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12.1 Overview of fault exceptions
Electronic systems can go wrong from time to time. The problems could be bugs in
the software, but in many cases they can be caused by external factors such as:

• Unstable power supply
• Electrical noise (e.g., noise from power lines)
• Electromagnetic interference (EMI)
• Electrostatic discharge
• Extreme operation environment (e.g., temperature, mechanical vibrations)
• Wearing out of components (e.g., Flash/EEPROMs devices, crystal oscillators,

capacitors) caused by repetitive programming or high-low temperature cycles
• Radiation (e.g., cosmic rays)
• Usage issues (e.g., end users didn’t read the manual ☺) or invalid external data

input

All these issues could lead to failure in the programs running on the processors.
In many simple microcontrollers, you can find features like a watchdog timer and
Brown-Out Detector (BOD). The watchdog can be programmed to trigger if the
counter is not cleared within a certain time, and can be used to generate a reset or
Non-Maskable Interrupt (NMI). The BOD can be used to generate a reset if the sup-
ply voltage drops to a certain critical level.

You can find a watchdog timer and BOD in many ARM� microcontrollers as
well. However, when a failure occurs and the processor stops responding, it might
take a bit of time for the watchdog to kick in. For most applications this is not a prob-
lem, but for some safety critical applications, a 1msec delay can be a matter of life or
death.

In order to allow problems to be detected as early as possible, the Cortex�-M
processors have a fault exception mechanism included. If a fault is detected, a fault
exception is triggered and one of the fault exception handlers is executed.

By default, all the faults trigger the HardFault exception (exception type
number 3). This fault exception is available on all Cortex-M processors including
the Cortex-M0 and Cortex-M0þ processors. Cortex-M3 and Cortex-M4 processors
have three additional configurable fault exception handlers:

• MemManage (Memory Management) Fault (exception type 4)
• Bus Fault (exception type 5)
• Usage Fault (exception type 6)

These exceptions are triggered if they are enabled, and if their priority is higher
than the current exception priority level, as shown in Figure 12.1. These exceptions
are called configurable fault exceptions, and have programmable exception priority
levels (see section 7.9.5).
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FIGURE 12.1

Fault exceptions available in ARMv7-M architecture

The fault handlers can be used in a number of ways:

• Shut down the system safely
• Inform users or other systems that it encountered a problem
• Carry out self-reset
• In the case of multi-tasking systems, the offending tasks could be terminated and

restarted
• Other remedial actions can be carried out to try to fix the problem if possible

(e.g., executing a floating point instruction with floating point unit turned off can
cause an error, and can be easily solved by turning the floating point unit on)

Sometimes a system could carry out a number of different operations from the
list above, depending on the type of fault detected.

To help detect what type of error was encountered in the fault handler, the Cortex-
M3 and Cortex-M4 processors also have a number of Fault Status Registers (FSRs).
The status bits inside these FSRs indicate the kind of fault detected. Although it might
not pinpoint exactly when or where things went wrong, locating the source of the
problem is made easier with these addition pieces of information. In addition, in
some cases the faulting address is also captured by Fault Address Registers
(FARs). More information about FSRs and FARs is given in section 12.4.

During software development, programming errors can also lead to fault excep-
tions. The information provided by the FARs can be very useful for software devel-
opers in identifying software issues in debugging.
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The fault exception mechanism also allows applications to be debugged safely.
For example, when developing a motor control system, you can shut down the motor
by using the fault handlers before stopping the processor for debugging.

12.2 Causes of faults
12.2.1 Memory management (MemManage) faults
MemManage faults can be caused by violation of access rules defined by the MPU
configurations. For example:

• Unprivileged tasks trying to access a memory region that is privileged access only
• Access to a memory location that is not defined by any defined MPU regions

(except the Private Peripheral Bus (PPB), which is always accessible by privi-
leged code)

• Writing to a memory location that is defined as read-only by the MPU

The accesses could be data accesses during program execution, program fetches,
or stack operations during execution sequences. For instruction fetches that trigger a
MemManage fault, the fault triggers only when the failed program location enters
the execution stage.

For a MemManage fault triggered by stack operation during exception sequence:

• If the MemManage fault occurred during stack pushing in the exception entrance
sequence, it is called a stacking error.

• If the MemManage fault occurrs during stack popping in the exception exit
sequence, it is called an unstacking error.

The MemManage fault can also be triggered when trying to execute program
code in eXecute Never (XN) regions such as the PERIPHERAL region, DEVICE
region, or SYSTEM region (see section 6.9). This can happen even for Cortex�-
M3 or Cortex-M4 processors without the optional MPU.

12.2.2 Bus faults
The bus faults can be triggered by error responses received from the processor bus
interface during a memory access; for example:

• Instruction fetch (read), also called prefetch abort in traditional ARM� processors
• Data read or data write, also called data abort in in traditional ARM processors

In addition, the bus fault can also occur during stacking and unstacking of the
exception handling sequence:

• If the bus error occurred during stack pushing in the exception entrance
sequence, it is called a stacking error.

• If the bus error occurred during stack popping in the exception exit sequence, it is
called an unstacking error.
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If the bus error happened in the instruction fetch, the bus fault triggers only when
the failed program location enters the execution stage. (A branch shadow access that
triggers a bus error does not trigger the bus fault exception if the instruction does not
enter execution stage.)

Please note that if a bus error is returned at vector fetch, the HardFault exception
would be activated even when Bus Fault exception is enabled.

A memory system can return error responses if:

• The processor attempts to access an invalid memory location. In this case, the
transfer is sent to a module in the bus system called default slave. The default
slave returns an error response and triggers the bus fault exception in the
processor.

• The device is not ready to accept a transfer (e.g., trying to access DRAMwithout
initializing the DRAM controller might trigger the bus error. This behavior is
device-specific.)

• The bus slave receiving the transfer request returns an error response. For example,
it might happen if the transfer type/size is not supported by the bus slave, or if
the peripherals determined that the operation carried out is not allowed.

• Unprivileged access to the Private Peripheral Bus (PPB) that violates the default
memory access permission (see section 6.8).

Bus faults can be classified as:

• Precise bus faults e fault exceptions happened immediately when the memory
access instruction is executed.

• Imprecise bus faults e fault exceptions happened sometime after the memory
access instruction is executed.

The reason for a bus fault to become imprecise is due to the presence of write
buffers in the processor bus interface (Figure 6.17). When the processor writes
data to a bufferable address (see section 6.9 on memory access attributes, and section
11.2.5 on MPU Base Region attribute and Size register), the processor can proceed
to execute the next instruction even if the transfer takes a number of clock cycles to
complete.

The write buffer allows the processor to have higher performance, but this can
make debugging a bit harder because by the time the bus fault exception is triggered,
the processor could have executed a number of instructions, including branch in-
structions. If the branch target can be reached via several paths (Figure 9.16), it
could be hard to tell where the faulting memory access took place unless you
have an instruction trace (see Chapter 14, section 14.3.5). To help with debugging
such situations, you can disable the write buffer using the DISDEFWBUF bit in
the Auxiliary Control register (section 9.9).

Read operations and accesses to the Strongly Order region (e.g., Private
Peripheral Bus, PPB) are always precise in the Cortex�-M3 and Cortex-M4
processors.
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12.2.3 Usage faults
The Usage Fault exception can be caused by a wide range of factors:

• Execution of an undefined instruction (including trying to execute floating point
instructions when the floating point unit is disabled).

• Execution of Co-processor instructions e the Cortex�-M3 and Cortex-M4
processors do not support Co-processor access instructions, but it is possible
to use the usage fault mechanism to emulate co-processor instruction support.

• Trying to switch to ARM� state e classic ARM processors like ARM7TDMI�

support both ARM instruction and Thumb instruction sets, while Cortex-M
processors only support Thumb ISA. Software ported from classic ARM
processors might contain code that switches the processor to ARM state, and
software could potentially use this feature to test whether the processor it is
running on supports ARM code.

• Invalid EXC_RETURN code during exception-return sequence (see section 8.1.4
for details of EXC_RETURN code). For example, trying to return to Thread level
with exceptions still active (apart from the current serving exception).

• Unaligned memory access with multiple load or multiple store instructions
(including load double and store double; see section 6.6).

• Execution of SVC when the priority level of the SVC is the same or lower than
current level.

• Exception return with Interrupt-Continuable Instruction (ICI) bits in the
unstacked xPSR, but the instruction being executed after exception return is not a
multiple-load/store instruction.

It is also possible, by setting up the Configuration Control Register (CCR; see
sections 9.8.4 and 9.8.5) to generate usage faults for the following:

• Divide by zero
• All unaligned memory accesses

Please note that the floating point instructions supported by the Cortex-M4 are
not co-processor instructions (e.g., MCR, MRC; see section 5.6.15). However,
slightly confusingly, the register that enables the floating point unit is called the
Coprocessor Access Control Register (CPACR; see section 9.10).

12.2.4 HardFaults
As illustrated in Figure 12.1, the HardFault exception can be triggered by escalation
of configurable fault exceptions. In addition, the HardFault can be triggered by:

• Bus error received during a vector fetch
• Execution of breakpoint instruction (BKPT) with a debugger attached (halt

debugging not enabled) and debugmonitor exception (see section 14.3) not enabled

Note: In some development tool chains, breakpoints are used by the debugger to
carry out semi-hosting. For example, when reaching a “printf” operation, the proces-
sor executes a BKPT instruction and halt, and the debugger can detect the halt and
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check the register status and the immediate value in the BKPT instruction. Then
the debugger can display the message or character form the message in the printf
statement. If the debugger is not attached, such operation results in HardFault and
executes the HardFault exception handler.

12.3 Enabling fault handlers
By default the configurable fault exceptions are disabled. You can enable these ex-
ceptions by writing to System Handler Control and State Register (SCB->SHCSR).
Be careful not to change the current status of system exception active status, since
this can cause a fault exception.

12.3.1 MemManage fault
You can enable the MemManage Fault exception handler using:

SCB->SHCSR j= SCB_SHCSR_MEMFAULTENA_Msk; //Set bit 16

The default name for MemManage Fault exception handler (as defined in
CMSIS-Core) is:

void MemManage_Handler(void);

You can set up the priority of the MemManage Fault using:

NVIC_SetPriority(MemoryManagement_IRQn, priority);

12.3.2 Bus fault
You can enable the Bus Fault exception handler using:

SCB->SHCSR j= SCB_SHCSR_BUSFAULTENA_Msk; //Set bit 17

The default name for the Bus Fault exception handler (as defined in
CMSIS-Core) is:

void BusFault_Handler(void);

You can set up the priority of the Bus Fault using:

NVIC_SetPriority(BusFault_IRQn, priority);

12.3.3 Usage fault
You can enable the Usage Fault exception handler using:

SCB->SHCSR j= SCB_SHCSR_USGFAULTENA_Msk; //Set bit 18

The default name for the Usage Fault exception handler (as defined in
CMSIS-Core) is:

void UsageFault_Handler(void);
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You can set up the priority of the Usage Fault using:

NVIC_SetPriority(UsageFault_IRQn, priority);

12.3.4 HardFault
There is no need to enable the HardFault handler. This is always enabled and has a
fixed exception priority of �1. The default name for the Hard Fault exception
handler (as defined in CMSIS-Core) is:

void HardFault_Handler(void);

12.4 Fault status registers and fault address registers
12.4.1 Summary
The Cortex�-M3 and Cortex-M4 processors have a number of registers that are used
for fault analysis. They can be used by the fault handler code, and in some cases, by
the debugger software running on the debug host for displaying fault status. A sum-
mary of these registers is shown in Table 12.1. These registers can only be accessed
in privileged state.

The Configurable Fault Status Register (CFSR) can be further divided into three
parts, as show in Table 12.2. Besides accessing CFSR as a 32-bit word, each part of
the CFSR can be accessed using byte and half-word transfers. There is no
CMSIS-Core symbol for the divided MMSR, BFSR, and UFSR.

Table 12.1 Registers for Fault Status and Address Information

Address Register
CMSIS-Core
Symbol Function

0xE000ED28 Configurable Fault
Status Register

SCB->CFSR Status information for
Configurable faults

0xE000ED2C HardFault Status
Register

SCB->HFSR Status for HardFault

0xE000ED30 Debug Fault
Status Register

SCB->DFSR Status for Debug events

0xE000ED34 MemManage Fault
Address Register

SCB->MMFAR If available, showing accessed
address that triggered the
MemManage fault

0xE000ED38 BusFault Address
Register

SCB->BFAR If available, showing accessed
address that triggered the bus
fault

0xE000ED3C Auxiliary Fault
Status Register

SCB->AFSR Device-specific fault status
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12.4.2 Information for MemManage fault
The programmer’s model for the MemManage Fault Status Register is shown in
Table 12.3.

Each fault indication status bit (not including MMARVALID) is set when the
fault occurs, and stays high until a value of 1 is written to the register.

If the MMFSR indicates that the fault is a data access violation (DACCVIOL set
to 1) or an instruction access violation (IACCVIOL set to 1), the faulting code can be
located by the stacked program counter in the stack frame.

If the MMARVALID bit is set, it is also possible to determine the memory
location that caused the fault by using the MemManage Fault Address Register
(SCB->MMFAR).

Table 12.2 Dividing Configurable Fault Status Register (SCB->CFSR) Into Three Parts

Address Register Size Function

0xE000ED28 MemManage Fault Status
Register (MMFSR)

Byte Status information for
MemManage Fault

0xE000ED29 Bus Fault Status Register
(BFSR)

Byte Status for Bus Fault

0xE000ED2A Usage Fault Status Register
(UFSR)

Halfword Status for Usage Fault

Table 12.3 MemManage Fault Status Register (lowest byte in SCB->CFSR)

Bits Name Type Reset Value Description

7 MMARVALID – 0 Indicates the MMFAR is valid

6 – – – (read as 0) Reserved

5 MLSPERR R/Wc 0 Floating point lazy stacking error
(available on Cortex�-M4 with
floating point unit only)

4 MSTKERR R/Wc 0 Stacking error

3 MUNSTKERR R/Wc 0 Unstacking error

2 – – – (read as 0) Reserved

1 DACCVIOL R/Wc 0 Data access violation

0 IACCVIOL R/Wc 0 Instruction access violation

FIGURE 12.2

Configurable Fault Status Register partitioning
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MemManage faults which occur during stacking, unstacking, and lazy stacking
(see sections 8.3.6 and 13.3) are indicated by MSTKERR, MUNSTKERR, and
MLSPERR, respectively.

12.4.3 Information for bus fault
The programmer’s model for the Bus Fault Status Register is shown in Table 12.4.
Each fault indication status bit (not including BFARVALID) is set when the fault
occurs, and stays high until a value of 1 is written to the register.

The IBUSERR indicates that the bus fault is caused by a bus error during an in-
struction fetch. Both PRECISERR and IMPRECISERR are for data accesses. PRE-
CISERR indicates a precise bus error (see section 12.3.2), and the faulting
instruction can be located from the stacked program counter value. The address
of the faulting data access is also written to the Bus Fault Address Register
(SCB->BFAR); however, the fault handler should still check if BFARVALID is still
1 after reading BFAR.

If the bus fault is imprecise (IMPRECISERR set to 1), the stacked program
counter does not reflect the faulting instruction address, and the address of the fault-
ing transfer will not show in the BFAR.

Bus faults occurring during stacking, unstacking, and lazy stacking (see sections
8.3.6 and 13.3) are indicated by STKERR, UNSTKERR, and LSPERR, respectively.

12.4.4 Information for usage fault
The programmer’s model for the Usage Fault Status Register is shown in Table 12.5.

Each fault indication status bit is set when the fault occurs, and stays high until a
value of 1 is written on the register.

Appendix I shows a breakdown of possible reasons for each type of usage fault.

Table 12.4 Bus Fault Status Register (2nd byte in SCB->CFSR)

CFSR Bits Name Type Reset Value Description

15 BFARVALID – 0 Indicates BFAR is valid

14 – – – –

13 LSPERR R/Wc 0 Floating point lazy stacking
error (available on Cortex�-
M4 with floating point unit
only)

12 STKERR R/Wc 0 Stacking error

11 UNSTKERR R/Wc 0 Unstacking error

10 IMPRECISERR R/Wc 0 Imprecise data access error

9 PRECISERR R/Wc 0 Precise data access error

8 IBUSERR R/Wc 0 Instruction access error
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12.4.5 HardFault status register
The programmer’s model for the Usage Fault Status Register is shown in Table 12.6.

HardFault handler can use this register to determine whether a HardFault is
caused by any of the configurable faults. If the FORCED bit is set, it indicates
that the fault has been escalated from one of the configurable faults and it should
check the value of CFSR to determine the cause of the fault.

Similar to other fault status registers, each fault indication status bit is set when
the fault occurs, and stays high until a value of 1 is written to the register.

12.4.6 Debug fault status register (DFSR)
Unlike other fault status registers, the DFSR is intended to be used by debug tools
such as a debugger software running on a debug host (e.g., a personal computer), or a

Table 12.6 Hard Fault Status Register (0xE000ED2C ,SCB->HFSR)

Bits Name Type Reset Value Description

31 DEBUGEVT R/Wc 0 Indicates hard fault is triggered by
debug event

30 FORCED R/Wc 0 Indicates hard fault is taken
because of bus fault, memory
management fault, or usage fault

29:2 – – – –

1 VECTBL R/Wc 0 Indicates hard fault is caused by
failed vector fetch

0 – – – –

Table 12.5 Usage Fault Status Register (Upper half-word in SCB->CFSR)

CFSR Bits Name Type Reset Value Description

25 DIVBYZERO R/Wc 0 Indicates a divide by zero
has taken place (can be set
only if DIV_0_TRP is set)

24 UNALIGNED R/Wc 0 Indicates that an unaligned
access fault has taken place

23:20 – – – –

19 NOCP R/Wc 0 Attempts to execute a
coprocessor instruction

18 INVPC R/Wc 0 Attempts to do an exception
with a bad value in the
EXC_RETURN number

17 INVSTATE R/Wc 0 Attempts to switch to an
invalid state (e.g., ARM)

16 UNDEFINSTR R/Wc 0 Attempts to execute an
undefined instruction
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debug agent software running on the microcontroller to determine what debug event
has occurred.

The programmer’s model for the Debug Fault Status Register is shown in
Table 12.7.

Similar to other fault status registers, each fault indication status bit is set when
the fault occurs, and stays high until a value of 1 is written to the register.

12.4.7 Fault address registers MMFAR and BFAR
When a MemManage fault or a bus fault occurs, you might be able to determine the
address of the transfer that triggered the fault using MMFAR or BFAR registers.

The programmer’s model for the MMFAR Register is shown in Table 12.8.
The programmer’s model for the BFAR Register is shown in Table 12.9.

Table 12.7 Debug Fault Status Register (0xE000ED30 ,SCB->DFSR)

Bits Name Type Reset Value Description

31:5 - - - Reserved

4 EXTERNAL R/Wc 0 Indicates the debug event is caused
by an external signal (the EDBGRQ
signal is a input on the processor,
typically used in multi-processor
design for synchronized debug).

3 VCATCH R/Wc 0 Indicates the debug event is caused
by a vector catch, a programmable
feature that allows the processor to
halt automatically when entering
certain type of system exception
including reset.

2 DWTTRAP R/Wc 0 Indicates the debug event is caused
by a watchpoint

1 BKPT R/Wc 0 Indicates the debug event is caused
by a breakpoint

0 HALTED R/Wc 0 Indicates the processor is halted is
by debugger request (including
single step)

Table 12.8 MemManage Fault Address Register (0xE000ED34, SCB->MMFAR)

Bits Name Type Reset Value Description

31:0 ADDRESS R/W Unpredictable When the value of MMARVALID is 1,
this field holds the address of the
address location that generates the
MemManage fault.
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Inside the Cortex�-M3 and Cortex-M4 processors, the MMFAR and BFAR
shared the same physical hardware. This reduces the silicon size of the processor.
Therefore only one of the MMARVALID or BFARVALID can be 1 at a time. As
a result, if one of the fault exceptions is pre-empted by another due to a new fault
exception, the value in the MMFAR or BFAR could have become invalid. To ensure
that the fault handlers are getting the accurate fault address information, it should:

1. First read the value of MMFAR (for MemManage fault), or BFAR (for bus fault),
then

2. Read the value of MMFSR (for MemManage fault), or BFSR (for bus fault), to
see if MMARVALID or BFARVALID is still 1. If they are still 1, then the fault
address is valid.

Note that if an unaligned access faults, the address in the MMFAR is the actual
address that faulted. The transfer is divided into a number of aligned transfers by the
processor, and the MMFAR can be any value in the address range of these aligned
transfers. For bus fault with BFARVALID set, the BFAR indicates the address
requested by the instruction, but can be different from the actual faulting address.
For example, in a system with a valid 64KB SRAM address 0x20000000 to
0x2000FFFF, a word-size access to 0x2000FFFE might fault in the second half-
word at address 0x20010000. In this case, BFAR showing 0x2000FFFE is still in
the valid address range.

12.4.8 Auxiliary fault status register
The AFSR was added from Cortex�-M3 r2p0 onwards. It allows silicon designers
to add their own fault status information. The programmer’s model for the AFSR
Register is shown in Table 12.10.

Similar to other fault status registers, each fault indication status bit is set when
the fault occurs, and stays high until a value of 1 is written to the register.

Table 12.10 Auxiliary Fault Status Register (0xE000ED3C, SCB->AFSR)

Bits Name Type
Reset
Value Description

31:0 Implementation Defined R/W 0 Implementation defined
fault status

Table 12.9 Bus Fault Address Register (0xE000ED38, SCB->BFAR)

Bits Name Type Reset Value Description

31:0 ADDRESS R/W Unpredictable When the value of BFARVALID is 1,
this field holds the address of the
address location that generates the
Bus Fault.

12.4 Fault status registers and fault address registers 391



On the processor interface, a 32-bit input (AUXFAULT) is available for silicon
designers to connect to various devices that can be used to generate fault events, as
shown in Figure 12.3.

When a fault event happens in one of these devices, it triggers an interrupt, and
the interrupt handler can use the AFSR to determine which device generated the
fault. Since this is not intended to be used for general interrupt processing, using
the software to determine the cause of fault does not cause a latency issue.

12.5 Analyzing faults
It is not uncommon to encounter fault exceptions during software development. In
some cases it can be a bit of challenge to find out what went wrong. In most cases,
the information provided by the fault status registers and fault address registers is
certainly very useful. In addition, more information can be obtained using various
techniques and tools including:

• Stack Trace: After a fault exception is triggered, we can halt the processor and
examine the processor status and the memory contents either by using breakpoint
hardware, or manually inserting a breakpoint instruction. Besides the current
register values, we can trace the stacked register values including the stacked
Program Counter (PC) from the stack pointers. Combining the stacked PC and
the fault status registers values can very often lead you to the right answers fairly
quickly.

• Event Trace: The data trace feature in the Cortex�-M3 and Cortex-M4 pro-
cessors allows you to collect exception history using low-cost debuggers. The
exception trace can be output through the single pin Serial Wire Output pin
(see Chapter 14). If a program failure is related to exception handling, the event
trace feature allows you to see which exceptions occurred before the failure and
hence make it easier to locate the issue.

FIGURE 12.3

Additional fault generation sources connected to the processor via AUXFAULT and interrupt
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• Instruction Trace: Use the Embedded Trace Macrocell (ETM) to collect infor-
mation about instruction executed, and display it on a debugger to identify the
processor operations before the failure. This requires a debugger with Trace Port
capture function.

In typical stack trace operations, we can add a breakpoint to the beginning of
the HardFault handler (or other configurable handlers if they are used). When a fault
occurs, the processor enters the fault handler and halts.

First, we need to determine which stack pointer was being used when the fault
occurred. In the majority of the applications without an OS, only the Main Stack
Pointer (MSP) would be used. However, if the application uses PSP, we need to deter-
mine the SP used by checking bit 2 of the LinkRegister (LR), as shown in Figure 12.4.

From the stack pointer value, we can easily locate the stacked registers like
stacked PC (return address) and stacked xPSR:

• In many cases the stacked PC provides the most important hint for debugging
the fault. By generating a disassembled code listing of the program image in the
toolchain, you can easily pinpoint the code fragment where the fault occurred,
and understand the failure from the information provided in the fault status
registers, and the current and stacked register values.

• Stacked xPSR can be useful for identifying if the processor was in handler mode
when the fault occurred, and whether there has been an attempt to switch the
processor into ARM� state (if the T-bit in the EPSR is cleared, there has been an
attempt to switch the processor into ARM state).

Finally, the LR value when entering the fault handler might also provide hints
about the cause of the fault. In the case of faults caused by invalid EXC_RETURN
values, the value of LR when the fault handler is entered shows the previous LR
value when the fault occurred. The fault handler can report the faulty LR value,
and software programmers can then use this information to check why the LR
ends up with an illegal return value.

In some debug tools, the debugger software contains features which allow you to
access fault status information easily. For example, in Keil� MDK-ARM, you can
access to the fault status registers using the “Fault Report” window, as shown in
Figure 12.5. This can be accessed from the pull-down menu “Peripherals”->
“Core Peripherals” -> “Fault Reports.”

Various trace features in the debugger can also help to identify the source of the
problem in your application code. More information on this is covered in Chapter
14. There is also an application note on the Keil website about debugging fault
exceptions: Application Note 209 “Using Cortex-M3 and Cortex-M4 Fault Excep-
tions” (http://www.keil.com/appnotes/docs/apnt_209.asp).

Other debug tools also have the debug feature to assist fault analysis. For
example, the debugger in the Atollic TrueStudio has a Fault Analyzer feature; it
extracts information from the processor such as the fault status registers to identify
the reasons that caused the fault.
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FIGURE 12.4

Stack trace flow to locate stack frame and stacked registers

3
9
4

C
H
A
P
T
E
R
1
2

F
a
u
lt
E
xc
e
p
tio
n
s
a
n
d
F
a
u
lt
H
a
n
d
lin
g



FIGURE 12.5

Fault Reports window in Keil MDK-ARM showing the fault status registers
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12.6 Faults related to exception handling
In some cases, faults can be generated during exception handling. The most common
case is incorrect stack setup; for example, the stack space reserved is too small and
causes the stack space to run out. In this section wewill look at what could have gone
wrong and what fault exception could be triggered.

12.6.1 Stacking
During exception entry, a number of registers are pushed to the stack. Potentially this
can trigger a Bus Fault if the memory system returns an error response, or a Mem-
Manage fault if the MPU is programmed and the stack grows beyond the allocated
memory space for the stack.

If a bus error is received, the STKERR bit (bit 4) in the Bus Fault Status Register
(BFSR) is set. If an MPU violation is detected, the error is indicated by the
MSTKERR bit (bit 4) in the MemManage fault status register.

12.6.2 Unstacking
During exception exits, the processor restores register values by reading back values
from the stack frame. It is possible to trigger a Bus Fault if the memory system
returned a bus error response, or a MemManage fault if the MPU detected an access
violation.

If a bus error is received, the UNSTKERR bit (bit 3) in the BFSR is set. If an
MPU violation is detected, the error is indicated by the MUNSTKERR bit (bit 3)
in the MemManage fault status register.

It is uncommon to get an unstacking error without getting a stacking error. If the
Stack Pointer (SP) value was incorrect, in most cases the fault would have happened
during stacking. However, it is not impossible to get an unstacking fault without a
stacking fault. For example, this can happen if:

• The value of SP was changed during the execution of the exception handler
• TheMPU configurationwas changed during the execution of the exception handler
• The value of EXC_RETURN was changed during the execution of the exception

handler, so the SP being used in unstacking was different from the one used in
stacking

12.6.3 Lazy stacking
For the Cortex�-M4 processor with floating point unit, Bus Fault and MemManage
Fault could be triggered during lazy stacking. The lazy stacking feature allows the
stacking of floating point registers to be deferred, and only push those registers to
the allocated space if the exception handler uses the floating point unit. When this
happens, the processor pipeline is stalled and carries out the stacking, and then
executes the floating point instruction after the stacking is completed.
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If a bus error is received during the lazy stacking operation, the Bus Fault excep-
tion is triggered and the error is indicated by LSPERR (bit 5) of the Bus Fault Status
Register. If a MPU access violation occurs, the MemManage Fault exception is trig-
gered and the error is indicated by MLSPERR (bit 5) of the MemManage Fault Sta-
tus Register.

12.6.4 Vector fetches
If a bus error takes place during a vector fetch, the HardFault exception will be trig-
gered, and the error will be indicated by the VECTTBL (bit 1) of the Hard Fault
Status Register. The MPU always permits vector fetches and therefore there is no
MPU access violation for vector fetches. If a vector fetch error occurs, one thing
that needs checking is the value of the VTOR to see whether the vector table has
been relocated to the correct address range.

If the LSB of the exception vector is 0, it indicates an attempt to switch the
processor to the ARM� state (use ARM instructions instead of Thumb instruc-
tions), and this is not supported in Cortex�-M processors. When this happens,
the processor will trigger a Usage Fault at the first instruction of the exception
handler, with INVSTATE bit (bit 1) if the Usage Fault Status Register is set to 1
to indicate the error.

12.6.5 Invalid returns
If the EXC_RETURN value is invalid or does not match the state of the processor (as
in using 0xFFFFFFF1 to return to Thread mode), it will trigger a Usage Fault. The
bits INVPC (bit 2) or INVSTATE (bit 1) of the Usage Fault Status Register will be
set, depending on the actual cause of the fault.

12.6.6 Priority levels and stacking or unstacking faults
Configurable fault handlers have programmable priority levels. If a fault happens
and the current priority level is the same or higher than the associated configurable
fault handler, the fault event is escalated to the HardFault exception, which has a
fixed priority of �1.

If a stacking or unstacking error occurs during an exception sequence, the current
priority level is based on the priority level of the interrupted process/task, as shown
in Figure 12.6.

If the Bus Fault or MemManage Fault exception has the same or lower priority
than the current priority level, the HardFault exception will be executed first.

If the Bus Fault or MemManage Fault exception is enabled and has higher pri-
ority than both the current level and the priority level of the exception to be serviced,
then the Bus Fault or MemManage Fault exception would be executed first.

If the Bus Fault or MemManage Fault exception is enabled and has a priority
level between the current level and the exception to be serviced, the handler for
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FIGURE 12.6

Priority level at stacking and unstacking
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the exception to be serviced is executed first, and the Bus Fault or MemMange Fault
handler is executed afterwards.

12.7 Lockup
12.7.1 What is lockup?
When an error condition occurs, one of the fault handlers will be triggered. If
another fault happens inside a configurable fault handler, then either another config-
urable fault handler is triggered (if the fault is a different kind and the other fault
handler and has higher priority than the current level), or the Hard Fault handler
is triggered and executed. However, what happens if another fault happens during
the execution of the HardFault handler? (This is a very unlucky situation, but it
can happen.) In this case, a lockup will take place.

Lockup can happen if:

• A fault occurs during execution of the HardFault or NMI (Non-Maskable
Interrupt) exception handler

• A bus error occurs during vector fetch for HardFault or NMI exceptions
• Trying to execute SVC instruction in the HardFault or NMI exception handler
• Vector fetch at startup sequence

During lockup, the processor stops program execution and asserts an output
signal called LOCKUP. How this signal is used depends on the microcontroller
design; in some cases it can be used to generate a system reset automatically. If
the lockup is caused by an error response from the bus system, the processor might
retry the access continuously, or if the fault is unrecoverable it could force the pro-
gram counter to 0xFFFFFFFX and might keep fetching from there.

If the lockup is caused by a fault event inside the HardFault handler (double fault
condition), the priority level of the processor is still at priority level�1, and it is still
possible for the processor to respond to an NMI (priority level �2) and execute the
NMI handler. But after the NMI handler finishes, it will return to the lockup state and
the priority level will return to �1.

There are various ways to exit the lockup state:

• System reset or power on reset
• The debugger can halt the processor and clear the errors (e.g., using reset or

clearing current exception handling status, update program counter value to a
new starting point, etc.)

Typically a system reset is the best method as it ensures that the peripherals and
all interrupt handling logic returns to the reset state.

You might wonder why we do not simply reset the processor when a lockup takes
place. It might be good for a live system, but during software development, we should
first try to find the cause of the problem. If we reset the system automatically, it will be
impossible to analyze what went wrong because the hardware status will change.
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The Cortex�-M processor designs export the lockup status to its interface and
chip designers can implement a programmable auto reset feature, so that when
this auto reset feature is enabled, the system can reset itself automatically.

Note that a bus error or MPU access violation occurs during stacking or unstack-
ing (except vector fetch) when entering a HardFault handler or NMI handler does not
cause the system to enter lockup state (see Figure 12.7). However, the Bus Fault
exception could end up in a pending state and execute after the HardFault handler.

12.7.2 Avoiding lockup
In some applications, it is important to avoid lockup, and extra care is needed when
developing the HardFault handler and NMI handler. For example, we might need to
avoid stack memory access unless we know that the stack pointer is still in a valid
memory range. For example, if the starting of the HardFault handler has a stack push
operation and the MSP (Main Stack Pointer) was corrupted and pointed to invalid
memory location, we could end up entering lockup state immediately at the start
of the HardFault handler:

HardFault_Handler
PUSH {R4-R7,LR} ; Bad idea unless you are sure that the

; stack is safe to use!
. . .

Even if the stack pointer is in a valid memory range, we might still need to reduce
the amount of stack used by the HardFault and NMI handler, if the available stack
size is small.

FIGURE 12.7

Only a Fault occurring during a HardFault or NMI handler will cause Lockup
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In safety critical systems, we can add an assembly wrapper code for fault han-
dlers (Figure 12.8) to check if the value of MSP is still in a valid range before calling
the fault handlers in C code, which might have stack operations inserted by the
C compilers.

One approach for developing HardFault and NMI handlers is to carry out only
the essential tasks inside the handlers, and the rest of the tasks, such as error report-
ing, can be pended using a separate exception such as PendSV. This helps to ensure
that the HardFault handler or NMI is small and robust.

Furthermore, we should ensure that the NMI and HardFault handler code will
not try to use the SVC instruction. Since SVC always has lower priority than
HardFault and NMI, using SVC in these handlers will cause lockup. This might
look simple, but when your application is complex and you call functions from
different files in your NMI and HardFault handlers, you might accidentally call
a function that contains an SVC instruction. Therefore before you develop
your software with SVC, you need to plan the SVC service implementation
carefully.

12.8 Fault handlers
12.8.1 HardFault handler for debug purposes
A number of activities can be carried out in fault handlers, for example:

• Shutdown the system safely
• Report errors
• Self-reset
• Carry out remedial actions (if possible)
• For an OS environment, the task that triggered the fault can be terminated and

restarted.

Start

Fault handler

MSP valid?

Call main
body of

handler in C

YN

Deal with
stack error
first

Return

FIGURE 12.8

Adding a SP value check in fault handlers
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• Optionally clear the fault status in the fault status registers. This should be included
in the fault handler if it carries out remedial action and resumes normal operations.

The implementations for most of these tasks are dependent on the application.
The self-reset operation is discussed in section 9.6. Here, we will have a look at
reporting information about the fault. One of the common ways to do this is to create
a HardFault handler that:

• Reports that the HardFault happened
• Reports the Fault Status Register and Fault Address Register values
• Reports additional information from the stack frame

The following example HardFault handler assumes that you have some way to
display messages generated from “printf” in C (see Chapter 18 for details). As
mentioned in section 12.5, we will need to check the value of EXC_RETURN
code to determine if MSP or PSP was used for the stacking.

In order to extract the value of EXC_RETURN from LR and to locate the starting
of stack frame fromMSP/PSP, we need a small assembly code wrapper. This extracts
the starting address of the stack frame and passes it to the second part of the
HardFault handler, which is programmed in C. This wrapper also passes the EXC_
RETURN value as the second parameter:

/* Assembly wrapper for Keil� MDK, ARM� Compilation tool chain
(including DS-5� Professional and RealView� Development Suite) */
// ----------------------------------------------------------------

---------
// Hard Fault handler wrapper in assembly
// It extracts the location of stack frame and passes it to handler
// in C as a pointer. We also extract the LR value as second
// parameter.
__asm void HardFault_Handler(void)
{

TST LR, #4
ITE EQ
MRSEQ R0, MSP
MRSNE R0, PSP
MOV R1, LR
B __cpp(HardFault_Handler_C)

}

For users of gcc, you can create a separate assembly file to do the same thing:

/* Assembly file for gcc */
.text
.syntax unified
.thumb
.type HardFault_Handler, %function
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.global HardFault_Handler

.global HardFault_Handler_c

HardFault_Handler:
tst lr, #4
ite eq
mrseq r0, msp /* stacking was using MSP */
mrseq r0, psp /* stacking was using PSP */
mov r1, lr /* second parameter */
ldr r2,=HardFault_Handler_c
bx r2
.end

And for users of IAR Embedded Workbench (many thanks for various Cortex�-
M users for porting the example to IAR and posting it to the Internet1):

// Assembly wrapper for IAR Embedded Workbench
// ----------------------------------------------------------------

---------
// Hard Fault handler wrapper in assembly
// It extracts the location of stack frame and passes it to handler
// in C as a pointer. We also extract the LR value as second
// parameter.
void HardFault_Handler(void)
{
__asm("TST LR, #4");
__ASM("ITE EQ");
__ASM("MRSEQ R0, MSP");
__ASM("MRSNE R0, PSP");
__ASM("MOV R1, LR");
__ASM("B HardFault_Handler_C");
}

The second part of the HardFault handler is coded in C; it displays the fault status
registers, fault address register, and the contents in the stack frame:

// Second part of the HardFault handler in C
void HardFault_Handler_C(unsigned long * hardfault_args, unsigned
int lr_value)
{
unsigned long stacked_r0;
unsigned long stacked_r1;
unsigned long stacked_r2;
unsigned long stacked_r3;

1See http://blog.frankvh.com/2011/12/07/cortex-m3-m4-hard-fault-handler/
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unsigned long stacked_r12;
unsigned long stacked_lr;
unsigned long stacked_pc;
unsigned long stacked_psr;
unsigned long cfsr;
unsigned long bus_fault_address;
unsigned long memmanage_fault_address;

bus_fault_address = SCB->BFAR;
memmanage_fault_address = SCB->MMFAR;
cfsr = SCB->CFSR;

stacked_r0 = ((unsigned long) hardfault_args[0]);
stacked_r1 = ((unsigned long) hardfault_args[1]);
stacked_r2 = ((unsigned long) hardfault_args[2]);
stacked_r3 = ((unsigned long) hardfault_args[3]);
stacked_r12 = ((unsigned long) hardfault_args[4]);
stacked_lr = ((unsigned long) hardfault_args[5]);
stacked_pc = ((unsigned long) hardfault_args[6]);
stacked_psr = ((unsigned long) hardfault_args[7]);

printf ("[HardFault]\n");
printf ("- Stack frame:\n");
printf (" R0 = %x\n", stacked_r0);
printf (" R1 = %x\n", stacked_r1);
printf (" R2 = %x\n", stacked_r2);
printf (" R3 = %x\n", stacked_r3);
printf (" R12 = %x\n", stacked_r12);
printf (" LR = %x\n", stacked_lr);
printf (" PC = %x\n", stacked_pc);
printf (" PSR = %x\n", stacked_psr);
printf ("- FSR/FAR:\n");
printf (" CFSR = %x\n", cfsr);
printf (" HFSR = %x\n", SCB->HFSR);
printf (" DFSR = %x\n", SCB->DFSR);
printf (" AFSR = %x\n", SCB->AFSR);
if (cfsr & 0x0080) printf (" MMFAR = %x\n",
memmanage_fault_address);
if (cfsr & 0x8000) printf (" BFAR = %x\n", bus_fault_address);
printf ("- Misc\n");
printf (" LR/EXC_RETURN= %x\n", lr_value);

while(1); // endless loop
}
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Please note that this handler will not work correctly if the stack pointer is point-
ing to an invalid memory region (e.g., because of stack overflow). This affects all C
code, as most C functions need stack memory. To help debug the issue, we can also
generate a disassembled code list file so that we can locate the problem used to
report the stacked program counter value.

The values of BFAR andMMFAR stay unchanged if the BFARVALID orMMAR-
VALID is set. However, if a new fault occurs during the execution of this fault handler,
the value of the BFAR andMMFAR could potentially be erased. In order to ensure the
fault addresses accessed are valid, the following procedure should be used:

1. Read BFAR/MMFAR.
2. Read CFSR to get BFARVALID or MMARVALID. If the value is 0, the value of

BFAR or MMFAR accessed can be invalid and can be discarded.
3. Optionally clear BFARVALID or MMARVALID.

Otherwise, it is possible to get an incorrect fault address if the following
sequence occurs:

1. Read BFARVALID/MMARVALID,
2. Detected that valid bit is set, then going to read BFAR or MMFAR,
3. Just before readingBFARorMMFAR, a higher-priority handler arrives at the current

fault handler, and the higher-priority exception handler generates another fault,
4. Another fault handler is triggered, and this clears the BFARVALID or

MMARVALID. This means that the value in BFAR andMMFARwill not be held
constant, and will be lost.

5. After returning to the original fault handler, the value of BFAR or MMFAR is
read, but now the value is invalid and leads to incorrect information in the fault
report.

Therefore, it is important to read the BFAR or MMFAR first, and then read
BFARVALID and MMARVALID in CFSR.

12.8.2 Fault mask
In a configurable fault handler, if needed we can set the FAULTMASK to:

• Disable all interrupts, thus allowing the processor to carry out remedial actions
without getting interrupted (please note that the processor can still be interrupted
by a NMI exception).

• Disable/Enable the configurable fault handler to bypass MPU, and to ignore bus
faults (see BFHFNMIGN bit of Configuration Control Register in section 9.8.3)

These characteristics allow a configurable fault handler to try to access certain
memory locations that may or may not be valid.

Potentially the FAULTMASK can also be used outside fault handlers. For
example, if you have a piece of software that needs to run on a number of microcon-
trollers with various SRAM sizes, you can use the FAULTMASK to disable bus
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faults, and then carry out a RAM read-write test to detect the available RAM size
during run-time.

12.9 Additional information
12.9.1 Running a system with two stacks
In Chapter 10 we covered the shadow stack point feature, which is useful for an OS.
For systems without an embedded OS, the two-stack arrangement can have another
usage: the separationof stacks usedbyThreadmodeandHandlermode can help debug-
ging stack issues in some cases, and allows exception handlers (including the fault han-
dlers) to run normally even if the stack pointer for the Thread mode is corrupted and
points to invalid memory locations. In safety critical systems this can be important.

To do this, we need to get the Thread mode code to switch from using the MSP
(Main Stack Pointer) to using the PSP (Process Stack Pointer). It is relatively
straightforward to do this in the reset handler. For example, if you are using Keil�

MDK-ARM, you can add code in the startup code to reserve an extra handler mode
stack memory, and set the MSP, PSP, and CONTROL registers accordingly in the
reset handler. You might also need to update the __user_initial_stackheap func-
tion at the end of the startup code.

; Modification to a startup code file (for Keil MDK-ARM) to switch
Thread mode to use PSP
Handler_Stack_Size EQU 0x00000200
Thread_Stack_Size EQU 0x00000400

AREA STACK, NOINIT, READWRITE, ALIGN=3
Handler_Stack_Mem SPACE Handler_Stack_Size
__initial_handler_sp
Thread_Stack_Mem SPACE Thread_Stack_Size
__initial_sp
...
; Reset handler
Reset_Handler PROC

EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =__initial_sp
MSR PSP, R0
LDR R0, =__initial_handler_sp
MSR MSP, R0
MOVS R0, #2 ; Set SPSEL bit
MSR CONTROL, R0 ; Now Thread mode use PSP
ISB
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LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP

...
__user_initial_stackheap

LDR R0, = Heap_Mem
LDR R1, =(Thread_Stack_Mem + Thread_Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Thread_Stack_Mem
BX LR

It is also possible to do this in C, but switching the stack pointer would be slightly
more complex because it can be a bad idea to change the current stack point value after
the C program started, as the stackmight hold local variables that are already initialized
and will be used later. To solve this problem, we need to change the PSP to where
the current stack is (i.e., MSP current value), switch the SPSEL bit in the CONTROL
register, thenmove theMSP to amemory space reserved for handler stack.For example,
you can declare a memory space for the handler stack as static memory array.

Example C code to enable Thread mode to use the Process Stack with PSP
uint64_t Handler_Stack[128]; // Handler Stack = 128x8 = 1024 bytes
int main(void) {
uint32_t tmp;
...
tmp=(uint32_t)(Handler_Stack)+(sizeofHandler_Stack);// Gettopofstack
__set_PSP(__get_MSP()); // Set PSP to be the same as MSP
__set_CONTROL(__get_CONTROL()j0x2); // Set SPSEL, Do not change

other bits
__ISB(); // ISB after CONTROL change

// (architectural recommendation)
__set_MSP(tmp); // Move MSP to point to Handler

stack
...

For Cortex�-M4 with floating point unit, since the floating point unit might have
been activated and used, the bit 2 of the CONTROL register could already have been
set. Therefore when setting SPSEL bit in the CONTROL register we need to perform
a read-modify-write sequence to prevent clearing the FPCA bit accidentally.

12.9.2 Detect stack overflow
One of the common causes for software failure is stack overflow. To prevent this,
traditionally, it is common for software developers to fill the SRAM with a
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predefined pattern (e.g., 0xDEADBEEF), then execute the program for a while, stop
the target, and see how much stack has been used. This method works to an extent,
but might not be accurate because the conditions for maximum stack usage might
not have been triggered.

In some tool chains, you can get an estimation of the required stack size from
report files after project compilation. For example, if you are using:

• Keil� MDK-ARM�, after compilation you can find an HTML file in the project
directory. One of the pieces of information provided in this file is the maximum
stack size which the functions use.

• IAR Embedded Workbench, you need to enable two project options: the
“Generate linker map file” option in the “List” tab for Linker, and the “Enable
stack usage analysis” option in “Advanced” tab for Linker. After the compilation
process, you can then see a “Stack Usage” section in the linker report (.map) in
the “Debug\List” subdirectory.

Some software analysis tools can also give you a report on stack usages and a lot
more information to help you improve the quality of the program code. However, if
there is a stack issue such as stack leak in the software, the compilation report file
cannot help you. So we need some ways to detect stack usage.

One method is to locate the stack near to the bottom of the SRAM space. When
the stack is fully used, the processor gets a bus error in the next stack push because
the transfer is no longer in a valid memory region, so the fault handler is executed.
If the fault handler is not using the two-stacks arrangement, we need to reset the
stack point to a valid memory location in the beginning of the fault handler, so
that the remaining parts of the fault handler can run correctly.

Another method is to use the MPU to define a small, inaccessible or read-only
memory region at the end of the stack space. If the stack overflows, the MemManage
fault exception is triggered and the MPU can be turned off temporarily to allow addi-
tional stack space for the fault handler to execute.

If the system is connected to a debugger, you could set a data watch point
(a debug feature) at the end of the stack memory so that the processor halts when
all the stack space is used. For a standalone test environment, the data watchpoint
feature can also potentially be used to trigger a debug monitor exception if no
debugger is connected (if a debugger is connected, the debugger might overwrite
the data watchpoint setting programmed by the application code).

For applications with an OS, the OS kernel can also carry out checking of the
PSP value during each context switching to ensure that the application tasks only
used the allocated stack space. While this is not as reliable as using the MPU, it
is still a useful method and is easy to implement in many RTOS designs.
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