This removes the section named .comment from the image blinkdbg.exe and creates the new output file
blink.exe.

There might be another time when you need an image file that can be burned into ROM or flash. The
GNU toolset has just what you need for this task. The utility objcopy (object copy) is able to copy the
contents of one object file into another object file. The basic structure for the objcopy utility is:

arm-elf-objcopy [
 options

]
 input-file
 [
 output-file
]

For example, let's suppose we want to convert our Blinking LED program from ELF format into an Intel
Hex Format file. [||] The command line we use for this is:

Programming Embedded Systems Second Edition

Page 72

[||] Intel Hex format is an ASCII file format devised by Intel for storing and downloading binary images.

arm-elf-objcopy -O ihex blink.exe blink.hex

This command uses the –O ihex option to generate an Intel Hex Format file. The input file is blink.exe
(the objcopy utility determines the input file type). Finally, the output file is named blink.hex.

If no output filename is given, the strip and objcopy utilities overwrite the original
input file with the generated file.

Some of the other GNU tools are useful for providing other information about the image you have built.
For example, the size utility, which is part of the binutils package, lists the section sizes and total size for
a given object file. Here is the command for using the size utility:

arm-elf-size blink.exe

The resulting output is:

text data bss dec hex filename
 328 0 0 328 148 blink.exe

The top row consists of column headings and shows the sections text, data, and bss. The Blinking
LED program contains 328 bytes in the text section, no bytes in the data section, and no bytes in the
bss section. The dec column shows the total image size in decimal, and the hex column shows it in
hexadecimal (decimal 328 = hexadecimal 0x148). These total sizes are in bytes. The last column,
filename, contains the filename of the object file.

You will notice that the size of the section, 328 bytes, is much smaller than the approximately 3 KB file
size of our blink.exe. This is because debugging information is located also in the blink.exe file.

Additional information about the other GNU binutils can be found online at http://www.gnu.org.

We're now ready to download the program to our development board, which we'll do in the next chapter.
To wrap up our discussion of building programs, let's take a quick look at another useful tool in the
build process.

4.3. A Quick Look at Makefiles

You can imagine how tedious the build process could be if you had a large number of source code files
for a particular project. Manually entering individual compiler and linker commands on the command

Programming Embedded Systems Second Edition

Page 73

line becomes tiresome very quickly. In order to avoid this, a makefile can be used. A makefile is a script
that tells the make utility how to build a particular program. (The make utility is typically installed with
the other GNU tools.) The make utility follows the rules in the makefile in order to automatically
generate output files from a set of input source files.

Makefiles might be a bit of a pain to set up, but they can be a great timesaver and a very powerful tool
when building project files over and over (and over) again. Having a sample available can reduce the
pain of setting up a makefile.

The basic layout for a makefile build rule is:

target: prerequisite
 command

The target is what is going to be built, the prerequisite is a file that must exist before the target
can be created, and the command is a shell command used to create the target. There can be multiple
prerequisites on the target line (separated by white space) and/or multiple command lines. But be
sure to put a tab, not spaces, at the beginning of every line containing a command.

Here's a makefile for building our Blinking LED program:

XCC = arm-elf-gcc
LD = arm-elf-ld
CFLAGS = -g -c -Wall \\
 -I../include
LDFLAGS = -Map blink.map -T viperlite.ld -N

all: blink.exe

led.o: led.c led.h
 $(XCC) $(CFLAGS) led.c

blink.o: blink.c led.h
 $(XCC) $(CFLAGS) blink.c

blink.exe: blink.o led.o viperlite.ld
 $(LD) $(LDFLAGS) -o $@ led.o blink.o

clean:
 -rm -f blink.exe *.o blink.map

The first four statements in this makefile contain variables for use in the makefile. The variable names
are on the left side of the equal sign. In this makefile, the respective variables do the following:

XCC

Programming Embedded Systems Second Edition

Page 74

Defines the compiler executable program

LD

Defines the linker executable program

CFLAGS

Defines the flags for the compiler

LDFLAGS

Defines the flags for the linker

Variables in a makefile are used to eliminate some of the duplication of text as well as to ease
portability. In order to use a variable in the code, the syntax $() is used with the variable name
enclosed in the parentheses.

Note that if a line in a makefile gets too long, you can continue it on the following line by using the
backslash (\\), as shown with the CFLAGS variable.

Now for the build rules. The build targets in this file are all, led.o, blink.o, and blink.exe. Unless
you specify a target when invoking the make utility, it searches for the first target (in this case, the first
target is all) and tries to build it; this, in turn, can lead to it finding and building other targets. The make
utility creates (or re-creates, as the case may be) the target file if it does not exist or if the prerequisite
files are more recent than the target file.

At this point, it might help to look at the makefile from the bottom up. In order for blink.exe to be
created, blink.o and led.o need to be built as shown in the prerequisites. However, since these files
don't exist, the make utility will need to create them first. It will search for ways to create these two files
and will find them listed as targets in the makefile. The make utility can create these files because the
prerequisites (the source files) for these two targets exist.

Because the targets led.o and blink.o are handled similarly, let's focus on just one of them. The
prerequisites for the target led.o are led.c and led.h. As stated above, the command tells the make
utility how to create the target. The first part of the command for led.o is a reference to the variable
XCC, as indicated by the syntax $(XCC), and the next part of the command is a reference to the variable
CFLAGS, as indicated by the syntax $(CFLAGS). The make utility simply replaces variable references with
the text assigned to them in the makefile. The final part of the command is the source file led.c. Strung

Programming Embedded Systems Second Edition

Page 75

together, these elements construct the command that the make utility executes. This generates a
command on the shell command line as follows:

arm-elf-gcc -g -c -Wall -I../include led.c

This is the same command we entered by hand in order to compile the led.c file earlier in this chapter, in
the section "Building the Blinking LED Program." The make utility compiles blink.c in the same way.

At this point, the make utility has all of the prerequisites needed to generate the target blink.exe default
target. The command that the make utility executes (the same command we entered by hand to link and
locate the Blinking LED program) to build blink.exe is:

arm-elf-ld -Map blink.map -T viperlite.ld -N -o blink.exe led.o blink.o

You may notice that in this makefile the linker is invoked directly. Instead, gcc could have been used to
invoke the linker indirectly with the following line:

arm-elf-gcc -Wl,-Map,blink.map -T viperlite.ld -N -o blink.exe led.o blink.o

When invoking the linker indirectly, the special option –Wl is used so that gcc passes the request to
generate a linker map file to the linker rather than trying to parse the argument itself. While this simple
Blinking LED program does not need to link using gcc, you should remember that more complex C
programs may need special runtime library support from gcc and will need to be linked in this way.

The last part of the makefile is the target clean. However, because it was not needed for the default
target, the command was not executed.

To execute the makefile's build instructions, simply change to the directory that contains the makefile
and enter the command:

make

The make utility will search the current directory for a file named makefile. If your makefile has a
different name, you can specify that on the command line following the -f option.

With the previous command, the make utility will make the first target it finds. You can also specify
targets on the command line for the make utility. For example, because all is the default target in the
preceding makefile, you can just as easily use the following command:

make all

Programming Embedded Systems Second Edition

Page 76

A target called clean is typically included in a makefile, with commands for removing old object files
and executables, in order to allow you to create a fresh build. The command line for executing the clean
target is:

make clean

Keep in mind that we've presented a very basic example of the make utility and makefiles for a very
basic project. The make utility contains very powerful tools within its advanced features that can benefit
you when executing large and more complex projects.

It is important to keep the makefile updated as your project changes. Remember to
incorporate new source files and keep your prerequisites up to date. If
prerequisites are not set up properly, you might change a particular source file, but
that source file will not get incorporated into the build. This situation can leave
you scratching your head.

Additional information about the GNU make utility can be found online at http://www.gnu.org as well
as in the book Managing Projects with GNU make, by Robert Mecklenburg (O'Reilly). These resources
will give you a deeper understanding of both the make utility and makefiles and allow you to use their
more powerful features.

Chapter 5. Downloading and Debugging
I can remember the exact instant when I realized that a large part of my life from then on was going to
be spent in finding mistakes in my own programs.

—Maurice Wilkes, Head of the Computer Laboratory of the University of Cambridge, 1959

Once you have an executable binary image stored as a file on the host computer, you will need a way to
download that image to the embedded system and execute it. The executable binary image is usually
loaded into a memory device on the target board and executed from there. And if you have the right
tools at your disposal, it will be possible to set breakpoints in the program or to observe its execution in
less intrusive ways. This chapter describes various techniques for downloading, executing, and
debugging embedded software in general, as well as focuses on the techniques available on our
development environment.

