
 4   Tweet

Home
Blogs

From the Editor
Recent Posts
Popular (this month)
Popular (all time)

 Tweets
All Popular Tweets
Vendors Only
#IoT

Forums
Jobs
#IoT
Tutorials
Books
Free PDFs
Vendors
Code Snippets






    Blogs    Miro Samek  

Cutting Through the Confusion with ARM Cortex-M
Interrupt Priorities
Miro Samek●February 26, 2016

ARM
Software Development
Microcontroller

The insanely popular ARM Cortex-M processor offers very versatile interrupt priority management, but
unfortunately, the multiple priority numbering conventions used in managing the interrupt priorities are often
counter-intuitive, inconsistent, and confusing, which can lead to bugs. In this post I attempt to explain the subject
and cut through the confusion.

The Inverse Relationship Between Priority Numbers and Urgency of the Interrupts

The most important fact to know is that ARM Cortex-M uses the “reversed” priority numbering scheme for
interrupts, where priority zero corresponds to the highest urgency interrupt and higher numerical values of priority
correspond to lower urgency. This numbering scheme poses a constant threat of confusion, because any use of the
terms “higher priority” or “lower priority” immediately requires clarification, whether they represent the numerical
value of priority, or perhaps, the urgency of an interrupt.

 This article is available in PDF format for easy
printing

NOTE: To avoid this confusion, in the rest of this post, the term “priority” means the numerical value of interrupt
priority in the ARM Cortex-M convention. The term “urgency” means the capability of an interrupt to preempt
other interrupts. A higher-urgency interrupt (lower priority number) can preempt a lower-urgency interrupt
(higher priority number).

Interrupt Priority Configuration Registers in the NVIC

The number of priority levels in the ARM Cortex-M core is configurable, meaning that various silicon vendors can
implement different number of priority bits in their chips. However, there is a minimum number of interrupt priority
bits that need to be implemented, which is 2 bits in ARM Cortex-M0/M0+ and 3 bits in ARM Cortex-M3/M4.

Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

1 of 6 09/18/2017 09:37 AM



But here again, the most confusing fact is that the priority bits are implemented in the most-significant bits of
the priority configuration registers in the NVIC (Nested Vectored Interrupt Controller). The following figure
illustrates the bit assignment in a priority configuration register for 3-bit implementation (part A), such as TI Tiva
MCUs, and 4-bit implementation (part B), such as the NXP LPC17xx ARM Cortex-M3 MCUs.

Interrupt priory registers with 3 bits of priority (A), and 4 bits of priority (B)

The relevance of the bit representation in the NVIC priority register is that this creates another priority
numbering scheme, in which the numerical value of the priority is shifted to the left by the number of
unimplemented priority bits. If you ever write directly to the priority registers in the NVIC, you must remember to
use this convention.

NOTE: The interrupt priorities don't need to be uniquely assigned, so it is perfectly legal to assign the same
interrupt priority to many interrupts in the system. That means that your application can service many more
interrupts than the number of interrupt priority levels.

NOTE: Out of reset, all interrupts and exceptions with configurable priority have the same default priority of
zero. This priority number represents the highest-possible interrupt urgency.

Interrupt Priority Numbering in the CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provided by ARM Ltd. is the recommended way of
programming Cortex-M microcontrollers in a portable way. The CMSIS standard provides the
function NVIC_SetPriority(IRQn, priority) for setting the interrupts priorities.

However, it is very important to note that the 'priority' argument of this function must not be shifted by the
number of unimplemented bits, because the function performs the shifting by (8 - __NVIC_PRIO_BITS) internally,
before writing the value to the appropriate priority configuration register in the NVIC. The number of implemented
priority bits __NVIC_PRIO_BITS is defined in CMSIS for each ARM Cortex-M device.

For example, calling NVIC_SetPriority(7, 6) will set the priority configuration register corresponding to IRQ#7 to
1100,0000 binary on ARM Cortex-M with 3-bits of interrupt priority and it will set the same register to 0110,0000
binary on ARM Cortex-M with 4-bits of priority.

NOTE: The confusion about the priority numbering scheme used in the NVIC_SetPriority() is further promulgated
by various code examples on the Internet and even in reputable books. For example the book “The Definitive
Guide to ARM Cortex-M3, Second Edition”, ISBN 979-0-12-382091-4, Section 8.3 on page 138 includes a call
NVIC_SetPriority(7, 0xC0) with the intent to set priority of IR#7 to 6. This call is incorrect and at least in CMSIS
version 3.x will set the priority of IR#7 to zero.

Preempt Priority and Subpriority

The interrupt priority registers for each interrupt is further divided into two parts. The upper part (most-significant
bits) is the preempt priority, and the lower part (least-significant bits) is the subpriority. The number of bits in each
part of the priority registers is configurable via the Application Interrupt and Reset Control Register (AIRC, at
address 0xE000ED0C).

The preempt priority level defines whether an interrupt can be serviced when the processor is already running
another interrupt handler. In other words, preempt priority determines if one interrupt can preempt another.

The subpriority level value is used only when two exceptions with the same preempt priority level are pending
(because interrupts are disabled, for example). When the interrupts are re-enabled, the exception with the lower
subpriority (higher urgency) will be handled first.

In most applications, I would highly recommended to assign all the interrupt priority bits to the preempt priority
group, leaving no priority bits as subpriority bits, which is the default setting out of reset. Any other configuration
complicates the otherwise direct relationship between the interrupt priority number and interrupt urgency.

NOTE: Some third-party code libraries (e.g., the STM32 driver library) change the priority grouping configuration
to non-standard. Therefore, it is highly recommended to explicitly re-set the priority grouping to the default by
calling the CMSIS function NVIC_SetPriorityGrouping(0U) after initializing such external libraries.

Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

2 of 6 09/18/2017 09:37 AM



Disabling Interrupts with PRIMASK and BASEPRI Registers

Often in real-time embedded programming it is necessary to perform certain operations atomically to prevent
data corruption.  The simplest way to achieve the atomicity is to briefly disable and re-enabe interrupts.

The ARM Cortex-M offers two methods of disabling and re-enabling interrupts. The simplest method is to set and
clear the interrupt bit in the PRIMASK register. Specifically, disabling interrupts can be achieved with the “CPSID i”
instruction and enabling interrupts with the “CPSIE i” instruction. This method is simple and fast, but it disables all
interrupt levels indiscriminately. This is the only method available in the ARMv6-M architecture (Cortex-M0/M0+).

However, the more advanced ARMv7-M (Cortex-M3/M4/M4F) provides additionally the BASEPRI special register,
which allows you to disable interrupts more selectively. Specifically, you can disable interrupts only with urgency
lower than a certain level and leave the higher-urgency interrupts not disabled at all. (This feature is sometimes
called "zero interrupt latency".)

NOTE: The BASEPRI register cannot disable interrupt priority 0 (highest urgency). In fact, writing 0 into BASEPRI
re-enables all interrupt priority levels.

The CMSIS provides the function __set_BASEPRI(priority) for changing the value of the BASEPRI register. The
function uses the hardware convention for the 'priority' argument, which means that the priority must be shifted
left by the number of unimplemented bits (8 - __NVIC_PRIO_BITS).

NOTE: The priority numbering convention used in __set_BASEPRI(priority) is thus different than in the
NVIC_SetPriority(priority) function, which expects the “priority” argument not shifted.

For example, if you want to selectively block interrupts with priority number higher or equal to 6, you could use the
following code:

// code before critical section
__set_BASEPRI(6U << (8 - __NVIC_PRIO_BITS));
// critical section
__set_BASEPRI(0U); // remove the BASEPRI masking
// code after critical section

Next post by Miro Samek:
   Beyond the RTOS: A Better Way to Design Real-Time Embedded Software

You might also like... (promoted content)

Make IP protocols available on any Embedded USB device

Free Webinar: Verifying RTOS Applications using Deep Insight Analysis

Comments:

Comments
 Write a Comment
 Select to add a comment

To post reply to a comment, click on the 'reply' button attached to each comment. To post a new comment (not a
reply to a comment) check out the 'Write a Comment' tab at the top of the comments.

Sign in

Username Password Sign in

 Remember me

Forgot username or password?  |  Create account

Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

3 of 6 09/18/2017 09:37 AM



You might also like...

Make IP protocols available on any Embedded USB device

Subscribe to this Blog

Receive a notification when Miro Samek publishes a new article:

Your Email Subscribe

About Miro Samek

Dr. Miro M. Samek is the creator of the open source QP active object frameworks and the free QM graphical
modeling tool. He is also the founder of Quantum Leaps (state-machine.com), an open source company
dedicated to bringing quantum leaps of innovation to embedded systems programming by making

software and tools that enable widespread adoption of event-driven active object frameworks, hierarchical state
machines (UML statecharts), design by contract, rapid prototyping, modeling, and automatic code generation.



Books by Miro Samek

Popular Posts by Miro Samek

Embedded Toolbox: Source Code Whitespace Cleanup
Embedded Toolbox: Programmer's Calculator
Embedded Toolbox: Windows GUI Prototyping Toolkit
Beyond the RTOS: A Better Way to Design Real-Time Embedded Software

Blogs - Hall of Fame

Introduction to Microcontrollers
Mike Silva

Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

4 of 6 09/18/2017 09:37 AM



All FREE PDF Downloads 

Important Programming Concepts (Even on Embedded Systems)
Jason Sachs

How FPGAs Work and Why You'll Buy One
Yossi Krenin

MSP430 Launchpad Tutorial
Enrico Garante

Arduino Robotics
Lonnie Honeycutt

Free PDF Downloads

 Real-time Image Processing on Low Cost Embedded Computers

 CPU Memory - What Every Programmer Should Know About Memory

 Getting Started with C Programming for the ATMEL AVR Microcontrollers

Quick Links

Home
Blogs
 Tweets
Forums
Jobs
#IoT
Tutorials
Books
Free PDFs
Vendors
Code Snippets
comp.arch.embedded

About EmbeddedRelated.com

Advertise
Contact

Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

5 of 6 09/18/2017 09:37 AM



Social Networks





Cutting Through the Confusion with ARM Cortex-M ... https://www.embeddedrelated.com/showarticle/923.php

6 of 6 09/18/2017 09:37 AM


