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2.1 What are inside typical ARM® microcontrollers?

There are many different things inside a microcontroller. In many microcontrollers,
the processor takes less than 10% of the silicon area, and the rest of the silicon die is
occupied by other components such as:

* Program memory (e.g., flash memory)
« SRAM
e Peripherals
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¢ Internal bus infrastructure

¢ Clock generator (including Phase Locked Loop), reset generator, and distribution
network for these signals

* Voltage regulator and power control circuits

¢ Other analog components (e.g., ADC, DAC, voltage reference circuits)

e 1/O pads

* Support circuits for manufacturing tests, etc.

While some of these components are directly visible to programmers, some others
could be invisible to software developers (e.g., support circuit for manufacturing tests).
Don’t worry; to use a Cortex®-M microcontroller, we only need to have basic
understanding of the processors (e.g., how to use the interrupt features), as well as
the detailed programmer’s model of the peripherals. Since the peripherals from different
microcontroller vendors are different, you need to download and read the user manuals
(or similar documents) from microcontroller vendors. This book is focused on the pro-
cessors, although a number of examples on using peripherals are also covered.

Peripherals and control registers for system management are accessible from the
memory map. To make it easier for software developers, most microcontroller ven-
dors provide C header files and driver libraries for their microcontrollers. In most
cases, these files are developed with the Cortex Microcontroller Software Interface
Standard (CMSIS), which means it used a set of standardized headers for accessing
processor features. We will cover more on this later in this chapter.

In most cases, the processor does all the work of controlling the peripherals and
handles the system management. This book will cover a few examples of using a
number of popular Cortex-M3/M4-based microcontrollers. In some microcontrol-
lers there are also some smart peripherals that can do small amounts of processing
without processor intervention. This depends on the vendor-specific peripherals on
the microcontrollers and is beyond the scope of this book, but you can find the details
in user manuals on the microcontroller vendor’s website.

2.2 What you need to start
2.2.1 Development suites

With more than 10 different vendors selling C compiler suites for Cortex®-M micro-
controllers, deciding which one to use can be a difficult choice. The development
suites range from open-source free tools, to budget low-cost tools, to high-end com-
mercial packages. The current available choices included various products from the
following vendors:

+ Keil™ Microcontroller Development Kit (MDK-ARM)

« ARM® DS-5™ (Development Studio 5)

* TAR Systems (Embedded Workbench for ARM Cortex-M)

* Red Suite from Code Red Technologies (acquired by NXP in 2013)

¢ Mentor Graphics Sourcery CodeBench (formerly CodeSourcery Sourcery g-++-)
e mbed.org
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e Altium Tasking VX-toolset for ARM Cortex-M
* Rowley Associates (CrossWorks)

e Coocox

¢ Texas Instruments Code Composer Studio (CCS)
¢ Raisonance RIDE

e Atollic TrueStudio

¢ GNU Compiler Collection (GCC)

e ImageCraft ICCVS8

e Cosmic Software C Cross Compiler for Cortex-M
¢ mikroElektronika mikroC

¢ Arduino

Some development boards also include a basic or evaluation edition of the devel-
opment suites. In addition, there are development suites for other languages. For
example:

e Oracle Java ME Embedded
e IS2T MicroE] Java virtual machine
¢ mikroElektronika mikroBasic, mikroPascal

The illustrations in this book are mostly based on the Keil Microcontroller
Development Kit (MDK-ARM) because of its popularity, but most of the example
code can be used with the other development suites.

2.2.2 Development hoards

There are already a large number of development kits for the Cortex®-M3/M4
microcontrollers from various microcontroller vendors and their distributors.
Many of them are offered at an excellent price. For example, you can get a
Cortex-M3 evaluation board for less than $12.

You can also get development kits from software tool vendors; for example, com-
panies like Keil " (an example is show in Figure 2.1), IAR Systems, and Code Red
Technologies all have a number of development boards available.

A number of low-cost development boards are designed to work with particular
development suites. For example, the “mbed.org” development boards, a low-cost
solution for rapid software prototyping, are designed to work with the mbed devel-
opment platform.

To start learning about ARM® Cortex-M microcontrollers, it is not always neces-
sary to get an actual development board. Several development suites include an in-
struction set simulator, and the Keil MDK-ARM even supports device-level
simulation for some of the popular Cortex-M microcontrollers. So you can learn
Cortex-M programming just by using simulation.

2.2.3 Debug adaptor

In order to download your program code to the microcontroller, and to carry out
debug operations like halting and single stepping, you might need a debug adaptor
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FIGURE 2.1
A Cortex-M3 development board from Keil (MCBSTM32)

to convert a USB connection from your PC to a debug communication protocol used
by the microcontrollers. Most C compiler vendors have their own debug adaptor
products. For example, Keil " has the ULINK product family (Figure 2.2), and
IAR provides the I-Jet product. Most development suites also support third-party
debug adaptors. Note that different vendors might have different terminologies for
these debug adaptors, for example, debug probe, USB-JTAG adaptor, JTAG/SW
Emulator, JTAG In-Circuit Emulator (ICE), etc.

Some of the development kits already have a USB debug adaptor built-in on the
board. This includes some of the low-cost evaluation boards from Texas Instruments,

ULINK Products

[PIKEIL  ULINK P

ULINKPro

SIKEIL  uunk2

ULINK2

ULINK-ME

FIGURE 2.2
The Keil ULINK debug adaptor family
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FIGURE 2.3
An example of development board with USB debug adaptor — STM32 Value Line Discovery

ST Microelectronics (e.g., STM32 Value Line Discovery; Figure 2.3), NXP, Energy-
Micro, etc. Many of these onboard USB adaptors are also supported by mainstream
commercial development suites. So you can start developing software for the
Cortex®-M microcontrollers with a tiny budget.

In a number of evaluation/development boards, the built-in USB debug adaptor
can also be used to connect to other development boards. You can also find “open-
source” versions of such debug adaptors. The CMSIS-DAP from ARM and CoLink
from Coocox are two examples.

While these low-cost debug adaptors work for most debug operations, there
might be some features that are not well supported. There are a number of commer-
cial USB debug adaptor products that offer a large number of useful features.

2.2.4 Software device driver

The term device driver here is quite different from its meaning in a PC environment.
In order to help microcontroller software developers, microcontroller vendors usu-
ally provide header files and C codes that include:

¢ Definitions of peripheral registers
* Access functions for configuring and accessing the peripherals

By adding these files to your software projects, you can access various peripheral
functions via function calls and access peripheral registers easily. If you want to, you
can also create modified versions of the access functions based on the methods
shown in the driver code and optimize them for your application.

2.2.5 Examples

Don’t forget to download some example code from the microcontroller vendor’s
website. Most of the microcontroller vendors put their device-driver codes and
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examples on their websites as free downloads. This can save you a lot of time in
developing new applications.

2.2.6 Documentation and other resources

Aside from user manuals of the microcontrollers, often you can also find application
notes, FAQs, and online discussion forums on microcontroller vendor websites. The
user manuals are essential, as they provides the details of the peripherals’ program-
mer models.

On the ARM® website, the documentation is placed in a section called Info
Center (http://infocenter.arm.com). From there you can find the Cortex®-M3/M4
Devices Generic User Guides (references 2 and 3), which covers the programming
model of the processors, as well as various application notes.

Finally, you can also find a number of useful application notes and online
discussion forums from tool vendor websites.

2.2.7 Other equipment

Depending on the applications you are developing and the development board you
are using, you might need additional hardware that interfaces to the development
boards, such as external LCD display modules or communication interface adaptors.
Also you might need some hardware development tools like a laboratory power
supply, logic analyzer/oscilloscope, signal generator, etc.

2.3 Software development flow

The software development flow depends on the compiler suite you use. Assuming
that you are using a compiler suite with Integrated Development Environment
(IDE), the software development flow (as shown in Figure 2.4) usually involves:

Create project — you need to create a project that will specify the location of
source files, compile target, memory configurations, compilation options, and so
on. Many IDEs have a project creation wizard for this step.

Add files to project — you need to add the source code files required by the
project. You might also need to specify the path of any included header files in
the project options. Obviously you might also need to create new program source
code files and write the program. Note that you should be able to reuse a number
of files from the device-driver library to reduce the effort in writing new files.
This includes startup code, header files, and some of the peripheral control
functions.

Setup project options — In most cases, the project file created allows a number of
project options such as compiler optimization options, memory map, and output
file types. Based on the development board and debug adaptor you have, you
might also need to setup options for debug and code download.
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Compile and link — In most cases, a project contains a number of files that are
compiled separately. After the compilation process, each source file will have a
corresponding object file. In order to generate the final combined executable
image, a separate linking process is required. After the link stage, the IDE can
also generate the program image in other file formats for the purpose of pro-
gramming the image to the device.

Flash programming — Almost all of the Cortex®-M microcontrollers use flash
memories for program storage. After a program image is created, we need
to download the program to the flash memory of the microcontroller. To do
this, you need a debug adaptor if the microcontroller board you use does not
have one built in. The actual flash programming procedures can be quite
complex, but these are usually fully handled by the IDE and you can carry out
the whole programming process with a single mouse click. Note that if you
want to, you can also download applications to SRAM and execute them
from there.

Execute program and debug — After the compiled program is downloaded
to the microcontroller, you can then run the program and see if it works.
You can use the debug environment in the IDE to stop the processor
(commonly referred as halt) and check the status of the system to ensure it is
working properly. If it doesn’t work correctly, you can use various debug
features like single stepping to examine the program operations in detail. All
these operations will require a debug adaptor (or the one built in to the
development kit if available) to link up the IDE and the microcontroller being
tested. If a software bug is found, then you can edit your program code,
recompile the project, download the code to the microcontroller, and test

it again.

If you are using open source toolchain, you might not have an IDE and might
need to handle the compile and link process using scripts or makefile. Depending
on the microcontroller product you are using, there can be third-party tools that
can be used to download the compiled program image to the flash memory in the
microcontroller.

During execution of the compiled program, you can check the program execution
status and results by outputting information via various I/O mechanisms such as a
UART interface or an LCD module. A number of examples in this book will
show how some of these methods can be implemented. See Chapter 18 for some
of the examples.

2.4 Compiling your applications

The procedure for compiling an embedded program depends on the development
tools you use. Later in this book, a number of chapters cover the use of a couple
of development tools to compile simple applications (Chapters 15 to 17). Here we
will first have a look at some basic concepts of the compilation process.
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First, we assume that you are developing your project using C programming
language. This is the most commonly used programming language for microcon-
troller software development. Your project might also contain some assembly lan-
guage files; for example, startup code that is supplied by microcontroller vendors.
In most cases, the compilation process will be similar to the one shown in
Figure 2.5.

Most development suites contain the tools listed in Table 2.1.

Different development tools have different ways to specify the layout of the pro-
gram and data memory in the microcontroller system. In ARM® toolchains, you can
use a file type called scatter-loading file, or in the case of Keil" MDK-ARM, the
scatter-loading file can be generated automatically by the pVision development
environment. For some other ARM toolchains, you can also use command line
options to specify the locations of ROM and RAM.

In a GNU-based toolchain, the memory specification is handled by linker scripts.
These scripts are typically included in the installation of commercial gcc toolchains.
However, some gcc users might have to create these files themselves. A later chapter
of this book contains examples for compiling programs using gcc, which covers
more information on linker scripts.

When using the GNU gcc toolchain, it is common to compile the whole
application in one go instead of separating the compilation and linking stages
(Figure 2.6).

The gcc compilation automatically invokes the linker and assembler if needed.
This arrangement ensures that the details of the required parameters and libraries
are passed on to the linker correctly. Using the linker as a separate step can be error
prone and therefore is not recommended by most gcc tool vendors.

Table 2.1 Various Tools You Can Find in a Development Suite

Tools Descriptions

C compiler To compile C program files into object files

Assembler To assemble assembly code files into object files

Linker A tool to join multiple object files together and define memory
configuration

Flash programmer A tool to program the compiled program image to the flash
memory of the microcontroller

Debugger A tool to control the operation of the microcontroller and to

access internal operation information so that status of the
system can be examined and the program operations can be

checked

Simulator A tool to allow the program execution to be simulated without
real hardware

Other utilities Various tools, for example, file converters to convert the

compiled files into various formats
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2.5 Software flow

There are many ways to construct program flow for an application. Here we will
cover some of the basic concepts.

2.5.1 Polling

For very simple applications, the processor can wait until there is data ready for pro-
cessing, process it, and then wait again. This is very easy to setup and works fine for
simple tasks. Figure 2.7 shows a simple polling program flow chart.

In most cases, a microcontroller will have to serve multiple interfaces and there-
fore be required to support multiple processes. The polling program flow method can
be expanded to support multiple processes easily (Figure 2.8). This arrangement is
sometimes called a “super-loop.”

The polling method works well for simple applications, but it has several disad-
vantages. For example, when the application gets more complex, the polling loop
design might get very difficult to maintain. Also, it is difficult to define priorities be-
tween different services using polling — you might end up with poor responsiveness,
where a peripheral requesting service might need to wait a long time while the pro-
cessor is handling less important tasks.

2.5.2 Interrupt driven

Another main disadvantage of the polling method is that it is not energy efficient. Lots
of energy is wasted during the polling when service is not required. To solve this

Qﬁm;}

System and
peripheral
Initializations

A

Y

_—

Peripheral requires //
processing? \% *

A=

Process request

FIGURE 2.7
Polling method for simple application processing
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Polling method for application with multiple devices that need processing

problem, almost all microcontrollers have some sort of sleep mode support to reduce
power, in which the peripheral can wake up the processor when it requires a service
(Figure 2.9). This is commonly known as an interrupt-driven application.

In an interrupt-driven application, interrupts from different peripherals can be
assigned with different interrupt priority levels. For example, important/critical
peripherals can be assigned with a higher priority level so that if the interrupt arrives
when the processor is servicing a lower priority interrupt, the execution of the lower
priority interrupt service is suspended, allowing the higher priority interrupt service
to start immediately. This arrangement allows much better responsiveness.

In some cases, the processing of data from peripheral services can be partitioned
into two parts: the first part needs to be done quickly, and the second part can be car-
ried out a little bit later. In such situations we can use a mixture of interrupt-driven
and polling methods to construct the program. When a peripheral requires service, it
triggers an interrupt request as in an interrupt-driven application. Once the first part
of the interrupt service is carried out, it updates some software variables so that the
second part of the service can be executed in the polling-based application code
(Figure 2.10).
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Simple interrupt-driven application

Using this arrangement, we can reduce the duration of high-priority interrupt han-
dlers so that lower priority interrupt services can get served quicker. At the same time,
the processor can still enter sleep mode to save power when no servicing is needed.

2.5.3 Multi-tasking systems

When the applications get more complex, a polling and interrupt-driven program
structure might not be able to handle the processing requirements. For example,
some tasks that can take a long time to execute might need to be processed concur-
rently. This can be done by dividing the processor’s time into a number of time slots
and allocating the time slots to these tasks. While it is technically possible to create
such an arrangement by manually partitioning the tasks and building a simple sched-
uler to handle this, it is often impractical to do this in real projects as it is time
consuming and can make the program much harder to maintain and debug.

In these applications, a Real-Time Operating System (RTOS) can be used to handle
the task scheduling (Figure 2.11). An RTOS allows multiple processes to be executed
concurrently, by dividing the processor’s time into time slots and allocating the time
slots to the processes that require services. A timer is need to handle the timekeeping
for the RTOS, and at the end of each time slot, the timer generates a timer interrupt,
which triggers the task scheduler and decides if context switching should be carried
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out. If yes, the current executing process is suspended and the processor executes
another process.

Besides task scheduling, RTOSs also have many other features such as sema-
phores, message passing, etc. There are many RTOSs developed for the Cortex®-M
processors, and many of them are completely free of charge.

2.6 Data types in C programming

The C programming language supports a number of “standard” data types. However,
the way a data item is represented in hardware depends on the processor architecture
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Using an RTOS to handle multiple tasks

as well as the C compiler. In different processor architectures, the size of certain data
types can be different. For example, the integer is often 16-bit in 8-bit or 16-bit
microcontrollers, and is always 32-bit in the ARM® architecture. Table 2.2 shows
the common data types in ARM architecture, including all Cortex®-M processors.
These data types are supported by all C compilers.

Because of differences of size in certain data types, it might be necessary to
modify the source code when porting an application from an 8-bit or 16-bit micro-
controller to an ARM Cortex-M microcontroller. More details on porting software
from 8-bit and 16-bit architectures are covered in Chapter 24.

In ARM programming, we also refer to the size of a data item as BYTE, HALF
WORD, WORD, and DOUBLE WORD, as shown in Table 2.3.

These terms are very common in ARM documentation, including the instruction
set descriptions as well as hardware descriptions.

2.7 Inputs, outputs, and peripherals accesses

Almost all microcontrollers have various Input/Output (I/O) interfaces and periph-
erals such as timers, Real-time Clock (RTC), and so on. For microcontroller
products based on the ARM® Cortex®-M3, and M4 processors, as well as common
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Table 2.2 Size and Range of Data Types in ARM Architecture Including Cortex-M

Processors

C and C99 (stdint.h) Number Range Range

Data Type of Bits (Signed) (Unsigned)

char, int8_t, uint8_t 8 —128 to 127 0to 255

short int16_t, uint16_t 16 —32768 to 32767 0 to 65535

int, int32_t, uint32_t 32 —2147483648 to Oto
2147483647 4294967295

Long 32 —2147483648 to Oto
2147483647 4294967295

long long, int64_t, uint64_t 64 —(2763) to (2763 - 1)  Oto (2764 - 1)

Float 32 —3.4028234 x 108 t0 3.4028234 x 10%

Double 64 —1.7976931348623157 x 10°%® to
1.7976931348623157 x 10%%8

long double 64 —1.7976931348623157 x 10%% to
1.7976931348623157 x 10°%8

Pointers 32 0x0 to OxFFFFFFFF

Enum 8/16/32 Smallest possible data type, except when
overridden by compiler option

bool (C++ only), _Bool (Conly) 8 True or false

wchar_t 16 0 to 65535

Table 2.3 Data Size Definition in ARM Processor
Terms Size
Byte 8-bit
Half word 16-bit
Word 32-bit
Double word 64-bit

interface peripherals such as GPIO, SPI, UART, I2C, you can also find many
advanced interface peripherals like USB, CAN, Ethernet, and analogue interfaces
like ADCs (Analog to Digital Converters) and DACs (Digital to Analog Converters).
Most of these interface peripherals are vendor specific, so you need to read the user
manuals provided by the microcontroller vendors to learn how to use them. In most
cases you can also find programming examples on microcontroller vendor websites.

On these microcontrollers, the peripherals are memory-mapped, which means
the registers are accessible from the system memory map. In order to access these
peripherals registers in C programs, we can use pointers. We will see some examples
of how this can be done in the following sections.
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Typically, a peripheral requires an initialization process before it can be used.

This might include some of the following steps:

Programming the clock control circuitry to enable the clock signal connection to
the peripheral, and clock signal connection to corresponding I/O pins if needed.
Many modern microcontrollers allow fine tuning of clock signal distribution,
such as enabling/disabling the clock connection to each individual peripheral for
better energy saving. Typically the clocks to peripherals are turned off by default
and you need to enable the clock before programming the peripheral. In some
cases you might also need to enable the clock to the peripheral bus system.

In some cases you might need to configure the operation mode of the I/O pins. Most
microcontrollers have multiplexed I/O pins that can be used for multiple purposes.
In order to use a peripheral, it might be necessary to configure its I/O pins to match
the usage (e.g., input/output direction, function, etc.). In addition, you might also
need to program additional configuration registers to define the expected electrical
characteristics such as output type (voltage, pull up/down, open drain, etc.).
Peripheral configuration. Most peripherals contain a number of programmable
registers that need configuration before using the peripheral. In some cases, you
can find the programming sequence a bit more complex than that of a 8-bit mi-
crocontroller, because the peripherals on 32-bit microcontrollers are often much
more sophisticated than peripherals on 8-bit/16-bit systems. On the other hand,
often the microcontroller vendors will have provided device-driver library code
and you can use these driver functions to reduce the programming work required.
Interrupt configuration. If a peripheral is to be used with interrupt operations, you
will need to program the interrupt controller on the Cortex-M3/M4 processor
(NVIC) to enable the interrupt and to configure the interrupt priority level.

All these initialization steps are carried out by programming peripheral registers

in various peripheral blocks. As mentioned, peripheral registers are memory-
mapped and therefore can be accessed using pointers. For example, you can define
a General Purpose Input Output (GPIO) register set as a number of pointers as:

/* STM32F 100RBT6B — GPI0 A Port Configuration Register Low */
fidefine GPIOA_CRL (*((volatile unsigned Tong *) (0x40010800)))
/* STM32F 100RBT6B — GPIO A Port Configuration Register High */
fidefine GPIOA_CRH (*((volatile unsigned Tong *) (0x40010804)))
/* STM32F 100RBT6B — GPIO A Port Input Data Register */

Jidefine GPIOA_IDR (*((volatile unsigned Tong *) (0x40010808)))
/* STM32F 100RBT6B — GPI0O A Port Output Data Register */

fidefine GPIOA_ODR (*((volatile unsigned Tong *) (0x4001080C)))
/* STM32F 100RBT6B — GPIO A Port Bit Set/Reset Register */
fidefine GPIOA_BSRR(*((volatile unsigned Tong *) (0x40010810)))
/* STM32F 100RBT6B — GPIO A Port Bit Reset Register */

jidefine GPIOA_BRR (*((volatile unsigned Tong *) (0x40010814)))
/* STM32F 100RBT6B — GPI0 A Port Configuration Lock Register */
fidefine GPIOA_LCKR (*((volatile unsigned Tong *) (0x40010818)))
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Then we can use the definitions directly. For example:

void GPIOA_reset(void) /* Reset GPIO A */

{
// Set all pins as analog input mode
GPIOA_CRL=0; //Bit0to7, all setasanaloginput
GPTOA_CRH=0; //Bit8to 15, all set as analog input
GPTOA_ODR=0; // Default output value is 0
return;

This method is fine for a small number of peripheral registers. However, as the
number of peripheral registers increases, this coding style can be problematic
because:

* For each register address definition, the program needs to store the 32-bit address
constant, resulting in increased code size.

e When there are multiple instantiations of the same peripheral, for example, the
STM32 microcontroller has five GPIO peripherals, and the same definition
has to be repeated for each of the instantiations. This is not scalable and
makes it hard for software maintenance.

* It is not easy to create a function that can be shared between multiple
instantiations of the same peripheral. For example, with the above example
definition we might have to create the same GPIO reset function for each of the
GPIO ports, resulting in increased code size.

In order to solve these problems, the common practice is to define the peripheral
registers as data structures. For example, in the device-driver software package from
the microcontroller vendors, we can find:

typedef struct

{
__I0uint32_t CRL;
__I0uint32_t CRH;
_ I0uint32_t IDR;
__I0uint32_t ODR;
__I0uint32_t BSRR;
__I0uint32_t BRR;
__I0uint32_t LCKR;

} GPIO_TypeDef;

Then each peripheral base address (GPIO A to GPIO G) is defined as pointers to
the data structure:

fidefine PERIPH_BASE ((uint32_t)0x40000000)
/*1< Peripheral base address in the bit-band region */

jtdefine APB2PERIPH_BASE (PERIPH_BASE + 0x10000)
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ffdefine GPIOA_BASE (APB2PERIPH_BASE +0x0800)
ffdefine GPIOB_BASE (APB2PERIPH_BASE + 0x0C00)
ffdefine GPIOC_BASE (APB2PERIPH_BASE +0x1000)
ffdefine GPIOD_BASE (APB2PERIPH_BASE +0x1400)
ffdefine GPIOE_BASE (APB2PERIPH_BASE +0x1800)

jtdefine GPIOA ((GPIO_TypeDef *) GPIOA_BASE)
#define GPIOB  ((GPIO_TypeDef *) GPIOB_BASE)
jtdefine GPIOC ((GPIO_TypeDef *) GPIOC_BASE)
jtdefine GPIOD ((GPIO_TypeDef *) GPIOD_BASE)
fidefine GPIOE ((GPIO_TypeDef *) GPIOE_BASE)

In these code snippets, there are a number of new things we have not covered:

The “__I0O” is defined in a standardized header file in CMSIS. It implies a
volatile data item (e.g., a peripheral register), which can be read or written to by
software. Aside from “__I0,” a peripheral register can also be defined as “__I”
(read only) and “__O” (write only).

jifdef _cplusplus

fidefine __I volatile /*!< defines "read only’ permissions */
frelse

jtdefine __T volatile const /*!<defines "read only’ permissions */
frendif
ffdefine __0Ovolatile /*!<defines "write only’ permissions */
jtdefine __I0 volatile /*!< defines "read / write’ permissions */

The “uint32_t” (unsigned 32-bit integer) is a data type supported in C99. This
ensures the data size is 32-bit, independent of the processor architecture, which can
help the software to be more portable. To use this data type, the project needs to
include the standard data type header (Note: if you are using a CMSIS-compliant
device header file this is already done for you in the device header file):

#pinclude <stdint.h>/* Include standard types */
/*C99 standard data types:
uint8_t :unsigned 8-bit, int8_t :signed8-bit,
uintl6_t : unsigned 16-bit, intl6_t : signed 16-bit,
uint32_t : unsigned 32-bit, int32_t : signed 32-bit,
uint64_t : unsigned 64-bit, int64_t : signed 64-bit
*/

When peripherals are declared using such a method, we can create functions that
can be used for each instance of the peripheral easily. For example, the code to reset
the GPIO port can be written as:

void GPIO_reset(GPIO_TypeDef* GPIOX)
{
// Set all pins as analog input mode
GPIOx->CRL=0; //Bit0to7, all setasanalog input
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GPIOX->CRH=0; //Bit 8 to 15, all set as analog input
GPIOXx->0DR=0; // Default output value is 0
return;

}

To use this function, we just need to pass the peripheral base pointer to the function:

GPIO_reset(GPIOA); /* Reset GPIO A */
GPIO_reset(GPIOB); /* Reset GPIO B */

This method for declaring peripheral registers is used by almost all of the Cortex-
M microcontroller device-driver packages.

2.8 Microcontroller interfaces

The applications running in the microcontroller connect with external world using
various peripheral interfaces. While usage of peripheral interfaces is not the main
focus of this book, a few basic examples will be covered. In most cases, you can
use device-driver library software packages from the microcontroller vendors to
simplify the software development, and you can find examples and application notes
on the Internet for such information.

Unlike programming for PCs, most embedded applications do not have a rich GUL
Some development boards might have an LCD screen, but many others just have a
couple of LEDs and buttons. While the application itself might not require a user inter-
face, often a simple text-based communication method is very useful for software
development. For example, it can be handy to able to use printf to display a value
captured by the Analog-to-Digital Converter (ADC) during program execution.

A number of methods can be used to handle such message display:

* Using a character LCD display module connected to the I/O pins of the
microcontroller

* Using a simple UART to communicate with a terminal program running on a PC

e Set up a USB interface on the microcontroller as a virtual COM port to
communicate with a terminal program running on a PC

¢ Use the Instrumentation Trace Macrocell (ITM), a standard debug feature on the
Cortex®-M3/M4, to communicate with the debugger software

In some cases, a character LCD might be part of the embedded product, so using
this hardware to display information can be convenient. However, the size of the
screen limits the amount of information that can be displayed at a time.

A UART is easy to use, and allows more information to be passed to the devel-
oper quickly. The Cortex-M3/M4 processor does not have a UART as standard, but
most microcontroller vendors have included a UART peripheral in their microcon-
troller designs. However, most modern computers do not have a UART interface
(COM port) anymore, so you might need to use a USB-to-UART adaptor cable to
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FIGURE 2.12
Using a UART to communicate with a PC via USB

handle this communication. In addition, you need to have a TTL-to-RS232 adaptor
in your development setup to convert the signal’s voltage (see Figure 2.12).

In some development boards (e.g., Texas Instruments Stellaris LaunchPad), the
onboard debug adaptor has the feature of converting UART communications to USB.

If the microcontroller you use has a USB interface, you can use this to commu-
nicate with a PC using USB. For example, you can use a Virtual COM port solution
for text-based communication with a terminal program running on a computer. It
requires more effort in setting up the software but allows the microcontroller hard-
ware to interface with the PC directly, avoiding the cost of the RS232 adaptors.

If you are using commercial debug adaptors like the Keil ULINK?2, Segger J-LINK,
or similar, you can use a feature called Instrumentation Trace Macrocell ITM) to trans-
fer messages to the debug host (the PC running the debugger) and display the messages
in the development environment. This does not require any extra hardware and does not
require much software overhead. It allows the peripheral interfaces to be free for other
purposes. Examples of using the ITM are covered in Chapter 18.

The technique to redirect text messages from a “printf” (in C language) to spe-
cific hardware (e.g., UART, character LCD, etc.) is commonly referred as “retarget-
ing.” Retargeting can also be used to handle user inputs and system functions. The
C code for retargeting is toolchain specific. Examples of retargeting for a couple of
development tools will be covered in Chapter 18.

2.9 The Cortex® microcontroller software interface
standard (CMSIS)

2.9.1 Introduction to CMSIS

Earlier in this chapter we mentioned CMSIS. CMSIS was developed by ARM® to
allow microcontroller and software vendors to use a consistent software infrastructure
to develop software solutions for Cortex®-M microcontrollers. As such, you can see
that many software products for Cortex-M microcontrollers are CMSIS-compliant.
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Currently the Cortex-M microcontroller market comprises:

* More than 15 microcontroller vendors shipping Cortex-M microcontroller
products (see section 1.1.4 for the list of Cortex-M3 and Cortex-M4 microcon-
troller vendors), with some other silicon vendors providing Cortex-M based
FPGA and ASICs

*  More than 10 toolchain vendors

* More than 30 embedded operating systems

e Additional Cortex-M middleware software providers for codecs, communication
protocol stacks, etc.

With such a large ecosystem, some form of standardization of the way the soft-
ware infrastructure works becomes necessary to ensure software compatibility with
various development tools and between different software solutions.

At the same time, embedded systems are also becoming more and more complex,
and the amount of effort in developing and testing the software has increased sub-
stantially. In order to reduce development time as well as reducing the risk of having
defects in products, software reuse is becoming more and more common. In addi-
tion, the complexity of the embedded systems has also increased the use of third-
party software solutions. For example, an embedded software project might involve
software components from many different sources:

¢ Software developed by in house developers

¢ Software reused from other projects

¢ Device-driver libraries from microcontroller vendors

*  Embedded OSs

e Other third-party software products such as communication protocol stacks

In such scenarios, the interoperability of various software components becomes
critical. For all these reasons, ARM worked with various microcontroller vendors,
tools vendors, and software solution providers to develop CMSIS, a software frame-
work covering most Cortex-M processors and Cortex-M microcontroller products.

The aims of CMSIS include:

* Enhanced software reusability — makes it easier to reuse software code in
different Cortex-M projects, reducing time to market and verification efforts.

* Enhanced software compatibility — by having a consistent software infrastruc-
ture (e.g., API for processor core access functions, system initialization method,
common style for defining peripherals), software from various sources can work
together, reducing the risk in integration.

¢ Easy to learn — the CMSIS allows easy access to processor core features
from the C language. In addition, once you learn to use one Cortex-M
microcontroller product, starting to use another Cortex-M product is much easier
because of the consistency in software setup.

* Toolchain independent — CMSIS-compliant device drivers can be used with
various compilation tools, providing much greater freedom.
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e Openness — the source code for CMSIS core files can be downloaded and
accessed by everyone, and everyone can develop software products with CMSIS.

CMSIS is an evolving project. It started out as a way to establish consistency in
device-driver libraries for the Cortex-M microcontrollers, and this has become
CMSIS-Core. Since then additional CMSIS projects have started:

e CMSIS-Core (Cortex-M processor support) — a set of APIs for application or
middleware developers to access the features on the Cortex-M processor regardless
of the microcontroller devices or toolchain used. Currently the CMSIS processor
support includes the Cortex-MO, Cortex-M0+-, Cortex-M3, and Cortex-M4 pro-
cessors and SecurCore products like SC000 and SC300. Users of the Cortex-M1
can use the Cortex-MO version because they share the same architecture.

e CMSIS-DSP library — in 2010 the CMSIS DSP library was released, supporting
many common DSP operations such as FFT and filters. The CMSIS-DSP is
intended to allow software developers to create DSP applications on Cortex-M
microcontrollers easily.

e CMSIS-SVD — the CMSIS System View Description is an XML-based file
format to describe peripheral set in microcontroller products. Debug tool vendors
can then use the CMSIS SVD files prepared by the microcontroller vendors to
construct peripheral viewers quickly.

e CMSIS-RTOS — the CMSIS-RTOS is an API specification for embedded OS
running on Cortex-M microcontrollers. This allows middleware and application
code to be developed for multiple embedded OS platforms, and allows better
reusability and portability.

¢ CMSIS-DAP — the CMSIS-DAP (Debug Access Port) is a reference design for a
debug interface adaptor, which supports USB to JTAG/Serial protocol conver-
sions. This allows low-cost debug adaptors to be developed which work for
multiple development toolchains.

In this chapter we will first look at the processor support in CMSIS
(CMSIS-Core). The CMSIS DSP library will be covered in Chapter 22. The
CMSIS-SVD and CMSIS-DAP topics are beyond the scope of this book.

2.9.2 Areas of standardization in CMSIS-Core

From a software development point of view, the CMSIS-Core standardizes a number
of areas:

Standardized definitions for the processor’s peripherals — These include the reg-
isters in the Nested Vector Interrupt Controller (NVIC), a system tick timer in the
processor (SysTick), an optional Memory Protection Unit (MPU), various program-
mable registers in the System Control Block (SCB), and some software programma-
ble registers related to debug features. Note: Some of the registers in the Cortex®-
M4 are not available in Cortex-M3, and similarly, some registers in Cortex-M3
and Cortex-M4 are not available in the Cortex-MO.
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Standardized access functions to access processor’s features — These include
various functions for interrupt control using NVIC, and functions for accessing spe-
cial registers in the processors. It is still possible to access the registers directly if
needed, but for general programming using the access functions (or sometimes
referred as Application Programming Interface, API, in some literature) can help
software portability. More details of these functions are covered in Appendix E.

Standardized functions for accessing special instructions easily — The Cortex-M
processors support a number of instructions for special purposes (e.g., Wait-
For-Interrupt, WFI, for entering sleep mode). These instructions cannot be generated
using generic IEC/ISO C' language. Instead, CMSIS implements a set of functions
to allow these instructions to be accessed within C program code. Without these
functions, the users would have to rely on toolchain specific solutions such
as intrinsic functions or inline assembly to inject special instructions into the appli-
cation, which make the software less reusable and might require certain in-depth
knowledge of the toolchain in order to handle them correctly. CMSIS provides a
standardized API for these features so that they can be easily used by application
developers.

Standardized function names for system exception handlers — A number of sys-
tem exception types are presented in the architecture for the Cortex-M processors.
By giving the corresponding system exception handlers standardized names, it
makes it much easier to develop software solutions that can be applied to multiple
Cortex-M products. This is especially important for embedded OS developers, as
the embedded OS requires the use of several types of system exception.

Standardized functions for system initialization — Most modern feature-rich
microcontroller products require some configuration of clock circuitry and
power management registers before the application starts. In CMSIS-compliant
device-driver libraries, these configuration steps are placed in a function called
“SystemlInit().” Obviously, the actual implementation of this function is device
specific and might need adaption for various project requirements. However,
having a standardized function name, a standardized way that this function is used
and a standardized location where this function can be found makes it much
easier for a designer to pick up and start using a new Cortex-M microcontroller device.

Standardized software variables for clock speed information — This might not be
obvious, but often our application code does need to know what clock frequency the
system is running at. For example, such information might be needed for setting up
the baud rate divider in a UART, or to initialize the SysTick timer for an embedded
OS. A software variable called “SystemCoreClock” (for CMSIS 1.3 or newer ver-
sions, or “SystemFreq” in older versions of CMSIS) is defined in the CMSIS-Core.

In addition, the CMSIS-Core also provides:

A common platform for device-driver libraries — Each device-driver library has
the same look and feel, making it easier for beginners to learn how to use the devices.

'C/C++ features are specified in a standard document “ISO/IEC 14882” prepared by the Interna-
tional Organisation for Standards (ISO) and the International Electrotechnical Commission (IEC).
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This also makes it easier for software developers to develop software for multiple
Cortex-M microcontroller products.

2.9.3 Organization of CMSIS-Core

The CMSIS files are integrated into device-driver library packages from microcon-
troller vendors. Some of the files in the device-driver library are prepared by ARM®
and are common to various microcontroller vendors. Other files are vendor/device
specific. In a general sense, we can define the CMSIS into multiple layers:

e Core Peripheral Access Layer — Name definitions, address definitions, and
helper functions to access core registers and core peripherals. This is processor
specific and is provided by ARM.

* Device Peripheral Access Layer — Name definitions, address definitions of
peripheral registers, as well as system implementations including interrupt
assignments, exception vector definitions, etc. This is device specific (note:
multiple devices from the same vendor might use the same file set).

e Access Functions for Peripherals — The driver code for peripheral accesses. This
is vendor specific and is optional. You can choose to develop your application
using the peripheral driver code provided by the microcontroller vendor, or you
can program the peripherals directly if you prefer.

There is also a proposed additional layer for peripheral accesses:

Middleware Access Layer — This layer does not exist in current version of
CMSIS. The idea is to develop a set of APIs for interfacing common peripherals
such as UART, SPI, and Ethernet. If this layer exists, developers of middleware
can develop their applications based on this layer to allow software to be ported
between devices easily.

The roles of the various layers are summarized in Figure 2.13.

Note that in some cases, the device-driver libraries might contain additional
vendor-specific functions for the NVIC implemented by the microcontroller vendor.
The aim of CMSIS is to provide a common starting point, and the microcontroller ven-
dors can add additional functions if they prefer. But software using these functions will
need porting if the software design is to be reused on another microcontroller product.

2.9.4 How do | use CMSIS-Core?

The CMSIS files are included in the device-driver packages provided by the micro-
controller vendors. So when you are using CMSIS-compliant device-driver libraries
provided by the microcontroller vendors, you are already using CMSIS.

Typically, you need to do the following.

e Add source files to project. This includes:
* Device-specific, toolchain-specific startup code, in the form of assembly or C
* Device-specific device initialization code (e.g., system_<device>.c)
* Additional vendor-specific source files for peripheral access functions. This is
optional.
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CMSIS-Core structure

* For CMSIS 2.00 or older versions of CMSIS-Core libraries, you might also
need to add a processor-specific C program file (e.g., core_cm3.c) to the
project for some of the core register access functions. This is not required
from CMSIS-Core 2.10.

e Add header files into search path of the project. This includes:

* A device-specific header file for peripheral registers definitions and interrupt
assignment definitions. (e.g., <device>.h)

* A device-specific header file for functions in device initialization code (e.g.,
system_<device>.h)

* A number of processor-specific header files (e.g., core_cm3.h, core_cm4.h;
they are generic for all microcontroller vendors)

* Optionally additional vendor-specific header files for peripheral access
functions

* In some cases the development suites might also have some of the generic
CMSIS support files pre-installed.

Figure 2.14 shows a typical project setup using a CMSIS device-driver package.
Inside the device-driver package obtained from the microcontroller vendor, you will
find the various files you need, including the CMSIS generic files. The names of
some of these files depend on the actual microcontroller device name chosen by
the microcontroller vendor (indicated as <device> in the diagram).

When the device-specific header file is included in the application code,
it automatically includes additional header files, therefore you need to set up the
project search path for the header files in order to compile the project correctly.
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In some cases, the Integrated Development Environment (IDE) automatically
sets up the startup code for you when you create a new project. Otherwise
you just need to add the startup code from the device-driver library to the project
manually. Startup code is required for the starting sequence of the processor, and
it also includes the exception vector table definition that is required for interrupt
handling.

2.9.5 Benefits of CMSIS-Core

So what does CMSIS mean to users?
The main advantage is much better software portability and reusability:

+ A project for a Cortex®-M microcontroller device can be migrated to another
device from the same vendor with a different Cortex-M processor very easily.
Often microcontroller vendors provide devices with Cortex-M0/M0+/M3/M4
with the same peripheral and same pin out, and the change required is just
replacing a couple of CMSIS files in the project.

e CMSIS-Core made it easier for a Cortex-M microcontroller project to be
migrated to another device from a different vendor. Obviously, peripheral setup
and access code will need to be modified, but processor core access functions are
based on the same CMSIS source code and do not require changes.

CMSIS allows software to be much more future proof because embedded soft-
ware developed today can be reused on other Cortex-M products in the future.

The CMSIS-Core also allows faster time to market because:

» It is easier to reuse software code from previous projects.

* Since all CMSIS-compliant device drivers have a similar structure, learning to
use a new Cortex-M microcontroller is much easier.

* The CMSIS code has been tested by many silicon vendors and software
developers around the world. It is compliant with Motor Industry Software
Reliability Association (MISRA). Therefore it reduces the validation effort
required, as there is no need to develop and test your own processor feature
access functions.

» Starting from CMSIS 2.0, a DSP library is included that provides tested, opti-
mized DSP functions. The DSP library code is available as a free download and
can be used by software developers free of charge.

There are also a number of other advantages:

* CMSIS is supported by multiple compiler toolchain vendors.

* CMSIS has a small memory footprint (less than 1KB for all core access functions
and a few bytes of RAM for several variables).

» CMSIS files contain Doxygen tags (http://www.doxygen.org) to enable easy
automatic generation of documentation.
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CMSIS-Core avoids the need for middleware or OS to carry their own driver code

For developers of embedded OS and middleware, the advantage of CMSIS is

significant:

* By using processor core access functions from CMSIS, embedded OS, and

middleware can work with device-driver libraries from various microcontroller

vendors, including future products that are yet to be released.
» Since CMSIS is designed to work with various toolchains, many software

products can be designed to be toolchain independent.

*  Without CMSIS, middleware might need to include a small set of driver func-
tions for accessing processor peripherals such as the interrupt controller. Such an
arrangement increases the program size, and might cause compatibility issues

with other software products (Figure 2.15).

2.9.6 Various versions of CMSIS

The CMSIS project is evolving. Over the last few years several versions of CMSIS
have been released, bringing wider processor support and improvements. Apart from

coding improvement, there have also been a number of other changes:

Version Main Changes

1.0 Nov 2008

Initial release. Support Cortex®-M3 processor only.
1.10 Feb 2009

Support for Cortex-M0 added.
1.20 May 2009

Add support for TASKING compiler.

Add more functions to manage priority settings in NVIC.
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Version Main Changes

1.30 Oct 2009
The system initialization function Systeminit() is called in startup code
instead of beginning of main().
SystemFrequency variable renamed to SystemCoreClock to reflect the
processor clock definition. Additional functions “void
SystemCoreClockUpdate(void)” added.
Add support for data receive for debug communication. (Previous versions
use ITM for data output in debug communication.)
Add bit definition for processor’s peripheral registers.
Directory structure changed.

2.0 Nov 2010
Support for Cortex-M4 added.
Included a CMSIS DSP library (CMSIS-DSP) for Cortex-M4 and Cortex-M83.
New header files core_cm4_simd.h, core_cmFunc.h and core_cminst.h
introduced, with a number of core access functions are moved to
these files and become inlined.
Add CMSIS System View Description

2.10 July 2011
CMSIS-DSP library for Cortex-M0O added.
Added big endian support for DSP library.
Directory structure simplified.
Processor specific C program files (e.g., core_cm3.c, core_cm4.c) are
no longer required and are removed.
Reworded CMSIS-DSP library example.
Documentation update.
3.0 October 2011
Added support for GNU Tools for ARM Embedded Processors.
Added function __ROR.
Added Register Mapping for TPIU, DWT.
Added support for SCO00 and SC300 processors.
Corrected ITM_SendChar function.
Corrected the functions __STREXB, __ STREXH, __ STREXW for
the GNU GCC compiler section.
Documentation restructured.
3.01 March 2012
Added support for Cortex-MO+ processor.
Integration of CMSIS DSP Library version 1.1.0.

In normal cases, embedded applications can work with different versions of the
CMSIS source files without problems. Most microcontroller vendors keep their
device-driver library up to date with the most recent versions of CMSIS, but there
is always the chance that the device-driver library package from microcontroller
vendors could be a couple of releases behind the latest CMSIS version. This is
not usually a problem, as the functionalities of the driver functions remain
unchanged.
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In a few cases, application code might need to be updated to allow it to be used
with a newer version of the CMSIS driver package (e.g., when the “SystemFrequency”
variable is used, which is replaced by “SystemCoreClock” from CMSIS 1.3).

You can download the latest version of the CMSIS source package from
http://www.arm.com/cmsis.



