
1
SOME PRELIMINARIES FOR

BEGINNERS AND PROS

Some people, especially professionals, may
be tempted to skip this chapter. We sug-

gest, though, that everyone at least skim through
it. Many professionals will find some material

that is new to them, and in any case it is important that
all readers be familiar with the material presented here,
which will be used throughout the remainder of the
book. Beginners should of course read this chapter
carefully.

In the first few sections of this chapter, we will present an overview of
the debugging process and the role of debugging tools, and then walk through
an extended example in Section 1.7.

1.1 Debugging Tools Used in This Book
In this book we set out the basic principles of debugging, illustrating them in
the contexts of the following debugging tools:

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

GDB
The most commonly used debugging tool among Unix programmers
is GDB, the GNU Project Debugger developed by Richard Stallman, a
prominent leader of the open source software movement, which played
a key role in the development of Linux.

Most Linux sytems should have GDB preinstalled. If it is not, you
must download the GCC compiler package.

DDD
Due to the more recent popularity of graphical user interfaces (GUIs),
a number of GUI-based debuggers have been developed that run un-
der Unix. Most of these are GUI front ends to GDB: The user issues com-
mands via the GUI, which in turn passes them on to GDB. One of these
is DDD, the Data Display Debugger.

If your system does not already have DDD installed, you can down-
load it. For instance, on Fedora Linux systems, the command

yum install ddd

will take care of the entire process for you. In Ubuntu Linux, a similar
command, apt-get, can be used.

Eclipse
Some readers may use integrated development environments (IDEs).
An IDE is more than just a debugging tool; it integrates an editor, build
tool, debugger, and other development aids into one package. In this
book, our example IDE is the highly popular Eclipse system. As with
DDD, Eclipse works on top of GDB or some other debugger.

You can install Eclipse via yum or apt-get as above, or simply down-
load the .zip file and unpack it in a suitable directory, say /usr/local .

In this book, we use Eclipse version 3.3.

1.2 Programming Language Focus
Our primary view in this book is toward C/C++ programming, and most of
our examples will be in that context. However, in Chapter 8 we will discuss
other languages.

1.3 The Principles of Debugging
Even though debugging is an art rather than a science, there are definite
principles that guide its practice. We will discuss some of them in this section.

At least one of our rules, the Fundamental Principle of Confirmation, is
rather formal in nature.

1.3.1 The Essence of Debugging: The Principle of Confirmation
The following rule is the essence of debugging:

2 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

The Fundamental Principle of Confirmation
Fixing a buggy program is a process of confirming, one by one, that the
many things you believe to be true about the code actually are true. When
you find that one of your assumptions is not true, you have found a clue
to the location (if not the exact nature) of a bug.

Another way of saying this is:

Surprises are good!

When one of the things that you think is true about the program fails to
confirm, you are surprised. But it’s a good surprise, because this discovery
can lead you to the location of a bug.

1.3.2 Of What Value Is a Debugging Tool for the Principle of Confirmation?
The classic debugging technique is to simply add trace code to the program
to print out values of variables as the program executes, using printf() or
cout statements, for example. You might ask, “Isn’t this enough? Why use a
debugging tool like GDB, DDD, or Eclipse?”

First of all, this approach requires a constant cycle of strategically adding
trace code, recompiling the program, running the program and analyzing
the output of the trace code, removing the trace code after the bug is fixed,
and repeating these steps for each new bug that is discovered. This is highly
time consuming and fatigue making. Most importantly, these actions distract
you from the real task and reduce your ability to focus on the reasoning pro-
cess necessary to find the bug.

In contrast, with graphical debugging tools like DDD and Eclipse, all
you have to do in order to examine the value of a variable is move the mouse
pointer over an instance of that variable in the code display, and you are
shown its current value. Why make yourself even wearier than necessary,
for longer than necessary, during an all-night debugging session by doing
this using printf() statements? Do yourself a favor and reduce the amount
of time you have to spend and the tedium you need to endure by using a
debugging tool.

You also get a lot more from a debugging tool than the ability to look
at variables. In many situations, a debugger can tell you the approximate lo-
cation of a bug. Suppose, for example, that your program bombs or crashes
with a segmentation fault, that is, a memory access error. As you will see in our
sample debugging session later in this chapter, GDB/DDD/Eclipse can im-
mediately tell you the location of the seg fault, which is typically at or near
the location of the bug.

Similarly, a debugger lets you set watchpoints that can tell you at what
point during a run of the program the value of a certain variable reaches a
suspect value or range. This information can be difficult to deduce by look-
ing at the output of calls to printf().

Some Preliminaries for Beginners and Pros 3

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

1.3.3 Other Debugging Principles
Start small

At the beginning of the debugging process, you should run your pro-
gram on easy, simple cases. This may not expose all of your bugs, but it
is likely to uncover a few of them. If, for example, your code consists of
a large loop, the easiest bugs to find are those that arise on the first or
second iteration.

Use a top-down approach
You probably know about using a top-down or modular approach to writ-
ing code: Your main program should not be too long, and it should con-
sist mostly of calls to functions that do substantial work. If one of those
functions is lengthy, you should consider breaking it up, in turn, into
smaller modules.

Not only should you write code in a top-down manner, you should
also debug code from the top down.

For example, suppose your program uses a function f(). When you
step through the code using a debugging tool and encounter a call to
f(), the debugger will give you a choice as to where the next pause in ex-
ecution will occur—either at the first line within the function about to
be called or at the statement following the function call. In many cases,
the latter is the better initial choice: You perform the call and then in-
spect the values of variables that depend on the results of the call in or-
der to see whether or not the function worked correctly. If so, then you
will have avoided the time-consuming and needless effort of stepping
through the code inside the function, which was not misbehaving (in
this case).

Use a debugging tool to determine the location of a segmentation fault
The very first step you take when a seg fault occurs should be to run
your program within the debugger and reproduce the seg fault. The
debugger will tell you the line of code at which the fault occurred. You
can then get additional useful information by invoking the debugger’s
backtrace facility, which displays the sequence of function calls leading to
the invocation of the function in which the fault occurred.

In some cases it may be difficult to reproduce the seg fault, but if
you have a core file, you can still do a backtrace to determine the situa-
tion that produced the seg fault. This will be discussed in Chapter 4.

Determine the location of an infinite loop by issuing an interrupt
If you suspect your program has an infinite loop, enter the debugger
and run your program again, letting it execute long enough to enter the
loop. Then use the debugger’s interrupt command to suspend the pro-
gram, and do a backtrace to see what point of the loop body has been
reached and how the program got there. (The program has not been
killed; you can resume execution if you wish.)

Use binary search
You’ve probably seen binary search in the context of sorted lists. Say, for
example, that you have an array x[] of 500 numbers, arranged in ascend-

4 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

ing order, and you wish to determine where to insert a new number, y.
Start by comparing y to x[250]. If y turns out to be smaller than that ele-
ment, you’d next compare it to x[125], but if y is larger than x[250], then
the next comparison would instead be with x[375]. In the latter case, if
y is smaller than x[375], you then compare it to x[312], which is halfway
between x[250] and x[375], and so on. You’d keep cutting your search
space in half at each iteration, and so find the insertion point quickly.

This principle can be applied while debugging too. Suppose you
know that the value stored in a certain variable goes bad sometime dur-
ing the first 1,000 iterations of a loop. One way that might help you
track down the iteration where the value first goes bad is to use a watch-
point, an advanced technique that we will discuss in Section 1.5.3. An-
other approach is to use binary search, in this case in time rather than
in space. You’d first check the variable’s value at the 500th iteration; if
it is still all right at that point, you’d next check the value at the 750th
iteration, and so on.

As another example, suppose one of the source files in your pro-
gram will not even compile. The line of code cited in the compiler mes-
sage generated by a syntax error is sometimes far from the actual loca-
tion of the error, and so you may have trouble determining that loca-
tion. Binary search can help here: You remove (or comment out) one
half of the code in the compilation unit, recompile the remaining code,
and see if the error message persists. If it does, then the error is in that
second half; if the message does not appear, then the error is in the half
that you deleted. Once you determine which half of the code contains
the bug, you further confine the bug to half of that portion, and keep
going until you locate the problem. Of course, you should make a copy
of the original code before starting this process or, better yet, use your
text editor’s undo feature. See Chapter 7 for tips on making good use of
an editor while programming.

1.4 Text-Based vs. GUI-Based Debugging Tools, and a Com-
promise Between Them
The GUIs discussed in this book, DDD and Eclipse, serve as front ends to
GDB for C and C++ and to other debuggers. While the GUIs have eye appeal
and can be more convenient than the text-based GDB, our point of view in
this book will be that text-based and GUI-based debuggers (including IDEs)
are all useful, in different contexts.

1.4.1 Brief Comparison of Interfaces
To quickly get an idea of the differences between text-based and GUI debug-
ging tools, let’s consider a situation that we will use as a running example in
this chapter. The program in the example is insert_sort. It is compiled from a
source file ins.c, and it performs an insertion sort.

Some Preliminaries for Beginners and Pros 5

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

1.4.1.1 GDB: Plain Text
To initiate a debugging session on this program with GDB, you would type

$ gdb insert_sort

at the Unix command line, after which GDB would invite you to submit com-
mands by displaying its prompt:

(gdb)

1.4.1.2 DDD: a GUI Debugging Tool
Using DDD, you would begin your debugging session by typing

$ ddd insert_sort

at the Unix command line. The DDD window would come up, after which
you would submit commands through the GUI.

The typical appearance of a DDD window is shown in Figure 1-1. As you
see, the DDD window lays out information in various subwindows:

• The Source Text window displays your source code. DDD begins its dis-
play at your main() function, but you can of course move to other parts of
the source file by using the scroll bar at the right edge of the window.

• The Menu Bar presents various menu categories, including File, Edit,
and View.

• The Command Tool lists the most common DDD commands (such as
Run, Interrupt, Step, and Next), so that you can access them quickly.

• The Console: Recall that DDD is simply a GUI front end to GDB (and
to other debuggers). DDD translates selections made with the mouse to
the corresponding GDB commands. These commands and their output
are displayed in the Console. In addition, you can submit commands to
GDB directly via the Console, which is a handy feature because not all
GDB commands have DDD counterparts.

• The Data window shows the values of variables that you have requested
to be continuously displayed. This subwindow will not appear until you
have made such a request, so it does not appear in this figure.

Here is a quick example of how a typical debugging command is sub-
mitted to the debugger under each type of user interface. When debugging
insert_sort, you may wish to pause execution of the program—to set a break-
point—at line 16 (say) of the function get_args(). (You will see the full source
code for insert_sort in Section 1.7.) To arrange this in GDB, you would type

(gdb) break 16

at the GDB prompt.

6 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Menu Bar

Command
Tool

Source Text
Window

Console

Figure 1-1: DDD layout

The full command name is break, but GDB allows abbreviations as long
as there is no ambiguity, and most GDB users would type b 16 here. In order
to facilitate understanding for those new to GDB, we will use full command
names at first, and switch to abbreviations later in the book, after the com-
mands have become more familiar.

Using DDD, you would look at the Source Text window, click at the
beginning of line 16, and then click the Break icon at the top of the DDD
screen. You could also right-click at the beginning of the line, and then se-
lect Set Breakpoint. Yet another option is to simply double-click the line of
code, anywhere to the left of the start of the line. In any case, DDD would
confirm the selection by displaying a little stop sign at that line, as shown in
Figure 1-2. In this way you can see your breakpoints at a glance.

1.4.1.3 Eclipse: A GUI Debugger and Much More
Now, Figure 1-3 introduces the general environment in Eclipse. In Eclipse
terminology, we are currently in the Debug perspective. Eclipse is a general
framework for development of lots of different kinds of software. Each pro-
gramming language has its own plug-in GUI—a perspective—within Eclipse.
Indeed, there could be several competing perspectives for the same lan-
guage. In our Eclipse work in this book, we will use the C/C++ perspective
for C/C++ development, the Pydev perspective for writing Python programs,
and so on. There is also a Debug perspective for the actual debugging (with
some language-specific features), and that is what you see in the figure.

Some Preliminaries for Beginners and Pros 7

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-2: Breakpoint set

Figure 1-3: Eclipse environment

8 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

The C/C++ perspective is part of the CDT plugin. Behind the scenes
CDT invokes GDB, similar to the case of DDD.

The details of that figure are generally similar to what we described for
DDD above. A perspective is broken into tabbed windows called views. You
can see a view for the source file, ins.c, on the left; there is the Variables view
for inspecting the values of the variables (none so far in the picture); there is
a Console view, whose function is quite similar to the subwindow in DDD of
the same name; and so on.

You can set breakpoints and so on visually as in DDD. In Figure 1-4, for
example, the line

for (i = 0; i < num_inputs; i++)

in the source file window has a blue symbol in the left margin, symbolizing
that there is a breakpoint there.

Figure 1-4: Removing a breakpoint in Eclipse

1.4.1.4 Eclipse vs. DDD
Eclipse also has some aids missing from DDD. Near the right side, for in-
stance, note the Outline view, which lists the variables, functions and so on.
If you click the entry for your function scoot_over(), for example, the cursor
in the source file view will move to that function. Moreover, if you temporar-
ily move from the Debug perspective back to the C/C++ perspective, where

Some Preliminaries for Beginners and Pros 9

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

you are doing your editing and compiling for this project (not shown), the
Outline view is at your disposal there too. This can be quite helpful in large
projects.

Eclipse also better integrates the editing and compiling processes. If you
have compilation errors, they are clearly marked within the editor. This can
be done with the Vim editor, which both authors of this book tend to prefer
over an IDE, but an IDE does it much better.

On the other hand, you can see that Eclipse, as with most IDEs, does
have a major footprint on your screen (and indeed, on the pages of this
book!). That Outline view is occupying precious space on the screen whether
you use it much or not. Granted, you can hide the Outline by clicking the X
in its right-hand corner (and if you want to get it back, select Window | Show
Views | Outline), which reclaims some space, and you can also drag tabs to
different locations within the Eclipse window. But in general, it may be diffi-
cult to make good use of screen space in Eclipse.

Remember that you can always execute GDB commands directly in DDD’s
Console. You thus have the flexibility to perform debugging commands in
the most convenient way available, which is sometimes through the DDD in-
terface and sometimes through the GDB command line. At various points in
this book, you will see that there are a number of actions you can take with
GDB that can make your debugging life much more convenient.

By contrast, GDB is mostly transparent to Eclipse users, and while the
old saying “Ignorance is bliss” may often apply, the transparency means you
lose easy access to the labor-saving actions made possible by direct usage of
GDB. As of this writing, a determined user can still directly access GDB by
clicking the GDB thread in Debug and then using the Console, though mi-
nus the GDB prompts. However, this “undocumented feature” may not sur-
vive in future versions.

1.4.1.5 Advantages of the GUIs
The GUI interfaces provided by DDD and Eclipse are more visually appeal-
ing than that of GDB. They also tend to be more convenient. For instance,
suppose that you no longer want execution to pause at line 16 of get_args(),
that is, you wish to clear the breakpoint. In GDB you would clear the break-
point by typing

(gdb) clear 16

However, in order to do this, you need to remember the line number
of the breakpoint—not an easy task if you have many breakpoints active
at once. You could refresh your memory by using GDB’s info break com-
mand to get a list of all the breakpoints, but it would still be a bit of work
and would distract from the focus on finding the bug.

In DDD your task would be far simpler: To clear a breakpoint, simply
click the stop sign at the desired line, then click Clear, and the stop sign
would disappear, showing that the breakpoint has been cleared.

10 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

In Eclipse, you would go to the Breakpoints view, highlight the break-
point(s) you want to remove, and then move the mouse cursor to the gray
X, which symbolizes the Remove Selected Breakpoints operation (see Fig-
ure 1-4). Alternatively, you can right-click the blue breakpoint symbol in the
source code window and select Toggle Breakpoint.

One task for which the GUIs are clear winners is stepping through code.
It is much easier and more pleasant to do this using DDD or Eclipse rather
than GDB, because you can watch your movement through the code in the
GUI’s source code window. The next line in your source code to be exe-
cuted is indicated by an arrow, as shown for DDD in Figure 1-5. In Eclipse,
your next line is highlighted in green. You can thus tell at a glance where
you are relative to other program statements of interest.

1.4.1.6 Advantages of GDB
So, the GUIs have many advantages over the text-based GDB. Yet a sweeping
conclusion based on this example that the GUIs are better than GDB would
be unjustified.

Younger programmers who have grown up using GUIs for everything
they do online naturally prefer GUIs to GDB, as do many of their older col-
leagues. On the other hand, GDB has some definite advantages, too:

• GDB starts up more quickly than DDD, a big advantage when you just
need to quickly check something in your code. The difference in startup
times is even greater in the case of Eclipse.

• In some cases, debugging is performed remotely via an SSH (or a tel-
net) connection, say from a public terminal. If you lack an X11 setup,
the GUIs cannot be used at all, and even with X11, the screen refresh
operations of the GUIs may be slow.

• When debugging several programs that work in cooperation with each
other—for example, a client/server pair in a networked environment—
you need a separate debugging window for each program. It is a little
better in Eclipse than in DDD, as Eclipse will allow you to debug two
programs simultaneously in the same window, but this does compound
the space problems cited earlier. Thus the small visual footprint that
GDB occupies on the screen compared to the GUI’s larger footprint is a
big advantage.

• If the program you are debugging has a GUI, and you use a GUI-based
debugger such as DDD, they can clash. The GUI events—keystrokes,
mouse clicks, and mouse movements—of one can interfere with those
of the other, and the program may behave differently when run under
the debugger than it does when run independently. This can seriously
complicate finding bugs.

For those unaccustomed to the amount of typing required by GDB com-
pared to the convenient mouse operations of the GUIs, it must be noted
that GDB includes some typing-saving devices that make its text-based nature
more acceptable. We mentioned earlier that most of GDB’s commands have

Some Preliminaries for Beginners and Pros 11

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

short abbreviations, and most people use these instead of the full forms.
Also, the CTRL-P and CTRL-N key combinations allow you to scroll through
previous commands and edit them if you wish. Simply hitting the ENTER key
repeats the last command issued (which is very useful when repeatedly per-
forming the next command to step through code one line at a time), and
there is a define command that allows the user to define abbreviations and
macros. Details of these features will be presented in Chapters 2 and 3.

1.4.1.7 The Bottom Line: Each Has Its Value
We consider both GDB and the GUIs to be important tools, and this book
will present examples of GDB, DDD, and Eclipse. We will always begin treat-
ment of any particular topic with GDB, as it is the commonality among these
tools, then show how the material extends to the GUIs.

1.4.2 Compromises
Since version 6.1, GDB has offered a compromise between text-based and
graphical user interaction in the form of a mode named TUI (Terminal
User Interface). In this mode, GDB splits the terminal screen into analogs
of DDD’s Source Text window and Console; you can follow the progress of
your program’s execution in the former while issuing GDB commands in
the latter. Alternatively, you can use another program, CGDB, which offers
similar functionality.

1.4.2.1 GDB in TUI Mode
To run GDB in TUI mode, you can either specify the option -tui on the
command line when invoking GDB or type CTRL-X-A from within GDB while
in non-TUI mode. The latter command also toggles you out of TUI mode if
you are currently in it.

In TUI mode, the GDB window is divided into two subwindows—one for
GDB commands and one for viewing source code. Suppose you start GDB
in TUI mode on insert_sort and then execute a couple of debugging com-
mands. Your GDB screen may then look like this:

11

12 void get_args(int ac, char **av)

13 { int i;

14

15 num_inputs = ac - 1;

* 16 for (i = 0; i < num_inputs; i++)

> 17 x[i] = atoi(av[i+1]);

18 }

19

20 void scoot_over(int jj)

21 { int k;

22

23 for (k = num_y-1; k > jj; k++) .

12 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

File: ins.c Procedure: get_args Line: 17 pc: 0x80484b8

--

(gdb) break 16

Breakpoint 1 at 0x804849f: file ins.c, line 16.

(gdb) run 12 5 6

Starting program: /debug/insert_sort 12 5 6

Breakpoint 1, get_args (ac=4, av=0xbffff094) at ins.c:16

(gdb) next

(gdb)

The lower subwindow shows exactly what you would see if you were us-
ing GDB without TUI. Here, this subwindow shows the following things:

• We issued a break command to set a breakpoint at line 16 in the current
source file.

• We executed run to run the program, passing it the command-line ar-
guments 12, 5, and 6, after which the debugger stopped execution at
the specified breakpoint. (run and the other GDB commands will be
explained later.) GDB reminds us that the breakpoint is at line 16 of
ins.c and informs us that the machine code for that source line resides at
memory address 0x804849f.

• We issued a next command to step to the next line of code, line 17.

The upper subwindow offers some extra, visually helpful information.
Here TUI shows us the source code surrounding the line currently being
executed, just as DDD and Eclipse would. This makes it much easier to see
where we are in the code. The breakpoint and the line currently being exe-
cuted are indicated with an asterisk and a > sign, respectively, analogous to
DDD’s stop sign and green arrow icons.

We can move to other parts of the code by using the up and down arrow
keys to scroll. When not in TUI mode, you can use the arrow keys to scroll
through previous GDB commands, in order to modify or repeat them. In
TUI mode, the arrow keys are for scrolling the source code subwindow, and
you scroll through previous GDB commands by using CTRL-P and CTRL-N.
Also, in TUI mode, the region of code displayed in the source code subwin-
dow can be changed using GDB’s list command. This is especially useful
when working with multiple source files.

By making use of GDB’s TUI mode and its typing shortcuts, we can at-
tain a lot of the GUIs’ extra functionality without incurring the GUIs’ disad-
vantages. Note, however, that in some circumstances TUI may not behave
quite as you want it to, in which case you will need to find a workaround.

1.4.2.2 CGDB
Another interface to GDB that you may wish to consider is CGDB, available
at http://cgdb.sourceforge.net/ . CGDB also offers a compromise between a text-

Some Preliminaries for Beginners and Pros 13

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

based and a GUI approach. Like the GUIs, it serves as a front end to GDB.
It’s similar to the terminal-based TUI concept, but with the additional en-
ticements that it is in color and you can browse through the source code sub-
window and set breakpoints directly there. It also seems to handle screen
refresh better than GDB/TUI does.

Here are a few of CGDB’s basic commands and conventions:

• Hit ESC to go from the command window to the source code window; hit
i to get back.

• While in the source window, move around by using the arrow keys or
vi-like keys (j for down, k for up, / to search).

• The next line to be executed is marked by an arrow.

• To set a breakpoint at the line currently highlighted by the cursor, just
hit the spacebar.

• Breakpoint lines have their line numbers highlighted in red.

1.5 Main Debugger Operations
Here we give an overview of the main types of operations that a debugger
offers.

1.5.1 Stepping Through the Source Code
You saw earlier that to run a program in GDB, you use the run command,
and that in DDD you click Run. In details to be presented later, you will see
that Eclipse handles things similarly.

You can also arrange for execution of the program to pause at certain
points, so that you can inspect the values of variables in order to get clues
about where your bug is. Here are some of the methods you can use to do
this:

Breakpoints
As mentioned earlier, a debugging tool will pause execution of your pro-
gram at specified breakpoints. This is done in GDB via the break com-
mand, together with the line number; in DDD you right-click anywhere
in white space in the relevant line and choose Set Breakpoint; in Eclipse
you double-click in the margin to the left of the line.

Single-stepping
GDB’s next command, which was also mentioned earlier, tells GDB to
execute the next line and then pause. The step command is similar, ex-
cept that at function calls it will enter the function, whereas next will re-
sult in the next pause in execution occurring at the line following the
function call. DDD has corresponding Next and Step menu choices,
while Eclipse has Step Over and Step Into icons to do the same thing.

14 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Resume operation
In GDB, the continue command tells the debugger to resume execution
and continue until a breakpoint is hit. There is a corresponding menu
item in DDD, and Eclipse has a Resume icon for it.

Temporary breakpoints
In GDB the tbreak command is similar to break, but it sets a breakpoint
that only stays in effect until the first time the specified line is reached.
In DDD this is accomplished by right-clicking anywhere in the white
space in the desired line in the Source Text window, and then select-
ing Set Temporary Breakpoint. In Eclipse, highlight the desired line in
the source window, then right-click and select Run to Line.

GDB also has until and finish commands, which create special kinds
of one-time breakpoints. DDD has corresponding Until and Finish menu
items in its Command window, and Eclipse has Step Return. These are
discussed in Chapter 2.

A typical debugging pattern for program execution is as follows (us-
ing GDB as an example): After you hit a breakpoint, you move through the
code one line at a time or single-step for a while, via GDB’s next and step com-
mands. This allows you to carefully examine the program’s state and behav-
ior near the breakpoint. When you are done with this, you can tell the de-
bugger to continue to execute the program without pausing until the next
breakpoint is reached, by using the continue command.

1.5.2 Inspecting Variables
After the debugger pauses execution of our program, you can issue com-
mands to display the values of program variables. These could be local vari-
ables, globals, elements of arrays and C structs, member variables in C++
classes, and so on. If a variable is found to have an unexpected value, that
typically is a big clue to the location and nature of a bug. DDD can even
graph arrays, which may reveal, at a glance, suspicious values or trends oc-
curring within an array.

The most basic type of variable display is simply printing the current
value. For example, suppose you have set a breakpoint at line 37 of the func-
tion insert() in ins.c. (Again, the full source code is given in Section 1.7, but
the details needn’t concern you for now.) When you reach that line, you can
check the value of the local variable j in that function. In GDB you would
use the print command:

(gdb) print j

In DDD it is even easier: You simply move the mouse pointer over any
instance of j in the Source Text window, and then the value of j will be dis-
played, for a second or two, in a little yellow box—called a value tip—near
the mouse pointer. See Figure 1-5, where the value of the variable new_y

is being examined. Things work the same way with Eclipse, as seen in Fig-
ure 1-6, where we are querying the value of num_y.

Some Preliminaries for Beginners and Pros 15

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-5: Inspecting a variable in DDD

Figure 1-6: Inspecting a variable in Eclipse

16 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

As you will see in Chapter 2, in GDB or DDD you can also arrange to
continuously display a variable so that you don’t have to repeatedly ask to
see the value. DDD has an especially nice feature for displaying linked lists,
trees, and other data structures containing pointers: You can click an outgo-
ing link of any node in such a structure to find the next node.

1.5.3 Issuing an “All Points Bulletin” for Changes to a Variable
A watchpoint combines the notions of breakpoint and variable inspection.
The most basic form instructs the debugger to pause execution of the pro-
gram whenever the value of a specified variable changes.

For example, suppose that you wish to examine a program’s state dur-
ing the points in the course of its execution at which the variable z changes
value. In GDB, you can issue the command

(gdb) watch z

When you run the program, GDB will pause execution whenever the
value of z changes. In DDD, you would set the watchpoint by clicking any
instance of z in the Source Text window and then clicking the Watch icon at
the top of the DDD window.

Even better, you can set watchpoints based on conditional expressions.
Say, for example, that you wish to find the first point in the execution of the
program at which the value of z exceeds 28. You can accomplish this by set-
ting a watchpoint based on the expression (z > 28). In GDB, you would type

(gdb) watch (z > 28)

In DDD, you would issue this command in DDD’s Console. Recall that
in C the expression (z > 28) is of Boolean type and evaluates to either true or
false, where false is represented by 0 and true is represented by any nonzero
integer, usually 1. When z first takes on a value larger than 28, the value of
the expression (z > 28) will change from 0 to 1, and GDB will pause execu-
tion of the program.

You can set a watchpoint in Eclipse by right-clicking in the source win-
dow, selecting Add a Watch Expression, and then filling in the desired ex-
pression in the dialog.

Watchpoints are usually not as useful for local variables as they are for
variables with wider scope, because a watchpoint set on a local variable is
canceled as soon as the variable goes out of scope, that is, when the func-
tion in which the variable is defined terminates. However, local variables in
main() are an obvious exception, as such variables are not deallocated until
the program finishes execution.

1.5.4 Moving Up and Down the Call Stack
During a function call, runtime information associated with the call is stored
in a region of memory known as a stack frame. The frame contains the values

Some Preliminaries for Beginners and Pros 17

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

of the function’s local variables and its parameters and a record of the loca-
tion from which the function was called. Each time a function call occurs,
a new frame is created and pushed onto a stack maintained by the system;
the frame at the top of the stack represents the currently executing function,
and it is popped off the stack and deallocated when the function exits.

For example, suppose that you pause execution of your sample pro-
gram, insert_sort, while in the insert() function. The data in the current
stack frame will state that you got there via a function call at a specific lo-
cation that turns out to be within the process_data() function (which invokes
insert()). The frame will also store the current value of insert()’s only local
variable, which you will see later is j.

The stack frames for the other active function invocations will contain
similar information, and you can also examine these if you wish. For in-
stance, even though execution currently resides in insert(), you may wish to
take a look at the previous frame in the call stack, that is, at process_data()’s
frame. You can do so in GDB with the command

(gdb) frame 1

When issuing GDB’s frame command, the frame of the currently execut-
ing function is numbered 0, its parent frame (that is, the stack frame of the
function’s caller) is numbered 1, the parent’s parent is numbered 2, and so
on. GDB’s up command takes you to the next parent in the call stack (for ex-
ample, to frame 1 from frame 0), and down takes you in the other direction.
Such operations are very useful, because the values of the local variables in
some of the earlier stack frames may give you a clue as to what caused a bug.

Traversing the call stack does not change the execution path—in this
example, the next line of insert_sort to be executed will still be the current
one in insert()—but it does allow you to take a look at the ancestor frames
and so examine the values of the local variables for the function invocations
leading up to the current one. Again, this may give you hints about where to
find a bug.

GDB’s backtrace command will show you the entire stack, that is, the en-
tire collection of frames currently in existence.

The analogous operation in DDD is invoked by clicking Status | Back-
trace; a window will pop up showing all the frames, and you can then click
whichever one you wish to inspect. The DDD interface also has Up and
Down buttons that can be clicked to invoke GDB’s up and down commands.

In Eclipse, the stack is continuously visible in the Debug perspective it-
self. In Figure 1-7, look at the Debug tab in the upper-left corner. You’ll see
that we are currently in frame 2, in the function get_args(), which we called
from frame 1 in main(). Whichever frame is highlighted is the one displayed
in the source window, so you can display any frame by clicking it in the call
stack.

18 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-7: Moving within the stack in Eclipse

1.6 Online Help
In GDB, documentation can be accessed through the help command. For
example,

(gdb) help breakpoints

will give you the documentation on breakpoints. The GDB command help,
with no arguments, gives you a menu of command categories that can be
used as arguments for help.

In DDD and Eclipse, a wealth of material is available by clicking Help.

1.7 Introductory Debugging Session
Now we will present a complete debugging session. As mentioned, the sam-
ple program is in the source file ins.c and does an insertion sort. This is not
an efficient sorting method, of course, but the simplicity of the code makes
it good for illustrating the debugging operations. Here is the code:

//

// insertion sort, several errors

//

// usage: insert_sort num1 num2 num3 ..., where the numi are the numbers to

// be sorted

Some Preliminaries for Beginners and Pros 19

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

int x[10], // input array

y[10], // workspace array

num_inputs, // length of input array

num_y = 0; // current number of elements in y

void get_args(int ac, char **av)

{ int i;

num_inputs = ac - 1;

for (i = 0; i < num_inputs; i++)

x[i] = atoi(av[i+1]);

}

void scoot_over(int jj)

{ int k;

for (k = num_y-1; k > jj; k++)

y[k] = y[k-1];

}

void insert(int new_y)

{ int j;

if (num_y = 0) { // y empty so far, easy case

y[0] = new_y;

return;

}

// need to insert just before the first y

// element that new_y is less than

for (j = 0; j < num_y; j++) {

if (new_y < y[j]) {

// shift y[j], y[j+1],... rightward

// before inserting new_y

scoot_over(j);

y[j] = new_y;

return;

}

}

}

void process_data()

{

for (num_y = 0; num_y < num_inputs; num_y++)

// insert new y in the proper place

// among y[0],...,y[num_y-1]

insert(x[num_y]);

20 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

}

void print_results()

{ int i;

for (i = 0; i < num_inputs; i++)

printf("%d\n",y[i]);

}

int main(int argc, char ** argv)

{ get_args(argc,argv);

process_data();

print_results();

}

Below is a pseudocode description of the program. The function calls
are indicated by call statements, and the pseudocode for each function is
shown indented under the calls:

call main():

set y array to empty

call get_args():

get num_inputs numbers x[i] from command line

call process_data():

for i = 1 to num_inputs

call insert(x[i]):

new_y = x[i]

find first y[j] for which new_y < y[j]

call scoot_over(j):

shift y[j], y[j+1], ... to right,

to make room for new_y

set y[j] = new_y

Let’s compile and run the code:

$ gcc -g -Wall -o insert_sort ins.c

Important: You can use the -g option to GCC to tell the compiler to save
the symbol table—that is, the list of memory addresses corresponding to your
program’s variables and lines of code—within the generated executable file,
which here is insert_sort. This is an absolutely essential step that allows you
to refer to the variable names and line numbers in the source code during a
debugging session. Without this step (and something similar would have to
be done if you were to use a compiler other than GCC), you could not ask
the debugger to “stop at line 30” or “print the value of x,” for example.

Now let’s run the program. Following the Start Small Principle from
Section 1.3.3, first try sorting a list of just two numbers:

Some Preliminaries for Beginners and Pros 21

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

$ insert_sort 12 5

(execution halted by user hitting ctrl-C)

The program did not terminate or print any output. It apparently went
into an infinite loop, and we had to kill it by hitting CTRL-C. There is no
doubt about it: Something is wrong.

In the following sections, we will first present a debugging session for
this buggy program using GDB, and then discuss how the same operations
are done using DDD and Eclipse.

1.7.1 The GDB Approach
To track down the first bug, execute the program in GDB and let it run for
a while before suspending it with CTRL-C. Then see where you are. In this
manner, you can determine the location of the infinite loop.

First, start the GDB debugger on insert_sort:

$ gdb insert_sort -tui

Your screen will now look like this:

63 { get_args(argc,argv);

64 process_data();

65 print_results();

66 }

67

68

69

File: ins.c Procedure: ?? Line: ?? pc: ??

--

(gdb)

The top subwindow displays part of your source code, and in the bottom
subwindow you see the GDB prompt, ready for your commands. There is
also a GDB welcome message, which we have omitted for the sake of brevity.

If you do not request TUI mode when invoking GDB, you would receive
only the welcome message and the GDB prompt, without the upper subwin-
dow for your program’s source code. You could then enter TUI mode using
the GDB command CTRL-X-A. This command toggles you in and out of TUI
mode and is useful if you wish, for example, to temporarily leave TUI mode
so that you can read GDB’s online help more conveniently, or so that you
can see more of your GDB command history together on one screen.

Now run the program from within GDB by issuing the run command to-
gether with your program’s command-line arguments, and then hit CTRL-C
to suspend it. The screen now looks like this:

22 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

46

47 void process_data()

48 {

49 for (num_y = 0; num_y < num_inputs; num_y++)

50 // insert new y in the proper place

51 // among y[0],...,y[num_y-1]

> 52 insert(x[num_y]);

53 }

54

55 void print_results()

56 { int i;

57

58 for (i = 0; i < num_inputs; i++)

59 printf("%d\n",y[i]);

60 } .

File: ins.c Procedure: process_data Line: 52 pc: 0x8048483

--

(gdb) run 12 5

Starting program: /debug/insert_sort 12 5

Program received signal SIGINT, Interrupt.

0x08048483 in process_data () at ins.c:52

(gdb)

This tells you that when you stopped the program, insert_sort was in the
function process_data() and line 52 in the source file ins.c was about to be
executed.

We hit CTRL-C at a random time and stopped at a random place in the
code. Sometimes it’s good to suspend and restart a program that has stopped
responding two or three times by issuing continue between CTRL-Cs, in order
to see where you stop each time.

Now, line 52 is part of the loop that begins on line 49. Is this loop the
infinite one? The loop doesn’t look like it should run indefinitely, but the
Principle of Confirmation says you should verify this, not just assume it. If
the loop is not terminating because somehow you haven’t set the upper
bound for the variable num_y correctly, then after the program has run for a
while the value of num_y will be huge. Is it? (Again, it looks like it shouldn’t
be, but you need to confirm that.) Let’s check what the current value of
num_y is by asking GDB to print it out.

(gdb) print num_y

$1 = 1

The output of this query to GDB shows that the value of num_y is 1. The
$1 label means that this is the first value you’ve asked GDB to print out. (The
values designated by $1, $2, $3, and so on are collectively called the value his-
tory of the debugging session. They can be very useful, as you will see in later

Some Preliminaries for Beginners and Pros 23

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

chapters.) So we seem to be on only the second iteration of the loop on
line 49. If this loop were the infinite one, it would be way past its second it-
eration by now.

So let’s take a closer look at what occurs when num_y is 1. Tell GDB to
stop in insert() during the second iteration of the loop on line 49 so that
you can take a look around and try to find out what’s going wrong at that
place and time in the program:

(gdb) break 30

Breakpoint 1 at 0x80483fc: file ins.c, line 30.

(gdb) condition 1 num_y==1

The first command places a breakpoint at line 30, that is, at the begin-
ning of insert(). Alternatively, you could have specified this breakpoint via
the command break insert, meaning to break at the first line of insert()
(which here is line 30). This latter form has an advantage: If you modify
the program code so that the function insert() no longer begins at line 30
of ins.c, your breakpoint would remain valid if specified using the function
name, but not if specified using the line number.

Ordinarily a break command makes execution pause every time the pro-
gram hits the specified line. However, the second command here, condition
1 num_y==1, makes that breakpoint conditional : GDB will pause execution of
the program at breakpoint 1 only when the condition num_y==1 holds.

Note that unlike the break command, which accepts line numbers (or
function names), condition accepts a breakpoint number. You can always use
the command info break to look up the number of the desired breakpoint.
(That command gives you other useful information too, such as the number
of times each breakpoint has been hit so far.)

We could have combined the break and condition commands into a sin-
gle step by using break if as follows:

(gdb) break 30 if num_y==1

Then run the program again, using the run command. You do not have
to restate the command-line arguments if you just wish to reuse the old ones.
This is the case here, and so you can simply type run. Since the program is
already running, GDB asks us if you wish to restart from the beginning, and
you answer “yes.”

The screen will now look like this:

24 y[k] = y[k-1];

25 }

26

27 void insert(int new_y)

28 { int j;

29

*> 30 if (num_y = 0) { // y empty so far, easy case

31 y[0] = new_y;

24 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward .

File: ins.c Procedure: insert Line: 30 pc: 0x80483fc

--

(gdb) condition 1 num_y==1

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5

Breakpoint 1, insert (new_y=5) at ins.c:30

(gdb)

We apply the Principle of Confirmation again: Since num_y is 1, line 31
should be skipped over and execution should go to line 36. But we need to
confirm this, so we issue the next command to go on to the next line:

24 y[k] = y[k-1];

25 }

26

27 void insert(int new_y)

28 { int j;

29

* 30 if (num_y = 0) { // y empty so far, easy case

31 y[0] = new_y;

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

> 36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward .

File: ins.c Procedure: insert Line: 36 pc: 0x8048406

--

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5

Breakpoint 1, insert (new_y=5) at ins.c:30

(gdb) next

(gdb)

Some Preliminaries for Beginners and Pros 25

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

The arrow in the upper subwindow is now at line 36, so our expecta-
tion is confirmed; we did indeed skip line 31. Now let’s continue to single-
step through the program, confirming assumptions about the code along
the way. You are now at the beginning of a loop, so issue the next command
again a few times and see how the loop progresses, line by line:

39 // before inserting new_y

40 scoot_over(j);

41 y[j] = new_y;

42 return;

43 }

44 }

> 45 }

46

47 void process_data()

48 {

49 for (num_y = 0; num_y < num_inputs; num_y++)

50 // insert new y in the proper place

51 // among y[0],...,y[num_y-1]

52 insert(x[num_y]);

53 } .

File: ins.c Procedure: insert Line: 45 pc: 0x804844d

--

The program being debugged has been started already.

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5

Breakpoint 1, insert (new_y=5) at ins.c:30

(gdb) next

(gdb) next

(gdb)

Look at where the arrow is now in the upper subwindow—we went di-
rectly from line 37 to line 45! This is quite a surprise. We did not execute
even one iteration of the loop. Remember, though, that surprises are good,
because they give you clues as to where bugs are.

The only way that the loop at line 36 could have executed no iterations
at all is if the condition j < num_y in line 36 did not hold even when j was
0. Yet you know that num_y is 1, because you are in this function now after
having imposed the condition num_y==1 on the breakpoint. Or at least you
think you know this. Again, you haven’t confirmed it. Check this now:

(gdb) print num_y

$2 = 0

Sure enough, the condition num_y==1 did hold when you entered insert(),
but apparently num_y has changed since then. Somehow num_y became 0 after
you entered this function. But how?

26 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

As mentioned earlier, the Principle of Confirmation doesn’t tell you
what the bug is, but it does give us clues to where the bug likely resides. In
this case, you have now discovered that the location is somewhere between
lines 30 and 36. And you can narrow down that range further, because you
saw that lines 31 through 33 were skipped, and lines 34 through 35 are com-
ments. In other words, the mysterious change of value in num_y occurred ei-
ther at line 30 or at line 36.

After taking a short break—often the best debugging strategy!—we sud-
denly realize that the fault is a classic error, often made by beginning (and,
embarrassingly, by experienced) C programmers: In line 30 we used = in-
stead of ==, turning a test for equality into an assignment.

Do you see how the infinite loop thus arises? The error on line 30 sets
up a perpetual seesaw situation, in which the num_y++ portion of line 49 re-
peatedly increments num_y from 0 to 1, while the error in line 30 repeatedly
sets that variable’s value back to 0.

So we fix that humiliating bug (which ones aren’t humiliating?), recom-
pile, and try running the program again:

$ insert_sort 12 5

5

0

We don’t have an infinite loop anymore, but we don’t have the correct
output either.

Recall from the pseudocode what your program is supposed to do
here: Initially the array y is empty. The first iteration of the loop at line 49
is supposed to put the 12 into y[0]. Then in the second iteration, the 12 is
supposed to be shifted by one array position, to make room for insertion of
the 5. Instead, the 5 appears to have replaced the 12.

The trouble arises with the second number (5), so you should again
focus on the second iteration. Because we wisely chose to stay in the GDB
session, rather than exiting GDB after discovering and fixing the first bug,
the breakpoint and its condition, which we set earlier, are still in effect now.
Thus we simply run the program again, and stop when the program begins
to process the second input:

24 y[k] = y[k-1];

25 }

26

27 void insert(int new_y)

28 { int j;

29

*> 30 if (num_y == 0) { // y empty so far, easy case

31 y[0] = new_y;

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

Some Preliminaries for Beginners and Pros 27

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward .

File: ins.c Procedure: insert Line: 30 pc: 0x80483fc

--

The program being debugged has been started already.

Start it from the beginning? (y or n)

`/debug/insert_sort' has changed; re-reading symbols.

Starting program: /debug/insert_sort 12 5

Breakpoint 1, insert (new_y=5) at ins.c:30

(gdb)

Notice the line that announces

`/debug/insert_sort' has changed; re-reading symbols.

This shows that GDB saw that we recompiled the program and automat-
ically reloaded the new binary and the new symbol table before running the
program.

Again, the fact that we did not have to exit GDB before recompiling our
program is a major convenience, for a few reasons. First, you do not need to
restate your command-line arguments; you just type run to re-run the pro-
gram. Second, GDB retains the breakpoint that you had set, so that you
don’t need to type it again. Here you only have one breakpoint, but typically
you would have several, and then this becomes a real issue. These conve-
niences save you typing, and more importantly they relieve you of practical
distractions and allow you to focus better on the actual debugging.

Likewise, you should not keep exiting and restarting your text editor
during your debugging session, which would also be a distraction and a
waste of time. Just keep your text editor open in one window and GDB (or
DDD) in another, and use a third window for trying out your program.

Now let’s try stepping through the code again. As before, the program
should skip line 31, but hopefully this time it will reach line 37, as opposed
to the situation earlier. Let’s check this by issuing the next command twice:

31 y[0] = new_y;

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

36 for (j = 0; j < num_y; j++) {

> 37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward

39 // before inserting new_y

40 scoot_over(j);

41 y[j] = new_y;

28 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

42 return;

43 }

44 }

45 } .

File: ins.c Procedure: insert Line: 37 pc: 0x8048423

--

`/debug/insert_sort' has changed; re-reading symbols.

Starting program: /debug/insert_sort 12 5

Breakpoint 1, insert (new_y=5) at ins.c:30

(gdb) next

(gdb) next

(gdb)

We have indeed reached line 37.
At this point, we believe the condition in the if in line 37 should hold,

because new_y should be 5, and y[0] should be 12 from the first iteration.
The GDB output confirms the former assumption. Let’s check the latter:

(gdb) print y[0]

$3 = 12

Now that this assumption is also confirmed, issue the next command,
which brings you to line 40. The function scoot_over() is supposed to shift
the 12 to the next array position, to make room for the 5. You should check
to see whether or not it does. Here you face an important choice. You could
issue the next command again, which would cause GDB to stop at line 41;
the function scoot_over() would be executed, but GDB would not stop within
that function. However, if you were to issue the step command instead, GDB
would stop at line 23, and this would allow you to single-step within scoot_over().

Following the Top-Down Approach to Debugging described in Sec-
tion 1.3.3, we opt for the next command instead of step at line 40. When
GDB stops at line 41, you can take a look at y to see if the function did its
job correctly. If that hypothesis is confirmed, you will have avoided a time-
consuming inspection of the detailed operation of the function scoot_over()

that would have contributed nothing to fixing the current bug. If you fail
to confirm that the function worked correctly, you can run the program in
the debugger again and enter the function using step in order to inspect the
function’s detailed operation and hopefully determine where it goes awry.

So, when you reach line 40, type next, yielding

31 y[0] = new_y;

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

Some Preliminaries for Beginners and Pros 29

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

38 // shift y[j], y[j+1],... rightward

39 // before inserting new_y

40 scoot_over(j);

> 41 y[j] = new_y;

42 return;

43 }

44 }

45 } .

File: ins.c Procedure: insert Line: 41 pc: 0x8048440

--

(gdb) next

(gdb) next

(gdb)

Did scoot_over() shift the 12 correctly? Let’s check:

(gdb) print y

$4 = {12, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Apparently not. The problem indeed lies in scoot_over(). Let’s delete
the breakpoint at the beginning of insert() and place one in scoot_over(),
again with a condition that we stop there during the second iteration of
line 49:

(gdb) clear 30

Deleted breakpoint 1

(gdb) break 23

Breakpoint 2 at 0x80483c3: file ins.c, line 23.

(gdb) condition 2 num_y==1

Now run the program again:

15 num_inputs = ac - 1;

16 for (i = 0; i < num_inputs; i++)

17 x[i] = atoi(av[i+1]);

18 }

19

20 void scoot_over(int jj)

21 { int k;

22

*> 23 for (k = num_y-1; k > jj; k++)

24 y[k] = y[k-1];

25 }

26

27 void insert(int new_y)

28 { int j;

29 .

File: ins.c Procedure: scoot_over Line: 23 pc: 0x80483c3

30 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

--

(gdb) condition 2 num_y==1

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5

Breakpoint 2, scoot_over (jj=0) at ins.c:23

(gdb)

Once again, follow the Principle of Confirmation: Think about what
you expect to occur, and then try to confirm that it does occur. In this case,
the function is supposed to shift the 12 over to the next position in the ar-
ray y, which means that the loop at line 23 should go through exactly one
iteration. Let’s step through the program by repeatedly issuing the next com-
mand, in order to verify this expectation:

15 num_inputs = ac - 1;

16 for (i = 0; i < num_inputs; i++)

17 x[i] = atoi(av[i+1]);

18 }

19

20 void scoot_over(int jj)

21 { int k;

22

* 23 for (k = num_y-1; k > jj; k++)

24 y[k] = y[k-1];

> 25 }

26

27 void insert(int new_y)

28 { int j;

29 .

File: ins.c Procedure: scoot_over Line: 25 pc: 0x80483f1

--

The program being debugged has been started already.

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5

Breakpoint 2, scoot_over (jj=0) at ins.c:23

(gdb) next

(gdb) next

(gdb)

Here we again get a surprise: We are now on line 25, without ever touch-
ing line 24—the loop executed no iterations, not the single iteration that we
had expected it to execute. Apparently there is a bug in line 23.

Some Preliminaries for Beginners and Pros 31

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

As with the earlier loop that unexpectedly executed no iterations of its
body, it must be that the loop condition was not satisfied at the very begin-
ning of the loop. Is this the case here? The loop condition on line 23 is k >

jj. We also know from this line that k’s initial value is num_y-1, and we know
from our breakpoint condition that the latter quantity is 0. Finally, the GDB
screen tells us that jj is 0. So the condition k > jj was not satisfied when the
the loop began.

Thus, we misspecified either the loop condition k > jj or the initial-
ization k = num_y-1. Considering that the 12 should have moved from y[0]

to y[1] in the first and only iteration of the loop—that is, line 24 should
have executed with k = 1—we realize that the loop initialization is wrong.
It should have been k = num_y.

Fix the error, recompile the program, and run the program again (out-
side GDB):

$ insert_sort 12 5

Segmentation fault

Segmentation faults, discussed in detail in Chapter 4, occur when a run-
ning program attempts to access memory that it does not have permission
to access. Typically the cause is an out-of-bounds array index or an errant
pointer value. Seg faults can also arise from memory references that do not
explicitly involve pointer or array variables. One example of this can be
seen in another classic C programmer’s error, forgetting the ampersand
in a function parameter that is passed using call-by-reference, for example,
writing

scanf("%d",x);

instead of

scanf("%d",&x);

In general, the main value of a debugging tool such as GDB or DDD
is to facilitate the process of verifying one’s coding assumptions, but in the
case of seg faults a debugging tool gives extra, tangible, immediate help: It
tells you where in your program the fault occurred.

To take advantage of this, you need to run insert_sort in GDB and recre-
ate the seg fault. First, remove your breakpoint. As seen earlier, to do this
you need to give the line number of the breakpoint. You might already re-
member this, but it is easy to look for it: Either scroll through the TUI win-
dow (using the up and down arrow keys), looking for lines marked with as-
terisks, or use GDB’s info break command. Then delete the breakpoint using
the clear command:

(gdb) clear 30

Now run the program again, in GDB:

32 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

19

20 void scoot_over(int jj)

21 { int k;

22

23 for (k = num_y; k > jj; k++)

> 24 y[k] = y[k-1];

25 }

26

27 void insert(int new_y)

28 { int j;

29

30 if (num_y == 0) { // y empty so far, easy case

31 y[0] = new_y; .

File: ins.c Procedure: scoot_over Line: 24 pc: 0x8048538

--

Start it from the beginning? (y or n)

`/debug/insert_sort' has changed; re-reading symbols.

Starting program: /debug/insert_sort 12 5

Program received signal SIGSEGV, Segmentation fault.

0x08048538 in scoot_over (jj=0) at ins.c:24

(gdb)

As promised, GDB tells us exactly where the seg fault occurred, at line 24,
and sure enough, an array index is apparently involved, namely k. Either k

was large enough to exceed the number of elements in y, or k-1 was nega-
tive. Clearly the first order of business is to determine the value of k:

(gdb) print k

$4 = 584

Whoa! The code had dimensioned y to have only 10 elements, so this
value of k is indeed far out of range. We must now track down the cause.

First of all, determine the iteration of the grand loop at line 49 during
which this seg fault occurred.

(gdb) print num_y

$5 = 1

So it was during the second iteration, which is the first time the func-
tion scoot_over() is executed. In other words, it is not the case that line 23
worked fine in the first few calls to scoot_over() but failed later on. There is
still something fundamentally wrong with this line of code. And since the
only remaining candidate is the statement

k++

Some Preliminaries for Beginners and Pros 33

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

(recall that you checked the other two portions of this line earlier), it must
be the culprit. After taking another break to clear our heads, we realize with
some embarrassment that this should have been k--.

Fix that line and once again recompile and run the program:

$ insert_sort 12 5

5

12

Now, that’s progress! But does the program work for a larger data set?
Let’s try one:

$ insert_sort 12 5 19 22 6 1

1

5

6

12

0

0

Now you can begin to see the light at the end of the tunnel. Most of the
array is being sorted correctly. The first number in the list that does not get
sorted correctly is 19, so set a breakpoint at line 36, this time with the condi-
tion new_y == 19:1

(gdb) b 36

Breakpoint 3 at 0x804840d: file ins.c, line 36.

(gdb) cond 3 new_y==19

Then run the program in GDB (making sure to use the same arguments,
12 5 19 22 6 1). When you hit the breakpoint, you then confirm that the ar-
ray y has been sorted correctly up to this point:

31 y[0] = new_y;

32 return;

33 }

34 // need to insert just before the first y

35 // element that new_y is less than

*> 36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward

39 // before inserting new_y

40 scoot_over(j);

41 y[j] = new_y;

1 It’s about time to start using the common abbreviations for the commands. These include b

for break, i b for info break, cond for condition, r for run, n for next, s for step, c for continue, p for
print, and bt for backtrace.

34 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

42 return;

43 } .

File: ins.c Procedure: insert Line: 36 pc: 0x8048564

--

Start it from the beginning? (y or n)

Starting program: /debug/insert_sort 12 5 19 22 6 1

Breakpoint 2, insert (new_y=19) at ins.c:36

(gdb) p y

$1 = {5, 12, 0, 0, 0, 0, 0, 0, 0, 0}

(gdb)

So far, so good. Now let’s try to determine how the program swallows
up the 19. We will step through the code one line at a time. Note that be-
cause 19 is not less than 5 or 12, we do not expect the condition in the if

statement in line 37 to hold. After hitting n a few times, we find ourselves on
line 45:

35 // element that new_y is less than

* 36 for (j = 0; j < num_y; j++) {

37 if (new_y < y[j]) {

38 // shift y[j], y[j+1],... rightward

39 // before inserting new_y

40 scoot_over(j);

41 y[j] = new_y;

42 return;

43 }

44 }

> 45 }

46

47 void process_data() .

File: ins.c Procedure: insert Line: 45 pc: 0x80485c4

--

(gdb) n

(gdb) n

(gdb) n

(gdb) n

(gdb) n

(gdb)

We are on line 45, about to leave the loop, without having done any-
thing with the 19 at all! Some inspection shows that our code was not written
to cover an important case, namely that in which new_y is larger than any ele-
ment we’ve processed so far—an oversight also revealed by the comments on
lines 34 and 35:

Some Preliminaries for Beginners and Pros 35

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

// need to insert just before the first y

// element that new_y is less than

To handle this case, add the following code just after line 44:

// one more case: new_y > all existing y elements

y[num_y] = new_y;

Then recompile and try it again:

$ insert_sort 12 5 19 22 6 1

1

5

6

12

19

22

This is the correct output, and subsequent testing gives correct results as
well.

1.7.2 The Same Session in DDD
Let’s see how the above GDB session would have been carried out in DDD.
There is of course no need to repeat all the steps; simply focus on the differ-
ences from GDB.

Starting DDD is similar to starting GDB. Compile your source using
GCC with the -g option, and then type

$ ddd insert_sort

to invoke DDD. In GDB, you started execution of the program via the run

command, including arguments if any. In DDD, you click Program | Run,
after which you will see the screen shown in Figure 1-8.

A Run window has popped up, presenting you with a history of previous
sets of command-line arguments you’ve used. There are no previous sets yet,
but if there were, you could choose one of them by clicking it, or you can
type a new set of arguments, as shown here. Then click Run.

In the GDB debugging session, we ran our program for a while in the
debugger and then suspended it using CTRL-C, in order to investigate an
apparently infinite loop. In DDD, we suspend the program by clicking Inter-
rupt in the Command Tool. The DDD screen now looks like the one in Fig-
ure 1-9. Because DDD acts as a front end to GDB, this mouse click is trans-
lated to a CTRL-C operation in GDB, which can be seen in the Console.

The next step in the GDB session above was to inspect the variable num_y.
As shown earlier in Section 1.5, you do this in DDD by moving the mouse
pointer over any instance of num_y in the Source Window.

36 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-8: DDD Run command

You can also inspect entire arrays in the same way. For example, at one
point in the GDB session, you printed out the entire array y. In DDD, you
would simply move the mouse pointer to any instance of y in the Source
window. If you move the cursor over the y in the expression y[j] on line 30,
the screen will appear as shown in Figure 1-10. A value tip box has appeared
near that line, showing the contents of y.

Your next action in the GDB session was to set a breakpoint at line 30.
We have already explained how to set breakpoints in DDD, but what about
putting a condition on the breakpoint, as was needed in this case? You can
set a condition by right-clicking the stop sign icon in the breakpoint line and
then choosing Properties. A pop-up window will appear, as seen in Figure 1-11.
Then type your condition, num_y==1.

To then re-run the program, you would click Run in the Command
Tool. As with GDB’s run command with no arguments, this button runs the
program with the last set of arguments that was provided.

DDD’s analogs of GDB’s n and s commands are the Next and Step but-
tons in the Command Tool. The analog of GDB’s c is the Cont button.

This overview is enough to get you started with DDD. In later chapters
we will explore some of DDD’s advanced options, such as its highly useful
capability of visually displaying complex data structures such as linked lists
and binary trees.

Some Preliminaries for Beginners and Pros 37

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-9: After the interrupt

1.7.3 The Session in Eclipse
Now let’s see how the above GDB session would have been carried out in
Eclipse. As in our presentation on DDD, there is no need to repeat all the
steps; we’ll simply focus on the differences from GDB.

Note that Eclipse can be rather finicky. Though it offers many ways to
accomplish a certain task, if you do not strictly follow the necessary sequence
of steps, you may find yourself in a bind with no intuitive solution other than
to restart part of your debugging process.

We assume here that you have already created your C/C++ project.2

The first time you run/debug your program, you will need run and de-
bug configurations. These specify the name of your executable (and what
project it belongs to), its command-line arguments (if any), its special shell
variable environment (if any), your debugger of choice, and so on. A run
configuration is used to run your program outside the debugger, while a
debug configuration is used within the debugger. Make sure to create both
configurations, in that order, as follows:

1. Select Run | Open Run Dialog.

2 Since this is a book about debugging, not project management, we will not say much here
about creating and building projects in Eclipse. A quick summary, though, would be that you
create a project as follows: Select File | New | Project; choose C (or C++) Project; fill in a project
name; select Executable | Finish. A makefile is created automatically. You build (i.e., compile
and link) your project by selecting Project | Build Project.

38 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-10: Inspecting the array

2. Right-click C/C++ Local Applications and select New.

3. Select the Main tab, and fill in your run configuration, project and ex-
ecutable file names (Eclipse will probably suggest them for you), and
check the Connect process input and output to a terminal box if you
have terminal I/O.

4. If you have command-line arguments or special environment variables,
click the Arguments or Environment tab, and fill in the desired settings.

5. Select the Debugger tab to see which debugger is being used. You prob-
ably will not have to touch this, but it’s good to understand that there is
an underlying debugger, probably GDB.

6. Hit Apply (if asked) and Close to complete creation of your run configu-
ration.

7. Start creating your debug configuration by selecting Run | Open Debug
Dialog. Eclipse will probably reuse the information you supplied in your
run configuration, as shown in Figure 1-12, or you can change it if you
wish. Again, hit Apply (if asked) and Close to complete creation of your
debug configuration.

One can create several run/debug configurations, typically with dif-
ferent sets of command-line arguments.

Some Preliminaries for Beginners and Pros 39

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-11: Imposing a condition on the breakpoint

To start your debugging session, you must move to the Debug perspec-
tive by selecting Window | Open Perspective | Debug. (There are various
shortcuts, which we’ll leave to you to discover.)

The first time you actually execute a run or debug action, you do so via
Run | Open Run Dialog or Run | Open Debug Dialog again, as the case may
be, in order to state which configuration to use. After that, though, simply
select Run | Run or Run | Debug, either of which will rerun the last debug
configuration.

In fact, in the debug case, there is a quicker why to launch a debug run,
which is to click the Debug icon right under Navigate (see Figure 1-13).
Note carefully, though, that whenever you start a new debug run, you need
to kill existing ones by clicking a red Terminate square; one is in the toolbar
of the Debug view, and another is in the Console view. The Debug view also
has a double-X icon, Remove All Terminated Launches.

Figure 1-13 shows the screen as it appears after you have launched your
debug. One can set the starting line in Eclipse debug dialogs, but they typi-
cally default to placing an automatic breakpoint at the first executable line
of code. In the figure, you can see this from the breakpoint symbol in the
left margin of the line

40 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-12: Debug configuration dialog

{ get_args(argc,argv);

That line is also highlighted, as it is the line you are about to execute.
Go ahead and execute it by clicking the Resume icon in the Debug view
toolbar (above a box that popped up in the window because you moved the
mouse pointer to that icon).

Recall that in the sample GDB session, the first version of the program
had an infinite loop, and the program was hanging. Here of course you
will see the same symptom, with no output in the Console view. You need
to kill the program. However, you do not want to do so by clicking one of
the red Terminate squares, because this would also kill your underlying
GDB session. You want to stay in GDB in order to take a look at where you
were in the code—i.e., the location of the infinite loop—examine the values
of variables, and so on. So, instead of a Terminate operation, choose Sus-
pend, clicking the icon to the right of Resume in the Debug view toolbar.
(In Eclipse literature, this button is sometimes called Pause, as its symbol is
similar to that for pause operations in media players.)

After clicking Suspend, your screen looks like Figure 1-14. You’ll see
that just before that operation, Eclipse was about to execute the line

for (j = 0; j < num_y; j++) {

Some Preliminaries for Beginners and Pros 41

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-13: Start of a debug run

You can now examine the value of num_y by moving the mouse pointer to
any instance of that variable in the source window (you find that the value is
0), and so on.

Recall again our GDB session above. After fixing a couple of bugs, your
program then had a segmentation fault. Figure 1-15 shows your Eclipse
screen at that point.

What had happened was that we had clicked Resume, so our program
was running, but it suddenly halted, at the line

y[k] = y[k-1];

due to the seg fault. Oddly, Eclipse does not announce this in the Problems
tab, but it does do so in the Debug tab, with the error message

(Suspended'SIGSEGV' received. Description: Segmentation fault.)

again visible in Figure 1-15.
You see in that tab that the fault occurred in the function scoot_over(),

which had been called from insert(). Again you can query the values of the
variables and find, for instance, that k = 544—way out of range, as in the
GDB example.

In the GDB example you also set conditional breakpoints. Recall that
in Eclipse you set a breakpoint by double-clicking in the left margin of the

42 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-14: Program suspended

desired line. To make that breakpoint conditional, then right-click the
breakpoint symbol for that line, and select Breakpoint Properties... | New |
Common, and fill in the condition in the dialog. The dialog is depicted in
Figure 1-16.

Recall too that in your GDB session you occasionally executed your pro-
gram outside GDB, in a separate terminal window. You can easily do that in
Eclipse too, by selecting Run | Run. The results will be in the Console view,
as usual.

1.8 Use of Startup Files
As mentioned earlier, it is usually a good idea to not exit GDB while you re-
compile your code. This way your breakpoints and various other actions you
set up (for example, display commands, to be discussed in Chapter 3) are re-
tained. If you were to exit GDB, you would have to type these all over again.

However, you may need to exit GDB before you are finished debugging.
If you are quitting for a break or for the day, and you cannot stay logged in
to the computer, you’ll need to exit GDB. In order to not lose them, you can
put your commands for breakpoints and other settings in a GDB startup file,
and then they will be loaded automatically every time you start up GDB.

GDB’s startup files are named .gdbinit by default. You can have one
in your home directory for general purposes and another in the directory
containing a particular project for purposes specific to that project. For in-

Some Preliminaries for Beginners and Pros 43

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-15: Seg fault

stance, you would put commands to set breakpoints in a startup file in the
latter directory. In your .gdbinit file in your home directory, you may wish
to store some general-purpose macros you’ve developed, as discussed in
Chapter 2.

GDB reads the startup file in your home directory before it loads an exe-
cutable. So if you were to have a command in your home directory’s .gdbinit
file such as

break g

saying to break at the function g(), then GDB would always complain at
startup that it does not know that function. However, the line would be fine
in your local project directory’s startup file, because the local startup file is
read after the executable (and its symbol table) has been loaded. Note that
this feature of GDB implies that it is best to not put programming projects in
your home directory, as you would not be able to put project-specific infor-
mation in .gdbinit.

You can specify the startup file at the time you invoke GDB. For example,

$ gdb -command=z x

44 Chapter 1

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

Figure 1-16: Making a breakpoint conditional

would say to run GDB on the executable file x, first reading in commands
from the file z. Also, because DDD is just a front end for GDB, invoking
DDD will invoke GDB’s startup files as well.

Finally, you can customize DDD in various ways by selecting Edit | Prefer-
ences. For Eclipse, the sequence is Window | Preferences.

Some Preliminaries for Beginners and Pros 45

The Art of Debugging with GDB, DDD, and Eclipse
(C) 2008 by Norman Matloff and Peter Jay Salzman

