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19.1 Introduction to embedded OSs
19.1.1 What are embedded OSs?
In Chapter 10 we covered various features of the Cortex�-M3 and Cortex-M4 pro-
cessors that support the operations of embedded OSs. In general, an embedded OS
can be anything from a simple task scheduler to a fully-featured OS like Linux.
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Currently there are more than 30 embedded OSs available for Cortex-M processors.
Most of these are simple OSs that enable multi-tasking, but some of them are
application platforms that also provide additional software support such as a
communication protocol stack (e.g., TCP/IP), a file system (e.g., FAT), or even a
graphical user interface.

Many embedded OSs are RealTime Operating Systems (RTOS). This means that
when a certain event occurs, it can trigger a corresponding task and that this must
happen within a certain timeframe. An RTOS typically has a small memory footprint
and provides very fast context switching (the time required to switch from one task
to another).

Unlike OSs for personal computers or mobile computing devices (e.g., tablets),
most embedded OS do not have any user interface, although user interface compo-
nents (e.g., a GUI) can be added as application tasks running on the system. Also,
Cortex-M processors cannot support fully-featured OSs like Linux or Windows,
which require virtual memory system support.

MEMORY MANAGEMENT UNIT (MMU) AND MEMORY PROTECTION
UNIT (MPU)

In application processors such as the Cortex-A processor family, the Memory Management

Unit, “MMU,” enables dynamic remapping of flat virtual address spaces seen by each process

into physical address spaces on the system. Managing virtual memory can introduce large
delays because address mapping information needs to be located and transferred from the

memory (page table) to a hardware in the MMU (called Translation Lookaside Buffer, or TLB).

As a result, operating systems that use virtual memory cannot guarantee real time
responsiveness.

MPUs on Cortex-M processors only provide memory protection, and do not have the

memory address translation requirement and therefore are suitable for real-time applications.

There is a special version of Linux called mCLinux that does not require an
MMU and can work on those Cortex-M devices which have sufficient memory
resources. Since a mCLinux system typically requires at least 2MB of SRAM, it is
less popular in low-cost embedded systems because of the memory cost.

19.1.2 When to use an embedded OS
An embedded OS divides the available CPU processing time into a number of time
slots and carries out different tasks in different time slots. Because the switching be-
tween time slots may happen hundreds of times per second, or more, it appears to the
user that the processor executes several tasks in parallel.

Many applications do not require an embedded OS at all. The key benefit of us-
ing an embedded OS is to provide a scalable way of enabling several concurrent
tasks to run in parallel. If the tasks are all fairly short and don’t overlap each other
most of the time, you can simply use an interrupt-driven arrangement to support
multiple tasks.
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There are a number of factors to consider when deciding whether to use an
embedded OS or not:

• An embedded OS requires extra memory overhead. For example, it could take
anything from 5KB of program memory space to over 100KB, depending on the
features available in the OS.

• An embedded OS requires execution time overhead. For example, some pro-
cessing time is required for context switching as well as task scheduling. Usually
the execution time overhead is very small.

• Some of the embedded OS require license fees and/or royalty fees. Many others
are free.

• Some embedded OS can only work with certain microcontroller devices, or
can be toolchain-specific. If portability of the software code is important
then you need to select an embedded OS which is supported on multiple
platforms.

In general, as software code gets more complex, use of an embedded OS can
make handling of multiple tasks much easier. Also, some embedded OS have addi-
tional safety features (e.g., stack space checking, MPU support), which can enhance
the reliability of a system.

19.1.3 Role of CMSIS-RTOS
CMSIS-RTOS is an API specification. The CMSIS-RTOS itself is not a product but
companies can build an RTOS based on CMSIS-RTOS. In Chapter 2 we gave an
overview of the Cortex�-M Software Interface Standard (CMSIS). One of the pro-
jects within CMSIS is the CMSIS-RTOS. CMSIS-RTOS is an extension of existing
RTOS designs to allow middleware to be designed in a way that can work with mul-
tiple RTOS products.

Some of the middleware products are quite complex and need to utilize task
scheduling features in OSs to work. For example, a TCP/IP stack might run as a
task inside a multi-tasking system and might need to spawn out additional child tasks
when certain service requests are received. Traditionally these middleware (e.g.,
lightweight IP, lwIP) can include an OS emulation layer (Figure 19.1) that a software
integrator needs to port when using a different OS.

The work of porting the OS emulation layer creates additional work for software
developers, and sometimes the middleware vendors, and can increase project risks as
the porting might not be straightforward.

CMSIS-RTOS was created to solve this issue. It can be implemented as an addi-
tional set of APIs or a wrapper for existing OS APIs. Since the API is standardized,
middleware can be developed based on it and the product should, in theory, be able
to work with any embedded OS that supports CMSIS-RTOS (Figure 19.2).

The RTOS products can still have their own native API interface, and application
codes can still use those directly for additional features or for higher performance.
This is good news for application developers because it saves a lot of time in porting
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middleware and reduces project risks. It is also good news for middleware vendors
because it allows their products to work with more available OSs.

The CMSIS-RTOS also benefits RTOS vendors: As the amount of middle-
ware that works with CMSIS-RTOS increases, having CMSIS-RTOS support
in an embedded OS enables the OS product to work with more middleware.
Also, as software in embedded systems increases in complexity and time-
to-market becomes more important, porting of OS emulation layers for middle-
ware will no longer be feasible for some projects because of the extra time
needed and the associated project risk. CMSIS-RTOS enables RTOS products
to reach these markets, which previous could only be covered by a few software
platform solutions.

Middleware
#1

(with CMSIS-RTOS)
Application code

RTOS

CMSIS-RTOS API (standardized)Native OS
API (vendor

specific)

Middleware
#2

(with CMSIS-RTOS)

FIGURE 19.2

CMSIS-RTOS avoids the needs for OS emulation layer for each middleware component

Middleware
#1

Middleware
#2

Application
code

RTOS

OS API (vendor specific)

OS emulation

layer

OS emulation

layer

FIGURE 19.1

The need for OS emulation layer for middleware components
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19.2 Keil� RTX Real-Time Kernel
19.2.1 About RTX
The Keil� RTX Real-Time Kernel is a royalty-free RTOS targeted at microcontrol-
ler applications. In older versions of Keil MDK-ARM, RTX is available as a pre-
compiled library that is fully functional. In newer versions (mid-2012) of Keil
MDK-ARM, the source code of the RTX kernel is also included in the installation.

The precompiled library is typically located in C:\Keil\ARM\RV31\LIB,
and source code is typically located in C:\Keil\ARM\RL\RTX\SRC. In the
C:\Keil\ARM\Boards directory, you can also find RTX examples for a number of
Cortex�-M microcontroller boards.

Please also note that Keil RTX is now released under a simple, open source BSD
license, so you can reuse and distribute RTX source code under the conditions
described in the license document in the Keil MDK-ARM installation
(C:\Keil\ARM\Hlp\license.rtf).

The Keil RTX kernel can be used as standalone RTOS or used with Keil Real-
Time Library (RL-ARM, Figure 19.3), and can also work with third-party software
products such as communication protocol stacks, data processing codecs, and other
middleware.

19.2.2 Features overview
The RTX kernel is supported on all Cortex�-M processors in addition to traditional
ARM� processors such as ARM7� and ARM9�. It has the following features:

• Flexible scheduler: supporting pre-emptive, round-robin, and collaborative
scheduling schemes

• Supports mailboxes, events (up to 16 per task), semaphores, mutex, and timers
• Unlimited number of defined tasks, with maximum of 250 active tasks at a time
• Up to 255 task priority levels
• Support for multi-threading and thread-safe operations
• Kernel-aware debug support in Keil� MDK
• Fast context switching time

RTX Kernel

TCP/IP
Networking

Flash File
System

CAN
Interface

USB Device
Interface

Real-Time Library

FIGURE 19.3

The RL-ARM product
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• Small memory footprint (less than 4Kbytes for Cortex-M version, less than
5Kbytes for ARM7/ARM9)

In addition, the Cortex-M version of RTX kernel has the following features:

• SysTick timer support
• No interrupt lockout in Cortex-M versions (interrupt is not disabled by OS at any

time)
• Since RTX has a very small memory footprint, it can be used even with Cortex-M

microcontroller devices that have small memory capacity.

19.2.3 RTX and CMSIS-RTOS
In 2012, Keil� released a trial version of the CMSIS-RTOS implementation for
RTX. This design is to be finalized in 2013 so you can use RTX with
CMSIS-RTOS API. At the time of writing (January, 2013), the CMSIS-RTOS
RTX work has not been completed and the RTX included in the Keil MDK instal-
lation is still the old version, which does not have CMSIS-RTOS support. The
RTX example code in the Keil MDK installation is also based on the previous pro-
prietary APIs. At the moment, to use CMSIS-RTOS with RTX, you need to down-
load the RTX implementation for CMSIS-RTOS from the Keil website separately at
https://www.keil.com/demo/eval/rtx.htm.

Because the RTX source code in use at the time of writing is not the final
version, please note that there is a small chance the CMSIS-RTOS RTX examples
described in this chapter will need adjustment for the final version of
CMSIS-RTOS RTX.

The CMSIS-RTOS package contains the source code, examples, and documen-
tation. To make it easier for users, this CMSIS-RTOS package contains pre-
compiled versions of the CMSIS-RTOS in the form of library. Table 19.1 listed
the directories in RTX CMSIS-RTOS package from Keil� website.

Table 19.1 Directory Structure in Current CMSIS-RTOS Package

Directory Content

Boards CMSIS-RTOS RTX example projects for several evaluation boards.
These examples are typically provided for several compilers.

Doc Documentation for CMSIS-RTOS RTX.

Examples Generic examples that show several features of CMSIS-RTOS RTX.
These examples are typically provided for several compilers.

INC The include files for CMSIS-RTOS RTX. cmsis_os.h is the central
include file for user applications.

LIB CMSIS-RTOS RTX Library files for ARMCC, GCC, and IAR Compiler.

SRC Source code of the CMSIS-RTOS RTX Library along with project files
for ARMCC, GCC, and IAR Compiler.

Templates Templates for creating application projects with CMSIS-RTOS RTX.
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The library files provided in the package include pre-compiled versions for various
Cortex�-M processors, and are available in little endian and big endian versions for
ARM�, gcc and IAR toolchains. For example, the library files for the ARM tool-
chain are shown in Table 19.2.

Alternatively, you can also use the source code directly from the SRC directory.
In addition, you also need couple of additional files from the INC directory and SRC
directory, as shown in Table 19.3.

19.2.4 Thread
In the CMSIS-RTOS, we use the term “thread” for each of the concurrent (parallel
processing) programs. From an academic view, a task or a process could contain
multiple threads. But here we will just look at a relatively simple case where each
task has just one thread.

Table 19.2 CMSIS-RTOS Precompiled Libraries

Library File Processor Configuration

LIB\ARM\RTX_CM0.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M0
and M1, little-endian.

LIB\ARM\RTX_CM0_B.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M0
and M1, big-endian.

LIB\ARM\RTX_CM3.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M3
and M4 without FPU, little-endian.

LIB\ARM\RTX_CM3_B.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M3
and M4 without FPU, big-endian.

LIB\ARM\RTX_CM4.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M4
with FPU, little-endian.

LIB\ARM\RTX_CM4_B.lib CMSIS-RTOS RTX Library for ARMCC Compiler, Cortex-M4
with FPU, big-endian.

Table 19.3 Additional CMSIS-RTOS Files Required for Projects

File Processor Configuration

INC\cmsis_os.h CMSIS-RTOS header file for application code

Examples\*\RTX_Conf_CM.c RTX Kernel System Configuration file – can be edited by
user.
This file is coded with special tags in comments so that
the RTX parameters can be edited easily with a
Configuration Wizard.

INC\RTX_CM_LIB.h RTX Kernel System Configuration code needed by
RTX_Conf_CM.c

SRC\ARM\SVC_Tables.s An assembly file to allow you to extend the SVC services
available by adding a lookup Table of SVC functions.
This is optional.
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Each thread has a programmable priority level. In the RTX implementation
the thread priority is an enumerated value. The CMSIS-RTOS has a number of
pre-defined enumerations for thread priorities, and this is mapped into the signed nu-
merical priority levels in the file cmsis_os.h:

/// Priority used for thread control.
/// \note MUST REMAIN UNCHANGED: \b osPriority shall be consistent in

every CMSIS-RTOS.
typedef enum {
osPriorityIdle = -3, ///< priority: idle (lowest)
osPriorityLow = -2, ///< priority: low
osPriorityBelowNormal = -1, ///< priority: below normal
osPriorityNormal = 0, ///< priority: normal (default)
osPriorityAboveNormal = +1, ///< priority: above normal
osPriorityHigh = +2, ///< priority: high
osPriorityRealtime = +3, ///< priority: realtime (highest)
osPriorityError = 0x84 ///< system cannot determine priority

or thread has illegal priority
} osPriority;

Note that the thread priority level arrangement is completely separated from the
interrupt priority.

In the RTX environment, each thread can be in one of the states shown in
Table 19.4.

The thread state transition diagram is shown in Figure 19.4.
In a simple single core processor system, there can be only one thread in Running

state at a time.
Unlike some other RTOSs, “main()” can be of the threads, dependent on the

actual implementation of CMSIS-RTOS. If that is the case, we can create additional
threads from “main()”. If the “main()” thread is not needed at some stage any point,

Table 19.4 Thread States in RTX Kernel

State Description

RUNNING The thread is currently running.

READY The thread is in the queue of threads which are ready to run (waiting for
a time slot). When the current running thread is completed, RTX will
select the next highest priority thread in the ready queue and start it.

WAITING The thread has previously executed a function that indicate it is waiting
for a delay request to complete or an event (signal/semaphore/
mailbox/etc.) from another thread. It can switch fromWaiting to Ready/
Running (depending on task priority) when the specified event has
occurred.

INACTIVE The thread has not been started or the thread has been terminated.
A terminated task can be re-created.
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we can execute a wait function to put it in a waiting state, or even terminate it to
prevent it from taking up execution time.

CMSIS-RTOS allows threads to execute in privileged state or unprivileged state.
Please refer to the OS_RUNPRIV parameter in Table 19.6. Please note that with the
current RTX implementation, if threads are configured to run in unprivileged state,
“main()” will also start in unprivileged state. You can extend the SVC Handler ser-
vice to support operations that require privileged state (e.g., access to NVIC or any
registers in the System Control Space, SCS).

19.3 CMSIS-OS examples
19.3.1 Simple CMSIS-RTOS with two threads
The following examples are based on the Keil� MDK-ARM development suite and
CMSIS-RTOS RTX, using the STM32F4 Discovery board.

In the first example, we will look at a minimal setup with two threads: main() and
a blinky thread. The threads each toggle an LED on the development board. To set
up the first project, we use the precompiled version of CMSIS-RTOS RTX (library
file RTX_CM4.lib) to simplify the compilation, as shown in Figure 19.5.

If you like, you can also use the source code version of the CMSIS-RTOS instead
of using the precompiled library. In addition, we also need the files given in
Table 19.5.

Running

WaitingReady

Inactive

Create Terminate

Event occurred

Pre-emption
(Context

switching)

Pre-emption
Context switching

Event
occurred

Wait
(wait function

executed)

TerminateTerminate
Thread

Inactive

Thread

Active

Create

FIGURE 19.4

States of threads in CMSIS-RTOS

19.3 CMSIS-OS examples 613



We also configure the RTX kernel option in the project option, as shown in
Figure 19.6. This enables us to use the OS-aware debugging features later.

Previously (Table 19.5) we mentioned that the file RTX_Config_CM.c defines
some of the configurations of the RTX kernel operations. This file is configurable
by users. We can either edit this file directly in the program text editor, or we can
use the Configuration Wizard. This file is coded in such a way that it can be recog-
nized by the ConfigurationWizard. By clicking on the “ConfigurationWizard” tab at
the bottom of the editor window, we can see the Configuration Wizard as shown in
Figure 19.7.

Table 19.6 shows listed a number of options in RTX_Conf_CM.c.
The actual code for the first example is very simple.

/* Simple CMSIS-RTOS RTX example that use two threads (including
main()) to toggle two LEDs */
#include "stm32f4xx.h"
#include <cmsis_os.h>

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blink

FIGURE 19.5

Project browser display with simple project

Table 19.5 Additional Files Needed in the First CMSIS-RTOS Project Example

Files Descriptions

RTX_Conf_CM.c RTX Kernel System Configuration file

cmsis_os.h CMSIS-RTOS header file for application code

RTX_CM_lib.h RTX Kernel System Configuration code needed by RTX_Conf_CM.c
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/* Function declaration */
void blinky(void const *argument); // Thread
void LedOutputCfg(void); // LED output configuration

// --------------------------------------------------------
// Blinky
// - toggle LED bit 12
// - Unprivileged Thread
void blinky(void const *argument) {

while(1) {
if (GPIOD->IDR & (1<<12)) {

GPIOD->BSRRH = (1<<12); // Clear bit 12
} else {

GPIOD->BSRRL = (1<<12); // Set bit 12
}
osDelay(500); // delay 500 msec

}
}

FIGURE 19.6

RTX Kernel project option
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// define blinky_1 as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --------------------------------------------------------
// - toggle LED bit 13
// - Unprivileged Thread
int main(void)
{
LedOutputCfg(); // Initialize LED output

// Create a task "blinky"
t_blinky = osThreadCreate(osThread(blinky), NULL);

// main() itself is another thread
while(1) {

if (GPIOD->IDR & (1<<13)) {
GPIOD->BSRRH = (1<<13); // Clear bit 13
} else {
GPIOD->BSRRL = (1<<13); // Set bit 13
}
osDelay(1000); // delay 1000 msec

}
} // end main
// --------------------------------------------------------
void LedOutputCfg(void)
{

// Configure LED outputs
RCC->AHB1ENR j= RCC_AHB1ENR_GPIODEN; // Enable Port D clock
// Set pin 12, 13, 14, 15 as general purpose output mode (pull-push)
GPIOD->MODER j= (GPIO_MODER_MODER12_0 j

GPIO_MODER_MODER13_0 j
GPIO_MODER_MODER14_0 j
GPIO_MODER_MODER15_0 ) ;

GPIOD->PUPDR = 0; // No pull up , no pull down
return;

}

For each thread, there is an assoicated ID value with the data type osThreadId.
This ID value is assigned when the thread is created and is needed for intertask
communication, which will be demonstrated later. If no intertask communication
is required, it is not necessary.

To create a new thread, we used the function osThreadCreate.
For each thread (apart from main), we also need to declare the function as a

thread using osThreadDef. You can also define the priority of the thread using
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osThreadDef. During run-time the priority of a thread can also be changed dynam-
ically using CMSIS-RTOS API.

After setting up the project, you can then compile and test the application. The
two LEDs on the development should toggle at different speeds.

In other CMSIS-RTOS implementations, it is possible that the OS kernel
does not start when the processor enters the “main()” program. In such cases
you will need to start the OS kernel specifically. CMSIS-RTOS provides a pre-
defined constant called osFeature_MainThread to indicate whether thread execu-
tion starts with the function “main().” If this is 1, then the OS kernel starts with
“main().”

For example, you can use the following code to start the OS kernel conditionally:

int main(void)
{
...

#if (osFeature_MainThread==0)
osKernelStart(osThread(blinky), NULL); // Start OS Kernel explicity
// not required in RTX

FIGURE 19.7

Configuration Wizard
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Table 19.6 CMSIS-RTOS RTX Options in RTX_Conf_CM.c

Parameter Descriptions
Default
Value

OS_TASKCNT Number of concurrent running threads:
Defines max number of threads that will run at the same time.

6

OS_STKSIZE Default Thread stack size [bytes] <64-4096> (needs to be a multiple of 8). It is used if the “osThreadDef”
statement does not specify stack size (stacksz set to 0).

200

OS_MAINSTKSIZE Main Thread stack size [bytes] <64-4096> (needs to be a multiple of 8). 200

OS_PRIVCNT Number of threads with user-provided stack size <0-250> 0

OS_PRIVSTKSIZE Total combined stack size [bytes] for threads with user-provided stack size <0-4096> (needs to be a
multiple of 8).

0

OS_STKCHECK Enable check for stack overflow for threads. Note that additional code reduces the Kernel performance. 1

OS_RUNPRIV Processor mode for thread execution: 0 ¼ Unprivileged mode, 1 ¼ privileged mode. 0

OS_SYSTICK Set to 1 to use Cortex�-M SysTick timer as RTX Kernel Timer. 1

OS_CLOCK Defines the Timer clock frequency [Hz] <1-1000000000>. Typically this is the same as the processor
clock frequency if SysTick is used.

12000000
(12MHz)

OS_TICK Defines the OS Timer tick interval [us] <1-1000000> 1000 (1 ms)

OS_ROBIN Set to 1 to enable Round-Robin Thread switching 1

OS_ROBINTOUT Round-Robin Timeout [ticks] <1-1000> (valid if OS_ROBIN is 1) 5

OS_TIMERS Enables user Timers 0

OS_TIMERPRIO Timer Thread Priority (valid if OS_TIMERS is 1)
1. Low
2. Below Normal
3. Normal
4. Above Normal
5. High
6. Real-time (highest)

5

OS_TIMERSTKSZ Timer Thread stack size [bytes] <64-4096> (needs to be a multiple of 8). 200

OS_TIMERCBQS Timer Callback Queue size- Number of concurrent active timer callback functions. 4

OS_FIFOSZ ISR FIFO Queue size (4¼ 4 entries. Can be 4, 8, 12, 16, 24, 32, 48, 64, 96). ISR functions store requests
to this buffer when they are called from the interrupt handler.
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6
1
8

C
H
A
P
T
E
R
1
9

U
sin

g
E
m
b
e
d
d
e
d
O
p
e
ra
tin

g
S
yste

m
s



#endif
...

or

int main(void)
{
...
if (osFeature_MainThread==0) {
osKernelStart(osThread(blinky), NULL); // Start OS Kernel explicity
// not required in RTX
}

...

The osThread(name) macro is used in the example for accessing a Thread
definition. For example, when a function’s input parameter needs to be a Thread
(e.g., blinky), then we use osThread(blinky) to specify that the parameter is a
Thread.

In this example, we also used a macro called osThreadDef(name, priority,
instances, stacksz). This is used to create a Thread definition with the specified
function, priority level, and stack size requirements of the thread. If the stack size
requirement is set to 0, the default stack size is used, as defined by OS_STKSIZE
in RTX_Config_CM.c.

Table 19.7 lists some of the commonly used functions for OS kernel management
and Thread management.

Some of these functions use a enumeration type called osStatus. The definition
of osStatus is listed in Table 19.8. Most of the functions will only be able to return a
subset of these enumerations.

19.3.2 Inter-thread communciation overview
In most applications with an RTOS, there will be lots of interactions between
threads. Instead of using shared data and polling loops to check the status
of other tasks, or passing information, we should use the inter-thread communi-
cation features provided in the OS to make the operation more
efficient. Otherwise, a thread waiting for input from another thread could stay
in the READY queue for a long time and this can consume a lot of processing
time.

Modern RTOSs typically provide a number of methods to support communica-
tions between threads. In CMSIS-RTOS, the supported methods include:

• Signal events
• Semaphores
• Mutex
• Mailbox/message
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Table 19.7 CMSIS-RTOS Functions for OS Kernel and Thread Management

Function Description

osThreadID osThreadCreate(osThreadDef_t
*thread_def, void *argument)

Create a thread and add it to
Active Threads and set it to state
READY.

osThreadID osThreadGetId(void) Return the thread ID of the current
running thread.

osStatus osThreadTerminate (osThreadId
thread_id)

Terminate execution of a thread
and remove it from Active
Threads.

osStatus osThreadSetPriority (osThreadId
thread_id, osPriority priority)

Change priority of an active
thread.

osPriority osThreadGetPriority (osThreadId
thread_id)

Get current priority of an active
thread.

osStatus osThreadYield (void) Pass control to the next thread
that is in state READY.

osStatus osKernelStart (osThreadDef_t
*thread_def, void *argument)

Start the RTOS Kernel and
execute the specified thread.

int32_t osKernelRunning(void) Check if the RTOS kernel is
already started. Returns 0 if the
RTOS is not started. Returns 1 if
started.

Table 19.8 osStatus Enumeration Definition

osStatus Enumerator Description

osOK Function completed; no event occurred.

osEventSignal Function completed; signal event occurred.

osEventMessage Function completed; message event occurred.

osEventMail Function completed; mail event occurred.

osEventTimeout Function completed; timeout occurred.

osErrorParameter Parameter error: a mandatory parameter was missing or
specified an incorrect object.

osErrorResource Resource not available: a specified resource was not
available.

osErrorTimeoutResource Resource not available within given time: a specified
resource was not available within the timeout period.

osErrorISR Not allowed in ISR context: the function cannot be called
from interrupt service routines.

osErrorISRRecursive Function called multiple times from ISR with same object.

osErrorPriority System cannot determine priority or thread has illegal priority.

620 CHAPTER 19 Using Embedded Operating Systems



In addition, there are additional features to support some of these communication
methods such as memory pool management features, which are often used with
mailboxes.

19.3.3 Signal event communication
In CMSIS-RTOS, each thread can have up to 31 signal events (depending on config-
uration via a macro called osFeature_Signals in RTX). A thread enters WAIT state
when it executes the function osSignalWait. One of the input parameters, a 32-bit
value called “signals,” defines the signal events required to put the thread back to
READY state. Each bit (apart from the MSB) of the “signals” parameter defines
the signal events required, and if this parameter is set to 0 any signal event can
put this thread back to READY state. Table 19.9 listed the CMSIS-RTOS functions
for signal event communications.

The signal event functions osSignalSet, osSignalClear, and osSignalGet
return 0x80000000 in case of incorrect parameters.

By default the “cmsis_os.h” in RTX specifies osFeature_Signals as 16. So it
can work with 16 signal events (from 0x00000001 to 0x00008000).

Please note that signal flags used as events for waking up a thread from the
WAITING state are cleared automatically. For example, in the following example,
event flag 0x0001 is used to enable “main()” thread to send a signal to blinky event
as shown in Figure 19.8.

/* Example code for simple signal event communication */

#include "stm32f4xx.h"
#include <cmsis_os.h>

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blink
/* Function declaration */
void blinky(void const *argument); // Thread

Table 19.8 osStatus Enumeration DefinitiondCont’d

osStatus Enumerator Description

osErrorNoMemory System is out of memory: it was impossible to allocate or
reserve memory for the operation.

osErrorValue Value of a parameter is out of range.

osErrorOS Unspecified RTOS error: run-time error but no other error
message fits.

os_status_reserved Reserved error value to prevent from enum down-size
compiler optimization.
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Signal Event Generator - main()

Wait 1000 ticks

Send event
0x0001 Wait for event

0x0001

Toggle LED

Blinky thread

FIGURE 19.8

Simple signal event communication

Table 19.9 Signal Event Functions

Function Description

osEvent osSignalWait (int32_t
signals, uint32_t millisec)

Wait for one or more Signal Flags to become
signaled for the current RUNNING thread.
If “signals” is non-zero, all specified signal flags
need to be set to return to READY state. If
“signals” is zero, any signal flag can put the
thread back to READY.
“millisec” is the timeout value. Set to

osWaitForever in case of no time-out, or

zero to return immediately

int32_t osSignalSet (osThreadId
thread_id, int32_t signal)

Set the specified Signal Flags of an active
thread.

int32_t osSignalClear (osThreadId
thread_id, int32_t signal)

Clear the specified Signal Flags of an active
thread.

int32_t osSignalGet (osThreadId
thread_id)

Get Signal Flags status of an active thread.

622 CHAPTER 19 Using Embedded Operating Systems



void LedOutputCfg(void); // LED output configuration

// --------------------------------------------------------
// Blinky
// - toggle LED bit 12
// - Unprivileged Thread
void blinky(void const *argument) {
while(1) {

osSignalWait(0x0001, osWaitForever);
if (GPIOD->IDR & (1<<12)) {
GPIOD->BSRRH = (1<<12); // Clear bit 12
} else {
GPIOD->BSRRL = (1<<12); // Set bit 12
}
}

}

// define blinky_1 as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --------------------------------------------------------
// - toggle LED bit 13
// - Unprivileged Thread
int main(void)
{
LedOutputCfg(); // Initialize LED output

// Create a task "blinky"
t_blinky = osThreadCreate(osThread(blinky), NULL);

// main() itself is another thread
while(1) {

if (GPIOD->IDR & (1<<13)) {
GPIOD->BSRRH = (1<<13); // Clear bit 13
} else {
GPIOD->BSRRL = (1<<13); // Set bit 13
}
osSignalSet(t_blinky, 0x0001); // Set Signal
osDelay(1000); // delay 1000 msec
}

} // end main

A thread can wait for multiple signal events and use osSignalGet() to determine
what actions should be taken on return to READY state, as shown in Figure 19.9.
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Thread A

Thread B

Thread C

osSignalWait(0, 0)

E = osSignalGet(thread_id)
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E bit-0 = 1? Response to
Thread A

E bit-1 = 1? Response to
Thread B

E bit-2 = 1? Response to
Thread C

FIGURE 19.9

Using the osSignalGet function to detect which thread generated the signal
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19.3.4 Mutual Exclusive (Mutex)
Mutual Exclusive, or commonly known as Mutex, is a common resource manage-
ment feature in all types of OSs. Many resources in a processor system can only
be used by one thread at a time. For example, a “printf” output communication chan-
nel (as shown in Figure 19.10) can only be used by one thread at a time.

Before using a Mutex, we first need to define a Mutex object using
“osMutexDef(name).” When referencing a Mutex using the CMSIS-RTOS Mutex
API, we need to use the “osMutex(name)” macro. Each Mutex also has an ID value
that is needed by some of the Mutex functions. Table 19.10 listed the CMSIS-RTOS
functions for Mutex operations.

In the following example, the program code contains two threads. Both of them
use the ITM (Instrumentation Trace Macrocell) to output text messages.

/* Simple Mutex example e each printf statement is guarded by mutex
to make sure no two printf statements are executed concurrently */

#include "stm32f4xx.h"
#include <cmsis_os.h>
#include "stdio.h"

/* Thread IDs */
osThreadId t_blinky_id; // Declare a thread ID for blink
/* Declare Mutex */
osMutexDef(PrintLock); // Declare a Mutex for printf control
/* Mutex IDs */
osMutexId PrintLock_id; // Declare a Mutex ID for printf control

/* Function declaration */
void blinky(void const *argument); // Thread
void LedOutputCfg(void); // LED output configuration

// --------------------------------------------------------
// Blinky
// - toggle LED bit 12
// - Unprivileged Thread
void blinky(void const *argument) {
while(1) {

if (GPIOD->IDR & (1<<12)) {
GPIOD->BSRRH = (1<<12); // Clear bit 12
} else {
GPIOD->BSRRL = (1<<12); // Set bit 12
}
osDelay(50); // delay 50 msec
osMutexWait(PrintLock_id, osWaitForever);

19.3 CMSIS-OS examples 625



printf ("blinky is running\n");
osMutexRelease(PrintLock_id);
}

}
// define blinky_1 as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --------------------------------------------------------
// - toggle LED bit 13
// - Unprivileged Thread
int main(void)
{
LedOutputCfg(); // Initialize LED output
// Create the printf control Mutex before starting blinky thread
PrintLock_id = osMutexCreate(osMutex(PrintLock));
osMutexWait(PrintLock_id, osWaitForever);
printf ("\nMutex Demo\n");
osMutexRelease(PrintLock_id);

// Create a task "blinky"
t_blinky_id = osThreadCreate(osThread(blinky), NULL);

// main() itself is another thread
while(1) {

if (GPIOD->IDR & (1<<13)) {
GPIOD->BSRRH = (1<<13); // Clear bit 13
} else {
GPIOD->BSRRL = (1<<13); // Set bit 13
}
osDelay(50); // delay 50 msec
osMutexWait(PrintLock_id, osWaitForever);
printf ("main() is running\n");
osMutexRelease(PrintLock_id);
}
} // end main

19.3.5 Semaphore
In some cases we would like to allow a limited number of threads to access certain
resources. For example, a DMA controller might be able to support multiple DMA
channels. Or a simple embedded server might be able to support a limited number of
simultaneous requests due to memory size constraints. In these cases, we can use a
semaphore instead of a Mutex.
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The semaphore feature is very similar to Mutex. Whereas a Mutex permits just
one thread to access to a shared resource at any one time, a semaphore can be used to
permit a fixed number of threads to access a pool of shared resources. So a Mutex is a
special case of a semaphore for which the maximum number of available tokens is 1.

A semaphore object needs to be initialized to the maximum number of available
tokens, and each time a thread needs to use a shared resource, it uses the semaphore
to check out a token and then checks it back in when it has finished using the
resource. If the number of available tokens reaches zero, then all the available
resources have been allocated and the next thread requesting the shared resource
must wait for a token to become available.

In the following example, we create four threads that each toggle a LED on the
development board, and use a semaphore to limit the number of active LEDs to 2.

Semaphore objects are defined using “osSemaphoreDef(name).” When refer-
encing a semaphore object using the CMSIS-RTOS semaphore API, we need to
use the “osSemaphore(name)” macro. Each semaphore also has an ID value that is
needed by some of the semaphore functions, as shown in Table 19.11.

In the following example, the program code contains five threads, including
main(). Four of them are used to toggle LEDs, and a semaphore is used to limit
the number of LEDs that are turned on at any point in time to be two or fewer.

Thread A PrintLock

MUTEX

Thread B

printf
operation

FIGURE 19.10

Using Mutex to control hardware resource sharing

Table 19.10 Mutex Functions

Function Description

osMutexId osMutexCreate(const
osMutexDef_t *mutex_def)

Create and Initialize a Mutex object.

osStatus osMutexWait (osMutexId
mutex_id, uint32_t millisec)

Wait until a Mutex becomes
available.

osStatus osMutexRelease (osMutexId
mutex_id)

Release a Mutex that was obtained
by osMutexWait.

osStatus osMutexDelete (osMutexId
mutex_id)

Delete a Mutex that was created by
osMutexCreate.
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/* Semaphore example */

#include "stm32f4xx.h"
#include <cmsis_os.h>

/* Thread IDs */
osThreadId t_blinky_id1;
osThreadId t_blinky_id2;
osThreadId t_blinky_id3;
osThreadId t_blinky_id4;
/* Declare Semaphore */
osSemaphoreDef(two_LEDs); // Declare a Semaphore for LED control
/* Semaphore IDs */
osSemaphoreId two_LEDs_id; // Declare a Semaphore ID for LED control

/* Function declaration */
void blinky(void const *argument); // Thread
void LedOutputCfg(void); // LED output configuration

// --------------------------------------------------------
// Blinky_1 - toggle LED bit 12
void blinky_1(void const *argument) {
while(1) {
// LED on

osSemaphoreWait(two_LEDs_id, osWaitForever);
GPIOD->BSRRL = (1<<12); // Set bit 12
osDelay(500); // delay 500 msec

Table 19.11 Semaphore Functions

Function Description

osSemaphoreId osSemaphoreCreate(const
osSemaphoreDef_t *semaphore_def,
int32_t count)

Create and Initialize a
semaphore object.

int32_t osSemaphoreWait(osSemaphoreId
semaphore_id, uint32_t millisec)

Wait until a semaphore
becomes available.
Returns number of
available tokens or À1
in case of incorrect
parameters

osStatus osSemaphoreRelease(osSemaphoreId
semaphore_id)

Release a semaphore
that was obtained by
osSemaphoreWait.

osStatus osSemaphoreDelete(osSemaphoreId
semaphore_id)

Delete a semaphore
that was created by
osSemaphoreCreate.
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GPIOD->BSRRH = (1<<12); // Clear bit 12
osSemaphoreRelease(two_LEDs_id);

// LED off
osDelay(500); // delay 500 msec
}

}
// --------------------------------------------------------
// Blinky_2 - toggle LED bit 13
void blinky_2(void const *argument) {
while(1) {

// LED on
osSemaphoreWait(two_LEDs_id, osWaitForever);
GPIOD->BSRRL = (1<<13); // Set bit 13
osDelay(600); // delay 600 msec
GPIOD->BSRRH = (1<<13); // Clear bit 13
osSemaphoreRelease(two_LEDs_id);

// LED off
osDelay(600); // delay 600 msec
}

}
// --------------------------------------------------------
// Blinky_3 - toggle LED bit 14
void blinky_3(void const *argument) {
while(1) {
// LED on

osSemaphoreWait(two_LEDs_id, osWaitForever);
GPIOD->BSRRL = (1<<14); // Set bit 14
osDelay(700); // delay 700 msec
GPIOD->BSRRH = (1<<14); // Clear bit 14
osSemaphoreRelease(two_LEDs_id);

// LED off
osDelay(700); // delay 700 msec
}

}
// --------------------------------------------------------
// Blinky_4 - toggle LED bit 15
void blinky_4(void const *argument) {
while(1) {

// LED on
osSemaphoreWait(two_LEDs_id, osWaitForever);
GPIOD->BSRRL = (1<<15); // Set bit 15
osDelay(800); // delay 800 msec
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GPIOD->BSRRH = (1<<15); // Clear bit 15
osSemaphoreRelease(two_LEDs_id);

// LED off
osDelay(800); // delay 800 msec
}

}
// --------------------------------------------------------
// define thread functions
osThreadDef(blinky_1, osPriorityNormal, 1, 0);
osThreadDef(blinky_2, osPriorityNormal, 1, 0);
osThreadDef(blinky_3, osPriorityNormal, 1, 0);
osThreadDef(blinky_4, osPriorityNormal, 1, 0);

// --------------------------------------------------------
// - toggle LED bit 13
// - Unprivileged Thread
int main(void)
{

LedOutputCfg(); // Initialize LED output
// Create Semaphore with 2 tokens
two_LEDs_id = osSemaphoreCreate(osSemaphore(two_LEDs), 2);

// Create "blinky" threads
t_blinky_id1 = osThreadCreate(osThread(blinky_1), NULL);
t_blinky_id2 = osThreadCreate(osThread(blinky_2), NULL);
t_blinky_id3 = osThreadCreate(osThread(blinky_3), NULL);
t_blinky_id4 = osThreadCreate(osThread(blinky_4), NULL);

// main() itself is another thread
while(1) {
osDelay(osWaitForever); // delay

}
} // end main

19.3.6 Message queue
A message queue can be used to pass a sequence of data from one thread to
another in a FIFO-like operation (Figure 19.11). The data can be of integer or
pointer type.

Message queue objects are defined using “osMessageQDef(name, queue_size,
type).” When referencing a message queue object using the CMSIS-RTOS API,
we need to use the “osMessageQ(name)” macro. Each message queue also has an
ID value that is needed by some of the message queue functions, as shown in
Table 19.12.

In the following example, a number sequence 1, 2, 3,. is sent from “main()” to
another thread called “receiver.”
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/* Simple message queue demo */

#include "stm32f4xx.h"
#include "stdio.h"
#include <cmsis_os.h>

/* Declare message queue */
osMessageQDef(numseq_q, 4, uint32_t); // Declare a Message queue
osMessageQId numseq_q_id; // Declare a ID for message queue

/* Function declaration */
void receiver(void const *argument); // Thread
/* Thread IDs */
osThreadId t_receiver_id;

// --------------------------------------------------------
// Receiver thread
void receiver(void const *argument) {
while(1) {

osEvent evt = osMessageGet(numseq_q_id, osWaitForever);

Thread A or ISR

Message queue

Thread B or ISR

Queue size

Integer/pointer values

FIGURE 19.11

Message queue

Table 19.12 Message Queue Functions

Function Description

osMessageQId osMessageCreate (const
osMessageQDef_t *queue_def,
osThreadId thread_id)

Create and Initialize a
Message Queue.

osStatus osMessagePut (osMessageQId
queue_id, uint32_t info, uint32_t
millisec)

Put a Message to a Queue.

os_InRegs
osEvent

osMessageGet (osMessageQId
queue_id, uint32_t millisec)

Get a Message or Wait for
a Message from a Queue.
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if (evt.status == osEventMessage) { // message received
printf ("%d\n", evt.value.v); // ".v" indicate message as 32-bit value
}

} // end while
}
// define thread function
osThreadDef(receiver, osPriorityNormal, 1, 0);

// --------------------------------------------------------
int main(void)
{
uint32_t i=0;
// Create Message queue
numseq_q_id = osMessageCreate(osMessageQ(numseq_q), NULL);

// Create "receiver" thread
t_receiver_id = osThreadCreate(osThread(receiver), NULL);

// main() itself is a thread that send out message
while(1) {

i++;
osMessagePut(numseq_q_id, i, osWaitForever);
osDelay(1000); // delay 1000 msec

}
} // end main
// --------------------------------------------------------

An additional example of using a message queue to pass pointers is given in sec-
tion 19.3.8.

19.3.7 Mail queue
A mail queue (Figure 19.12) is very similar to a message queue, but the information
being transferred consists of memory blocks that need to be allocated before putting
data in, and freed after taking data out. Memory blocks can hold more information,
for example, a data structure, whereas in a message queue the information trans-
ferred can only be a 32-bit value or a pointer.

The mail queue object is defined using “osMailQDef(name, queue_size,
type).” When referencing a mail queue using CMSIS-RTOS API, we need to use
the “osMailQ(name)” macro. Each mail queue also has an ID value that is needed
by some of the mail queue functions, as shown in Table 19.13.

The following example showing how to use a mail queue to pass a block of mem-
ory containing a data structure with three elements.

/* Mail queue example */

#include "stm32f4xx.h"
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#include "stdio.h"
#include <cmsis_os.h>

typedef struct {
uint32_t length;
uint32_t width;
uint32_t height;

} dimension_t;

/* Declare message queue */
osMailQDef(dimension_q, 4, dimension_t); // Declare a Mail queue
osMailQId dimension_q_id; // Declare a ID for Mail queue

Table 19.13 Mail Queue Functions

Function Description

osMailQId osMailCreate (const osMailQDef_t
*queue_def, osThreadId thread_id)

Create and initialize a mail queue.

void * osMailAlloc (osMailQId queue_id,
uint32_t millisec)

Allocate a memory block from a
mail.

void * osMailCAlloc (osMailQId queue_id,
uint32_t millisec)

Allocate a memory block from a
mail and set memory block to zero.

osStatus osMailPut (osMailQId queue_id,
void *mail)

Put a mail to a queue.

os_InRegs
osEvent

osMailGet (osMailQId queue_id,
uint32_t millisec)

Get a mail from a queue.

osStatus osMailFree (osMailQId queue_id,
void *mail)

Free a memory block from a mail.

Thread A or ISR

Mail queue

Thread B or ISR

Queue size
osMailFree

Free memory space

osMailAlloc

osMailPut osMailGet
Memory blocks

FIGURE 19.12

Mail queue
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/* Function declaration */
void receiver(void const *argument); // Thread
/* Thread IDs */
osThreadId t_receiver_id;

// --------------------------------------------------------
// Receiver thread
void receiver(void const *argument) {
while(1) {

osEvent evt = osMailGet(dimension_q_id, osWaitForever);
if (evt.status == osEventMail) { // mail received
dimension_t *rx_data = (dimension_t *) evt.value.p;
// ".p" indicate message as pointer
printf ("Received data: (L) %d, (W), %d, (H) %d\n",
rx_data->length,rx_data->width,rx_data->height);
osMailFree(dimension_q_id, rx_data);
}

} // end while
}
// define thread function
osThreadDef(receiver, osPriorityNormal, 1, 0);

// --------------------------------------------------------
int main(void)
{
uint32_t i=0;
dimension_t *tx_data;
// Create Message queue
dimension_q_id = osMailCreate(osMailQ(dimension_q), NULL);

// Create "receiver" thread
t_receiver_id = osThreadCreate(osThread(receiver), NULL);

// main() itself is a thread that send out message
while(1) {

osDelay(1000); // delay 1000 msec
i++;
tx_data=(dimension_t*)osMailAlloc(dimension_q_id,osWaitForever);
tx_data->length = i; // fake data generation
tx_data->width = i + 1;
tx_data->height = i + 2;
osMailPut(dimension_q_id, tx_data);
}

} // end main
// --------------------------------------------------------
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19.3.8 Memory pool management feature
CMSIS-RTOS has a feature called Memory Pool Management, which you can use to
define a memory pool with a certain number of memory blocks and allocate these
blocks during run-time.

The memory pool object is defined using “osPoolDef(name, pool_size,
type).” When referencing a memory pool object using CMSIS-RTOS API, we
need to use the “osPool(name)” define. Each memory pool also has an
ID value that is needed by some of the memory pool functions, as shown in
Table 19.14.

For example, we can repeat the data structure passing in the mail queue example
using the message queue feature, and use the memory pool feature to manage the
data block in the information transfer.

/* Example of message queue passing of data structures using memory
pool */

#include "stm32f4xx.h"
#include "stdio.h"
#include <cmsis_os.h>

typedef struct {
uint32_t length;
uint32_t width;
uint32_t height;

} dimension_t;

/* Declare memory pool */
osPoolDef(mpool, 4, dimension_t);
osPoolId mpool_id;

Table 19.14 Memory Pool Functions

Function Description

osPoolQId osPoolCreate (const osPoolDef_t
*pool_def)

Create and initialize a memory
pool.

void * osPoolAlloc (osPoolId pool_id) Allocate a memory block from a
memory pool.

void * osPoolCAlloc (osPoolId pool_id) Allocate a memory block from a
memory pool and set memory
block to zero.

osStatus osPoolFree (osPoolId pool_id,
void *block)

Return an allocated memory
block back to a specific memory
pool.
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/* Declare message queue */
osMessageQDef(dimension_q, 4, dimension_t); // Declare a message

queue
osMessageQId dimension_q_id; // Declare a ID for message queue
/* Note: Message queue has 4 entries, same as memory pool size */

/* Function declaration */
void receiver(void const *argument); // Thread
osThreadId t_receiver_id;/* Thread IDs */

// --------------------------------------------------------
// Receiver thread
void receiver(void const *argument) {
while(1) {

osEvent evt = osMessageGet(dimension_q_id, osWaitForever);
if (evt.status == osEventMessage) { // message received
dimension_t *rx_data = (dimension_t *) evt.value.p;
// ".p" indicate message as pointer

printf ("Received data: (L) %d, (W), %d, (H) %d\n",
rx_data->length,rx_data->width,rx_data->height);

osPoolFree(mpool_id, rx_data);
}

} // end while
}
// define thread function
osThreadDef(receiver, osPriorityNormal, 1, 0);

// --------------------------------------------------------
int main(void)
{
uint32_t i=0;
dimension_t *tx_data;
// Create Message queue
dimension_q_id = osMessageCreate(osMessageQ(dimension_q), NULL);

// Create Memory pool
mpool_id = osPoolCreate(osPool(mpool));

// Create "receiver" thread
t_receiver_id = osThreadCreate(osThread(receiver), NULL);

// main() itself is a thread that send out message
while(1) {

osDelay(1000); // delay 1000 msec
i++;

636 CHAPTER 19 Using Embedded Operating Systems



tx_data = (dimension_t *) osPoolAlloc(mpool_id);
tx_data->length = i; // fake data generation
tx_data->width = i + 1;
tx_data->height = i + 2;
osMessagePut(dimension_q_id, (uint32_t)tx_data, osWaitForever);
}

} // end main
// --------------------------------------------------------

19.3.9 Generic wait function and time-out value
In all the previous examples we have used a generic function called osDelay
(Table 19.15).

This is commonly used to put a thread in WAITING state. The input parameter is
“millisec” (milli-second).

There is also an osWait function (Table 19.16). However, at the time of writing
this function is not supported by the current version of CMSIS-RTOS RTX so cannot
be demonstrated here.

In many CMSIS-API functions there is an input parameter called “millisec” to
specify the waiting time; for example, osSemaphoreWait, osMessageGet, etc. In
the normal value range it defines the time duration that will trigger a time-out, which
causes the function to return. This parameter can be set to a constant definition called
osWaitForever, which is defined as 0xFFFFFFFF in cmsis_os.h. When “millisec” is
set to osWaitForever, the function will not time out.

When “millisec” is set to 0, the function returns immediately and does not wait.
You can use the function return value to determine whether the required operation
has succeeded or not.

It is undesirable and disallowed to enter WAITING state in any exception
handler. As a result, when using CMSIS-RTOS APIs that have the millisec input
parameter, the millisec parameter should be set to 0 so that they return immediately
without stopping. Functions that are intended to create delay like osDelay should not
be used in any interrupt handler.

19.3.10 Timer feature
In addition to the wait and delay functions, CMSIS-RTOS also supports Timer
objects. A timer object can trigger the execution of a function. (Note: It is not
a thread, although it is possible to send an event to a thread from that
function.)

Table 19.15 osDelay Function

Function Description

osStatus osDelay (uint32_t millisec) Wait for a time period
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ATimer object can operate in periodic timer mode or one-shot mode. In periodic
timer mode, the timer repeats its operation until it is deleted/terminated. In one-shot
mode the timer triggers its function only once.

ATimer object is defined using “osTimerDef(name, type, *argument).” When
referencing a timer object using CMSIS-RTOS API, we need to use
“osTimer(name)” define. Each timer object also has an ID value that is needed by
some of the timer functions, as shown in Table 19.17.

The following example shows simple use of a Timer object in both periodic
mode and one-shot mode:

/* Example for timer objects. The 4 LEDs switch on 1 by 1 in sequence */

#include "stm32f4xx.h"
#include <cmsis_os.h>
/* Function declaration */
void toggle_led(void const *argument); // Toggle LED
void LedOutputCfg(void); // LED output configuration

/* Declare Semaphore */
osTimerDef(LED_1, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_2, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_3, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_4, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_5, toggle_led); // Declare a Timer for LED control

/* Timer IDs */
osTimerId LED_1_id, LED_2_id, LED_3_id, LED_4_id,LED_5_id ;
// --------------------------------------------------------
// For each round this function get executed 5 times,
// with argument = 1,2,3,4,5
void toggle_led(void const *argument)
{
switch ((int)argument){
case 1:
GPIOD->BSRRL = (1<<12); // Set bit 12
osTimerStart(LED_2_id, 500);

Table 19.16 osWait Function

Function Description

os_InRegs osEvent osWait (uint32_t millisec) Wait for Signal, Message, Mail, or
Timeout. Return event that contains
signal, message, mail information or
error code.
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break;
case 2:
GPIOD->BSRRH = (1<<12); // Clear bit 12
GPIOD->BSRRL = (1<<13); // Set bit 13
osTimerStart(LED_3_id, 500);
break;

case 3:
GPIOD->BSRRH = (1<<13); // Clear bit 13
GPIOD->BSRRL = (1<<14); // Set bit 14
osTimerStart(LED_4_id, 500);
break;

case 4:
GPIOD->BSRRH = (1<<14); // Clear bit 14
GPIOD->BSRRL = (1<<15); // Set bit 15
osTimerStart(LED_5_id, 500);
break;

default:
GPIOD->BSRRH = (1<<15); // Clear bit 15

}
}
// --------------------------------------------------------
int main(void)
{
LedOutputCfg(); // Initialize LED output

// Timers
LED_1_id = osTimerCreate(osTimer(LED_1), osTimerPeriodic, (void *)1);
LED_2_id = osTimerCreate(osTimer(LED_2), osTimerOnce, (void *)2);
LED_3_id = osTimerCreate(osTimer(LED_3), osTimerOnce, (void *)3);
LED_4_id = osTimerCreate(osTimer(LED_4), osTimerOnce, (void *)4);
LED_5_id = osTimerCreate(osTimer(LED_5), osTimerOnce, (void *)5);

osTimerStart(LED_1_id, 3000); // Start first timer

// main() itself is another thread
while(1) {
osDelay(osWaitForever); // delay
}

} // end main

If you are using CMSIS-RTOS RTX, when using timer objects, you should check
that the configuration in RTX_Conf_CM.c has the OS_TIMERS parameter set to 1.
You might also need to configure settings for the Timer thread.
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19.3.11 Access privileged devices
Depending on the setting of CMSIS-RTOS RTX, “main()” can start in unprivileged
state. In this case you cannot access any registers in the NVIC or the System Control
Space (SCS), or some of the special registers in the processor core.

To enable “main()” and various threads to run in privileged state, you should set
the OS_RUNPRIV parameter in RTX_Conf_CM.c to 1. However, there are many appli-
cations that require some threads to run in unprivileged state, for example, to enable
the system to utilize memory protection features. In this case, it is very likely that you
still want to execute some of the procedures in privileged state so that you can set up
the NVIC or access other registers in SCS, or special registers in the processor.

In order to solve this problem, the CMSIS-RTOS RTX provides an extendable
SVCmechanism. SVC #0 is used by the CMSIS-RTOS RTX, but other SVC services
can be used by user-defined functions. The application code can use SVC calls to
execute these user-defined functions inside the SVC handler, which executes in priv-
ileged state.

A SVC table code needs to be added to the project that carries out the SVC ser-
vice look-up and defines the name of the user-defined SVC service.

SVC_table.s: Here we only added one user-defined SVC service, but you
can add more if needed. The name of the user-defined SVC service code
is called __SVC_1.

AREA SVC_TABLE, CODE, READONLY

EXPORT SVC_Count

SVC_Cnt EQU (SVC_End-SVC_Table)/4
SVC_Count DCD SVC_Cnt

; Import user SVC functions here.
IMPORT __SVC_1

Table 19.17 Timer Functions

Function Description

osTimerId osTimerCreate (const osTimerDef_t
*timer_def, os_timer_type type,
void *argument))

Create and initialize a timer.

osStatus osTimerStart (osTimerId timer_id,
uint32_t millisec)

Start or restart a timer.

osStatus osTimerStop (osTimerId timer_id) Stop the timer.

osStatus osTimerDelete (osTimerId timer_id) Delete a timer that was
created by osTimerCreate.
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EXPORT SVC_Table
SVC_Table
; Insert user SVC functions here. SVC 0 used by RTL Kernel.

DCD __SVC_1 ; user SVC function
SVC_End

END

And inside the application code, we define user_defined_svc(void) as SVC #1,
and implement __SVC_1, which is referenced in the SVC table.

/* Example of using SVC service to initialize a NVIC register */

#include "stm32f4xx.h"
#include <cmsis_os.h>

void __svc(0x01) user_defined_svc(void); // Define SVC #1 as
user_defined_svc

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blink
/* Function declaration */
void blinky(void const *argument); // Thread
void LedOutputCfg(void); // LED output configuration

// --------------------------------------------------------
// Blinky
// - toggle LED bit 12
// - Unprivileged Thread
void blinky(void const *argument) {
while(1) {

if (GPIOD->IDR & (1<<12)) {
GPIOD->BSRRH = (1<<12); // Clear bit 12

} else {
GPIOD->BSRRL = (1<<12); // Set bit 12

}
osDelay(500); // delay 500 msec

}
}

// define blinky_1 as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --------------------------------------------------------
// User defined SVC service (#1)
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// Note that the name must match the SVC service name defined in
// SVC_Table.s
void __SVC_1(void)
{
// add your NVIC/SCS initialization code here ...
NVIC_EnableIRQ(EXTI0_IRQn);
return;

}
// --------------------------------------------------------
// - toggle LED bit 13
// - Unprivileged Thread
int main(void)
{
user_defined_svc(); // User defined SVC service (#1)
LedOutputCfg(); // Initialize LED output

// Create a task "blinky"
t_blinky = osThreadCreate(osThread(blinky), NULL);

// main() itself is another thread
while(1) {

if (GPIOD->IDR & (1<<13)) {
GPIOD->BSRRH = (1<<13); // Clear bit 13

} else {
GPIOD->BSRRL = (1<<13); // Set bit 13

}
osDelay(1000); // delay 1000 msec

}
} // end main

19.4 OS-aware debugging
In order to make debugging applications with an RTOS easier, the ITM stimulus port
#31 (the last channel) is commonly reserved for OS events in debuggers. This allows
the debugger to determine which task is being executed and which events have
occurred.

For example, in Keil� MDK-ARM the mVision debugger has a RTOS task and
System view window and an Event Viewer window. They can be accessed using the
pull-down menu in the debugger screen: “Debug/ OS support/ RTX Tasks and
System, Debug/ OS support/ Event Viewer.” To use these functions, the “RTX
kernel” option needs to be set in the “Target” tab of the project settings
(Figure 19.13).

You also need to have trace support in the debug adaptor (either Serial Wire
Viewer or Trace Port interface).
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During debugging, the RTX Tasks and System view provides a number of useful
pieces of information about the current status of the OS kernel as well as some of the
configuration details, as shown in Figure 19.14.

The Event viewer provides a time chart of which thread is currentlty executing,
as shown in Figure 19.15.

19.5 Troubleshooting
Chapter 12 and Appendix I cover most of the common issues and troubleshooting
techniques. Here are a few more areas that are more specific to embedded OS appli-
cations. If an application does not work properly, remember to check the items
covered in the following sections.

19.5.1 Stack size and stack alignment
In a number of toolchains you can generate reports to see how much stack each
thread requires. You should check this against the stack size setting of your project.
This includes the stack size setting in startup code (e.g., Keil� MDK) or linker
configuration (e.g., IAR), the default stack size for main and thread, and stack
size options in osThreadDef definitions.

FIGURE 19.13

RTX Kernel option must be set to use OS-aware debug feature

19.5 Troubleshooting 643



In addition, the stack size should be a multiple of 8. You might also need to check
the linker report or memory map report to make sure that the stack areas are aligned
to double-word boundaries.

19.5.2 Privileged level
If your embedded OS runs threads (or some of them) in unprivileged state, then these
threads cannot access SCS areas such as NVIC registers. This can also affect access
to the ITM because ITM stimulus ports can be configured to be privileged access

FIGURE 19.14

RTX Tasks and System view

FIGURE 19.15

Event viewer window
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only. Please refer to section 19.3.11 on how to extend SVC services in
CMSIS-RTOS RTX.

19.5.3 Miscellaneous
When using CMSIS-RTOS features, remember to create the objects before using
them (e.g., using the osXxxxCreate functions). The program code can compile
without any issue when some of the create functions are accidentally omitted, but
the results can be unpredictable.

When developing the examples ocasionally we have found that the
RTX Tasks and System view and Event Viewer in mVision debugger stopped
working. Simply unplugging the board and powering it again seems to fix
the problem.
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